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1. Introduction 

A microgrid is a localized autonomous energy system that consists of distributed energy sources and load, which 
can operate either separate from, or connected to, the existing utility power grid [1-3]. It has been widely recognized 
as a promising solution to meet the increasing electricity demand by relieving the disturbances and enhancing the 
resilience for the utility grid [4- 6]. The microgrid system typically works in a non-centralized mode, and thus, it is 
expected to be able to mitigate the complexity of traditional energy dispatch mechanisms in centralized grid 
operation through utilizing the distributed sources such as solar energy, wind energy, geothermal energy, hydro-
thermal energy, etc. to serve local loads [7]. It can enhance the efficiency improvement in energy production [8-9] 
and accelerate the replacement for fossil fuels by various sources of renewable energy [10-11].  

Various studies on microgrids have been conducted from the perspectives of system design and control scheme 
considering different components within the microgrid for the customers in various end-use sectors [12-14]. While, 
since manufacturing is traditionally not considered a critical facility, the research on the application of microgrid in 
manufacturing has been less reported. Recently, the investigation has been implemented on the optimal design and 
component sizing of the microgrid for manufacturing plant [15-17], as well as the optimal energy control from the 
manufacturing side [18-20] towards sustainability. However, the topic of joint energy control and management for 
both on-site microgrid generation system and manufacturing plant simultaneously has not been touched. Actually, 
manufacturing activities dominate the energy consumption and GHG emissions in the industrial sector [21] that 
accounts for one third of the total energy consumption in the U.S. [22]. In addition, at an age when it is impossible 
to conduct manufacturing activities in the absence of electricity, even a short power outage can cause detrimental 
impacts on manufacturing enterprises [23-26]. 

Therefore, there is an urgent need to extend the research on microgrid technology from traditional residential 
sector, commercial sector, critical facilities, etc., to the end-use customers in manufacturing sector. Specifically, the 
state-of-the-art that 1) microgrid utilization is less commonly studied for manufacturing plant, and 2) most existing 
literature with respect to control schemes focuses on a single side, either the microgrid, or the target customer load, 
needs to be advanced considering the joint energy control for both energy supply from the microgrid and energy 
load from the manufacturing plant. 

In this paper, we propose to establish a systems and theoretical approach for joint energy management of 
manufacturing plant and on-site microgrid to achieve highly resilient manufacturing in a cost-effective and 
environmentally sustainable manner. A joint optimal control problem to coordinate the energy supply of the 
microgrid and the load of the manufacturing plant is formulated using Markov Decision Process (MDP). A neural 
network based reinforcement learning (NNRL) algorithm to explore the solution efficiency to the formulated MDP 
is proposed. A numerical case study for a small size manufacturing system is conducted to validate the proposed 
MDP model and discuss the effectiveness of the proposed solution strategy. The rest of the paper is organized as 
follows. Section 2 lays out the details of the formulation of the energy joint control model. Section 3 introduces the 
NNRL algorithm in detail. Section 4 introduces the numerical case study. Section 5 concludes the paper and 
discusses the future work. 

2. Joint Energy Control Model Using Markov Decision Process 

In this section, an MDP model is proposed to model the decision-making of the joint control of both 
manufacturing system and onsite distributed generation system. The manufacturing system modeled is a typical 
serial production line with I machines and I-1 buffers as shown in Fig.1 where rectangles denote machines and 
circles denote buffers. The time horizon is discretized into a set of discrete intervals. At the beginning of each 
interval, the control actions identified based on the optimal policy and the given state can be implemented. The state, 
policy, state transition, objective function, and constraint are introduced as follows.  

