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Abstract. The rapid development of the Internet and the wide spread of its applications has affected

many aspects of our life. However, this development also makes the cyberspace more vulnerable to

various attacks. Thus, detecting and preventing these attacks are crucial for the next development

of the Internet and its services. Recently, machine learning methods have been widely adopted in

detecting network attacks. Among many machine learning methods, AutoEncoders (AEs) are known

as the state-of-the-art techniques for network anomaly detection. Although, AEs have been success-

fully applied to detect many types of attacks, it is often unable to detect some difficult attacks that

attempt to mimic the normal network traffic. In order to handle this issue, we propose a new model

based on AutoEncoder called Double-Shrink AutoEncoder (DSAE). DSAE put more shrinkage on

the normal data in the middle hidden layer. This helps to pull out some anomalies that are very

similar to normal data. DSAE are evaluated on six well-known network attacks datasets. The expe-

rimental results show that our model performs competitively to the state-of-the-art model, and often

out-performs this model on the attacks group that is difficult for the previous methods.
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1. INTRODUCTION

Due to the fast increase of many cyber-attacks, seeking for solutions to identify and prevent

these attacks is a major task in network security. Recently, anomaly detection techniques have been

widely applied for automatically identifying intruders, malware and malicious activities in network

systems [13, 3]. Typical security systems for carrying out this task are known as Intrusion Detection

Systems (IDSs). IDSs can be used as the second security layer behind firewalls to protect computer

networks from illegal and malicious activities [13, 23]. In IDSs, the anomaly detection-based appro-

ach is getting more popular because of its ability in detecting new network attacks. Among several

techniques for anomaly detection, machine learning techniques have been used as the main appro-

ach [12, 17, 2]. However, machine learning-based anomaly detection still suffers from some obstacles

such as high-dimensional data, the continuous evolution of network attacks, and the lack of attack

data and its labels for training the detection models [14, 11, 31].

Machine learning algorithms for anomaly detection are often divided into three categories: su-

pervised, unsupervised and semi-supervised learning. Of these, one-class classification (OCC) can

eliminate the challenges of lacking attack data and its corresponding labels since they can construct

anomaly detection models from only one class of data, usually the normal data. Any data point that
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does not fit the models well will be classified as anomaly [26]. OCCs have been used for identifying

anomalies in network security in many researches [10, 9, 33, 11]. However, OCC-based methods,

such as Support Vector Machine (SVM) [30] and Local Outlier Factor (LOF) [5], often perform in-

efficiently when the data is high-dimensional. Moreover, it is difficult to turn hyper-parameters for

these methods [28, 11].

Recently, Autoencoders (AEs) have been widely used for anomaly detection and they achieved

the state-of-the-art result in many researches [20, 18, 29]. AEs are feedforward neural networks

which learn to reconstruct the input at the output layer [4, 19]. The middle hidden layer attempts to

compress data into a lower-dimensional feature space: preserving non-redundant information while

removing the redundancies of the input data. A trained AE on normal data will behave well on

normal examples yielding small reconstruction errors (REs), whereas this AE will poorly reproduce

on anomaly instances creating larger REs. Thus, REs can be used as anomaly scores. Alternatively,

the middle hidden layer of an AE can be used as a new feature representation (latent representation)

and this latent presentation is the input to other anomaly detection algorithms [11, 9, 27, 6, 8].

Shrink AE (SAE) [11] is a typical model for learning the feature representation. SAE is an

extension of an ordinary AE by incorporating a regularizer to the loss function of the AE. SAE learn

to reconstruct the normal data as well as force this data into a tiny region in the latent space. SAE

achieves convincing results on a wide range of anomaly detection datasets. However, this model did

not perform well on some types of attacks, such as the Remote to Local attack group (R2L) [11,

see Tab. 3], which represent the most dangerous attack types [24]. The reason could be that R2L

embeds itself in data packets, and does not create a sequential patterns like DoS and Probe attacks,

thus the R2L traffic is very similar to the normal one [24, 1, 21]. In this paper, we propose a novel

model based on AE that attempts to address the shortcomings of SAE. The main contributions of

this paper are:

• We propose a new model namely Double-Shrink AutoEncoder (DSAE) for detecting some

particular types of network attacks which are difficult for SAE.

