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Abstract 

Trouble free use of a product and its associated services for a specified minimum period of time is a major factor to win the 
customer’s trust in the product. Rapid and easy serviceability to maintain its functionalities plays a key role in achieving this goal. 
However, the sustainability of such a model cannot be promised unless the current health status of the product is monitored and 
condition-based maintenance is exercised. Internet of Things (IoT), an important connectivity paradigm of recent times, which 
connects physical objects to the internet for real-time information exchange and execution of physical actions via wired/wireless 
protocols. While the literature is full of various feasibility and viability studies focusing on architecture, design, and model 
development aspects, there is limited work addressing an IoT-based health monitoring of systems having high collateral damage. 
This motivated the research to develop a multi-agent framework for monitoring the performance and predicting impending failure 
to prevent unscheduled maintenance and downtime over internet, referred to as for cyber-enabled product lifecycle management 
(C-PLM). The framework incorporates a number of autonomous agents, such as hard agent, soft agent, and wave agent, to establish 
network connectivity to collect and exchange real-time health information for prognostics and health management (PHM). The 
proposed framework will help manufacturers not only to resolve the warranty failure issues more efficiently and economically but 
also improve their corporate image.  The framework further leads to efficient handling of warranty failure issues and reduces the 
chances of future failure, i.e., offering durable products. From the sustainability point of view, this framework also addresses the 
reusability of the parts that still have a significant value using the prognostics and health data. Finally, multi-agent implementation 
of the proposed approach using a power substations for IoT-based C-PLM is included to show is efficacy. 
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1. Introduction 

In today’s age of connectivity the way human beings interact with technology has been radically redefined by the 
advent of barcode scanners, radio frequency identification (RFID) chips, product usage sensors, and other mobile 
communication equipment.  The proper use of these technologies enable a system or a group of systems to be 
monitored and controlled remotely with a network of sensors to ensure safety and better product usage. This new 
technological framework is popularly known as Internet of Things (IoT), which enables technologies to interconnect 
physical systems over internet for  collaborative activity tracking,  information exchange, and execution of physical 
actions [1, 2, 3]. IoT has been drawing a considerable interest among the researchers in the area of sensor embedding 
[4, 5], RFID applications [6, 7, 8], and network data security and management [9, 10, 11]. However, most of the 
applications are limited to consumer electronics and household machines, mainly cellphones, smartwatches, wearable 
devices, washing machine, lamps, etc. [12, 13, 14, 15, 16].  

Two types of maintenance strategies are widely used: time-based maintenance (TBM) [17, 18, 19] and condition-
based maintenance (CBM) [20, 21, 22]. TBM model relies on the failure time distribution of a population of 
components whereas in CBM the amount of degradation of a component is estimated via physics-based or data-driven 
statistical learning or time series models using real-time sensor data. Monitoring and control of systems are vital for 
CBM, especially in areas of high collateral damage, such as transportation network, water and gas supply network, 
and power transmission lines, etc. In these systems the size, geographic location, and the involved weather conditions 
make the monitoring and maintenance a difficult task resulting in significant investment in terms of labor and 
resources. Minor disruptions and failures of even small sections of these systems produce massive loss of finances and 
in many cases human life.  

Products once sold or installed are mostly under the consumers’ control, with periodic maintenance services 
provided. The periodic maintenance follows a reactive model rather than a preventive model, where maintenance is 
mostly carried out after the product fails. In most cases the reactive maintenance employed is the complete replacement 
of the product without ascertaining the viable life of the failed product’s base components. This reactive maintenance 
method does not consider the fact that the replacement product has the same inherent disadvantages of its predecessor. 
A sustainable manufacturing environment and economics can only be achieved by ensuring customer trust in the 
product and services employed and by re-utilizing viable components from older generations. However, the longevity 
of such a model cannot be promised unless both, the customer and the manufacturer, are assured with the reliability 
of the reusable components in the system. Some researchers have analyzed the warranty data to determine the 
reliability of the components and the system [23, 24]. Predictive warranty service is provided by utilizing the reliability 
information to initiate maintenance action. 

