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ABSTRACT 

The Kullback-Leibler (KL) divergence, which captures the disparity between two distributions, 

has been considered as a measure for determining the diagnostic performance of an ordinal 

diagnostic test. This study applies the Kullback-Leibler (KL) divergence and further generalizes it 

to comprehensively measure the diagnostic accuracy test for multi-stage (K > 2)  diseases, named 

generalized total Kullback-Leibler (GTKL) divergence. Additionally, the GTKL can be used as an 

optimal cut-point selection criterion for discriminating subjects among different stages. Moreover, 

the study investigates a variety of applications of the GTKL divergence on measuring the rule-

in/out potentials in the single-stage and multi-stage levels. Furthermore, the study compares the 

GTKL divergence with other diagnostic measures such as the generalized Youden index (GYI), 

hypervolume under the manifold (HUM), and maximum absolute determinant (MADET). 

Intensive simulation studies were conducted to investigate the performance of the proposed 

measure comparative to other methods in the literature. Finally, a comprehensive analysis of a real 

dataset was performed to illustrate the application of the proposed measure.  
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CHAPTER 1  

INTRODUCTION 

Diagnostic tests play an essential role in health care, including medical diagnosis, 

screening tests, and research. There are three purposes of performing a diagnostic test: 1) to 

provide reliable information about a patient’s health condition; 2) to influence the treatment plan 

for the patient from health providers; and 3) to understand disease mechanisms and natural 

history via research (McNeil & Adelstein, 1976; Sox Jr et al., 1989; Zhou, McClish, & 

Obuchowski, 2009). Thus, a good diagnostic test is essential to discriminate between diseased 

and non-diseased subjects and provides a strong understanding of patients’ health condition. A 

diagnostic test that generates continuous results can also be referred to as a continuous 

biomarker. When using a continuous biomarker to discriminate subjects to diseased or non-

diseased, a biomarker will be dichotomized with a specific value. The particular value of the 

continuous biomarker is the cut-point that separates subjects into diseased and non-diseased 

groups. In this case, the diagnostic test and biomarker can be used interchangeably. Choosing a 

cut-point that can best discriminate subjects is essential and challenging for clinicians to 

correctly identify subjects with the disease of interest and provide appropriate treatments. 

Consequently, a good criterion or procedure of an optimal cut-point selection is also necessary 

for medical diagnosis.  

Studies have examined the efficiency of different diagnostic tests; however, the test 

results are not always accurate (Akobeng, 2007; Altman & Bland, 1994; Deeks & Altman, 2004; 

Pepe, 2003; Šimundić, 2009; Wong & Lim, 2011; Zhou et al., 2009). In the case of 

misclassification, a medical diagnostic test can give a positive result for a subject who does not 

have the disease (Pepe, 2003; Zhou et al., 2009). Vice versa, a diseased subject may be 

diagnosed as non-diseased. The test’s diagnostic accuracy is the ability to discriminate among 
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alternative states of health. Health providers need to assess the performance of the diagnostic 

tests on discriminating patients with and without the disease of interest to better determine the 

true stage of the patients. The four basic measures of diagnostic accuracy to evaluate the 

accuracy of the diagnostic test are sensitivity, specificity, false positive rate (FPR), and false 

negative rate (FNR). Among these measures, sensitivity and specificity are the correct 

classification rates, and the FPR and the FNR are the misclassification rates (Pepe, 2003; Zhou et 

al., 2009). Generally, a measure of diagnostic accuracy attempts to maximize the correct 

classification rates (i.e., sensitivity and specificity) and minimize the misclassification rates (i.e., 

the FPR and the FNR). A test’s sensitivity is its ability to detect the disease when it is present, 

and a test’s specificity is its ability to exclude the condition among subjects without the disease. 

A diagnostic test is used to determine the presence or absence of a specific disease when a 

subject shows significant symptoms of that disease. The diagnostic test is an important 

determinant for the health care providers to decide whether to give interventions of the disease, 

especially when the interventions are invasive or harmful such as chemotherapy (Gilbert, Logan, 

Moyer, & Elliott, 2001). A screening test is designed to identify asymptomatic subjects at 

sufficient risk of the disease to warrant further health interventions among the population who 

have not received medical attention (Gilbert et al., 2001). Usually, the diagnostic test is 

performed after a screening test to make a definite diagnosis. Different tests are carried out to 

discriminate subjects between diseased and non-diseased conditions based on sensitivity and 

specificity measures, including sensitivity and specificity. The Receiver Operating Characteristic 

curve (ROC) and the area under the ROC curve (AUC) provide summary measures associated 

with single sensitivity and specificity pairs by including all the decision thresholds. Additionally, 

some of the measures incorporate sensitivity and specificity into a single index like accuracy 
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(also called diagnostic effectiveness), such as diagnostic odds ratio (OR), and Youden index, 

overlap measure (Samawi, Yin, Rochani, & Panchal, 2017), and KL divergence. Similar to 

sensitivity and specificities, the OR and the Youden index do not depend on disease prevalence 

yet are affected by the spectrum of a disease, such as a disease severity, phase, stage, and 

comorbidity (Zhou et al., 2009). On the other hand, the accuracy is affected by disease 

prevalence (Šimundić, 2009; Zhou et al., 2009). The accuracy of a test increases as the disease 

prevalence decreases with the same sensitivity and specificity. It means that the accuracy 

estimated from a population cannot be generalized to another population with different disease 

prevalence. In addition to the measures that have been mentioned above, predictive values and 

diagnostic likelihood ratios (LRs) are also measures of diagnostic accuracy (Šimundić, 2009; 

Zhou et al., 2009).. The predictive values give significant clinical implication about a diagnostic 

test. Although measures like sensitivity and specificity give an estimation of the probability of 

the disease in patients, they cannot answer how likely the patients would receive positive or 

negative test results. The predictive values are the measures that provide information about the 

probability that a test result gives the correct diagnosis. The positive predictive value (PPV) 

shows the probability of having the disease of interest in a subject given a positive test result, and 

the negative predictive value (NPV) gives the probability that a subject receives a negative result 

yet not having the disease of interest (Altman & Bland, 1994; Wong & Lim, 2011). These 

measures highly depend on the disease prevalence, which cannot be generalized among different 

populations with different disease prevalence. Compared to the predictive values, the LRs can 

also provide information about the probability that a subject can be correctly diagnosed; 

nevertheless, the LRs do not depend on prevalence as the predictive values, and they are 

applicable to other clinical settings for the same disease (Boyko, 1994; Deeks & Altman, 2004). 
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Also, the LRs are the best indicator for rule-in/out diagnosis (Boyko, 1994; Deeks & Altman, 

2004; Gilbert et al., 2001). Particularly, a rule-in test assesses if the results from a diagnostic test 

will include the possibility that a subject has the disease of interest. A positive response from a 

specificity test makes the presence of the disease more likely since it is specific to that disease. 

