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Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed
Reactions of Arenes with Diazo Compounds**
Daniel Best, David J. Burns, and Hon Wai Lam*

Abstract: A commercially available rhodium(II) complex
catalyzes the direct arylation of 5-diazobarbituric acids with
arenes, allowing straightforward access to 5-aryl barbituric
acids. Free N¢H groups are tolerated on the barbituric acid,
with no complications arising from N¢H insertion processes.
This method was applied to the concise synthesis of a potent
matrix metalloproteinase (MMP) inhibitor.

Barbiturates have a long history in medicinal chemistry,
having appeared in thousands of biologically active com-
pounds since their emergence as sedatives and hypnotics at
the turn of the 20th century.[1] More than 100 years after its
introduction, phenobarbital (Figure 1) remains the most

widely prescribed antiepileptic drug worldwide.[2] 5-Aryl
barbituric acids have received renewed interest owing to
their ability to inhibit matrix metalloproteinases (MMPs) and
the tumor necrosis factor alpha (TNF-a) converting enzyme
(TACE),[3] leading to their application in cancer treatment[4]

and in vivo imaging[5] (Figure 1).
Our interest in 5-aryl barbituric acids stems from their

suitability as substrates for C¢H functionalization; under
ruthenium catalysis, they undergo oxidative annulation with
alkynes to form spiroindenes.[6] The conventional approach to
5-aryl barbituric acids is the condensation of ureas with 2-aryl
malonic acids or esters[3a, 4a,e, 5a, 7] (Scheme 1a).[8] In turn, 2-aryl

malonic acids or esters can be prepared by palladium-[5b, 9] or
copper-catalyzed[10] cross-couplings between malonates and
haloarenes, or by alkoxycarbonylation of aryl acetate esters
(which have limited commercial availability).[4e, 5a,7b]

Although we found that these condensation routes to
5-aryl barbituric acids were sometimes successful, they were
incompatible with electron-deficient aryl groups owing to
decarboxylation and other problematic side reactions. Fur-
thermore, this early-stage diversification strategy is not ideal
for library synthesis. Our attempts to develop a late-stage
diversification approach by adapting existing malonate–
haloarene cross-couplings[9, 10] to barbituric acids were unsuc-
cessful because of poor reactivity. These limitations represent
significant synthetic hurdles to compounds of considerable
chemical and biological importance.

We envisioned an ideal strategy whereby a barbituric acid
moiety would be coupled directly with arenes, without
recourse to functional groups such as halides on the arene
partner. As well as providing significantly improved access to
useful substrates for C¢H functionalization,[6] a more direct
approach to 5-aryl barbituric acids would be a highly enabling
tool for medicinal chemists.[11] Herein, we report the efficient
RhII-catalyzed direct arylation of 5-diazobarbituric acids with
arenes at low catalyst loadings (Scheme 1b) and its applica-
tion to the concise synthesis of an MMP inhibitor.

Prior to our investigations, the direct arylation of
a-diazocarbonyl compounds has shown promise.[12] Whereas
intramolecular C¢H insertion reactions of a-diazocarbonyl
compounds with arenes are well-known,[13] intermolecular
reactions are more challenging. The reaction of a-diazoesters
or a-diazoketones with arenes under RhII catalysis results in
cycloheptatrienes,[14] which can undergo an acid-catalyzed
rearrangement to give products of net a-arylation.[15] More
recent reports describe the arylation of a-diazoesters or

Figure 1. Biologically active 5-aryl barbituric acids.

Scheme 1. Synthesis of 5-aryl barbituric acids.
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closely related compounds with (hetero)arenes under
metal[16–20] or acid[21] catalysis. However, the corresponding
reactions of a-diazo-1,3-dicarbonyl compounds are less
common,[16d,e, 22,23] and to the best of our knowledge, no
reports of transition-metal-catalyzed couplings between 5-
diazobarbituric acids and arenes exist.[24] Indeed, despite the
biological significance of barbiturates, catalytic transforma-
tions of 5-diazobarbituric acids appear to be restricted to the
cyclopropanation of styrenes.[25] Interestingly, these reactions
were conducted in fluorobenzene, but no products resulting
from arene C¢H insertion were observed.[25] Given these
observations, the success of our proposed method was far
from certain.

Fortunately, we discovered that just 0.1 mol % of com-
mercially available [Rh2(esp)2]

[26] smoothly catalyzed the
coupling of 5-diazo-1,3-dimethylbarbituric acid (1a) with
benzene at room temperature to give 2a in 77% yield
(Scheme 2).[27] Further studies showed that a range of
monosubstituted arenes were tolerated (2b–2h). These
reactions were performed with no precautions to exclude air
or water, and the inexpensive arenes were used as the solvent.
The products were formed with moderate to excellent
regioselectivities and, with the exception of 2b and 2ka,
were isolated as mixtures of two regioisomers[28] after
chromatography. In most cases, recrystallization allowed for
isolation of the pure para isomer (see the Supporting
Information for details). Electron-rich arenes reacted with
1a to provide 2b–2d in good yields. With toluene, no products
from benzylic C¢H insertion were observed.[27] Use of a small
excess of anisole (1.2 equiv) resulted in a reduced (but
synthetically useful) 64 % yield of 2c owing to a lower
conversion, attributable to inefficient mixing of the reagents.
Fluorobenzene reacted smoothly to give 2 f in 78% yield,
further demonstrating that relatively electron-neutral arenes
(Hammett constant sp of F: 0.06)[29] are effective. Chloro- and
bromobenzene were also surprisingly effective (2g and 2 h),
despite being deactivated substrates (sp of Cl and Br: 0.23).[29]

