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Abstract
α1-adrenoceptor antagonists are widely used for hypertension (eg, doxazosin) and be-
nign prostatic hypertrophy (BPH, eg, tamsulosin). Some antidepressants and antipsy-
chotics have been reported to have α1 affinity. This study examined 101 clinical drugs 
and laboratory compounds to build a comprehensive understanding of α1-adrenoceptor 
subtype affinity and selectivity. [3H]prazosin whole-cell binding was conducted in CHO 
cells stably expressing either the full-length human α1A, α1B, or α1D-adrenoceptor. 
As expected, doxazosin was a high-affinity nonselective α1-antagonist although other 
compounds (eg, cyclazosin, 3-MPPI, and ARC239) had higher affinities. Several highly 
α1A-selective antagonists were confirmed (SNAP5089 had over 1700-fold α1A selec-
tivity). Despite all compounds demonstrating α1 affinity, only BMY7378 had α1D se-
lectivity and no α1B-selective compounds were identified. Phenoxybenzamine (used in 
pheochromocytoma) and dibenamine had two-component-binding inhibition curves at 
all three receptors. Incubation with sodium thiosulfate abolished the high-affinity com-
ponent suggesting this part is receptor mediated. Drugs used for hypertension and BPH 
had very similar α1A/α1B/α1D-adrenoceptor pharmacological profiles. Selective sero-
tonin reuptake inhibitors (antidepressants) had poor α1-adrenoceptor affinity. Several 
tricyclic antidepressants (eg, amitriptyline) and antipsychotics (eg, chlorpromazine and 
risperidone) had high α1-adrenoceptor affinities, similar to, or higher than, α blockers 
prescribed for hypertension and BPH, whereas others had poor α1 affinity (eg, protrip-
tyline, sulpiride, amisulpiride, and olanzapine). The addition of α blockers for the man-
agement of hypertension or BPH in people already taking tricyclic antidepressants and 
certain antipsychotics may not be beneficial. Awareness of the α-blocking potential of 
different antipsychotics may affect the choice of drug for those with delirium where ad-
ditional hypotension (eg, in sepsis) may be detrimental.
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1  | INTRODUC TION

The α1-adrenoceptors are expressed in a wide range of tissues 
including blood vessels, kidney, spleen, liver, brain, and lower uri-
nary tract.1-3 There are three subtypes: α1A, α1B, and α1D-adre-
noceptors.1-4 All are present in blood vessels, and whilst α1A and 
α1D and are both important in smooth muscle contraction (and 
control of blood pressure), the role of the α1B-adrenoceptors is 
less certain.2,3,5,6

α-adrenoceptor antagonists (α blockers) were first used to re-
duce systemic blood pressure with dibenamine, phentolamine, and 
phenoxybenzamine used in the diagnosis and management of pheo-
chromocytoma, an adrenal catecholamine-secreting tumor.7,8 While 
phenoxybenzamine is still important for pheochromocytoma, longer 
acting, nonselective α1-antagonists were developed (doxazosin, ter-
azosin, indoramin, and prazosin) and remain important in the man-
agement of resistant hypertension.

α blockers are also used in benign prostatic hypertrophy 
(BPH) where α1A blockade induces prostate and lower uri-
nary tract smooth muscle relaxation, improving urinary flow.9 
Phenoxybenzamine was the first α blocker to be used in BPH10 
although its α2 effects limited its use.11 The nonselective 
α1-antagonists doxazosin, terazosin, indoramin, and prazosin 
were used effectively for BPH, but caused hypotension, par-
ticularly postural hypotension, and required dose titration to 
manage this problematic side effect.9,12 Selective α1A-antag-
onists were developed, hoping to minimize hypotension by 
reducing α1B-antagonsim.11,13 Tamsulosin, alfuzosin, and si-
lodosin were developed as prostate-specific (α1A selective) 
drugs and are used without dose titration.9 Despite reports of 
“better tolerability,”11,14 alfuzosin is reported to be a nonse-
lective α1-antagonist and tamsulosin to have equal α1A- and 
α1D-adrenoceptor affinity,15,16 suggesting they may be phar-
macologically indistinguishable from drugs used for hyper-
tension. Indeed, tamsulosin (the most commonly prescribed 
α blocker for BPH) is associated with increased hypotension, 
falls, and fractures.12,13,17 Although effective for BPH, silodosin 
appears to have more sexual side effects, whereas its cardio-
vascular effects remain uncertain.18

