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ABSTRACT: The di-tert-alkylphosphino motif is common to many best-in-class ligands for late transition metal catalysis. How-

ever, the structural diversity of these privileged substructures is currently limited by the need to manipulate highly toxic, highly 

reactive reagents and intermediates in their synthesis. In response to this longstanding challenge, we report an umpolung strategy 

for the synthesis of structurally diverse di-tert-alkylphosphine building blocks via SN1 alkylation of in situ generated PH3 gas. We 

show that the products – which are isolated as air-stable, odorless phosphonium salts – can be used directly in the preparation of 

key synthetic intermediates and ligand classes. The di-tert-alkylphosphino building blocks that are accessible using our methodolo-

gy therefore enable facile expansion of extant ligand classes by modification of a previously invariant vector; we demonstrate that 

these modifications impact the steric and electronic properties of the ligands, and can be used to tune their performance in catalysis. 

Keywords: phosphorus, phosphines, ligand synthesis, cataly-

sis, cross-coupling. 

 

Introduction 

Advances in homogeneous transition metal catalysis have 

been underpinned by the rational design of sophisticated, ap-

plication-specific phosphine ligands. Sterically demanding, 

electron-rich phosphines bearing tert-alkyl substituents have 

emerged as especially privileged in polymerization,1 strong-

bond activation2 and cross-coupling3 chemistries. While tri-

tert-alkylphosphines have huge historical4 and contemporary5 

significance, structural modification of this ligand class is 

extremely challenging.6 In contrast, phosphines featuring two 

tert-alkyl substituents share many of the desirable attributes of 

their homoleptic counterparts, but can be conveniently tuned 

to meet reaction-specific demands through variation of the 

third, unique substituent.7 As a consequence of this versatility, 

the di-tert-alkylphosphino (DTAP) motif forms the basis of 

many current best-in-class ligands (Scheme 1A).7,8,9  

Despite the importance of DTAP motifs, the diversity in 

their tert-alkyl substituents is extremely limited. Indeed, all 

commercial phosphines featuring this substructure are based 

on either tert-butyl or 1-adamantyl (Ad) substituents,10 with 

just a handful of other examples documented in the patent and 

primary literature.11 Further exploration of this privileged re-

gion of ligand space is currently hampered by the practical 

challenges associated with the synthesis of new DTAP build-

ing blocks. As a case in point, the conventional “P+/C˗” ap-

proach to di-tert-alkylphosphines (Scheme 1B)12 involves 

manipulation of highly hazardous, air-sensitive reagents and 

intermediates over multiple steps, is redox-inefficient and is 

ultimately limited in scope by the diversity of the tert-

alkylmetal reagents that are available.  

Scheme 1. Occurrence, Conventional Synthesis and Pro-

posed Synthesis of tert-Alkylphosphines 

 

We anticipated that an umpolung strategy (“P˗/C+”, Scheme 

1C) would provide unrivalled access to structurally diverse 

DTAP building blocks, and would eliminate the need for 

wasteful redox adjustments at phosphorus. SN1 alkylation 

would enable facile installation of sterically demanding sub-

stituents and would open up a much wider pool of alkylating 

agents than is available to the conventional P+/C- approach. In 

situ generation of both the P-nucleophile and the C-

electrophile would ultimately minimize the need to handle 

reactive reagents and intermediates. 
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Herein we report realization of this umpolung approach to 

secondary phosphine synthesis. By exploiting an SN1 mani-

fold, we demonstrate that di-tert-alkylphosphines can be pre-

pared selectively from readily available, bench stable precur-

sors. The products are obtained as air-stable, odorless phos-

phonium salts which can be isolated conveniently by filtration. 

The DTAP building blocks that are accessible in this way ena-

ble facile expansion of extant ligand classes by modification 

of a previously invariant vector; we show that these modifica-

tions impact the steric and electronic properties of the new 

ligands, and can be used to tune their performance in catalysis. 

