
1

A Digital Internal Model Current Controller for
Salient Machines

Ivan Z. Petric, Student Member, IEEE, Slobodan N. Vukosavic, Senior Member, IEEE, Michele Degano, Member,
IEEE, and Alessandro Galassini, Member, IEEE

Abstract—The performance of anisotropic electrical machines
is strongly dependent on the current loop characteristics. The
problems for achieving robustness and fast response, without
overshoot and oscillations, are mainly related to different values
and behaviour of the direct and quadrature inductances (Ld, Lq),
as well as to high output frequencies. In this paper, a novel
current controller structure based on Internal Model Control
(IMC) method is presented, taking into account the magnetic
anisotropy (Ld 6= Lq). The model of salient machines is derived
directly in the discrete domain and used to obtain a model-based
controller. The controller derivation does not rely on transport-
delay approximations, which enables improved decoupling of axes
dynamics and the closed-loop robustness for very high output
frequencies. The presented controller enables enhanced response
for higher current loop bandwidth and output frequencies than
the state-of-the-art methods. The experimental verification is
performed on a 3-phase synchronous machine, using a standard
industrial 3-phase inverter.

Index Terms—Digital Current Control, Internal Model Con-
trol, Salient Machines, Synchronous Machines, Synchronous
Reluctance.

I. INTRODUCTION

CURRENT control system is the basis of the field-oriented
control (FOC) of electrical drives. Out of many possible

strategies for designing a current controller [1]–[3], the
ones most widely used are PI controllers implemented in
the synchronous rotating frame [4]–[7], as they provide
satisfactory performance over a wide frequency range [4].
Further improvements are obtained by applying the Internal
Model Control (IMC) method [5], where the only design
parameter is the closed-loop bandwidth. Transport-delay ap-
proximations in S-domain based designs [6]–[10] prove
insufficient when it comes to large bandwidth to sampling fbw

fs

and output to sampling fout

fs
frequency ratios. Therefore, high-

performance controllers are directly derived in discrete-time
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domain, without any approximations [11]–[17]. By following
that approach, axes decoupling is inherently found in the
controller structure, and the reported closed-loop fbw for a
current step response without overshoot, exceeds 17%fs [16].

The complex notation [8], [9] greatly simplifies the model
statement and the design steps, yet, it cannot be applied in
cases where the parameters in perpendicular axes are different
(Ld 6= Lq). Recently, significant attention was dedicated to
salient electrical machines, especially for automotive appli-
cations [18]–[20]. The high-performance Interior Permanent
Magnet Synchronous Machines (IPMSM) have a very high
torque density and wide speed operating range. Another
popular type of salient machines are Synchronous Reluc-
tance (SynRel) and Permanent Magnet assisted Synchronous
Reluctance (PMaSynRel), which are promising candidates
with respect to induction machines, thanks to their simplified
production process and reduced rotor iron losses [21]. Digital
current controllers for salient machines have to provide high
bandwidth and decoupled response even in cases with con-
siderable differences between Ld and Lq , and for high output
frequencies. High current loop bandwidths enable a fast torque
response, which is crucial for the performance of outer speed
and position loops. A possible solution is the implementation
of predictive control strategies [22]–[24], which are capable
of providing a fast response. However, in terms of robustness,
the predictive control is very sensitive to parameter mismatch,
and IMC methods provide better stability margins, which is
preferred in industrial applications. Several authors [10], [11],
[13], [25], [26] have dedicated their attention to current con-
troller design for salient machines, which led to the following
results. In [10], the controller derivation is not clearly stated
and the authors report the fbw = 3%fs. In [25], the authors
use a combination of strategies that deal with saliency in the
continuous-time domain, and controller derivation in discrete-
time domain. In that paper, the proposed controller is very
similar to discrete IMC for non-salient machines [12], [15]–
[17]. However, from the presented results, it can be seen
that the method from [25] is not capable of fully decoupling
the axes dynamics. The exact discrete state-space model of
salient machines can be seen in [11] and [13]. The results of
[11] are shown only for a machine with Ld ≈ Lq , without
many details. The paper [13] does not present a practical
controller structure due to the complicated system matrices.
The presented results cover only for a very low sampling
frequency, using a powerful dSPACE platform. It is not clear
how effective this can be in standard industrial applications
that use lower cost DSP platforms. In [13], the experimental
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results are given for a SynRel machine and the reported closed-
loop bandwidth is fbw = 5%fs for output frequencies up
to fout = 10%fs. An interesting approach is presented in
[26], where the IMC method is used in the complex form,
for a plant with neglected stator resistance. The experimental
results in [26] report fbw ≈ 7%fs for output frequencies up
to fout ≈ 12%fs.
This paper offers a novel structure for digital current con-
troller, suitable for salient machines. The motivation is to
derive a discrete IMC with a simplified structure compared
to [13], enabling its practical use in industrial applications.
The proposed controller retains robustness at high output
frequencies and offers high bandwidth and stability margins.
The first step is to derive a precise direct-discrete model of
salient machines, simplified compared to [11] and [13]. The
simplifications are thoroughly analyzed in order to ensure
robustness for very high output frequencies and values of
machine saliency. The obtained model is used to derive
the model-based controller structure. The frequency response
analysis of the current loop is performed in order to validate
the modeling approximations. The experimental results show
improved current response compared to the state-of-the-art
methods. The experimental results are provided for output
frequency ratios up to fout