Whereas, a rule-out test, based on sensitivity, emphasizes in assessing if the test results will 

exclude the possibility that a subject is non-diseased. In addition to the LRs, the KL divergence 

is another measure that has the rule-in/out potentials (Lee, 1999). Lee (1999) proposed the KL 

divergence, a weighted average of the log LR , and suggested that the KL divergence is capable 

of predicting the fate of an average subject before the diagnostic test. Although the LRs can only 

estimate the rule-in/out potentials after the diagnostic test is conducted (i.e., after-test), the KL 

divergence predicts the rule-in/out potentials from another perspective (Lee, 1999). Furthermore, 

Samawi et al. (2019) suggested that the total sum of KL divergences, for potential rule-in/out, 

(TKL) as an overall measure of diagnostic test accuracy and an optimal cut-point selection 

criterion for two-stage diseases when the purpose of the using a biomarker is to predict for rule-

in/out potentials into disease and non-disease stages. 

Diseases are commonly classified into two stages, diseased or non-diseased. However, 

many diseases progress in more than two stages in nature, such as Alzheimer’s disease. 

Alzheimer’s disease has stages including preclinical stage, early stage (mild), middle stage 

(moderate), and late stage (severe) (Alzheimer’s Association, 2019; Johns Hopkins Medicine, 

2019). For this type of disease, a measure which can discriminate among more than two stages is 

desired. Several measures from the binary setting have been extended to the multi-stage (i.e.,

2k  ) setting, such as the hypervolume under the manifold (HUM) which is naturally extended 

from AUC (Scurfield, 1996, 1998) and the generalized Youden index (GYI) in multi-stage 
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setting as the extension of the Youden index in binary diseases (Nakas, Alonzo, & Yiannoutsos, 

2010; Nakas, Dalrymple-Alford, Anderson, & Alonzo, 2013). Moreover, a new measure of 

multi-stage diseases, called the maximum absolute determinant (MADET), was proposed by 

Dong, Attwood, Hutson, Liu, and Tian (2017). The GYI and the MADET are intended to be used 

as criteria for optimal cut-point selection in diagnostic tests (Dong et al., 2017; Nakas et al., 

2010; Nakas et al., 2013). All of these studies have discussed these methods for three-stage 

diseases, and further extended them to higher dimensions (Dong et al., 2017; Nakas et al., 2010; 

Nakas et al., 2013). However, the ROC, the AUC, and the HUM cannot be directly used for 

selecting optimal cut-point. Thus, other studies have developed criteria for optimal cut-point 

selection based on those measures, such as the northwest corner measure using the ROC curve 

for binary disease (Fawcett, 2006; Letón & Molanes, 2009; Perkins & Schisterman, 2006). The 

application of this approach has become the favored method for optimal cut-point selection. 

Additionally,   proposed two methods for optimal cut-point selection in the three-stage setting: 1) 

the closest-to-perfection (CP) is a measure that generalized from the NC; and 2) the maximum 

volume (MV) is a measure that built on the concept of the VUS (i.e., the special case of HUM in 

three-stage setting) for three-stage diseases (Attwood et al., 2014).  

The research in optimal cut-point selection in multi-stage diseases is far limited compared 

to two-stage diseases, and much fewer studies have discussed the cut-point selection in diseases 

with more than three stages. Although Dong et al. (2017) proposed the MADET for evaluating 

the diagnostic accuracy and cut-point selection in multi-stage setting, this method only works on 

some cases and has limited clinical interpretation, such as the rule in/out potentials. Therefore, 

there is a need to demonstrate the stages’ rule-in/out potentials for multi-stage diseases. The KL 

divergence emphasizes on rule-in/out potentials, which can be extended to the multi-stage 
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setting. This method provides the clinical interpretation of the diagnostic tests, which tells how 

likely a subject will be diagnosed in different stages. In this dissertation, the KL divergence is 

generalized to the multi-stage setting and proposed as an optimal cut-point selection criterion 

when the purpose of the using certain biomarker to predict for rule-in/out subjects into disease 

and non-disease stages.  

We generalize the TKL divergence, named the generalized total Kullback-Leibler 

(GTKL) divergence, as a comprehensive measure of accuracy as well as a criterion of optimal 

cut-point selection for multi-stage diseases. The measure sums up the rule-in/out information in 

all stages, and it comprehensively evaluates the correct classification rates in all stages of a 

multi-stage disease. Overall, the GTKL divergence combines the correct classification rates and 

misclassification rates based on the KL for diseases with more than two stages, and 

simultaneously emphasizes the rule-in/out potentials for diagnosis in all stages.  
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CHAPTER 2 

LITERATURE REVIEW 

Emerging studies of diagnostic accuracy for multi-stage diseases show a high demand in 

developing a more reliable diagnostic procedure to discriminate subjects in different diseased 

stages accurately (Attwood et al., 2014; Li & Fine, 2008; Nakas et al., 2010; Nakas et al., 2013; 

Xiong, van Belle, Miller, & Morris, 2006). For example, some chronic diseases, such as 

Alzheimer’s disease, kidney disease, and cancers, have more than two stages in nature and 

require measures that can identify subjects among stages (Alzheimer’s Association, 2019; Johns 

Hopkins Medicine, 2019). The traditional measures for binary classification cannot directly be 

used for multi-stage classification; however, some popular measures can be extended and are 

generalized to the multi-stage setting.  

The ROC and Youden index are prevalent and essential measures for binary 

classification, and they describe different aspects of a biomarker. Both measures are built based 

on the basic measures in diagnostic accuracy, sensitivity, specificity, FPR, and FNR. The four 

basic measures are not affected by the prevalence of the disease of interest; however, they 

capture the intrinsic diagnostic accuracy of a diagnostic test (Zhou et al., 2009). In other words,  

these measures are influenced by the disease’s spectrum, which is the range of clinical severity, 

or anatomic extent constitutes a disease. Also, these measures from a sample population are 

generalizable to other populations with different prevalence rates. Moreover, sensitivity and 

specificity are the correct classification rates of diseased and non-diseased populations in the true 

categorization of their real states, respectively. The sensitivity is the probability that the diseased 

subjects are correctly identified as diseased in a diagnostic test; and, the specificity is the 

probability that the non-diseased subjects are correctly identified as non-diseased in the 

diagnostic test (Zhou et al., 2009). The FPR and FNR, respectively, are the misclassification 
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rates in non-diseased and diseased populations and are produced when subjects are not correctly 

classified in the corresponding groups (Zhou et al., 2009). In terms of accuracy of the test, type I 

error (α) rate, which is the probability of rejecting the null hypothesis when the null hypothesis is 

true in reality, is analogous to FPR (i.e., 1-specificity) (Zhou et al., 2009). Type II error (β) rate, 

which is the probability of failing to reject the null hypothesis when the alternative hypothesis is 

true in reality, is analogous to FNR (i.e., 1-sensitivity). Additionally, the statistical power, 1 - 

type II error rate, is similar to sensitivity. Instead of using the standard type I error rate at 0.05 

(5%), the particular clinical application dictates the allowable error rates in diagnostic tests. 