System State. The system state at time decision epoch t is denoted by St. It includes the states of manufacturing 
system ( mfg

tS ), onsite generations system ( ong
tS ), and surrounding environment ( env

tS ), which can be formulated by 
( , , )mfg ong env

t t t tS S S S . mfg
tS  can be denoted by 1 2 1 2 1( , , ..., , , , ..., )mfg I I

t t t t t t tM M M B B B S , where i
tM  (i=1, 2, …, I) 
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A microgrid is a localized autonomous energy system that consists of distributed energy sources and load, which 
can operate either separate from, or connected to, the existing utility power grid [1-3]. It has been widely recognized 
as a promising solution to meet the increasing electricity demand by relieving the disturbances and enhancing the 
resilience for the utility grid [4- 6]. The microgrid system typically works in a non-centralized mode, and thus, it is 
expected to be able to mitigate the complexity of traditional energy dispatch mechanisms in centralized grid 
operation through utilizing the distributed sources such as solar energy, wind energy, geothermal energy, hydro-
thermal energy, etc. to serve local loads [7]. It can enhance the efficiency improvement in energy production [8-9] 
and accelerate the replacement for fossil fuels by various sources of renewable energy [10-11].  

Various studies on microgrids have been conducted from the perspectives of system design and control scheme 
considering different components within the microgrid for the customers in various end-use sectors [12-14]. While, 
since manufacturing is traditionally not considered a critical facility, the research on the application of microgrid in 
manufacturing has been less reported. Recently, the investigation has been implemented on the optimal design and 
component sizing of the microgrid for manufacturing plant [15-17], as well as the optimal energy control from the 
manufacturing side [18-20] towards sustainability. However, the topic of joint energy control and management for 
both on-site microgrid generation system and manufacturing plant simultaneously has not been touched. Actually, 
manufacturing activities dominate the energy consumption and GHG emissions in the industrial sector [21] that 
accounts for one third of the total energy consumption in the U.S. [22]. In addition, at an age when it is impossible 
to conduct manufacturing activities in the absence of electricity, even a short power outage can cause detrimental 
impacts on manufacturing enterprises [23-26]. 

Therefore, there is an urgent need to extend the research on microgrid technology from traditional residential 
sector, commercial sector, critical facilities, etc., to the end-use customers in manufacturing sector. Specifically, the 
state-of-the-art that 1) microgrid utilization is less commonly studied for manufacturing plant, and 2) most existing 
literature with respect to control schemes focuses on a single side, either the microgrid, or the target customer load, 
needs to be advanced considering the joint energy control for both energy supply from the microgrid and energy 
load from the manufacturing plant. 

In this paper, we propose to establish a systems and theoretical approach for joint energy management of 
manufacturing plant and on-site microgrid to achieve highly resilient manufacturing in a cost-effective and 
environmentally sustainable manner. A joint optimal control problem to coordinate the energy supply of the 
microgrid and the load of the manufacturing plant is formulated using Markov Decision Process (MDP). A neural 
network based reinforcement learning (NNRL) algorithm to explore the solution efficiency to the formulated MDP 
is proposed. A numerical case study for a small size manufacturing system is conducted to validate the proposed 
MDP model and discuss the effectiveness of the proposed solution strategy. The rest of the paper is organized as 
follows. Section 2 lays out the details of the formulation of the energy joint control model. Section 3 introduces the 
NNRL algorithm in detail. Section 4 introduces the numerical case study. Section 5 concludes the paper and 
discusses the future work. 

2. Joint Energy Control Model Using Markov Decision Process 

In this section, an MDP model is proposed to model the decision-making of the joint control of both 
manufacturing system and onsite distributed generation system. The manufacturing system modeled is a typical 
serial production line with I machines and I-1 buffers as shown in Fig.1 where rectangles denote machines and 
circles denote buffers. The time horizon is discretized into a set of discrete intervals. At the beginning of each 
interval, the control actions identified based on the optimal policy and the given state can be implemented. The state, 
policy, state transition, objective function, and constraint are introduced as follows.  

