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ABSTRACT 25 

This paper experimentally investigates the seismic behavior of two as-built and one repaired hree 26 

large-scale hollow-core fiber-reinforced polymer-concrete-steel (HC-FCS) columns. A HC-FCS 27 

column consisted of a concrete shell sandwiched between an outer glass fiber-reinforced polymer 28 

(GFRP) tube and an inner steel tube. Both tubes provided continuous confinement for the concrete 29 

shell along with the height of the column. The columns had two different steel tube diameter-to-30 

thickness (Ds/ts) ratios of 85, and 254. Each steel tube was embedded into the footing, with an 31 

embedded length of 1.25-1.6 times its diameter, while the GFRP tube was not embedded into the 32 

footing. Two columns were tested as as-built specimens. Then, one of these columns was repaired 33 

and re-tested. This study revealed that HC-FCS columns having a high Ds/ts ratio of 254 and short 34 

embedded length (1.25 Ds) do not dissipate high levels of energy and display nonlinear elastic 35 

performance due to severe steel tube buckling and slippage. However, the column with a Ds/ts ratio 36 

of 85 combined with substantial embedment length (1.6 Ds) results in a nonlinear inelastic 37 

behavior, high-energy dissipation, and ductile behavior. A repair technique for a high Ds/ts ratio 38 

HC-FCS column precluding buckling of the inner steel tube was proposed and examined. The 39 

repair method was characterized by the use of an anchorage system with steel tube concrete filling 40 

at the joint interface region. The repaired column achieved the ductile behavior and performed 41 

well under seismic loading with flexural strength increased by 22%. However, the lateral 42 

displacement capacity decreased by 26% compared to the virgin column due to the residual 43 

deformations and stresses exhibited during the previous test.   44 
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INTRODUCTION 48 

Americans spend 1.7 million hours/day in traffic congestion due to work zones. (1, 2) Therefore, 49 

there is a high demand to reduce on-site construction time and adopt accelerated bridge 50 

construction techniques.(3) An excellent candidate for accelerating bridge column construction is 51 

the hollow-core steel-concrete-steel (HC-SCS) column, which consists of two generally concentric 52 

steel tubes with a concrete shell in between. (4-8) The two tubes act stay-in-place formwork as well 53 

as flexural and shear reinforcements, which reduce the workmanship required for steel caging and 54 

formwork. HC-SCS also has a high strength-to-weight ratio compared with columns having solid 55 

cross-sections. Reducing a column’s mass reduces the seismic demand, which would be significant 56 

for very tall columns.  57 

Recently, interest has been rapidly growing in using fiber-reinforced polymer (FRP) tubes in 58 

different construction applications, including columns. FRP tubes were used, instead of the outer 59 

steel tubes, in the HC-SCS columns producing HC-FCS columns.(9-11) The FRP tube increases the 60 

ductility of the confined concrete while the use of the inner steel tube is to prevent the inward 61 

spalling of the concrete as well as to facilitate connection of the column to the surrounding 62 

structural element such as footing. The steel tube is additionally protected from corrosion by both 63 

the concrete shell and FRP tube. The concrete shell is confined by both FRP and steel tubes, which 64 

results in a triaxial state of compression that increases the strength, ultimate strain, and ductility of 65 

the concrete shell. (12, 13) 66 

Experimental (10, 11) and analytical (14) studies have been conducted to investigate the structural 67 

behavior of HC-FCS cylinders subjected to axial loads. These studies have generally confirmed 68 

the excellent structural behavior of HC-FCSs. The structural performance of HC-FCS cylinders 69 

was also compared to that of concrete-filled FRP tubes (CFFTs) and hollow CFFTs. (11) The load 70 



versus axial shortening relationship of concrete in HC-FCSs was comparable to that of CFFTs. 71 

Furthermore, the inner steel tube prevented the inner concrete spalling, whereas, in the hollow 72 

CFFTs, concrete spalling occurred at low strains. 73 

Epoxy-injection technique was extensively applied in the last several decades to fill micro and 74 

macro concrete cracks to restore the capacity of seismically damaged reinforced concrete 75 

structures with low to moderate level of damage (13, 15-19). The test results showed improved 76 

hysteretic response and ductility of the repaired column, and the epoxy injection was successful in 77 

restoring the strength, stiffness, and energy dissipation capacity of the tested specimens. 78 

The diameter-to-thickness ratio of the steel tube (Ds/ts) in HC-FCSs is crucial for steel buckling. 79 

HC-FCS cylinders having inner steel tubes with Ds/ts ratios ranging from 18 to 90 were 80 

investigated under axial loads. (10, 11, 20, 21) While steel tube buckling occurred in these tests and was 81 

considered as a critical limit state, none of these studies quantifies the strength or the strain that 82 

triggers the occurrence of steel tube buckling.  83 

Few large-scale HC-FCS columns with a low Ds/ts ratio of 64 - 32 were investigated 84 

experimentally under combined axial and lateral loads. (12, 13, 22, 23) The inner steel tubes in these 85 

specimens were embedded inside their footings while the GFRP tubes were truncated at the face 86 

of the footings. Therefore, the GFRP tubes act as stay-in-place formwork and to provide 87 

confinement for the concrete shell. This will allow well-designed HC-FCS columns to behave 88 

similarly to under-reinforced well-confined reinforced concrete columns with ductile failure 89 

associated with high energy dissipation and damping values. Embedding the GFRP tube in the 90 

footing would increase the lateral strength of a HC-FCS column but may result in a brittle failure 91 

due to the brittle nature of the GFRP tube. These columns displayed a ductile behavior with high 92 

energy dissipation. Furthermore, these studies indicated that failure of HC-FCS columns having 93 



steel tubes with low Ds/ts ratio is triggered by yielding, local buckling of the steel, and then 94 

crushing of the concrete.  95 

 96 

RESEARCH SIGNIFICANCE 97 

The HC-FCS columns with low Ds/ts ratios displayed excellent seismic performance. Thus, in 98 

order to optimize the HC-FCS column’s main component, the steel tube, and to better understand 99 

the performance of the columns, this study investigated the seismic behavior of two as-built, and 100 

one repaired large-scale HC-FCS columns having an identical cross-section and shear span-to-101 

depth ratio with high Ds/ts ratios of 85 and 254. Then, one of the columns was repaired and retested 102 

under the same loading condition regime. While these values of Ds/ts ratio seem relatively large, 103 

there has been no testing on HC-FCS columns having such high Ds/ts, ratio and therefore, this data 104 

is essential to develop robust analytical and numerical models for HC-FCS columns. The 105 

performance of columns having a high Ds/ts ratio is also of interest for low-to-moderate 106 

earthquake-resistant designs where there is relatively low demand on the lateral strength of bridge 107 

columns.  108 

 109 

EXPERIMENTAL PROGRAM 110 

HC-FCS columns general description 111 

This study investigated the performances of two as-built, and one repaired 0.4-scale HC-FCS 112 

columns (Fig. 1 and Table 1) subjected to constant axial load and lateral cyclic displacement. Each 113 

column consisted of an outer 610 mm (24 inches) diameter (Df) filament-wound glass fiber 114 

reinforced polymer (GFRP) tube, a 102 mm (4 inches) thick concrete shell, and an inner 406 mm 115 

