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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction and Motivation 

Strategic industrial sectors in the UK and other developed 
economies face a diverse and evolving range of challenges. The 
aerospace and automotive sectors are facing rising demand for 
highly customised complex products in smaller and more 
variable production volumes while remaining cost-effective. 
The food and healthcare sectors likewise face customer-driven 
requirements for increasingly personalised products, produced 
in response to dynamic demand, with transparency in the 
origins and creation of the products. All sectors are furthermore 
seeking increased responsiveness, productivity, and 
competitiveness in the global market. 

In response to this, the market as a whole has acknowledged 
the importance of ‘Industry 4.0’-type digital manufacturing 
approaches that incorporate data-driven cyber-physical 
production systems [1]. These technologies are expected to 
“account for more than 50% of planned capital investments”, 
and is projected to be “in the range of €140B annual investment 
across Europe alone” [2]. This new digital manufacturing 
paradigm presents a number of challenges and opportunities for 

the sector, both in terms of commercial production businesses, 
and the supporting research and development. 

The primary underlying developments are those that 
leverage new informatics and data analytics techniques. For 
example, the use of embedded smart devices allows 
organisations to distribute their data processing and capture 
more fine-grained information on which to make and automate 
their decisions [3–5]. This ‘internet of things’ approach can be 
taken beyond the factory to cover more of the product lifecycle 
through the use of digital object footprint tracking [6,7]: in-use 
data can be fed back into the design or production stages of the 
system in order to drive improvements, and decision-making 
can happen ‘at the edge’, improving responsiveness to 
disruption. On the factory shop floor these opportunities 
manifest not only in increased levels of automation, but also 
through increased integration. This integration is both between 
shop floor equipment and between the shop floor and the 
higher-level systems such as planning and scheduling. The data 
these integration channels are required to carry is often highly 
complex, for example advanced metrology data required for 
metrology-assisted approaches [8–11]. This complexity and 
need for near-real-time decision-making is also driving the 
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application of machine learning, cognitive computing, and 
autonomic approaches to production systems [12–15]. 

In order to accomplish this digital transformation and 
enhancement, a number of challenges must be addressed. Not 
only must diverse processes and disruptive technologies within 
the same production system platform be integrated, these 
processes and technologies also have sector-specific 
requirements and regulations for the accuracy, dexterity, and 
reliability of automation which must be accommodated. 

Although such autonomy is finding increasing uptake in 
industry, the transition will occur over time rather than all at 
once. This leads to a requirement to maintain interoperability, 
standardisation, and integration with legacy systems. At all 
stages of this integration there is usually a requirement to 
maintain a human-in-the-loop, which raises a variety of 
additional sociotechnical challenges around human-centric 
communications and collaborative decision-making. 

Traditional production conventions are being challenged in 
turn by these developments, and new systems architectures are 
required to address this. The UK industrial strategy [16–18] 
seeks to position the UK as a world leader in Industry 4.0 
research and uptake. There are two key factors to achieve this 
global leadership role: 

 
Supporting businesses in the development of cyber-

physical industrial technology products. The Made Smarter 
Review identified [19] a number of business-oriented 
recommendations intended to achieve this world leading 
position for the UK. They can be summarised as targeting an 
increase in leadership through strategic vision, adoption of 
“industrial digitalisation technologies” (roughly synonymous 
with cyber-physical systems), and supporting innovation 
through new innovative companies. Any solution must 
therefore be affordable, practical to implement, and aligned 
with industrial strategy. 

Creating new value streams based on data analytics and 
AI applications. In their review of opportunities and 
challenges of Industry 4.0, PricewaterhouseCoopers  identified 
ten key findings [2]. Although some highlight how much of an 
impact Industry 4.0 is likely to have, all of them acknowledge 
the value of data and some go further in highlighting the 
requirement to share data across the enterprise and act on it 
with analytics and other disruptive software applications.  