The ROC was first introduced in the analysis of radar signals before it was employed in 

signal detection theory during World War II; afterwards, new research to increase the prediction 

of correctly detected Japanese aircraft from their radar signals after the attack on Pearl Harbor in 

1941 (Egan, 1975; Green & Swets, 1966). Later, the ROC was applied to radiological, 

psychophysical, and epidemiological studies (H. Aoki, Watanabe, Furuichi, & Tsuda, 1997; 

Hsiao et al., 1989; Metz, 1989). The potential of the ROC in medical diagnostic testing was 

recognized as early as the 1960s (Lusted, 1960). The application and evaluation of diagnostic 

accuracy using the ROC have been systematically reviewed and illustrated in previous studies 

(Pepe, 2003; Swets & Pickett, 1982; Zweig & Campbell, 1993). The ROC is constructed by 

plotting the false positive rate (i.e., 1 specificity− ) against sensitivity. The graph geometrically 

summarizes the entire set of possible true and false positive rates with different thresholds, and it 

serves as a device to describe the range of trade-off between true positive and true negative rates 

that can be achieved by a diagnostic test.  

Sometimes it is not feasible to construct the ROC, and a summary index becomes a 

critical measure to summarize the information from the ROC. The AUC is the most widely used 
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summary statistic of the ROC and is computed by taking the integral of the ROC statistics in the 

range of 0 to 1 (Fawcett, 2006). The value of the AUC ranges from 0.5 to 1, indicating an 

uninformative diagnostic test (AUC = 0.5) and a perfect diagnostic test (AUC = 1). The AUC is 

a global measure of diagnostic accuracy, and it does not provide information about sensitivity 

and specificity as a summary index. For instance, in some situations, two diagnostic tests can 

have identical AUC with different sensitivity and specificity for the two different tests. That is, 

the first test can have higher sensitivity compared to the second one; however, the second test 

has higher specificity. Moreover, the ROC curve and the AUC have no information about 

predictive values, nor rule-in/out information of a test in medical diagnostics. 

The Youden index is another prevalent measure for binary classification in diagnostics, 

and it is also a global measure and was first proposed by Youden in 1950 (Youden, 1950). The 

Youden index ( J ) is a statistic that maximizes the correct classification rates (i.e., sensitivity and 

specificity) and achieves the maximum discrimination between two stages. The Youden index 

also encounters the same issues as the ROC and the AUC as two diagnostics with same Youden 

index value having different sensitivity and specificity, and it does not characterize the rule-

in/out information in diagnosis.  

The Youden index can be directly used as a criterion to select optimal cut-point (c) for a 

biomarker; however, neither the ROC nor the AUC can be directly applied to select the optimal 

cut-point. Nonetheless, methods have been developed based on the ROC and the AUC for 

optimal cut-point selection. The most popular criterion that was developed according to the ROC 

for selecting optimal cut-point is the northwest corner (NC), also named the closest-to-

perfection, in binary setting (Fawcett, 2006; Letón & Molanes, 2009; Perkins & Schisterman, 

2006). The NC method also incorporates the correct classification rates as in the Youden index, 
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and it measures the distances from (0,1) to the point 
2,2 1,1(1 ( ), ( ))p c p c− on the ROC, where 

1,1( )p c and 
2,2 ( )p c are the correct classification rates of stage 1 (non-disease) and 2 (disease), 

respectively. Compare to the Youden index, when minimizing the statistics, the NC method has 

an additional term which is the average of the squared correct classification rates that the Youden 

index does not include (Perkins & Schisterman, 2006). Although there is no justification for this 

term in practice, the results from the NC generally have higher specificity than that from the 

Youden index and produces lower FPRs (Fawcett, 2006; Letón & Molanes, 2009; Perkins & 

Schisterman, 2006).  

In clinical practice, after estimating an optimal cut-point, we need to understand the 

implication of the results, such as how likely the test would give the correct diagnosis. The 

measures that can answer this question are the predictive values (i.e., the PPV and the NPV) and 

the LRs, which approach the data from an aspect different from sensitivity and specificity 

(Altman & Bland, 1994). The PPV was defined as the proportion of subjects with positive test 

results which were correctly diagnosed (i.e., true positive results) (Fletcher, Fletcher, & Fletcher, 

2012). Similarly, the NPV is the proportion of the cases giving negative test results which are 

truly non-diseased (i.e., true negative results) (Fletcher et al., 2012). Although the PPV and the 

NPV are commonly used in clinical decision making, they depend on the prevalence of the 

disease as they differ in different populations of the same diagnostic test (Altman & Bland, 

1994). When the sensitivity and specificity are fixed, the PPV increases as the prevalence of the 

disease increases, whereas the NPV decreases (Wong & Lim, 2011). Therefore, the PPV and the 

NPV of a population cannot be generalized to a different population. 

Compare to the PPV and the NPV, the LRs do not depend on the prevalence of the 

disease, and the LRs of the same diagnostic test can be generalized to different populations. 
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Additionally, the LRs provide information about rule-in/out of a diagnostic test (Boyko, 1994; 

Deeks & Altman, 2004). The rule-in/out tests are important for different medical purposes. For 

example, the rule-in principle (specificity) is useful when a toxic treatment of the disease will be 

initiated if the diagnosis is confirmed, such as chemotherapy (Lee, 1999). The rule-out principle 

(sensitivity) is helpful when there is a significant penalty for missing the disease, and the initial 

treatment is relatively safe, like screening tests for tuberculosis (Lee, 1999). The LRs can be 

calculated for either positive or negative test results particularly. A positive LR tells how likely a 

diseased subject will receive a positive test result compared to a non-diseased subject; whereas a 

negative LR shows how likely a non-diseased subject will receive a negative test result compared 

to a diseased subject (Šimundić, 2009). 

