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Abstract: 

This paper investigates experimentally the seismic behavior of two hollow-core fiber-

reinforced polymer-concrete-steel HC-FCS columns under cyclic loading as a cantilever. 

The typical precast HC-FCS member consists of a concrete wall sandwiched between an 

outer fiber-reinforced polymer (FRP) tube and an inner steel tube. The FRP tube provides 

continuous confinement for the concrete wall along the height of the column. Five large-

scale HC-FCS columns were investigated during this study to estimate the effective flexural 

(which is an important factor to define the buckling capacity and deflection of such columns) 

and the effective structural stiffness of the composite columns. These columns have the same 

geometric properties; the only difference was in the thickness of the inner circular steel tubes 

and the steel tube embedded length into the footing. A three-dimensional numerical model 

has been developed using LS_DYNA software for modeling this large scale HC-FCS 

columns. The nonlinear FE models were designed and validated against experimental results 

gathered from HC-FCS columns tested under cyclic lateral loading and used to evaluate the 

effective stiffness’s results. The estimated effective stiffness results that obtained from the 

experimental work were compared with the FE results. This study revealed that the effective 

flexural and the effective structural stiffness for the HC-FCS columns need more 

investigation to be addressed in the standard codes. Since the embedded hollow core steel 

tube socket connections cannot reach the fully fixed end condition to act as a cantilever 

member subjected to a lateral load with a fully fixed end condition. Moreover, the effective 

stiffness results were found to be highly sensitive to the steel tube embedded length and 

slightly to the unconfined concrete strength.  

 

Introduction 

It’s estimated that Americans spend 14.5 million hours per day on traffic. 10 to 15% of that 

congestion is caused by work zones even when it occurs in the off-peak, they increase traffic 

congestion [1]. The need for a new solution is highly requested to reduce the amount of time 

it takes to build our roads and bridges from months to several hours. Accelerated bridge 

construction ABC includes such elements as prefabricated modular units that are built off-

site in a controlled environment and then transferred to the construction area for rapid 

installation. ABC reduces traffic disruptions and life-cycle costs and improves construction 

quality and safety, resulting in more sustainable development [2]. One technique to 

accelerate bridge construction is to use precast bridge columns with excellent seismic 

performance.  

An excellent candidate for precast columns is the concrete-filled tube, which consists of a 

hollow tube made out of steel or fiber reinforced polymer filled with concrete. Another 
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candidate for precast columns is the hollow-core steel-concrete-steel (HC-SCS) columns 

consisting of two generally concentric tubes with concrete shell between them [3-8]. The 

concrete infill is confined by both tubes, resulting in high concrete confinement and column 

ductility [9]. All these mentioned research showed the superior seismic and axial capacity 

of HC-SCS columns. 

Several regions around the world are susceptible to earth quake where large ductility 

demands are imposed on bridge columns. The design and the construction of a column-

footing connection are crucial for precast columns to provide the ductility demands. Thus, 

under an earthquake event, all damage in the precast assembly is confined to the column and 

the adjacent element experiences no damage, emulating cast-in-place construction 

performance. However, there is neither CFST neither HC-FCS columns have a satisfactory 

codes in standards such as AASHTO LRFD Bridge Design Specifications [10], the 

American Institute for Steel Construction Steel Design manual (AISC), and the ACI 

American concrete Institute [11]. Based on the available literature, limited studies have been 

focused on the design for CFST column-to-cap beam connections using different types that 

were proposed in the literature for CFST columns includes welded and bolted steel plate, 

embedded base, and rebars, and embedded structural steel connections were used for precast 

column-footing connections [12-14]. Likewise, limited have been conducted on the 

understanding the performance of HC-FCS column [15], or on the column-footing 

connections [16]. These previous studies have concentrated mainly on determining the 

critical embedded length of the steel tube into the cap beam or the footing, but effect of the 

connection rigidity had not addressed comprehensively.  

In this paper, a finite element model using LS_DYNA software were simulated to estimate 

the effective stiffness and flexural stiffness of HC-FCS column footing connections in 

addition to the standard codes and compared to the experimental test results.  

 

Experimental work 

Five 0.4-scale HC-FCS columns with different steel tube thicknesses and an embedment 

length were investigated in this study (Table 1). These columns were tested under constant 

axial load and lateral cyclic load. The tested HC-FCS columns have a circular cross-section 

with an outer diameter of 610 mm and a clear height of 2,032 mm. The lateral load was 

applied at a height of 2,413 mm with shear span-to-depth ratio of approximately 4.0. The 

column consisted of an outer filament-wound GFRP tube having a constant thickness of 9.5 

mm along the height of the column. The inner steel tube had an outer diameter of 406 mm. 

A concrete wall having a thickness of 102 mm was sandwiched between the steel and FRP 

tubes (Fig. 1).  

The columns’ label used in the current experimental work consisted of four segments. The 

first segment is a letter F referring to flexural testing followed by the column’s height-to-

outer diameter ratio (H/Do). The second segment refers to the column’s outer diameter (Do) 

in inch. The third segment refers to the GFRP matrix using E for epoxy and P for Iso-Polyster 

base matrices; this is followed by the GFRP thickness in 1/8 inch (3.2 mm), steel thickness 

in 1/8 inch (3.2 mm), and concrete wall thickness in inch (25.4 mm).  

