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History happens only once. This seems to set up an impenetrable barrier for social
sciences, like historical linguistics, that concern themselves with change over time.
We have the historical record to go on with no convincing way to generate alterna-
tive histories that could be used for hypothesis testing. Nevertheless, it is of some
interest to ask whether what we see in the historical record is due to particular
forces or whether the time series we see could be the result of random drift. In this
paper, I will spell out some simple principles of random drift that can be used to
construct null hypotheses against which we can study particular cases of language
change. The study of random drift allows us to sharpen our analyses of language
change and develop more constrained theories of language variation and change.

1 Introduction

More years ago than I like to count, Ian Roberts and I wondered about the causal
mechanisms of language change (Clark & Roberts 1993). At the time, the idea
was that language changewould happenwhen the learner cannot uniquely deter-
mine the grammar on the basis of linguistic evidence; in these circumstances, the
learner would be inexorably driven toward the simpler analysis and the language
would change. I can confess here that my own thinking about how this could hap-
penwas rather thin; I supposed that language contact, whether between different
language groups or different sociolinguistic levels, would introduce ambiguities
into the learner’s evidence, thus driving change.

While there is no doubt that language contact is an important driver of lan-
guage change, we should ask whether it is the sole driver of change. Suppose we
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conclude that language contact is the sole driver of change; what are we to say
about language diversity? Where does the diversity of languages come from, if
not from multigenesis? Imagine, though, that a homogeneous linguistic group
is isolated for a millennium; would the language really remain unchanged over
that time, simply because the group had no contact with any other group?

Clearly, it is worth our while to investigate other potential sources for lan-
guage change beyond the clear case of language contact. I will make the case,
here, that random processes (drift) could be a source of language change. More
precisely, the sampling error that arises from each individual’s particular expe-
rience with language could be a source of language variation, particularly when
amplified through a hierarchical social structure that includes language leaders,
individuals who are taken as models by other members of their social group. In
fact, as we shall see, this sort of variation is inevitable in finite populations, a fact
that has long been known in population genetics (Crow & Kimura 1970).

2 Random processes and neutral models

The Hardy–Weinberg model, an early model of gene frequencies in populations,
had a simple structure that made it an appealing and simple model of change
over time; the equation underlying the model is exceedingly friendly and has
not only been used in biology but has also been usefully adapted to build mathe-
matical models of social and cultural evolution (Boyd & Richerson 1985), since it
can neatly express the relationship between two variant forms, 𝑝 and 𝑞.1 From a
linguistic perspective, we could take 𝑝 and 𝑞 to be the probability of two linguistic
variants that cannot be expressed simultaneously and are, thus, in competition
with each other; for example, 𝑝 might be the likelihood of verb raising, while 𝑞 is
the probability of leaving the verb in situ. In this case, of course, we would take
𝑞 to be 1 − 𝑝.

Crucially, the model makes a number of assumptions about populations. First,
there is random pairing; individuals do not “clump” together into groups depend-
ing on their preference for 𝑝 or 𝑞. Second, it is assumed that selection is not op-
erating on the population; in other words, one variant is not preferentially repli-
cated. Third, mutation andmigration are absent; new variants are not introduced
that might compete with the existing options and there is no outflow or inflow

1See also Cavalli-Sforza & Feldman (1981), one of the earliest attempts to propose a population-
basedmodel of cultural evolution;McElreath&Boyd (2007) is a good overview ofmathematical
models of social evolution, in particular their Chapter 1.
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of new variants. Thus, the model in its simplest form would put aside both inno-
vation (mutation) and language contact (migration) as sources of change. Finally,
and this point is crucial, the population is infinite in size so that frequencies of the
variants are not subject to chance fluctuations.2 These assumptions implied that,
all else being equal, the population would quickly achieve a mixed equilibrium
state. This means that, in the absence of selection, the population frequencies for
the character in question would remain stable. The frequencies in a population,
if disturbed, will quickly return to equilibrium. If, however, some force acts on
the underlying frequencies, then the population will happily rest at the new fre-
quency. One such force would be selection, where one variant is, for whatever
reason, preferred over the other. An observed positive change in frequencies of
a character would then imply that either positive selection was working on the
characteristic or that negative selection was acting on the other variant of that
characteristic.

