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Abstract. Optical three-dimensional coordinate measurement using stereo vision has systematic errors 
that affect measurement quality. This paper presents a scheme for measuring, modelling and 
correcting these errors. The position and orientation of a linear stage are measured with a laser 
interferometer while a stereo vision system tracks target points on the moving stage. With reference 
to the higher accuracy laser interferometer measurement, the displacement errors of the tracked 
points are evaluated. Regression using a neural network is used to generate a volumetric error model 
from the evaluated displacement errors. The regression model is shown to outperform other 
interpolation methods. The volumetric error model is validated by correcting the three-dimensional 
coordinates of the point cloud from a photogrammetry instrument that uses the stereo vision system. 
The corrected points from the measurement of a calibrated spherical artefact are shown to have size 
and form errors of less than 50 µm and 110 µm respectively. A reduction of up to 30% in the magnitude 
of the probing size error is observed after error correction is applied. 
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1. Introduction 
The process of reconstructing a three-dimensional (3D) coordinate measurement from a series of two-
dimensional images is complex and can result in significant systematic errors [1]. Hence, active optical 
3D methods use an additional laser or light source to aid the reconstruction of 3D shape, while passive 
methods employ visual cues, such as texture, shading, focus and silhouettes. The performance and 
cost of these methods depends on the measurement technique on which they are based. The 
measurement techniques can be divided into triangulation, time-of-flight and interferometry [2]. 
While methods based on time-of-flight and interferometry require industrial-level sensors and 
instrumentation, triangulation-based systems can be built from readily available components [3]. In 
application, triangulation-based systems usually consist of a camera combined with one or more of a 
laser, structured light source or additional cameras. It is common to use two cameras (stereo vision) 
in triangulation methods, such as laser triangulation, fringe projection and photogrammetry for higher 
accuracy [4–6]. 
 
The stereoscopic principle lies at the heart of various optical 3D measurements, autonomous 
navigation, medical imaging, tracking and augmented reality [7]. Despite its widespread use, stereo 
vision suffers from systematic errors that affect the accuracy of the 3D reconstruction processes. Due 
to the dependency on multiple parameters, such as focal length, distortion coefficients, pixel 
quantisation, focus and more, it is difficult to accurately map and correct for reconstruction errors [8, 
9]. Rigorous uncertainty analyses of stereo and multi-view 3D measurements using Monte-Carlo 
simulation have demonstrated that there is significant systematic error behaviour [1, 10, 11]. The 
deviation from the known motion of detected target points has been used to obtain a statistical 
measure of systematic error [7]. The tracking of a known motion trajectory has also been used in 



geometric characterisation of optical 3D systems [12, 13]. While deviations from a known trajectory 
can give an insight into the magnitude of the systematic error, they lack a traceable reference for 
dimensional measurement. Therefore, the use of a laser interferometer for simultaneous calibration 
of the displacement of a moving system could provide traceability through the wavelength of the light 
source. In addition, instantaneous tracking minimises the effect of the motion system and environment 
on the magnitude of the error. 
 
Interferometers measure length with direct traceability through the calibrated wavelength of their 
optical light source [14]. Adoption of laser interferometers is widespread for measurement of 
geometric errors of machines with sub-micrometre accuracy [15, 16]. Laser interferometers have been 
used to study the volumetric map of errors in machine tools [17, 18] and coordinate measurement 
machines (CMMs) [19, 20]; however, there is lack of research in the area of volumetric error modelling 
for optical 3D systems. Echerfaoui et al. [21] used a laser interferometer to estimate the kinematic 
error components of a CMM and generated a volumetric error map using a neural network. Bräuer et 
al. [22] used discrete systematic error estimation from the error of length of a ball bar at different 3D 
measurement locations. Challenges in automated gathering and modelling of the error data hindered 
error compensation to validate the systematic error. As a result, the need for an alternative length 
measurement strategy was acknowledged. 
 
This paper presents a method for evaluating the discrete spatial errors of target points measured by 
stereo vision with reference to an interferometry tracking system. By tracking the linear and angular 
position of a linear stage using a laser interferometer, the displacements of the optical target points, 
placed on the same stage, are used to evaluate the error in length measurement of the stereo vision 
system. To facilitate error estimation at any position within the stereo-camera measurement volume, 
the volumetric error is modelled using neural network regression. Therefore, using the regression 
model, this approach allows compensation for errors in 3D points obtained by any stereoscopic 
triangulation method. 
 
Photogrammetry is applied in this paper for the purpose of testing the error correction approach on 
an object in place of the optical target used for the error evaluation process. By using a reference 
artefact of calibrated size and form, the stereo images of the object’s surface are used for 
photogrammetric reconstruction. The compact nature of photogrammetric systems makes them 
flexible and integrable into machine tools [23], enhancing their in-situ and in-process applications [24]. 
Also, it has been shown that the surface texture of parts fabricated by additive manufacturing can be 
used as the source of disparity for feature extraction and matching [25]. There are various commercial 
and open-source software packages for carrying out computations in photogrammetry; tools from 
OpenMVG are applied in this work. OpenMVG is an open-source collection of multi-view geometry 
libraries that can be used for 3D reconstruction using a structure-from-motion(SfM) pipeline [26]. 
Stereo image pair correspondences obtained by matching image features are triangulated and 
grouped into sets of multi-view observations of consistent features visible from all viewpoints in a set 
[27]. The use of triplets of image views rather than just doublets can significantly improve 
computational robustness; for instance, a more stable calculation of camera location is obtained using 
a method that uses a trifocal tensor as opposed to the more common essential matrix in OpenMVG 
[28]. Due to the susceptibility of the reconstruction process in photogrammetry to outliers in image 
data and feature correspondences [29], automated object identification and segmentation from the 
reconstructed point cloud data can be challenging [30]. Hence, in this paper, additional constraints and 
filters are used to preclude manual intervention and improve measurement quality. 
 