A biomarker that can discriminate subjects from diseased and non-diseased populations is 

efficient for diagnosing a disease. However, some diseases have several distinct ordinal stages 

which cannot be recognized by existing measures in diagnostics. Dichotomize biomarker to 

binary stages generally combines diseased stages which results in the delay of diagnosing 

patients in the early disease stage. Missing to diagnose patients in the early stage of the disease 

will delay the appropriate treatments and cause serious health problems in the future. Therefore, 

being able to diagnose a patient in the early disease stage will allow physicians to provide early 

interventions and decrease the progression of the disease. The medical community has 

demonstrated high interest in the ability to discriminate diseased population into different stages 

to provide better treatment strategies, such as the identification of mild cognitive impairment of 

Parkinson disease and the early diagnosis of Alzheimer’s disease (Aarsland & Kurz, 2010; 

DAFFNEr & Scinto, 2000). Thus, having the appropriate methods to discriminate among 

different stages is imperative for early clinical interventions, such as early interventions for 
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breast cancer (Early Breast Cancer Trialists' Collaborative Group, 2005; Richards, Westcombe, 

Love, Littlejohns, & Ramirez, 1999). Moreover, some frontier studies proposed measures that 

generalized from binary classification to multi-stage classification using the ROC, AUC, and 

Youden index (Nakas et al., 2010; Nakas et al., 2013; Scurfield, 1996, 1998; Xiong et al., 2006). 

Furthermore, Dong et al. (2017) introduced the maximum absolute determinant (MADET) as a 

new measure for diagnostic accuracy suggesting better disease diagnostics procedure, in some 

cases, compared to the other existing measures. 

Although limited studies have been done to investigate the accuracy measures in multi-

stage setting, some researchers have provided breakthrough evidence for the need to expand on 

multi-stage disease diagnosis. For instances,  Scurfield (1996, 1998) proposed the concept of 

hypervolume under the manifold (HUM) by extending the AUC. Similarly, Nakas and 

Yiannoutsos (2004) introduced the non-parametric measure of the HUM, and Li and Fine (2008) 

proposed the inference procedures and methods that correspondent to the measure of the HUM 

for estimation of classification probabilities and calculating the HUM. Additionally, Nakas et al. 

(2010) extended the Youden index for binary classification to the GYI for multi-stage 

classification. Moreover, Dong et al. (2017) suggested the maximum absolute determinant 

(MADET) for general multi-stage classification, which embraces the correct classification rates 

and the misclassification rates. In the special case of multi-stage diseases, all the measures that 

mentioned above were discussed in the case of three-stage setting, such as the volume under the 

ROC surface (VUS), the GYI and the MADET (Dong et al., 2017; Nakas et al., 2010; Xiong et 

al., 2006).  

Furthermore, the GYI can be used as a criterion to select optimal cut-points for multi-

stage diseases. Also, the MADET proposed by Dong et al. (2017) is capable of providing 
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information on optimal cut-points selection. However, similar to the ROC and the AUC, the 

HUM cannot be directly used in the selection of cut-points. Nevertheless, Attwood et al. (2014) 

proposed two methods to select optimal cut-points for three-stage diseases. The first method, 

known as the closest-to-perfection (CP), is a criterion of selecting cut-points in the multi-stage 

setting similar to the concept of the ROC (Attwood et al., 2014). To avoid confusion, we use the 

NC for binary diseases and the CP for three-stage diseases in this study. The second method, 

called the maximum volume (MV) method, is also a criterion of selecting cut-points in the multi-

stage setting; however, the MV measures the volume under the surface curve that covered by all 

the possible cut-points which has the similar concept of AUC (Attwood et al., 2014). Attwood et 

al. (2014) compared the correlation of the cut-points that were selected by different methods, 

including the GYI, the CP, and the MV. In addition, they proposed a statistic, the loss of the total 

correct classification (LTCC), to compare the correct classification information that was 

measured by different selection criteria (Attwood et al., 2014). Dong et al. (2017) compared the 

MADET with the GYI, the CP, and the MV in their study. They also generalized the criteria to 

multi-stage diseases and evaluated the performance of optimal cut-points selection (Dong et al., 

2017). These studies suggested that the new methods were comparable to the GYI and achieved 

better-balanced rates when minimizing the LTCC (Attwood et al., 2014; Dong et al., 2017). The 

GYI required a larger sample size within different diseased groups to accurately estimate the cut-

points as compared to other methods (Attwood et al., 2014). This measure only incorporates the 

correct classification rates and consequently loses some unignorable information in the 

classification process. Dong et al. (2017) compared four methods by simulation using power 

analysis and the LTCC to evaluate their performance for optimal cut-point selection. Their 

simulation studies showed that the proposed measures performed comparatively well in different 
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distributions (Dong et al., 2017). However, the results do not provide clinical interpretation of 

rule-in/out potentials of diagnostic biomarkers in the multi-stage setting. Therefore, further 

investigation is needed for rule-in/out potentials in clinical studies.  

Recently, the KL divergence from information theory has been applied to medical 

diagnostics, and it nicely characterized rule-in and rule-out potentials of a diagnostic test (Lee, 

1999). The KL divergence estimates the separation between two probability distributions, which 

are the probability distributions of diseased and non-diseased populations. Lee (1999) illustrated 

the application of the KL divergence on measuring the diagnostic performance of biomarkers 

with a given optimal cut-point for binary diseases. Hughes and Bhattacharya (2013) constructed 

information graphs, based on Lee’s application, which provided a diagrammatic interpretation of 

the KL divergence. The information graph demonstrates a visual basis for the evaluation and 

comparison of binary diagnostic tests and makes the application of the KL divergence more 

appealing to clinicians (Hughes & Bhattacharya, 2013). Additionally, Samawi et al. (2019) 

investigated the applications of the KL divergence in measuring the performance of a diagnostic 

test of dichotomized continuous biomarkers. Furthermore, they suggested the total KL (TKL) as 

a comprehensive measure of rule-in/out information, as well as a criterion for optimal cut-point 

selection in the binary setting (Samawi et al., 2019). While the number of stages of disease 

increases, the information from misclassification rates becomes more massive, and disregarding 

the information will lead to loss of information in diagnostic accuracy. In the binary setting, the 

KL divergence incorporates correct classification rates and misclassification rates, thus covering 

more information than the Youden index. In this dissertation, the TKL divergence in the binary 

setting is generalized to the multi-stage setting by summing up the rule-in/out information in all 

stages. Likewise, the GTKL was used for optimal cut-point selection for multi-stage diseases. 
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Simultaneously, this measure integrated the before-test rule-in/out potentials for diagnosis in 

different stages. Lastly, the predictive values were generalized to assess the performance of the 

GTKL and other existing measures for multi-stage diseases based on the methods suggested by 

(Samawi, 2019).  
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CHAPTER 3 

METHODS 

This chapter provides an overview of some related measures that have been used in 

medical diagnostics, including sensitivity ( Se ), specificity (Sp ), FPR, FNR and all related 

measures of diagnostics test accuracy and criteria of optimal cut-points selection.    

