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Abstract. A two-node beam element for large deflection analysis of cantilever functionally 

graded sandwich (FGSW) beams subjected to end forces is formulated in the context of total 

Lagrange formulation. The beams consist of three layers, a homogeneous core and two 

functionally graded layers with material properties varying in the thickness direction by a power 

gradation law. Linear functions are adopted to interpolate the displacement field and reduced 

integral technique is applied to evaluate the element formulation. Newton-Raphson based 

iterative algorithm is employed in combination with arc-length control method to compute 

equilibrium paths of the beams. Numerical investigations are given for the beam under a 

transverse point load and a moment to show the accuracy of the element and to illustrate the 

effects of material inhomogeneity and the layer thickness ratio on the large deflection behavior 

of the FGSW beams. 

Keywords: Cantilever FGSW beam, large deflection, total Lagrange formulation, reduced 

integration, nonlinear beam element. 
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1. INTRODUCTION 

Large displacement analysis of beams and frames made of functionally graded materials 

(FGMs) is important in engineering design, and has drawn much attention from researchers in 

recent years. Based on a total Lagrange Timoshenko beam element, Kocatürk et al. [1] studied 

large displacement behavior of FGM beams due to distributed load. Based on a total Lagrange 

formulation, Almeida et al. [2] investigated geometrically nonlinear behavior of FGM beams 

subjected to end forces. Nguyen [3, 4], Nguyen and Gan [5] derived the co-rotational finite beam 

elements for studying large deflections of tapered FGM beams. The material properties of the 

beams are considered by the authors to vary in the beam thickness or length direction by a power 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/322515831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ndkien@imech.vast.vn


 
 
Large deflection of cantilever functionally graded sandwich beam under forces based on a… 

 

33 

gradation law. The large deflections of FGM beams and frames were also considered by Nguyen 

et al. [6] using a co-rotational Euler-Bernoulli beam element. More recently, the effect of plastic 

deformation on post-buckling and nonlinear behavior of FGM beams [7, 8] were investigated by 

using the finite element method. 

Sandwich structures with high strength-to-weight ratio are widely used in aerospace 

application such as skin of wings, aileron, and spoilers. In order to improve the performance of 

this type of structures, FGMs could be incorporated in the sandwich construction. Several 

analyses, mainly the vibration and buckling, of functionally graded sandwich (FGSW) beams 

have been carried out in recent years [9-11]. To maintain minimum weight for a given 

mechanical loading condition, FGSW beams and frames are often designed to be slender and 

they might undergo large displacements during service. Investigation on the large displacement 

behaviour of FGSW beams have been reported recently. In this line of work, Nguyen and Tran 

[12] derived a nonlinear beam element for investigating the large displacement behavior of 

FGSW beams and frames formed from a homogeneous metal core and two FGM face sheets.  

The objective of this paper is to formulate a total Lagrange nonlinear beam element for 

studying large deflection behavior of cantilever FGSW beams under end forces. The beams 

considered herein consist of three layers, a homogeneous core and two FGM skin layers with 

power-law thickness variation of the material properties. Linear functions are used to interpolate 

the displacement field and reduced integral technique is applied to evaluate the element 

formulation to avoid the shear locking. Newton-Raphson based iterative algorithm is employed 

in combination with arc-length control method to compute equilibrium paths of the beams. 

Numerical investigations are carried out for the beam under a transverse point load and a 

moment. The effects of material inhomogeneity and the layer thickness ratio on the large 

deflection behavior of the beams are examined and highlighted. 

2. FGM SANDWICH BEAM 

Figure 1 shows an FGSW beam with length L and rectangular cross section  b h in a 

Cartesian coordinate system  ,x z . The beam is composed from three layers, a homogeneous 

isotropic core and two FGM skin layers. In the figure, the Cartesian coordinate system (x,z) is 

chosen such that the x-axis is on the mid-plane, while the z axis directs upward. Denoting 

0 1 2 3, ,z z z and z are, respectively, the vertical coordinates of the bottom surface, two interfaces 

between the layers and the top surface. 

 

  Figure 1. Geometry and coordinates of an FGSW beam. 
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The beam is assumed to be formed from two constituent materials, M1 and M2, in which 

the volume fraction
   1 1,2,3
i

V i  of M1 in the thi  layer varies in the thickness direction 

according to 
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V V  . Mori-Tanaka scheme is employed herein to evaluate the effective properties 

of the FGM layers. In the scheme, the effective bulk modulus  i

eK  and shear modulus  i

eG of 

the thi  layer are given by 
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where K1, K2, G1, G2 are the bulk and shear moduli of M1 and M2. The effective Young’s 

modulus 
i

fE  and Poisson’s ratio 
f

i  can be expressed as 
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3. FINITE ELEMENT FORMULATION 

A two-node beam element (i, j) with length of l is considered in this section. The vector of 

nodal displacements for an element with three degrees of freedom is 

 
T

i i i j j ju w u w d  

where , andi i iu w  are, respectively, the axial, transverse displacements and rotation at node i ; 

, andj jju w   are the corresponding quantities at node j .  