 Although a networked framework to control and monitor the system with high collateral damage for CBM would 
be of a tremendous advantage to users, there are only few systems that are designed and built in this manner [25, 26, 
27]. The major reason is the enterprise’s short-sightedness in choosing immediate profit over long term sustainability. 
To overcome the above mentioned limitations, in this paper, we propose a sensors embedded monitoring and control 
approach, using IoT framework, referred to as a cyber-enabled product lifecycle management (C-PLM). First a generic 
approach for the C-PLM is presented and, then, the implementation using a multi-agent framework is proposed. 

The proposed generic C-PLM framework uses a two stage approach for enabling IoT based monitoring. In Stage 1, 
the traditional products to be serviced with no prior embedded sensor are assessed for remaining useful life (RUL) 
when brought in for service. The components of good and moderate health are shipped to remanufacturing center for 
sensor embedding to enable IoT functionality. The unendurable components with end-of-life (EOL) are collected for 
recycling or a land fill at disposal enter. Stage 2 is completely under prognostic heath monitoring, which is governed 
by IoT technology. From the C-PLM implementation point of view, a multi-agent framework comprising of hard, soft, 
and wave agents for a single or multiple systems is also presented. The proposed framework bridges the research gap 
for developing CBM scheme for systems with high collateral damage value by developing an IoT-based C-PLM 
framework.  

The paper is organized as follows. Section 2 presents the detail architecture of the proposed framework. The tasks 
of the different agents and the multi-agent framework is presented in Section 3. Section 4 presents two application 
area of the proposed C-PLM framework. Finally, Section 5 summaries and concludes this paper along with future 
research directions.  
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2. The Generic Framework for C-PLM 

In general, product lifecycle consists of three main phases: beginning-of-life (BOL), including design and 
manufacturing; middle-of-life 
(MOL), including the product uses, 
service and maintenance; and end-
of-life (EOL) where products are 
recollected, disassembled, 
remanufactured, recycled, reused, 
or disposed. During BOL, 
information flow is quite complete 
and supported by information 
systems such as computer aided 
design (CAD)/computer aided 
manufacture (CAM), product data 
management (PDM) and 
knowledge management (KM) 
systems. However, the information 
flow becomes less and less 
complete after BOL. In fact, for the 
majority of today’s products it is 
fair to say that the information flow 
breaks down after the delivery of a 
product to a customer. As a 
consequences, the sold products 
are subjected to corrective 
maintenance with incomplete and 
inaccurate product lifecycle information in their MOL. 

This research can be contributed to providing a life-cycle management framework in MOL phase to develop 
prognostics health and management (PHM) capabilities for the systems having high collateral damage values. The 
proposed C-PLM framework can be a reference model for product lifecycle management (PLM) and economical 
sustainability, as shown in Figure 1. This generic framework for C-PLM includes:    
 development of remanufacturing and sensor embedding processes in components and parts (center 3); 
 development of prognostics and health management (PHM) capabilities to predict impending failure and prevent 

unscheduled maintenance and downtime (center 2); 
 development of remaining useful life (RUL) and real-time reliability prediction based on different dominant 

failure mechanisms by including information from new, reused, and repaired components (center 1, 2, 3); and 
 development of IoT based  framework to monitor sensor network and schedule automated preventive 

maintenance. 
A detailed description of each block for the proposed framework is given below. 