3.1 Binary (two-stage) diseases 

A diagnostic cut point, c, is generally required to classify a subject either as a diseased or 

non-diseased for clinical decision making with diagnostic biomarkers. Let 1X and 2X denote the 

marker values for non-diseased and diseased subjects, with c.d.fs 1(.)F  and  2 (.)F respectively. 

The probabilities classification matrix Ρ  in the binary setting, given 1(.)F  and 2 (.)F with 

threshold c, can be expressed as 

1 1

2 2

+

=1

=2.

( ) 1 ( )

( ) 1 ( )

S

S

T T

F c F c

F c F c

−

− 
=  

− 
Ρ (3. 1) 

where T −
and +T respectively are the negative and positive test results of a test, and 

 ;    1,  2S i i= = is the disease stages, imply non-disease and disease, respectively.   

Without the loss of generality, in most circumstances, higher marker values indicate greater 

severity of the disease. This assumption of directionality is important for the ROC analysis to 

guarantee valid values of ROC indices. The ROC curve is a graph of true positive rate or sensitivity 

( 2 2( ) ( >c)=1 ( )Se c P X F c= − ) versus false positive rate or 1- specificity  

( 11 ( ) 1 ( )FPR Sp c F c= − = − ), where 1 1( ) ( c) ( )Sp c P X F c=  = , over all possible thresholds of the 

marker. On the other hand, the false negative rate is given by 21 ( ) ( )FNR Se c F c= − = .  

The following graph shows an example of visual interpretation of the ROC. 
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In practice, it is common to summarize the information of the ROC curve into a single 

global value or index, such as the AUC. The AUC has a range of [0.5, 1] and can be measured by 

the following equation: 

2 1 1 1 2 1 1( ) ( )[1 ( )]AUC P X X f x F x dx



−

=  = − . (3. 2) 

The AUC evaluates the discriminatory ability of a marker, where 
1

2 1( ) 1 [ (1 )]ROC q F F q−= − −

and 1 ( )q Sp c= − . 

The Youden index ( J ) is another measure that summarizes the sensitivity and specificity 

that is frequently used, and it is a criterion of selecting an optimal diagnostic cut-point, (c), (K. 

Aoki, Misumi, Kimura, Zhao, & Xie, 1997). The Youden index has a range of [0, 1], and it is 

defined as  

1 2( ( ) ( ) 1) ( ( ) ( ))
c c

J Se c Sp c F c F cMax Max= + − = − ,  (3. 3) 

where 

1 2( ( ) ( ) 1) ( ( ) ( ))arg arg
c c

c Se c Sp c F c F cMax Max= + − = − .  (3. 4) 

Figure 3.1. ROC curve (source: Šimundić, 2009).
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The OR that measures the diagnostic test accuracy at the threshold c can be calculated as 

1 2

2 1

( ) [1 ( )]( ) ( )

[1 ( )] [1 ( )] ( ) [1 ( )]

F c F cSe c Sp c
OR

Se c Sp c F c F c

 −
= =

−  −  −
, (3. 5) 

The range of OR  is from 0 to infinity with higher values indicating higher discriminative power 

in diagnostic tests. A test is improper when the value of OR is less than 1, which means there are 

more negative tests among the diseased population. A value of 1 indicates that a test has no 

discriminative power to identify patients with the disease and those without the disease (Glas, 

Lijmer, Prins, Bonsel, & Bossuyt, 2003).  

The PPV and the NPV are the after-test performance measures of diagnostic tests. These 

measures show the probability that a subject will receive the correct diagnostic test result with its 

true stage. When the diagnostic tests are binary (i.e., non-diseased ( 1)S = or diseased ( 2)S = vs. 

test positive ( )T +
or test negative ( )T −

), the PPV and the NPV are calculated based on the 2 x 2 

classification matrix Ρ  (3.1) as follows: 

2

2 1

( ). ( 2)

( ). ( 2) ( 1).(1 ( ))

[1 ( )]. ( 2)

[1 ( )]. ( 2) ( 1).[1 ( )] ( ))

Se c P S
PPV

Se c P S P S Sp c

F c P S

F c P S P S F c Sp c

=
=

= + = −

− =
=

− = + = −

 (3. 6) 

and 

1

1 2

( ). ( 1)

( ). ( 1) ( 2).(1 ( ))

( ). ( 1)

( ). ( 1) ( 2). ( )

Sp c P S
NPV

Sp c P S P S Se c

F c P S

F c P S P S F c

=
=

= + = −

=
=

= + =

 . (3. 7) 

Similar to the PPV and the NPV, the LRs are other after-test performance measures. 

Generally speaking, LRs are defined as a ratio of the probability that a test result is correct to the 

probability that the test result is incorrect. In particular, sensitivity and specificity of a test are 
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used to calculate the LRs, which is calculated for both positive and negative test results and is 

expressed as ‘ LR+
’ and ‘ LR−

’, respectively. The calculations are based on the following 

formulas in the binary setting: 

2
,

1

1 ( )( )

1 (
/

) 1
1

(
  

)
  sensitivity specificit

F cSe c
LR

Sp c F c
y+ =

−
= − =

− −
 (3. 8) 

and 

2
.

1

( )1 (
 1   /

)

( ) ( )
 sensitivity specific

F cSe
L i

c
R

S
y

p c F
t

c
− − =

−
= =  (3. 9) 

The LR with a value greater than 1 indicates a test result that is associated with the presence of 

the disease, whereas a value less than 1 indicates a test result that is associated with the absence 

of the disease (Deeks & Altman, 2004). The LR with a value that is further from 1 shows 

stronger evidence for the presence or absence of the disease.  

Lee (1999) suggested the KL divergence as the before-test measure of diagnostic 

performance. For a binary test, the proportions of the non-diseased and diseased populations are 

denoted by functions 1 2 and gg respectively, the KL divergence of 1 2( , )D g g and 2 1( , )D g g can 

be interpreted as before-test potentials of rule-out and rule-in disease, respectively. The equations 

of 1 2( , )D g g and 2 1( , )D g g are as follows: 

using the non-diseased distribution as the reference, 

2 1

1
( , ) (1 ) log log

1

(1 ) log log ;

Se Se
D g g Se Se

Sp Sp

Se LR Se LR− +

−
= −  + 

−

= −  + 

(3. 10) 

and using the diseased distribution as the reference, 



28 

1 2

1
( , ) log (1 ) log

(1 )

log(1/ ) (1 ) log(1/ ).