α1-adrenoceptors are the most abundant adrenoceptors in the 
brain and modulate neurotransmitter release.3 Many antidepres-
sants prevent the reuptake of neurotransmitters (serotonin and 
noradrenaline), and therefore increase synaptic neurotransmitter 
concentration. However, several antidepressants have significant 
α1-adrenoceptor affinity.19-21 This high affinity is seen in brain ho-
mogenates.22 In theory these two effects (increased neurotrans-
mitter presence, but receptor blockade) could cancel each other 
out.20 However, antidepressants cause hypotension, particularly 
postural hypotension (up to 58% users23,24). Not surprisingly 
therefore, antidepressant use is associated with twice the risk of 
falls.25

Several antipsychotics (neuroleptics) bind to α1-adrenoceptors 
in blood vessels and brain homogenates.6,26,27 Many antipsychotics 

cause postural hypotension,28,29 and again, rates are high (eg, 48% 
taking risperidone24) including postural hypotension in those tak-
ing long-term antipsychotics (77%30). Interestingly, the degree of 
postural hypotension seen with several antipsychotics correlates 
well with the α1A-adrenoceptor affinity.29 Antipsychotic drug use 
is also associated with falls and hip fractures and regular use is 
associated with twice the risk of falls (even after controlling for 
other risks31,32).

There are many studies examining the affinity of α1-adrenocep-
tor ligands. Many are older studies before the identification of the 
three subtypes and many are in whole tissue where multiple sub-
types will be present. Most studies only report the two or three li-
gands under investigation. Here we aimed to investigate the subtype 
selectivity of a wide range of α-antagonists including those used in 
hypertension, BPH, antidepressants, antipsychotics as well as labo-
ratory compounds. Human α1A, α1B, and α1D-adrenoceptors were 
expressed in intact mammalian cells, in order to build a comprehen-
sive and directly comparable picture of α1-subtype selectivity in liv-
ing cells.

2  | METHODS

2.1 | Materials

A list of all of the compounds studied, together with the source and 
supplier code from which it was purchased, is given in Table S1. 
White-sided view plates were from Greiner Bio-one, Kremsmunster, 
Austria; and [3H]prazosin, Microscint 20, and scintillation fluid from 
PerkinElmer (Buckinghamshire, UK). Fetal calf serum was from 
Gibco (Thermo-Fisher), Lipofectamine, and OPTIMEM were from 
Life Technologies, Thermo-Fisher, Massachusetts USA. All other cell 
culture reagents were from Sigma Chemicals (Poole, Dorset, UK).

2.2 | Cell lines

CHO-K1 (RIDD: CVCL_0214) were stably transfected with the DNA 
of the human α1A-adrenoceptor, human α1B-adrenoceptor (DNAs 
from Guthrie DNA Resource Centre), or human α1D-adrenoceptor 
(full-length DNA from Andre Pupo33; using Lipofectaime and 
Optimem according to the manufacturers’ instructions. Transfected 
cells were selected for 3  weeks using resistance to neomycin (at 
1mg/ml). Single clones from each transfection were then isolated by 
dilution cloning giving rise to the stable cell lines CHO-α1A, CHO-
α1B, and CHO-α1D.

2.3 | Cell culture

CHO cells were grown in Dulbecco's modified Eagle's medium 
nutrient mix F12 (DMEM/F12) containing 10% fetal calf serum 
and 2 mmol/L L-glutamine in a 37°C humidified 5% CO2: 95% air 
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atmosphere. Cells were seeded into white-sided, clear bottomed 96-
well view plates and grown to confluence.