2.1. Remanufacturing and Sensor Embedding 

Center 3 depicted in Figure 1 represents the remanufacturing center of the framework under study.  The process 
starts with diagnosis of products with no sensor embedded under corrective maintenance in stage 1. Diagnosis extracts 
fault-related information and examines the remaining useful life of components. The reusable components with 
significant RUL are sent back to the remanufacturing center for repair.  To understand of potential failure mechanism, 
reusable components with significant RUL is deployed with dedicated sensors. Based on the dominant failure 
mechanism, dedicated wired or wireless sensors are embedded to components for analyzing vibration, lubrication, 
temperature, pressure, moisture, humidity, loading, speed or/and environmental data etc., and to monitor attributes that 
are essential for CBM. 
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Figure 1.  A basic framework for IoT application in PLM: Cyber-enabled 
Product Lifecycle Management (C-PLM) 
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The unendurable components are sent to the disposal center 4 for recycling/landfill. The replacement of those 
components are fulfilled from external suppliers of used/new components embedded with sensors. Thus, the model is 
aimed at determining the optimal utilization of the used components in realizing economical sustainability of the 
product. If ID’s and/or sensors can be embedded in a part and a product, it is possible to trace the part and products 
throughout their lifecycle for reliability and value predictions. 

2.2. Prognostics and health management (PHM) capabilities 

Smooth and trouble free use of products for a long period of time requires two type of maintenance: (i) fixed or regular 
maintenance (such as; denting-painting, lubrication, etc.), and (ii) maintenance due to breakdown or degradation in 
the configurations. The latter can be achieved through corrective maintenance and preventive maintenance. Preventive 
maintenance is divided into types: time based maintenance (TBM) and condition based maintenance (CBM). TBM 
relies on the failure time distribution (e.g., normal, exponential, Weibull distribution, etc.) of a population of 
components, which may not capture the current health status of a single component. In contrast, condition-based 
maintenance measures the amount of degradation of the components through in-situ sensing and is also able to 
generate impending failure alerts based on either pre-set functional or reliability levels. The maintenance types can be 
utilized in prognostic health monitoring of a product, where the understating of current health of the constituent 
components is essential.  
 In this research, both corrective and preventive maintenance are proposed. We propose corrective maintenance 
to the products that failed and are absorbed for remanufacturing. During the remanufacture, we deploy dedicated 
sensors across critical components for monitoring the product’s performance and enable it for CBM. For an easy 
appraisal, a flow chart of PHM that describes techniques to build prognostic health monitoring capability in the product 
is outlined in Figure 2.   
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

2.3. RUL and reliability predictions capabilities 

The remaining useful life (RUL) or real-time reliability of the components under prognostics and health monitoring is 
predicted by formulating model-driven statistical learning method that exploits the stochastic properties of Bayesian 
networks and Markov model. Considering the merits of hidden semi Markov model (HSMM) over hidden Markov 
model (HMM) [28, 29], and also the encouraging results by formulating a hierarchical HMM based model as dynamic 
Bayesian networks (DBNs) [30], we propose the implementation HSMM-DBN for state of health and RUL estimation.  
The proposed model utilizes DBNs to represent the hidden-states in HSMM in terms of a set of random variables. The 
purpose of DBNs playing as a HSMM is to infer the hidden states that evoke in time by using sequenced observed 
variables that are generated by these hidden-states [30].  Focusing on the Bayesian network (BN) structure, the 
proposed HSMM-DBN eliminates the major drawback associated with learning BN, where the search space is huge 
and Bayesian network learning algorithms usually adopts greedy search heuristics, which easily gets stuck in a local 
optimum [31]. One of the major problems in the application of evolutionary algorithms (EA) for learning Bayesian 
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Figure 2: Flow chart of prognostics health monitoring: tools used in data fusion and feature extraction, 
performance prediction, real time condition measurement 
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networks is the directed cyclic graph formation during the intermediate phases. While generating any intermediate 
networks it is not sure as to the feasibility of candidate networks (i.e. directed acyclic graph (DAG)).  