Sp Sp
D g g Sp Sp

Se Se

Sp LR Sp LR− +

−
=  + − 

−

=  + − 

(3. 11) 

A diagnostic test with a larger
1 2( , )D g g , will on an average make diseased subjects more likely 

to have positive diagnosis results. A subject with a negative diagnosis resulting from a test with a 

large 
1 2( , )D g g value will more likely be ruled out from the disease group in which case, the 

potential of rule-out disease is higher. Similarly, a diagnostic test with greater
2 1( , )D g g , will on 

average make non-disease subjects more likely to have a negative diagnosis. A subject with a 

positive diagnosis resulting from a test with larger 2 1( , )D g g value will become more likely to be 

ruled-in to the disease group in which case, the potential of rule-in disease is higher. 

On the other hand, the KL divergence is a measure for continuous biomarkers as well, and 

it is an indicator of the rule-in/out potentials. Likewise, the KL in the continuous case can be 

computed using different reference levels as in the discrete case, either diseased or non-diseased 

populations. In the continuous case, the KL divergence that uses the non-diseased population as 

the reference is denoted as 2 1( , )D f f and can be computed as 

2
2 1 2

1

( )
( , ) ( ) ln ,

( )

f x
D f f f x dx

f x



−

 
=  

 
  (3. 12) 

similarly, the KL divergence that uses the diseased population as the reference is denoted as 

1 2( , )D f f and can be computed as 

1
1 2 1

2

( )
( , ) ( ) ln

( )

f x
D f f f x dx

f x



−

 
=  

 
 , (3. 13) 

where 1 2(.) and (.)f f are the underlying probability density functions (p.d.f.) of random variables 

1X (non-disease values) and 2X (disease values) . Then the TKL measure suggested by Samawi et
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al. (2019), which is defined by 
1 2 2 1( , ) ( , )TKL D f f D f f= + , as a measure of overall diagnostics 

test accuracy. Samawi et al. (2019a) showed the relationship between the TKL and some 

diagnostic accuracy indices for the binary diagnostic test at a given cut-point (c) as follows:    

( )
1 2 2 1

,

( , ) ( , )

[ ( ) ( ) 1]ln ( ) ( )

TKL D f f D f f

Se c Sp c OR c R c

= +

= + − +
(3. 14) 

where ( )[ ( ) ( ) 1]ln ( ) ]Se c Sp c OR c+ − is the discrete portions, denotes by discreteTKL , R(c) is the

remainder, which is the loss of information from dichotomizing the continuous tests. 

Furthermore, they proposed a criterion of optimal cut-point selection, for binary diseases, as 

arg ( ( ))discrete
c

c Max TKL c= . (3. 15) 

To optimize the diagnostic accuracy, the discreteTKL  can be maximized with respect to the cut-

point value (c) across all possible values of c; simultaneously. Consequently, the reminder ( )R c

will be minimized. They showed that the discrete portion, the discreteTKL , can be considered as a 

scaled  measure of the Youden index (J) by the logarithm of the OR at a given threshold c , when 

c is selected based on the statistic J.  

3.2 Multi-stage (k > 2) diseases 

Some of the measures of binary classification have been extended to multi-stage (k stages) 

classification as follows: Define a class of probabilities  for  that classifying a 

randomly selected subject in jth test class given the subject is in the ith stage of the disease. To 

make a diagnosis for a disease with k -stages when we have a continuous biomarker X, cut-points 

 are needed. If  this subject is classified into

ordinal stage j, with larger j corresponds to severer condition. If we let  denote the marker 

,i jp , 1,2,...,i j k=

1 2 1( , ,..., )kc c c −
 =c 1 , 1,2,..., 1,j jc X c j k−   = −

iX
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values for the ith disease stage with p.d.f. and c.d.f. and  respectively. Then, the 

corresponding conditional probability can be defined as 

,    for .       (3. 16) 

1 2

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

         ...

... S 1

... 2

. . . . .

. . . . .

. . . . .

...

k

S i S i S i

k

k

k k k k

T T T

p p p

p p p S

p p p S k

= = =

= 
 

= 
 

=  
 
 
 

=  

Ρ
       (3. 17) 

The next subsequent discussion will be for k = 3 for simplicity. The generalization to k > 3 is 

straight forward and will be discussed at the end of the section.   

For the case when k = 3, the Ρ  matrix corresponding with all possible pairs of thresholds 

1c
and 

2c
is defined as 

1,1 1,2 1,3 1 1 1 2 1 1 1 2

2,1 2,2 2,3 2 1 2 2 2 1 2 2

3,1 3,2 3,3 3 1 3 2 3 1 3 2

1 2 3

1

2

3

( ) ( ) ( ) 1 ( )

( ) ( ) ( ) 1 ( )

( ) ( ) ( ) 1 ( )

S i S i S iT T T

S

S

S

p p p F c F c F c F c

p p p F c F c F c F c

p p p F c F c F c F c

= = =

=

= =

=

  − − 
   

= − −   
   − −  

Ρ , (3. 18) 

Nakas et al. (2010) discussed the GYI  in the three-stage setting which is denoted as 3J . 

The 3J is defined as the maximum of the sum of the correct classification rates over all possible

pairs of thresholds 

1c
 and 

2c
. Then, the 3J  can be computed by maximizing the sum of correct 

classification rates in all stages with thresholds 

1c
 and 

2c
as 

1 2

1 2

3 1,1 2,2 3,3

,1 1 2 1 2 2 3 2

x[ 1]

x[ ( ) ( ) ( ) ( )]

c c

c c

J Ma p p p

Ma F c F c F c F c





= + + −

= − + −
(3. 19) 

( )if x ( )iF x

,i jp

, 1 1( | ) ( ) ( ) ( | )i j j i j i j i jp P c X c S i F c F c P T j S i− −=   = = − = = = , 1,2,...,i j k=
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The GYI for three-stage diseases, 
3J , is the unification of two-stage and three-stage analysis 

approaches Nakas et al. (2013). That is, 
3J is the sum of the statistics 

2J of the pairwise

comparison between adjacent stages (i.e., stage 1 vs. 2 and stage 2 vs. 3). The unification can be 

mathematically presented as follows:  

1 2

1 2 1 2

3 1 1 2 1 2 2 3 2

1 1 2 1 2 2 3 2

2;(1,2) 2;(2,3)

x[ ( ) ( ) ( ) ( )]

x[ ( ) ( )] x[ ( ) ( )]

,

c c

c c c c

J Ma F c F c F c F c

Ma F c F c Ma F c F c

J J



 

= − + −

= − + −

= +

(3. 20) 

where 
2;(1,2)J  and 

2;(2,3)J  are the Youden indices corresponding to stage 1 vs. 2 and stage 2 vs. 3, 

respectively. 