(16 inches) diameter steel tube. The lateral displacement was applied in the middle of a loading 116 



head placed atop each tested column at the height of 2,413 mm (95 inches) measured from the top 117 

of that column’s footing resulting in a shear span-to-depth ratio (H/Df) of approximately 4. The 118 

steel tube’s embedded length (𝐿") was calculated per Eq.1(13) (Table 1).  The GFRP tube of each 119 

column was truncated at the top face of the footing of that column.  120 

𝐷$𝑡$𝑓'
(𝐿")*

	≤ 3.3/𝑓0,23  (1) 

where fu is the ultimate stress of the steel tube, and 𝑓0,23  is the unconfined cylindrical compressive 121 

strength of the concrete footing.   122 

The columns’ labels, F4-24-E3(1.5)4, F4-24-E3(0.5)4 and F4-24-E3(0.5)4-R, as used in the 123 

current manuscript, consist of a letter, F, in reference to flexural testing, followed by H/Df  124 

(=96/24=4), Df (=24) in inches, E for the epoxy matrix in the GFRP, the GFRP thickness in 125 

multipliers of 3.2 mm (0.125 inches) (=0.375/0.125=3), steel tube thickness in multipliers of 3.2 126 

mm (0.125 inches) (=0.188/0.125=1.5 and 0.063/0.125=0.5), and concrete shell thickness in 127 

multipliers of 25.4 mm (1 inch) (=4/1=4).  The repaired column is named F4-24-E3(0.5)4-R, where 128 

the letter “R” refers to repair.  129 

The steel tube for column F4-24-E3(1.5)4 was available in the market while that for column F4-130 

24-E3(0.5)4 was manufactured out of a steel sheet having the required thickness. The sheet was 131 

cut and rolled to the required tube dimensions and then seam-welded using full-penetration 132 

groove(24).  133 

Material properties 134 

The average tensile strength of three coupons cut from each steel tube (Table 1) and the GFRP 135 

tube in the longitudinal direction was determined (Fig. 2). The typical GFRP tube used for the 136 

three tested columns was 9.5 mm (0.375 inches) thick and the glass fiber was oriented at ±53º. 137 

The GFRP tensile properties were found to be relatively close to those reported by the 138 



manufacturer’s data sheet (Table 2). Testing the material properties in the hoop direction was not 139 

possible as the diameter of the GFRP tube, 610 mm (24 inches), was quite large.  140 

Self-consolidating concrete (12) (Table 3) was used for the concrete shells, while conventional 141 

concrete was used for the footing (Table 4). 142 

Construction and repair procedure 143 

The construction steps for the HC-FCS columns were as follows (Fig. 1): 1) Installation of the 144 

steel tube inside the footing, 2) Placement of the concrete of the footing, 3) Installation of the 145 

GFRP tube and placement of the concrete shell of the column, and 4) Installation of the 146 

reinforcement cage and placement of the concrete of the column’s head (Fig. 1 (a)). 147 

The tested column F4-24-E3(0.5)4 endured severe steel tube buckling localized at the column-148 

footing interface joint and severe steel tube slip. Therefore, repair of this column included injection 149 

of a two-component low-viscosity, epoxy liquid, #1001-LV® CPR Products Inc., to fill any micro 150 

and macro concrete cracks. The injection process included: 1) sealing the interface joint between 151 

the GFRP tube and footing from outside the column using anchoring adhesive (Sika AnchorFix-152 

1). 2) drilling eight 6.35 mm (0.25 inches)-diameter inlet holes through the GFRP and concrete 153 

shell without penetrating the steel tube (three on each of the east and west sides where damage was 154 

significant during the first test and two on the south side) (Fig. 3 (a)). 3) setting the injection ports 155 

and injecting the epoxy until it appeared at the next-highest port (Fig. 3 (b)). The epoxy injection 156 

technique was completed in about 90 minutes. Then, ASTM A307 Grade-A 19 mm (0.75 inches) 157 

diameter all-thread galvanized rods were inserted through drilled holes into the HC-FCS column 158 

and fastened with two nuts to anchor the steel tube to the concrete shell and GFRP tube minimizing 159 

steel slip (Fig. 3 (c)). Finally, the bottom 762 mm (30 inches) of the steel tube of that column was 160 

filled with concrete to restrain any further local buckling of the steel tube, which was observed 161 



during testing the virgin column. After that, a 64 mm (2.5 inches) diameter hole was drilled through 162 

the GFRP tube, concrete shell, and steel tube at the height of 762 mm (30 inches) above the footing 163 

top level to get an adequate inlet to place concrete. The concrete mix (Table 5) was placed using 164 

a 51 mm (2 inches) PVC pipe and funnel, located at 1,524 mm (60 inches) above the level of the 165 

footing top surface, using the gravity pipe method (Fig. 3 (c)). The concrete mix was continuously 166 

placed through the funnel until it filled the bottommost 762 mm (30 inches) of the steel tube. A 167 

360-degree camera was inserted inside the column through the drilled hole to monitor the entire 168 

repair process. The test was performed three days after the placement of the concrete mix.  169 

Experimental setup and instrumentation 170 

Seventeen linear variable displacement transducers (LVDTs) and string potentiometers (SPs) were 171 

used for displacement measurements as following: 1) two SPs for the lateral displacement, 2) eight 172 

LVDTs for the vertical displacements along each of the south and north side of the tested columns, 173 

3) three SPs for the relative displacement between the HC-FCS tubes, 4) one LVDT for the footing 174 

sliding, and 5) one LVDT for the footing uplift (Fig. 4 (a)). Ninety-six strain gauges were installed 175 

on the GFRP and steel tubes at different levels to measure the circumferential and axial strains 176 

(Fig. 4 (b)). A high-definition webcam was placed inside the steel tube at 635 mm (25 inches) 177 

from the top of the footing level to record any inward buckling of the steel tube. 178 

Three SPs were used to measure the slip values between the GFRP tube, concrete shell, and the 179 

steel tube. A 19 mm (0.75 inches) diameter hole was drilled through the thickness of each column 180 

to the steel tube (Figs. 4 (c)) at heights ranging from 254-508 mm (10-20 inches) from the top 181 

level of the footing. The SPs were mounted to measure the absolute axial displacements on the 182 

GFRP tubes, concrete shell, and steel tube (Fig. 4 (c)). 183 

 184 



Loading protocol 185 

A constant axial load of 489.3 kN (110 kips) was applied to the column using six external 186 

prestressing strands and two servo-controlled jacks that kept the prestressing force constant during 187 

testing (Fig. 5 (a)). The applied load corresponded to 5% of the axial load capacity of an equivalent 188 

