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ABSTRACT 

 

Salt marshes are important ecosystems found along the coast of Georgia. Salt marshes 

are hosts to diverse organisms that interact with each other to promote many ecosystem 

services, such as storm buffering and flooding, and absorption of excess nutrients. 

Among these diverse organisms is the ribbed mussel, Geukensia demissa. Mussels are a 

foundation species in this intertidal landscape, and without them the whole salt marsh 

would be negatively affected. The purpose of this investigation was to explore the 

thermal stress response of G. demissa to rising temperatures. Mussels were collected 

from three locations that were landlocked, close to a road, and far away from a road on 

Tybee Island, Georgia. The presence of this road has greatly increased the temperature 

in the salt marsh. Thus, we hypothesize that mussels will have an increased heart rate 

with increased temperature. To test this hypothesis, the heartbeat of G. demissa were 

recorded using an IR sensor in laboratory and field experiments at reduced and elevated 

temperatures. Results showed that mussels from locations regularly experiencing 

elevated temperatures do not have an increased heart rate. However, mussels from 

locations that experience lower temperatures did. These results indicate that mussels 

are more resilient to higher temperatures than previously expected. This study is 

significant for marsh conservationists and scientists wishing to preserve and maintain 

the salt marsh and its ecosystem services.  
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Introduction 

Salt marshes provide a variety of ecosystem services to people, including erosion 

control, water filtration, and storm buffering (Barbier et al. 2011, Leonardi et al. 2018). 

One of the most important benefits salt marshes hold to other ecosystems and humans is 

the filtration of water runoff, which diminishes nitrogen input to estuaries and the ocean. 

Excess nitrogen can lead to toxic algal blooms and marine dead zones (Gedan et al. 

2009). However, these ecosystem services are reduced due to anthropogenic effects and 

the salt marsh’s sensitive location. There has been a large decline in the vital salt marsh 

ecosystem due to climate change, sea level rise, erosion, tidal submergence, and urban 

development (Bilkovic et al. 2017, Derksen‐Hooijberg et al. 2017). This is mainly due to 

large ships eroding away the sea shore with their waves, the high real estate potential of 

these locations, and development by the tourism industry. Among these anthropogenic 

factors affecting the salt marsh, increased shoreline armoring due to rising seas and 

growing development are the greatest factors contributing to decreased salt marsh habitat 

(Bilkovic et al. 2017). Other anthropogenic factors affecting the salt marsh include the 

creation of salt ponds for salt production, the introduction of invasive plant and animal 

species, and the conversion of marsh to fertile farmland. These human impacts have 

caused consumer control to dominate the salt marsh habitat, detrimentally affecting the 

salt marsh ecosystem (Ainsworth & Long 2005, Gedan et al. 2009). This means that the 

predators in the marsh habitat are predominant and tilt the delicate balance and 

relationship between marsh organisms. 
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Among the factors putting the salt marsh at great risk, rising temperatures and 

climate change are the most predominant. The mean ocean temperature has increased by 

.11°C per decade since 1970 and ocean levels have risen .19 m between 1900 and 2010. 

Both temperature and ocean level are expected to continue to rise. These rising 

temperatures have led to shifts in plant species distributions, which have caused negative 

effects of resident and migratory species. Many studies have measured the physiological 

stress response in intertidal species by recording their heart rate. These studies indicated 

that high temperatures do affect the cardiac performance in intertidal species. For 

instance, the limpet species Cellena toreuma and Lottia digitalis and two lineages of the 

brown mussel Perna perna experienced higher heart rate at high temperatures (Bjelde 

and Todgham 2013, Huang et al. 2015, Tagliarolo & McQuaid 2016).  

Intertidal organisms are already experiencing increased thermal stress due to the 

emersion/immersion cycle. The Santini (2000) and Tagliarolo & McQuaid (2016) studies 

noted higher cardiac activity during daytime immersion. However, during emersion, 

mollusks e.g. mussels, limpets and gastropods, face significant increases in temperature. 

It is suspected that these intertidal organisms may already experience their thermal 

tolerance limit during low tide. Exposure to high temperatures during low tide can be 

further exacerbated by building roads through the salt marsh. Roads interrupt tidal flow 

and thus subject salt marsh organisms to longer periods of emersion and high 

temperatures. Exposure to very high temperatures for long periods of time can lead to 

extremely high heart rates and death. The ribbed mussel Geukensia demissa is quite 

common in salt marshes along the east coast of the United States (Bertness 1984) with 

densities of over 2000 individuals/m2 in New England salt marshes (Honig et al. 2015). 
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However, no studies of G. demissa have addressed the effects of extreme temperatures on 

cardiac activity of this foundation species in southeastern Georgia’s salt marshes.   

This study examined the effects of increased temperatures on heart rate of G. 

demissa in laboratory and field experiments. G. demissa was chosen because it is an 

ecosystem engineer and at risk from anthropogenic effects. G. demissa helps stabilize the 

marsh by filtering organic material and producing biodeposits (Bilkovic et al. 2017). 