System State. The system state at time decision epoch t is denoted by St. It includes the states of manufacturing 
system ( mfg

tS ), onsite generations system ( ong
tS ), and surrounding environment ( env

tS ), which can be formulated by 
( , , )mfg ong env

t t t tS S S S . mfg
tS  can be denoted by 1 2 1 2 1( , , ..., , , , ..., )mfg I I

t t t t t t tM M M B B B S , where i
tM  (i=1, 2, …, I) 
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Fig. 1. A typical manufacturing system with I machines and I-1 buffers 

denotes the state of machine i in the manufacturing system at decision epoch t. i
tM  can represent the status of the 

machine, denoting that if it is turned off, or kept working, or failure.  i
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tB reflects the status of the buffer by specifying the number 
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and tG denote the working status of solar PV, wind turbine, and generator, respectively, of the onsite generation 
system at decision epoch t. tSOC denotes the state of charge of the battery system at decision epoch t. env
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denoted by ( , )env

t t tI FS , where  tI  denotes the solar irradiance at decision epoch t. tF  denotes the wind speed at 

decision epoch t. 
 
Control Actions and Policy. Let  be the policy that maps from different states S to the actions A. The control 

actions adopted at decision epoch t can be denoted by tA . It includes the control actions for the manufacturing 
system ( mfg

tA ) and the onsite generation system ( ong
tA ), which can be denoted by ( , )mfg ong

t t tA A A . mfg
tA can be 

denoted by 1 2( , , ..., )mfg I
t t t ta a aA , where i

ta  (i=1, 2, …, I) is the control actions (on/off state adjustment) for 
machine i at the decision epoch t. ong

tA  can be denoted by ( , , , , )ong
t t t t t tc d s p gA , where , , , ,t t t tc d s p  and 

tg denote the energy charging to the battery, the energy discharging from the battery, the energy sold back to the 
grid, the energy purchased from the grid, and the power generated by the generator, respectively.  

State Transition. Let the function P:  S A S  → [0, 1] be the transition probability function, so that 
( , , ) ( , )P P S S A S S A  is the probability of transition to state S  given that the previous state was S and action A 

was taken at state S. The state transition given state S and adopted action A at decision epoch t is partially 
deterministic and partially stochastic, although they can all be put in the transition probability function P. For 
example, the states of the environmental factors like solar irradiance, and wind speed are random variables. For the 
manufacturing plant, when the “off” action is adopted for a certain machine, the state of such a machine at the next 
decision epoch t is deterministic. While, the “on” action adopted for a certain machine at the decision epoch t cannot 
necessarily guarantee the working state of the machine at decision epoch t+1 when the possibility of machine 
random failures is not excluded. The buffer state transfer is a stochastic process since the variation of the number of 
WIP in buffer depends on the working states of both upstream and downstream machines. The state transition of the 
throughput of the manufacturing system at decision epoch t+1 given state S and adopted action A at time t is also a 
random process.  

Objective Function. At decision epoch t, a transition from state St to state St+1 under action At results in an 
incurred cost 1( , , )t t tE S A S , which includes the energy cost considering both microgrid and utility grid and the 
throughput reward of the manufacturing system. The total incurred cost from the beginning to the end of planning 
horizon, starting from state S and under policy π, is given by 

 

1 0
0

( , ) ( , ( ),t
t t t

t

C E  





 
  

  
S E S S S S S  (1) 

                                                                                              
where 1[ )0,  is the discount factor. The objective is to identify an optimal policy *  ) ( ,argmin C  S  that 
can guide the decision maker to find appropriate actions based on the given system state to minimize the total 
incurred 
cost C(S, π) in (1). 

3. Neural Network Integrated Reinforcement Learning 

The objective is to identify an optimal policy * and its corresponding total cost *( )C S  such that 
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Note that *( )C S includes both energy consumption cost and production throughput reward, which can be 

calculated by  
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where ( )F S  is the energy consumption cost, and ( )TP S  is the production throughput of the manufacturing system. 
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where ( , )E S A is the average total cost when action A is taken at state S, which can be calculated by  
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S

S A S A S S A S
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 (5) 

 
To solve the above Bellman equation without a-priori knowledge of the transition probability ( , , )P S A S , we 

have to resort to simulation based methods, such as Reinforcement Learning [27-28]. In particular, we propose to 
use an algorithm called Q-learning. To perform Q-learning, let us first introduce the Q-factor Q(S, A), S ∈ S, A ∈ 
Π(S) such that 

