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GLASS DERIVED NANOPARTICLES FOR NERVE TISSUE REPAIR

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent

Application No. 62/048,146 filed September 9, 2014 and U.S. Provisional Patent

Application No. 62/048,148 filed September 9, 2014, the entire disclosures of

which are both incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to doped biodegradable glass compositions

and methods of treating nerve damage using doped biodegradable glass to

deliver nanoparticles.

BACKGROU ND

[0003] Ideal nerve repair biomaterials or scaffolds should be biocompatible

and noninflammatory, yet flexible with adequate tensile strength to prevent nerve

compression. The materials should be biodegradable with a porosity and

permeability to supply adequate oxygen and nutrients. Nerve autografts remain

the gold standard in nerve repair and regeneration because of their performance.

However, autografts require additional surgery, donor site morbidity, and the loss

of nerve function; all reasons that alternative materials in nerve repair and

regeneration are needed.

[0004] Bioresorbable synthetic natural polymers such as type I collagen

(for example the NeuraGen™ collagen tube available from Integra LifeSciences

of Plainsboro, NJ) have received attention over the last decade due to ease of

production and controlled degradation. Type I collagen supports cell attachment,

unidirectional proliferation, and growth in vivo. The disadvantages to synthetic

natural polymers include irreproducibility of collagen type I and the need for

immunosuppressant drugs to reduce host rejection. Resorbable synthetic



polymers have been used extensively to repair peripheral nerves due to lower

cost, simple fabrication, and proven efficacy. Compared to an autograft, these

synthetic materials eliminate the shortcomings of the autograft.

[0005] Over the past 50 years many methods have been developed to

produce different types of inorganic materials with different sizes, shapes and

properties. Most of these methods use a soluble salt such as nitrate or carbonate

to provide the desired ions in a solution and then use other chemicals or

processes to precipitate or reduce from an ionized to neutral form. However,

small materials such as nanomaterials can be formed through other routes like

Sol-Gel processing, Microemulsion, Hydrothermal/Solvothermal processing,

Templated synthesis, and Biomimetic Synthesis.

[0006] Therefore, a need exists for methods for creating and delivering

nanoparticles of different chemical composition, size, and shape formed within a

biodegradable, biocompatible inorganic glass, to improve nerve regeneration and

improve the quality of life following injury to the spinal cord or peripheral nerves.

SUMMARY

[0007] Provided herein is a biocompatible, biodegradable composite

material for soft tissue repair, such as repair of nerve or nerve cells, and related

methods of use. A biocompatible, biodegradable composite material as

described herein includes a matrix material and a parent glass suspended within

the matrix material, the parent glass including a glass and a dopant. The parent

glass may release a plurality of dopant-based nanoparticles upon contact and

reaction with a body fluid or a simulated body fluid. The glass may comprise, for

example, a borate glass such as sodium tetraborate, or a borosilicate glass. The

dopant may be selected from a metal ion, a transition metal ion, an oxide, a rare

earth oxide, a halide, carbonate, a compound containing a cation, and any

combination thereof. The dopant may be selected from CeO2, Ce2O3, Y2O3, and

ZrO2 and mixtures of any two or more thereof. The dopant may be selected from

Co, Ni, Cu, Ag, Au, Pt, Fe, Ru, Si, V, Cr, Mn, Fe, Ni, Zn, Sn, Sb, Zn, Ti, Y , Zr, W ,



La, Ce, Pr, Nd, Sm, Eu, Lu, Yb, Er, Ba, Ga, I, N, S, Si, and any combination

thereof. The dopant may be selected from the combinations l/Ce, l/Y, l/Ce/P,

and Cu/Zn/Sr/Fe. The parent glass may include Na2O.2B 2 O 3.xCeO2 and x

ranges from about 0.001 to about 0.30 moles. The biocompatible, biodegradable

composite material may be degradable in vivo. The biocompatible,

biodegradable composite material may further include a therapeutic agent. The

matrix material of the biocompatible, biodegradable composite material may

comprise a material selected from a polymer, a ceramic, and any combination

thereof. The matrix material may for example be selected from collagen, laminin,

fibrin, PCL, PLA, PLLA, PEG, PGA, PLGA and any combination thereof. The

parent glass may have a conformation selected from irregular particles,

microspheres, fibers, rods, ribbons and any combination thereof. Any of the

foregoing conformations of a biocompatible, biodegradable composite material

may be combined with a second matrix material, which may comprise any

scaffold material such as collagen, laminin, fibrin and any combination thereof. A

combination of any conformation of a biocompatible, biodegradable composite

material and a second matrix material can be formed in any shape, such as for

example a generally cylindrical conduit form.

[0008] Further provided herein are methods of delivering nanoparticles to

a region of interest, including placing any biocompatible, biodegradable

composite material as described herein, in or in contact with a body fluid or

simulated body fluid; and allowing the parent glass to react and/or degrade to

form and release the nanoparticles. It should be understood that the body fluid

or simulated body fluid may be combined or associated with a region of interest

in the body, such as a body tissue. The region of interest may be for example

any suitable location relative to nerve cells, which may be in a tissue or in a body,

such as but not limited to a peripheral nerve, or the spine and/or spinal cord.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The following figures illustrate various aspects of the disclosure.



[001 0] FIG. 1 is an x-ray diffraction pattern, showing the electron

diffraction pattern for the as-made borate glass with the molar composition

[001 1] FIGS. 2A-B are TEM images of nanoparticles formed from the

borate glass with the composition Na2O.2B 2O3.0.01 CeO2 reacted in Dl-water at

room temperature. FIG. 2A is a low magnification TEM image of nanoparticle

clusters. FIG. 2B is a high magnification TEM image of nanoparticles

(boundaries of two individual nanoparticles selected randomly identified with

outline).

[001 2] FIGS. 3A-B are TEM images of nanoparticles formed from the

borate glass with the molar composition Na2O.2B2O3.0.01 CeO2 reacted in SBF at

37°C. FIG. 3A is a low magnification TEM image of nanoparticle clusters. FIG.

3B is a high magnification TEM image of the nanoparticles.

[001 3] FIGS. 4A-B are images of nanoparticles (agglomerated) formed

with the borate glass with the composition of Na2O.2B 2O3.0.01 CeO2 doped with 1

wt.% Y2O3 (FIG. 4A) and 1 wt.% ZrO 2 (FIG. 4B), which was reacted in Dl water

at 37°C. The scale mark is 20 nm.

[0014] FIGS. 5A-C are images of live cells for control (FIG. 5A), Ce1 (FIG.

5B), and Y 1 (FIG. 5C).

[001 5] FIG. 6 is a graph depicting the mean +/- standard error for the

mean percent (%) number of live neurons for the 4 different sets of wells imaged

per condition at day 7 and day 10. Statistical analysis was performed with a two

sample t-test with data considered significantly different than control for the same

days in culture (* p<0.05; * * p<0.01 ) .

[001 6] FIGS. 7A-C are photographic images of the forms of fabricated

glass. FIG. 7A shows small glass frit doped with cobalt (blue); polymer sheets

with punches made, "cotton balls" of glass microfibers, and the glass rods. FIG.

7B shows polymer/glass composite sheets can be rolled and punched. FIG. 7C



shows long glass rods can be formed or broken into smaller lengths, shown as

added to cells in culture.

[001 7] FIG. 8 is scanning electron micrographs of biodegradable 1393-B3

glass (left images) compared to the same magnification of Y-containing B3 glass

(right images).

[001 8] FIGS. 9A-B show scanning electron micrographs of biodegradable

glass microfibers that show the ultrafine cotton ball fiber-like structure at two

magnifications.

[001 9] FIGS. 10A-D are images of rods (A, C) and microfibers (B, D)

taken at 1 week and 9 weeks in media showing the reaction and degradation of

biodegradable 1393-B3 glass rods and microfibers with cell culture over time.

Scale bar = 100 µιτι .

[0020] FIGS. 11A-C are optical images of the air-side (A) and the glass

side (B) of the glass ( 1393-B3)/polymer composite sheet. After immersion for 14

days in SBF, images show the changes in the air-side of a 100% PCL sheet (C)

compared to the air-side of the 1393-B3 glass (D). Inset shows higher

magnification of the islands of agglomerated Hydroxyapatite (HA).