These biodeposits promote cordgrass (Spartina alterniflora) growth which then aids the 

binding of sediments and reduces erosion. The binding of sediment and aggregates of 

mussels also helps stabilize the growth of the cordgrass. G. demissa also directly 

influences the diversity and ecosystem multifunctionality of the salt marsh as a secondary 

foundation species (Angelini et al. 2016). It has been found that larger aggregates of 

mussels increase the number and diversity of other invertebrate inhabitants of the marsh 

including mud crabs, marsh crabs, snails, and fiddler crabs. Increased aggregation of 

mussels has also been observed to increase water infiltration, cordgrass and invertebrate 

biomass, and soil accretion (Angelini et al. 2016). This has been experimented only on a 

patch scale but indicate the vast importance and role ribbed mussels play in the salt 

marsh.  

For example, the mutualistic relationship between G. demissa and S. alterniflora 

improves the overall health of the salt marsh (Angelini et al. 2016, Derksen-Hooijberg et 

al. 2017). Cordgrass are taller and found at higher densities in the presence of ribbed 

mussels (Bertness 1984, Angelini et al. 2016). In turn mussel abundance increases. 

Angelini et al. (2016) predicted that loss of G. demissa could increase the time it takes for 

salt marshes to recover from drought by up to 100 years. The benefits and ecosystem 
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services that G. demissa provide may be diminished by roads that cut through salt 

marshes. The resulting interruption of tidal flow may subject the mussels to higher 

temperatures for longer periods of time and cause heart rates to increase to dangerous 

levels.  

To understand the effects of temperature on the heart rate of G. demissa, heart rate 

measurements were made with a non-invasive infrared technique developed by Burnett et 

al. (2013) in the laboratory and field in 2018 and 2019. Three locations were chosen on 

Tybee Island, Georgia’s salt marshes. One location was landlocked with roads on either 

side of the marsh. This location only received tidal flow through an underground culvert, 

has very short S. alterniflora and was expected to have the highest temperatures. The 

second location was the high salt marsh. This location is in close proximity to a road, but 

still receives regular tidal flow. The third location is the mid salt marsh which was not too 

far from a small creek with regular tidal flow. The mid marsh was expected to experience 

lower temperatures due to the taller S. alterniflora. Based on the results of previous 

studies, it is hypothesized that the heart rates of G. demissa will increase as temperatures 

increase in the laboratory and field. By studying the relationship between rising 

temperatures and G. demissa, it will be possible to implement policies that will increase 

preservation of Georgia’s salt marshes.   

Methods 

Description of locations 

G. demissa from Tybee Island (32.000517 N, -80.845767 W) were collected in 

September and October of 2018, and April and September of 2019 for three laboratory 

and three field experiments. Three locations were chosen (Supplementary Table 1 
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appendix). At each of these locations, four meter by meter plots were randomly chosen 

(Figure 1A and 1B, Supplementary Table 1 appendix). Common to these three locations 

were mounds composed of mussels and cordgrass. Mounds are raised portion of the 

substrate. Mussels are found on these mounds and can form aggregates of up to 200 

mussels.  

Location one (Landlocked) was chosen because it is characterized by roads on 

either side of the marsh (Old Tybee road and Highway 80), interrupted tidal flow, 

lengthened high tides, increased temperatures and lower densities of mussels. Location 

one only receives tidal flow from a culvert connecting the main salt marsh to the 

landlocked region of the salt marsh. As a result, location one experiences lengthened high 

and low tides. This made location one an ideal location to measure the physiological 

stress response of higher temperatures on G. demissa. Location two (High marsh) was 

chosen because it is close to Old Tybee road. Close proximity to a road interrupts tidal 

flow, but to a lesser degree than the landlocked location. Location three (Mid marsh) was 

chosen because it is most exemplary of the natural marsh environment, with normal tidal 

flow and temperatures. (Figure 1A and 1B, supplemental Table 1 appendix). Tide level 

varied for each field experiment between -0.2 and 0.03m (Supplementary Table 2 

appendix).  

The temperature at high and mid marsh were, on average, between 37°C and 43°C 

during the day. The temperature at the landlocked location was, on average, between 

37°C and 53°C. The average height of the cordgrass was shorter at the landlocked 

location and high marsh (38.8 and 44.4 cm), and taller (61 cm) at the mid marsh location. 
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There was lower percent coverage of S. alterniflora at the landlocked and high marsh 

locations, with higher percent coverage in the mid marsh (Table 1).  

 

Table 1. Average height and percent cover of Spartina alterniflora at three locations 

(landlocked, high marsh and mid marsh) off old Tybee Road, Tybee Island, Georgia. 

There were four plots per location, and ten cordgrass stems were measured in each plot.  

  

number of 

plots (n) 

Average height 

(cm) 

Standard 

Deviation 

Average percent 

cover 

Standard 

Deviation 

Land-

locked 
4 38.8 5.9 45 8.1 

High 

marsh 
4 44.4 9.4 48 11.9 

Mid 

marsh 
4 61.0 2.0 84 2.5 
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Figure 1A and B.  Plots at the landlocked, high marsh, and mid marsh locations near 

Lazaretto Creek and Old Tybee Road, Tybee Island, Georgia. A yellow arrow indicates 

the position of the culvert under Old Tybee Road, leading to the landlocked location.   