 The deformation at a point on the beam is defined by an angle  , the rotation of its 

associated cross section, and a position vector as [13]
  

      1 2x x u x w x  r t t  

where
1 2,t t are the base unit vectors; 0 x l   is measured on the straight configuration; 

   andu x w x are the axial and transverse displacement, respectively. The strain energy for the 

(0) 

(3) 

(2) 

(4) 

(6) 

(5) 
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beam element is given by 

       2 2 2 2

0

1 1

2 2

l

V A

U E z G z dV E z G z dV                  

where V and A are the element volume and cross-sectional area;  is the shear correction factor, 

equal to 5 / 6 for the rectangular section; and  are the axial and shear strains 

,
u w

z
x x x


  

  
   
  

 

Using Eq. (7), we can write the strain energy in the form 

 2 2 2

11 0 12 0 22 33

1
2

2
V

U A A A A dx          

with
0 / and /u x x       are the membrane strain and curvature, respectively; 

11 12 22 33, , andA A A A are the rigidities, defined as 

      
3 3

2

11 12 22 33
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, , 1, , ,
i iA A

A A A E z z z dA A G z dA
 

     

where A denote the cross-sectional area. 

It should be noted that for the large displacement considered herein, the strains 
0 , γ and 

the curvature χ, although parameterized for convenience by the reference abscissa x , take the 

values in the current configuration, and can be defined through the position vector in accordance 

with [13] as 

 0 1 21 ,
x x


  

 
    

 

r
e e  

where 

1 1 2 2 1 2cos sin , sin cos      e t t e t t  

are the unit vectors, parallel and orthogonal to the tangent of the beam axis. From Eqs. (5), (10) 

and (11), the membrane and shear strains can be written in the forms 
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As the shear deformation is taken into account, the transverse displacement,  w x and the 

rotation,  x , are independent parameters, and linear functions can be employed to the 

interpolate displacements and rotation as 

, ,i j i j i j

l x x l x x l x x
u u u w w w

l l l l l l
  

  
       

The beam element based on the shape function (13) does, however, encounter the shear-
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locking problem, and to overcome this problem, the reduced integral, namely the one-point 

Gauss quadrature, is used herein to evaluate the strain energy of the beam element. In this 

context, one can write the strain energy in Eq. (8) in the form 

 2 2 2

11 0 12 0 22 332
2

l
U A A A A          

where
0 , ,    are given by 

1 cos sin 1

1 sin cos
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2
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With the above expression of the strain energy, one can compute the nodal internal force vector, 

inf  and the tangent stiffness,
tk , for the element can be obtained by once and twice 

differentiating the strain energy with respect to the nodal displacement, respectively 

2
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where the subscripts , , ,a c b s denote the terms stemming from the axial stretching, axial-

bending coupling, bending and shear deformation of the beam, respectively. 

In the large displacement analysis, both the internal force vector 
inf and the tangent 

stiffness matrix 
tk depend on the current nodal displacements d . The detailed expressions for 

the internal force vector and tangent stiffness matrix in Eq. (16) are given in the Appendix. 

4. EQUILIBRIUM EQUATION 

The equilibrium equation for the beam can be written in the form 

   , in ex   g p q p f 0  

where the residual force vector g is a function of the current structural nodal displacements p , 

and the load level parameter  ; 
inq is the structural nodal force vector, assembled from the 

formulated vector ;in exf f is the fixed external loading vector.  

The Newton-Raphson based iterative procedure is used in combination with arc-length 

control technique herein to solve the nonlinear equation (17). The detail of this method is 

described in [14]. 

5. NUMMERICAL RESULTS AND DISCUSSIONS 

(15) 
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(17) 
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An FGSW beam made of Aluminum (Al) and Zirconia 
2(ZrO ) , with core is pure 

2ZrO , 

subjected to a transverse load 𝑃 at its free end is firstly considered. Young’s modulus of Al is 70 

GPa and that of 
2ZrO is 151 GPa. An aspect ratio / 50L h   is assumed for the beam. In order to 

facilitate discussion of the numerical results, the following dimensionless parameter is 

introduced as 

* Lw
w

L
        (19) 

where 
Lw  denotes the vertical displacement at the free end of the beam.  

Table 1. Comparison of normalized tip deflections,   /w L L , of isotropic beam under transverse 

tip load. 

Table 2. Normalized tip deflection,   /w L L , of FGSW beam under transverse load. 