[0021] FIG. 12A-B are scanning electron micrographs of HA microspheres

on the surface and within the cross-section (A) after immersion of glass/polymer

composite (Blend Composite: 25wt% 1393-B3, 25wt% 45S5, 50wt% PCL) in SBF

for 14 days. An expanded image of the section shown in the box (B) shows the

HA microspheres.

[0022] FIGS. 13A-D are graphs showing the weight loss (A) and ion

release of Boron ions (B), Calcium ions (C), and Phosphorus ions (D) over time

for a composite composed of 50 wt. % PCL/50 wt. % B3 (squares) compared to

100% PCL (triangles). Splines are only for guidance.

[0023] FIG. 14 is a schematic of the sciatic peripheral nerve model with a

biodegradable glass/polymer rolled or cylindrical conduit, with glass rods or

microfibers comprising a biocompatible, biodegradable composite material as



disclosed herein, embedded within second matrix comprising a collagen (CN)

gel, either with or without crosslinking to growth factors and/or drugs.

[0024] FIG. 15 is a schematic of repair of a spinal cord hemi-section. The

doped BG rods or microfibers can be embedded into collagen and injected at the

site of injury.

[0025] FIGS. 16A-C are graphs of mechanical properties for peak stress

(A), strain at break (B), and elastic modulus (C) for the composites that are either

unreacted or reacted for 3 or 6 weeks in media. For each graph, asterisks

denote statistical significance at p<0.05 for either the B3, Blend, or 45S5 for each

condition in (A) and (B), or B3 compared to PCL (C). Significance is indicated in

(C) for 45S5 greater than B3(#).

[0026] FIG. 17 is a photograph of sciatic nerves sutured to rolled PCL/B3

glass composite which has an average suture retention strength of 0.35 ± 0.07 N.

[0027] FIG. 18 shows images of live, dead, and the merge of live plus

dead cells of a dish of dissociated neurons not exposed to any glass. Scale bar

is 100 µιτι .

[0028] FIG. 19A is a graph of the average number of neurons and FIG.

19B is a graph of the average number of support cells comprised of fibroblasts

and glia for 3, 7 , and 10 days for each of the 13-93 B3 biodegradable glass

doped with the element shown along the x axis. For each of the conditions, the

cells were treated with about 14 mg/mL of the degradable glass. The Ce2 and Y2

glasses both contain trace amounts of iodine, and the CZSF glass contains a

mixture of Cu, Zn, Sr, and Fe ions.

[0029] FIG. 20A is a graph of the average neurons normalized to the total

number of cells (Live plus Dead) and FIG. 20B is a graph of the average neurons

normalized to the total live cells (neurons plus support cells). The graphs show

normalized average number of neurons for each of the types of B3

biodegradable glass doped with the element shown along the x axis. For each of

the conditions, the cells were treated with about 14 mg/mL of the degradable



glass. The Ce2 and Y2 both contain trace amounts of iodine, and the CZSF glass

consists of Cu, Zn, Sr, and Fe ions.

[0030] FIGS. 2 1A-D are graphs of a few selected biodegradable borate

based glass to compare the effects of adding more glass to increase the

concentration of released ions as the glass reacts in the cell media. Results are

shown for only the percent of live neurons/total live cells for 1, 2, 4, and 8 pieces

of 1 cm long glass rods, that is approximately 7, 14, 28, and 56 mg/mL of

biodegradable glass per ml_ of media, respectively.

[0031] FIG. 22 shows whole DRG extended neurites on bioactive borate

glass composite sheets. Images of whole DRG stained with Calcein AM show

the composites support outgrowth of neurites from the body of the DRG. Scale

bars = 100 µιτι . The average neurite outgrowth from the DRG body is shown for

each of the dopants tested, and compared to the control 13-93 B3 glass. Fe

supports greater outgrowth than Ce1 , Y 1, and Y2 (* p<0.05); Zn supports greater

outgrowth than Y 1 (#p<0.05).

[0032] FIG. 23 is a graph of whole DRGs whose neurites had measured

extension lengths on the composites of undoped biodegradable glasses when

either pre-reacted for 6 weeks or unreacted. Unreacted 45S5 composite

exhibited greater outgrowth than any other unreacted PCL or polymer sheet

(* p<0.05). After pre-reaction, B3 exhibited greater outgrowth than the blend

composite (#p<0.05), but not any differences with the 100% PCL or the 45S5

composite.

[0033] FIG. 24 is a bar graph of the single longest neurite outgrowth

measurement per DRG after three (3) days in culture, for each dopant tested.

[0034] FIG. 25 shows measurement of directed neurite outgrowth on

aligned 13-93 B3 glass rod/fibrin scaffolds. FIG. 25A shows a representative

fluorescent image of DRG stained with Calcein AM. Scale bar is 200 µιτι . FIG.

25B is a graph of neurite and neurite bundle outgrowth from DRG aligned with

rods, in which 0 and 180 degrees is considered aligned. FIG. 25C is a schematic



that show the orientation of the glass rods with the angle of extension measured

by outgrowth from the DRG body.

[0035] Corresponding reference characters and labels indicate

corresponding elements among the views of the drawings. The headings used in

the figures should not be interpreted to limit the scope of the claims.

DETAILED DESCRIPTION

[0036] Provided herein are materials and methods of nerve repair in which

a biocompatible, biodegradable composite material is used to produce and

deliver a nanomaterial. In various aspects, the biocompatible, biodegradable

composite material comprises a glass, which is biocompatible and

biodegradable, suspended in a matrix. The glass contains inorganic dopants

which are released as ions when the composite comes into contact with a body

fluid or simulated body fluid. A biocompatible, biodegradable composite material

as disclosed herein may be used to produce and deliver nanomaterials to cells or

tissues in vivo or in vitro.

[0037] As used herein, the term "subject" refers to an animal, including but

not limited to a mammal including a human and a non-human primate (for

example, a monkey or great ape), a cow, a pig, a cat, a dog, a rat, a mouse, a

horse, a goat, a rabbit, a sheep, a hamster, a guinea pig).

[0038] Unless otherwise defined herein, scientific and technical terms

used in connection with the present disclosure shall have the meanings that are

commonly understood by those of ordinary skill in the art. The meaning and

scope of the terms should be clear, however, in the event of any latent ambiguity,

definitions provided herein take precedent over any dictionary or extrinsic

definition. Further, unless otherwise required by context, singular terms as used

herein and in the claims shall include pluralities and plural terms shall include the

singular.



[0039] The use of "or" means "and/or" unless stated otherwise.

Furthermore, the use of the term "including", as well as other forms, such as

"includes" and "included", is not limiting. Also, terms such as "element" or

"component" encompass both elements and components comprising one unit

and elements and components that comprise more than one subunit unless

specifically stated otherwise.

[0040] The term "body fluid" as used herein refers to a liquid that

originates from inside the organism of a subject, including for example blood,

interstitial fluid, cerebrospinal fluid, or lymph. The term "simulated body fluid" as

used herein refers to a liquid having an ionic composition comparable to that of a

body fluid. In non-limiting example, a simulated body fluid can be a buffered

saline solution.

[0041] Generally, nomenclatures used in connection with, and techniques

of, cell and tissue culture, molecular biology, immunology, microbiology, and

chemistry described herein are well known and commonly used in the art. The

methods and techniques of the present disclosure are generally performed

according to conventional methods well known in the art and as described in

various general and more specific references that are cited and discussed

throughout the present specification unless otherwise indicated. Any chemical,

enzymatic or staining reactions, or purification techniques are performed

according to manufacturer's specifications and protocols, as commonly

accomplished in the art or as described herein. The nomenclatures used in

connection with, and the laboratory procedures and techniques of, analytical

chemistry, synthetic organic chemistry, and medicinal and pharmaceutical

chemistry described herein are also well known and commonly used in the art.

Standard techniques are used for chemical syntheses, chemical analyses,

pharmaceutical preparation, formulation, delivery, diagnosis and treatment of all

subjects, human and animal.