 
We therefore present the following as contributions: 
 

• An integration approach for cyber-physical systems that: 
○ supports businesses through affordability in terms of 

reduced cost and technical effort, 
○ enables the development of production systems that are 

both data-driven and data-rich, and 
○ connects the entire production enterprise through a fully 

integrated data platform. 
• A summarised state of the art review of production 

integration, and justification for a single technology (Data 
Distribution Service, DDS) to be the basis of this approach, 
rather than a mix of other technologies. 

• A concrete example for how this integration approach can 
link data from goods-in, via shop floor automation, to 
goods-out. 

2. Traditional Approach and State of the Art Integration 

In order to meet the sector drivers discussed in Section 1, 
production systems are becoming more and more flexible. 
Enabling this flexibility requires the simple, widespread, and 
timely communication of data at the shop floor and adjacent 
levels (in terms of the traditional automation hierarchy). 

Production enterprises taking a digital manufacturing 
approach beyond this functional flexibility require high-quality 
knowledge on which to base their decisions. This knowledge 
requires the dissemination of data throughout the entire 
enterprise, avoiding the silos and breaks in data flows that are 
common in traditional enterprise architectures. 

These traditional enterprise architectures typically divide 
the informatics devices into two main levels: the Operational 
Technology (OT) on the shop floor, and the Information 
Technology (IT) elsewhere [20,21]. This dichotomy naturally 
arose as equipment similar to that used in traditional IT began 
to gain traction closer to the shop floor equipment (for example 
the introduction of computer numeric control, programmable 
logic controllers, computer aided design and manufacturing, 
and manufacturing execution systems). However, the 
techniques, staff, and organisational structures used to support 
and maintain them remained separate, leading to different 
integration paradigms and approaches at the OT and IT levels. 

Given the potential improvements to productivity in 
industrial production systems offered by digitalisation, a 
number of integration approaches for integrating shop floor 
equipment have been developed. These cover the entire 
spectrum of developments, including commercial products, 
academic techniques, standards-based frameworks, and 
proprietary vendor-specific approaches [22–31]. 

 Although a full review would be beyond the scope of this 
article, many approaches exist for integrating shop floor 
equipment at the OT level [24,29,30]. One example from the 
discrete manufacturing domain (in this case the aerospace 
sector) is Open Platform Communications - Unified 
Architecture (OPC-UA, [24]), a widely supported and fully-
featured integration standard that is the de facto standard 
approach for Industrie 4.0 activities [32], and therefore also for 
many digital manufacturing activities in other countries. 

OPC-UA is an industrial communication protocol for 
machine-to-machine data transfer. As it was developed by a 
consortium of leading industrial automation suppliers it has a 
large base of drivers and support for shop floor equipment from 
a wide range of vendors. Although it initially had quite a well-
defined scope, it has been extended to support mechanisms 
such as publish-subscribe and RESTful (i.e. HTTP-based and 
deterministic) communication [33,34].  

Even more approaches exist for integration of IT software 
systems [35], and therefore a full review is also beyond the 
scope of this article. Of note in this context however is the Data 
Distribution Service (DDS, [28]) standard for machine to 
machine networking. DDS is a middleware for platform-
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independent data-centric systems. Originally designed for 
distributed software development, it has found applications as 
diverse as flight control and traffic control systems, 
programmable logic controllers, underwater robotics, and 
extra-terrestrial rovers [36]. In line with its original purpose, 
DDS utilises the publish/subscribe pattern to decouple 
producers and consumers of data and thereby make large 
distributed systems significantly less complex to maintain. 
Unlike other publish/subscribe communication standards such 
as Message Queuing Telemetry Transport (MQTT, [37]), DDS 
is brokerless and so has no central point of failure. 

Both OPC-UA and DDS are identified as core connectivity 
standards for the Industrial Internet of Things (IIoT) by the 
Industrial Internet Consortium (IIC) in the USA [21]. Given 
their different scopes and foci, the IIC suggests that different 
scenarios call for different approaches, and that the 
connectivity standards should be seen as complementary rather 
than competing. In current integration practice, the usual 
approach is to take separate integration approaches for the OT 
and IT levels of the enterprise and then provide a bridge 
between the two. OPC-UA is proposed as the solution for OT 
integration due to its wide library of drivers, and DDS is 
proposed as the solution for IT integration due to its flexibility, 
data-centricity, and built-in parallelism [21,38,39]. Any 
externally-facing or mobile interfaces are provided through an 
additional webserver gateway (using HTTP/REST protocols).  