To make the discussion concrete, suppose that the variants are (1) inversion
of the subject and the main verb in questions or (2) insertion of an auxiliary
verb which is then inverted with the subject. Suppose further that the frequency
of the second variant is increasing. A Hardy–Weinberg model would treat this
as either selection for the second variant or selection against the first variant.
Otherwise, in the absence of selection, the relative frequencies of the two types
should remain constant.

Although the model is appealingly simple, population biologists soon ques-
tioned the assumption that the population is infinite. Clearly infinite populations
don’t exist in nature, so it’s of some interest to consider what happens in a finite
population. So let’s suppose that we have a finite population of 𝑁 individuals.
Since we are interested in the spread of properties in a population, we can safely
suppose that some features are replicated by a copying process. Since the popu-
lation is finite, we can further suppose that some copies are removed from the
population. More precisely, at each time step, one individual is randomly selected
from the population according to a uniform distribution and copied and one in-
dividual is randomly selected and deleted. This is a Moran process (Moran 1958),
and it is a simple model of how random forces due to sampling can act on a pop-
ulation. This process should have some resonance in linguistics, since variants
might be randomly sampled in the population; by chance, I may have heard the
past tense of sneak as snuck rather than sneaked and might, therefore, develop
a preference for snuck. In general, because the process is sampling a finite pop-
ulation, chance becomes an important force so that large changes in population

2The literature on the Hardy–Weinberg model is extensive. Bergstrom & Dugatkin (2012) con-
tains a highly accessible introduction to the mathematics.
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frequencies could be due to random factors. Notice that these random changes
can build up over time, resulting in a change going to completion; no other forces
need to be acting on the population. Thus, a population will change over time in
the absence of actual selection; see the discussion of the neutral model, below.

Figure 1.1: 𝑁 = 10; 1,000 steps; 15 repetitions

Figures 1.1–1.3 show the results of three different experiments with this ran-
dom process in populations of various sizes, the process repeated fifteen times
for each population size; in all these cases, we are simply applying the random
sampling process described above to the population. In all these cases, the 𝑥-axis
shows the number of steps and the 𝑦-axis shows the number of individuals bear-
ing some variable trait, call it “𝐴.” My interest here is simply to show the potential
effects of population size, so what we will do is consider how this random pro-
cess plays out on populations of different sizes, ranging from 10 individuals and
going through orders of magnitude. We will briefly turn to the applicability to
language below.

In Figure 1.1, the population consists of 10 individuals. We begin with half the
population having the trait 𝐴 and the other half lacking it; the figure tracks the
frequency of the trait in the population over time. By hypothesis, the trait itself
has no consequences for either survival or reproduction. It is clear from Figure 1.1
that in a small population whatever the trait is, it quickly either takes over or
is removed from the entire population. Since the trait has no consequences for
survival or reproduction, the end result, whether it is fixation or elimination, is
entirely up to chance, a function of random sampling. Because the population is
so small, a great deal of variation emerges in short order. Small populations tend
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to have higher variance and will more quickly show the effects of random drift;
in this case, a sample size of one has consequences for 10% of the population, so
it is no wonder that the variance is so high. Note that the population quickly
fixates, either with the entire population having 𝐴 or with 𝐴 being driven out of
the population. This implies that in small populations it will be very difficult to
distinguish selection for a trait from simple drift.

Figure 1.2: 𝑁 = 100; 1,000 steps; 15 repetitions

In Figure 1.2, the population is an order of magnitude larger than in the first
experiment, with a population size of 100 individuals as opposed to the popula-
tion of 10 individuals. Again, we begin with half of the population having the
trait 𝐴. The figure tracks the frequency of 𝐴 over time. We can see that variance
increases over time, although the increase is slower than in the small population
of 10 individuals. Despite the fact that the change in variance is slower than in
the smaller population, it is still considerable after only 1,000 steps; in some rep-
etitions the trait is present in about 90% of the population while in others the
trait is present in only about 20% of the population. We can be sure that even-
tually, the population will eventually go to completion; variation will eventually
disappear either when the entire population has 𝐴 or when is vanishes from the
population; no middle course is possible (Sigmund 1993).