[0042] In one aspect, a biocompatible, biodegradable composite material

comprises a glass comprising a nanomaterial. The nanomaterial is for example a



nanoparticle. The size, shape, and chemical composition of a given type of

nanoparticle can be controlled by the synthesis process. For example, chemical

dopants can be added to the parent glass composition to contain the desired

percent composition of compounds. By way of non-limiting example, dopants

can include an oxide, halide, carbonate or any other type of compound that may

contain or produce a desired cation. The parent glass for making the

nanoparticles may be formed by melting the doped glass under controlled

conditions (melting atmosphere, temperature and time) and cooling the glass in a

controlled manner. The parent glass may then be degraded, in vivo or in vitro,

forming the nanoparticles in the process.

[0043] Two primary types of biomaterials are available for use in

connection with the present disclosure: biodegradable materials that degrade

with time, or bio-inert materials that do not degrade. The bio-inert materials may

be unreactive to provide long-term structural support. These may be used

predominantly as scaffolding in bone and hard tissues for regeneration. In

contrast, biodegradable materials react and degrade with time in the body, or

when subjected to simulated body fluids (SBF) or cell culture media. These

biodegradable materials may be better suited to soft tissue regeneration as with

time, as the tissues regrow and infiltrate the damaged regions, the biodegradable

material will react with simulated body fluids and be absorbed by the body as the

scaffold is no longer required, thus leaving only the regenerated tissue in its

place. Provided herein are biodegradable materials optimized for reacting and

degrading with appropriate time for soft tissue repair, and while doing so, provide

the needed structural scaffold and delivery system for advantageous chemical

dopants and molecules. It may also have the ability to chemically cross-link and

deliver drugs and growth factors. Optimization of this system may provide a

better-suited soft tissue regenerative system than what currently exists for soft

tissue regeneration and repair.

[0044] In an aspect, borate based biodegradable glass with added

chemical dopants may be fabricated in many different forms such as



nanoparticles, irregular shaped particles (frit), rods, spheres, and microfibers.

This biodegradable glass may be used for soft tissue repair and nerve

regeneration. The addition of chemical dopants such as Ce or Y has been shown

to be neuroprotective to neurons in vitro, as well as prevent overproliferation of

the scar forming fibroblasts. In various aspects, the forms of glass may be used

as composites or mixed materials in scaffolds and nerve guide conduits to

promote regeneration of peripheral and central nerves that have been damaged

through trauma or disease, as well as promote the regrowth of nearly any type of

soft tissue.

I. Nanomaterials

[0045] A biocompatible, biodegradable glass composite material as

disclosed herein may include a parent glass that contains or releases desired

cations, and/or creates nanoparticles. The parent glass may be semi-crystalline

or non-crystalline/amorphous, and the nanoparticles may be crystalline or non-

crystalline/amorphous. In one aspect, the parent glass reacts or degrades when

exposed to fluid(s), for example a body fluid or a simulated body fluid (SBF) in

vivo or in vitro, and may generate non-crystalline/amorphous nanoparticles. The

parent glass may be, for example, biocompatible and non-toxic.

[0046] The materials synthesized may be formulated by methods to deliver

inorganic nanomaterials in situ using biocompatible, biodegradable glasses. In

one aspect, the nanomaterials are nanoparticles. The nanomaterials may be

produced in two different ways. Methods of making nanoparticles include a solid-

state (glassy-state) method to produce nanoparticles using a degradable glass

as disclosed herein. In this method, nanoparticles may be produced in two

different ways. In a first method, the desired nanoparticle base material (metal

ions, transition metal ions, rare earth oxide, etc.) may be dissolved in a glass

melt to form the parent glass. In one aspect, the parent glass may be doped with

an oxide, halide, or other compound containing a desired cation. Then the

parent glass may be reacted or degraded in a desired fluid in a laboratory (e.g.,



in vitro) or inside the body of subject (in vivo). As the glass reacts or degrades

the desired ions may be released to form nanoparticles of a desired

composition/size. A second method may be to dissolve the desired material in

the molten glass and then form the nanomaterials inside the glass using

techniques such as controlled heat treatments, radiation, etc., as will be

understood by those of skill in the art. The glass may then be reacted or

degraded in vitro or in vivo to release the nanoparticles. In this second method,

the glass network may react when in contact with a body fluid or simulated body

fluid, while the insoluble nanoparticles remain in the fluid, at least temporarily.

The nanoparticles may for example remain in solution in vivo until they are

removed or sequestered by the body.

[0047] The glass and other desired compounds may be mixed as

powdered raw materials. In one aspect, the glass raw material may be a borate

glass such as sodium tetraborate, or a borosilicate glass. In another aspect, the

nanoparticle base material may be a dopant. The size, shape, and chemical

composition of a given type of nanoparticle can be controlled by doping the

parent glass with the desired amount of a chosen oxide, halide {e.g., F, CI, I),

carbonate, or other type of compound (e.g., sulfate, oxalate, or nitrate) that

contains the desired cation, (e.g., Ce, Y, Zr, Gd) and melting the doped glass

under (a) controlled conditions (melting atmosphere, temperature and time), and

(b) cooling the glass in a controlled manner. In an aspect, powdered sodium

tetraborate and CeO2 may be mixed together to form a parent glass mixture of

sodium borate glass.

[0048] In one aspect, the parent glass may have the molar composition of

Na2O.2B2O3.xCeO2, where x ranges from about 0.001 to about 0.30 moles. In

another aspect, the parent glass may have the molar composition

xNa2O.2xB 2O3.(1 -3x)AI2O3, where x ranges from about 0 to about 0.2 moles. In

an aspect, the parent glass may have the molar composition xR O.yR'O.(1 -x-

y)B O3, where R may be alkali ions such as Li, Na, K, etc. and R' may be alkaline

earth ions such as Mg, Ca, Sr, etc. and where x ranges from about 0 to about 0.5



moles and y ranges from about 0 to about 0.5 moles. In yet another aspect, the

parent glass may be xR2O.yR'O. zR2"O3. m R2'"O5 .(1 -x-y-z)B2O3, where R may

be alkali ions such as Li, Na, K, etc., R' may be alkaline earth ions such as Mg,

Ca, Sr, etc., R" may be modifiers that form a R' 203 oxide such as Al, Fe, etc.,

and R'" may be modifiers that form a R'"2O5 oxide such as phosphorus (P) and x

and y range from about 0 to about 0.5 moles, and z and m range from about 0 to

about 0.2 moles.

[0049] Non-limiting examples of nanoparticle base material dopants for

producing metallic ionic nanomaterials include Co, Ni, Cu, Ag, Au, Pt, Fe, and

Ru. Non-limiting examples of nanoparticle base material dopants for producing

oxides, phosphate, and borate nanoparticles may include Si, V, Cr, Mn, Fe, Ni,

Zn, Sn, Sb, Zn, Ti, Y, Zr, W, La, Ce, Pr, Nd, Sm, Eu, Lu, Yb, and Er. Dopants

that may be used for soft tissue regeneration include, but are not limited to Ag,

Ba, Ce, Co, Cu, Fe, Ga, I , Mn, N, S, Si, Sr, Ti, Y, and Zn, and a mixture of

elements such as: l/Ce (Ce2), l/Y(Y2), l/Ce/P, and Cu/Zn/Sr/Fe (CZSF). Two or

more of these dopant elements may be combined within the nanoparticles. In an

aspect, Y or La doped CeO2 nanoparticles may be produced (co-doped cerium

oxide-yttrium nanoparticles). In another aspect, the parent glass may contain up

to about 4 dopants.

[0050] The parent glass mixture may be heated from about 600°C to about

1000°C, forming a parent glass melt. In an aspect, the parent glass mixture may

be heated to about 1000°C for about 1 hour. The parent glass melt may be

cooled to from about 20°C to about 25°C in various aspects. In an aspect, the

parent glass melt may be cooled to room temperature to form the parent glass.

In this aspect, the nanoparticles may form during the dissolution of the glass in

aqueous solution.

[0051] In one aspect, a solid amorphous (glass) or semi-crystalline

(glassceramic) material may be used to make nanoparticles. For example,

nanoparticles can be formed by giving the glass a prescribed heat treatment

such that the desired nanoparticles are formed within the melted glass matrix,



which is then cooled and solidified. The resulting solid glass matrix containing a

controlled and specified amount of nanoparticles can then be delivered to a

desired site in humans or animals in several ways.