fs
= 18%, with the relative current

loop bandwidth equal to fbw
fs

= 12.2%.
The paper is organized as follows: section II presents

derivations of the discrete-time model of salient machines
and the structure of the model-based digital controller. The
analysis of modeling approximations is shown in section III.
In section IV, the closed-loop system is analyzed, and the
controller is designed according to the desired bandwidth,
overshoot, and stability vector margin. Simulations are used
to show the current loop frequency response analysis and
step responses, which confirm the model accuracy for very
high output frequencies and values of machine saliency. The
experimental results and comparison with the state-of-the-art
methods are shown in section V. Section VI summarizes the
conclusions of the study, highlighting the effectiveness of the
proposed method.
For clarity purposes, all matrices are labelled in bold font.

II. MACHINE MODELING AND CONTROLLER DERIVATION

In this section, the discrete-time model of salient machines
is derived. Depending on whether the machine current [10]–
[12], [15]–[17], [27] or flux [13], [26] is chosen as a state
variable, two different models can be derived. The demerit
of using currents as state variables is the introduction of
differential inductances in the mathematical model [27]. In
the flux model, all saturation and cross-saturation effects are
inherently taken into account, which is especially important for
highly nonlinear machines, such as SynRel or PMaSynRel.
Contrary to non-salient machines [12], [15]–[17], the plant
model for machines with Ld 6= Lq can not be represented
in the complex form, which makes the structure more compli-
cated. The model derived in subsection II A has a significantly
simplified structure compared to [11] and [13], yet retains the
high accuracy. The model-based flux controller is subsequently
derived in subsection II B.

Fig. 1: Synchronous machine axes convention.

A. The discrete-time model of salient machines

The discrete-time model for machines with Ld 6= Lq is
derived using the state-space matrix representation. The stator
flux is chosen as the state variable as it is more appropriate
for machines with magnetic saturation. For the chosen axes
convention, shown in Fig. 1, the dq voltage equations of
synchronous machines are:

ud = Rid +
dΨd

dt
− ωeΨq

uq = Riq +
dΨq

dt
+ ωeΨd,

(1)

where ud and uq are the dq axes voltages, R is the stator
winding resistance, and ωe is the electrical rotational speed.

The total flux in the d axis is equal to Ψd = Ldid + Ψpm,
where Ψpm is the permanent magnet flux. The total flux in
the q axis is equal to Ψq = Lqiq . The following substitution
is introduced: Fd = Ldid, Fq = Lqiq . This is done to separate
the flux contribution resulting from the permanent magnet and
the one related to the current bias. The permanent magnet
flux is considered to be a slow-changing external disturbance
(dΨpm

dt = 0). Based on (1) and the discussion above, the
following continuous-time state-space model is obtained:

d

dt
F = A · F + I · u−

[
0
ωe

]
Ψpm

F =

[
Ldid
Lqiq

]
u =

[
ud
uq

]
I =

[
1 0
0 1

]
A =

[
− R
Ld

ωe
−ωe − R

Lq

] (2)

High-performance digital current controllers are derived
directly in the discrete-time domain, without any transport-
delay approximations. For this, the precise sampling and
control instants must be taken into account in the process of
the model derivation. The sampling and control action time
scheduling is shown in Fig. 2. In this paper, the synchronous
double sampling is used, where the PWM duty cycle is set
twice per PWM period (Tpwm = 2Ts). The current feedback
vector is acquired at the moment (n − 1)Ts and transformed
to the flux vector Fn−1, which is used to calculate the voltage
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Fig. 2: Time schedule for sampling and control actions.

reference vector u∗
n−1. The resulting voltage vector un...n+1

is applied in the next sampling instant nTs. With disregard
of the external disturbance Ψpm, the solution of the matrix
differential equation (2) is used to form a matrix difference
equation, relative to the time schedule shown in Fig. 2:

Fn+1 = eATs · Fn −
(
I− eATs

)
· A−1 · un...n+1 (3)

The matrix eATs is calculated using the Putzer Algorithm for
matrix exponential:

eATs =

e−σTs

[
cosh (λTs)− δ sinh (λTs)

λ ωe
sinh (λTs)

λ

−ωe sinh (λTs)
λ cosh (λTs) + δ sinh (λTs)

λ

]
,

(4)
where

σ =
R

2
(

1

Ld
+

1

Lq
), δ =

R

2
(

1

Ld
− 1

Lq
), λ =

√
δ2 − ω2

e

(5)
Note that equation (3) strictly holds if and only if the applied

voltage un...n+1 is latched in dq frame, during the analyzed
control period (if the zero-order hold (ZOH) is assumed to be
in the synchronous frame). In the physical domain, the inverter
output voltage can be latched only in stationary αβ frame,
which makes the output voltage time-variant in dq frame
during the analyzed control period [19]. The modeling of non-
salient machines with ZOH assumed in the synchronous frame
can be seen in [28], and it results in gain and angle errors
that need to be compensated. The discrete modeling of salient
machines that assumes the ZOH in the stationary frame can be
seen in [11], [13], [19]. The approximation of the ZOH being
in the synchronous frame, by analogy with the approach in
[28], yields a much simpler model of salient machines, which
is crucial for the derivation of the proposed IMC structure.
This simplification is analyzed in subsection III A, where it is
shown that it does not have a significant impact on the model
accuracy. This is also confirmed by the results of frequency
response analysis in subsection IV B.