The HC-FCS column construction sequences and details have been illustrated in the 

literature [15, 17]. The mechanical properties of the Steel tube, FRP tube, concrete mix 

design, and rebar are mentioned in details in the literature [15, 17].  
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Fig. 1: Construction layout of the column (a) Elevation; (b) column cross-

section; (c) HC-FCS column perior to the test 

 

 

Table 1: Summary of the investigated HC-FCS columns 
 

# Column ID 
Steel tube thickness ts 

(mm) 

Steel tube embedded length le 

(mm) 

1 [15] F4-24-E344 12.7 635 

2 [18] F4-24-E324 6.35 635 

3  F4-24-E3(1.5)4 4.8 635 

4 F4-24-P1(0.8)4 2.8 508 

5 F4-24-E3(0.5)4 1.6 508 

 

Parametric study 

FE models verification  

 

Five-dimensional numerical models have been developed using LS_DYNA software for 

modeling of large scale HC-FCS columns. The footing, concrete wall, and loading stub were 

modeled using solid elements with an average length of 25.4 mm and constant-stress one-

Axial 

load 
Lateral 

load 



point quadrature integration to reduce the computational time and increase the model 

stability. The outer FRP and inner steel tubes were simulated using shell elements with an 

average height of 25.4 mm. The hourglass type and coefficient used during this study were 

5 and 0.03, respectively. The models have been described in details By Abdulazeez et. al. 

(2017) [19].  

  

Loading protocol and test setup 

 
Constant axial load, P, of 489.3 kN (110 kips) corresponding to 5% of the calculated Po (of 

an equivalent RC-column with the same diameter 610 mm (24 inches) and 1% longitudinal 

reinforcement ratio was calculated as in [32]) was applied to the column using three external 

prestressing strands on each of the west and east sides of the column. After applying the 

axial load, static cyclic lateral load was applied in a displacement control using two 

hydraulic actuators connected to the column loading stub. The loading regime is based on 

the recommendations of FEMA 2007. Two cycles were performed for each displacement 

amplitude [17].  

 

Results and discussion 

Rigidity evaluation 

 

The combined load mechanism applied on the HC-FCS columns is described in Fig. 2.  It 

simply represented by a cantilever member subjected to a lateral load at the top with a fully 

fixed end condition at the bottom. The structural stiffness (K) for this assembly can be 

estimated using as Eq. 1. However, the embedded hollow core steel tube socket connections 

cannot reach the fully fixed end condition; the flexural stiffness of the embedded steel tube 

socket connection should be reduced from the fully fixed cantilever. Thus, more 

comprehensive study should be conducted using parametric analysis. 

𝐹 = 𝐾 𝛿 ;   𝐾 =
3𝐸𝐼𝑒𝑓𝑓

𝐻3
 (1) 

 

 
 

Fig. 2: HC-FCS column load resisting mechanism 

 



The maximum elastic deflection is affected by the main parameters, including the embedded 

length, footing and column concrete strength, thickness of the steel tube. The effective 

flexural stiffness of has been estimated using the folollwing standarad provesions 

expressions:  

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑠  𝐼𝑠 +
0.2𝐸𝑐𝐼𝑔

1 + 𝛽𝑑

 ACI codes (2) 

 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑠  𝐼𝑠 + 𝐶3𝐸𝑐𝐼𝑐  ; 𝐶3 = 0.6 + 2 (
𝐴𝑠

𝐴𝑠+𝐴𝑐
) ≤ 0.9 AISC codes (3) 

 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑠  𝐼𝑠 + 0.4 𝐼𝑐(
𝐸𝑐 𝐴𝑐

𝐴𝑠

) AASHTO codes (4) 

Figure 3 and table 2 illustrate the evaluated results of EIeff and K values for the investigated 

columns from the FE and the available codes compared to the experimental test results. As 

shown in Fig. 3, the AASHTO and AISC codes predicted larger EIeff than the ACI code and 

FE results compared to the obtained experimental test results especially for F4-24-E344 HC-

FCS column. While, the predicted flexural and structural stiffness results from the FE 

models as well as the ACI code were close to the experimental test results. 

 

Table 2: Summary of the predicted flexural stiffness results 

 

 EXP. FE 
ACI 

Eq. (2) 

AASHT

O Eq. (4) 

AISC Eq. 

(3) 

Column ID K 
EIeff 

(N.m2) 
K 

EIeff 

(N.m2) 

EIeff 

(N.m2) 

EIeff 

(N.m2) 

EIeff 

(N.m2) 

F4-24-E3(0.5)4 2.2 34.5 2 32.8 23 21 18.4 

F4-24-P1(0.8)4 1.5 24.2 1.4 19.6 29 33 26 

F4-24-E3(1.5)4 3.3 54.3 2.8 47.2 43 59 43.3 

F4-24-E324 3.8 61.3 3.7 60 47.6 68 47 

F4-24-E344 2.7 42.3 2.5 41 78 89 74.5 

 

 

 
 

Fig. 3: Effective flexural stiffness  

(Experimental vs. predicted from FE and standard codes) 
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The reason may due to the insufficient steel tube embedded length that led to severe footing 

damage and steel tube pullout, and thereby not achieving full flexural behavior for the 

column [16]. The lowest values of EIeff were notice for columns F4-24-P1(0.8)4 and F4-24-

E3(0.5)4 due to the short steel embedded length (508 mm). Consequently, the embedded 

length of the steel tube into the footing is a significant parameter that affects the stiffness of 

the entire socket connection and need to be addressed in the available codes for better HC-

FCS column design.  

 

Conclusion 

The embedded length of the steel tube into the footing as well as the unconfined compressive 

strength for the column and the footing are significant parameters that affects the stiffness 

of the entire socket connection and need to be addressed in the available codes for better 

HC-FCS column socket connection design. 
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