RC-column, Po, having a solid cross-section with the same diameter as the investigated columns 189 

and 1% longitudinal reinforcement ratio(25) which is a typical reinforcement ratio in the 190 

Midwestern U.S. After applying the axial load, the cyclic lateral displacement (26) (Fig. 5 (b)) was 191 

imposed using two hydraulic actuators connected to the column loading head (Fig. 6). The 192 

displacement amplitude ai+1 of the step i+1 is 1.4 times the displacement amplitude of the 193 

proceeding step of ai.    194 

 195 

RESULTS AND DISCUSSION 196 

The strength, stiffness, as well as energy dissipation capacities of the test specimens, were 197 

investigated. The moment-drift (𝛿) and the average of positive and negative backbone curves of 198 

each specimen are shown in Figs. 7 and 8, respectively. The drift was calculated by dividing the 199 

lateral displacement, measured from the actuators’ displacement transducers, by the shear span of 200 

2,413 mm (95 inches). The first yield displacement (δy), obtained using the strain gauges on the 201 

steel tubes, the displacement δu, corresponding to the maximum moment capacity, and the ultimate 202 

displacement δf at failure for each specimen are summarized in Table 6.  203 

Fig. 9 represents the curvature (𝜙) versus the height for each of the tested columns at selected 204 

drifts. The average curvature values at different sections along the height of each column were 205 

calculated following Eq. 2 and using the readings of the potentiometers at the column sides.   206 



𝜙 =
∆: − ∆)
𝐿𝐷  (2) 

where ∆: and ∆)	are the vertical displacements at the sides of the investigated column, D is the 207 

horizontal separation distance between the two potentiometers which were used for measuring the 208 

vertical displacements ∆: and ∆), and L is the vertical gauge length of the potentiometers.  209 

The flexural strengths of the HC-FCS columns were also calculated analytically using Bernoulli–210 

Navier’s assumptions and assuming full fixation of the column, elastoplastic model for the steel 211 

tube, linear elastic model for the GFRP tube, and Yu et al.’s (27) model for the concrete shell (Fig. 212 

7). More details about the analysis were presented in the relevant literature.(22) 213 

 214 

Behavior of the investigated columns 215 

Column F4-24-E3(1.5)4 exhibited stable symmetric hysteresis loops with no visual damage until 216 

the end of testing (Fig. 9). The column behaved in a linearly elastic manner, with linear curvature 217 

distribution along with the column height until a drift of 1.5% (Fig. 7 (a)) when the yielding of the 218 

steel tube began at the height of 127 mm (5 inches) from the footing face. After yielding, the 219 

curvature within the bottommost 254 mm (10 inches) started to increase significantly, reaching 220 

0.0008 (rad/mm) (0.0203 rad/inch) at the end of the test. The strain measurements showed local 221 

buckling of the steel tube at approximately 2.2% drift at the interface joint in the south direction 222 

of the column (Fig. 10). The column reached its ultimate strength with an average moment capacity 223 

of 713 kN.m (526 kips.ft) at a drift of 2.85% (Fig. 7 (a)), which was 13% lower than the 224 

analytically calculated value of 819.3 kN.m (604 kips.ft). Gradual stiffness degradation occurred 225 

beyond a 2.85% drift. Furthermore, a more severe strength and stiffness degradation began at 5.7% 226 

drift due to continuous local buckling of the steel tube (Fig. 11 (a)) and, presumably, concrete 227 

cracking near the interface joint, which was observed during the post-test inspection of the column. 228 



While cycling the column to 8.0% drift (Fig. 7 (a)), the column displayed a 62% reduction in its 229 

strength due to the rupture of the steel tube (Fig. 11 (b)) and the test was ended. The post-test 230 

inspection of the column showed that permanent steel tube buckling starting at the height of 125 231 

mm (5 inches) above the footing, and extending 254 mm (10 inches) along with the column height. 232 

Limited damage to the concrete shell was observed at the bottom 127 mm (5 inches) (Fig. 11 (c)) 233 

adjacent to the steel tube local buckling location. The concrete footing was intact with no damage 234 

observed (Fig. 11 (d)).  235 

Column F4-24-E3(0.5)4 exhibited a stable symmetric hysteresis loop with significant pinching 236 

due to the minimal steel tube thickness, leading to early buckling of the steel tube near the footing-237 

column interface joint. This buckling deformation was extended gradually downward as noticed 238 

through the inside camera, leading to bond deterioration between the embedded steel tube and the 239 

surrounding concrete inside the footing, which triggered slippage of the steel tube. The curvature 240 

was distributed uniformly along the column length before buckling of the steel tube at 1.1% drift 241 

at the interface joint, as verified by the strain measurements (Fig. 10 (c and d)). The yielding of 242 

the steel tube initiated at a drift of 1.6% at the height of 127 mm (5 inches) from the footing face. 243 

The column was able to carry more load beyond yielding of the steel tube and reached its ultimate 244 

strength with an average moment capacity of 312 kN.m (230 kips.ft) at 1.8% drift (Fig. 7 (b)) 245 

which was 24% lower than the analytically calculated value of 407.4 kN.m (300.5 kips.ft) due to 246 

early buckling which triggered steel tube slippage. Gradual stiffness degradation occurred beyond 247 

the 1.8% drift with more severe stiffness degradation initiated at 5.8% drift due to extensive 248 

buckling and slippage (Fig. 12 (a)) where buckling extended up to 191 mm (7.5 inches) above the 249 

footing top-level at 7.5% drift (Fig. 12 (b)). Furthermore, the plastic curvature localized in a region 250 

within the bottommost approximately 152.2 mm (6 inches) from the footing top-level (Fig. 9 (b)) 251 



where the curvature reached 0.00118 (rad/mm) (0.03 rad/inch) at the end of the test. The test was 252 

ended at approximately 8.0% drift (Fig. 7 (b)) due to excessive slippage with no visual damage to 253 

the GFRP tube.  254 

The repaired column F4-24-E4(0.5)4-R showed an improvement in terms of the initial stiffness 255 

and hysteresis loops’ energy dissipation compared to the virgin column (Fig. 7 (c)). Column F4-256 

24-E4(0.5)4-R exhibited asymmetric hysteresis loop with an average moment capacity of 339 257 

kN.m (250 kips.ft) at 1.6% drift, which was 22% higher compared to the as-built column F4-24-258 

E3(0.5)4 (Fig. 7 (c)). The reason was due to the improvement in the initial buckling resistance and 259 

steel tube slippage because of the internal constraint provided by the concrete infill. The moment 260 

capacity was 17% lower than the analytically calculated value of 407.4 kN.m (300.5 kips.ft). 261 