In (3), the value of the applied voltage vector un...n+1 is
not equal to the set reference vector u∗

n−1, due to the dq
frame rotation. During the period [n...n + 1]Ts, the applied
voltage vector is constant in the αβ frame as the output of
the voltage source inverter. Throughout the analyzed sampling
period, the dq frame rotates, which leads to a distortion of the

applied dq voltage, compared to the set reference value. Using
the synchronous frame ZOH approximation, by analogy with
[28], the imposed voltage vector features scalar error equal to

1
2ωeTs

sin( 1
2ωeTs)

and angle error equal to 3
2ωeTs. In this paper, the

scalar error is not compensated, and the ZOH is modeled as
a phase delay. This approximation is validated in subsection
III A. The connection between the applied dq voltage vector
un...n+1 and the reference vector u∗

n−1 is modeled as:

un...n+1 = e−j
3
2ωeTs · u∗

n−1, (6)

where ejΘ =

[
cos Θ sin Θ
− sin Θ cos Θ

]
is the adopted notation for

the matrix that rotates the vector by angle Θ, in the direction
of the dq frame rotation.
Using (6), the matrix difference equation (3) is transformed
into Z-domain:

zF(z) = eATs · F(z)− z−1
(
I− eATs

)
· A−1 · e−j 3

2ωeTs · u∗(z)
(7)

Since the IMC flux controller is obtained from the Z-domain
matrix equation (7), it is of interest to simplify it, without
significantly impacting the accuracy of the model. It is con-
venient to simplify (4) so that it is less dependent on ωe and
so that it features sinusoidal instead of hyperbolic functions.
The assumption that transforms hyperbolic into sinusoidal
functions is ω2

e >> δ2. This approximation transforms λ into
jωe and (4) into:

eATs ≈

e−σTs

[
cos (ωeTs)− δ sin (ωeTs)

ωe
sin (ωeTs)

− sin (ωeTs) cos (ωeTs) + δ sin (ωeTs)
ωe

]
(8)

It is shown in subsection III B and subsection IV B that
this approximation does not deteriorate the model accuracy
even for output frequency equal to zero. In order to avoid
division with small numbers in the low-speed region, the linear
approximation sin(ωeTs)

ωe
≈ ωeTs

ωe
= Ts is used to transform (8)

into the final matrix E:

E = e−σTs

[
cos (ωeTs)− δTs sin (ωeTs)
− sin (ωeTs) cos (ωeTs) + δTs

]
(9)

This linear approximation is analyzed in subsection III C. As
the outcome of using E instead of eATs , the difference equation
(7) is simplified by eliminating the hyperbolic functions, as
well as by significantly reducing the number of components
that depend on the output frequency. The Z-domain transfer
matrix Gplant(z) is introduced as:

F(z) = Gplant(z) · u∗(z)

Gplant(z) = −z−1 (zI− E)
−1 · (I− E) · A−1 · e−j 3

2ωeTs

(10)

B. Derivation of the model-based flux controller

The field-oriented control system of a synchronous machine
is shown in Fig. 3. It consists of current or flux references that
are set by the outer control loops, flux or current controller, ref-
erence frame transformations, pulse-width modulator and in-
verter, synchronous machine, position estimator, and feedback
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Fig. 3: The block diagram of a FOC system with currents as references and measurements.

Fig. 4: The small-signal block diagram of a digital flux control system. For
synchronous sampling, Gfb(z) is equal to the identity matrix I.

acquisition system. In standard electric drive applications, line
currents are available for sensing. In order to use the proposed
flux model-based controller, current vectors are multiplied by
the inductance matrix, and therefore transformed to the flux
vectors. This corresponds to the transformation of a current
control system into a flux control system. The small-signal
block diagram of a digital flux control system is shown in
Fig. 4.
As proposed in [5], the IMC concept consists of inverting
the plant model and adding an integrator with a gain α that
determines the closed-loop bandwidth. In digital applications,
due to delays, an additional factor of 1

z2 must be added, in
order to make a feasible controller without prediction [12].
The structure of the model-based flux controller is derived
using (10):

Gcf (z) = α
z

z − 1

1

z2
G−1
plant(z) (11)

The derivation of the flux controller structure, based on the
plant transfer matrix is given in Appendix A. The complete
matrix form of the proposed flux controller is shown in (12),
and its block diagram is presented in Fig. 5.

III. ANALYSIS OF MODELING APPROXIMATIONS

The matrix transfer function of salient machines (10), de-
rived in the previous chapter, relies on several approximations.
The exact direct-discrete model, derived in [13], has a very
complicated structure, which is a result of matrix exponential
terms and stationary frame ZOH. That model is very useful
for analysis of salient machines, but it is not practical for the
IMC design. In this paper, the model is simplified with the
motivation to derive a compact controller structure that enables
robust operation for high output frequencies and machines
with high values of saliency. This section presents the analysis
of the following modeling approximations, used in section II:

• The synchronous frame ZOH approximation, used in
equations (3) and (6). This is a key approximation used in
this paper, as it greatly reduces the structural complexity
of the model.

• Transformation of (4) into (8): the approximation that
transforms λ into jωe. This approximation reduces the
computational effort and transforms hyperbolical into
sinusoidal functions.