The displacement measurement and photogrammetry experiments are described in Section 2, along 
with the calibration process for the artefact. Section 3 covers the computational procedures used to 
evaluate and model the errors from the displacement measurement experiment. Displacement errors 
observed by the stereo vision system are computed along the six degrees of freedom of the optical 
target. In addition, using laser interferometer measurements as the traceable reference, the discrete 
volumetric error of the stereo vision system is estimated. Section 3 presents regression modelling of 
the volumetric error using a neural network. An implementation of the volumetric error model in 
photogrammetric error correction is covered in Section 4, which also discusses the necessary 
conditions and constraints applied to the photogrammetry pipeline. Finally, results of the 
displacement tracking and the photogrammetry measurements are presented in Section 5. 
 
2. Experiment 
 
Two separate procedures have been used for this research. The displacement measurement procedure 
is used to obtain information about the errors in the stereo vision system with reference to the laser 
interferometer. Then, the photogrammetric measurement of an artefact is used to validate the quality 
of 3D coordinate measurements. 
 
2.1 Displacement measurement 
The displacements along the linear and angular degrees of freedom of a motorised linear stage were 
measured for the 100 mm travel range of the stage. An optical target (a checkerboard pattern 48 mm 
× 44 mm) was used for tracking points on the stage. As shown in Figure 1a), the optical target and a 
retroreflector were mounted on the moving stage to provide positional feedback to the stereo-camera 
and the interferometer respectively.  
 
 
 

 
Figure 1. Linear and angular displacement measurement showing a) setup of stereo-camera system 
and laser interferometer for tracking a motorised linear stage where the labelled optical components 
are: (1) a beam splitter attached to a fixed retroreflector, (2) a mobile retroreflector, (3) a component 



for beam splitting and reflecting, and (4) a double retroreflector component, b) schematic diagram of 
laser interferometer aligned for linear measurement, and c) schematic diagram of laser interferometer 
aligned for angular measurement.  

 
A Renishaw XL-80 laser interferometer system was used to validate the stereo vision measurements 
of the linear and angular degrees of freedom of the stage. To ensure accurate measurement in varying 
environmental conditions, the interferometer system is coupled with sensors that measure 
environmental condition for wavelength compensation. The interferometer is certified by the 
manufacturer to provide linear measurements with ± 0.2 µm accuracy within the 100 mm working 
range of this application. For angular measurements in the same working range, the laser 
interferometer’s accuracy specification is of the order of 1 µrad. Figure 1b) shows the optical setup of 
the beam splitters and reflectors used in the linear displacement measurements. By using the angular 
type of beam splitter and retroreflector illustrated in Figure 1c), the laser interferometer can be used 
to measure angular displacements. The optoelectronic detector of the interferometry setup uses the 
path difference between the measurement and reference beams to determine the linear (or angular) 
displacement of a moving reflector.  
 
The stereo vision system is composed of two CMOS machine vision cameras with sensors of 1.85 µm 
pixel size and 12.2 megapixels pixel density. Two imaging lenses with 16 mm focal length were fitted 
to the cameras. The cameras were mounted together on a stereo-camera rig with an adjustable 
baseline length and angle. Using the baseline length of 174.5 mm and an angle of around 36° between 
the principal axes of the two cameras, the field of view and focal length of the cameras were set to 
cover the travel distance of the stage. The use of fixed two-camera system is a common solution to a 
critical scaling issue, where the baseline length is used to relate photo-scale and metric scale [31]. In 
fact, among existing passive methods that use cues to reconstruct objects from images, stereo 
correspondence is the most successful taking into account robustness and number of applications [32]. 
From detection of analogous feature locations in stereo images, physical 3D points can be triangulated 
given the intrinsic and geometric parameters of the stereo vision system. The intrinsic parameters (the 
focal lengths and the principal point locations of the cameras) and the geometric parameters (the 
relative positions and orientations of the cameras) are determined by the popular Zhang’s method 
[33]. Because this method and most of industrial off-line self-calibration of cameras rely on the 
accuracy of the features detected [10], optical targets with precise patterns are employed for 
computation of the imaging parameters. 
 
The output of this experiment consists of scalar values from the interferometric linear distance, 
angular yaw and pitch angles, and position vectors of the target points obtained from the triangulation 
of the image points observed by the stereo vision system.  
 
2.2 Photogrammetry 
A photogrammetry setup consisting of the aforementioned stereo vision system and a rotary stage 
was prepared for measurement of 3D objects [34]. The same setup of the cameras described in section 
2.1 was used. The photogrammetry system captures images of an object as it is rotated on the rotary 
stage, which has a unidirectional repeatability of 0.007°. 
 