A three-dimensional ROC surface can be plotted by using all possible pairs of thresholds 

1c
and 

2c
. Similar to the ROC in the binary setting, the ROC of the adjacent pairs of the three 

stages summarizes all possible thresholds between two stages (stage 1 vs. 2 and stage 2 vs. 3). 

The two-dimensional plots are comprehensively interpreted in one three-dimensional graph. 

Figure 2 shows an example of a hypothetical three-dimensional graph of a three-stage disease. A 

statistic calculated from the three-dimensional ROC surface, called the volume under the ROC 

surface (VUS), is another measure of three-stage classification, which is a special case of the 

hypervolume under manifold (HUM) (Scurfield, 1996, 1998; Xiong et al., 2006). The VUS is 

mathematically defined as 

1 1( )1

2 1 2 2 1

0 0

( , )

f t

VUS f t t dt dt=   ,  (3. 21) 

where it  with 1,2,3i =  is the correct classification rate for the thi stage (i.e., the 
,i ip as defined 

by the Ρ  matrix) and 1if − ’s are the recursive equations when 1 1 1( , , ), 2,3i i it f t t i− −= = . 
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Ρ

Ρ

The MADET is a measure that uses the determinant of the  matrix for disease 

classification with more than two stages (Dong et al., 2017). The measure incorporates both 

correct and false classification rates in different stages of the disease. For three-stage diseases, 

the MADET statistic is computed from the determinant of the matrix shown in (3.18), by 

the following equation 

1 2,
( )

c c
MADET Max det= P , (3. 22) 

where ( )det P  is the determinant of the Ρ  matrix which can be calculated using either 

formula as follows: 

1). 
1 2

1,1 2,2 3,3 1,2 2,3 3,1 1,3 3,2 2,1 1,1 2,3 3,2 1,2 2,1 3,3 1,3 3,1 2,2
,

| |
c c

Max p p p p p p p p p p p p p p p p p p+ + − − − ,   (3. 23) 

2). 
1 2

1,1 2,2 2,2 3,3 3,3 1,1 1,2 2,1 1,3 3,1 2,3 3,2
,

|1 [ (1 ) (1 ) (1 )] ( ) |
c c

Max p p p p p p p p p p p p− − + − + − − + + .  (3. 24) 

The MADET ranges from 0 to 1, with 0 indicates no discriminative power, and 1 indicates the 

perfect discrimination of a diagnostic test. A larger MADET indicates a better diagnostic test. 

Figure 3.2. A hypothetical example of 3-class ROC analysis (Source: Li & Fine, 2008). 
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There are three possible conditions that the MADET is 0: 1) all three probability vectors in the 

three stages coincide; 2) any two of the probability vectors coincide; and, 3) all three probability 

vectors fall on the same two-dimensional plane (Dong et al., 2017). The graphical interpretation 

of the MADET is similar to VUS; however, they may have different possible thresholds 

1c
 and 

2c
. Note that in the binary setting, the MADET is the same as the Youden index.  

 Finally, for diseases with more stages (i.e., 3k  ), those measures discussed above can 

be generalized as follows: 

GYI: 

 1 2 1

1 2 1 1,1 2,2 ,

2 1 2 2 2 3 2 2 1

( , , , ) ( 1)

( , ) ( , ) ( , );

k

k k k
c c c

k k

J c c c Max p p p

J c c J c c J c c

−

−
  

− −

= + + + −

= + + +
   (3. 25) 

HUM:  

2 1 21 1 ( , , )( )1

1 1 1 1 2 1

0 0 0

( , , )
k kf t tf t

k k kHUM f t t dt dt t
− −

− − −=    ,   (3. 26) 

where it  with 1,2, ,i k=  and 1 1 1( , , )i i it f t t− −=  with 2,3, ,i k= ; 

MADET:  

1 2 1

1 2 1( , , , ) ( )
k

k
c c c

MADET c c c Max det
−

−
  

= P .     (3. 27) 

In the discrete case, the KL divergence that proposed by Lee (1999) can be generalized to multi-

stage discrete biomarkers. The equations of rule-in/out potentials are defined as follows: 

using the non-diseased distribution as the reference, 

2,

2 1 2, 2,

1 11,

( , ) log log
k k

i

i i i

i ii

g
D g g g g LR

g= =

=  =   ;    (3. 28) 

and using the diseased distribution as the reference, 
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1,

1 2 1, 1,

1 12,

( , ) log log(1/ )
k k

i

i i i

i ii

g
D g g g g LR

g= =

=  =   , (3. 29) 

where 
1,{ , 1,2,..., }ig i k=  and 

2,{ , 1,2,..., }ig i k= are the proportions of non-diseased and diseased 

subjects in the ith testing category, respectively. 

3.3 Optimal Cut-point Selection 

3.3.1 Criteria for optimal cut-point selection in binary (k=2) setting 

In the binary setting, the popular criteria for selecting the optimal cut-point are the 

Youden index and the NC method. As mentioned above, the optimal cut-point that selected 

based on the Youden index is 

1 2( ( ) ( ) 1) ( ( ) ( ))arg arg
c c

c Se c Sp c F c F cMax Max= + − = − ,  (3. 30) 

which gives the largest value of the statistics J. Based on the ROC, the NC selects the optimal 

threshold based on the point on the ROC that closest to (0,1). The ‘optimal’ diagnostic cut-point 

(c) is the ideal point closest to perfection where 
2,2 ( ) 1p c =  and 

1,1( ) 1p c = . The cut-point selected 

minimizes the distance ( D ) from (0,1) to 
2,2 1,1(1 ( ), ( ))p c p c− (Perkins & Schisterman, 2006). 

Compared to those thresholds on the ROC curve that are further from (0,1), the optimal threshold 

is considered to be more accurate (Fawcett, 2006).  The distance ( D ) is defined as  

2 2

2,2 1,1(1 ( )) (1 ( ))[ ]
c

D Min p c p c= − + − , (3. 31) 

where 

2 2
.2,2 1,1

arg

arg (1 ( )) (1 ( ))[ ]
c

c

c Min D

Min p c p c

=

= − + −
(3. 32) 

The range of D is from 0 to 0.5 , indicating perfection and complete lack of discrimination, 

respectively. The D can also be expressed in the following form,  
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2 2

2,2 1,1 2,2 1,1[(1 ( )) (1 ( )) 0.5( ( ) ( ) )]D p c p c p c p c= − + − + + ,   (3. 33) 

which minimizes the total misclassification rates and a third term (i.e., the average of the squared 

correct classification rates) (Perkins & Schisterman, 2006), and the cut-point can be expressed as 

2 2
.2,2 1,1 2,2 1,1

arg

arg [(1 ( )) (1 ( )) 0.5( ( ) ( ) )]

c

c

c Min D

Min p c p c p c p c

=

= − + − + +
  (3. 34) 

3.3.2 Criteria for optimal cut-point selection in three-stage (k=3) setting 

For three-stage diseases, the optimal cut-points are a pair of a cut-point ( 1c ) between 

non-diseased and early-diseased, and a cut-point ( 2c ) between early-diseased and fully-diseased. 