• Transformation of (8) into (9): the first-order approxima-
tion of sin(ωeTs) with ωeTs. This approximation reduces
the computational effort by removing the sinc function.

The model sensitivity to these approximations is analyzed
for a wide range of output to sampling frequency ratios and for
machines with different values of saliency. The machines used
for the analysis are described in Appendix B.A and Appendix
B.B. The sensitivity analysis results are given for the sampling
frequency of 20 kHz, to be consistent with the later simulations
and experimental results.

A. The synchronous frame ZOH approximation

The inverter output voltage can be considered as piecewise
constant between two sampling periods only in stationary αβ
frame. For non-salient machines, the discrete model is usually

The complete transfer matrix of the proposed flux controller

Gcf (z) =
α

ξ

z

z − 1
ej

3
2
ωeTs · (−A) ·

[
eσTs I − ejωeTs + z−1

(
(1 − T 2

s δ
2)e−σTs I − e−jωeTs

)
+ Tsδ

[
−1 0
0 1

]
(1 − z−1)

]
(12)

ξ = e−σTs

(
ω2
e + R2

LdLq

)
T 2
s
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Fig. 5: The matrix block diagram of the proposed flux controller Gcf .

derived starting from αβ frame and then transformed into dq
frame [15]. For salient machines, it is much easier to start from
dq frame, as the inductance matrix in αβ frame is dependent
on the rotor position. Still, the direct derivation in dq frame
yields a problem of modeling the equivalent applied voltage
vector. In equation (3), the voltage vector un...n+1 is assumed
to be latched in dq frame during the analyzed control period.
The exact solution of the matrix differential equation (2) in
discrete sampling instants is:

Fn+1 = eATs · Fn + B(ωe, Ts, δ, σ) · e−jωeTs · u∗
n−1 , (13)

where B =
∫ Ts

0
eAte−jωe(Ts−t)dt is the matrix that takes into

account the stationary frame ZOH. The solution of B can be
found in [13], where it is used to obtain the exact direct-
discrete model. The solution of matrix B is very complicated
on its own, even without inverting it, which is required to
obtain the internal model controller (11). Therefore, it is of in-
terest to simplify it by using the one-period synchronous frame
latch assumption. For non-salient machines, the synchronous
frame ZOH assumption introduces a scalar gain error and an
angle error. A similar form is mentioned in [13] as a possible
approximation, but this was not thoroughly analyzed.

In this paper, the connection between the applied and the
reference voltage vectors is modeled as a phase delay equal
to 3

2ωeTs. For a more precise modeling, the scalar gain error
can also be included to obtain the same form shown in [28]:

un...n+1 =
1
2ωeTs

sin( 1
2ωeTs)

e−j
3
2ωeTs · u∗

n−1 (14)

This subsection demonstrates that the latch approximation,
used in (3) and (6), does not significantly impact the applied
voltage vector, even for very high output frequency operations
and machines with high values of saliency.

In order to validate the synchronous frame latch approx-
imation, simulations are organized in the following way. A
unit vector with an angle equal to Θ = 45 deg is used
as the input to the following three matrices. The first one
represents the simplified ZOH model, used in (3) and (6):
−
(
I− eATs

)
·A−1 · e−j 3

2ωeTs . The second one represents the
synchronous frame ZOH model with additional scalar gain,
which is a combination of (3) and (14). The third matrix is

(a)

(b)

Fig. 6: Analysis of the synchronous frame ZOH approximation. The sampling
frequency is equal to 20 kHz.

the matrix B · e−jωeTs , which represents the exact voltage
contribution in (13). The magnitude and angle errors, between
the outputs of the first two matrices and the third matrix, are
shown in Fig. 6.

From Fig. 6, it is clear that the voltage latch approximation
does not significantly impact the model accuracy, yet it greatly
reduces its complexity. The magnitude error remains below
7% for output to sampling frequency ratios up to 0.2. This
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Fig. 7: Relative error between the magnitude of λ and ωe.

error is practically nullified by including the scalar gain from
(14), which is a simple modification of the proposed controller
structure. The angle error is below 0.04 deg, for the mentioned
output frequency range. It should be noted that the machine
parameters have a certain impact only on the angle error.

B. Transformation of hyperbolic into sinusoidal functions

The second approximation, which is used to transform (4)
into (8) is λ =

√
δ2 − ω2

e ≈ jωe. This approximation needs
to be validated only for near-zero output frequencies, as ω2

e

dominantly influences the value of λ starting from low-speed
values.

For output frequencies ωe < δ, the parameter λ is a real
number. In that region, the argument λTs of the hyperbolic
functions in (4) is close to zero. Therefore, the Taylor ex-
pansion of hyperbolic functions is equal to the Taylor expan-
sion of sinusoidal functions: cosh(λTs) ≈ cos(λTs) ≈ 1,
sinh(λTs) ≈ sin(λTs) ≈ λTs, which justifies the use of
sinusoidal functions instead of the hyperbolic ones.