Even trifluoromethoxybenzene (sp of OCF3 : 0.35)[29] gave 2e
in good yield, albeit in a 4:1 regioisomeric ratio. Arenes with
meta-directing substituents, such as CF3, CN, CO2Me, or NO2

groups, were unsuitable, but disubstituted arenes, such as
meta-xylene and 1,3-dimethoxybenzene, reacted with 1 a to
give 2 i and 2j in high regioselectivities. The reactions of
ortho-xylene and 1,2-dimethoxybenzene were high-yielding,
but less regioselective (2 ka and 2 l). With ortho-xylene, the
minor regioisomer 2kb (see the Supporting Information for
the structure) was also isolated in 14% yield. 1-Methylindole
reacted smoothly to give 5-(3-indolyl)barbituric acid 3 in 73%
yield [Eq. (1)].[16]

Our focus now turned to the variation of the 5-diazo-
barbituric acid (Table 1). The first question to address was

whether N alkylation is essential, given that most biologically
active barbiturates are not 1,3-dialkylated, and free N¢H
groups might be expected to undergo insertion reactions with
a rhodium carbenoid. Remarkably, this concern was unwar-
ranted; 5-diazo-1-methylbarbituric acid 1b reacted with
anisole to provide 4a in 68 % yield (entry 1), whereas
5-diazobarbituric acid 1c, which bears two free N¢H groups,
gave 4b in 93 % yield (entry 2). Coupling of 1c with diphenyl
ether using 0.25 mol % of [Rh2(esp)2] at 120 88C gave 4c in
excellent yield with good isomeric purity. Compound 4c is an
important precursor to biologically active barbitur-
ates.[4b,e,f, 5b,c] A thiocarbonyl group was also tolerated
(entry 4), but our conditions did not provide good results
when applied to other a-diazo-1,3-dicarbonyl compounds.[30]

To further demonstrate the advantages of our method, we
synthesized the potent and selective MMP inhibitor 8 (IC50 :

Scheme 2. Rhodium(II)-catalyzed arylation of 5-diazobarbituric acid
1a. Reactions were conducted with 2.00 mmol of 1a in 2.0 mL of the
arene. r.r. = regioisomeric ratio as determined by 1H NMR analysis of
the unpurified reaction mixture. Yields are of isolated mixtures of
inseparable regioisomers in the same ratio as in the unpurified
mixtures. [a] Isolated as a single regioisomer. [b] Conducted with
3.00 mmol of 1a and 3.60 mmol of anisole. [c] Isolated as a 15:1
mixture of regioisomers. [d] Conducted with 1.00 mmol of 1a in
1.0 mL of the arene. [e] Conducted at 30 88C for 7 h. [f ] Isolated as
a 10:1 mixture of regioisomers. [g] The minor isomer 2kb was isolated
in 14% yield.
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1 nm vs. MMP-9 with 26-fold selectivity over MMP-2;[5a]

Scheme 3). The RhII-catalyzed reaction of diazobarbituric
acid 1c with 4-bromophenyl phenyl ether occurred at the

most sterically accessible site, with no evidence of reaction at
the 4-bromophenyl ring, to give 5-aryl barbituric acid 5 in
87% yield and a regioisomeric ratio of 9:1. This compound
was previously accessed in six steps from commercial
materials in 37% overall yield,[5a] which highlights the brevity
of our approach. Bromination at the C5 position with
pyridinium tribromide provided the readily separable isomers
6 (51%) and 7 (6%).[31] Displacement of the bromide of 6
with N-isopropylpiperazine then gave MMP inhibitor 8 in
70% yield.[5a]

Finally, [Rh2(esp)2] also efficiently catalyzes C(sp3)¢H
insertion reactions in the absence of arenes;[32] alkylation of
1a with cyclohexane proceeded smoothly to form 9 in 83%
yield [Eq. (2)].

In conclusion, the coupling of arenes with 5-diazobarbi-
turic acids proceeds efficiently under RhII catalysis to provide
medicinally important compounds in a direct manner that is
more suited to drug discovery than existing technologies. The
method is compatible with free N¢H groups on the barbituric
acids, with no complications arising from N¢H insertion
processes. The operational simplicity, mild conditions, and
low loading of a commercially available catalyst further
increase the appeal of this method.

Keywords: arylation · barbituric acid · carbenes ·
diazo compounds · rhodium
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Scheme 3. Synthesis of MMP-9 inhibitor 8.
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