2.4 | [3H]prazosin binding—saturation binding

The KD value for [3H]prazosin was determined in each cell line by 
saturation binding. [3H]prazosin was diluted in serum-free media. 
Media were removed from each well and replaced with either 100 µL 
serum-free media (total binding) or 100 µL 20 µmol/L tamsulosin 
(α1A and α1B) or 200 µmol/L tamsulosin (α1D) to determine nonspe-
cific binding. [3H]prazosin was then added to the wells (quadrupli-
cates per condition, 1 in 2 dilution in well), and the plates incubated 
for 2  hour at 37°C in a humidified 5% CO2: 95% air atmosphere. 
After 2 hours, the cells were washed twice by the addition and re-
moval of 2 × 200 µL cold (4°C) phosphate-buffered saline. 100 µL 
Microscint 20 was added to each well and a white base applied to the 
plate to convert the wells into white-sided/white-bottomed wells. 
Plates were left at room temperature for at least 6  hours before 
being counted on a Topcount (PerkinElmer), with a counting time of 
2 minutes per well.

2.5 | [3H]prazosin whole-cell binding—
competition binding

Ligands were serially diluted in serum-free media (DMEM/F12 
containing 2 mmol/L L-glutamine only) to twice their final required 
concentration. Media was removed from each well of the 96-well 
view plate and 100 µL ligand added to triplicate wells. This was 
immediately followed by the addition of 100 µL [3H]prazosin (di-
luted in serum-free media) and the cells incubated for 2 hours at 
37°C (5% CO2, humidified atmosphere). After 2 hours the plates 
were washed as above. Cells were inspected under a light micro-
scope to ensure cells were still present after the wash and before 
the addition of Microscint 20. In a few cases, high concentrations 
of competing ligand caused the cells to round up and be washed 
off the plates. These concentrations were excluded from the anal-
ysis. Total binding (6 wells/plate) and nonspecific binding (6 wells/
plate) determined by the presence of 10 µmol/L tamsulosin (α1A 
and α1B) or 100 µmol/L tamsulosin (α1D) was defined in every 
plate.

Sodium thiosulfate reacts with 2-chloroethylamines in a 1:1 
stoichiometry to inactivate the ethyleniminium ions generated in 
solution (see Discussion). Sodium thiosulfate had no effect on [3H]
prazosin binding up to concentrations of 10 mmol/L. Therefore, to 
ensure that all ethyleniminium ions were inactivated, sodium thiosul-
fate was used in excess, with a final well concentration of 1 mmol/L. 
When used, competing ligands were serially diluted in serum-free 
media (just as above) in the absence and presence of thiosulfate and 
both dilution series were then incubated for 30 minutes at 37°C (5% 
CO2, humidified atmosphere). Media was then removed from the 
cells and competing ligand (in the presence or absence of thiosulfate) 

added to the wells immediately followed by [3H]prazosin (thus thio-
sulfate was present with the competing ligand for 30 minutes before 
addition to the cells, and then throughout the 2-hour incubation with 
cells at 1 mmol/L).

[3H]prazosin concentrations were determined from taking the 
average of triplicate 50 µL samples of each [3H]prazosin concen-
tration used and counted on a PerkinElmer Scintillation counter and 
were in the range from 0.22 to 1.40 nmol/L.

All experiments have been conducted in intact living mammalian 
cells expressing human α1A or α1B or α1D-adrenoceptors. Unlike 
membrane-binding studies, physiological levels of intracellular en-
dogenous GTP will therefore always have been present. Although it 
should not make much difference for antagonists, the receptors (and 
therefore measurements taken) in this living system are therefore 
more akin to how drugs bind in people, than studies conducted in 
membrane preparations.

2.6 | Data analysis

In all cases where a KD value is stated, increasing concentrations of 
the competing ligand fully inhibited the specific binding of [3H]pra-
zosin (unless otherwise annotated in the tables).

The following equation was then fitted to the data using 
Graphpad Prism 7 and the IC50 was then determined as the concen-
tration required to inhibit 50% of the specific binding.

where [A] is the concentration of the competing ligand and IC50 is 
the concentration at which half of the specific binding of [3H]prazo-
sin has been inhibited.