[0052] The heat treatment of the glass may include cooling the glass melt

to a certain temperature and holding it for a chosen time before cooling to room

temperature. In another aspect, the heat treatment may include cooling the glass

melt to room temperature and then reheating to a certain temperature and

holding for a chosen time before re-cooling to room temperature. In yet another

aspect, the glass melt may be bubbled with gas to form the nanoparticles within

the parent glass. The bubbling gas may be reducing (forming gas, CO/CO2

mixture), neutral (N2, Ar, He), or oxidizing (pure oxygen). The gas flow rate may

be from about 0.1 cm3/min to about 1000 cm3/min depending upon the

size/volume of the melt. The bubbling time may range from about 5 minutes to

about 72 hours depending up on the melt temperature and composition, dopants

in the melt, and melt size/volume. The bubbling temperature may be any

temperature where the viscosity of the melt is low enough to permit the gas to

escape from the melt. In one aspect, the viscosity may be lower than 10 poise.

[0053] The nanoparticles may be made and/or released by reacting the

glass in contact with a desired fluid under certain reaction conditions {e.g., of

temperature, pressure, pH, etc.). Physiological conditions can be used.

Alternatively the temperature for reacting the glass in vitro may range from about

-20 to about 120 °C under ambient pressure or up to about 500 °C under higher

pressures. The pH of the fluid for reacting the glass in vitro may range from

about 2 to about 12 . In one aspect, the glass composite materials can be

designed to react or degrade over the span of minutes to years. Additionally, it

will be understood that by changing various conditions such as temperature or

solution compositions, it may be possible to form a variety of nanomaterials with

special/different properties.

[0054] In another aspect, the body fluid or simulated body fluid may

contain added organic or inorganic stabilizers or surfactants to stabilize the



nanopartides and prevent them from agglomerating. Non-limiting examples of

such stabilizers include tetrahydrofuran (THF), ethylene glycol (EG),

hexadecylamine (HDA), mercaptosuccinic acid (MSA), poly(vinylpyrrolidone)

(PVP), CTAB, and Polyvinyl Alcohol (PVA).

[0055] In any of the foregoing aspects, the nanopartides may be less than

10 nm. In any aspect, the nanopartides created from the parent glass may

range in size from about 2 nm to about 60 nm. In any aspect, the nanopartides

may range in diameter from about 2 nm to about 20 nm, from about 10 nm to

about 30 nm, from about 20 nm to about 40 nm, from about 30 nm to about 50

nm, and from about 40 nm to about 60 nm. In any aspect, it will be understood

that the size of the nanopartides may be affected by the composition of the

parent glass, temperature, and pH.

II. Biomaterials from the Nanopartides and Biodegradable Glass

[0056] A biodegradable glass composite material as disclosed herein

includes for example a parent glass containing or capable of forming

nanopartides, and a matrix material. Nanopartides can be formed in various

ways. Glass raw materials may be mixed with nanoparticle base materials to

form a parent glass mixture. The parent glass mixture is heated to a first

temperature, forming a parent glass melt. The parent glass melt is cooled to a

second temperature to solidify the parent glass melt. In so doing, the parent

glass may be formed into a desired shape using standard shaping techniques as

known in the art, which may then in use be degraded or otherwise react upon

contact with a body fluid or simulated body fluid, wherein the nanopartides are

created as the parent glass reacts or degrades. For example, a borate glass

composite containing cerium may in use produce ceria nanopartides. Methods

of making nanopartides include the solid-state (glassy-state) method and other

methods as described in detail above in section I . Methods of using a

biodegradable glass composite material as disclosed herein are described in

further detail below in section III.



[0057] The parent glass or matrix material may further include one or more

therapeutic agent. This may include chemotherapeutics, growth factors,

angiogenic compounds, or any other substance that may be beneficial to the

region of interest. The therapeutic agent may diffuse out of the parent glass

faster than the nanoparticles are formed. In an aspect, the therapeutic agent

may provide a synergistic effect with the nanoparticles. The therapeutic agent

may, for example, be copper, iron, zinc or strontium.

[0058] The nanoparticles and parent glass may be incorporated into many

forms such as, for example, small irregularly shaped glass particles (frit),

microfibers, microspheres, thin flexible polymer sheets, and micron diameter

rods. FIG. 7 shows photographs of various forms of biodegradable glass that

may be fabricated and used towards soft tissue repair. The biodegradable glass

may be fabricated in many different forms, such as, but not limited to irregular

particles, microspheres, fibers, rods, to ribbons in different sizes, and may be

mixed with, or coated, on a polymer, metal, ceramic, or composite of desired

composition to provide a delivery system. The size of the biodegradable glass

material may be on the micron scale. In an aspect, the biodegradable glass rod

may be about 0.2 µιτι to about 400 µιτι in diameter.

[0059] Delivery of nanoparticles created from the biodegradable glass may

include injection of the nanoparticles alone, or as a suspension within a matrix

material of soluble gels that will degrade with time (hours to weeks), insertion by

surgical intervention, or placement at desired locations such that the linked or

unlinked nanoparticles can be released over time into the body fluids at the site

as the glass degrades in the body fluids. In an aspect, the nanoparticles may be

suspended in a matrix material. In another aspect, the parent glass may be

suspended in the matrix material. In yet another aspect, the parent glass may be

on the surface of the matrix material.

[0060] In one aspect, the matrix material may be, but is not limited to

collagen, laminin, fibrin, polycaprolactone (PCL), polylactic acid (PLA),

poly(lactic-co-glycolic acid) (PLGA), poly-L-lactide (PLLA), polyethylene glycol



(PEG), any other biodegradable polymer matrix material, and combinations

thereof. The matrix material and parent glass may be present in a mixture ratio

of matrix material to parent glass from about 20:80 to about 40:60, from about

30:70 to about 50:50, from about 40:60 to about 60:40, from about 50:50 to about

70:30, and from about 80:20 to about 60:40. The parent glass may be present

within the matrix material as a gradient from high dopant concentration to low

dopant concentration. In another aspect, the parent glass may be evenly

distributed throughout the matrix material. Multiple dopants with varying release

rates and/or solubility may be included within a matrix material to provide a

delayed release or gradient.

[0061] In another aspect, a biocompatible, biodegradable composite

material may formed initially as a flat sheet which is then rolled in the form of a

generally cylindrical conduit. Such a conduit may be any size, and in one

example can be usefully formed to be about 10mm to about 20mm long, about 3

mm to about 5 mm in outer diameter, and have a thickness of about 3 to about 4

rolls of the polymer sheet, wherein the thickness ranges from about 25 µιτι to 250

µιτι . The conduit may be porous in one aspect. In another aspect, as described

in further detail below, a biocompatible, biodegradable composite material in

various conformations may be combined with a second matrix material. For

example, a matrix material sheet containing a biodegradable composite material

may be rolled into a conduit shape which may be filled with another matrix

material containing a biodegradable composite material with the same or a

different dopant. In one of many possible examples, a biodegradable composite

material comprising PCL as the matrix and formed as a sheet may then be

formed into a conduit which contains, or surrounds a gel-like scaffold material

such as collagen or fibrin, in which a second biodegradable composite material is

suspended or contained.

[0062] Because of their biodegradability, poly ε -caprolactone (PCL) and its

copolymers have been used for soft tissue regeneration applications including

peripheral nerves. PCL slowly degrades in vivo and its degradation can take



several years depending upon its molecular weight. Furthermore, the

degradation rate of PCL can be altered by polymerization with other polymers

such as poly-lactic acid (PLA). Other copolymers may be used in place of PCL.

Addition of inorganic materials like biodegradable glass to a biodegradable

polymer improves the mechanical strength and enhances wetting properties of

certain polymers, which can improve cell adhesion. Together these properties of

copolymers provide the structural scaffold to develop a mixed biomaterial

consisting of biodegradable glasses to help heal and repair wounds, regenerate

nerves and repair other soft tissues such as blood vessels, and soft tissues such

as muscle, liver, and kidney.