2 / mPL E I  n (1-0-1) (8-1-8) (2-1-2) (1-1-1) (2-2-1) (1-2-1) 

 

5 

0.5 0.6386 0.6359 0.6282 0.6187  0.6138 0.6036 

1 0.6732 0.6704 0.6704 0.6504 0.6416 0.6310 

5 0.7091 0.7080 0.7031 0.6937 0.6807 0.6727 

 

10 

0.5 0.7659 0.7642 0.7596 0.7539 0.7512 0.7446 

1 0.7861 0.7845 0.7795 0.7728 0.7679  0.7613 

5  0.8068 0.8062 0.8034 0.7980 0.7908 0.7858 

The validation of the derived formulation is needed to confirm. In Table 1, the normalized 

tip deflection of the isotropic cantilever beam obtained in the present work is compared to the 

analytical solution of Mattiasson [15] and the finite element result of Nguyen and Tran [12]. In 

the table (and following also), 
mE  denotes Young’s modulus of the metal (Al). Very good 

agreement between the result of the present work with that of Refs. [12, 15] is noted from Table 

1. Noting that the result in Table is converged. 

Table 2 lists the normalized tip deflection,   /w L L , of the cantilever FGSW beam under 

transverse tip load for two value of the applied load and various values of the material index and 

the layer thickness ratio. In the table and hereafter, three numbers in the brackets are used herein 

2 / mPL E I    Mattiasson [15] Nguyen and Tran [12] Present 

1 0.30172 0.30172 0.2981 

2 0.49346 0.49349 0.4898 

3 0.60325 0.60331 0.6003 

4 0.66996 0.67004 0.6676 

5 0.71379 0.7139 0.7117 

6 0.74457 0.7447 0.7426 

7 0.76737 0.76753 0.7654 

8 0.78498 0.78517 0.7829 

9 0.79906 0.79926 0.7969 

10 0.81061 0.81085 0.8084 
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to denote the layer thickness ratio, e.g. (2-1-1) means that 
1 2 3( : : )h h h = (2-1-1). The effects of 

the material index n and the layer thickness ratio on the deflection of the beam are clearly seen 

from the table. The deflection is smaller for the beam with a larger core thickness, and it is larger 

for the beam associated with a higher index n. The increase of the deflection can be explained by 

the fact that, the beam associated with a higher index 𝑛 contains less ceramic. Since Young’s 

modulus of the ceramic is considerable higher than that of the metal, the rigidities of the beam 

with less ceramic percentage are smaller, and this leads to the larger deflection. On the other 

hand, the beam with larger core thickness contains more ceramic percentage and thus has higher 

rigidities, and this leads to a lower deflection.  

 

Figure 2. Effect of grading index n  (left) and layer thickness ratio (right) on the tip response of FGSW 

beam under transverse tip load. 

 

Figure 3. Deformed configurations of FGSW cantilever beam under transverse tip load. 

The effect of the grading index n  and the layer thickness ratio on the large displacement 

response of the FGSW cantilever beam can also be seen from Figure 2, where the load-

displacement curves of the FGSW beam are shown for various values of the index n and the 

layer thickness ratio. At a given value of the applied load, the tip displacements increase as the 
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grading index increases. The increase of the displacements, as explained above, is resulted from 

the lower rigidities of the beam associated with a higher index 𝑛. The tip displacements of the 

beam are increased by the decrease of the core thickness, regardless of the load level. The 

deformed configurations of the beam as depicted in Figure 3 for two values of the applied load, 
25 /mP E I L and 

210 /mP E I L , also confirm the effects of the material distribution and the 

layer  thickness ratio on the large displacement response of the FGSW beam. The configurations 

shown in the figures have been computed by using sixteen elements in order to ensure the 

smoothness of the curves. 

  

Figure 4. Tip displacement response versus tip moment of FGSW cantilever beam. 

 
Figure 5. Deformed configurations of FGSW cantilever beam subjected to a tip moment. 

Next, a cantilever FGSW subjected to a tip moment M is analyzed. In Figure 4 and Figure 5 

show the load-displacement curves and the deformed configuration of the beam for various 

values of the material grading index n and different layer thickness ratio. The influence of the 

material distribution and the layer thickness ratio on the response of the beam is also clearly 

from the figures. Noting that the arc-length control technique must be employed to trace the 

snap-back in the load-displacement curves in Figure 3. 
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6. CONCLUSIONS 

A nonlinear beam element for large displacement of an FGSW beam has been formulated 

and employed in computing the response of a cantilever beam subjected to a transverse load and 

a moment at its free end. The beam is considered to beam formed from three layers, a 

homogeneous cure and two FGM skin layers. The effective material properties of functionally 

graded materials are assumed to vary continuously in the thickness direction by a power-law 

distribution in terms of volume fraction of constituents, and they are estimated by Mori-Tanaka 

scheme. Based on the total Lagrange formulation, the internal force vector and tangent stiffness 

matrix for the element are computed from the strain energy expression Reduced integration 

method was adopted to overcome the shear locking of the derived formulation. The numerical 

results have shown the accuracy of the present method. A parametric study has been carried out 

to show the influence of material inhomogeneity and the layer thickness ratio on the large 

deflection behavior of the beams. 
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APPENDIX 

Detail expresstion for the nodal forces and the tangent stiffness matrices in Eq. (16) are as 

follows 
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