 

Mussel Collection and Lab Maintenance 

 At each location, four plots were selected, totaling 12 plots. To measure the heart 

rate of mussels, 2-3 mussels were collected from each plot for a total of 10 mussels from 

each location in September and October of 2018, and April and September of 2019. 

B 

A 
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These mussels were collected to measure heart rate in the laboratory, and then returned to 

the field for in situ measurement of heartbeat.  

 In the laboratory, mussels were kept in three containers (45 x 30 x 30 cm) for 

two-four weeks (10 mussels per container per location). Each tank was aerated with two 

air stones and the salinity was kept between 30 to 33 %, which is the salinity in the 

natural habitat (Supplemental Table 3). The tanks were cleaned twice a week. The 

mussels were fed either mud containing algae from the salt marsh through a pipette, or 

with an algal shellfish diet (Shellfish Diet 1800 Batch #19229) three times a week. 

Mussels collected from all three locations were 89-116 mm in length (Supplemental 

Table 4). There was no statistical difference in mussel size from the three locations (p = 

0.0697).  

Method used to measure heartbeat of mussels 

The heart rate was collected using a non-invasive technique developed by Burnett 

et al. (2013) This method has successfully been used to measure the heart rate of limpets, 

mudcrabs, and mussels. This technique consists of the following components: PicoScope 

2207B, Burnett heartbeat monitor amplifier, IR sensor, USB-6009, and PC or Mac 

computer. All components were purchased from Digikey and picotech.com.  

The heart rate sensors are made of an IR emitter and IR detector in a small 

package that creates an image of the heart and detects movement in the circulatory 

system, thus detecting a heartbeat. This is accomplished by IR light passing through the 

shell and reflecting off of the heart and circulatory system. As the heart contracts, a 

different amount of IR light is reflected and this is received and recorded by the IR 

detector. The signal is then translated into an electrical signal that is picked up by an 
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attached circuit board and converted from an analog to a digital signal by Pico software 

on a laptop (Burnett et al. 2013). 

The IR sensor was physically placed on the mussel’s shell, above the heart 

(Figure 2A and 2B). Placement of the IR sensor on the mussel can greatly affect the 

signal of the heartbeat, as analyzed by the Pico-software. Interference with a signal can 

cause an unreadable signal (Figure 3A). This interference can be caused by water, 

movement, or light. Placement of the IR sensor close to the heart or not on it may result 

in a weak signal, but with no interference (Figure 3B). Placement of the IR sensor 

directly on top of the heart will result in a very strong signal that can be easily analyzed 

for heartbeat (Figure 3C).  

 

 
Figure 2A and B. Placement and orientation of mussels and the IR sensor on Geukensia 

demissa in the field (A) and in the lab (B).  
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Figure 3A-D. Variation in heartbeat signal in Geukensia demissa. When the sensor is 

moved it produces interference in the heartbeat signal (A). Wrong placement of the IR 

sensor or placed not above the heart can result in a signal that is difficult to read (B). 

Placement of the IR sensor directly above the heart indicates a strong and regular signal 

(C). Each star represents a heartbeat, and shows how the number of heartbeats/min was 

estimated (D).  

 

Laboratory Experiments 

To simulate the elevated and reduced temperatures that mussels experience 

throughout the day in the salt marsh environment, the heart rate of mussels was recorded 

at a reduced temperature (~ 20°C), at an intermediate temperature (~30°C), and at an 

elevated temperature environment (~36°C). This laboratory experiment was first 

conducted in October of 2018 and then repeated in November 2018. The intermediate 

temperature experiment was conducted in April 2019. 

A B

v

 

C

 

D
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For the low temperature experiment, the water in each tank was siphoned out and 

the mussels heart rate was recorded at ~20°C. For the elevated temperature experiment, 

the mussels were placed in a waterbath (30 x 15 x 15 cm). This waterbath was separated 

into three levels by Rubbermaid sink mats that were cut and fit to make three levels.  

Mussels from the landlocked location were placed on the lowest level of the water 

bath, mussels from the high marsh were placed on the middle level, and mussels from 

mid marsh were placed on the topmost level. They were placed in an orientation that 

allowed the heartbeat to be collected with very little disturbance. The water was increased 

gradually from 20 to 36 degrees Celsius over the course of an hour and maintained for 30 

minutes. After an hour and 30 minutes, the water level was siphoned out and lowered to 

expose the first 10 mussels to the air so the heart rate could be recorded. The heart rate 

was recorded for 1 minute/mussel and saved to a computer as a Picoscope file. This was 

then repeated for the mussels in the lower levels. All heartbeats were collected within 45 

minutes.  