• We conduct extensive experiments on the well-known datasets, both synthetic and real datasets.

The results suggest that DSAE is better than SAE in detecting critical attacks such as R2L.

The remaining parts of the paper are as follows. In Sections 2 and 3, we briefly present some rela-

ted work, and a complementary background of the paper. The proposed model, DSAE, is presented

in Section 4, Sections 5 and 6 describe our experimental settings and analyze experimental results.

Finally, we draw some conclusions and suggest the future work in Section 7.

2. BACKGROUND

This section briefly presents anomaly detection methods including Centroid, Autoencoder and

Shrink Autoencoder. These techniques will be used for developing and evaluating our proposed

methods in the following sections.

2.1. Centroid (CEN)

Centroid (CEN) [11] is a parametric method which uses a single Gaussian to model the training

data. Let X = {x1, x2, ..., xn} ∈ Rd be the training data, µj and σj be the mean and standard
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deviation of the j-th feature of the training data respectively, n is the number of data samples, X is

normalized by the z-score transformation on each feature using Equation (1)

zij =
xij − µj
σj

, (1)

where xij is the j-th element of xi, and zij is its z-score. In testing process, the distance from the

tested sample to the centroid is calculated and it reflects the anomaly degree of the observation.

2.2. AutoEncoder

An AutoEncoder (AE) is a type of artificial neural network [4, 19] that consists of two parts:

an encoder and a decoder. The encoder attempts to map input data into a latent feature space

in the hidden layer. This latent space is also called a bottleneck. Let fθ be the encoder, and

X = {x1, x2, ..., xn} be a dataset. The encoder fθ will map the input xi ⊆ X into a latent vector

zi = fθ (xi) in the bottleneck. The decoder gθ learns to reconstruct the input data at the output

layer x̂i = gθ (zi) from the latent representation zi. The encoder and decoder are usually represented

in a form of an affine mappings as follows fθ (x) = sf (Wx+ b) and gθ (z) = sg (W ′z + b′), where

W, W
′

are the weight, b and b
′

are the bias, and sf and sg are the activation functions of the encoder

and decoder. The AE is trained to minimize the loss function (LossAE (θ)) called the reconstruction

error (RE). RE is the difference between the input xi and its reconstruction x̂i and it can be measured

by mean square error (MSE) for real-valued data, and cross entropy for binary data. When using

MSE, the loss function of an AE over training samples can be calculated as Equation 2.

LossAE (θ) =
1

m

m∑
i=1

(xi − x̂i)2 , (2)

where θ represents the parameters of the AE, m is the number of training examples.

2.3. Shrink Autoencoder

Shrink Autoencoder (SAE) is an extension of AEs introduced recently by Cao et al. [11]. In SAE,

a new regularizer is added to the loss function of an AE. This aims to encourage the AE to construct a

compact feature representation for normal data in the hidden layer which facilitates the performance

of the anomaly detection algorithms that are applied on the top of the feature representation. The

AE loss function in Equation (2) can be redefined as follows

LossSAE (θ) = LossRE (θ) +Regularizer (θ) . (3)

The first component in Equation (3) is RE (the loss of an ordinary AE), and the second one is

the regularized term which is designed to restrict the hidden data to be centered at the origin in the

latent feature space. The SAE loss can be precisely defined as

LossSAE (θ) =
1

m

(
m∑
i=1

(xi − x̂i)2 + α

m∑
i=1

‖zi‖2
)
, (4)

where x̂i and zi are the reconstruction and the latent vector of the observation xi, respectively. m
is the number of training examples, and α is the trade-off parameter.



162 CONG THANH BUI, et al.

3. RELATED WORK

This section presents a brief review of the previous research on anomaly detection using AutoEn-

coders. AutoEncoders can be employed for anomaly detection following two common approaches:

(1) Using AEs stand-alone [18, 15]; (2) Using the bottleneck layer as a new feature representation in

hybrid models [14, 11, 9, 28, 27, 35].