For an artefact to be considered a reference object, it is necessary to calibrate it using a more accurate 
instrument. A spherical artefact was manufactured from a stainless-steel ball that was spray-painted 
to have a matt black background and contrasting random white patches as shown in Figure 2. After a 
thin layer of black paint was sprayed and left to dry, wet smudges of paint from an equally thin layer 



of white spray paint were applied. The surface of the painted spherical artefact was calibrated using a 

CMM with a 2 mm diameter stylus. It is recommended to use √𝑁ℎ/2𝜋𝑟 parallel circular paths to 

sample 𝑁 points on a spherical segment of radius 𝑟 and enclosed by two parallel planes ℎ distance 
apart [35]. This approach ensures an approximately uniform distribution of points. Using 1200 points, 
the recommended distribution of points is used to measure the spherical segment shown in Figure 2b), 
resulting in a calibrated radius of 14.976 mm ± 0.032 mm. The radial uncertainty of ±0.032 mm is 
expanded from the maximum deviation of 18 µm from the best-fit sphere of the points shown in the 
lower part of Figure 2b). A high confidence level of 99.7% (coverage factor=3) is adopted for the radial 
uncertainty because the number of points measured is less than the number of points expected from 
photogrammetry. The measured radius and radial deviations characterise the size and form variation 
of the artefact respectively.  
  
 

 
Figure 2. a) Photogrammetry setup showing artefact on a rotary stage. b) Artefact calibration with the 
CMM using recommended probing positions on the spherical surface. Radial deviations of the 
measured points from a fitting sphere are also shown in (b). 

 
 
3. Displacement error evaluation and modelling 
 
The measured displacement values from the two measurement systems are not homogenous because 
the laser interferometer gives displacement readings along the stage motion axis from the initial stage 
position while the stereo vision outputs the positions of target points measured from the stereo-
camera’s perspective. Therefore, measurement values from one system should be transformed to an 
analogous equivalent of the other for comparison and implementation of the measurements. 
 



3.1 Kinematic error model 
Due to the imperfections in the components of mechanical systems and the relative motion between 
them, there are geometric and kinematic errors that affect their performances [36]. These 
imperfections can be caused by manufacturing defects, temperature changes, dynamic effects, etc. 
Kinematic errors can be propagated from one moving component to another along both constrained 
and unconstrained degrees of freedom of the components.  
 
For an arbitrary motion system, Eman et. al. [37] developed a generalised error model based on 
homogenous transformation matrices to account for error in kinematics. This approach is compatible 
with the Denavit and Hardenberg (D-H) framework [38] commonly used in multi-body kinematics and 
robotics. This paper applies the kinematic error model proposed by Eman et al. in evaluating the 
motion of the linear stage shown in Figure 3a). The error-inclusive position and orientation of the stage 
can be represented by the homogenous transformation matrix given by 
  

𝑻(𝑥) =

[
 
 
 

1 −𝜖𝑧 𝜖𝑦 𝑥 + 𝛿𝑥

𝜖𝑧 1 −𝜖𝑥 𝛿𝑦

−𝜖𝑦 𝜖𝑥 1 𝛿𝑧

0 0 0 1 ]
 
 
 

        (1) 

 
where 𝑥 is the displacement of the stage in the actuated 𝑥-direction and the displacement error 
components in the six degrees of freedom of the stage are given by the three linear components 

[𝛿𝑥 , 𝛿𝑦 , 𝛿𝑧]
𝑇

 and the three angular components [𝜖𝑥, 𝜖𝑦, 𝜖𝑧]
𝑇

. The directions of the error components 

are shown in the moving coordinate frame 𝑆 of the moving stage. It is worth noting that the error 
components in Equation (1) are derived from a first order estimation and depend on the active joint 
variable 𝑥.  
 



 
Figure 3. a) Illustration of the coordinate frames and components used in displacement measurement. 
Evaluation of the b) stage motion axis (𝑥-direction), c) stage’s 𝑧-direction and d) orientation of target 
plane (𝑥𝑦 plane of frame 𝑃) from the stereo-camera. 

 
3.2 Displacement error evaluation of the linear stage 
The reference displacement of the stage in the linear, yaw and pitch degrees of freedom are obtained 
directly from the laser interferometer readings (see section 2.1). Figure 3a) shows the relevant 
coordinate frames of the stereo-camera 𝐶, the initial stage position 𝑂, the optical target frame 𝑃 and 
the moving stage frame 𝑆. Having fixed the interferometric reflector and optical target to the stage, 
beginning from the point where 𝑆 coincides with stage’s reference frame 𝑂, the laser interferometer 

displacement 𝑥𝑖
𝐿𝐼 and stereo vision positions of all 𝑗th target points 𝒓𝑖𝑗

𝑆𝑉
 

𝐶 , are measured at stage 

positions 𝑖 = 1, 2, … , 10. The target position vectors 𝒓𝑖𝑗
𝑆𝑉

 
𝐶  (from frame 𝐶) are measured for all the 

target points 𝑗 = 1, 2, … , 132 by triangulation of the detected target pixel locations. Once the 
corresponding image locations are detected from a stereo pair of images, a direct linear 
transformation algorithm [39] can be used to carry out the triangulation—determination of a third 3D 
point. 
 