 
*

( )
( ) min ( , )C Q




A S
S S A  (6) 

 
Then, the Q-factor version of the Bellman equation takes the form 
 

( )
( , ) ( , , ) ( , , ) min ( , )Q P E Q




       B S
S

S A S A S S A S S B
S

 (7) 

 
Once we solve the above Q-factor version of the Bellman equation, we can then calculate *( )C S  from (6). The 

equation (7) can be solved via the Robbins-Monro iteration 
 

1 1 1

( )
( , ) (1 ) ( , ) ( , , ) min ( , )n n n n nQ Q E Q    



       B S
S A S A S A S S B  (8) 

 
Here S  is the state next to S under action A. The iteration (8) can be performed by simulating the MDP for 

sufficiently long time, while updating the ( , )nQ S A . We can pick / ( )n A B n    for some A, B > 0. A possible 

choice is to take A = 1 and B = 0, so that 1/n n  . 
This is the Q-learning algorithm for the look-up table case, and such algorithm has guaranteed convergence ([28, 

Chapter 5], [27, Chapter 6]). In practice, due to the possibly very large size of the state space S  and the action space 
A , one can consider, instead of solving for Q(S,A), an approximate solution of the dynamic programming problems 
(see [28, Chapter 6], [27, Part II]). We will store the information of the values of the Q-function in a neural-network 
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decision epoch t. 
 
Control Actions and Policy. Let  be the policy that maps from different states S to the actions A. The control 

actions adopted at decision epoch t can be denoted by tA . It includes the control actions for the manufacturing 
system ( mfg

tA ) and the onsite generation system ( ong
tA ), which can be denoted by ( , )mfg ong

t t tA A A . mfg
tA can be 

denoted by 1 2( , , ..., )mfg I
t t t ta a aA , where i

ta  (i=1, 2, …, I) is the control actions (on/off state adjustment) for 
machine i at the decision epoch t. ong

tA  can be denoted by ( , , , , )ong
t t t t t tc d s p gA , where , , , ,t t t tc d s p  and 

tg denote the energy charging to the battery, the energy discharging from the battery, the energy sold back to the 
grid, the energy purchased from the grid, and the power generated by the generator, respectively.  

State Transition. Let the function P:  S A S  → [0, 1] be the transition probability function, so that 
( , , ) ( , )P P S S A S S A  is the probability of transition to state S  given that the previous state was S and action A 

was taken at state S. The state transition given state S and adopted action A at decision epoch t is partially 
deterministic and partially stochastic, although they can all be put in the transition probability function P. For 
example, the states of the environmental factors like solar irradiance, and wind speed are random variables. For the 
manufacturing plant, when the “off” action is adopted for a certain machine, the state of such a machine at the next 
decision epoch t is deterministic. While, the “on” action adopted for a certain machine at the decision epoch t cannot 
necessarily guarantee the working state of the machine at decision epoch t+1 when the possibility of machine 
random failures is not excluded. The buffer state transfer is a stochastic process since the variation of the number of 
WIP in buffer depends on the working states of both upstream and downstream machines. The state transition of the 
throughput of the manufacturing system at decision epoch t+1 given state S and adopted action A at time t is also a 
random process.  

Objective Function. At decision epoch t, a transition from state St to state St+1 under action At results in an 
incurred cost 1( , , )t t tE S A S , which includes the energy cost considering both microgrid and utility grid and the 
throughput reward of the manufacturing system. The total incurred cost from the beginning to the end of planning 
horizon, starting from state S and under policy π, is given by 
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where 1[ )0,  is the discount factor. The objective is to identify an optimal policy *  ) ( ,argmin C  S  that 
can guide the decision maker to find appropriate actions based on the given system state to minimize the total 
incurred 
cost C(S, π) in (1). 