[0063] In one aspect, biodegradable glass composites may be fabricated

in PCL or another such polymer as shown in FIG. 7 (polymer sheets). The

polymer sheet may then be rolled to form a cylindrical conduit. About 1.14g of

PCL (molecular weight about 70,000) may be dissolved in about 15 ml of

chloroform. The desired amount of glass particles may then be added to the

PCL/chloroform solution, stirred for about 30 min, and ultrasonicated several

times at about 1 min intervals. The glass/PCL mixture may be poured onto a

polished glass plate and a film of the mixture may be tape-casted using a blade

set at a thickness of about 600µηη . In an aspect, the glass plate may be about 8

cm wide and about 50 cm in length. The composite film may be dried at room

temperature for about 30 min, removed from the glass plate, and stored in a

desiccator.

[0064] The thickness of the dried films, measured with a micrometer at

several locations, may be about 60 ± 10 µιτι . In various aspects, the thickness of

the dried films may range from about 45 µιτι to about 55 µιτι , from about 50 µιτι to

about 60 µιτι , from about 55 µιτι to about 65 µιτι , from about 60 µιτι to about 70

µιτι , and about 65 µιτι to about 75 µιτι . In one aspect, the composition of the 13-

93 B3 borate glass (in wt.%) may be: 53% B2O3, 20% CaO, 12% K2O, 6% Na2O,

5% MgO, and 4% P2O.



[0065] Bioglass composites may be fabricated consisting of varying

percentages of PCL and 13-93 B3 glass chemically doped with varying types and

quantities of dopants. Additionally, in place of PCL, other types of polymers that

are inert and degrade with time may be substituted with many other polymer

materials used commonly in conduits including, but not limited to poly-lactic acid

(PLA), poly-L-lactic acid (PLLA), and poly-lactic-co-glycolic acid (PLGA).

III. Methods of Using Nanoparticles and Biodegradable Glass for Soft

Tissue Repair

[0066] In one aspect, the biocompatible, biodegradable composite material

is placed in contact with a body fluid or simulated body fluid. This may be at or

near or in association with a region of interest in body of a mammal such that the

nanoparticles are released into the body fluid(s) at the region of interest as the

glass degrades upon contact with a body fluid(s), such as blood, interstitial

fluid(s), cerebrospinal fluid, or lymph. A region of interest may for example be a

peripheral nerve, or the spine and/or spinal cord. Alternatively, a biocompatible,

biodegradable composite material is placed in contact with a body fluid or

simulated body fluid in vitro.

[0067] For example, chemical dopants such as cerium oxide (CeO2-x)

nanoparticles have been shown to prevent the death of HT22 nerve cells, protect

rat endothelial cells, increase the life span of brain cells, and provide benefits for

the survival of damaged spinal cord cells in rats. Cerium oxide nanoparticles may

also be used to treat, perhaps prevent, Alzheimer's, Parkinson and Huntington's

diseases, and multiple sclerosis. Other elements such as Y, Zn, and Ag may

also be neuroprotective, anti-oxidative, and overall provide improved health of

cells. Therefore, a number of types of chemical dopants may be added to the

glass composition at low weight % .

[0068] As described above and shown for example in FIG. 7,

biocompatible, biodegradable glass composite materials as disclosed herein can



be formed into various shapes and sizes. Different forms may also be usefully

combined with other biocompatible materials to create structures especially

useful for use in soft tissue repair, including any repair of any organ or soft tissue,

for example for wound healing or injured muscle repair. In one aspect, for

example, the composite materials disclosed herein may be used for nerve

regeneration. For example, a common repair mechanism for damaged or

severed nerves involves suturing a nerve guide conduit to opposing ends of a

severed peripheral nerve, to guide growth of the nerve into and through the

conduit for repair. FIG. 14 provides schematic illustrations showing how different

forms of a biodegradable glass composite material as disclosed herein may be

used in such a scheme. Any biodegradable glass composite material as

disclosed herein may be formed for example as a conduit from a rolled polymer

sheet, one or more glass rods, or may be formed as microfibers. FIG. 14

schematically illustrates various structures in the context of the sciatic peripheral

nerve model. As shown at left, a biodegradable glass composite material can be

formed as a cylindrical tube (conduit), for example from a rolled sheet of the

biodegradable glass composite material. Glass rods formed from the

biodegradable glass composite material can be used to build a generally

cylindrical scaffold, either alone or in association with a conduit of the

biodegradable glass composite material, or in association with another matrix or

scaffold material such as a collagen (CN), laminin or other similar gel.

Alternatively, microfibers of the biodegradable glass composite material can be

formed, and these can be embedded in a gel-like scaffold material such as a

collagen gel, fibrin, or collagen+laminin, which may optionally contain or may be

crosslinked to one or more growth factors or therapeutic agents. Such structures

may be usefully implanted at a site of tissue damage to promote repair. For

example, nerves can be easily sutured to a rolled polymer conduit.

[0069] It should be understood that many and various comparable

structural iterations are contemplated by the fact that the biodegradable glass

composite material is amenable to formation into many and various shapes and



sizes for building such structures The resulting structure can be used in the

aforementioned method to support suturing tissue repair, for example, to support

the nerve endings for peripheral repair and/or for embedding the mixed materials

for nerve regrowth. Multiple different biodegradable glass composite materials,

each with a different dopant could be used in combination. The nanoparticle

dopants themselves may be released as the glass reacts with a body fluid or

simulated body fluid, providing a timed release of dopants, growth factors, and/or

therapeutic agents to promote tissue repair. Further, for example, structures

embedded into an injectable matrix such as a collagen gel can be injected at the

site of injury.

[0070] In addition, similar concepts may be utilized for central nervous

tissue repair as in a spinal cord injury (FIG. 15). For instance, a collagen gel may

be formed by containing aligned biodegradable glass rods or microfibers, or both.

For a rod-containing gel, the gel may be formed outside of the site of injury in a

mold that would form a similar shape as the rods cannot be injected; however the

microfibers or frit may be readily suspended and may easily be injected while the

collagen may be a gel. Then, as it forms a gel scaffold structure upon warming to

body temperature, the glass may be embedded and the gel may take the shape

of the injury site. Furthermore, as in the sciatic nerve injury model, the glasses

used may be chemically doped, and either cross-linked to contain releasable

drugs and/or growth factors with time as the glass reacts with the bodily fluids.

Similar concepts may be utilized for any soft tissue injury repair, either injection

at the site or forming a molded gel structure from collagen, fibrin or other types of

gel matrix materials.

[0071] The results described below illustrate the individual aspects for the

feasibility and optimization of this system. Together, they will help to determine

how the biodegradable glass types and various forms could function, and with

particular dopants/factors/drugs to include for the greatest benefit towards

regeneration for the particular tissue. For instance, in the case of tissues that are



highly susceptible to oxidative stress, like nerves, including anti-oxidant dopants

would be beneficial.

[0072] Biodegradable and chemically doped glasses may provide multiple

means to aid and promote neuronal regeneration. Many of these examples of

biodegradable glass may be used in other tissues for tissue regeneration.

EXAMPLES

[0073] The following examples are included to demonstrate the disclosure.

It should be appreciated by those of skill in the art that the techniques disclosed

in the following examples represent techniques discovered by the inventors to

function well in the practice of the disclosure. Those of skill in the art should,

however, in light of the present disclosure, appreciate that many changes could

be made in the disclosure and still obtain a like or similar result without departing

from the spirit and scope of the disclosure, therefore all matter set forth is to be

interpreted as illustrative and not in a limiting sense.

Example 1: Preparation of Parent Glass and Nanoparticles

[0074] A sodium borate glass, with the molar composition of

Na2O.2B2 O 3.xCeO2 (0.001 <x<0.06), was prepared using sodium tetraborate (Alfa

Aesar Ward Hill MA, USA) and cerium oxide (CeO2) (Alfa Aesar Ward Hill, MA,

USA). The powdered raw materials were mixed, the homogeneous mixture was

melted in a platinum crucible at 1000 °C for 1 hour, and stirred several times. The

melt was poured on a cold steel plate and cooled to room temperature, forming a

glass. FIG. 1 shows the XRD pattern of the as-made glass. The absence of

diffraction peaks in the pattern in FIG. 1 indicates the material was no n

crystalline with no identifiable nanoparticles.