This multi-platform approach is shown in Figure 1, based on 
a diagram from the IIC in their Connectivity Framework 
documentation [21].  

3. Proposed Approach 

In contrast to the approach described above and in the 
literature [40,41], we propose an alternative whereby the IT and 
OT levels both use a single platform for their integration, 
simplifying adoption and reducing the costs of implementation.  

Out of the two currently used technologies, DDS was chosen 
over OPC-UA for the single integration platform. Although it 
might be possible to link OT and IT with OPC-UA, the lack of 
standard application programming interfaces (APIs) in general 
purpose programming languages would make this prohibitively 
complex. Particular difficulty would most likely be 
encountered when communicating between higher-level 

enterprise systems or with non-manufacturing IT systems such 
as data analytics or learning software.  

The primary advantage of this merged approach over the 
separated approach is a reduction in architectural complexity. 
The usual separated approach requires two or three platforms 
to be used across the enterprise architecture: one for OT 
integration, one for IT integration, and potentially another to 
bridge the two. In contrast the proposed merged approach only 
requires one platform. This results in a number of additional 
implementation benefits beyond the functional ones: 

 
• Reduced technical effort to design an effective approach. 
• Reduced integration effort to deploy the approach. 
• Increased standardisation across the enterprise. 
• Simplified maintenance. 
• Reduced technical knowledge requirement for use. 
• Reduced cost to purchase and implement software, and 

reduced cost of training and maintenance. 
 
Reduction in cost is therefore also in terms of reduced 

technical integration effort involved and in terms of increased 
utilisation and reduced friction through increased 
standardisation. The use of a single platform simplifies ongoing 
maintenance and updates, and requires less training to 
implement and maintain the platform. 

This increased affordability is not just a driver for small 
enterprises. Existing integration effort in Original Equipment 
Manufacturers (OEMs) and Tier 1 companies generally falls to 
traditional integration partners. There is an increasing desire to 
bring integration knowledge in-house [42,43]. This may drive 
a move from “device integration by few process engineers” to 
“software integration by many software engineers” [38]. Such 
a move would harmonise with the approach proposed here. 

4. DDS-based Production Enterprise Integration 

DDS has found some application in an academic context to 
demonstrate equipment-level integration and is widely used for 
systems integration outside of the manufacturing industry, for 
example in power, military, and space systems [36] where the 
resilience and scalability of the system are paramount. 

Despite this, it is not widely used in the manufacturing 
industry, either for shop floor or enterprise systems. However, 
with manufacturing systems becoming increasingly complex, 

Figure 1. Conventional multi-platform approach to manufacturing enterprise IIoT integration. 
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with more and more devices being integrated via data busses, 
with large volumes of smart sensors being deployed, and with 
the integration extending beyond the shop floor and into the 
supply chain, there is a requirement for a scalable, simple, 
resilient manufacturing data integration method. With that in 
mind, we now present an overview of our proposed approach 
spanning both the shop floor and higher-level systems. 

Figure 2 shows our approach in the style of the previously 
presented IIC diagram. The manufacturing resources can either 
be connected directly to the main DDS databus in a flat network 
structure, or multiple busses can be cascaded in a hierarchy 
with the workcell controllers acting as gateways between them. 
Direct connection has the advantage of a simple structure and 
maximum data visibility with minimum latency, but risks 
network congestion in high-data-volume scenarios. Cascading 
the databusses requires more integration effort to avoid data 
access issues or higher latency, but the self-similarity of the 
approaches means the additional effort is minimised. 
Alternatively, DDS allows users to set quality of service (QoS) 
parameters that will allow the middleware to prioritise time-
sensitive data over less urgent information. 