 

Results and Discussion 

Our proposed SN1 strategy (Scheme 1C) requires a synthon 

of the type “HP2-”. While phosphine gas (PH3) is an atom-

economic and readily available synthetic equivalent to this 

synthon, we were cognizant of the risks and practical chal-

lenges associated with handling high-pressure, cylinderized 

PH3.
13 We therefore sought to generate the gas on demand and 

in precise stoichiometries by protonolysis of a metal phos-

phide. Specifically, we identified zinc phosphide (Zn3P2) as a 

convenient source of PH3 because, unlike other metal phos-

phides, it is both bench stable and cheap (£48 /kg).14 While 

Zn3P2 can be stored and handled under an ambient atmosphere, 

it is readily protonolyzed to PH3 under acidic conditions. We 

anticipated that this reactivity could be exploited in the two 

chamber ‘CO-ware’ reactor system developed by Skrydstrup,15 

with PH3 generated in the first chamber from Zn3P2 and con-

sumed in the second chamber by SN1 alkylation (Scheme 2A). 

To explore the viability of this strategy, we first confirmed 

that generation of PH3 from Zn3P2 is indeed facile. As deter-

mined by volumetric gas titration (Scheme 2B), complete hy-

drolysis of Zn3P2 occurs within 10 minutes of adding excess 

aqueous HCl. Under these conditions, gas evolution exhibits 

pseudo first order kinetics with an effective half-life of 110 s 

(Scheme 2B, inset), providing sufficient time for addition of 

the acid before full gas pressure is achieved.  

Subsequently, we sought to identify conditions for SN1 al-

kylation of the ex situ generated PH3 gas (Scheme 2C). Prior 

attempts to alkylate PH3 or its synthetic equivalents16 have 

exploited SN217 or hydrophosphination18 reactivity manifolds, 

neither of which allow installation of tert-alkyl substituents.19 

A single example of SN1-type alkylation was recently reported 

by Carrow, although a secondary phosphine nucleophile – 

rather than PH3 – was employed in order to generate the 

homoleptic tertiary phosphine, PAd3.
20 As illustrated in entries 

1-4, we found that combination of tert-amyl alcohol or tert-

amyl methyl ether with either HOTf or TMSOTf failed to af-

ford appreciable amounts of alkylphosphine products. While 

the combination of tert-amyl acetate and HOTf proved simi-

larly unsuccessful (entry 5), use of tert-amyl acetate and 

TMSOTf resulted in high-yielding alkylation of PH3 (entry 

6).21 Notably, >95% of the phosphonium salt formed in this 

way was recovered conveniently via precipitation and filtra-

tion under air. The isolated material proved to be a free-

flowing, non-hygroscopic and odorless solid that is soluble in 

organic media,22 and that can be stored on the bench for at 

least a year without noticeable degradation. Although the yield 

of 1a suffered slightly when a lower stoichiometry of tert-

amyl acetate was employed (entry 7), these more economic 

conditions proved generally applicable in subsequent studies 

(vide infra).  

The conditions outlined in entries 6 and 7 of Scheme 2C 

confer excellent selectivity for dialkylation, with neither 

mono- nor trialkylation products observed by 31P NMR spec-

troscopy. This remarkable selectivity can be explained by con-

sidering the different basicities of primary, secondary and 

tertiary phosphines.23 The first-formed primary phosphine is, 

presumably, insufficiently basic to be fully protonated by the 

HOTf co-product. A second alkylation may therefore occur, 

affording a more-basic secondary phosphine which is fully 

protonated under the reaction conditions. This innate alkyla-

tion-dependent change in protonation state constitutes an ef-

fective self-regulation mechanism that prevents over-

alkylation, and ensures that the product is obtained as a stable, 

crystalline phosphonium salt rather than an air-sensitive phos-

phine.24  

The optimized reaction conditions were applied successfully 

to a range of diverse tert-alkyl esters (Scheme 3),25 thereby 

providing convenient access to structurally unique di-tert-alkyl 

phosphonium salts. All products were isolated as air-stable, 

odorless solids on preparatively useful scales of up to 2.0 g.  

 

Scheme 2. Validation and Optimization of SN1 Alkylation of PH3 Gas Generated Within a Two-Chamber Reactor Systema,b 

 

a Gas titration data are an average of 2 independent measurements and exhibit pseudo first order kinetics (Scheme 2B, inset). b SN1 alkyla-

tion conditions: aq. HCl (5.0 M, 10 equiv.) added to Zn3P2 (0.5 equiv.) at RT in chamber 1 to generate 1 equiv. PH3; RʹOTf (1 equiv.) add-

ed to tert-amyl-OR (6 equiv.) at RT in chamber 2. Yields are of isolated, pure material; yields in parentheses determined by 31P NMR spec-

troscopic analysis vs internal standard. c Using 3 equiv. tert-amyl acetate.  