For output frequencies ωe > δ, the parameter λ is an imagi-
nary number and therefore in (4), the hyperbolic functions are
equal to the sinusoidal functions of the argument Im {λTs}.
In this region, the approximation Im {λ} ≈ ωe is verified
by calculating the relative error between the magnitudes of
λ and ωe. The results are shown in Fig. 7, for motors
described in Appendix B.A and Appendix B.B. From Fig. 7, it
could be wrongly concluded that this approximation produces
significant modeling error in the low-speed region. However,
the parameter λ in (4) is multiplied by Ts, which attenuates
the error impact. Hence, the elements of matrix eATs are not
sensitive to this approximation. This is confirmed in subsection
IV B where the results of the frequency response analysis and
step responses are also provided for zero-speed and low-speed
operations.

C. First-order approximation of sinusoidal function

The first-order approximation sin(ωeTs)
ωe

≈ Ts transforms (8)
into (9). It does not depend on the motor parameters, and
it simplifies δ sin(ωeTs)

ωe
to δTs. This approximation reduces

the computation effort, as well as the numerical division

Fig. 8: The step response and closed-loop characteristics of Wcl for three
values of parameter α.

problems for small values of ωe. The relative error, equal to
2π

fout
fs

−sin(2π
fout
fs

)

sin(2π
fout
fs

)
, increases above 5% for fout

fs
> 8.5%. This

approximation can be bypassed to increase the robustness of
the derived controller at high speeds.

IV. CONTROLLER DESIGN AND SIMULATION RESULTS

In this section, the closed-loop system shown in Fig. 4
is analyzed. The closed-loop analysis is used to calculate
the controller parameter α based on the aimed response.
The frequency response analyses of open-loop and closed-
loop systems are performed to validate the derived plant
model and controller structure. The proposed controller is
then tested in order to verify the closed-loop step response
for various operating modes. The results are presented for the
output frequency ratios up to 0.2, for two different machines,
described in Appendix B.A and Appendix B.B.

A. Closed-loop analysis and controller design

Based on (11), the open-loop transfer matrix of the system
shown in Fig. 4, Wol(z) = Gplant(z) ·Gcf (z) is equal to:

Wol(z) =
α

z(z − 1)
I (15)

The resulting closed-loop transfer matrix is equal to:

Wcl(z) =
α

z2 − z + α
I (16)

For the controller design, the closed-loop transfer matrix
(16) is used to determine the gain α based on the desired
closed-loop bandwidth and the allowed step response over-
shoot. Another important feature is the vector margin, which
indicates robustness to model uncertainties [12], [15]–[17].
For industrial applications, the allowed current overshoot is
usually limited under (3− 4)% as it affects the design of the
overcurrent protection. The value of 4% is taken as a design
restriction in this paper. In Fig. 8, the step response of (16)
is given for three different values of α. It can be seen that
the loop with value α = 0.33 results in a settling time of
approximately 10Ts and the overshoot of 3.47%, which fits in
the design restriction. The complete list of parameters of the
designed controller is shown in Table I.
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TABLE I: Controller configuration and closed-loop characteristics

Controller parameters Label Value unit

Controller gain α 0.33 /
Sampling frequency fs 20 kHz

Closed-loop characteristics Label Value unit

Bandwidth to sampling frequency ratio fbw
fs

0.122 /
−3 dB bandwidth fbw 2443 Hz

Overshoot OVSH 3.47 %
Vector margin VM 0.624 /

For the direct comparison with the state-of-the-art meth-
ods, in the following analysis the closed-loop performance is
evaluated for the current response, instead of the flux. The
proposed controller from (12) is used in current control system
by multiplying the current vectors with the inductance matrix,
as seen in Fig. 3.

B. Frequency response analysis

The proposed controller structure is derived with the mo-
tivation to obtain the open-loop and closed-loop transfer
matrices equal to (15) and (16), respectively. In order to ensure
reliability, frequency responses of the current control loop
are compared with (15) and (16). The simulations, performed
in the MATLAB/Simulink environment, are organized in the
following manner. The controller structure is implemented us-
ing discrete blocks, taking into account control-related delays.
The Simulink abc frame machine model, supplied from a
controlled voltage source, is used for two different machines,
described in Appendix B.A and Appendix B.B. The control
parameters are equal to those in Table I.

For Multiple-Input Multiple-Output (MIMO) systems, to
which salient machines belong, the frequency response analy-
sis is not straightforward as for the Single-Input Single-Output
(SISO) systems [29]. However, since the coupling between the
axes is handled by the controller, the cross-impact between the
axes is negligible compared to the direct-impact of one axis
on itself (the open-loop and closed-loop matrices are nearly
diagonal). Due to this, for salient machines with properly
structured controller, SISO frequency response provides useful
information about the system. The justification of this is seen
in the following subsection, where the step responses show no
coupling between the axis. The frequency response analysis is
performed for the closed-loop system in order to verify the −3
dB bandwidth, as well as for the open-loop system in order
to verify the crossover frequency and the phase margin. For
the analyzed axis current reference, sinusoidal perturbations
of 0.1 A are superposed to the 2 A DC value. The reference
current in the other axis is set to 0 A. The chosen number
of settling periods is 2, and the number of estimation periods
is 4. The perturbation frequencies are an arithmetic sequence
starting from 100 Hz to 8850 Hz, with a step of 250 Hz. The
response is tested for output to sampling frequency ratios of:
{0, 0.045, 0.1, 0.2}. The results are shown in Fig. 9.