Field Experiments 

Heartbeat was measured in the field to compare the physiological stress response 

in situ with laboratory experiments. This process of collecting the mussel’s heartbeat was 

emulated in the field in October of 2018 (21°C), April 2019 (20.5°C) and September 

2019 (40°C) 

 Mussels were returned to the location they originated from, in plots previously 

marked at each location. Mussels from the high marsh, mid marsh, and the landlocked 

locations were placed in the substrate and left alone for 30 minutes to one hour. The 

mussels were placed upright in the mud, leaving up to three centimeters of the top of the 
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mussel visible to allow for placement of the IR sensor (Figure 2A). The heart rate was 

then individually recorded for all 30 mussels for one minute. The mussels from the high 

marsh were measured first, and the landlocked location was measured last because 

mussels remained submerged for a longer period of time at this location even when the 

tide has gone out.  

During the collection of the heartbeat, the materials were housed in a waterproof 

container. The Picoscope and amplifier were connected to each other, and the cords and 

IR sensor were fed out of the container and linked to a laptop computer or placed on the 

mussel for in situ recording. There were two observers. One observer held the waterproof 

container and placed the sensor on each mussel. The second observer held the computer 

and ran the Picoscope program and saved each Picoscope file per mussel.  

 At the high marsh, mid marsh, and landlocked locations, the temperature was 

recorded using HOBO pendant MX Temperature/Light Data Logger and HOBO TidbiT 

MX 2203 Temperature 400’ Data Logger.  

Statistical analysis 

The lab data was analyzed with a 2-way ANOVA with interaction. Temperature 

(elevated and low) and location (high, mid, and landlocked salt marsh) were fixed factors. 

To compare the field and lab data, a mixed model 3-way nested ANOVA was used. The 

fixed factors were the location (high, mid, and landlocked salt marsh), the temperature 

(elevated and low for laboratory and field experiments) and the type of experiment (lab 

and field). Mussels were a random factor nested within location. When differences were 

significant a Tukey HSD test was used to determine which treatments differed. Data were 
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initially screened for equality of variances and normality. All data were analyzed using 

JMP Pro 13.  

Figure 4A. Continuous recording of temperature from dataloggers installed close to the 

landlocked location in 2018. The highest air temperature recorded at this location was 

54°C. 
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Figure 4B. Continuous recording of temperature from dataloggers installed close to the 

mid marsh location in 2018. The highest air temperature recorded at this location was 

46°C. 
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Figure 4C. Continuous recording of temperature from dataloggers installed close to the 

landlocked location in 2019. The highest air temperature was 54°C.
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Figure 4D. Continuous recording of temperature from dataloggers installed close to the 

mid marsh location in 2019. The highest air temperature was 45°C.  

Results 

Temperature Measurements 

The temperatures in the field fluctuated between 22°C and 43°C in the high and 

mid salt marsh and 22°C and 48°C for the landlocked location (Figure 4A to 4D). This 

>20°C fluctuation of temperature indicates a stressful environment for G. demissa. For 

the first two field experiments on October 26, 2018 and April 20, 2019, the temperature 

was ~21°C and ~20.5°C, respectively. On September 28, 2019, the temperature during 

field experiments was 40°C. In 2018 and September 2019, maximum day temperatures 

fell below 40°C during storms in 2019 (hurricane Dorian with maximum winds of 

185mph September 5, 2019, and tropical storms mid-September with maximum sustained 
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winds of 50mph, NOAA). Maximum temperatures during this time fell below 30°C near 

the mid marsh and below 35°C at the landlocked location.  

Laboratory experiments 

 Significant differences were observed among mussels from the high marsh, mid 

marsh, and landlocked location. Mussels from these locations were exposed to room 

(20°C), intermediate (30°C) and elevated (36°C) temperatures in the laboratory. As 

expected, the mean heart rates of the mussels in the high salt marsh and mid salt marsh 

showed a significant increase when exposed to an elevated temperature of 36°C (high 

marsh, reduced temperatures 51.3 beats/min, elevated temperatures 70.0 beats/min; mid 

marsh, reduced temperatures 49.3 beats/min, elevated temperatures 68.4 beats/min; P 

<.0001, Figure 5A). However, the mussels from the landlocked location did not show a 

significant change in mean heart rate at different temperatures (low temperature 54.8 

beats/min, elevated temperature 55.4 beats/min, Figure 5A). When exposed to 20 or 30°C 

in the lab, mean heart rate did not differ significantly among mussels from the 

landlocked, high and mid marsh locations. Interestingly, heart rates of mussels were 

lowest at 30°C varying between 46.5-49.8 beats/min at all three locations. The largest 

variation in heart rate was observed for mussels from the landlocked location exposed to 

20°C in the lab.  
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Figure 5A. Laboratory experiment: Box plots of heart rate per minute for ribbed mussels, 

Geukensia demissa from the landlocked, high marsh, and mid marsh locations off of old 

Tybee road, Tybee Island, Georgia. The box represents the interquartile range. If visible a 

line in the middle of the box is the median. Outliers outside the box are represented by 

closed circles and minimum and maximum values are shown. Ten mussels were used per 

location for a total of 30 mussels for the elevated temperature, 30 for the intermediate 

temperature, and 30 for room temperature. Different letters indicate significant 

differences among locations and temperatures (p = 0.05). 