In the proposed approach, the ant colony system (ACS) will be used to resolve the problem of formation of cyclic 
graphs. The formation of cyclic graphs can be avoided only when precedence ordering is known such that, every node 
coming earlier in the order, can be the parent of following nodes. Thus the problem becomes exactly like a traveling 
salesmen problem (TSP) that was very efficiently solved by ACS [32]. Moreover, HSMM-DBN will utilize minimum 
description length (MDL) metric as a measure of the goodness of the candidate Bayesian network. Taking MDL as a 
measure of the quality of the individual network and best ordering found by application of ACS, the evolutionary 
programming (EP) based search process for an optimal DAG will be employed. The proposed strategy forms a 
precedence order of the nodes of Bayesian networks, which reduces the string length to NC2 (instead of N2). After the 
optimal ordering is found using ACS, EP search process is employed to search for the best Bayesian network. 

The next objective is to estimate RUL or reliability information of a product that indicates impending failure based 
on past observed data. For instance, remaining useful life of a component by backward recursive equation in hidden 
semi Markov model (HSMM) [33] is,  
 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖[𝐷𝐷(ℎ𝑖𝑖) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖+1] +  𝛼𝛼𝑖𝑖,𝑖𝑖+1[𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖+1]                                                 (1) 
 
where, 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖is reaming useful life at state “i”, 𝐷𝐷(ℎ𝑖𝑖)is state duration in health state ℎ𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖are transition probability 
from state “i” to “j”. Here; 𝐷𝐷(ℎ𝑖𝑖)is depend on mean life (µ(ℎ𝑖𝑖)) and variance (𝜎𝜎2(ℎ𝑖𝑖)) of health state “i”, and total 
life of the component   𝑇𝑇 = ∑ 𝐷𝐷(ℎ𝑖𝑖)𝑁𝑁

𝑖𝑖=1  as, 

    𝐷𝐷(ℎ𝑖𝑖) = µ(ℎ𝑖𝑖) + {(𝑇𝑇− ∑ µ(ℎ𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ) 

(∑ 𝜎𝜎2(ℎ𝑖𝑖)𝑁𝑁
𝑖𝑖=1 )

 } 𝜎𝜎2(ℎ𝑖𝑖)                                               (2) 

Further, the reusability of the component can be determined if 𝑅𝑅𝑅𝑅𝑅𝑅 is greater than the estimated second life [34].  
       𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀 − 𝑡𝑡1           (3) 
where; 𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀 refers mean time to failure, 𝑡𝑡1 is age of the component.  
In order to calculate the reliability function, the Kaplan-Meier method provides the equation as [34]; 
          𝑅𝑅(𝑡𝑡𝑖𝑖) =  ∏ 𝑛𝑛𝑗𝑗−𝑟𝑟𝑗𝑗

𝑛𝑛𝑗𝑗−
𝑖𝑖
𝑗𝑗=1  ; 𝑖𝑖 = 1, … , 𝑚𝑚                   (4) 

 
Where; 𝑅𝑅(𝑡𝑡𝑖𝑖) is estimated reliability at time “i”, m is total number of data points, n is total no of units. Here it is 
determined by using 𝑟𝑟𝑗𝑗 (number of failure in the jth data group) and 𝑠𝑠𝑗𝑗 (number of surviving units in the jth data group) 
as,  
       𝑛𝑛𝑗𝑗 = 𝑛𝑛 − ∑ 𝑠𝑠𝑗𝑗

𝑖𝑖−1
𝑗𝑗=0 − ∑ 𝑟𝑟𝑗𝑗

𝑖𝑖−1
𝑗𝑗=0                                    (5) 

2.4. IoT based  framework 

The IoT framework connects the smart components and parts, i.e., parts and components embedded with sensors 
for exchange of information. One of the major challenges in the information exchange is the security of the information 
as per the Industry 4.0. Hardware embedded security authentication protocols are required to maintain the data privacy 
and avoid malicious data injection.  The interchange of sensor data and external data from similar equipment enable 
smart data-driven heath monitoring and prognostics via cloud based computing. The data processing can also be 
carried out at a central location or distributed over geographical areas based on requirement. In the next section, the 
implementation of the generic framework using multiple agents is presented. 