From results of the frequency response analysis, the fol-
lowing can be concluded. First of all, for output to sampling

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9: The simulation results for the d and q axes frequency response analysis.
The controller parameters are equal to the ones in Table I: (a) - (b) The open
and closed-loop response for d-axis, machine in Appendix B.A; (c) - (d) The
open and closed-loop response for q-axis, machine in Appendix B.A; (e) -
(f) The open and closed-loop response for d-axis, machine in Appendix B.B;
(g) - (h) The open and closed-loop response for q-axis, machine in Appendix
B.B.

frequency ratios up to 0.1 the responses are in almost perfect
match with the analytical transfer functions. A slight mismatch
can be seen for the ratio of 0.2. Also, it can be seen that there
is almost no difference between the frequency responses of d
and q axes. Finally, the frequency response remains unaltered
for the machine described in Appendix B.B, which has an
extremely high value of saliency.
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C. Step response of the closed-loop system

The goal of this subsection is to show the following:

• The machine described in Appendix B.A, which is used
in the experimental tests, features high-enough saliency
for the dq axes currents to have significantly different
dynamics.

• Controllers that rely on continuous-time approximations,
such as the PI with axes decoupling terms, do not offer
satisfactory performance starting from moderate output
frequencies.

• The comparison between the step responses of the simu-
lated current loop and the theoretical one - Wcl(z) (16).

• The proposed controller structure enables the current loop
to maintain robustness for very high output frequencies,
while being tuned to a very high bandwidth fbw

fs
= 0.122.

The simulation results are given for the output frequency
ratios up to fout

fs
= 0.15.

• The proposed controller is able to achieve the decoupling
of the axes dynamics for high output frequency ratios
and highly salient machines. The results are given for
the SynRel machine, described in Appendix B.B, which
has a very high value of saliency, reaching a maximum
of Ld

Lq
= 18.6.

The simulation model is the same as the one used for the
frequency response analysis. The current loop step response is
tested for quick square-pulse references in both axes. The pulse
magnitudes are 2.5 A, and the pulse duration is 2.5 ms. The
response is tested for output frequencies from 0 Hz to 3 kHz.
The simulation results are sampled with a rate equal to Ts and
plotted in MATLAB, with a focus on rising and falling edges
of the square pulses. In all conducted simulations, controller
parameters are equal to the ones in Table I.

The most often used structure for current control in indus-
trial drives is a two-axis PI controller with axes decoupling
terms and output voltage angle compensation [6], [7], [30].
This kind of controller can be designed as the IMC in
continuous-time domain [5]. The proportional gain in each
axis is equal to αfsLdq , where α is the relative bandwidth
and Ldq is the respective axis inductance. The integral gain
is equal to αfsR. In order to decouple the axes dynamics,
state-feedback term ∓ωeLdqidq is added to the output of the
respective axis PI controller. For the compensation of the
control-related time delays, the voltage reference is rotated by
3
2ωeTs in the positive direction. The performance of the above
described PI current controller is compared to the controller
proposed in this paper. For a fair comparison, the loop gain
α is the same for both controllers. The results are shown in
Fig. 10, for the machine described in Appendix B.A and the
output frequency equal to 150 Hz. The results show that the
commonly used PI controller does not provide decoupling of
the axes dynamics, even at moderate output frequency of 150
Hz. Even worse performance is obtained when the controller
is applied for machines with higher values of saliency. As
stated in [12], the implementation of a PI controller with state-
feedback axes decoupling terms, causes the closed-loop poles
to migrate as the frequency increases, making them lightly
damped. This causes the system behaviour to become highly

Fig. 10: Simulation results for the machine in Appendix B.A and output
frequency equal to fout = 150 Hz. The comparison between the proposed
controller, the discrete IMC for non-salient machines with gains set to L =
Lq , and the PI controller with state-feedback decoupling terms. All controllers
feature the same value of gain α = 0.33.

oscillatory when operating at high synchronous frequencies.
Additional simulation results for the PI controller are not
shown in this paper, but as the frequency increases, the axes
coupling becomes intolerably high, and the loop loses stability
for fout

fs
> 0.142. Detailed performance and stability analyses

of continuous and discrete based current controllers can be
found in [12].

As stated in [25], for machines with low values of saliency
(Ld ≈ Lq), satisfactory performance is achieved by imple-
menting the discrete IMC for non-salient machines [12], [15]–
[17]. In that case, the value L is replaced with an inductance
value between Ld and Lq . However, as the saliency increases,
the current in the higher-inductance axis features a slower
response compared to the current in the lower-inductance axis.
The implementation of this kind of controller can lead to a
lightly damped oscillatory response in the lower-inductance
axis. The worst-case scenario is when the non-salient dis-
crete IMC is tuned according to the higher-inductance value
(L = Lq). For such tuning and the machine described in
Appendix B.A, the current loop step response is shown in
Fig. 10. The presented result confirms that the machine from
Appendix B.A has high enough saliency for the experimental
verification of the proposed controller structure.
The current loop step responses, for the proposed controller,
are further simulated and compared to the step response of
(16). The results are shown in Fig. 11 and Fig. 12, for
the machines decribed in Appendix B.A. and Appendix B.B,
respectively.