It is necessary to align the stereo vision measurements 𝒓𝑖𝑗
𝑆𝑉

 
𝐶  to the laser interferometer displacement 

measurements along the direction of motion of the stage. This is accomplished by estimating the 
relative orientation (from frame 𝐶) of the stage reference frame 𝑂, from where the stage 
displacements are observed by the interferometer. Figure 3b) shows the direction of motion of the 
stage (unit vector �̂�𝑥) evaluated from the best-fit lines of the displacements of the target points 



𝒓𝑖𝑗
𝑆𝑉 − 

𝐶 𝒓1𝑗
𝑆𝑉

 
𝐶 . In addition, planar fits of the displaced horizontal arrays of the target points, shown in 

Figure 3c), are used to evaluate the upward direction (unit vector �̂�𝑧) of the stage in frame 𝐶. By 
orthogonality of the Cartesian coordinate system, the 𝑦-direction of the stage is given by �̂�𝑦 =

�̂�𝑧 × �̂�𝑥. Having obtained the stage’s directions measured from the stereo vision system, the 

orientation of the stage reference frame can be expressed as 𝑹𝑂 = [�̂�𝑥 , �̂�𝑦, �̂�𝑧] 
𝐶 . Hence, the stage-

aligned linear displacements of the target points are given by 
 

[

𝑥
𝛿𝑦 

𝛿𝑧 

]

𝑖𝑗

𝑆𝑉

 

= 𝑹 
𝐶

𝑂
−1 ⋅ [ 𝐶𝒓𝑖𝑗

𝑆𝑉 −  𝐶𝒓1𝑗
𝑆𝑉].         (2) 

 

The 𝑥-components of the linear displacements in Equation (2) 𝑥𝑖𝑗
𝑆𝑉 are now comparable with the 

reference interferometry readings 𝑥𝑖
𝐿𝐼. Therefore, the linear displacement error is obtained from the 

difference of 𝑥𝑖
𝐿𝐼 and 𝑥𝑖𝑗

𝑆𝑉. In addition to the linear displacement error, Equation (2) gives the 

straightness errors 𝛿𝑦 and 𝛿𝑧 which represent the respective 𝑦-axis and 𝑧-axis deviations of the tracked 

points from the ideal axis of motion. 
 
The angular displacement error of the stage can also be estimated using the points measured by the 

stereo vision camera. The orientation 𝑹𝑃 
𝐶  of the optical target at any position of the stage can be 

estimated from the direction vectors of the lines formed by the horizontal and vertical arrays of points 
on the target plane, shown in Figure 3d). Since the frames 𝑆 and 𝑃 are rigidly connected to the moving 

stage, the relative orientation 𝑹𝑃 
𝑆  remains constant and 𝑹𝑃 

𝑆 = 𝑹𝑃 
𝑂  due to the fact that the frame 𝑆 

coincides with 𝑂 at the first stage position. The value of 𝑹𝑃 
𝑆  is evaluated at the first stage position as 

𝑹𝑃 
𝑆 = 𝑹𝑃 

𝑂 = 𝑹𝑂
−1 ⋅ 

𝐶 𝑹𝑃 
𝐶 . Finally, the relative change in orientation of the stage with respect to the 

first stage position can be computed using 
 

𝑹𝑆 
𝑂 = 𝑹𝑂

−1 ⋅ 
𝐶 𝑹𝑃 ⋅ 

𝐶 𝑹𝑃
−1

 
𝑆 .          (3) 

 
From Equation (3), the values of the angular error components can then be evaluated from the 
elements of the orientation matrix 𝑹𝑆 

𝑂  as the extrinsic Euler angles (observed from the fixed frame 𝑂 
shown in Figure 3)[40] 
 

[

𝜖𝑧

𝜖𝑦

𝜖𝑥

]

𝑖

𝑆𝑉

=

[
 
 
 
 
 𝑎𝑡𝑎𝑛 (

𝑹𝑆 
𝑂 (2,1)

𝑹𝑆 
𝑂 (1,1)

)

𝑎𝑡𝑎𝑛 (−
𝑹𝑆 

𝑂 (3,1)

√ 𝑹𝑆 
𝑂 (3,2)2+ 𝑹𝑆 

𝑂 (3,3)2
)

𝑎𝑡𝑎𝑛 (
𝑹𝑆 

𝑂 (3,2)

𝑹𝑆 
𝑂 (3,3)

) ]
 
 
 
 
 

.       (4) 

 

The matrix element 𝑹𝑆 
𝑂 (𝑛, 𝑚) denotes the nth row and mth column of a matrix 𝑹𝑆 

𝑂 , as shown in 

Equation (4). The three angular error components [𝜖𝑧, 𝜖𝑦, 𝜖𝑥] are the yaw, pitch and roll of the stage 

respectively.  
Even though Equations (2) and (4) do not depend on the origin of frame 𝑂, the origin is necessary for 
further study on volumetric error in the rest of the section. The origin of 𝑂 is assigned to the origin of 
the detected target points at the first stage position, such that the origins of 𝑃 and 𝑆 are essentially 
aligned to the motion axis as the stage moves, with slight deviations investigated as straightness errors. 
 