Moreover, fatter hysteretic loops were achieved with the repaired column up to 4% drift, indicating 262 

more energy dissipation, as discussed later in this manuscript. After that, the pinching effect 263 

appeared due to steel tube slippage, which was triggered due to the pre-damage in the steel tube-264 

footing interface during testing of the virgin column. Steel tube tearing was observed at a 6% drift 265 

on both the north and south sides (Fig. 13 (a and b)) followed by a drop in bending strength (Fig. 266 

7 (c)). No damage in the column’s concrete footing was observed (Fig. 13 (c)). Concrete infill 267 

crushing at the interface joint and slight gradual stiffness degradation occurred beyond that until 268 

the end of the test at a 7.9% drift.   269 

 270 

Displacement ductility capacity  271 

The idealized bi-linear curve was developed by equating the toughness of the experimental 272 

backbone curve to that of the idealized curves (Fig. 8). (28, 29) The idealized yield (δiy) and ultimate 273 

(δf) displacement obtained from the bi-linear curve were used to calculate the displacement 274 



ductility (μ) defined as (δf / δiy), for each column (Table 4, Fig. 8). The initial idealized stiffness, 275 

𝐾= = 𝐹=? 𝛿=?⁄  where Fiy is the idealized lateral force correspondent to 𝛿=? (Table 4), for column 276 

F4-24-E3(1.5)4 was 42.67, slightly higher by 3% than that of column F4-24-E3(0.5)4 with Ki of 277 

41.5. The repaired column F4-24-E3(0.5)4-R was highly improved in terms of the initial stiffness 278 

and displayed Ki of 47, which was 12 % higher than the virgin column.  279 

All three columns displayed an acceptable level of ductility exceeding a displacement ductility 280 

capacity of 5 required for a single column in SDC D for AASHTO guide specifications for LRFD 281 

seismic bridge design. (30) Column F4-24-E3(1.5)4 reached a μ of 5.4 while columns F4-24-282 

E3(0.5)4, and F4-24-E3(0.5)4-R displayed μ values of 12 and 9.23, respectively. However, the μ 283 

values for columns F4-24-E3(0.5)4 and F4-24-E3(1.5)4-R should be interpreted carefully as they 284 

occurred mainly due to tube slippage with limited energy dissipation.  285 

 286 

Lateral stiffness degradation   287 

Stiffness degradation is a crucial element for nonlinear modeling of structures. In HC-FCS 288 

columns, this degradation can be attributed to the buckling and slippage of the steel tube, GFRP 289 

tube rupture, if any, and concrete shell’s cracking and crushing. In this study, the secant stiffness 290 

(Ksec), defined as the column stiffness for a given loading loop using the peak displacement and 291 

corresponding lateral load of that loop,(31) normalized by the yield stiffness 𝐾? = 𝐹=? 𝛿=?⁄ , was 292 

used as the stiffness degradation parameter (Fig. 14). As shown in the figure, the stiffness 293 

degradation of all test columns was similar in the trend. Moreover, the columns F4-24-E3(0.5)4 294 

and F4-24-E3(0.5)4-R were 15% less than column F4-24-E3(1.5)4 due mainly to the steel tube 295 

with high Ds/ts as well as insufficient Le.  296 

 297 



Steel strains 298 

Based on the test results, the Ds/ts affected the performance of the steel tubes in HC-FCS columns. 299 

Fig. 15 (a) shows the steel tube buckling-to-yield strain (ɛb/ɛy) versus Ds/ts ratios of the investigated 300 

as-built columns. Fig. 15 (b) shows the ultimate (rupture)-to-the first buckling drift (δr/ δb) versus 301 

Ds/ts of the tested columns. F4-24-E3(1.5)4 exhibited steel yielding followed by local buckling 302 

(Fig. 15). Fig. 10 shows an example of the axial steel tube strains at the interface joint versus drift 303 

for the F4-24-E3(1.5)4 column. The steel tube yielded at approximately 1.5% drift and then 304 

buckled at a 2.2% drift. Beyond that, the steel tube reached a 7,164 microstrains at 2.5% drift on 305 

the north side, where the column reached its peak strength. Upon further loading at 3.25% drift, 306 

local buckling was highly localized at the interface joint. Subsequently, local cyclic fatigue 307 

triggered a fracture of the tube in the buckled section (Fig. 11 (a)). The fracture propagated and 308 

was observed visually at 8.1% drift through the section, accompanied by a noticeable loss of 309 

flexural capacity in the hysteretic response (Fig. 11 (a)). The hoop strains showed that the tube 310 

was under continuous contraction, reaching a strain of 1,600 microstrains at approximately +/- 8% 311 

drift (Fig. 11 (b)).  312 

The steel tube at the interface joint of F4-24-E3(0.5)4 buckled at approximately 1.1% drift 313 

followed by yielding at approximately 1.5% drift (Fig. 15 and Fig. 11 (c and d)). The steel tube 314 

reached an axial strain of approximately 3,800 microstrains at 1.6% drift on both sides, where the 315 

column reached its peak strength. Beyond that, the axial strains dropped, and the column strength 316 

started to degrade until the end of the test. The tube contracted in the hoop direction during testing, 317 

and the hoop strains remained within 600 to 1,000 microstrains up to 4% drift (Fig. 11 (c and d)).  318 

 319 

 320 



GFRP strains 321 

The vertical strain in the GFRP tube of F4-24-E3(1.5)4 on the north side reached approximately 322 

10,880 microstrains at 8% drift (Figs. 16 (a) and 17 (a)) at 127 mm (5 inches) above the top 323 

footing level. After that, the strain reading decreased by 20% at the same drift due to the rupture 324 

in the steel tube. While on the south side, a strain concentration at 127 mm (5 inches) above the 325 

footing top level and the axial strain reached an approximate value of 6,000 microstrains at 4% 326 

drift at (Fig. 16 (b)). Beyond that, the column strength decreased (Fig. 7 (a)), resulting in a 327 

reduction in the GFRP axial strains and also releasing in the strain concentration at the 127 mm (5 328 

inches) column height. The peak strain located at the interface of the column-footing and reached 329 

a maximum value of 6,500 microstrains at the drift of 8 % on the south side (Fig. 16 (b)).   330 

The GFRP tube of the F4-24-E3(1.5)4 column had reached an ultimate hoop tensile strain of 8,400 331 

(Fig. 16 (c and d)), which was 230% higher than that of 3,650 microstrains obtained for F4-24-332 

E3(0.5)4 column at 6% drift. The high strains were within the bottommost 203-254 mm (8-10 333 

inches) for all of the columns. It is worth mentioning that the strain profile readings of the F4-24-334 

E3(0.5)4 column reached approximately zero at 508 mm (20 inches) above the footing top-level, 335 

indicating that the GFRP upper part of the column endured no stresses during the lateral cyclic 336 

loadings (Fig. 16 (e)), which is attributed to the insufficient Le that required to maintain the flexural 337 

behavior for the whole system. Fig. 17 (a and b) represents the GFRP tube’s vertical and 338 

horizontal strain readings versus drift hysteresis curves for column F4-24-E3(1.5)4 at the interface 339 

joint. As shown in the figure, the vertical strain readings on the north side reached a compression 340 

value of approximately 14,700 microstrains, which is 23% less than the rupture strain.  341 