From the IC50 value, the known concentration of [3H]prazosin 
and the known KD for [3H]prazosin at each receptor, a KD (concen-
tration at which half the receptors are bound by the competing li-
gand) value was calculated using the Cheng–Prusoff equation:

In some cases, the maximum concentration of competing ligand 
was not able to inhibit all of the specific binding. Where no inhibition 
of [3H]prazosin binding was seen, even with maximum concentration 
of competing ligand possible, “no binding” is given in the tables. Where 
the inhibition produced by the maximum concentration of the com-
peting ligand was 50% or less, an IC50 could not be determined and 
thus a KD value not calculated. This is shown in the tables as IC50 > top 
concentration used (ie, IC50 > 100 µmol/L means that 100 µmol/L in-
hibited some but less than 50% of the specific binding). In cases where 
the competing ligand caused a substantial (greater than 60%, but not 
100%) inhibition of specific binding, an IC50 value was determined 
by extrapolating the curve to nonspecific levels and assuming that a 

%specific binding=100−
(100× [A])
([

A
]

+ IC50

)

KD=
IC50

1+
([

[3H]prazosin
]

∕KD[3H]prazosin
)



4 of 16  |     PROUDMAN et al.

greater concentration would have resulted in 100% inhibition. These 
values are given as apparent KD values in the tables.

For some ligands, the inhibition of [3H]prazosin binding was best 
described by a two-component curve, using the equation below:

where [A] is the concentration of the competing ligand, IC501 and 
IC502 are the respective IC50 values for the two components and N 
is the percentage of the response occurring through the first com-
ponent (IC501). KD values were calculated from IC50 values as above.

Selectivities are given as a ratio of the KD values for the different 
receptors.

3  | RESULTS

Saturation binding yielded a KD value for [3H]prazosin of 
0.71  nmol/L  ±  0.07 (1552  ±  166  fmol/mg protein, n  =  11) at the 
human α1A-adrenoceptor, 0.87nM ± 0.11 (4350 ± 317 fmol/mg pro-
tein, n = 12) at the human α1B-adrenoceptor, and 1.90 ± 0.31 nmol/L 
(417  ±  48  fmol/mg protein, n  =  9) at the full-length human α1D-
adrenoceptor. As the lower expression of the α1D-receptor meant 
that a larger proportion of the experimental window was nonspe-
cific binding, the affinity of prazosin was also determined by com-
peting prazosin with [3H]prazosin. The log KD values obtained 
were −9.07 ± 0.04 (=0.85 nmol/L, n = 9) at the α1A-adrenoceptor, 
−8.74  ±  0.06 (=1.82  nmol/L, n  =  8) at the α1B-adrenoceptor, and 
−9.07  ±  0.23 (=0.85  nmol/L, n  =  10) at the α1D- adrenoceptor. 

%specific binding=
[A].N

([A]+ IC501)
+
[A].(100−N)

([A]+ IC502)

F I G U R E  1   Inhibition of [3H]prazosin binding to whole cells by doxazosin (A–C), SNAP5089 (D–F) or BMY7378 (G–I) to CHO-α1A cells (A, 
D, G), CHO-α1B cells (B, E, H), or CHO-α1D cells (C, F, I). Bars represent total [3H]prazosin binding and nonspecific binding was determined 
in the presence of 10 μmol/L tamsulosin (CHO-α1A and CHO-α1B) or 100 μmol/L tamsulosin (CHO-α1D). The concentration of [3H]prazosin 
was (A) 0.31 nmol/L, (B) 0.31 nmol/L, (C) 0.70 nmol/L, (D) 0.68 nmol/L, (E) 0.68 nmol/L, (F) 0.60 nmol/L, (G) 0.24 nmol/L, (H) 0.42 nmol/L, 
and (I) 1.25 nmol/L. Data points are mean ± SE mean of triplicate determinations
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These values are all within twofold of the value obtained from sat-
uration studies. The values from saturation studies were used for 
further KD calculations. A lower receptor expression level for the 
full-length α1D-adrenoceptors is a common finding15,33 and reports 
suggest truncation of the N-terminus results in higher receptor 
expressions.33-35

Doxazosin, a commonly used α blocker in the treatment of hy-
pertension, inhibited all three receptors with high affinity (log KD 
−8.58, −8.46, and −8.33 at the α1A, α1B, and α1D-adrenoceptor, 
respectively, Figure 1, Table 1). Of all the compounds studied, SNAP 
5089 had the highest receptor selectivity, being over 1700-fold 
selective for the α1A-adrenoceptor (Figure  1, Table  1). No com-
pound was found to have α1B-adrenoceptor selectivity. The ability 
of BMY7378 to inhibit [3H]prazosin binding was best described by 
a two-component curve with the high-affinity component (log KD 