3.3 Discrete volumetric error generation 
Up to this point, transformations have been carried out on the stereo vision measurements to align 
them with the measurements from the laser interferometer. Here, the homogenous transformation 
matrix formed by the laser interferometer measurement is used to generate a reference trajectory for 
the optical target points. The volumetric error associated with the stereo vision is then measured from 
the reference trajectory. Figure 4a) shows the schema of the laser interferometer trajectory that is 
applied to all points in frame 𝑂. The three viewpoints shown in the figure are used to generate the 
volumetric errors. For each of the three viewpoints, the evaluated difference in positions (error 
vectors) will need to be transformed to the stereo vision frame from where the volumetric errors are 
recorded. The equation 

[

𝐸𝑥

𝐸𝑦

𝐸𝑧

1

]

𝑖𝑗

= [
𝑹𝑂 

𝐶 𝟎3×1
 

𝟎3×1
𝑇 1

] ⋅

(

 
 

[

𝑥
𝑦
𝑧
1

]

𝑖𝑗

𝑆𝑉

 

−

[
 
 
 

1 −𝜖𝑧 𝜖𝑦 𝑥

𝜖𝑧 1 −𝜖𝑥 𝛿𝑦

−𝜖𝑦 𝜖𝑥 1 𝛿𝑧

0 0 0 1 ]
 
 
 

𝑖

𝐿𝐼

 

⋅ [

𝑥
𝑦
𝑧
1

]

1𝑗

𝑆𝑉

 )

 
 

,    (5) 

 

gives the volumetric error vector plotted in Figure 4b), where 𝟎3×1 = [0,0,0]T. This displacement error 
vector is considered to be dependent on the position from the stereo-camera, so that the same error 
information can be treated as an intrinsic property of the stereo vision system. 
 

 
Figure 4. a) Illustration of trajectory of transformed target points observed from three stereo camera 
positions 𝐶1, 𝐶2, 𝐶3 given with respect to 𝑂. b) Plot of volumetric error vectors in coordinate frame 𝐶1 
target positions. 𝛼𝑧 and 𝛼𝑦 are the approximate rotation angle of 𝐶2 and 𝐶3 respectively from 𝐶1, along 

the respective 𝑧 and 𝑦 directions. 

 
The displacement measurement experiment can be repeated with the optical target at different 
locations on the stage to cover a higher measurement volume. The error vector is discrete and cannot 
directly provide error information at any desired position; hence, there is need for a continuous model 
of the error. There is no analytical model for the behaviour of the error vectors, and it is difficult to 



model using elementary mathematical functions [21, 22]. The lack of a spatial relationship with the 
error components led to investigation of regression and scattered 3D interpolation methods. 
 
3.4 Regression modelling of volumetric error 
Most research on volumetric error is targeted at machine tools that operate in Cartesian coordinates, 
where error can be traced to individual axes [17, 21]. Measured error components in the homogenous 
transformation matrices of these systems are easily interpolated to generate complete volumetric 
error. However, stereo vision systems operate by synthesising central projections of a 3D scene to a 
2D image plane [39], making it difficult to implement a homogeneous transformation model as there 
are no physically moving components that connect a triangulated point in a scene with an observed 
stereo image points. The volumetric error computed from Equation (5) is experimentally obtained and 
relates to spatial positions in an unknown, noisy and non-linear pattern that is difficult to model 
analytically.  
 
Artificial neural networks can be used to model complex and non-linear behaviour in the presence of 
noisy data [41]. The performance of neural network is compared with interpolation methods later in 
this section. While interpolation of the discrete errors at a desired location can be used, neural network 
is shown to be better suited for regression of the error. Hence, a multi-input multi-output feedforward 
neural network has been chosen to model the generated volumetric error. After testing several 
networks with different combinations of number of hidden layers and number of neurons, the shallow 
neural network shown in Figure 5 was chosen. The neural network has three inputs (the components 
of the position vector from the stereo-camera), fifteen hidden layer neurons and three output layer 
neurons used to compute the three components of the volumetric error. 

 
Figure 5. Neural network showing input position coordinate values, a hidden layer with fifteen neurons 
and an output layer with three neurons to generate the volumetric error as output. 𝑾1 and 𝒃1 are the 
hidden layer weight matrix and bias vector respectively. 𝑾2 and 𝒃2 are the output layer weight matrix 
and bias vector respectively.  

The hidden layer of the neural network has a hyperbolic sigmoid activation function and the output 
layer has a linear function. The hyperbolic sigmoid function maps weights to a zero-centred higher 
resolution range (-1 to 1) compared to the popular exponential sigmoid function which maps to a 0 to 
1 range. A batch gradient descent learning algorithm with Bayesian regularisation [41] was used to 
train the weights and biases of the neural network in Figure 5. 70% of the position and error data 
obtained from of the five experimental campaigns repeated at each of the three positions shown in 
Figure 4a were randomly selected to train the neural network. This training data is, to some extent, 
representative of the repeatability and scene-dependency of the stereo vision system. The 



performance of the trained neural network was tested on the remaining validation data; the mean 
squared error of training and validation data are shown in Figure 6a). The distribution of the error of 
prediction (Δ𝐸𝑥 , Δ𝐸𝑦, Δ𝐸𝑧) on the validation data is given in Figure 6b), along with the standard 

deviations of the error of predictions. These validation error deviations are 2.7 µm, 4.0 µm and 1.7 µm 
along 𝑥, 𝑦 and 𝑧 repectively. As expected from Monte-Carlo simulations [1, 11],  the uncertainties along 
the principal axes of the cameras (𝑦-axis for the left camera) are higher and are, therefore, predicted 
with higher errors. It is important for the majority of the predicted volumetric errors to have error 
magnitudes that are comparable to the random error of the stereo vision measurements. An empirical 
estimation of randomness can be made from the repeatability of the measurements discussed in 
Section 5. 