By design, DDS removes the network programming and 
connectivity considerations of typical manufacturing system 
integration, instead taking a ‘software-defined network’ 
approach. This means that, provided the manufacturing devices 
are connected to a common network, the routing of data is 
handled automatically via an integrated ‘discovery’ function. 
The addition or removal of devices is likewise handled 
automatically, simplifying the process of scaling up or down in 
response to changes in demand.  

The web and mobile clients could either be connected 
through the existing HTTP/REST protocols, or directly 
connected to the DDS databus [44–46] in the same way as the 
“Software Applications” already present on the diagram. They 
have therefore been left implicit for clarity and to save space.  

The use of a software integration framework rather than a 
device integration protocol enables the simple extension of the 
single platform to include both product lifecycle information 
and information from the wider supply chain. This ‘digital 
product lifecycle’ approach allows for greater and more 
efficient integration between supply chain entities, and 

provides production enterprises with more information on the 
use of their products. This information can be fed back into the 
production processes, informing the design, planning, 
scheduling, or manufacture/assembly functions. 

5. Implementation Example 

Although examples exist of DDS-based integration of 
workcells themselves [42], data integration across the 
production enterprise is less well studied. In this section we 
present an example, shown in Figure 3, of our approach linking 
different enterprise functions with the shop floor operations. 

Within the databus, multiple Topics are defined. These 
define the types of data published to this topic, and each has a 
defined data model. Topics are entirely software, and can be 
added or removed as required. Devices can subscribe to topics, 
and can further filter based on keys, such as the PartID.  

When a part is received at goods-in, it is tagged with a 
unique identifier, for example an RFID tag which can be 
attached directly to the part or to the pallet on which the part is 
transported throughout the process. This creates a unique 
PartID key so that future data samples in the databus can be 
linked back to the correct part. This unique PartID and the flat, 
accessible nature of the databus means information about this 
part is accessible to all other devices on the same bus.  

After registering a part in the system, a quality of supply 
process can be carried out. The nominal part design can be 
retrieved from the Enterprise Resource Planning system (ERP) 
and offsets for key surfaces or features noted in MetrologyData 
samples also keyed to the PartID, for example correct fastener 
GripLength values. 

Once the incoming quality of supply information has 
generated the required fasteners for the part, these can be 
retrieved in a stock room through a mobile device and added to 
the PartID-linked kit. Automatic stock monitoring can be used 
to trigger re-orders for consumables that run low. 

Once the part enters the automation workcell, the most up to 
date production process is retrieved by the control system and 
parameters are automatically adjusted by the offsets that were 
previously identified and published on MetrologyData. 

Figure 2. Proposed DDS-only approach to manufacturing enterprise IIoT integration, showing both “flat” and 
“hierarchical” integration. 
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The build instructions for the operator in the cell are updated 
with the fastener GripLength values and displayed on an HMI. 
This ensures that the assembly process is as efficient as 
possible, removes the potential for errors due to out of date 
instructions, and reduces the amount of rework required by 
accommodating part variation in a flexible process. 

All process performance data is collected from the 
automation controllers and operator, used to inform the part 
status for later processes, and builds up the qualification data 
over time for final buy-off by the customer. 

All the data is published to specific topics and keyed to the 
PartID. DDS is an asynchronous communication standard – 
any published data can be retrieved after it was sent unless it 
was updated with a new value. In this way, devices are 
decoupled from the origins and destinations of data, but also 
from the time in which the data was generated, making DDS an 
extremely robust solution.  

6. Summary and Conclusions 

Manufacturing organisations of all sizes are faced with 
increasing requirements for integration of their systems, 
particularly in terms of data acquisition and sharing. In 
response to this, they are seeking lower-cost approaches to 
integration without relying on traditional integrators supplying 
“black box” solutions they do not understand. We present a 
simple and affordable architectural approach to data integration 
that addresses these requirements through the use of DDS 
databus technology. This approach reduces architectural 
complexity, integration effort, and cost, while simultaneously 
increasing system scalability, resilience, and interoperability. 
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