3. Neural Network Integrated Reinforcement Learning 

The objective is to identify an optimal policy * and its corresponding total cost *( )C S  such that 
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Note that *( )C S includes both energy consumption cost and production throughput reward, which can be 

calculated by  
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where ( )F S  is the energy consumption cost, and ( )TP S  is the production throughput of the manufacturing system. 
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where ( , )E S A is the average total cost when action A is taken at state S, which can be calculated by  
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To solve the above Bellman equation without a-priori knowledge of the transition probability ( , , )P S A S , we 

have to resort to simulation based methods, such as Reinforcement Learning [27-28]. In particular, we propose to 
use an algorithm called Q-learning. To perform Q-learning, let us first introduce the Q-factor Q(S, A), S ∈ S, A ∈ 
Π(S) such that 
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Then, the Q-factor version of the Bellman equation takes the form 
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 (7) 

 
Once we solve the above Q-factor version of the Bellman equation, we can then calculate *( )C S  from (6). The 

equation (7) can be solved via the Robbins-Monro iteration 
 

1 1 1

( )
( , ) (1 ) ( , ) ( , , ) min ( , )n n n n nQ Q E Q    



       B S
S A S A S A S S B  (8) 

 
Here S  is the state next to S under action A. The iteration (8) can be performed by simulating the MDP for 

sufficiently long time, while updating the ( , )nQ S A . We can pick / ( )n A B n    for some A, B > 0. A possible 

choice is to take A = 1 and B = 0, so that 1/n n  . 
This is the Q-learning algorithm for the look-up table case, and such algorithm has guaranteed convergence ([28, 

Chapter 5], [27, Chapter 6]). In practice, due to the possibly very large size of the state space S  and the action space 
A , one can consider, instead of solving for Q(S,A), an approximate solution of the dynamic programming problems 
(see [28, Chapter 6], [27, Part II]). We will store the information of the values of the Q-function in a neural-network 
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Fig. 3. A two-machine-and-one-buffer manufacturing system 

with weight vector w. In this case, our approximate Q-function is given by the neural-network output Q(S,A;w), 
where w is a parameter vector, and (S,A) are the inputs of the neural-network. Given any S∈ S and A∈A , the 
function Q(S,A;w) will return an approximation of the value Q(S,A).  

The proposed neural-network has a fixed architecture, with two input neurons standing for both S and A and one 
output neuron standing for Q(S,A;w). Various methods in the training process of neural network have been proposed 
and implemented. For example, some recent works have reported the training process via stochastic gradient descent 
[29, 30]. In this paper, the training is the iteration about the weight vector w. At iteration n, we replace the right hand 
side of the iteration scheme (8) by the Q(S,A;wn), where wn is the weight vector at the n-th iteration. This produces a 
new Q-value that is used as a training data to feed the neural-network. We can obtain an updated wn+1 via an online 
training of the neural-network with this Q-value.  

Thus, we have the neural-network based Q learning algorithm as shown in Fig. 2. It can be clearly seen that in 
this algorithm, the iterations are with respect to the weights of the neural-network and information regarding the 
total cost at each step is obtained by running the MDP and they are fed into the iteration scheme. Thus, essentially it 
is the MDP updating the neural-network. 

4. Case Study 

The manufacturing system used in the case study is composed of two machines and one buffer as shown in Fig. 

3.  
 

Each machine can be in one of four different states, i.e., off, idle, failure, and on at each time interval and the 
power consumption is different for each state. The mean time between failure (MTBF) and mean time to repair 
(MTTR) of each machine as well as the power at different states are shown in Table 1. The buffer has a limited 
capacity and will be initialized with certain quantity as presented in Table 2. 

  
Table 1. Parameters of manufacturing machines 

 MTBF (min) MTTR (min) Throughput Power Consumption (kW) 
Off/Failure Idle ON 

Machine 1 95 10 1 0 600 1,000 
Machine 2            105 15 1 0 600 1,000 

 
Table 2. Parameters of buffers 

 Initial Amount Capacity 
Buffer 1 10 20 
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The proposed microgrid system consists of batteries, onsite generators, solar panels, wind turbines. Batteries can 
be discharged for manufacturing system use and charged by solar panels, wind turbines, and utility grid. Onsite 
generators will only generate energy for manufacturing system. Solar panels and wind turbines can be used to 
generate energy for either manufacturing system, battery charging, or sold back. While the remaining need will be 
satisfied by utility purchasing from utility grid. The configurations of the proposed microgrid are shown in Table 3 
and utility price is shown in Table 4.  