−8.60 at the α1D-adrenoceptor) giving it 98- and 234-fold selectiv-
ity for the α1D-adrenoceptor over the α1A and α1B-adrenoceptors, 
respectively (Figure 1, Table 1). Several compounds had affinities of 
less than 0.25nM, including ligands with α1A selectivity (silodosin, 
RS100329, and tamsulosin), cyclazosin with slight α1D selectivity), 
and nonselective 3-MPPI (Table 1).

Two compounds were best described by a two-component-bind-
ing inhibition curve at all three receptors—phenoxybenzamine and 
dibenamine (Figure 2, Table 1). Both of these are N,N-disubstituted-
2-chloroethylamines. Preincubation of phenoxybenzamine and 
dibenamine with sodium thiosulfate before addition to the cells 
yielded a single-component-binding inhibition (Figure  2, Table  2), 
whereby the high-affinity-binding component of the parent curve 
had been abolished. Sodium thiosulfate had no effect on the binding 
of tamsulosin (Figure 2, Table 2). At the α1D-adrenoceptor, several 

F I G U R E  2   Inhibition of [3H]prazosin binding to whole cells by phenoxybenzamine (A–C), dibenamine (D–F) or tamsulosin (G–I) to CHO-
α1A cells (A, D, G), CHO-α1B cells (B, E, H), or CHO-α1D cells (C, F, I). Bars represent total [3H]prazosin binding and nonspecific binding was 
determined in the presence of 10 μmol/L tamsulosin (CHO-α1A and CHO-α1B) or 100 μmol/L tamsulosin (CHO-α1D). The concentration of 
[3H]prazosin was (A) 0.48 nmol/L, (B) 0.48 nmol/L, (C) 0.86 nmol/L, (D) 0.58 nmol/L, (E) 0.56 nmol/L, (F) 1.49 nmol/L, (G) 0.56 nmol/L, (H) 
0.58 nmol/L, and (I) 1.49 nmol/L. Data points are mean ± SE mean of triplicate determinations
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TA B L E  2  Log KD values of phenoxybenzamine, dibenamine and tamsulosin binding to the human α1A, α1B and α1D-adrenoceptors 
obtained in the absence and presence of 1 mmol/L sodium thiosulphate (Figure 2). Values represent mean ± SE mean of n separate 
experiments

Control +1 mmol/L sodium thiosulphate

Log KD site 1 Log KD site 2 % site 1 n Log KD site 1 Log KD site 2 % site 1 n

CHO-α1A

Phenoxybenzamine −8.45 ± 0.12 −6.02 ± 0.08 77.7 ± 5.2 12 −5.43 ± 0.07 7

Dibenamine −7.91 ± 0.06 −5.32 ± 0.08 83.0 ± 1.8 15 −5.16 ± 0.10 7

Tamsulosin −9.67 ± 0.06 17 −9.75 ± 0.16 7

CHO-α1B

Phenoxybenzamine −7.69 ± 0.06 −5.57 ± 0.06 67.5 ± 2.5 13 −5.18 ± 0.05 6

Dibenamine −6.57 ± 0.07 −4.66 ± 0.06 67.6 ± 2.6 14 −4.85 ± 0.05 6

Tamsulosin −8.12 ± 0.04 15 −8.13 ± 0.08 6

CHO-α1D

Phenoxybenzamine −8.43 ± 0.19 −5.42 ± 0.08 39.1 ± 2.0 10 −4.93 ± 0.10 5

Dibenamine −7.37 ± 0.15 −5.00 ± 0.14 47.8 ± 3.2 9 −4.74 ± 0.09 5

Tamsulosin −9.18 ± 0.08 −5.67 ± 0.15 54.6 ± 3.7 13 −9.11 ± 0.12 −5.60 ± 0.08 44.0 ± 2.8 7

