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Self-Assembly, Adaptive Response, and in,out-
Stereoisomerism of Large Orthoformate Cryptands
Henrik Löw,[a] Elena Mena-Osteritz,[a] Kathleen M. Mullen,[b] Christof M. Jäger,*[c] and
Max von Delius*[a]

Dedicated to Prof. John A. Gladysz

We report on triethylene glycol-based orthoformate cryptands,
which adapt their bridgehead configurations in response to
metal templates and intramolecular hydrogen bonding in a
complex manner. In contrast to smaller 1.1.1-orthoformate
cryptands, the inversion from out,out-2.2.2 to in,in-2.2.2 occurs
spontaneously by thermal homeomorphic isomerization, i. e.,
without bond breakage. The global thermodynamic minimum
of the entire network, which includes an unprecedented third
isomer (in,out-2.2.2), could only be reached under conditions
that facilitate dynamic covalent exchange. Both inversion
processes were studied in detail, including DFT calculations and
MD simulations, which were particularly helpful for explaining
differences between equilibrium compositions in solvents
chloroform and acetonitrile. Unexpectedly, the system could be
driven to the in,out-2.2.2 state by using a metal template with
a size mismatch with respect to the out,out-2.2.2 cage.

Certain macrocycles and macrobicycles (e.g. cryptands[1]) are
subject to a type of stereoisomerism that results from different
orientations of a substituent or lone pair at bridgehead atoms.[2]

Many large macrocycles can, for instance, invert between
out,out- and in,in-isomers via homeomorphic isomerization.[2a,3]

In this process, the configuration at both bridgehead atoms is
inverted by pulling one chain through the macrocycle defined
by the other two chains.[4] Further examples for in,out-isomer-
ization are based on protonation/deprotonation of Brønsted
basic bridgehead atoms[4d,5] or pyramidal inversion of one
bridgehead atom.[6] A case of bridgehead inversion by dynamic
covalent chemistry (DCvC) was recently demonstrated by our
own group in a study on small orthoformate in,in- and out,out-
cryptands (Scheme 1a).[7]

We have recently utilized the dynamic covalent reaction[8]

between orthoesters and diols[9] for the template synthesis of
monometallic cryptates.[10] Most recently, we reported inher-
ently dynamic architectures based on the acidic NH4

+

template[11] and a “self-templated” orthoformate cryptand,
which is stabilized by intramolecular hydrogen bonds
(Scheme 1a).[7] This in,in-cryptand was found to undergo bridge-
head inversion only via dynamic orthoester exchange.

Herein, we describe larger orthoformate cryptands that
equilibrate between out,out-, in,in- and in,out-configurations by
either homeomorphic isomerization or DCvC inversion (Sche-
me 1b).

Following up on our preliminary studies on orthoformate o-
(Hin)2-1.1.1 and o-(Hout)2-1.1.1 cryptands and their bridgehead
inversion by dynamic covalent exchange,[7] we aimed at
exploring the potential in,out-isomerism of larger orthoformate
2.2.2-cryptands. To this end, trimethoxy orthoformate and
triethylene glycol (TEG) as ligand for cation binding were
subjected to previously optimized conditions for orthoester
exchange.[10a] By employing the large cesium template (CsBArF,
see Figure S1 for Ka determination), the desired cryptate
[Cs+�o-(Hout)2-2.2.2] was obtained in an isolated yield of 95%
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Scheme 1. a) Previous work on self-templated cryptand o-(Hin)2-1.1.1.[7] b)
Synthesis and adaptive response of larger orthoformate 2.2.2-cryptands:
out,out-, in,in- and in,out-cryptands.
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(Figure 1a, I). To our initial surprise, the removal of Cs+ by
treatment with anion exchange resin (Cl form, for further
details, see Supporting Information) did not lead to the
formation of a single empty host, but to a mixture of two
isomers. Structure elucidation efforts (NMR, HRMS, HPLC-MS,
see Supporting Information) confirmed the presence of stereo-
isomers o-(Hout)2-2.2.2 and o-(Hin)2-2.2.2 (Figure 1a and b, II).

This finding can be rationalized by homeomorphic isomer-
ization of the initially formed o-(Hout)2-2.2.2. Indeed, we were
able to determine the kobs (2.5×10

� 5 s� 1 at r.t., ~�G°=99 kJ mol-
1, see Supporting Information) for this process by HPLC-MS
monitoring of pristine o-(Hout)2-2.2.2 (isolated by preparative
HPLC).

In stark contrast to previously reported orthoformate 1.1.1-
cryptands and trithioformate cages,[7,12] the ring is sufficiently
large to enable this isomerization[2a,3] and o-(Hout)2-2.2.2 is
thermodynamically favored over o-(Hin)2-2.2.2 (2 : 1 molar ratio
in CD3CN, Figure 1c, II). In less polar solvent chloroform we
observed an equimolar mixture of o-(Hout)2-2.2.2 and o-(Hin)2-
2.2.2 (1 :1 molar ratio in CDCl3, see Supporting Information),
which can be rationalized by a less effective completion of the
solvent with the intramolecular hydrogen bonds. Addition of
one equivalent of the Cs+ template inverts o-(Hin)2-2.2.2
quantitatively back to [Cs+�o-(Hout)2-2.2.2] within one day (kobs
derived from NMR monitoring: 2.6×10� 5 s� 1, ~�G°=99 kJ mol-1,
see Supporting Information).