 
Table 3. Parameters of the onsite microgrid system 

Component of Microgrid Parameters Values 
Solar PV Area of solar PV (m2) 300 

Efficiency of the solar PV 0.2 
O&M cost ($/kWh) 0.02 

Wind Turbine Density of air (kg/m3) 1.225 
Power coefficient 0.593 

Gearbox transmission efficiency 0.9 
Electrical generator efficiency 0.9 

Blade Radius (m) 20 
O&M cost ($/kWh) 0.03 

Battery Charging Efficiency 0.9 
Discharging Efficiency 0.9 

O&M cost ($/kWh) 0.1 
Capacity (kWh) 600 

Generator O&M cost ($/kWh) 0.2 
Capacity (kWh) 400 

 
Table 4. Electricity price 

Season Period Time Consumption charge 
($/kWh) Sold back price ($/kWh) 

Summer 

On-Peak 1:00 pm-6:00 pm 0.35 0.17 

Mid-Peak 10:00 am-1:00 pm 0.19 0.07 6:00 pm-9:00 pm 
Off-Peak 9:00 pm-10 am 0.06 0 

 
The state space and action space of the MDP model depend on the capacity of the microgrid system, the size of 

the manufacturing system, as well as the length of the planning horizon. For state space, three possible states (“ON”, 
“IDLE”, “OFF”) of each machine are represented by three binary inputs, respectively.  We also have the amount of 
each intermediate buffer, solar irradiance used for generation, wind source used for generation, generator output, 
state of charge of the battery, soldback rate, electricity amount purchased from utility, and time of period as discrete 
inputs.  

For action space, control action of each machine is still binary, either “Turn on” or “Turn off”. In order to keep 
the action space at a reasonable size, we discretize solar energy and wind energy directly used to power 
manufacturing system, charged to battery, and sold back into five intervals. Generator output and battery 
discharging rate are also discretized and they will only be considered if they are cheaper alternatives of purchasing 
from utility directly. After solar energy, wind energy, generator and battery are all considered, we set utility 
purchasing amount to any leftover energy demand. With smaller microgrid capacity and shorter planning horizon, 
the state space and action space will also be smaller and vice versa.  

In the experiment, the neural network is designed to have two fully connected hidden layers with sigmoid 
activation functions. As there are variables for three states for each of two machines, one intermediate buffer, solar 
charging rate, wind energy charging rate, generator output, SOC of battery, sold back rate, utility purchasing, current 
solar irradiance, current wind speed, and time of period, we have to consider the state with a dimension of 16 in 
total. Since we have two machine operation actions, three solar energy actions (for support mfg, charging battery, 
sold back), three wind energy actions, one generator action, one battery discharging action, and one utility 
purchasing action, the dimension of the action is 11. Thus, the input layer has a dimension of 27. Each of the two 
hidden layers has 32 neurons. Our reward function incorporates two components, energy cost and total final 
throughput. The weights in the model are initialized randomly following normal distribution. The discount factor λ 
in Q-Learning is set as 0.1.  

The convergence of the weight of the neural network is shown in Fig. 4. The (a-1), (a-2), (a-3) are for a relatively 
small state space of size 3.8×103 and action space of size 2.6×104; (b-1), (b-2), (b-3) are for a larger state space of 
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this algorithm, the iterations are with respect to the weights of the neural-network and information regarding the 
total cost at each step is obtained by running the MDP and they are fed into the iteration scheme. Thus, essentially it 
is the MDP updating the neural-network. 

4. Case Study 

The manufacturing system used in the case study is composed of two machines and one buffer as shown in Fig. 
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Each machine can be in one of four different states, i.e., off, idle, failure, and on at each time interval and the 
power consumption is different for each state. The mean time between failure (MTBF) and mean time to repair 
(MTTR) of each machine as well as the power at different states are shown in Table 1. The buffer has a limited 
capacity and will be initialized with certain quantity as presented in Table 2. 