F I G U R E  3   Inhibition of [3H]prazosin binding to whole cells by two commonly prescribed antidepressants amtriptyline (A–C) or trazodone 
(D–F) to CHO-α1A cells (A, D), CHO-α1B cells (B, E), or CHO-α1D cells (C, F). Bars represent total [3H]prazosin binding and nonspecific 
binding was determined in the presence of 10 μmol/L tamsulosin (CHO-α1A and CHO-α1B) or 100 μmol/L tamsulosin (CHO-α1D). The 
concentration of [3H]prazosin was a) 0.39 nmol/L, (B) 0.45 nmol/L, (C) 0.57 nmol/L, (D) 0.66 nmol/L, (E) 0.45 nmol/L, and (F) 0.66 nmol/L. 
Data points are mean ± SE mean of triplicate determinations
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other ligands were best described by a two-component-binding in-
hibition curve. Just as with tamsulosin (Figure 2), preincubation with 
sodium thiosulfate had no effect on either component of any of 
these other two-component ligands.

The affinity of several antidepressants and antipsychot-
ics was then examined. Several of these were found to have 
high α1-adrenoceptor affinity (Figures  3 and 4, Table  3 and 4). 
Risperidone (previously suggested to have α1B selectivity,4,36 
had slight α1A selectivity, in keeping with the findings of37. 
There have also been discrepancies in the affinity of olanzap-
ine: Richelson and Souder27 found it to have high affinity (44nM 
for α1-adrenoceptor) and Nourain et al,29 had conflicting data 
with low rat α1-adreoceptor affinity, but significant hypotension 
in rats. However, here, olanzepine had low affinity, in keeping 
with38 and the findings of39 where olanzapine was described as 
having low postural hypotension potential. WB4104, was also 
initially thought to have α1B selectivity,40 however, it had higher 
and equal affinity for α1A and α1D-adrenoceptors (in keeping 
with41,42).

Tables combing all of these ligands are presented in 
Supplementary Data. Table S1 has the ligands arranged in alphabet-
ical order (together with their suppliers and individual ligand codes). 
Table S2 has the ligands organized in order of α1A affinity.

4  | DISCUSSION

Dibenamine, phentolamine, and phenoxybenzamine were the first 
clinical α blockers43 and phenoxybenzamine is still used in the 
management of pheochromocytoma, particularly during surgery 
where catastrophic catecholamine release can cause hypertensive 
crises and arrhythmias.7 Both phenoxybenzamine and dibenamine 
are N,N-disubstituted-2-chloroethylamines containing a nitrogen 
mustard group. Both compounds were best described by a two-
component-binding inhibition curve at all three α1-adrenoceptors 
(Figure 2, Table 1). In aqueous solution at physiological pH, the ni-
trogen mustard group cyclizes to form ethyleniminium ions.44 These 
highly reactive, unstable ions are pharmacologically active and 
covalently bind to a cysteine in transmembrane 3 of the α adreno-
ceptors, giving these compounds their “irreversible” properties.43 
Phenoxybenzamine has a longer duration of action in clinical studies 
than phentolamine 7 and hence its continued use in pheochromo-
cytoma (although similar outcomes have been reported with doxa-
zosin, terazosin, and prazosin,.45-47 Sodium thiosulfate also rapidly 
reacts with the ethyleniminium ions thus prevents them from inter-
acting with α adrenoceptors.44 Pretreatment with intravenous so-
dium thiosulfate prevented dibenamine binding to α adrenoceptors 
(in cats,48 and pretreatment with sodium thiosulfate prevented the 

F I G U R E  4   Inhibition of [3H]prazosin 
binding to whole cells by two commonly 
prescribed antipsychotics haloperidol 
(A–C) or risperidone (D–F) to CHO-α1A 
cells (A, D), CHO-α1B cells (B, E) or 
CHO-α1D cells (C, F). Bars represent total 
[3H]prazosin binding and nonspecific 
binding was determined in the presence 
of 10 μmol/L tamsulosin (CHO-α1A and 
CHO-α1B) or 100 μmol/L tamsulosin 
(CHO-α1D). The concentration of 
[3H]prazosin was (A) 0.39 nmol/L, 
(B) 0.39 nmol/L, (C) 0.53 nmol/L, (D) 
0.82 nmol/L, (E) 0.45 nmol/L, and (F) 
0.66 nmol/L. Data points are mean ± SE 
mean of triplicate determinations
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harmful interactions of the chemical weapon mustard gas in humans. 
Here, preincubation of phenoxybenzamine or dibenamine with so-
dium thiosulfate yielded single-component-binding inhibition curves 
(Figure 2, Table 2). Abolishment of the high-affinity-binding compo-
nent suggests that it was due to specific α1-adrenoceptor interac-
tion. The KD values of the low-affinity components were very similar 
to those obtained in the presence of thiosulfate, suggesting that 
this component is a non-orthosteric site or non-receptor-mediated 
effect.