[0075] The glass was crushed to particles of less than 150 µιτι in diameter

and 200 mg of the glass particles were reacted in 50 ml of Dl water and

simulated body fluid (SBF) at 37°C for 12 hours. As the glass particles degraded

the solution became cloudy due to formation of ceria nanoparticles. The solution



was centrifuged to separate the nanoparticles from the solution, the residue was

washed with fresh Dl water, sonicated for 5 minutes, and then centrifuged for a

second time. This procedure was repeated several times to insure that any boron

or sodium that had dissolved from the glass was removed.

[0076] Finally, a drop of the solution containing the nanoparticles was

placed on a 400 mesh copper TEM grid coated with a thin-holed carbon, dried at

50°C, and then placed in the TEM. FIG. 2 shows low and high magnification TEM

images of the CeO2-x nanoparticles released from the borate glass as it

degraded in Dl water. The parallel patterns visible in FIG. 2B are lattice fringes

(Planes of atoms in a certain crystal structure) of cerium oxide crystals in a

particular crustal structure. Each nanopartide was identified when the direction of

these patterns changes because each nanoparticle/crystal has parallel planes

(Boundaries of two individual nanoparticles identified by solid lines). The cerium

oxide nanoparticles were crystalline (as indicated by the lattice fringes) and had

an average size of 2-3 nm.

[0077] FIG. 3 shows the nanoparticles formed in Simulated Body Fluid

(SBF) solution. Simulated body fluid is a buffered solution with a pH of 7.4 and

has a composition very close to human blood plasma. The SBF was composed

of the following (in mM): 137.5 NaCI, 3 KCI, 2 MgCI2, 2.6 CaCI2, 4.2 NaHCO 3, 1

K2HPO4, 0.5 Na2SO4, and 50.6 Tris-CI, pH 7.4 at 37°C. Table 1 shows the ion

concentration of SBF and human blood plasma.

Table .



[0078] Nanoparticles formed in SBF were about 50 ± 10 nm in diameter

and had an amorphous (non-crystalline) structure with no lattice fringes/ parallel

lines or patterns. Nanoparticles of yttrium and zirconium oxide may be formed in

Dl water using the same procedure (FIG. 4).

[0079] Table 2 provides examples of parent glass compositions, in mol %

that have been melted.

Table 2 .

Example 2 : Cell growth with nanoparticles

[0080] Embryonic (E1 0-1 1) chick dorsal root ganglia (DRG) were acutely

dissociated and incubated with doped glass in the form of small pieces of glass

(frit). The DRG are comprised of 3 types of cells, neurons and two support cells,

fibroblasts and glia cells. Control cells were grown in the absence of glass. B3

glass refers to the biodegradable borate glass. Additional chemical elements



added to the B3 biodegradable borate glasses are referred to by the chemical

abbreviation. For example, Ce is B3 glass doped with Cerium.

[0081] In the initial experiments, dissociated cells grew as well as, if not

better than control cultures based on qualitative visualization only, for up to 10

days in culture with the following doped glasses: Ce1 , Ce2, Fe, Ga, Zn, and B3.

These glasses were used further for quantification with Live/Dead assay and

counting cells with glass in the form of rods, microfibers and polymer/glass

composite sheets. The doped glass that supported some neuronal or cellular

growth by qualitative visualization includes: Y 1, Y2, Ag, l2, Mn, N2, S, and Sr.

[0082] Quantitative analysis was performed on B3, Ce1 , Ce2, Y 1, and Y2

doped glasses compared to control (without any glass added). The cells were

dissociated, seeded onto wells with the glass added and incubated for 10 days.

Wells were treated with Live/Dead Assay (Molecular Probes) as per the

instructions, and fluorescent images were acquired for each of the wells (4 per

condition) at both 7 and 10 days. Green fluorescence indicates the live cells

(calcein) and red fluorescence indicates the dead cells (ethidium bromide).

Images were acquired individually, merged with Image J, and live and dead cells

were counted. Neurons were distinguished based on their physical aspects of

the cells: larger cells bodies with long and thin processes growing from the cell

body. Fibroblasts are wide and flat, and glia are small round bodies without any

processes. The total number of cells from both live and dead conditions per

merged images was calculated and the fraction of live neurons/total cells for

percent live neurons was determined. The images in FIG. 5 are representative

live images for control cells (without glass added), Ce1 and Y 1 . FIG. 6 is a graph

that depicts the mean +/- standard error of the mean for the 4 different sets of

wells imaged per condition at day 7 and day 10. Statistical analysis was

performed with a two sample t-test with data considered significantly different

than control for the same days in culture (* p<0.05; * * p<0.01 ) . Furthermore, both

Ce and Y incubated for 7 days improved the neuronal survival and growth

compared to either B3 glass without added chemicals (+p<0.01 ) . Preliminary



results show that doped glass with Ce and Y improved the survival over that of

control and B3 only conditions.

Example 3 : Fabrication of biodegradable glass composites

[0083] To fabricate the PCL/biodegradable glass composites, or another

such polymer, as shown in FIG. 7 (polymer sheets), 1.14g of PCL (molecular

weight -70,000) was dissolved in 15 ml of chloroform. The desired amount of

glass particles was then added to the PCL/chloroform solution, stirred for 30 min

and ultrasonicated several times at 1 min intervals. The glass/PCL mixture was

poured onto a polished glass plate and a film of the mixture 8 cm wide and 50 cm

in length was tape-casted using a Dr. Blade set at a thickness of ΘΟΟµιτι . The

composite film was dried at room temperature for 30 min, removed from the

glass plate, and stored in a desiccator. The thickness of the dried films,

measured with a micrometer at several locations, was 60 ± 10 µιτι . The

composition of the 13-93 B3 borate glass (in wt.%) was: 53 B2O3, 20 CaO, 12

K2O, 6 Na2O, 5 MgO, and 4 P2O.

Example 4 : Degradation in Solution

[0084] Noticeable changes in the microstructure and morphology of the

rods and composite polymer sheets occurred after immersion in SBF or cell

culture media. The rods react and degrade with exposure time in the cell culture

media (FIG. 10). When the polymer sheets were exposed to SBF, both sides of

the composite sheet became rougher, and were covered with regions of

submicron crystals of hydroxyapatite (HA, see below). Using scanning electron

microscopy, the fabricated 100% PCL sheet is shown in FIG. 11 compared to

that of 13-93 B3 without any dopants. The micrographs show that the glass

particulates agglomerate during the drying process to form islands, see FIG. 11.

These agglomerates were likely responsible for the rougher surfaces. The

agglomerate islands of the 13-93 B3 composites were nearly covered with



regions composed of hydroxyapatite crystals (inset higher magnification) that

were identified by X-ray diffraction, see FIG. 5 . Cross-section scanning electron

microscopy images show the sub-micron HA microspheres (FIG. 12). Spherical

shapes composed of small HA crystals were also present within the cross section

of the composite film. This image indicates that the PCL-composite sheets were

permeable to the SBF solution since the HA crystals could only have formed if

the 13-93 B3 glass particles had been in contact with the SBF solution.

[0085] Degradation of the 100% PCL and the 13-93 B3 composite in SBF

was determined in two ways: weight loss measurements and analysis of the SBF

solution with inductively coupled plasma (ICP) for elemental analysis of B, Ca,

and P, as a function of time. The weight loss degradation profile for each

composite is shown in FIG. 13A for 14 days of SBF reaction. Weight loss for the

13-93 B3 composite rapidly increased for the first 3 days and reached a

maximum for the duration of the time period compared to the weight loss for the

100% PCL film which was negligible over the 14 day period. Ion release was

measured for the composites for 14 days in SBF. The concentration of B, Ca,

and P released from the 13-93 B3 polymer composite was compared to 100%

PCL (FIG. 13B-D). The average concentration of B released from the 13-93 B3

reached its highest value in 3 days. For Ca release, most of the change occurred

in the first 24 hours, although it was small compared to the nominal 100 ppm Ca

concentration in the starting SBF media. The increase in Ca concentration for the

13-93 B3 composite indicates that this fast reacting glass was releasing Ca,

which temporarily increases the overall super-saturation of the SBF. Eventually,

this leads to the precipitation of the insoluble HA material and accounts for the

slightly lower Ca concentration in the SBF at longer times. The P concentration in

the composites decreased with time. This reduction in P concentration was

consistent to form HA until either the Ca or P was consumed. Similar

experiments can be performed to show the weight loss and ion release effects

with different chemically doped glasses.