 

Field Experiments 

 As with the laboratory data, significant differences were observed among mussels 

from the landlocked, high marsh and mid marsh locations exposed to low (20°C) and 

elevated (40°C) temperatures. Overall, mussels from the landlocked location had 

significantly lower mean heart rate (47.6 beats/min) followed by mussels in the high 

A 

A 

 

C 

C C  C

 

BC

 

B

 

BC
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marsh (54.0 beats/min) and mussels in the mid marsh (68.5 beats/min, Figure 5B, p = 

0.05). Mussels from the mid marsh had the highest mean heart rate at the elevated 

temperature (68.5 beats/min) and the lowest heart rate at the low temperature (46.2 

beat/min). Mean heart rate for mussels from the high marsh and landlocked did not differ 

significantly. There was no difference in mean heart rate at elevated and low 

temperatures for mussels from the high marsh (elevated 54.0 beats/min, low 58.8 

beats/min). The heart rate of mussels from the landlocked location (at elevated 

temperatures) was similar to those from the mid marsh at low temperatures (Figure 5B).  
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Figure 5B. Comparison between laboratory and field experiments: Box plots of heart rate 

per minute for ribbed mussels Geukensia demissa from the landlocked, high marsh, and 

mid marsh at Tybee Island, GA at elevated and low temperatures. The box represents the 

interquartile range. If visible a line in the middle of the box is the median. Outliers 

outside the box are represented by closed circles and minimum and maximum values are 

shown. Ten mussels per location were used, 30 for elevated and 30 for low temperature 

treatments. Different letters indicate significant differences among locations and 

temperatures (p = 0.05).  

 

Laboratory and Field comparison 

 When field (experiments 1 and 3, 21 and 40°C respectively) and lab (experiment 

2, 20 and 36°C respectively) data were compared, a three-way ANOVA showed no 

significant difference in the mean heart rate of mussels from field and lab experiments (p 

= 0.5455). There was significant interaction between location, temperature, and type of 

experiment (P < 0.0001. Figure 5B, Supplementary Table 6 appendix). 

CDE 

E 

A 
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Mussels from the high and mid marsh had higher heart rates at elevated 

temperatures in the laboratory and in the field especially those from the mid marsh (lab: 

high marsh 65.7 beats/min, mid marsh 64.8; field: high marsh 54.0, mid marsh 68.5; 

Figure 5B). In the field, the high marsh and landlocked mussels responded to elevated 

and reduced temperatures in the same way as the high marsh, mid marsh, and landlocked 

mussels did to low temperatures in the laboratory (lab: landlocked mean heart rate: 53.4 

beats/min, mid marsh 47.7 beats/min, high marsh 51.0 beats/min; field: reduced: 

landlocked 56.4 beats/min, high marsh 58.8 beats/min; field: elevated: landlocked 47.6, 

high marsh 54.0; Figure 5B). Mussels from the high marsh and mid marsh responded 

similarly to elevated temperatures in the laboratory (high marsh, 65.7 beats/min, mid 

marsh 64.8 beats/min). There was a significant interaction between location and 

temperature (P <.0001).  

Interestingly, when field (experiments 1 and 3, 21 and 40°C respectively) and lab 

(experiments 2 and 3, 20 and 30°C respectively) data were compared, mean mussel heart 

rates did not vary among locations (p = 0.1013, Supplemental Figure 1, and Table 7). But 

there were significant differences between type of experiment (field or laboratory, 

Supplemental Figure 1, and Table 7). and between elevated and low temperatures (p = 

0.4960, Figure 5B). There was a significant interaction between type of experiment (lab 

or field) location (landlocked, mid and high marsh) and temperature (elevated and low, P 

< 0.0001, Supplemental Figure 1, Table 7). The highest mean heart rate was recorded in 

situ for mussels in the mid marsh (68.5±1.6 beats per minute). The heart rate for these 

mussels was significantly higher than for mussels in all other treatments. Mean heart rate 

for mussels in the laboratory with the exception of a few cases tend to be significantly 
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lower than in the field (P < 0.0001, Supplemental Figure 1). In the field, values ranged 

from 46.5-49.2 beats per minute for mussels at elevated temperatures and 47.7 to 53.4 

beats per minute for mussels at low temperatures. In the laboratory values ranged from 

49.2 to 68.5 beats for mussels at intermediate temperatures and from 49.9 to 58.8 for field 

elevated temperatures. The lowest mean heart rates were recorded for mussels at elevated 

temperatures in the landlocked location and for mussels from the high marsh (46.5 and 

47.7, respectively) (Supplemental Figure 1). 

Discussion 

Global temperatures are continuing to rise. Currently, temperatures have risen 

1.5°C above pre-industrial levels (IPCC 2019). Salt marshes are one of the ecosystems 

susceptible to rising temperatures. Specifically, temperature and salinity are one of the 

main drivers of species distribution of intertidal species (Braby and Somero 2006). Thus, 

increasing temperatures is having a significant effect on the distribution, density, and 

interspecies relationships within the marsh. One of these organisms is the ribbed mussel 

Geukensia demissa. G. demissa is an intertidal and foundation species that experiences a 

wide range of temperatures from the daily immersion/emersion cycle as observed in the 

present study. The present study observed the physiological stress response in G. demissa 

from increasing aerial temperatures.  