Subjecting the mixture of o-(Hout)2-2.2.2 and o-(Hin)2-2.2.2 to
conditions of dynamic orthoester exchange (addition of
10 mol% TFA in CH3CN) led to the formation of two additional
signals in the NMR spectrum after two days (Figure 1b, III).
Based on (2D-)NMR evidence, we suggest that this observation
is due to the dynamic covalent inversion of one bridgehead
atom from either o-(Hout)2-2.2.2 or o-(Hin)2-2.2.2, giving a third

isomer, namely o-(HinHout)-2.2.2. Because under these condi-
tions both homeomorphic and DCvC inversion are possible, we
believe that this mixture corresponds to the global thermody-
namic equilibrium of the network (molar ratio out,out-, in,in-,
and in,out-cryptand ca. 2 : 1 : 2 in CD3CN). In agreement with this
reasoning, the reaction of trimethoxy orthoformate with tri-
ethylene glycol without metal template in CHCl3 leads to the
same mixture of out,out-, in,in-, and in,out-cryptands, albeit
accompanied by a large fraction of oligomeric side products[13]

(see Supporting Information).
Quantum chemical (QM) calculations and molecular-dynam-

ics (MD) simulations were used to shed further light onto the
stabilities and thermodynamic equilibrium of the different
species in solution. While initial density functional theory (DFT)
calculations in vacuo showed that cryptands o-(Hin)2-2.2.2 and
o-(HinHout)-2.2.2 are both enthalpically more stable than o-
(Hout)2-2.2.2 due to favorable intramolecular dispersion inter-
actions (see Supporting Information), MD simulations revealed
significant differences for the conformers in the two inves-
tigated solvent systems (Figure 2 and Table S7).

In CHCl3, all structures lacking a stabilizing Cs+ guest show
significant structural flexibility. In case of CH3CN, however, the
out,out-isomer o-(Hout)2-2.2.2 appears to be significantly more
rigid (Figure 2a and b). The reason for this intriguing observa-
tion seems to be a well-defined structure that features
association of the solvent into all three faces of the cryptands
(see radial solvent distribution in Figure 2c and structure in
Figure S5). This strong association is also reflected by high
interaction energies between the cryptand and the CH3CN
(42% higher than for o-(Hin)2-2.2.2) which leads to further
enthalpic stabilization and shifts the equilibrium towards the o-
(Hout)2-2.2.2 in this solvent.
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To further explore the thermodynamic landscape that
governs this remarkable dynamic network (Figure 1c), we
quenched the mixture of o-(Hout)2-2.2.2, o-(Hin)2-2.2.2 and o-
(HinHout)-2.2.2 by addition of base and added Cs+ ions to
provide a thermodynamic driving force for the inversion from
the in,in- to the out,out-isomer. As anticipated, after one day the
1H NMR spectrum revealed full conversion of o-(Hout)2-2.2.2 and
o-(Hin)2-2.2.2 to [Cs+�o-(Hout)2-2.2.2]. However, since inversion

from the in,out- to the out,out-cryptand would require acid
catalyst, the original portion of in,out-cryptand o-(HinHout)-2.2.2
remained unchanged, with the observed 1H NMR shifts
suggesting the formation of the exo complex [Cs+

*o-(HinHout)-
2.2.2] (Figure 1b, IV). After acid was added to this mixture, we
observed the quantitative formation of [Cs+�o-(Hout)2-2.2.2]
within one hour (Figure 1b, I (crude); for further details, see
Supporting Information), which provides solid support for the
full reversibility of all the complexation and inversion processes
studied herein.

When Na+ ions were used as metal template, the outcome
of the self-assembly was different from the reaction with Cs+.
The smaller ionic radius of Na+ favors the formation of the
unsymmetric complex [Na+

*o-(HinHout)-2.2.2] over [Na+�o-
(Hout)2-2.2.2] (Figure 3a, I, ratio 2 :1 in CD3CN). Removal of the
metal ion from the mixture leads to a kinetically trapped
mixture of the three isomers o-(Hout)2-2.2.2, o-(Hin)2-2.2.2 and o-
(HinHout)-2.2.2 (Figure 3a and b, II, ratio 3 :1 :10). Addition of
acid catalyst to this mixture opens a pathway to the overall
thermodynamic equilibrium between isomers o-(Hout)2-2.2.2, o-
(Hin)2-2.2.2 and o-(HinHout)-2.2.2 (Figure 3a and b, III, ratio
2 :1 : 2). DFT calculations in vacuo at the ωB97XD[14]/aug-cc-
pVTZ[15] level of theory (details in Supporting Information)
indicate that the symmetric endo complex [Na+�o-(Hout)2-2.2.2]
is more stable than the less symmetric [Na+