The reason for choosing neural network regression over interpolation methods is that interpolation 
methods like Delaunay triangulation and natural neighbour [42] predict the errors with higher 
validation errors, manifested by higher standard deviations of over 30% for each error component. 
Interpolation by natural neighbour method of the same training data at the validation positions shows 
standard deviation of validation errors of 3.6 µm, 5.4 µm, 2.3 µm along 𝑥, 𝑦 and 𝑧 respectively. In 
addition, significant instability is observed when the interpolation and validation data are resampled. 
 

 
Figure 6. a) Performance of the implemented neural network given as mean squared error of training 
and validation given against epochs (learning cycles of iterative update of trained weights and biases). 
b) Distribution of the validation error, which represents the difference between predicted volumetric 
errors and the actual errors. The legend shows the standard deviation of the components of the 
validation errors (Δ𝐸𝑥 , Δ𝐸𝑦, Δ𝐸𝑧). 

 
 
4. Error correction applied to photogrammetry 
 
Referring to Figure 2a), the artefact rotates in a clockwise direction relative to the fixed cameras; an 
equivalent artefact-centric perspective where the cameras rotate by equal angles in the opposite anti-
clockwise direction is illustrated in Figure 7a). Since photogrammetry reconstructs objects from varying 
imaging viewpoints, the artefact-centric perspective is adopted. Images of the artefact captured at 6° 
rotational intervals are fed into the OpenMVG SfM pipeline. Image features are detected using a local 
image descriptor, known as the scale invariant feature transform (SIFT) [43], and matched using 



cascade hashing [44]. The orientation and position of the rotary stage, relative to the stereo-camera, 
were predetermined through a geometric characterisation process. The characterisation of the rotary 
stage was carried out by tracking markers rotated on the stage and analysing their trajectory deviations 
from ideal circular paths. The rotary axis was found to be characterised by run-out of less than 8 µm 
and axial wobble of less than 0.01°. Knowing the rotation axis of the rotary stage and the angles of 
rotation makes it possible to compute the artefact-centric poses of the imaging viewpoints accurately. 
In addition, measurement of the artefact-centric poses enables computation of the baseline distances 
among imaging viewpoints, which is essential in the selection of image pairs for accurate feature 
extraction and matching. In photogrammetry, there is usually a compromise between accuracy and 
object visibility; while large baselines result in detection of features with higher accuracy, smaller ones 
ensure more common features are visible [11, 45, 46]. Figure 7b) outlines how several processes are 
integrated with the SfM pipeline. By employing the matched features and imaging poses, triangulation 
is carried out using an OpenMVG subroutine to compute 3D points. 
 
 

 
Figure 7. a) The artefact-centric rotation of imaging viewpoints. b) Flowchart summary of the SfM 
pipeline. 

 
Besides control of the image viewpoints and baseline distances, false feature matches are mitigated 
by removing features that appear in fewer than a number of viewpoints (number of viewpoints ≥ 3). 
The higher the number of viewpoints that agree on a feature, the lower the probability of a false 
positive match of the feature.  
 



 
Figure 8. Point cloud segmentation process, where a) a point on a plane is found, b) segmentation 
plane is constructed. 

 
Not all the reconstructed points are expected to be on the spherical artefact hence, an automated 
point cloud segmentation process, shown in Figure 8, was developed. A point, with position vector 𝒓𝜋, 
on a desired segmentation plane is created along the stage rotation axis (�̂�) with a distance 
𝑑𝜋 = 22 mm from the stage centre point 𝑂𝑠, 𝒓𝜋 = 𝒓𝑂𝑠

+ 𝑑𝜋�̂�. The center-position vector and the unit 

rotation direction vector of the stage are denoted by 𝒓𝑂𝑠
 and �̂� respectively. The segmentation plane 

𝝅 is chosen to have normal �̂� and can be expressed in the homogenous four-vector representation 
[39] as: 𝝅 = [�̂�𝑇|−𝒓𝜋

𝑇 ⋅ �̂�]𝑇. The decision on whether a point, represented by position vector 𝒓𝑝, is on 

the spherical region is made from the condition 𝒓𝑝
𝑇 ⋅ �̂� > 𝒓𝜋

𝑇 ⋅ �̂�.  