The locations chosen were relatively close in proximity. However, they were 

characterized by differing tidal flow, Spartina alterniflora heights and percent cover, 

temperature and density of mussel aggregations. Temperatures reached up to 48°C in the 

main marsh, and up to 54°C in the landlocked location. The landlocked location 

experienced the most consistent high temperatures, with the main marsh only 
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experiencing these high temperatures periodically. Due to the temperatures recorded at 

the three locations, we hypothesized that mussels from all locations will have an 

increased heart rate with increased temperature. Our results partially support this 

hypothesis. Our data indicated that mussels from the landlocked region had lower heart 

rates at high temperatures. Yet, mussels from the mid and high marsh had higher heart 

rates at elevated temperatures for laboratory experiments. In situ experiments showed that 

only mussels from the mid marsh had higher mean heart rates at elevated temperatures. 

The laboratory and in situ results of heart rate in response to higher temperatures in 

mussels from the mid and high marsh is indicative of a thermal stress response. On the 

other hand, our experiments never reached the maximum temperatures recorded by data 

loggers in the field. Thus, it is possible that mean heart rates for mussels from the mid 

and high marsh may have even higher heart rates when exposed to higher temperatures 

than observed in this study.  

Variation of heart rate in situ 

During the day, temperatures in the salt marsh fluctuate to values >20°C. This is 

due to the normal tidal regime and increasing temperatures as the sun rises. This is a 

stressful environment for the ribbed mussels, which is further exacerbated by the 

presence of a road.  

Our data indicates that the heart rate of ribbed mussels from the mid marsh 

increased significantly at elevated temperatures. The mid marsh experiences the lowest 

temperatures, has the most consistent tidal flow, and is furthest from the road of the three 

locations. Thus, it is possible the mussels from the mid marsh had higher heart rates at 

elevated temperatures because they are the least adapted to these stressful conditions. 
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Other studies have found that the heart rate of mussels is strongly affected by the tidal 

regime and temperature, and that mussels either increase or decrease their heart rate 

dependent on their previous acclimation/acclimatization (Tagliarolo & McQuaid 2016, 

Huang 2015). 

In the present study, the mussels in the high marsh and landlocked location had 

significantly lower heart rates than those from the mid marsh at elevated temperatures. 

Furthermore, heart rates for these mussels did not differ significantly when measured at 

elevated and low temperatures. Studies have shown that heart rates for some molluscs 

remain low when temperatures increase. For example, under heat wave conditions, the 

heart rate of Mytilus galloprovincialis decreased significantly (Olabarria et al. 2016). 

Likewise, the heart rate of the bay mussel Mytilus trossulus (Braby and Somero 2006) 

and that of the intertidal snail Echinolittorina malaccana (Marshall et al. 2011) decreased 

in response to increasing temperature. Olabarria et al. (2016) noted that the intertidal 

snail E. malaccana has a remarkable capacity for metabolic depression especially when 

temperatures are between 30 and 45°C. They noted that this might be a strategy aimed at 

lowering the metabolic rate, conserving energy and enhancing survival when exposed to 

warm air for prolonged periods. Furthermore, mussels that were previously adapted to 

lower temperatures were the ones that had the highest heart rates when exposed to higher 

temperatures (Braby and Somero 2006). Thus, G. demissa from the landlocked and high 

marsh locations may be using a similar strategy to cope with heat stress. This implies that 

the mussels from the high marsh and landlocked location must be physiologically adapted 

to higher temperatures, much like M. galloprovincialis in the Braby and Somero (2006) 
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study. This may indicate that G. demissa has the ability to evolve to higher temperatures 

from climate change.   

Variation of heart rate in laboratory studies 

Surprisingly, our data indicates that mussels from the landlocked location are the 

only ones that had lower heart rates in response to elevated temperatures in the 

laboratory. Interestingly, the landlocked location experiences the highest temperatures 

and most interrupted tidal flow. Thus, the mussels from this location experience the most 

stressful conditions, yet still have lower heart rates. Lower heart rates when exposed to 

higher temperatures has also been observed in the intertidal snail E. malaccana and the 

mussel M. galloprovincialis (Braby and Somero 2006, Olabarria et al. 2016). This aligns 

with the study by Braby and Somero (2006) in which M. galloprovincialis had a lower 

heart rate in response to higher temperatures, likely because it has historically been 

adapted to higher temperatures. Ribbed mussels from both the mid and high marsh had 

higher heart rates at 36°C. This implies that these mussels from the mid and high marsh 

may have not yet adapted a strategy to combat thermal stress like E. malaccana and M. 

galloprvincialis have.  

Mussels from all three locations had similar heart rates at an intermediate 

temperature as they did at lower temperatures. This is suggestive that mussels can 

withstand temperatures up to 30°C. However, in this study only mussels from the high 

marsh and landlocked locations can deal with elevated temperatures by decreasing heart 

rates which may lead to lower metabolic rates and increased survival.   