Example 5 : Mechanical Property Testing

[0086] Uniaxial tensile testing was performed to assess the mechanical

properties of the composites to confirm that the composites were strong enough

for an initial repair, but degrade within an appropriate time. Unreacted

composites were compared to composites reacted with media for 3 and 6 weeks.

For this experiment, glass composites consisted of 50% 13-93 B3:50% PCL (B3),

50% 45S5 (Bioglass®): 50% PCL (45S5), and 25% 13-93 B3:25% 45S5:50%

PCL (blend) were compared to 100% PCL. Peak stress, strain at break, and

elastic modulus were calculated for all composite samples (FIG. 16). Compared

to unreacted composites, peak stress was only significantly affected after 6

weeks in cell culture media for 100% PCL polymer sheets. PCL alone resulted in

higher peak stresses than any of the biocompatible, biodegradable composite

material sheets at any time point. The blend and 45S5 composites did not show

any significant change in peak stress or strain at break. The elastic moduli also

indicate stiffer properties of PCL and 45S5 sheets compared to the B3 composite

sheets. As expected, the blend of 45S5 and B3 glasses yielded moduli between

the B3 and 45S5 polymer sheets. In addition, PCL and 45S5 polymers trended

toward stiffer moduli with increased time in media, though these results were not

significant. Polymers with B3 did not vary in stiffness with incubation time.

Example 6 : Suture and mechanical strength of conduits

[0087] The biodegradable glass/PCL polymer sheets can be readily rolled

and formed into a conduit. Conduits were formed by rolling the polymer sheet

(single layer ~ 0.06 mm) about 5x, gluing with collagen to form a nerve guidance

conduit that was 15-1 6 mm long, 4.3 mm outer diameter and -0.3 mm inner

thickness (although these dimensions can be easily modified). We sutured

cadaver rat sciatic nerve with 9-0 sutures to one side of each end of the rolled

13-93 B3 conduits (FIG. 17) and performed mechanical strength testing on the

nerves. Each of the strength test resulted in the nerve suture being pulled from



the conduit or the nerve pulling apart from the suture, but not the conduit itself

failing.

Example 7 : Neuronal survival and outgrowth

[0088] To test the effects of the chemically doped glasses on neurons, two

main experiments were conducted to test whether the dopants were a) promoting

or inhibiting survival, and b) promoting or inhibiting neuronal outgrowth as a

model for nerve regeneration. To accomplish this, embryonic (E1 0-1 1) chick

dorsal root ganglia (DRG) were dissociated. The "whole" DRGs are comprised of

3 types of cells: neurons and two support cell types called fibroblasts and glia.

When dissociated, the types of cells can be distinguished from one another

morphologically, neurons have brightly round and clustered cells bodies

interconnected by neurite processes, fibroblasts are flattened broad cells, and

glia are small, polarized cells. In addition, Live cells were stained with Calcein

AM and for Dead cells with eithidium bromide (Live/Dead Assay; Molecular

Probes). Cells were then counted as live neurons, live support cells, or dead

cells. Percentage of live neurons compared to all live cells or total cells were

calculated. FIG. 18 shows a representative image of neurons in culture, stained

for Live/Dead and merged.

[0089] These types of experiments were repeated with biodegradable

borate-based glass without dopants (B3, control) or with chemical dopants. The

cells were dissociated, and cultured for 3 days prior to adding any biodegradable

glasses. For this experiment, all of the cells were exposed to two, 1 cm pieces of

glass that approximated ~ 14 mg/mL of glass reacting in cell culture media. After

3, 7 , or 10 days in culture with the biodegradable glass, cells were counted and

analyzed for survival. Figure 19 shows the average number of neurons alive

(FIG. 19 A) and the average number of support cells alive (FIG. 19 B) for the

doped glass conditions. Each of the dopants is shown labeled below the graph

for three (3) days (medium gray), seven (7) days (dark gray) and ten (10) days

(light gray) of incubation with the glass types. Statistical comparisons are shown



for each of the dopants compared to the control BGG without dopant for the

same day, where the averages that are significantly less than the control are

shown as the pound (#) sign, and the averages significantly greater are shown as

an asterisk (* ) , p<0.05. Figure 20 shows the averaged and normalized percent of

neurons/total live cells (FIG. 20 A) and averaged and normalized support

cells/total live cells (FIG. 20 B) for the dopant glass conditions at 3, 7, and 10

days of exposure. The dead cells were not taken into consideration. Note that the

difference between the two different Ce and Y ( 1 and 2) glasses is that the Ce2

and Y2 are both formulated with a trace amount of iodine, and thus iodine was

tested alone. In addition, the effects of adding 1, 2, 4 and 8 pieces of 1 cm

(7mg/mL) biodegradable glass (FIG. 21) were tested.

[0090] The response of DRG neurons to the biodegradable glass B3/PCL

polymer sheets was determined by measuring the length of neurite outgrowth

from whole DRGs after culture for 3 days on each doped polymer.

Representative images of whole DRGs are shown, and demonstrate that the

neurites survive and extend after culture on the doped polymer composites

compared to the 13-93 B3 (FIG. 22). PCL supports neurite outgrowth very well.

Addition of 13-93 B3 and/or dopant glass particles to PCL show that some of the

dopants improve outgrowth on the composite polymer sheet compared to 13-93

B3 glass without dopant. For example, Zn exhibited increased outgrowth

compared to Ce1 , Ce2, and Y 1 (*p<0.05) and Fe exhibited increased outgrowth

compared to Y 1 (#p<0.05). Overall, the mix of Cu/Zn/Sr/Fe, Fe, and Zn improved

outgrowth over that of 13-93 B3 alone. However, none of the dopants exhibited

any significant decrease compared to the undoped B3 glass. Because the

composite polymer sheets may be used to form a conduit for neurons to grow

within, it was primarily important that none of the dopants would inhibit the

regrowth. When the 13-93 B3 glass was pre-reacted, 13-93 B3 composites

showed a significant increase in neurite outgrowth compared to other undoped

biodegradable glasses of 45S5 and the blend of 45S5/B3/PCL (FIG. 23). These



experiments may be repeated for the pre-reacted doped biodegradable B3

polymer sheets.

[0091] Further data was obtained by measuring the length of the single

longest neurite to grow out from the whole dorsal root ganglia, when measured

from the center of the ganglia after 3 days in culture. The whole ganglia were

placed on top of a poly-L-caprolactone (PCL) polymer sheet of bioactive glass

(50% polymer, 50% doped borate glass). As shown in FIG. 24, compared to

control 13-93B3 polymer glass without dopant, the Fe-, Ga-, and Zn-containing

polymer sheets significantly improve neurite outgrowth. Copper is also tested in

the same way. With iodine, neuronal survival was quite poor over 10 days as

shown in FIGS. 19A and 20A, which indicates that dopant inclusion alone is not

supportive of neuronal growth, but that specific release of particular dopants are

important for neuronal regrowth.

[0092] Interestingly, the chemical dopants that improve the neuronal

survival of single dissociated cells as shown in FIG. 20 are not always the same

dopants that support outgrowth of neurites from a whole ganglion growing on the

surface of the polymer glass composites as shown in FIG. 24. Although it is not

yet known why one dopant supports growth better than the others, ion release

experiments were performed to determine the rate of release of the ions from the

glass fibers used in the experiments for FIGS. 19 and 20, as compared to the

release of ions from the composite PCL polymer sheets on which the whole

dorsal root ganglia are grown, as shown in FIG. 24.

Example 8 : Aligned glass cause aligned growth

[0093] Whole chick dorsal root ganglia (DRG) were seeded onto aligned

13-93 B3 rods "glued" onto thin fibrin or collagen scaffolds to form a "raft" of

biodegradable glass rods. The whole DRG were imaged growing on the aligned

13-93 B3 glass rods as shown in FIG. 25. When the number of neurites were

counted that were growing within each 45 degree angle from 0 to 360 degrees,

and taking the center of the whole DRG as the apex of the angle, the neurites



aligned with the axis of the glass rods as shown in the bar histogram of FIG. 25.