 

Scheme 3. Synthesis of Di-tert-alkylphosphonium Salts via 

SN1 Alkylation of PH3 Gasa 

 

a Conditions: aq. HCl (5.0 M, 10 equiv.) added to Zn3P2 (0.5 

equiv.) at RT in chamber 1 to generate 1 equiv. PH3; TMSOTf 

(1 equiv.) added to ester (3 equiv.; acetate ester unless stated oth-

erwise) at RT in chamber 2. Reactions were performed at a 1 

mmol scale, unless indicated otherwise; yields are of isolated, 

pure material. b Using 6 equiv. tert-alkyl acetate. c Chamber 2 

heated at 40 °C. d CH2Cl2 (2 mL) added to chamber 2. Thermal 

ellipsoids shown at 50% probability; triflate counterion and hy-

drogen atoms bonded to carbon omitted for clarity.  

 

Using this methodology, two homologous series featuring 

increasing methylation at all Cβ-positions (1a-1c: CMe2Et, 

CMeEt2 and CEt3), or at a single Cβ-position (1a, 1d and 1e: 

CMe2Et, CMe2
iPr, CMe2

tBu), of each tert-alkyl substituent 

were prepared. We envisage that such facile access to series of 

these types will enable systematic variation of ligand proper-

ties during catalyst development campaigns. Our P-/C+ ap-

proach also allows installation of substituents featuring steric 

bulk distal to the phosphorus center (1f, 1g), and is compatible 

with alkylating agents derived from both cyclic (1h-1j) and 

polycyclic (1k-1m) alkanols. Notably, aryl bromides (1g) are 

tolerated by our methodology, which illustrates its comple-

mentarity to conventional organometallic strategies. The abil-

ity to incorporate this functionality provides a useful synthetic 

handle that could ultimately be exploited for further elabora-

tion of the ligands.  

As demonstrated for phosphonium salt 1k, esters other than 

acetates can be used with no detriment to reaction efficiency. 

Combined with the ready availability of tertiary alcohols and 

their esters, this synthetic flexibility increases the pool of via-

ble alkylating agents that can be employed in our methodolo-

gy. For example, salt 1f is prepared from papaya isobutyrate, a 

commercial fragrance ingredient, whereas salt 1m is derived 

from cedrol, which is produced on a kiloton scale each year as 

the main component of cedar wood oil.26 Notably, salt 1m is 

the first example of a C-stereogenic di-tert-alkylphospine, and 

is produced here as a single stereoisomer from a cheap, chiral-

pool alcohol.  

Within the context of our proposed SN1 pathway, it is essen-

tial that a carbocationic electrophile is accessible, and that it is 

sufficiently long-lived for bimolecular nucleophilic trapping to 

compete with unimolecular elimination. Thus – in addition to 

tert-alkyl esters – benzhydryl acetate reacts cleanly to give 

phosphonium salt 1n,27 whereas primary, secondary and con-

formationally-constrained tertiary alkyl esters are unreactive 

(Scheme 3, bottom).28 In contrast, while tert-butyl acetate ion-

izes efficiently, a well-documented and industrially important 

E1/SN1 telomerization process29 competes with trapping of the 

resulting carbocation by PH3, affording an inseparable mixture 

of the desired di-tert-butylphosphonium salt 1o and homologs 

1p and 1q (Scheme 4A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Scheme 4. Evidence for an SN1 Mechanisma 

 

a Conditions: HCl in H2O or DCl in D2O (5.0 M, 10 equiv.) added 

to Zn3P2 (0.5 equiv.) at RT in chamber 1 to generate 1 equiv. PH3 

or PD3; TMSOTf (1 equiv.) added to ester (3 equiv.) at RT in 

chamber 2. Product distributions determined by NMR spectro-

scopic and mass spectrometric analysis of crude mixtures. 

 

Deuterium labelling studies (Scheme 4B) provided further 

evidence that the reaction progresses via a carbocationic in-

termediate. Reaction of the isotopologous acetates d0-2 and 

d6-2 with either PH3 or PD3 resulted in isotopic exchange at 

the Cβ-positions, indicating that reversible elimination of the 

carbocation to an alkene precedes nucleophilic trapping. 