Higher heart rates in response to elevated temperatures is suggestive that mussels 

in the mid and high marsh cannot withstand elevated temperatures. However, a lower 
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heart rate from the mussels from the landlocked location is indicative that mussels have 

the ability to adapt to rising temperatures. Over time, mussels from all regions in the salt 

marsh may adapt to the increasing temperatures happening around the globe.  

Comparison of in situ and laboratory studies 

When comparing the laboratory and in situ data, the mid marsh had an increased 

heart rate at an elevated temperature for both field and laboratory experiments. However, 

mussels from the high marsh responded to elevated temperatures only in the laboratory. 

Recent studies have yielded results indicating that laboratory studies are not always 

reliable as they underestimate the heart rates of animals when compared to field 

experiments. Surprisingly, mussels exposed to high temperatures in the laboratory have a 

higher mortality rate than in the field when exposed to the same temperature (Tagliarolo 

& McQuaid 2016). Furthermore, other studies with Fire Island scallops observed higher 

heart rates in the lab than in the field at the same temperature (Gurr et al. 2018). This 

indicates that the higher heart rates observed in laboratory experiments in this study may 

be underestimating the true resilience to temperature of ribbed mussels in the field. Thus, 

it is a plausible explanation that mussels from the high marsh can withstand higher 

temperatures than expected in the lab. On the other hand, the mussels from the 

landlocked location had lower heart rate in response to higher temperatures in either 

experiment. Therefore, it can be predicted that landlocked mussels may withstand 

temperatures as high as 45°C. More studies are needed to determine whether they can 

withstand temperatures as high as 54°C. However, results for mussels from the high 

marsh at elevated and low temperatures were inconsistent when comparing laboratory 

and field studies. One explanation for this would be that the mussels measured in the lab 
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was a different group of mussels than the ones measured in the field. However, this does 

not explain why the mussels from the mid marsh and landlocked locations were 

consistent when comparing laboratory and field studies. More research is needed to 

explore these differences.  

Further research 

 Our laboratory experiments confirmed that the Burnett et al. (2013) technique is 

an effective method to record cardiac activity in G. demissa. The measurement of heart 

rate in response to temperature for G. demissa is the first study of its kind in Georgia. 

However, there is more to be explored about the anthropogenic effects on the salt marsh 

and its organisms. 

Firstly, in this study mussels were placed back in the salt marsh where they were 

easily accessible for collection of their heartbeat. However, there may be a difference in 

heart rate for mussels that are placed near the center of the mussel aggregate versus close 

to the edge where they are isolated from other individuals. Helmuth (1998) and Jurgens 

and Gaylord (2016) notes that mussels living in beds/large aggregates can experience 

lower temperatures than solitary mussels living close to the fringes when exposed to high 

rates of solar flux. Helmuth (1998) noted that the reverse could occur under low solar 

flux. Thus, further research should explore the differences of heart rate of ribbed mussels 

in the middle of the aggregate and on its fringes.  

Secondly, a method needs to be developed where the IR sensor is glued to the 

outside of the mussel shell to collect the heartbeat. This would minimize human 

interference with the signal and yield a result that would be less influenced by handling.  
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Thirdly, it has been noted in other studies that air temperature is a poor predictor 

of an ectothermic animal’s body temperature (Zippay and Helmuth 2012). In this study, 

only air temperature was recorded. Thus, the specific body temperature at which G. 

demissa may respond or lower their heart rate is still unknown. It could also be further 

explored as to why there are lower density aggregations of mussels in the landlocked and 

high marsh locations when compared to the mid marsh. While the mussels from the 

landlocked location and high marsh had a lower heart rate at higher temperatures, the 

number of mussels in the aggregates was very low. This could be due to the temperature 

being a primary driver in setting a species distribution (Zippay and Helmuth 2012).  It is 

possible that this is why mussel densities have remained low in the locations regularly 

experiencing high temperatures. 

Overall, this research could help quantify how rising temperatures will affect this 

delicate ecosystem. Increased number of culverts could help reduce negative effects on 

the marsh for mussels not yet adapted to higher temperatures.  

Conclusions 

 It is important to understand how temperature, and more broadly climate change, 

is affecting salt marsh ecosystems. This study investigated how the cardiac activity of 

Geukensia demissa would change with reduced and elevated temperatures in both 

laboratory and in situ experiments. Our results were interesting and supported previous 

studies in that some intertidal species decrease their heart rate in response to higher 

temperatures. Results also indicated that laboratory studies may not be sufficient to 

predict the resilience of mussels to higher temperatures. Understanding how temperatures 
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affect heart rate could help quantify how these stressors are affecting the intertidal 

ecosystem.  
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Appendix 
 

Supplemental Table 1.  Coordinates of 1m x 1m plots in the landlocked, high marsh, 

and mid marsh locations at Tybee Island, Georgia. 