*o-(HinHout)-2.2.2]
complex (see Table S8). The calculations also reveal multiple
stable associations of Na+ to o-(HinHout)-2.2.2 based on

Figure 1. a) Synthesis and adaptive response of triethylene glycol-based orthoformate cryptands. Solvent: CHCl3 for self-assembly, CHCl3 or CH3CN for adaptive
response reactions. Cs+ =Cesium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (CsBArF), TEG= triethylene glycol, H+ =10% TFA, MS=5 Å molecular sieves,
NEt3= triethylamine. See Figure S1 for Ka determination. b) Partial

1H NMR stack plot (500 MHz, 298 K, CD3CN). c) Schematic energy diagrams for
interconversion of orthoformate cryptands (based on 1H NMR integration, solvent: CD3CN). For further details, see Supporting Information.

Figure 2. 1 μs long MD simulations (out,out-, in,in-, in,out-cryptand) reveal
differences in flexibility and solvent association around cryptands. a)
Representative structures and flexibilities (transparent structures) of crypt-
ands in CH3CN (left) and CHCl3 (right). b) Atomic fluctuations. c) Radial
distribution function of CH3CN around cryptands.
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interactions of the metal ion with either one or two TEG chains
and additional hydrogen bonds between the methine hydrogen
atom and ether oxygen atoms (Figure 3c). These asymmetric
associations also show stability in MD simulations. Moreover,
the symmetric [Na+�o-(Hout)2-2.2.2] complex displays a signifi-
cant contraction of the cryptand with a high coordination
number for Na+ which might be unfavorable in solution. The
multitude of possible [Na+

*o-(HinHout)-2.2.2] association com-
plexes thus might explain their favored formation over [Na+�o-
(Hout)2-2.2.2].

To obtain structural insights into the triethylene glycol-
based orthoformate cryptands, we grew single crystals of
[Cs+�o-(Hout)2-2.2.2]BArF� by slow diffusion of hexane into
chloroform solutions (Figure 4). The cryptate features the

encapsulation of one cesium ion at four positions (with an
occupancy of 2×40% and 2×10%). In the two positions with
40% occupancy, the binding geometry for cesium resembles
the one found in large crown ethers[16] (seven Cs� O bonds,
3.01-3.59 Å), but overall we would nevertheless classify the
observed structure as an endo complex. These structural
characteristics are also remarkably well resembled in MD
simulations (Figure S6) showing comparable flexible and slightly
asymmetric binding of Cs+ in the cavity.

Similar to the previously reported solid-state structure of
[Cs+�o-(CH3)2-2.2.1],[10c] Cs� F bonds (3.53 Å) between the metal
ion and the BArF counter-anion lead to the formation of a
helical coordination polymer in the solid state (Figure S7).
Additionally, the average torsion angle (H� C� O� Cs+ dihedrals)
of 155° supports our previously described hypothesis[6] that
orthoformate cryptates tend to adopt a distorted geometry
(Graph S9) compared to the corresponding orthoacetate
cryptates, in which this angle is typically very close to 180°. In
other words, orthoformate cryptands have smaller cavities than
all other orthoester cryptands prepared to date,[10a] which needs
to be considered, when predicting effective host-guest pairs
(Table S1).

In conclusion, we were able to make use of the antagonism
between metal template binding and intramolecular hydrogen
bonding to generate different dynamic mixtures of out,out-,
in,in- and in,out-cryptands. Both key processes, the homeomor-
phic inversion without bond breakage and the bridgehead
inversion by DCvC were studied in different solvents and
understood in detail.
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Figure 3. a) Synthesis and adaptive response of triethylene glycol-based
orthoformate cryptands with Na+ as metal template. Solvent: CHCl3 for self-
assembly, CHCl3 or CH3CN for adaptive response reactions. Na+ =Sodium
tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF), TEG= triethylene gly-
col, H+ =10% TFA, MS=5 Å molecular sieves. b) Schematic energy diagrams
for interconversion of orthoformate cryptands (based on 1H NMR integration,
solvent: CD3CN). For further details, see Supporting Information. c) DFT-
optimized structures of Cs+ and Na+ bound to o-(Hout)2-2.2.2 and o-(HinHout)-
2.2.2.

Figure 4. Solid-state structure of [Cs+�o-(Hout)2-2.2.2]. Single crystals were
obtained by the layering method (hexane/chloroform). Hydrogen atoms,
anions and solvent are omitted for clarity. Metal ions are displayed with
2×40% and 2×10% chemical occupancy and at 100% of effective ionic
radius.[17] CCDC 1875501 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
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Shake it all about: Large orthoester
cryptands have been shown to be
dynamic on three different levels:
they can spontaneously turn them-
selves inside-out in a process called
homeomorphic isomerization; they
interconvert in the presence of acid
by dynamic covalent orthoester
exchange, which furnishes an
unusual in,out-stereoisomer; they
bind metal ions, and this host–guest
chemistry has a strong impact on
both homeomorphic and dynamic
covalent bridgehead inversion.
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