The repaired column F4-24-E3(0.5)4-R showed a considerable hoop strain value of 7,200 342 

microstrains, which was approximately 100% higher than the virgin column. The reason was due 343 



to the presence of the inside concrete infill diminishing the steel tube‘s inward buckling and 344 

thereby helping the GFRP tube to provide more confinement for the concrete shell.   345 

Furthermore, the hoop strains up to a 3.2% drift showed nonlinear elastic behavior with minimal 346 

strain values developed in the GFRP tube, indicating minimal concrete dilation and microcracks. 347 

Beyond that, and due to the severe dilation in the concrete shell, the strains in the GFRP tube 348 

significantly increased when increasing the applied lateral displacement. However, once the 349 

applied lateral displacement was reversed, the circumferential strains decreased but did not fully 350 

recover, indicating permanent concrete dilation and microcracks. At 2.8% drift, the column 351 

reached its peak strength with a peak hoop strain of 4,200 microstrains and a residual hoop strain 352 

of 1,400 microstrains. At the end of the test, the hoop strains reached 14,700 microstrains, 353 

representing 77% of the tube failure strain with a 9,000 microstrains residual strain. Column F4-354 

24-E3(0.5)4 behaved similarly to column F4-24-E3(1.5)4. However, the hoop strain at the test end 355 

reached approximately 4,200 microstrains with a 2,700 microstrains residual strain. These strain 356 

values were 59% and 66% less than what was obtained with column F4-24-E3(1.5)4. This 357 

reduction in the hoop strains occurred as the concrete dilated toward the very thin steel tube in the 358 

case of column F4-24-E3(0.5)4 with high Ds/ts of 254 compared to column F4-24-E3(0.5)4 with 359 

Ds/ts of 85.  360 

The horizontal strain readings on the north side reached a tensile value of approximately 14,700 361 

microstrains, which was 150% larger than on the south side at 8% drift (Fig. 17 (b)). The reason 362 

was due to the steel tube buckling that generated on the south side (Fig. 12 (b)), thereby releasing 363 

(decreasing) the pressure of the compressed concrete on the GFRP tube at the interface joint.  364 

Fig. 17 (c and d) represent the GFRP tube vertical and horizontal strain readings versus drift 365 

hysteresis curves for column F4-24-E3(0.5)4 at the interface joint. As shown in the figure, the 366 



vertical strain readings on the south side reached a compression value of approximately 4,000 367 

microstrains at an 8% drift. Furthermore, the horizontal strain readings on the north side reached 368 

a tensile value of approximately 4,200 microstrains on both sides at an 8% drift. The reason was 369 

due to the early steel tube slippage because of the Le efficiency and thereby low hoop strain values 370 

at the joint interface region. It is interesting to note that all the hoop strains in Fig. 17 are positive 371 

(i.e., tensile), suggesting that the concrete was significantly confined in both the compression and 372 

the tension zones of the column section at the interface joint. Moreover, increasing the Ds/ts of the 373 

as-built columns by 300% from 85 for column F4-24-E3(1.5)4 to 254 for column F4-24-E3(0.5)4 374 

decreased the hoop strain by 71% from 14,700 to 4,200 microstrains for the same columns due to 375 

less confinement pressure obtained for the concrete shell.  376 

Fig. 17 (e and f) represents the GFRP tube vertical and horizontal strain readings versus drift 377 

hysteresis curves for column F4-24-E3(0.5)4-R at the interface joint. As shown in the figure, the 378 

vertical strain reading on both the north and south sides reached a compression value of 379 

approximately 10,000 microstrains at 8% drift, while the horizontal strain was 7,000 microstrains 380 

at the south side. The reason for these relatively high readings for the repaired column was due to 381 

the presence of the all threaded anchored bars that highly restrained the GFRP at a level of 127-382 

254 mm (5-10 inches), acting like a ring confining the GFRP on all sides and squeezing it to the 383 

concrete infill inside the steel tube. 384 

 385 

Plastic hinge length 386 

Plastic hinge length is crucial in the seismic design analysis of a bridge column. The height, 𝐿A, 387 

where the hoop strain value on the GFRP drops to one-third of its peak value, was proposed (32) as 388 

the plastic hinge length of a CFFT column. Using this approach, the envelope of the hoop strain 389 



(Fig. 18), 𝐿A values were calculated as 150 mm (5.9 inches) and  135 mm (5.3 inches) for columns 390 

F4-24-E3(1.5)4 and F4-24-E3(0.5)4, respectively (Fig. 18 (a and c)). Furthermore, the curvatures 391 

along the heights of the columns displayed significant changes in their values (Fig. 18 (b and d)) 392 

at 165.1 mm (6.5 inches) and 152 mm (6 inches) above the footing of columns F4-24-E3(1.5)4 393 

and F4-24-E3(0.5)4, respectively, indicating that the plastic hinges occurred within these lengths. 394 

These lengths obtained were approximately 11% higher than those obtained based on the GFRP 395 

hoop strains criterion.  396 

 397 

Slip of the different components of the columns 398 

For column F4-24-E3(1.5)4 (Fig. 19 (a)), the relative movement between the steel tube and 399 

concrete shell, as well as between the steel tube and GFRP, were measured using two SP (Fig. 4). 400 

Furthermore, the interface joint between the GFRP tube and footing was measured using another 401 

SP (Fig. 4). As shown in Fig. 19 (a), there was no slip between the different tubes. Moreover, the 402 

joint opening (JO) increased linearly with an increase in the applied drift. The joint opening 403 

reached 61 mm (2.45 in) at the drift of 11%. The JO resulted from the slip of the inner steel tube 404 

and elongation in the embedded length of the steel tube.  405 

For column F4-24-E3(0.5)4 (Fig. 19 (b)), the SP that measured the slip between the steel tube and 406 

GFRP malfunctioned. However, there was a significant slip that took place between the GFRP and 407 

concrete shell, reaching 11.4 mm (0.45 in.) at a drift of 7%. As explained earlier, there is an 408 

interaction between the concrete shell lateral dilation direction and the relative stiffness of the 409 

GFRP and steel tubes. In the case of column F4-24-E3(0.5)4, since the steel tube had a high Ds/ts, 410 

concrete dilated toward the steel tube and hence displayed more substantial slippage between the 411 

concrete shell and GFRP tube. Moreover, the JO values for column F4-24-E3(1.5)4 were lower 412 



than those of column F4-24-E3(0.5)4. At 8% drift, the JO of column F4-24-E3(1.5)4 was 22% 413 

lower than that of column F4-24-E3(0.5)4. The larger JO values were attributed to the excessive 414 

slip that took place during testing column F4-24-E3(0.5)4.  415 

 416 

Energy dissipation (Ed) 417 

The dissipated energy of the investigated columns was calculated as the difference between the 418 

input energy and elastic energy. The cumulative energy dissipation was calculated by adding the 419 

values of energy dissipated during the first cycle of each loading displacement. All columns 420 

dissipated the same amount of energy until a drift of approximately 2% (Fig. 20). Beyond that, 421 

column F4-24-E3(1.5)4 dissipated the highest amount of energy followed by columns F4-24-422 