3. C-PLM implementation as a Multi-agent Framework 

The C-PLM architecture proposed in the previous section can be abstracted in three layers: 1) material flow layer, 
2) information flow layer, and 3) logic and control flow layer, as shown in Figure 3. The material flow layer is similar 
to the physical layer in network architecture. The material flow consists of servicing of parts and components to be 
monitored. One of primary actions in the material flow layer is sensor embodiment in the legacy components of high 
or moderate reusable value or replacing the faulty legacy component with new smart component.  
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The second layer is the 
information flow layer. 
This layer is similar to the 
network layer. The 
information from various 
stages in the material flow 
layer get exchanged with 
the central processing 
center or cloud. This layer 
also uses authentication 
protocols for security and 
privacy of the data. The 
center layer is the logic 
and control layer which is 
a similar to the application 
layer. This layer is used to 
make all major health and 
management decisions. 
This also provide user 
interface for health 
information retrieval. This 
layer can be centralized or 
distributed over could.  

The C-PLM layers can 
be implemented as a 
multi-agent based system 
that interacts among three basic agent: hard agent, soft agent, and wave agent. The hard agents deals with material 
flow management for diagnosis, remanufacturing, IOT set up, and installation of new components. The soft agent is 
either software programs installed on the device or cloud to control 
the device. It has numerical or soft ability to control the actuation of 
device. The third agent of the proposed framework is wave agent, 
which deals with information flow and communication with other 
machines, i.e., severs, and cloud via internet, machine to human, or 
human to machine, as shown in Figure 4. A descriptive methodology 
of the multi-agent framework is given below. 

3.1. Hard Agent 

A crisp way to define the hard agent is to conceive it in terms of 
the actual physical thing, itself, such as the sensor embedded system 
components. The hard agent is responsible for all the physical design 
and development in the framework and to collecting information 
related to corrective and preventive maintenance of the system.  Hard 
agents can be further divided into three sub agents, such as service 
agent, fault diagnosis agent, and remanufacturing agent. 

3.1.1. Service Agent 

 The main task of this agent is to collect sensor data embedded to the system and to differentiate them into different 
categories. This categorization is based on corrective and preventive maintenance of the system. This agent also 
analyses the data collected from the embedded sensor to check which parts or products are subjected to frequent 
maintenance and then accordingly assign them a rank.  

Wave Agent 

Hard Agent 

Soft Agent 

Hard Agent 

Soft Agent 

Figure 4: A nested agent based 
representation of Multi-agent Framework 
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Figure 3: Capabilities and functions of the proposed cyber-enabled product lifecycle 
management 
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3.1.2. Fault Diagnosis Agent 

  Once the service agent identify the components subjected to maintenance, the information is passed on to the fault 
diagnosis agent to explore the root cause of the failure. This failure can be either due to the fault in the manufacturing 
processes or the design of the products and so on. The agent then directs the products to the relevant units for the 
maintenance or replacement based on the remaining useful life of the component. This agent also gathers feedback 
from the different units and on the basis of the feedback performs the simulation to check whether the 
modification/corrections made in the system has fixed the problem or not. If the simulation shows that the problem 
still exists, this agent then passes on this information to the relevant unit. This process of feedback continues to assist 
the units until the problem is completely resolved.  

3.1.3. Remanufacturing Agent 

  The information gathered by the fault diagnosis agent is passed on to the remanufacturing agent. As soon as it 
receives the information about the reason for maintenance, this agent decides how this can be fixed the faulty 
components with replacement of reusable components having significant remaining useful.  