Several other ligands were found to have a [3H]prazosin inhibi-
tion best described a two-component curve at the α1D-adrenocep-
tor, including tamsulosin (and hence why 100 μM was used to define 
nonspecific binding in CHO-α1D cells, rather than 10 μM used in 
α1A and α1B cells), and the only α1D-selective ligand, BMY7378. As 
expected for these nonmustard compounds, preincubation with so-
dium thiosulfate had no effect on binding. The reason for the second 
component is therefore unknown. Affinity (KD value) obtained for 
the high-affinity component the α1D-adrenoceptor has been used 
to determine receptor selectivity.

α1-adrenoceptor antagonists (α blockers, especially doxazosin) 
have been used for hypertension for decades. Doxazosin had high 
affinity for all three subtypes, similar to previous [3H]prazosin-bind-
ing studies.41 Terazosin and prazosin were also nonselective ligands 
(as in41) as was phentolamine. Indoramin, (licensed for hypertension), 
had an α1A selectivity of 40-fold (similar to50). Of the α blockers that 
are used for the treatment of BPH in the UK, alfuzosin was nonse-
lective, whereas tamsulosin with its α1A vs α1B selectivity of 35-
fold, was equipotent at α1A and α1D receptors (as in 15,16,51). Thus, 
drugs used for hypertension and BPH include nonselective α1 block-
ers and those with up to 40-fold α1A selectivity. It would therefore 
be expected that drugs like tamsulosin and alfuzosin, licensed for 
BPH, are likely to have as much of an effect on blood pressure as 
α blockers intentionally prescribed for hypertension. Several other 
high-affinity non/poorly selective ligands were also identified that 
have higher affinity than doxazosin, for example, cyclazosin, 3-MPPI, 
and ARC239.

Carvedilol (commonly used in heart failure) is considered a dual 
α/β blocker. Carvedilol was nonselective, with high affinity at all 
three α1-adrenoceptors, however the α1A affinity (log KD of −8.35) 
was still 10-fold less than that for the β2 adrenoceptor.52 Labetolol 
(used in hypertension particularly in pregnancy, and intravenously 
in hypertensive emergencies), is also considered a dual α/β blocker. 
Labetolol has lower affinity than carvedilol for all β52 and α1-ad-
renoceptors (log KD −7.33 at α1A), but very poor affinity for the 
α1B and α1D-adrenoceptors. Labetolol should be considered a 
β1/β2/α1A blocker rather than dual pan α1 and β blocker. Given 
these dual α/β ligands, the affinity of a few β blockers with very 
high β-adrenoceptor affinity were examined (Table  1). With the 
exception of bucindolol, the affinity was poor at all three α1-adre-
noceptors, confirming their β selectivity. Although the affinity of 
bucindolol was reasonably high (log KD at α1A −7.57), this is 54-fold 
and 263-fold lower than that for the human β1 and β2 adrenocep-
tor, respectively.53

The most selective ligand detected here was SNAP5089, with 
1700-fold selectivity for the α1A over the α1B or α1D-adrenocep-
tors. Other α1A-selective ligands were silodosin, RS100329, and 
niguldipine (in keeping with50,54). As well as tamsulosin, several 
ligands had higher affinity for the α1A and α1D receptors than 
the α1B—for example, 2-MPMDQ, MK-912, 2-PMDQ, and ifen-
prodil. BMY7378 was the only compound with substantial α1D 
selectivity (the 100- to 200-fold selectivity is similar to6,20,41,50,55). 
No α1B-selective ligand was identified. To pharmacologically infer 
the presence of α1B-adrenoceptors in cells or tissues, several dif-
ferent compounds with different patterns of selectivity would 
be required, for example, SNAP5089, doxazosin, 2-MPMDQ, and 
BMY7378.