The schematic that shows the angles and neurites were oriented with the aligned

glass fibers. Together, the DRG experiments show that the DRG grow on

biodegradable glass, and when the glass was aligned, neurites extend from the

DRG in an oriented direction.

All patents and publications mentioned in the specification are indicative of

the levels of those skilled in the art to which the present disclosure pertains. All

patents and publications are herein incorporated by reference to the same extent

as if each individual publication was specifically and individually indicated to be

incorporated by reference.



CLAIMS

What is claimed is:

1. A biocompatible, biodegradable composite material for soft tissue repair,

comprising:

a matrix material; and

a parent glass suspended within the matrix material, the parent glass

comprising one or more dopants;

wherein the parent glass releases a plurality of dopant based

nanoparticles when in contact with a body fluid or simulated body fluid.

2 . The biodegradable glass composition of claim 1, wherein the parent glass

comprises sodium tetraborate.

3 . The biodegradable glass composition of claim 1, wherein the dopant is

selected from a metal ion, a transition metal ion, an oxide, a rare earth oxide, a

halide, carbonate, a compound containing a cation, and any combination thereof.

4 . The biocompatible, biodegradable composite material of claim 3, wherein

the dopant is selected from CeO2, Ce2O3 Y2O3, and ZrO2 and mixtures thereof.

5 . The biocompatible, biodegradable composite material of claim 1, wherein

the dopant is selected from cations of Co, Ni, Cu, Ag, Au, Pt, Fe, Ru, Si, V, Cr,

Mn, Fe, Ni, Zn, Sn, Sb, Zn, Ti, Y , Zr, W, La, Ce, Pr, Nd, Sm, Eu, Lu, Yb, Er, Ba,

Ga, I , N, S, Si, and any combination thereof.

6 . The biocompatible, biodegradable composite material of claim 5, wherein

the dopant is selected from the combinations l/Ce, l/Y, l/Ce/P, and Cu/Zn/Sr/Fe.



7 . The biocompatible, biodegradable composite material of claim 1, wherein

the parent glass comprises Na2O.2B 2 O 3.xCeO2 and x ranges from about 0.001 to

about 0.30 moles.

8 . The biocompatible, biodegradable composite material of claim 1, wherein

the material is degradable in vivo.

9 . The biocompatible, biodegradable composite material of claim 1, further

comprising a therapeutic agent.

10 . The biocompatible, biodegradable composite material of claim 1, wherein

matrix material is selected from a polymer, a ceramic, and any combination

thereof.

11. The biocompatible, biodegradable composite material of claim 10, wherein

the matrix material is selected from collagen, laminin, fibrin, PCL, PLA, PLLA,

PEG, PGA, PLGA and any combination thereof.

12 . The biocompatible, biodegradable composite material of claim 1, wherein

the parent glass comprises at least one conformation selected from irregular

particles, microspheres, fibers, rods, ribbons and any combination thereof..

13 . The biocompatible, biodegradable composite material of claim 12, in

which the conformation is combined with a second matrix material.

14. The combination of claim 13, wherein the second matrix material

comprises a scaffold material selected from collagen, laminin, fibrin and any

combination thereof.

15 . The combination of claim 13, wherein the combination has a generally

cylindrical conduit form.



16 . A method of delivering nanoparticles to a region of interest, comprising:

contacting a biocompatible, biodegradable composite material with a body

fluid or simulated body fluid, the biocompatible, biodegradable composite

material comprising:

a matrix material; and

a parent glass suspended within the matrix material, the parent

glass comprising a dopant; and

allowing the parent glass to react or degrade to form and release the

nanoparticles.

17 . The method of claim 16, wherein the glass comprises sodium tetraborate.

18 . The method of claim 16, wherein the dopant is selected from a metal ion,

a transition metal ion, an oxide, a rare earth oxide, a halide, carbonate, a

compound containing a cation, and any combination thereof.

19 . The method of claim 18, wherein the dopant is selected from CeO2, Y2O3,

20. The method of claim 16, wherein the dopant is selected from Co, Ni, Cu,

Ag, Au, Pt, Fe, Ru, Si, V, Cr, Mn, Fe, Ni, Zn, Sn, Sb, Zn, Ti, Y, Zr, W , La, Ce, Pr,

Nd, Sm, Eu, Lu, Yb, Er, Ba, Ga, I , N, S, Si, and any combination thereof.

2 1 . The method of claim 20, wherein the dopant is selected from the

combinations l/Ce, l/Y, l/Ce/P, and Cu/Zn/Sr/Fe.

22. The method of claim 16, wherein the parent glass comprises

Na2O.2B2O3.xCeO2 and x ranges from about 0.001 to about 0.30 moles.



23. The method of claim 16, wherein the biocompatible, biodegradable

composite material further comprises a therapeutic agent.

24. The method of claim 16, wherein the matrix material is selected from a

polymer, ceramic, and any combination thereof.

25. The method of claim 24, wherein the matrix material is a polymer selected

from collagen, laminin, fibrin, PCL, PLA, PLLA, PEG, PGA, PLGA, and any

combination thereof.

26. The method of claim 16, wherein the parent glass comprises at least one

conformation selected from irregular particles, microspheres, fibers, rods,

ribbons, and any combination thereof.

27. The method of claim 16, in which the conformation is combined with a

second matrix material.

28. The method of claim 27, wherein the second matrix material comprises a

scaffold material selected from collagen, laminin, fibrin and any combination

thereof.

29. The method of claim 27, wherein the combination has a generally

cylindrical conduit form.

30. The method of claim 16, wherein the body fluid is associated with a region

of interest.

3 1 . The method of claim 30, wherein the region of interest is selected from a

peripheral nerve and the spinal cord.

















































INTERNATIONAL SEARCH REPORT International application No.

PCT/US 15/4918 4

A . CLASSIFICATION O F SUBJECT MATTER
IPC (8 ) - A61K 9/14 (2015.01)
CPC - A6 1 9/0024; A61K 9/0056; A61K 9/0014

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
CPC - A61K 9/0024; A61K 9/0056; A61K 9/0014
IPC(8) - A61K 9/14 (2015.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
CPC - A61K 9/0024; A61K 9/0056; A61K 9/0014; IPC(8) - A61K 9/14 (2015.01); USPC - 424/484,486

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST(USPT,PGPB,EPAB,JPAB); PatBase; Google Scholar. Search Terms: tissue nerve repair release antioxidant nanoparlicie
sodium tetraborate biodegradable glass combined dopant cerium yttrium oxide cation scaffold polymer fibrin laminin collagen

C . DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, o f the relevant passages Relevant to claim No.

MARQUARDT et al., Effects of borate-based bioactive glass on neuron viability and neurite 1-31
extension, J Biomed Mater Res Part A 2014:102A:2767?2775, published online 30 September
2013, abstract; p . 2770, col 1, para 1; p. 2770, col 2, para 1; p .2773, col 2 , para 2; p. 2774, col
1, para 2

US 2010/0098768 A 1 (ANDREESCU e t al.) 22 October 2010 (22.10.2010), abstract; paras 1-31
[0018]-[0019], [0022H0023]

US 5,250,355 A (NEWMAN et al.) 05 October 1993 (05.10.1993), col 4 , In 14-16 2 , 17

US 2013/034151 1 A 1 (SHAH et al.) 26 December 2013 (26.12.2013), para [0048] 6 , 2 1

US 2012/0126172 A 1 (ZHOU e t al.) 24 May 2012 (24.05.2012), para [0045] 7,22

US 2010/02331 15 A 1 (PATEL et al.) 16 September 2010 (16.09.2010), paras [0002], [0122] 13-14,

Further documents are listed in the continuation of Box C . |

Special categories of cited documents: "T" later document published after the international filing date or priority
A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art
P" document published prior to the international filing date but later than "&" document member of the same patent family

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

20 October 2015 (20.10.2015) EC 2015
Name and mailing address of the ISA/US Authorized officer:

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450

PCT Help es : 571-272-4300
Facsimile No. 571-273-8300 PCTOSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 20 )


	Glass Derived Nanoparticles for Nerve Tissue Repair
	Recommended Citation

	abstract
	description
	claims
	drawings
	wo-search-report