3.2. Soft Agent 

The soft agent is either software programs installed on the device or are on cloud to control the device. This agent 
ensure the functional and systems requirement to the framework. Constructing the soft agent refers to coding the 
program on the thing itself in the memory of the device using an API or coding a program on cloud to attain the 
reliability predictions and PHM capabilities in the system and the data security and accuracy defined for sensor data 
and network management. 

3.3. Wave Agent 

The third and last kind of agent proposed in this framework is called wave agent, which is defined as any hardware 
or software that enables sensing of any statics or kinetics, communication with other machine, communication with 
severs, cloud, internet, and so on. This agent interacts with hard and soft agents and ensures a speedy transfer of real-
time system information using things via machine to machine, machine to human, and human to human 
communication reducing lags and waits to lower cut offs. 

4. Application Area 

In this section, the 
implementation of C-PLM 
framework for various 
infrastructure and utility 
services with high collateral 
damage value are presented. 

4.1.  Power grid application 

Health monitoring of power 
grid components, which leads 
high collateral damage with 
failure of equipment, is a 
critical from the continuous 
service point of view. In 
general, the important 
equipment in a power grid are 
the transformers, circuit 
breakers, relays, current and 
potential transformers. Each 
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component can be subdivided in to multiple subparts for health monitoring and implementation of the C-PLM 
architecture.  

For example, the transformer can be divided into winding, insulation, and bushing and these parts along with 
embedded sensors will represent the hard agents. Various different sensors can be embedded into the transformer 
windings, insulation and bushings, such as, thermocouple, partial discharge sensor, accelerometer, gas sensors, 
pressure sensors etc., to monitor fault parameters. Similarly, the circuit breaker can be embedded with current sensors 
for analyzing the switching arc for contacts health. Further the bus bars’ health can also monitored by analyzing the 
current and voltage profile with power spectrum analysis. These parameters can be collected by the service agent, an 
embedded system with memory, and classify them into different categories using the on board look up table or cloud. 
This classification of failure is based on type of fault and available corrective and preventive maintenance scheme of 
the component. This service agent can also analyze and maintain a record of the maintenance data onboard to check 
which parts or products are subjected to frequent maintenance and rank them while communicating the information to 
the fault diagnosis agent for fault diagnosis. The fault diagnosis agent explores the root cause of the failure and 
determines RUL of the component. The remanufacturing agent, which is the remotely located monitoring station, 
receives the fault, remaining life information and the reason for maintenance. Then based on the criticality of the 
component, the agent decides the approach for repair or replacement of the faulty components with reusable 
components having significant RUL.  All these components are integrated using the internet and corresponding 
maintenance management software, i.e., the wave agent and software agent, for real-time maintenance action. 

4.2. Transportation network 

The C-PLM implementation for the transport network can be have multiple directions. 1) Health monitoring of the 
transport vehicles in real-time, and 2) health monitoring of the goods. The IoT based approach will enable the transport 
companies to keep a track of the goods and vehicle conditions and schedule CBM on their way by informing the 
service centers. The packages and goods can be embedded with RFID tags, vibration, and temperature sensors for 
real-time health data. The vehicle’s computer can implement the C-PLM and can communicate to the cloud for 
monitoring current health and predict RUL. 

5. Conclusion 

The paper proposes a generic framework for C-PLM using IoT-based protocol, as the communication medium, for 
lifecycle management of the products having high collateral damage values and where monitoring and control of 
systems in real-time are vital as well as challenging to human capitals. The proposed framework conceives IoT 
solutions in middle-of-life (MOL) phase of products for monitoring the performance and predicting impending failure, 
preventing unscheduled maintenance and downtime.  The application of the proposed solution in a smart power 
transmission substation and transportation network are presented that can be monitored and controlled remotely. 
Further, this generic framework can be utilized in a wide range of industrial services such as; railway lines, oil and 
water pipelines, etc. As a future direction of the research we will include more specific task oriented agents to address 
other different aspects of IoT problem such that the proposed framework can be further extended to fit into different 
scenarios and resolve the complex issues 
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