In Figure 1.3, I have increased the size of population by yet another order of
magnitude, to 1,000 individuals, and followed the process for 15 repetitions of
1,000 steps. With this population, the variance grows even more slowly relative
to the population size. Nevertheless, it is clear that the variance does grow, as can
be seen by comparing the spread of the population from step 200 to step 1,000.
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Indeed, as in the above cases, the population will eventually go to completion,
although it may take a much long time to do so. It is as though increases in
population size have the effect of increasingly stretching the diagram in Figure 1.1
while retaining the outcome: ultimate completion of the change after adequate
time.

Figure 1.3: 𝑁 = 1,000; 1,000 steps; 15 repetitions

While I’m certainly not claiming that language change is a Moran process,
these experiments show a number of important features of finite populations
and random sampling. First, it is clear that random forces can be a compelling
force on populations, one which, over the long term, can result in large changes
in frequencies. Unlike the simple model on infinite populations, once we have
observed a change in frequency of a trait in a finite population, we must ask
whether that change of frequency can be accounted for solely in terms of a ran-
dom force, like sampling error, or whether we must appeal to selection if we are
to understand the change. This point holds for the time series of frequencies of
variant linguistic features as much as it does for time series of the frequency of
genes in a population. This fact has import consequences for the study of lan-
guage change.

Second, the size of a population plays a crucial role in change; the smaller the
population, the easier it is for chance to buffet the frequencies, resulting in large
short-term changes of frequency of a variant in a small population. As the size
of the population grows, it will be less likely that randomness will result in rapid
changes in frequency. Thus, if we observe a rapid change in the frequency of a
trait, the larger the population is, the more likely it is that the change is a result
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of selection rather than chance. In a small population, as Figure 1.1 illustrates,
precipitous changes of frequency due to chance are not unusual.

The interpretation of population size with respect to language change is an
important question. It seems to me unlikely that population, here, refers to the
number of speakers of the language, although there will clearly be some rela-
tion between change and the number of speakers. If the relationship were a sim-
ple one, then we would expect languages with more speakers to change more
slowly than languages with smaller numbers of speakers. I’m inclined to take
population to be more intimately related to the frequencies of the forms in ques-
tion. Extremely frequent forms should change only very slowly, while less fre-
quent forms should be more inclined to drift. This accords well with the obser-
vation that irregular plural forms in English are likely to be frequent (foot/feet,
man/men, child/children, mouse/mice and so on).3 These reflect older stages of
the language which retain vestiges of an older system but resisted change to the
regular form by virtue of their “large population” (high frequency). Indeed, cast-
ing our net more widely, we see evidence that high frequency correlates with
stability; highly frequent forms are more stable and retained longer while low
frequency forms are less stable and are not retained as long; see, for example,
Pagel et al. (2007) on rates of lexical change in Indo-European; Lieberman et al.
(2007) and Newberry et al. (2017) for connections between word frequency and
rates of change for irregular verbs in English.

Third, we want to be able to reliably distinguish changes that are consistent
with random drift from changes that are more likely the result of selection. If we
are to understand cases of language change (in particular) and social change (in
general), we will want to have a method of classifying the changes we observe in
those that are consistent with random drift as the sole force of change and those
where we can reject random drift as the sole force. We cannot classify cases of
change simply by looking at individual curves.

Consider the change shown in Figure 1.4, which was again generated by a
Moran process. The curve shows a change in frequency of a trait for a popula-
tion of 200 individuals. It looks sigmoidal, which we would expect if the trait
was being selected for, but it was generated by the same Moran process used
in the experiments shown in Figures 1.1–1.3; we know that the process did not
involve selection although, by chance, this curve appears to be nicely sigmoidal.
We cannot reject the hypothesis that a change is due to chance simply by looking
at a curve with the naked eye. We need a reliable method that takes into account

3See Newberry et al. (2017) for some work on regular and irregular past tense in American
English, as well as other changes including periphrastic do and verbal negation.
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Figure 1.4: 𝑁 = 200; 25,000 steps

population size, rates of change and so forth; the method should, furthermore,
have wide application not only to language change, but to the quantitative study
of other types of change so that we can accumulate evidence for the fundamental
scientific reliability of the method.