In the first approach, an AE can be trained on only normal data to minimize the reconstruction

error, ‖x− x̂‖2. The trained AE will captures the normal behavior well, and it yields small REs on

normal examples. Anomalies that are often different from normal data will not fit the model and

have large REs. Thus, REs are usually used as the anomaly score of a querying example. Hawkins

et al. [18] used the RE of an AE with narrow middle layer as an indicator of anomalies. The model

was evaluated on the Wisconsin Breast Cancer and the KDD99 datasets. The experimental results

showed that the model produced very high accuracy. Fiore et al. [15] constructed an AE architecture,

called Discriminative Restricted Boltzmann Machines (DRBM), to test the hypothesis that normal

behaviors may exist a deep similarity. They expected that their model can represent all the common

characteristics of normal traffic, and use them to distinguish unseen anomalous traffic from normal

traffic. The authors evaluated their model on both real-world network traces and the KDD99 datasets.

Their experimental results confirmed that their model could perform efficiently on data collected from

the same network as that in the training phase. When the testing environment being greatly different

from the training one their model produced poor performance.

In some scenarios, well-known anomaly detection algorithms often suffer challenges posed by data

such as the curse of dimensionality, irrelevant/redundant features. Therefore, the bottleneck layer of

AEs have also been used as a new feature representation of lower dimension. Rajashekar et al. [27]

proposed a hybrid between an AE and a self-organizing map (SOM) for representing the smartphone

users’ normal behavior. In this model, the authors used an AE to capture the most important

characteristics of the users behavior. A SOM was then stacked on the output of the encoder of the

AE. Veeramachaneni et al. [35] introduced an ensemble model that combines three single anomaly

detection models: AE-based, density-based, and matrix decomposition-based models. The models

were evaluated on a large network log dataset, and produced a good performance. Erfani et al. [14]

used an AE architecture, called deep belief network (DBN), to enhance the performance of anomaly

detection techniques in solving the curse of dimensionality in high-dimensional data. OCSVMs were

then built on top of the DBN. This model has the advantages of the nonlinear feature reduction of

the DBN and high detection accuracy of OCSVMs.

Recently, Cao et al. [11] proposed a new version of AE called Shrink AutoEncoder (SAE) for

anomaly detection. Their model forces the hidden representation of normal data into a very tight

area centered at the origin of the bottleneck by adding a new regularizer to the loss function of the

AE. The hidden layer of the trained SAE will be then used as a new data representation for well-

known anomaly detection algorithms, such as OCSVM. The experimental results showed that their

approaches achieved very convincing results compared to the state-of-the-art AEs on a wide range of

problems.

In this paper, we will propose a new model to leverage the performance of SAE in identifying

attacks that are difficult for SAE. The detailed description of our model will be described in the next

section.
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4. DOUBLE-SHRINK AUTOENCODER

Our model attempts to detect the attacks that are difficult for SAE [11]. As mentioned in the

privious section, SAE works based on the way, the encoder will lead normal data toward the origin,

whereas anomalies will push far away from the center.

(a) Training model

(b) Testing model

Figure 1. Our proposal model

We assume that SAE is failed to detect some kinds of attacks that mimic the normal data. In

this scenario, the latent vectors of these attacks are close to the latent vectors of the normal region in

SAE. Our model aims to increase the shrink pressure on the normal latent vectors to separate these

attacks from the normal vectors. In other words, we incorporate one more shrink pressure into SAE

to form a new model called Double-shrink AutoEncoder (DSAE). Figure 1 presents the training and

testing phases of DSAE. DSAE is trained by only normal data, the normal data is passed as the first

input to DSAE. The output of the decoder will then also be used as the second input of DSAE. The

model learns to minimize the reconstruction losses and driving latent vectors (z1 and z2) towards the

center of the latent space. So that, the attack network traffic that are very similar to normal network

traffic after pass the first shrinkage will also produce a small reconstruction errors (REs), but indeed,

that output vector should be more likely to anomalous so by pushing to the second shrinkage, it will
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lead the latent vector (z2) go far away. In the training phase, the normal data is passed as the first

input to DSAE. The output of the decoder will then also be used as the second input of DSAE. The

model learns to minimize the reconstruction losses (call RE1 and RE2 and driving latent vectors (z1

and z2) towards the center of the latent space, z1 = fθ (x), that is latent vector at the bottleneck

of the first shrink, z2 = fθ
(
gθ
(
z1
))

is latent vector at the bottleneck of the second shrink. In the

testing phase, z2 is used as the new feature representation for subsequent anomaly detection methods

such as CEN.