 
Finally, the trained neural network regression model 𝑬𝑁𝑁 is used to correct the error of each 3D point. 
For a 3D feature that appears in an image view at rotation angle 𝜃, the corrected 3D position of the 
feature point is given by 
 

𝒓𝑝
𝑐𝑜𝑟𝑟 = 𝑹(�̂�, 𝜃) ⋅ [𝒓′𝑝 − 𝛾𝑬𝑁𝑁(𝒓′𝑝 + 𝒓𝑂𝑠

)] + 𝒓𝑂𝑠
.      (6) 

 

Equation (6) adjusts the transformed 3D point, 𝒓′𝑝= 𝑹(�̂�, 𝜃)−𝟏 ⋅ (𝒓𝑝 − 𝒓𝑂𝑠
), to the original instance 

where the image was acquired and subtracts the predicted error from the transformed 3D position. A 
correction factor 𝛾 is used to scale the correction and the corrected point is transformed back to the 
world coordinate frame. The transformations are carried out using the rotation matrix 𝑹(�̂�, 𝜃) that is 
evaluated from the Euler-Rodrigues formulation [47] using �̂� and 𝜃. The correction is carried out using 
the direct prediction values for which 𝛾 = 1 and for a least-squares optimisation of the correction 
factor given by 
 

min
𝛾

(‖𝒓𝑝
𝑐𝑜𝑟𝑟 − 𝒓𝑠𝑝ℎ‖ − 𝜌𝑠𝑝ℎ),         (7) 

 
where 𝒓𝑠𝑝ℎ is the centre-position of a fitting sphere with radius 𝜌𝑠𝑝ℎ. The value of the optimised 

correction factor from Equation (7) is found to be 𝛾 = 1.9085. 
 
 



5. Results 
The results of the stereo vision tracking error, photogrammetric application and error correction are 
discussed in this section.  
  
5.1 Analysis of stage displacement measurements 
The linear and angular displacements of the linear stage, evaluated from Equations (2) and (4) 
respectively, are assessed against the linear interferometer measurements. For verification purposes, 
the displacement experiment was repeated five times. Hence, both the accuracy and repeatability of 
the stereo vision system in measuring the linear displacement of the stage are analysed. Images 
containing the optical targets were captured while the laser interferometer readings were recorded at 
ten different positions of the stage. 
 
Figure 9 shows the linear displacement error and the estimation of straightness error, with the 
maximum and minimum values of the repeated measurements shown as error bars. The results are 
evaluated in the stereo-camera position 𝐶1 given in Figure 4a). The linear error in Figure 9a) is less than 
15.1 µm and varies by a maximum value of 5.2 µm. When the regression model is applied to the stereo 
vision measurement to correct errors, systematic error is shown to diminish in Figure 9b). The 
straightness error in 𝑧-direction is a little higher (by approximately 3 µm) than that in 𝑦-direction. 
While the 𝑧 straightness error may be affected by Abbe offset error (< 2 µm), it is feasible for the stage 
to have non-uniform straightness in the two directions.  
 

 

 
Figure 9. a) Measured stereo vision displacement error in linear direction 𝑥-direction. Correction of 
stereo vision measurements using regression model is shown to reduce systematic error significantly 
in (b). Measured stereo vision straightness error in c) 𝑦-direction and d) 𝑧-direction of the linear stage.  

 



Figure 10 shows the mean laser interferometer measurements (in solid red lines) with error bars 
showing the extreme readings of the angular measurements. The corresponding angular 
displacements computed from the stereo vision system are also shown. Variations in the displacement 
measurements of the stereo vision system are indicated by the envelope plots, which indicate the 
minimum and maximum results across the five experiments. The measurement results in Figure 10 
were obtained from the same stereo-camera position, however, the following observations are also 
valid for the other stereo vision positions [48]. A small angular displacement of less than 100 µrad in 
yaw and pitch was observed by the interferometer. The yaw and pitch angles of the stereo vision 
measurement in Figure 10a) and b) were significantly overestimated when compared to the laser 
interferometer readings. The estimated roll values in Figure 10c) remain unverified because the 
angular setup of the laser interferometer could not be used for roll measurements. The spread of the 
stereo vision measurements is, on the whole, up to five times wider than the spread in the laser 
interferometer results. 
 

 
Figure 10. Angular measurement results showing error in (a) yaw, (b) pitch and (c) roll in configuration 
A measured by laser interferometer (LI) and stereo vision (SV). 

 
The pattern of the displacement error persists when the experiment is carried out at various positions 
of the stereo vision system [48], indicating the existence of intrinsic systematic behaviour. The linear 
displacement error (along 𝑥) is more dominant and significant than the straightness and angular errors. 
While the linear displacement error remains less than 20 µm, the repeatability is below 6 µm. The 
magnitude of the systematic error is reduced by over up to 50% in Figure 9b) after error correction. As 
seen in the figure, the systematic error becomes overshowed by the repeatability of the stereo vision 
system; therefore, further error-correctional endeavours become insignificant. 
 
 



5.2 Photogrammetry results 
The parameters that significantly affect the photogrammetric application of the stereo vision system 
are the length of imaging baseline pairs and number of agreeing feature viewpoints. This section 
studies the reconstruction results across a range of these parameters as well as the effects of the error 
correction. The quality of measurement of the 3D points is reported in accordance with the VDI/VDE 
2634 definition of probing form and size errors [49]. 
Figure 11a) shows the total number of points on a sphere using four ranges of baseline distances used 
for image feature matching. The number of points reduces significantly when the minimum number of 
feature views is increased from three. The rate of decrease of the number of points increases with 
higher baseline lengths. For all the configurations analysed, the number of points must be greater than 
2500 to ensure enough coverage of the spherical surface. 
 

 
Figure 11. Variations in, a) number of point and b) standard deviation of radial distance from fitting 
sphere, for various limit on the number of feature appearances in imaging viewpoints using four ranges 
of baseline distance. 