Figure 1.5: 𝑁 = 50; 1,000 steps

Now look at the curve in Figure 1.5. This curvewas again generated by aMoran
process on a population of 50 individuals. The curve ultimately trends toward the
trait dominating in the population, although the frequencies vary up and down
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in a seemingly random fashion. It is common practice to partition the data from
historical corpora into time bins. In Figure 1.6, I’ve broken the frequencies used
in Figure 1.5 into quintiles, calculated the average in each quintile and graphed
the result. The new curve shows an initial decline in the trait “A” followed by
an apparently smooth monotonic increase that could be selection; the curve is
clearly sigmoidal. Of course, we know that the underlying process was simply
random sampling of a small population.

Figure 1.6: Average frequencies of quintiles

This brings up an important point. Random processes are always at work dur-
ing evolutionary change (Kimura 1983). Thus, whenwe see a change of frequency
of a trait in a time series, we need to ask whether or not this change could be due
to selection or whether that change is consistent with random drift. If we can rule
out drift for a particular bit of language change, we can then ask why that trait
was selected for (or, for that matter, against). Factors might include properties of
sentence processing, learnability, or social factors (social networks, prestige, or
identity). Note that we are not claiming that drift is a theory of language change
by itself but, rather, that random processes are everpresent and must be con-
trolled for in developing a theory of language change or, more broadly, social
and cultural evolution.

A theory of the random processes associated with language change would
provide a neutral model of language, one where changes in frequency are solely
due to stochastic processes. We could then compare the statistical properties of a
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given changewith the predictions of the neutral model.4 In Newberry et al. (2017),
we tested drift by using techniques developed by Feder et al. (2014); the essential
idea is relatively straightforward. Suppose we have a time series of frequencies of
some variable trait. Starting at zero, we can keep a running sum by adding 1 if the
frequency of the trait at a time step increases and subtracting 1 if the frequency
goes down.We expect that the sums for drift should show aGaussian distribution
around 0. Indeed, we can estimate population size and test whether we can reject
drift for various population sizes. Newberry et al. (2017) apply the technique to
a number of different time series and argue that not only can we distinguish
between drift and selection, but that we can quantify the strength of selection
relative to population size. The method should, when applied to a broad array of
different time series data, allow us to refine our theory of diachronic change.

So far, the reader may think that drift is a problem for the theory of language
change; in fact, though, drift may also help us to understand how language varia-
tion can arise in the absence of language contact. If the population is finite, then
random processes will guarantee that the variance will increase with time, as we
have seen in our discussion of Moran processes around Figures 1.1–1.3. This, in
turn, guarantees that new variants will constantly be brought into the population.
In other words, variation can arise in the absence of language contact.

Clark & Kimbrough (2015) develop a simple mechanical model of language
variation using a version of exemplar theory (Murphy 2002). The agents adapt
their behavior by finding the centroid of a set of exemplars (in this case, a set of
vowel pronunciations). If no other force is acting on the model, then the agents
gradually find the same centroids. If, however, the model has more social struc-
ture, where some agents are designated as particularly influential, so that their
productions are given extra weight by other agents, the variance grows enor-
mously. The influential utterances, in fact, reduce the effective population size
(Crow & Kimura 1970), since so many agents tend to imitate these utterances;
in other words, social structure makes the population smaller, causing a large
increase in the variance over time. This is, again, an example of how variation
can arise spontaneously due to the statistical properties of small populations.

I began this chapter by recalling a puzzle that Ian Roberts and I had pondered
years ago. We could see that language contact could trigger language change; I
couldn’t quite see how languages would change in the absence of contact, but
surely (I thought) that must be possible. I now offer a hypothesis about another

4Recently, neutral models have begun to receive a great deal of attention, long overdue. See
Baxter et al. (2006; 2009); Blythe (2012); Blythe & Croft (2012); Kauhanen (2017); Stadler et al.
(2016) for an array of approaches.
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possible origin for language variation and language change: finite populations.
I hope in future that we will be able to explore this hypothesis with empirical
work in corpora, modeling with Agent-Based Models and experimental labora-
tory work.
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