Moreover, the comparable extent of environment-weighted 

exchange (ca 5%)30 at the β-methyl and β-methylene substitu-

ents suggests that E1 elimination is equally statistically likely 

to give the exomethylene or the internal alkene. In contrast, 

the absence of deuterium incorporation at the γ-methylene 

position implies that migration of the internal alkene into con-

jugation with the phenyl ring is negligible. 

Having identified general conditions for the preparation of 

structurally diverse di-tert-alkyl phosphonium salts, we sought 

to demonstrate their utility in ligand synthesis (Scheme 5). As 

illustrated for 1c, treatment of the phosphonium salt with base 

enables in situ release of the corresponding air-sensitive sec-

ondary phosphine. This can then be exploited in conventional 

P-functionalization chemistry, including (a) protection as the 

phosphine-borane complex, (b) polarity inversion via P-

chlorination, (c) selective oxidation to the secondary phos-

phine oxide, and (d) SN2 alkylation to give an analog of Bel-

ler’s cataXCium ABn ligand.8,31 Our phosphonium salts can 

therefore be employed as convenient precursors to versatile 

synthetic intermediates (via pathways a-c) or can be converted 

directly to important ligand classes (via pathways c or d).32 

Notably, the synthesis of tertiary phosphines via pathway d 

constitutes a low cost and redox-efficient route to privileged 

DTAP-based ligands that entirely avoids the use of PCl3.  

 

Scheme 5. Di-tert-alkylphosphonium Salts are Convenient 

Synthetic Surrogates for Secondary Phosphines in Com-

mon P-Functionalization Reactionsa  

 

a Pathway a: (1) DBU (1.2 equiv.), THF, RT, 10 min; (2) 

BH3•SMe2 (2 equiv.), RT, 16 h. Pathway b: DBU (1 equiv.), 

CCl4, 50 °C, 27 h. Pathway c: (1) K2CO3 (3 equiv.), MeOH, RT, 

0.5 h; (2) H2O2 (30% aqueous; 2.5 equiv.), RT, 2 h. Pathway d: 

(1) BnBr (1 equiv.), K2CO3 (3 equiv.), toluene, 120 °C, 16 h; (2) 

BH3• SMe2 (2 equiv.), RT, 2 h. 

 

Installation of an aryl group at phosphorus can be achieved 

via Pd-catalyzed P-C cross-coupling of the phosphonium salts 

(Scheme 6). In this way, a library of novel (2-biphenyl)di-tert-

alkylphosphines 3 was prepared without the use of either PCl3 

or reactive tert-alkyllithium / Grignard reagents at any stage. 

Although cross-coupling with the sterically demanding o-

biphenyl(pseudo)halide proved successful for the majority of 

phosphonium salts, those featuring especially large tert-alkyl 

substituents (1e and 1j) could not be engaged effectively. The 

resulting phosphines are analogs of JohnPhos 3o33 – a member 

of the privileged Buchwald ligand class7a-c – and constitute a 

standardized, catalysis-relevant platform with which to inves-

tigate the stereoelectronic properties of the tert-alkyl groups. 

 

 

 

 

 

 

 

 

 

 



 

Scheme 6. Synthesis and Characterization of JohnPhos Analogs, their Selenides and their Gold(I) Chloride Complexesa  

 

a 31P NMR spectroscopic data refer to dilute solutions in CDCl3; %Vbur determined using SambVca2.40 Ar = o-biphenylyl; n.d. = not de-

termined because single crystals of sufficient quality for X-ray diffraction could not be obtained; 3f: thermal ellipsoids at 30%; 5h: thermal 

ellipsoids at 50%, and a molecule of water omitted for clarity. 