Several tricyclic antidepressants (TCA) had significant affinity 
for the α1-adrenoceptors. Amitriptyline, clomipramine, doxepin, 
and nortriptyline have similar α1-adrenoceptor affinities and se-
lectivities to α blockers prescribed for hypertension or BPH. Thus 
patients taking these TCAs should be considered to be α blocked 
and are at risk from postural hypotension (as in23). Furthermore, 
the addition of an α blocker for concomitant hypertension or BPH 
may not have any additional clinical benefit and may actually cause 
significant postural problems. Other TCA had lower affinity, for 
example, protriptyline and lofepramine and would therefore be 
expected to have less effect on blood pressure. The selective se-
rotonin reuptake inhibitors (SSRIs) had very poor affinity for any of 
the α adrenoceptors and are therefore less likely to have significant 
α1-mediated hypotension.

Several antipsychotics (including first-generation chlorprom-
azine and flupenthixol and second-generation sertindole, risperi-
done, and clozapine) had high α1-adrenoceptor affinity. The very 
high affinity of sertindole (and 300-fold selectivity for α1A over 
α1D-adrenoceptors) was similar to previous reports.6,29 The degree 
of α1A-adrenoceptor affinity observed here correlates well with the 
rankings for observations in rats.29 The high α1A affinity of sertin-
dole, risperidone, and ziprasidone (log KD −9.3 to −8.7) is similar to 
studies,38 including in brain tissue,27 and similar to (or even higher 
than) that for many drugs used to treat hypertension. The high rate 
of postural hypotension observed with these drugs31,32 is therefore 
not surprising. A similar hypotensive effect would be expected with 
other antipsychotics α1 affinities equal or greater than that for α1 
blockers used for hypertension, for example, chlorpromazine, flu-
penthixol, perphenazine, paliperidone, quetiapine, and lurasidone. 
Aripiprazole had lower α1 affinity (in keeping with56 and indeed has 
a relative lack of reported postural hypotension in clinical studies57). 
However, sulpiride and amisulpiride would be expected to have even 
less hypotensive effect.

Thus, the high α1 affinity and selectivity profile of many antipsy-
chotics is comparable to the α1 blockers intentionally prescribed for 
hypertension. Equivalent reductions in blood pressure are a likely 
very common side effect. These drugs are used to manage schizo-
phrenia where their effect on blood pressure in agitated patients is 
less likely to be an issue. However, antipsychotics are also widely 
used to manage delirium in sick patients including the intensive care 



14 of 16  |     PROUDMAN et al.

unit58,59 and in palliative case60,61 even though recent studies have 
questioned their effectiveness.62 Delirium is common in older un-
well patients who are more likely to be suffering from conditions 
with lower blood pressure such as sepsis. In these cases, the choice 
of antipsychotic may well be important in order not to exacerbate 
already low or labile blood pressures. This study suggests that sulpir-
ide, amisulpiride, ariprazole, and olazepine should have the least ef-
fect on blood pressure.

In conclusion, there are several highly α1A-selective an-
tagonists (eg, SNAP5089), and one α1D-selective antagonist 
(BMY7378), however no α1B-selective ligand has been identified. 
The drugs used for hypertension and BPH have a very similar 
pharmacological profile in terms of α1-adrenoceptor subtype af-
finity and selectivity. Several antidepressants and antipsychotics 
have high α1-adrenoceptor affinities, similar to, or even greater 
than, those seen for α blockers prescribed for hypertension and 
BPH. The addition of further α blockers for the management of 
hypertension or BPH in these patients may not be beneficial. 
The excellent correlation between the affinity values determined 
from this cell studies with the affinities measured in blood ves-
sels, brain tissue, and whole animals (including humans) means 
that many, but not all antipsychotics and antidepressant may 
cause significant peripheral α-adrenoceptor blockade and associ-
ated hypotension. Finally, awareness of the α-blocking potential 
of certain, but not all antipsychotics may affect the choice of drug 
used for the management of delirium in the intensive care unit 
where additional α blockade and blood pressure lowering in a sick 
patient may be detrimental.
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