The first and the second reconstruction errors (RE1 and RE2) can be defined as follows

LRE1 (θ, xi) =
1

m

m∑
i=1

(
xi − xout1i

)2
, (5)

LRE2 (θ, xi) =
1

m

m∑
i=1

(
xout1i − xout2i

)2
, (6)

where θ is the parameters of DSAE, m is the number of the training data points, and xi, x
out1
i

and xout2i are the input data point i and its reconstruction values in the first and second shrinks

respectively. Thus, the RE component of the DSAE loss can be written as in Equation (7)

LRE (θ, xi) = LRE1 (θ, xi) + LRE2 (θ, xi) . (7)

The shrink term of the DSAE loss is the sum of the first shrink and the second shrink components

in the following equations.

LZ1 (θ, xi) =
1

m

m∑
i=1

∥∥z1i ∥∥2 , (8)

LZ2 (θ, xi) =
1

m

m∑
i=1

∥∥z2i ∥∥2 , (9)

LZ (θ, xi) = LZ1 (θ, xi) + LZ2 (θ, xi) , (10)

where z1i and z2i are the latent vectors of the input data xi under the first shrink and the second

shrink pressures respectively, and m is the number of the training data points.

The last component of the DSAE lost function is a weight decay regularizer on the network

parameters W presented in Equation (11) below

LW (θ, xi) =

L∑
l=1

∥∥∥W l
∥∥∥2
F
, (11)

where ‖.‖F denotes the Frobenius norm [17].

Therefore, the loss function of DSAE is defined as follows

LDSAE (θ, xi) = LRE (θ, xi) + α ∗ LZ (θ, xi) + β ∗ LW (θ, xi) , (12)

where α and β are parameters for controlling the trade-off between the three terms in the DSAE

loss function. In this paper, we naturally choose α = 10 followed the settings by Cao et al. [11], and

β = 0.001 as in [34].
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5. EXPERIMENTAL SETTINGS

This section describes the datasets and the experimental settings used in the paper.

5.1. Datasets

Our experiments aims to highlight the performance of DSAE in detecting the attacks that are

difficult for SAE. We employed three well-known network datasets [7] for our experiments, namely

CTU13 [16], UNSW-NB15 [25] and NSL-KDD [32]. In these datasets, we consider all kinds of attacks

as anomalies while the data created by users is normal.

Table 1. Datasets using for experiments

Dataset
Dimension
origin/after

one-hot encoding
Trainning set Testing sets

Normal Abnormal

NSLKDD 44/122 67343 9711 12833

UNSW-NB15 47/196 56000 37000 45332

CTU-13 08 16/40 29128 43694 3677

CTU-13 09 16/41 11986 17981 110998

CTU-13 10 16/38 6338 9509 63812

CTU-13 13 16/40 12775 19164 24002

• NSL-KDD [32] is an effective benchmark for anomaly detection methods that consists of a

training set (KDDTrain+) and a testing set (KDDTest+). Each sample in NSL-KDD composes

of 41 features with an additional label. The samples can be labelled either as normal or one

of the four main attack groups including Denial of service (DoS), Remote to Local (R2L),
User to Local (U2R), and Probe. Among the four attack groups, R2L was considered to be

one of the most challenging for machine learning algorithms to detect [24]. R2L is embedded in

their data packets itself, and does not form sequential patterns like DoS and Probe. Therefore,

the network traffic of R2L tends to be very similar to the normal network traffic. DSAE

is designed to perform efficiently on this attack group. For R2L, there are 995 instances in

KDDTrain+ and 2887 instances in KDDTest+.

• UNSW-NB15 [25] published in 2015 consists of the training set and the testing set. Each

sample in UNSW-NB15 composes of 47 features and a label. There are nine attack types in

UNSW-NB15 including fuzzers, analysis, backdoor, DoS, exploit, generic, reconnaissance,

shellcode, and worm.

• The CTU13 [16] is a botnet dataset that consists of thirteen botnet scenarios. In this paper,

we only use four scenarios in CTU13, and split each of them into 40% for training (normal

traffic) and 60% for evaluating (normal and botnet traffic) [22].

All categorical features of three datasets are converted into real-values using one-hot-encoding.