 

With ligand series 3 in hand, we sought to demonstrate that 

the different tert-alkyl substituents have a measurable impact 

on the electronic and steric properties of the phosphorus center 

(Scheme 6), and that these differences can have significant 

consequences for catalysis (Scheme 7).34  

The 31P NMR chemical shifts for the free ligands 3 exhibit 

the expected steric shielding effect from increased substitution 

at the Cβ-position, and correlate well against the group contri-

bution calculated for the individual tert-alkyl substituents.35 

Notably, however, this correlation does not hold for ligands in 

which the tert-alkyl groups feature two substituents at the Cβ-

position (3b, 3d, 3h and 3i).36 Following selenation, the one-

bond JP-Se coupling constant was measured as an indicator of 

the net electron-donating ability of each ligand (Scheme 6B).37 

While some caution must be exercised when interpreting the 

absolute values of the JP-Se constants,38 the difference between 

the most- and least-electron donating JohnPhos analogs (4l 

and 4o; ΔJP-Se = 37 Hz) is significant, and is the same as the 

difference between triphenylphosphine and Buchwald’s 

RuPhos.39 To obtain a measure of sterics, gold(I) chloride 

complexes 5 were synthesized, and the buried volumes were 

calculated from crystal structure data using the SambVca2 

program (Scheme 6C).40 Again, a significant difference is 

observed across the ligand series, with a span between the 

largest and the smallest ligands (5c and 5h; Δ%Vbur(2Å) = 

9.3%) that is comparable to the difference between tri-

phenylphosphine and tri-tert-butylphosphine (Δ%Vbur(2Å) = 

9.1%).41 The tert-alkyl groups that can be installed using our 

methodology therefore confer distinct physical and spectro-

scopic properties on the resulting phosphines, and significantly 

extend the range of accessible ligand space beyond that occu-

pied by the commercially-available 1-adamantyl and tert-butyl 

substituents (Scheme 6B and 6C). 

Finally, we sought to demonstrate that modification of a lig-

and through its DTAP substructure can have a direct and 

meaningful impact on catalysis. As one possible indicator of 

catalyst performance, we investigated the chemoselectivity of 

oxidative addition under Suzuki-Miyaura conditions. To this 

end, the effect of JohnPhos analogs 3 on product distribution 

was measured by intermolecular competition between regioi-

someric aryl bromides (Scheme 7). Notably, data concerning 

intermolecular competitions between unbiased systems are 

absent from the literature, although the chemoselectivity of 

oxidative addition has been studied and exploited in the con-

text of intramolecular competitions.42 As illustrated in Scheme 

7, simply changing the tert-alkyl substituents on a common 



 

JohnPhos core resulted in chemoselectivities ranging from 

2.0:1 to 5.5:1, which corresponds to 0.6 kcal mol-1 difference 

in relative activation energies.  

That the observed selectivity trend does not correlate to 

simple ligand descriptors, such as JP-Se or %Vbur, reinforces the 

fact that prediction of catalyst activity is non-trivial,39 and 

highlights the value of being able to access new ligand struc-

tures for laboratory assessment. More importantly, we have 

demonstrated that modification of a pre-existing ligand archi-

tecture by variation of its DTAP substructure can have signifi-

cant consequences for its catalytic properties. By using our 

methodology to vary ligands through this previously inacces-

sible vector, it is thus now possible to access new regions of 

ligand space and, ultimately, reaction space. 

 

Scheme 7. Application of JohnPhos Analogs to Suzuki-

Miyaura Cross-Coupling: Chemoselectivity of Oxidative 

Addition Depends on Di-tert-alkylphosphino Substructurea 

 

a Product distribution determined by 19F NMR spectroscopic 

analysis vs authentic samples. Ar = o-biphenylyl. 

 

Conclusions  

We have developed an umpolung (P-/C+) approach to P-C 

bond formation that enables the scalable, redox-efficient syn-

thesis of di-tert-alkylphosphines from readily available tert-

alkyl esters and bench stable Zn3P2. In this way, the conven-

tional dependence on PCl3 is avoided and an unprecedented 

variety of tert-alkyl substituents can be installed at phospho-

rus. The resulting DTAP building blocks can be used in the 

preparation of diverse new analogs of established ligand clas-

ses, thereby providing facile access to uncharted regions of 

ligand space. We show that even apparently minor variations 

in the DTAP substructure can have a dramatic impact on the 

steric and electronic properties of a ligand, and ultimately on 

its performance in catalysis. This study therefore demonstrates 

that the DTAP motif need no longer be considered an immuta-

ble component of a ligand, but should now be treated as an-

other vector for optimization in ligand design. We are actively 

seeking to exploit the opportunities that this methodology pre-

sents.  
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