 
Figure 11b) shows the standard deviation of radial distances of points from a fitted sphere. While the 
decrease in the number of points is undesireable, there is a benefit—a decrease in outliers and 
mismatches—in choosing points with a higher number of viewpoint detections. Hence, more accurate 
3D points (resulting in lower form error) are obtained at the cost of the number of the points. The 
configurations with baselines between 140 mm to 280 mm and 180 mm to 360 mm show more 
improvement in standard deviation while maintaining a sufficient number of points (>2800).  



 
Figure 12. Measurement diameter of fitting sphere for different ranges of baseline lengths using no 
error correction, error correction employing predictions (𝛾 = 1), and error correction with least-
squares-optimized factor 𝛾 = 1.9085. 

 
The variations of the fitted spherical diameter obtained from the reconstructed points are shown in 
Figure 12. Relative to the calibrated diameter of 29.952 mm (with radial ± 0.032 mm), an improved 
diameter measurement over the various photogrammetry configurations is observed. The effect of 
using the least-squares optimised correction factor of 𝛾 = 1.9085 is that it increases the effect of the 
predicted correction. 
 



 

 
Figure 13. Distribution of radial deviation of points from a sphere for baselines distances between 
140 mm to 280 mm with features existing in more than five viewpoints. 𝜎𝑟 is the radial standard 
deviation of radial distances from the fitting sphere. 

 
The applied correction does not only correct the diametric size of the measured points but also 
improves how well the points fit to a sphere which, can be seen from the small improvement in radial 
standard deviation of the deviation of points from the fitting sphere (Figures 13 and 14). Figure 13 
shows the distribution of the radial deviation of the points, with and without error correction for 
baselines between 140 mm to 280 mm, set at minimum feature views of five. Similar improvement in 
radial deviation can be seen when the number of minimum views is increased to seven (Figure 14). 
The distribution of radial deviation in Figure 14b) is within ± 60 µm, which, compared to the CMM 
measurement (± 32 µm), is roughly two times larger. However, over 95% of the points are within the 
CMM radial deviation range. 
 
 

 
Figure 14. Distribution of radial deviation of points from a sphere for baselines distances between 
140 mm to 280 mm with features existing in more than seven viewpoints. 𝜎𝑟 is the radial standard 
deviation of radial distances from the fitting sphere. 



 
For some chosen configuration parameters of the photogrammetric measurement given in Table 1, 
the VDI/VDE 2634 probing form and size quality are evaluated. The form error is defined as the range 
of radial distances of the measured points from a fitting sphere and the size error is defined as the 
difference between the measured diameter and a calibrated diameter. The size of error reduction from 
the no-correction case (𝛾 = 0), given in square brackets, are up to 30% for size error and up to 0.6% 
for form error.  
 

Table 1. Summary of photogrammetry 3D measurement results showing reduction in error (shown in 
square brackets) for error correction using various configuration parameters. 

Parameters 

 C1 C2 C3 C4 C5 C6 

Baseline/mm 110-260 140-280 140-280 140-280 180-360 210-400 

Minimum feature 
views 

14 5 5 7 6 5 

Correction factor 𝛾 1 1 1.9085 1 1 1 

Results 

Diameter/mm 29.992 29.999 29.991 30.006 30.023 29.990 

Number of points 3718 16645 16645 4064 2858 3656 

Size error /µm 
[reduction /%] 

40.3 
[17.2] 

47.2 
[15.5] 

39.4 
[29.6] 

54.4 
[13.0] 

70.6 
[9.95] 

38.1 
[16.4] 

Form error/µm 
[reduction /%] 

266.9 
[0.42] 

204.5 
[0.10] 

204.3 
[0.18] 

119.4 
[0.38] 

109.1 
[0.62] 

205.8 
[0.46] 

Form std. dev. /µm 
[reduction /%] 

18.94 
[0.02] 

22.55 
[0.12] 

22.53 
[0.20] 

15.52 
[0.58] 

17.15 
[0.37] 

20.77 
[0.25] 

 
The configuration C1, with small baseline setting and high number of viewpoint agreements, has the 
worst form error due to the higher uncertainty of measured 3D points. A reduced size error is observed 
in the C3 configuration when the correction factor in C2 is increased. Enforcing the minimum number 
of feature viewpoints from five to seven in C4 diminished the form error to approximately 120 µm at 
the cost of decreased number of points. A similar size of form error is obtained using the higher range 
of baselines in C5. The highest set of baselines in C6 results in higher form error compared to the sets 
of baselines in all of the configurations C2 to C5. 
 
6. Conclusions 
 
This paper presents a stereo vision error correction scheme from laser interferometer calibration of 
linear and angular displacements tracked from a linear stage. First, the error of the stereo vision system 
in displacement measurement is shown to manifest systematic trends. Consequently, the volumetric 
error of the stereo vision system is generated, and a regression-type neural network is trained to model 
the error. The volumetric error model is then implemented in error correction of the photogrammetric 
3D measurement of a spherical artefact. The performance of the error correction is reflected in the 
reduced size and form error of the reconstructed artefact’s point cloud. Around 10% to 30% reduction 
in magnitude of the error was observed while over 95% of the measured points remained within the 
calibrated form error bounds.  
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