This results in higher dimensional versions of the tested data (the second column in Table 1).
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5.2. Parameter settings

The settings for the hyper-parameters in DSAE are similar to the previous works [14, 9]. The

number of hidden layers is five [14], the size of the bottleneck layer, m is chosen using the rule [9],

m = [1 +
√
n], where n is the number of input features, the batch size is 100, the hyperbolic

tangent function is applied to all layers in DSAE except the bottleneck in which the sigmoi function

is used. The loss function of DSAE in Equation (3) is optimized by using an adaptive SGD algorithm

(ADADELTA) over 1000 epochs.

We conducted two experiments to examine the characteristics of DSAE. The first experiment

is to compare the performance of DSAE to the previous model including SAE [11] and Denoising

AutoEncoder (DAE) [36]. The second one is to assess the ability of DSAE in detecting the attacks

that are difficult for SAE.

To measure the performance of the tested methods, we used the Area Under the ROC Curve

(AUC) metric. The higher value of AUC a model produces, the better performance the model has.

For each dataset, we executed the algorithms 10 times and the average value of AUC is reported.

6. RESULTS AND DISCUSSION

The first experiment aims to compare the performance of DSAE with SAE and Denoising AutoEn-

coder (DAE) on six well-known anomaly detection datasets. The results are presented in Table 2.

In this table, we present the result of two version of DAE and SAE. One version (DAE+RE and

SAE+RE) uses RE as the score for anomaly detection. The other version applies CEN on the latent

representation of DAE and SAE. For DSAE we only present the results of DSAE+CEN since the

version of DSAE+RE is less convincing. It can be seen that the AUCs of SAE and DSAE are mostly

equal on the tested datasets and these values are often better than that of DAE. This result con-

firms that our proposed model performs comparatively in comparison to SAE and it is better than

DAE. The second experiment is to compare the performance of DSAE and SAE on the dataset that

Table 2. AUCs from DAE, SAE, DSAE on six datasets

Datasets
Tested Anomaly

Model
NSLKDD UNSW CTU13-08 CTU13-09 CTU13-10 CTU13-13

DAE∗ + CEN 0.854 ±0.002 0.690 ±0.001 0.938 ±0.015 0.655±0.031 0.951±0.006 0.711±0.002

DAE+RE 0.930±0.090 0.873±0.004 0.960±0.011 0.903±0.002 0.958±0.004 0.952±0.010

SAE∗∗+CEN 0.960 ±0.002 0.896 ±0.006 0.982 ±0.009 0.940 ±0.010 0.997 ±0.001 0.964 ±0.012

SAE+RE 0.920 ±0.000 0.810 ±0.001 0.951 ±0.013 0.703 ±0.020 0.997 ±0.000 0.887 ±0.005

DSAE + CEN 0.963 ±0.004 0.895 ±0.015 0.986 ±0.012 0.929 ±0.054 0.992 ±0.008 0.971 ±0.006

∗ DAE: Denoising AutoEncoder; ∗∗ SAE: Shrink AutoEncoder [11]

is difficult for SAE. Table 3 presents the results of DSAE and SAE on four attack groups of NSL-

KDD. This table shows that DSAE is competitive with SAE on three attack groups (Probe, DoS,

and U2R). However, on the most difficult attacks, i.e., the R2L attack group, DSAE (AUC of 0.936)

out-performs SAE (AUC of 0.924). This result demonstrates that DSAE improve the performance of

SAE in detecting the difficult attacks.
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Table 3. AUCs from SAE, DSAE on four attack groups of NSL-KDD dataset

Datasets
Tested Anomaly

Model
Probe DoS R2L U2R

SAE + CEN ∗ 0.977 ±0.003 0.967 ±0.002 0.924 ±0.010 0.956 ±0.005

DSAE + CEN 0.979 ±0.006 0.966 ±0.007 0.936 ±0.011 0.960 ±0.010

∗ SAE + CEN: Shrink AutoEncoder and Centroid [11]

Table 4. Comparison the Detection between SAE and DSAE model on R2L attack group

Tested Anomaly
Model

R2L Attack group

TP FP FN TN FAR DETECTION RATE

SAE + CEN ∗ 1892 995 1008 8702 0.104 0.655

DSAE + CEN 2011 876 989 8721 0.102 0.697

∗ SAE + CEN: Shrink AutoEncoder and Centroid [11]