Coordinates of Plots (1m x 1m) 

Location Plot 1 Plot 2 Plot 3 Plot 4 

 Latitude Longitude Latitude Longitude Latitude Longitude Latitude Longitude 

Landlocked  32.01475 -80.880117 32.014733 -80.8802 32.014717 -80.8803 32.014683 -80.880317 

High marsh 32.013867 -80.880967 32.013883 -80.88085 32.0139 -80.880783 32.013917 -80.880783 

Mid marsh 32.013767 -80.880733 32.013733 -80.88075 32.0137 -80.880783 32.013667 -80.88085 

 

 

Supplemental Table 2.  Tidal height in feet, time of low and high tides, and the moon 

rise and set at Old Tybee Rd., Tybee Island, GA for the three field experiments.

 
 

Supplemental Table 3.  Average salinity (%) for the landlocked, high marsh, and mid 

marsh locations at Tybee Island, Georgia for 2018 and 2019.  

 Location Average Salinity (%) 

Landlocked 33 

High Marsh 33 

Mid marsh 34 
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Supplemental Table 4A.  Size of collected mussels (mm) from the landlocked, high 

marsh, and mid marsh locations at Tybee Island, Georgia for the first laboratory and field 

experiments.  

  Mussel Size (mm) 

  Landlocked High Marsh Mid Marsh 

Mussel 1 95 103 105 

Mussel 2 95 100 110 

Mussel 3 102 105 100 

Mussel 4 95 100 110 

Mussel 5 101 105 95 

Mussel 6 94 97 114 

Mussel 7 100 105 105 

Mussel 8 100 98 100 

Mussel 9 95 104 98 

Mussel 10 95 95 100 

 

Supplemental Table 4B.  Size of collected mussels (mm) from the landlocked, high 

marsh, and mid marsh locations at Tybee Island, Georgia for the second laboratory 

experiment.  

  Mussel Size (mm) 

  Landlocked High Marsh Mid Marsh 

Mussel 1 105 100 98 

Mussel 2 98 97 95 

Mussel 3 90 105 105 

Mussel 4 95 105 106 

Mussel 5 100 98 10 

Mussel 6 95 104 102 

Mussel 7 92 105 105 

Mussel 8 100 100 99 

Mussel 9 94 95 109 

Mussel 10 95 95 10 
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Supplemental Table 4C.  Size of collected mussels (mm) from the landlocked, high 

marsh, and mid marsh locations at Tybee Island, Georgia for the second and third 

laboratory experiment and the second field experiment.  

  Mussel Size (mm) 

  Landlocked High Marsh Mid Marsh 

Mussel 1 96 100 112 

Mussel 2 94 95 110 

Mussel 3 90 100 115 

Mussel 4 91 115 102 

Mussel 5 85 115 96 

Mussel 6 90 93 99 

Mussel 7 90 106 98 

Mussel 8 96 110 109 

Mussel 9 104 104 107 

Mussel 10 96 102 105 

 

Supplemental Table 4D. Size of collected mussels (mm) from the landlocked, high 

marsh, and mid marsh locations for the third field experiment.  

  Mussel Size (mm) 

  Landlocked High Marsh Mid Marsh 

Mussel 1 94 103 100 

Mussel 2 98 112 100 

Mussel 3 96 96 103 

Mussel 4 98 100 105 

Mussel 5 100 100 109 

Mussel 6 90 103 112 

Mussel 7 98 93 102 

Mussel 8 97 96 107 

Mussel 9 96 96 102 

Mussel 10 96 108 110 

Supplemental Table 5. Air temperature at Old Tybee Rd., Tybee Island, Georgia for the  

three separate field experiments.  

Experiment Temperature (°C) 

Field 1 21 

Field 2 20.5 

Field 3 40 
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Supplemental Table 6. Three-way ANOVA of the heart rate of the ribbed mussel 

Geukensia demissa collected from three locations (landlocked, mid marsh, and high 

marsh) and exposed to low and elevated temperatures in the laboratory and the field at 

Tybee Island, Georgia.  N=221. Data used were from experiments 2 (20°C) and 3 (30°C) 

in the lab and experiments 1 (21°C) and 3 (40°C) in the field.  

 

 
 

Supplemental Table 7.  Three-way ANOVA of the heart rate of the ribbed mussel 

Geukensia demissa collected from three locations (landlocked, mid marsh and high 

marsh) exposed to low and elevated temperatures in the laboratory and the field, at Tybee 

Island, Georgia. N=221. Data used were from experiments 2 (20 and 36°C respectively) 

in the lab and experiments 1 (21°C) and 3 (40°C) in the field. 
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Supplemental Figure 1. Comparison between second laboratory and first and third field 

experiments: Box plots of heart rate per minute for ribbed mussels Geukensia demissa 

form the landlocked, high marsh, and mid marsh at Tybee Island, Georgia at elevated and 

low temperatures. The box represents the interquartile range. If visible a line in the 

middle of the box is the median. Outliers outside the box are represented by closed circles 

and minimum and maximum values are shown. Ten mussels per location were used, 30 

for elevated and 30 for low temperature treatments. Different letters indicate significant 

differences among locations and temperatures (p= 0.05).  
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