E3(0.5)4-R and F4-24-E3(0.5)4, respectively. At 7.8% drift, column F4-24-E3(1.5)4 dissipated 423 

energy 230% and 330% higher than the F4-24-E3(0.5)4-R and F4-24-E3(0.5)4 columns, 424 

respectively. A major portion of the energy dissipation in these columns occurred when the inner 425 

steel tubes underwent large plastic deformations, which occurred after an approximately 1.5-1.8% 426 

drift. Column F4-24-E3(0.5)4 displayed the lowest amount of energy dissipation due to the high 427 

Ds/ts ratio of 254 and the significant slip during testing. Furthermore, column F4-24-E3(0.5)4-R 428 

was able to dissipate energy higher than the as-built F4-24-E3(0.5)4 column, which indicated the 429 

capability of the repair technique to prevent the inward steel tube buckling and to reduce the slip 430 

and hence trigger more plastic deformations and higher energy dissipation. 431 

 432 

Equivalent viscous damping 433 

The equivalent viscous damping, ζ, which is crucial for seismic analysis, was calculated for the 434 

tested columns, per Eq. 3 (33) as a function in drift and displacement ductility (Figs. 21 (a)). 435 



ζ =
1
4𝜋

𝐴:
𝐴)

 (3) 

 436 

where A1= energy dissipated in a cycle (the area inside the loop), and A2= potential energy 437 

measured at the peak force of the same cycle. As shown in Fig. 21 (a), column F4-24-E3(1.5)4 438 

displayed higher energy dissipation than column F4-24-E3(0.5)4-R, the latter displaying higher ζ 439 

values until 4% drift due to the relatively higher strength of column F4-24-E3(1.5)4. However, at 440 

6% drift, column F4-24-E3(1.5)4 reached a ζ value of 18%, which is 78% higher than column F4-441 

24-E3(0.5)4-R.  442 

Column F4-24-E3(0.5)4-R consistently showed higher ζ values compared to the as-built F4-24-443 

E3(0.5)4 column indicating the successful implementation of the repair method. Between 2% to 444 

6% drift, column F4-24-E3(0.5)4-R displayed 35% higher ζ values compared to the as-built F4-445 

24-E3(0.5)4, reaching peak value of 17.5% at 4% drift. Beyond that, failure occurred, and both 446 

columns displayed approximately the same ζ value.  447 

Several researchers have proposed expressions for calculating the equivalent viscous damping as 448 

a function of displacement ductility.(34) Equations 4 (35) and 5 (36) were found to predict quite well 449 

the equivalent viscous damping of reinforced concrete columns. (34)   450 

ζ	(Gulkan	and	Sozen	(1974)) = 0.02 + 0.20(1 −
1
√𝜇
) (4) 

ζ	(Midorikawa	et	al. (2000)) = 0.05 + 0.25(1 −
1
√𝜇
) (5) 

Eq. 5 is similar to Eq. 4 but with higher elastic and nonlinear damping. Eq. 5 was able to predict 451 

ζ values quite well for column F4-24-E3(1.5)4 (Fig. 21 (b)) as the column behaved similarly to 452 

reinforced concrete columns in terms of yielding of the primary flexural reinforcement, i.e., steel 453 

tube. Both equations over-predicted the ζ values of F4-24-E3(0.5)4 due to the early buckling and 454 

slippage of the steel tube (Fig. 21 (c)). The ζ values for column F4-24-E3(0.5)4-R were slightly 455 



higher than those predicted using Eq. 4 up to a displacement ductility of six but dropped by 40% 456 

at displacement ductility of approximately 9 due to the steel tube tearing (Fig. 21 (d)).  457 

 458 

FINDINGS AND CONCLUSIONS 459 

This paper presents an experimental investigation of the seismic behavior of three large-scale 460 

hollow-core fiber-reinforced polymer-concrete-steel (HC-FCS) columns. A HC-FCS column 461 

consisted of a concrete shell sandwiched between an outer glass fiber-reinforced polymer (GFRP) 462 

tube and an inner steel tube. Column F4-24-E3(1.5)4 had steel tube diameter-to-thickness (Ds/ts) 463 

of 85 while columns F4-24-E3(0.5)4, and F4-24-E3(0.5)4-R had Ds/ts of 254. Each steel tube was 464 

embedded into the footing, with an embedded length of 1.25-1.60 times its diameter, while the 465 

GFRP tube was not embedded into the footing. This study revealed the following findings and 466 

conclusions: 467 

1- All three columns displayed displacement ductility values ranging from 5.4 to 12.0, which 468 

exceeded those required for a single column in SDC D for AASHTO guide specifications 469 

for LRFD seismic bridge design. However, the displacement ductility values for columns 470 

F4-24-E3(0.5)4 and F4-24-E3(1.5)4-R should be interpreted carefully as they occurred 471 

mainly due to steel tube slippage with limited energy dissipation. Column F4-24-E3(1.5)4 472 

dissipated energy 230% and 330% than those of columns F4-24-E3(0.5)4-R and F4-24-473 

E3(0.5)4, at 7.8% drift. 474 

2- The steel tube’s embedded length (𝐿") is a crucial parameter for the performance of the 475 

HC-FCS columns. The embedment length, determined using Eq. 1, resulted in a high 476 

slippage of column F4-24-E3(0.5)4, while no significant slippage was observed for column 477 

F4-24-E3(1.5)4. At the peak strength of column F4-24-E3(0.5)4, the interface joint opening 478 



for column F4-24-E3(1.5)4 was 34% lower than that of column F4-24-E3(0.5)4 due to 479 

severe steel tube local buckling in the case of F4-24-E3(0.5)4.        480 

3- There is an interaction between the concrete shell lateral dilation direction, i.e., toward the 481 

steel or GFRP tube and the relative stiffness of the GFRP and steel tubes. In the case of 482 

column F4-24-E3(0.5)4 and since the steel tube had a high Ds/ts, concrete dilated toward 483 

the steel tube and hence displayed high slippage between the concrete shell and GFRP tube 484 

reaching 11.4 mm (0.45 in.) at a drift of 7%. However, there was no slippage between the 485 