  
Table 1. Parameters of manufacturing machines 
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The proposed microgrid system consists of batteries, onsite generators, solar panels, wind turbines. Batteries can 
be discharged for manufacturing system use and charged by solar panels, wind turbines, and utility grid. Onsite 
generators will only generate energy for manufacturing system. Solar panels and wind turbines can be used to 
generate energy for either manufacturing system, battery charging, or sold back. While the remaining need will be 
satisfied by utility purchasing from utility grid. The configurations of the proposed microgrid are shown in Table 3 
and utility price is shown in Table 4.  

 
Table 3. Parameters of the onsite microgrid system 
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Solar PV Area of solar PV (m2) 300 

Efficiency of the solar PV 0.2 
O&M cost ($/kWh) 0.02 
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Battery Charging Efficiency 0.9 
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Capacity (kWh) 600 

Generator O&M cost ($/kWh) 0.2 
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Table 4. Electricity price 

Season Period Time Consumption charge 
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On-Peak 1:00 pm-6:00 pm 0.35 0.17 

Mid-Peak 10:00 am-1:00 pm 0.19 0.07 6:00 pm-9:00 pm 
Off-Peak 9:00 pm-10 am 0.06 0 

 
The state space and action space of the MDP model depend on the capacity of the microgrid system, the size of 

the manufacturing system, as well as the length of the planning horizon. For state space, three possible states (“ON”, 
“IDLE”, “OFF”) of each machine are represented by three binary inputs, respectively.  We also have the amount of 
each intermediate buffer, solar irradiance used for generation, wind source used for generation, generator output, 
state of charge of the battery, soldback rate, electricity amount purchased from utility, and time of period as discrete 
inputs.  

For action space, control action of each machine is still binary, either “Turn on” or “Turn off”. In order to keep 
the action space at a reasonable size, we discretize solar energy and wind energy directly used to power 
manufacturing system, charged to battery, and sold back into five intervals. Generator output and battery 
discharging rate are also discretized and they will only be considered if they are cheaper alternatives of purchasing 
from utility directly. After solar energy, wind energy, generator and battery are all considered, we set utility 
purchasing amount to any leftover energy demand. With smaller microgrid capacity and shorter planning horizon, 
the state space and action space will also be smaller and vice versa.  

In the experiment, the neural network is designed to have two fully connected hidden layers with sigmoid 
activation functions. As there are variables for three states for each of two machines, one intermediate buffer, solar 
charging rate, wind energy charging rate, generator output, SOC of battery, sold back rate, utility purchasing, current 
solar irradiance, current wind speed, and time of period, we have to consider the state with a dimension of 16 in 
total. Since we have two machine operation actions, three solar energy actions (for support mfg, charging battery, 
sold back), three wind energy actions, one generator action, one battery discharging action, and one utility 
purchasing action, the dimension of the action is 11. Thus, the input layer has a dimension of 27. Each of the two 
hidden layers has 32 neurons. Our reward function incorporates two components, energy cost and total final 
throughput. The weights in the model are initialized randomly following normal distribution. The discount factor λ 
in Q-Learning is set as 0.1.  

The convergence of the weight of the neural network is shown in Fig. 4. The (a-1), (a-2), (a-3) are for a relatively 
small state space of size 3.8×103 and action space of size 2.6×104; (b-1), (b-2), (b-3) are for a larger state space of 
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Fig. 4. Decay of the difference in the weights of the neural network approximating the MDP 