The excellent match between the step responses of (16) and
the simulated current loop shows that the derived plant model
Gplant is accurate and that the controller Gcf is capable of de-
coupling the axes dynamics. The results for a very high output
frequency ratio fout

fs
= 0.15 show a negligible mismatch from

the theoretical response. The excellent agreement between the
results for both machines leads to the same conclusion as the
one from the frequency response analysis: the proposed current
loop is not affected by the value of machine saliency.
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(a) fout = 0 Hz (b) fout = 0 Hz

(c) fout = 900 Hz (d) fout = 900 Hz

(e) fout = 3 kHz (f) fout = 3 kHz

Fig. 11: The simulation results for the dq axes current step responses, for the
machine described in Appendix B.A. The controller parameters are equal to
the ones in Table I.

V. EXPERIMENTAL RESULTS

For experimental verification of the proposed controller
the algorithm is implemented on a DSP based platform,
which uses the TMS320F28335 device. The experimental
results are presented for a synchronous motor with surface-
mounted magnets. The motor is supplied by an industrial
PWM-controlled IGBT inverter with the switching frequency
fpwm = 10 kHz [31]. The machine and drive parameters are
shown in Appendix B.A. The current is acquired using ADC
peripheral and on-chip direct memory access (DMA) unit.
The implemented sampling method is synchronous double
sampling with the frequency fs = 20 kHz. The experimental
setup is shown in Fig. 13.

For the experimental tests, the current references are set in
the same manner as for the simulations, and the measurements
are acquired with the period equal to Ts = 1

2Tpwm. The
waveforms are compared to the theoretical step response -
Wcl(z) (16). The current response is tested for speeds up to
18 krpm due to the mechanical constraints of the experimental
setup. For tests at speeds higher than 9 krpm, the magnets
are taken out of the rotor. For the experimental tests shown
in Fig. 14 and Fig. 15, the controller parameters are equal
to the ones in Table I. The relative closed-loop bandwidth is
equal to fbw

fs
= 12.2%, which corresponds to fbw = 2443 Hz.

These results are presented for the output frequency ratios up
to fout

fs
= 4.5%. In order to test the controller at higher values

of fout

fs
, the switching frequency is decreased to 5 kHz and 2.5

kHz. The sampling frequency is also decreased to 2fpwm. For

(a) fout = 0 Hz (b) fout = 0 Hz

(c) fout = 900 Hz (d) fout = 900 Hz

(e) fout = 3 kHz (f) fout = 3 kHz

Fig. 12: The simulation results for the dq axes current step responses, for the
machine described in Appendix B.B. The controller parameters are equal to
the ones in Table I.

Fig. 13: The experimental setup with a six-pole synchronous permanent-
magnet motor: (1) Two-axes module comprising two 3-phase inverters and
control circuits. The PC-based GUI connection is established using EtherCat
link. (2) The motor under the test. (3) Speed-controlled motor. (4) Toothed
belt coupling for two motors and inertia. (5) Inertia.

those experimental results, shown in Fig. 16, the controller
gain remains equal to α = 0.33, which retains the relative
bandwidth equal to fbw

fs
= 12.2%.

The first result, shown in Fig. 14, presents current loop step
responses for the proposed controller with gains calculated
according to Lq and the output frequency of 150 Hz. This
result matches the one from Fig. 10 and demonstrates that the
machine from Appendix B.A has high enough saliency for the
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Fig. 14: The experimental result for the proposed controller with gains set
according to Lq . The parameter α = 0.33, the sampling frequency is 20
kHz, and the output frequency is fout = 150 Hz.

(a) fout = 100 Hz (b) fout = 100 Hz

(c) fout = 150 Hz (d) fout = 150 Hz

(e) fout = 450 Hz (f) fout = 450 Hz

(g) fout = 900 Hz (h) fout = 900 Hz

Fig. 15: The experimental results for the d and q axes current responses, for
the machine in Appendix B.A. The switching frequency is equal to 10 kHz.
The controller parameters are shown in Table I.

verification of the proposed controller.
The following results, shown in Fig. 15, verify the proposed

controller for various rotational speeds. The current loop is
tested for rotor speeds equal to 2 krpm, 3 krpm, 9 krpm, and 18

(a) fout
fs

= 9 % (b) fout
fs

= 9 %

(c) fout
fs

= 18 % (d) fout
fs

= 18 %

Fig. 16: The experimental results for the d and q axes current responses, for
the machine in Appendix B.A. The value of controller parameter α is the same
as for the previous tests, equal to 0.33: (a) - (b) The switching frequency is
equal to 5 kHz; (c) - (d) The switching frequency is equal to 2.5 kHz.

krpm, which correspond to the output frequencies of 100 Hz,
150 Hz, 450 Hz, and 900 Hz, respectively. From the presented
step responses, it can be seen that the experimental results are
in an excellent agreement with the theoretical response and
that the step response does not deteriorate with the increase
of the output frequency. The presented results verify that
the controller is capable to achieve the constant dynamics
in both axes, and a decoupled response. A slight mismatch
from the step response of (16) and low-magnitude oscillations
are present, contrary to the simulation results. This is due
to the spectral aliasing and current acquisition errors related
to the implemented sampling method. It is well analyzed in
[15] that the synchronous sampling cannot provide the zero-
error feedback acquisition, due to LC parasitics, anti-aliasing
filter, lockout time, and other effects. For increased robustness,
advanced oversampling techniques are becoming a standard
for feedback acquisition.