FRP, concrete shell, and steel tubes for column F4-24-E3(1.5)4. Furthermore, this 486 

difference in the concrete dilation direction led to hoop strains of 14,700 microstrains for 487 

column F4-24-E3(1.5)4 and 4,200 microstrains for column F4-24-E3(0.5)4.  488 

4- The accuracy of using the beam theory incorporating the confined concrete constitutive 489 

model to predict the flexural strength of the investigated columns was a function of Ds/ts 490 

ratio. The columns displayed flexural strengths ranged from 13% to 24% lower than those 491 

calculated using the beam theory. The higher the Ds/ts ratio is, the higher the error in the 492 

strength prediction due to the severe steel tube local buckling leading to high steel slippage 493 

and less confinement effect that occurred for high Ds/ts.  494 

5- The plastic hinge lengths above the footing obtained from the curvature analysis of the test 495 

data ranged from 152 mm (6.0 inches) to 165 mm (6.5 inches), which are in close 496 

agreement with the values obtained based on GFRP hoop strains criterion.  497 

6- The implemented repair technique in the case of column F4-24-E3(0.5)4R increased the 498 

flexural strength and equivalent viscous damping by 22% and 18%, respectively, compared 499 

to those of column F4-24-E3(0.5)4.  500 

 501 
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List of symbols:  592 

Ds/ts Steel tube diameter-to-thickness ratio 

Df FRP tube diameter 

Le Steel tube’s embedded length  

H/Df The column shear span-to-depth ratio (=M/VD) 

fu The ultimate stress of the steel tube 

f’c,F The unconfined cylindrical compressive strength of the concrete footing 

Po The axial load capacity of an equivalent RC-column 

δy First yield column displacement 

δu Displacement at the maximum moment capacity 

δf Ultimate column displacement 

ϕ Column curvature 

∆1 and ∆2 Vertical displacements at the sides of the investigated column 

D The horizontal separation distance between the two potentiometers used for 

measuring the vertical displacements 

L The vertical gauge length of the potentiometers 

δiy Idealized yield displacement 

δf Ultimate displacement at failure 

μ Displacement ductility 

Ki Initial idealized stiffness 

Fiy Idealized lateral force correspondent to 𝛿=? 

Ksec Secant stiffness normalized by the yield stiffness 

ɛb/ɛy Steel tube buckling-to-yield strain 



δr/ δb Steel tube first buckling-to-the ultimate drift 

Lp Plastic hinge length of a CFFT column where the hoop strain value on the GFRP 

drops to one-third of its peak value 

JO HC-FCS column joint opening 

ζ Equivalent viscous damping 

A1 The energy dissipated in a cycle (the area inside the loop) 

A2 Potential energy measured at the peak force of the same cycle 
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Fig. 10 –  Steel tube strain-drift hysteresis at the interface joint (a) F4-24-E3(1.5)4 vertical 
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side) at 8.0% drift, (c) concrete shell crushing at the interface joint, and (d) undamaged 

footing. 

Fig. 12 –  F4-24-E3(0.5)4 column steel tube inward local buckling (a) from outside at 5.8% 

drift, and (b) from inside (north-west side) at 7.5% drift. 

Fig. 13 – F4-24-E3(0.5)4-R column (a) steel tube inward buckling and tearing at the 

interface joint at 6% drift, (b) close-up view, and (c) undamaged footing. 

Fig. 14 – Experimental versus analytical stiffness degradations. 

Fig. 15 –  HC-FCS column steel tube (a) (buckling / yield) strain versus Ds/ts ratios, and 

(b) (rupture/ buckling) displacement versus Ds/ts ratios. 

Fig. 16 –  FRP strain profiles at different drift levels (a) F4-24-E3(1.5)4, (b) F4-24-

E3(1.5)4, (c) F4-24-E3(1.5)4, (d) F4-24-E3(1.5)4, (e) F4-24-E3(0.5)4, and (f) three tested 

columns (horizontal direction) at 6% drift. 

Fig. 17 –GFRP tube strain-drift hysteresis at the interface joint (a) F4-24-E3(1.5)4 (vertical 

-north side), (b) F4-24-E3(1.5)4 (horizontal- north side),(c) F4-24-E3(0.5)4 (vertical -south 

side), (d) F4-24-E3(0.5)4 (horizontal- south side), (e) F4-24-E3(0.5)4-R (vertical -south 

side), and (f) horizontal- south side. 



Fig. 18 –  Plastic hinge length (a) F4-24-E3(1.5)4 (horizontal strain profile), (b) F4-24-

E3(1.5)4 (curvature along the height-closer view), (c) F4-24-E3(0.5)4 (horizontal strain 

profile), and (d) F4-24-E3(0.5)4 (curvature along the height-closer view). 

Fig. 19 – Relative movements of the FRP tube, concrete shell, and inner steel tube 

measured vs. drift (%) for HC-FCS column (a) F4-24-E3(1.5)4, (b) F4-24-E3(0.5)4, and 

(c) the tested HC-FCS columns. 

Fig. 20 – Cumulative energy dissipation vs. drift for the tested HC-FCS columns. 

Fig. 21 – Equivalent viscous damping vs. displacement ductility for the tested HC-FCS 

columns (a) equivalent viscous damping vs. drift, (b) F4-24-E3(1.5)4, (c) F4-24-E3(0.5), 

and (d) F4-24-E3(0.5)4-R. 

 

Table 1 – Characteristics of the used steel tubes 

Column name 
Thickness, 

(ts) mm 
(inch) 

Ds/ts 
Embedded 
length, (Le) 
mm (inch) 

Le/Ds TR* 
(=ts/tf) 

Yield 
stress, 
MPa 
(ksi) 

Ultimate 
stress, 
MPa 
(ksi) 

Ultimate 
strain, 

(ɛu, in/in) 

F4-24-E3(1.5)4 4.8 (0.188) 85 635 (25) 1.60 0.50 399 (58) 441 (64) 0.21 

F4-24-E3(0.5)4 1.6 (0.063) 254 508 (20) 1.25 0.17 355 (51) 368 (53) 0.24 
*TR: Inner-to-outer tubes (Steel to FRP tubes) thicknesses ratio 
 

 

Table 2 – GFRP tubes properties based on the manufacturer’s reported data 

FRP type Elastic modulus, 
GPa (103 ksi) 

Hoop elastic 
Modulus, 

GPa (103 ksi) 

Axial tensile 
ultimate stress, 

MPa (ksi) 

Hoop rupture 
stress,  

MPa (ksi) 
E-GFRP 4.7 (0.68) 21 (3.02) 65.7 (9.53) 276.8 (40.1) 

 

 

 



Table 3 – Mixture used for the concrete shells 

w/c 
Cement, 
kg/m3 

(lb/yd3) 

Fly Ash, 
kg/m3 

(lb/yd3) 

Water, 
kg/m3 

(lb/yd3) 

Fine 
aggregate, 

kg/m3 
(lb/yd3) 

Coarse 
aggregate,* 

kg/m3 
(lb/yd3) 

HRWR,** 

kg/m3 
(lb/yd3) 

0.5 590 (350) 170 (101) 380 (225) 1430 (848) 1430 (848) 3.2 (1.9) 
*   Pea gravel with a maximum aggregate size of 9.5 mm (0.375 inches). 
** High range water reducer. 
 

