

Missouri University of Science and Technology Scholars' Mine

INSPIRE Archived Webinars

INSPIRE - University Transportation Center

12 Mar 2020

Non-Contact Air-Coupled Sensing for Rapid Evaluation of Bridge Decks

Jinying Zhu University of Nebraska - Lincoln

Follow this and additional works at: https://scholarsmine.mst.edu/inspire_webinars

Part of the Structural Engineering Commons

Recommended Citation

Zhu, Jinying, "Non-Contact Air-Coupled Sensing for Rapid Evaluation of Bridge Decks" (2020). *INSPIRE Archived Webinars*. 11. https://scholarsmine.mst.edu/inspire_webinars/11

This Video - Presentation is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in INSPIRE Archived Webinars by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

INSPECTING AND PRESERVING INFRASTRUCTURE THROUGH ROBOTIC EXPLORATION

INSPIRE University Transportation Center Webinar

Non-contact Air-coupled Sensing for Rapid Evaluation of Bridge Decks

March 12, 2020

Jinying Zhu

Associate Professor

Civil and Environmental Engineering University of Nebraska-Lincoln

Ph.D.: University of Illinois at Urbana-Champaign

Research Interest

Nondestructive Testing and Evaluation (NDT/NDE) Wave propagation Sensor development and sensing technologies Material characterization using ultrasonic waves Nonlinear ultrasonics

Infrastructure in America

ASCE 2017 report card gives GPA of America's infrastructure-D+

Bridge deck delamination

- 6.3% of total bridge area belonged to structurally deficient bridges in 2016, improved from 9.5% of 2007 (old definition).
- 178 million trips across a structurally deficient bridge each day in 2018
- More than 50% bridge maintenance funds went to repair or replacement of bridge decks

Solutions?

Investment

Challenging funding situation

Technical innovations

- New technologies and materials for long life bridges
- Prioritize maintenance needs based on reliable evaluation

Haas, R., W.R. Hudson, and L.C. Falls, *Pavement Asset Management*, Wiley Publishing, 2015.

Flexural vibration of shallow delamination

Shallow delaminations

- Typically occur within the top 2 inch depth over the first layer rebars
- Flexural mode (drum vibration) is easy to excite hollow sound
- Frequency depends on size and depth of delamination, usually low frequency (0.5~5kHz), within human hearing range

Chain drag works for shallow

IE test for deep delaminations

Deep delaminations

- Thickness mode (Impact-echo mode), Frequency depends on depth only (higher frequency than flexural mode)
- Chain drag does not work

$$D = \beta \frac{C_P}{2f}$$

 $\beta = 0.96$ for plate

Challenges in current chain drag test

Listen

- OAffected by traffic noise
- •Varies from person to person, day to day

Make Decision

Subjective, depends on inspector's experience
No data saved for future reference and comparison.

Mark, measure and map defects
 Slow, directly show results on deck

Improvement in impact-echo

Stepper: an automated scanning device (2008) Can only reach slow walking speed

(Germann Instruments)

Steel ball

Robotic Bridge Deck Assessment Tool - RABIT

FHWA Long-Term Bridge Performance (LTBP) Program

Stress wave based NDT methods

CHALLENGES

- Contact sensor
- Marking grid before testing
- Contact source

SOLUTIONS

- Non-contact sensor (aircoupled sensing)
- Auto positioning system (GPS/Lidar)
- Continuous excitation

Air-coupled Sensing

Wave field in Air/Concrete

Numerical Simulation of IE test on a plate

Numerical simulation verifies that the IE vibration in a plate radiates <u>quasi-plane wave in air.</u>

Numerical Simulation of IE test

Strong flexural mode in delaminated plate (75mm depth).

Problem: how do we sense the waves in air?

Air-coupled Sensors - Microphones

High precision condenser microphone

- frequency range (4Hz 80kHz)
- expensive (>\$1000)

Audio Microphone Freq range: 0-25kHz MEMs Microphone Freq range: 0-10kHz Very cheap

Air-Coupled Impact-Echo-Typical Signal

Air-Coupled Impact-Echo

Preliminary laboratory experiment showed the feasibility of air-coupled IE test

Using a microphone

Shallow delaminations are easy to detect

Problem: What about noise?

Parabolic reflector

A parabolic reflector converges incident plane waves to the focal point.

Applications: microphone amplifier, antenna, flash light

Experimental verification

Air-Coupled IE test on 190 mm (7.5 in) thick concrete slab with a 15 cm (4 in) diameter reflector

- Reflector brings 7.5dB SNR gain on IE frequency
- IE frequency gain of 24.5 dB

Amplification mechanisms

(Dai, Zhu, Haberman, JASA, 2011) 24

Effect of sensor height

The IE frequency is not affected by sensor height (with reflector)

Useful feature for field testing

Frequency spectra for different sensor height (with parabolic reflector)

Air-coupled Sensing for Concrete – development timeline

Air-coupled Sensing for Concrete – development timeline

Applications to Bridge Evaluation Problem: How to make it fast? What about source?

Resonance frequencies of delaminations

Delamination	Size	Depth	Resonant frequencies		
			1 st	2 nd	3 rd
#1	8 x 8"	1"	2.9 kHz		
#2	12 x 12"	1"	1.7 kHz	3.1 kHz	
#3	18 x 18"	1.5"	0.85 kHz	2.3 kHz	
#4	20 x 20"	2"	0.7 kHz	1.4 kHz	2.6 kHz

Scanning image of concrete slab

(Sun, Zhu, Ham 2018 ASCE JBE)

Automated Acoustic Scanning System

Automated Scanning system with 6 inch lateral resolution

Continuous data collection and analysis

RTK GPS gives spatial accuracy to 1cm (0.5 inch)

Traffic noise

Bridge deck with asphalt overlay

Name: S092 46635

Location: N92 over Platte overflow

Length: 38 ft (13m)

Year built: 1955

Condition: Poor [4 out of 9], 2016

Removal of asphalt layer

Chain drag and acoustic scanning test results after removal of asphalt layer

Hwy75 NB to I-80 NB flyover (Omaha, NE)

Repeatability

Acoustic scanning

Future for air-coupled sensing

- Robust acoustic test and analysis methods
- Non-contact or rapid source (traffic speed)
- Integrated scanning system with Automated data acquisition and positioning
- Big data and data analytics

Acknowledgements

Collaborators:

John Popovics (UIUC), Hongbin Sun (UNL), Chungwook Sim (UNL)

Suyun Ham (UTA), Yi-Te Tsai, Xiaowei Dai

Sponsors:

Nebraska Department of Transportation NIST Technology Innovation (TIP) Program National Science Foundation (PI: Popovics at UIUC) American Society of Nondestructive Testing (ASNT) Rutgers University Electric Power Research Institute (EPRI) University of Nebraska System

INSPECTING AND PRESERVING INFRASTRUCTURE THROUGH ROBOTIC EXPLORATION

INSPIRE University Transportation Center Webinar

Mobile Manipulating Drones, Dr. Paul Oh June 17, 2020