The results with reduced switching frequency, shown in
Fig. 16, demonstrate that the proposed controller structure is
able to maintain a stable current response up to a very high
output to sampling frequency ratio fout

fs
= 18%, while being

tuned to a very high relative bandwidth fbw
fs

= 12.2%. As
noted in section III, some of the modelling approximations
can be avoided in order to reduce errors at very high output
frequencies. However, it was of interest to show that with
all approximations, the proposed controller maintains a stable
response at fout

fs
= 18%. The results for the decreased

switching frequency show higher axes coupling, yet the step
response is still in good agreement with the theoretical one.
It should be noted that, with the decrease of the switching
frequency, the current ripple significantly increases, which,
without doubt impacts the current response in the presented
results.

The directly comparable state-of-the-art methods for salient
machines are [13] and [26]. The experimental results in [13]
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report the maximal output frequency ratio equal to fout

fs
= 0.1,

for the loop tuned to fbw
fs

= 0.05. In [13], the results show
low-magnitude oscillations and slight axes coupling in step
responses. The experimental results in [26] report the maximal
output frequency ratio of fout

fs
= 0.12, for the loop tuned to

fbw
fs
≈ 0.07. The results show severe output oscillations and

the axes coupling is not presented for high output frequencies.
The experimental results in this paper present the maximal

value of output frequency ratio equal to fout

fs
= 0.18, for the

loop bandwidth ratio equal to fbw
fs

= 0.122. The capability to
maintain the loop stability and to provide nearly theoretical
current step response, for these values of output frequency
and bandwidth, demonstrates the effectiveness of the proposed
controller.

VI. CONCLUSION

This paper has presented a novel structure of current
controller for salient machines. The proposed controller is
compact and offers a very robust response. The simulation
results have demonstrated its capability to decouple the axes
dynamics for high output frequencies, high bandwidth and for
machines with very high value of saliency. The experimental
results have verified the current loop response for relative
values of bandwidth and output frequency higher than the
state-of-the-art methods. In order to further improve robust-
ness, oversampling based methods for feedback acquisition
should be investigated. Most importantly, for highly non-linear
machines such as SynRel, the adaptive control should be
investigated, with the motivation to maintain constant current
loop dynamics for all operating points.

APPENDIX A
DERIVATION OF THE FLUX CONTROLLER

The flux controller is derived by substituting (10) into (11),
which subsequently expands to (17). In order to obtain a more
compact structure of the controller, the following matrix from

(17), W = (I− E)
−1 ·

(
I− 1

zE
)

= 1
ξ

[
w11 w12

w21 w22

]
is further

analyzed.
The exact value of the denominator ξ is shown in (18).

With the following approximations: sin2 (ωeTs) ≈ ω2
eT

2
s ,

eσTs ≈ 1 + σTs, and cos(ωeTs) ≈ 1, the parameter ξ is
transformed into (19). The denominator ξ is repositioned
to the beginning of the controller, as shown in Fig. 5. The
remaining elements of the matrix W, shown in (20), are
regrouped to obtain a compact form shown in (21).

APPENDIX B
MACHINE AND DRIVE CONFIGURATION

A. Experimentally used motor

PMSM with Surface-Mounted Magnets Label Value unit

Rated RMS current In 7.3 A
Rated RMS line voltage Un 400 V

Rated frequency fn 240 Hz
Rated speed nn 4800 rpm

d-axis inductance Ld 7.6 mH
q-axis inductance Lq 12.9 mH
Stator resistance Rs 1.057 Ω

PM flux magnitude Ψpm 0.2 Wb
Number of poles 2p 6 /

Industrial IGBT Inverter Label Value unit

Switching frequency fpwm 10 kHz
Sampling period Ts 50 µs

Lockout time (compensated) tdt 2.8 µs
DC bus voltage Vdc 650 V

B. Highly salient industrial SynRel motor

Synchronous Reluctance Label Value unit

d-axis inductance Ld 65 mH
q-axis inductance Lq 3.5 mH
Stator resistance Rs 0.1 Ω
Number of poles 2p 4 /
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Equations used in Appendix A

Gcf (z) = α
z

z − 1

1

z2
G−1
plant(z) = −α

z

z − 1

1

z
ej

3
2
ωeTs · A · (I − E)−1 · (zI − E) = α

z

z − 1
ej

3
2
ωeTs · (−A) · W (17)

ξ = e−σTs

[
1 − 2eσTs cos (ωeTs) + e2σTs − T 2

s δ
2
]

= e−σTs

[(
eσTs − cos (ωeTs)

)2
+ sin2 (ωeTs) − T 2

s δ
2

]
(18)

ξ ≈ e−σTs

(
ω2
e +

R2

LdLq

)
T 2
s (19)

w11 = − cos (ωeTs) − Tsδ + eσTs +
(
− cos (ωeTs) + Tsδ + (1 − T 2

s δ
2)e−σTs

)
z−1

w12 = sin (ωeTs) − sin (ωeTs)z
−1

w21 = − sin (ωeTs) + sin (ωeTs)z
−1

w22 = − cos (ωeTs) + Tsδ + eσTs +
(
− cos (ωeTs) − Tsδ + (1 − T 2

s δ
2)e−σTs

)
z−1

(20)

ξW = eσTs I − ejωeTs + z−1
[
(1 − T 2

s δ
2)e−σTs I − e−jωeTs

]
+ Tsδ

[
−1 0
0 1

] (
1 − z−1

)
(21)
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