Table 4 – Unconfined concrete strength 

 F4-24-E3(1.5)4 F4-24-E3(0.5)4 
 Column Footing Column Footing 

f’c at 28 days,  
MPa (ksi) 35.0 (5.3) 55 (8) 43.5 (6.3) 37.5 (5.4) 

f’c day of test,  
MPa (ksi) 46.5 (6.8) 56.7 (8.2) 46.3 (6.7) 41.6 (6.0) 

 

Table 5–Concrete infill mixture proportions and strength 

w/c 

Cement-
III, 

kg/m3 

(lb/yd3) 

Water, 
kg/m3 

(lb/yd3) 

Fine 
aggregate, 

kg/m3 (lb/yd3) 

Coarse 
aggregate, 

kg/m3 (lb/yd3) 

HRWR, 
kg/m3 

(lb/yd3) 

Unconfined 
concrete 
strength 
(𝑓′#)*, 

MPa (psi) 
0.5 451 (760) 225 (380) 932 (1,570) 554 (933) 1.2 (2) 35.7 (5.18) 

* At the day of the test 

 

Table 6 – Results of the investigated columns  

Tested column 𝑀%&' 
kN.m (kips.ft) 

δiy , mm 
(inch) 

δu , mm 
(inch) 

δf , mm 
(inch) Ki Mode of failure 

F4-24-E3(1.5)4 713 (526) 32  
(1.5) 

69.5 
(2.70) 

204  
(8.10) 42.7  

Steel tube local 
buckling, concrete 
shell crushing, and 
steel tube tearing 

F4-24-E3(0.5)4 312 (230) 17.8 
(0.65) 

39  
(1.87) 

198  
(7.80) 41.5 

Steel tube severe local 
buckling, concrete 

shell crushing 

F4-24-E3(0.5)4-R 339 (250) 14 
(0.65) 

101.6  
(4.00) 

195.6  
(6.00) 46.9 Steel tube tearing, 

concrete infill crushing 



 

 

 
(a) (b) (c) 

 
Fig. 1 – HC-FCS column (a) general assembly, (b) cross section, and (c) layout 

 
 
 
 
 
 

 

  
(a) (b) 

Fig. 2 – Average stress-strain curve (a) GFRP coupon, and (b) steel coupons 
 

 
 



 

   

 
(a) (b) (c) 

Fig. 3 – Steel tube concrete infill procedure (a) layout, (b) injecting the epoxy, and (c) all thread 

rods and concrete infill placing 
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Fig. 4 – Instrumentation (a) LVDTs and SPs layout, (b) strain gauges’ layout, and (c) relative 

movement SP measurement 

 

 

 

 



 

 

(a)  (b) 
Fig. 5 – Column testing: (a) a column ready for testing, and (b) lateral displacement loading 

regime 

   
(a) (b) (c) 

Fig. 6 – HC-FCS columns at the test (a) F4-24-E3(1.5)4, (b) F4-24-E3(0.5)4, and (c) F4-24-

E3(0.5)4-R. 
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Fig. 7 – Moment-drift relation of the tested HC-FCS columns (a) F4-24-E3(1.5)4, (b) F4-24-
E3(0.5)4, and (c) F4-24-E3(0.5)4-R 
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Fig. 8 – Backbone curves for the tested HC-FCS columns (a) experimental, and (b) idealized 

elasto-plastic curve 
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Fig. 9 – Curvature along the height of the tested HC-FCS columns (a) F4-24-E3(1.5)4, (b) F4-

24-E3(0.5)4, and (c) F4-24-E3(0.5)4-R 
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(a) (b) 

  
(c) (d)  

Fig. 10 –  Steel tube strain-drift hysteresis at the interface joint (a) F4-24-E3(1.5)4 vertical -
north, (b) F4-24-E3(1.5)4 horizontal- south, (c) F4-24-E3(0.5)4 south-vertical, and (d) F4-24-

E3(0.5)4 north-horizontal 
 
 

  
(a) (b) 

  
(c) (d)  

Fig. 11 – F4-24-E3(1.5)4 column (a) inward local buckling (south side), (b) tearing (north side) 
at 8.0% drift, (c) concrete shell crushing at the interface joint, and (d) undamaged footing 
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(a) (b) 

Fig. 12 –  F4-24-E3(0.5)4 column steel tube inward local buckling (a) from outside at 5.8% drift, 

and (b) from inside (north-west side) at 7.5% drift 

 
 

   
(a) (b) (c) 

Fig. 13 – F4-24-E3(0.5)4-R column (a) steel tube inward buckling and tearing at the interface 
joint at 6% drift, (b) close-up view, and (c) undamaged footing 

 

 
 

Fig. 14 – Experimental versus analytical stiffness degradations 
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Fig. 15 –  HC-FCS column steel tube (a) buckling-to-yield strain versus Ds/ts ratios, and (b) 

rupture-to-buckling displacement versus Ds/ts ratios 
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V: vertical  H:horizontal  S:south  N:North 
Fig. 16 –  FRP strain profiles at different drift levels (a) F4-24-E3(1.5)4, (b) F4-24-E3(1.5)4, (c) 

F4-24-E3(1.5)4, (d) F4-24-E3(1.5)4, (e) F4-24-E3(0.5)4, and (f) three tested columns (horizontal 

direction) at 6% drift 
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V: vertical  H:horizontal  S:south  N:North 
Fig. 17 –GFRP tube strain-drift hysteresis at the interface joint (a) F4-24-E3(1.5)4 (vertical -

north side), (b) F4-24-E3(1.5)4 (horizontal- north side),(c) F4-24-E3(0.5)4 (vertical -south side), 

(d) F4-24-E3(0.5)4 (horizontal- south side), (e) F4-24-E3(0.5)4-R (vertical -south side), and (f) 

horizontal- south side 
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Fig. 18 –  Plastic hinge length (a) F4-24-E3(1.5)4 (horizontal strain profile), (b) F4-24-E3(1.5)4 

(curvature along the height-closer view), (c) F4-24-E3(0.5)4 (horizontal strain profile), and (d) 

F4-24-E3(0.5)4 (curvature along the height-closer view) 
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Fig. 19 – Relative movements of the FRP tube, concrete shell, and inner steel tube measured vs. 

drift (%) for HC-FCS column (a) F4-24-E3(1.5)4, (b) F4-24-E3(0.5)4, and (c) the tested HC-
FCS columns 
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Fig. 20 – Cumulative energy dissipation vs. drift for the tested HC-FCS columns 
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Fig. 21 – Equivalent viscous damping vs. displacement ductility for the tested HC-FCS columns 

(a) equivalent viscous damping vs. drift, (b) F4-24-E3(1.5)4, (c) F4-24-E3(0.5), and (d) F4-24-

E3(0.5)4-R 
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