 

size 2.5×1019 and action space of size 1.0×107.  
We used Adam as our optimizer and learning rates are set differently: (a-1) and (b-1) with learning rate 0.001, 

while (a-2), (a-3), (b-2), and (b-3) with learning rate 0.00001. In Fig. 4, we plotted the square norms of the 
differences of the neural-network weight vectors for each two consecutive algorithm iterations: the horizontal axis is 
the number of iterations and the vertical axis represents the progression of the square norms of the differences of the 
weight vectors. The number of iterations for all six pictures are 105. However, the vertical axes are of different 
scales. Pictures (a-1) and (a-2) have vertical axis of same size between 0 and 0.035 while (a-3) is a rescaled version 
of (a-2) with vertical axis of size 0.0009; (b-1) and (b-2) have vertical axis of same size 0.2 while (b-3) is a rescaled 
version of (b-2) with vertical axis of size 0.0009. A comparison of (a-1) and (a-2), as well as a comparison of (b-1) 
and (b-2) shows clearly that as the learning rate decays, the weights of the neural network get more stabilized, 
implying a faster convergence. In fact, with the same choice of scales of the vertical axis, in (a-2) and (b-2) the 
square norms of the weight differences are almost zero and hardly recognized in the pictures. When we look at a 
comparison of (a-1) and (b-1), as well as (a-3) and (b-3) (which are rescaled versions of (a-2) and (b-2)), we also see 
that the convergence speed depends on the size of the state and action spaces: the smaller these spaces are, the better 
convergence is guaranteed. In fact, we can see in (a-1) and (a-3) that the weight differences increase a little at the 
beginning and then gradually start to decay. However, in (b-1) and (b-3) we do not see a significant decay of the 
weight differences due to the huge size of state and action spaces, indicating that more iterations are needed. The 
increase of the weight differences at the beginning epochs of iterations in (a-1) and (a-3) can be explained by the 
fact that the MDP needs to first explore the state space and update the learning network. This results in an unstable 
behaviour of the network weights during these beginning epochs. 

5. Conclusions and Future Work 

In this paper, we propose a joint energy control model for the optimal energy control for both the manufacturing 
system and onsite microgrid system towards sustainability. A neural network integrated reinforcement learning 
framework is proposed to explore the solvability of the proposed MDP formulation with high dimension and high 
complexity. The experimental results in the case study with different settings of neural network parameter and state 
space illustrate an appealing potentials of the convergence of the proposed algorithm. 

For future work, more experiments can be implemented with larger state and action space. In addition, the 
proposed model can also be expanded to integrate the HVAC system in the manufacturing plant along with the 
manufacturing system since HVAC is widely considered the second top energy consumer, immediately following 
the manufacturing system, in a typical manufacturing plant. 
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and (b-2) shows clearly that as the learning rate decays, the weights of the neural network get more stabilized, 
implying a faster convergence. In fact, with the same choice of scales of the vertical axis, in (a-2) and (b-2) the 
square norms of the weight differences are almost zero and hardly recognized in the pictures. When we look at a 
comparison of (a-1) and (b-1), as well as (a-3) and (b-3) (which are rescaled versions of (a-2) and (b-2)), we also see 
that the convergence speed depends on the size of the state and action spaces: the smaller these spaces are, the better 
convergence is guaranteed. In fact, we can see in (a-1) and (a-3) that the weight differences increase a little at the 
beginning and then gradually start to decay. However, in (b-1) and (b-3) we do not see a significant decay of the 
weight differences due to the huge size of state and action spaces, indicating that more iterations are needed. The 
increase of the weight differences at the beginning epochs of iterations in (a-1) and (a-3) can be explained by the 
fact that the MDP needs to first explore the state space and update the learning network. This results in an unstable 
behaviour of the network weights during these beginning epochs. 

5. Conclusions and Future Work 

In this paper, we propose a joint energy control model for the optimal energy control for both the manufacturing 
system and onsite microgrid system towards sustainability. A neural network integrated reinforcement learning 
framework is proposed to explore the solvability of the proposed MDP formulation with high dimension and high 
complexity. The experimental results in the case study with different settings of neural network parameter and state 
space illustrate an appealing potentials of the convergence of the proposed algorithm. 

For future work, more experiments can be implemented with larger state and action space. In addition, the 
proposed model can also be expanded to integrate the HVAC system in the manufacturing plant along with the 
manufacturing system since HVAC is widely considered the second top energy consumer, immediately following 
the manufacturing system, in a typical manufacturing plant. 
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