Table 4 shows the false alarm rate (FAR) and the detection rate (DR) of SAE and DSAE on R2L

attack group. This result is calculated using the threshold equal 0.9. In other words, the threshold is

selected so that 90% of samples are predicted as normal and the rest is predicted as abnormal. It can

be seen from this table that on R2L attack group, DSAE is better than SAE on both metrics. More

precisely, the FAR of DSAE is slighly lower than that of SAE (0.102 vs 0.104) and DR of DSAE is

much higher than SAE (0.697 vs 0.655). Overall, the results in this section show that our proposed

model, DSAE, performs equally effectively on the easy IDS datasets and it is much better than the

state-of-the-art model, i.e. SAE, on the most difficult attack group.

To show how DSAE performs better than SAE on R2L, we carried out some investigations on

latent vectors (both normal and anomalies) that are assigned different labels by SAE and DSAE. Since,

the dimension of the latent vectors of SAE and DSAE is higher than two, we convert these vectors

into two dimensions by calculating their Euclidean distances to the origin in the latent representation.

The coordinates, xi and yi of each latent vector zi are then computed as in Algorithm 1. We first

visualize normal and anomaly data samples that are miss-classified by SAE, but correctly classified

by DSAE in Figs. 2a and 2b. The data samples inside the yellow circle (a threshold) are classified

as normal data, and outside are considered as anomalies. The threshold are selected so that DSAE

can correctly classify 90%, 95% and 97% the normal training data. In the visualization, we set

the threshold at 90%. Second, we plot the data samples that are correctly identified by SAE, but

miss-classified by DSAE shown in Figs. 2a and Figs. 2c and 2d. It can be seen from these figures that

DSAE performs very efficiently. Many data samples miss-classified by SAE are correctly predicted

by DSAE. However, the second shrink pressure in DSAE also leads to some data samples (both

normal and abnormal) that have been correctly identified by the first shrink being wrongly classified.

Nevertheless, the figure shows that the number of incorrect samples by DSAE is much less than the

number of incorrect samples by SAE particularly with normal samples (Fig. 2d).
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[h!]
(a) Anomaly points are identified incorrectly by SAE, but correctly classified by DSAE

(b) Normal points are identified incorrectly by SAE, but correctly classified by DSAE

(c) Anomaly points are already identified correctly by SAE, but incorrectly classified by DSAE

(d) Normal points are already identified correctly by SAE, but incorrectly classified by DSAE

Figure 2. Monitoring points are identified incorrectly or correctly by SAE (left), but correctly
or incorrectly classified by DSAE (right) using Visualize latent vectors in 2D
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Algorithm 1 Visualize latent vectors in 2D

Input: a set of latent vectors (Z)
Output: a set of point (xi, yi) ∈ P in 2D

1: Calculate Euclidean distance (dzi) for each point zi ∈ Z to the origin.
2: P ← {}
3: for i = 0 to the size of Z do
4: get α is random number between 0 to 360
5: xi ← cosα ∗ dzi
6: yi ← sinα ∗ dzi
7: add p(xi, yi) to P
8: end for
9: return P

7. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel AE-based model, namely double-shrink autoencoder (DSAE) for

network anomaly detection. DSAE aims to increase the ability in detecting the difficult detection

attacks, such as the R2L attack group in NSL-KDD, whose network traffic is very similar to the

normal traffic. The main idea in DSAE is to use double shrink to separate these types of attacks

from the normal data. We conducted extensive experiments on six benchmark datasets in the domain

of network anomaly detection. These consist of comparing the performance of DSAE against SAE and

DAE, evaluating the ability of DSAE in detecting specific attack group (e.i R2L). The experimental

results confirm that our proposed model not only performs comparatively to SAE, but also tends to

out-perform SAE on the network traffic associated with the attacks tending to be very similar to the

traffic of normal data, such as R2L.

There are a number of research directions for future work. Firstly, the normal network data may

be presented in several group of similar of data (or clusters), thus finding clusters in the normal

data may be a good processed step for the later learning processes of SAE. This means that we can

develop SAE to learn multi-clusters in the latent feature space instead of only one cluster. Second,

we will evaluate DSAE on a wide range of anomaly detection problems as well as synthetic data

to demonstrate the ability in detecting the attack group whose behavior is very similar to normal

behavior.
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