In the continuous case, the disease stages are ordinal, and the cut-points for later stages are larger 

than cut-points for early stages thus 1 2c c . In the following equations, 
1,1 1( )p c , 

2,2 1 2( , )p c c , and 

3,3 2( )p c  are the correct classification rates in stage 1, 2, and 3, respectively, at the optimal cut-

points 1 2( , )c c  selected based on each diagnostic accuracy criterion. 

The GYI used as a criterion for selecting optimal cut-points for three-stage diseases 

(Naka et al., 2010). The optimal cut-points are produced numerically by using constrained 

maximization based on the 3J  statistic (Nakas et al., 2010). Thus, the ‘optimal’ cut-points are 

selected by maximizing the 3J  statistic, where  

1 2

1 2 1 1 2 1 2 2 3 2( , ) arg [ ( ) ( ) ( ) ( )]
c c

c c Max F c F c F c F c


= − + − .     (3. 35) 

Alternatively, the criterion is equivalent to minimizing the total misclassification rate in the 

following equation  

1 2

3,3 1 2,2 1 2 1,1 2[([1 ( )] (1 ( , )) 1 ( )]
c c
Min p c p c c p c


− + − + − ,    (3. 36) 

where  
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1 2

1 2 3,3 1 2,2 1 2 1,1 2( , ) arg [(1 ( )) (1 ( , )) (1 ( ))]
c c

c c Min p c p c c p c


= − + − + − .  (3. 37) 

For the CP in the three-stage setting, the perfect discrimination is at point (1,1,1). The 

distance ( 3D ) is minimized at the optimal cut-points and can be found numerically using 

constrained minimization with the following definition: 

1 2

2 2 2

3 3,3 1 2,2 1 2 1,1 2(1 ( )) (1 ( , )) (1 ( ))[ ]
c c

D Min p c p c c p c


= − + − + − ,   (3. 38) 

where  

1 2

1 2

1 2 3

2 2 2
.3,3 1 2,2 1 2 1,1 2

( , ) arg

arg (1 ( )) (1 ( , )) (1 ( ))[ ]
c c

c c

c c MinD

Min p c p c c p c




=

= − + − + −
      (3. 39) 

Same as the binary setting, a distance of 0 indicates perfect discrimination while increasing the 

distance means weaker power in discrimination among the three stages. This method also 

minimizes the misclassification rates and a third term in the three-stage setting as follows 

1 2

3,3 1 2,2 1 2 1,1 2

2 2 2
,3,3 1 2,2 1 2 1,1 2

[(1 ( )) (1 ( , )) (1 ( ))

0.5( ( ) ( , ) ( ) )]

c c
Min p c p c c p c

p c p c c p c


− + − + −

+ + +
    (3. 40) 

Alternatively, the optimal cut-points can be expressed using (3.37) as 

1 2

1 2 3,3 1 2,2 1 2 1,1 2

2 2 2

3,3 1 2,2 1 2 1,1 2

( , ) arg [(1 ( )) (1 ( , )) (1 ( ))

0.5( ( ) ( , ) ( ) )];

c c

c c Min p c p c c p c

p c p c c p c



= − + − + −

+ + +
 (3. 41) 

The MV is a criterion of selecting cutpoints for multi-stage diseases built on the concept 

of the VUS (Attwood et al., 2014). The VUS is defined as 

1 2

3 3,3 1 2,2 1 2 1,1 2[ ( ) ( , ) ( )]
c c

V Max p c p c c p c


=   ,     (3. 42) 

Additionally, the maximization is equivalent to minimization of the following equation: 

1 2

3,3 1 2,2 1 2 1,1 2[ log( ( )) log( ( , )) log( ( ))]
c c

Min p c p c c p c


− − − ,    (3. 43) 



37 
 

 

The ‘optimal’ cut-points can be obtained using equations (3.19) and (3.20) as follows: 

1 2

1 2

1 2 3,3 1 2,2 1 2 1,1 2

3,3 1 2,2 1 2 1,1 2

( , ) arg [ ( ) ( , ) ( )]

arg [ log( ( )) log( ( , )) log( ( ))].

c c

c c

c c Max p c p c c p c

Min p c p c c p c





=  

= − − −
  (3. 44) 

The statistic 3V  has a range of 
1

27
 to 1, indicating the least discrimination and the perfect 

discrimination, respectively.  

The MADET also is a criterion for optimal cut-points selection, and the cut-points 

selected according to its statistics is defined as  

1 2

1 2
,

( , ) arg ( )
c c

c c Max det= P ,     (3. 45) 

using equation (3.22) shown above. The Ρ  matrix can be expressed by three vectors denoted as 

1,Ρ  2Ρ  and 3Ρ , defined as follows: 

,1 ,2 ,3( )i i i iP P P=Ρ ,      (3. 46) 

where 1,2,3i = is the disease stage, and we know that  
,1 ,2 ,3 1i i iP P P+ + =  (Dong et al., 2017). The 

conditional probability, ( | )P T j S i= = , where , 1,2,3i j =  respectively are the disease stage and 

test result,  is the probability that a subject with the true thi  disease condition receives a j  test 

result. The values in the Ρ  matrix depend on the cut-points that are selected by the measure. The 

larger MADET value indicates the better diagnostic ability of the diagnostic biomarker with the 

larger difference among the classification rates vectors 1Ρ , 2Ρ  and 3Ρ  (Dong et al., 2017). The 

‘optimal’ cut-points would give the largest MADET value. The MADET can be geometrically 

interpreted by a three-dimensional graph, as shown in Figure 3. In Figure 3, the yellow part is the 

area that a volume formed by 1Ρ , 2Ρ  and 3Ρ  can fall in. The red tetrahedron, which is calculated 
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from 1Ρ , 2Ρ and 3Ρ , represents the value of the MADET with the selected cut-points 

geometrically. A perfect diagnostic biomarker will achieve the maximum value of the MADET 

as 1, and 1Ρ , 2Ρ and 3Ρ will be (1, 0, 0), (0, 1, 0) and (0, 0, 1) (Dong et al., 2017). On the 

contrary, the MADET is 0 when the classification rate vectors fall in the same plane, such as all 

three vectors or two of them overlap (Dong et al., 2017). 

3.3.3 Criteria for optimal cut-point selection generalized to multi-stage (k>3) setting 

The measures discussed above can be generalized to diseases with more than three stages.  

The extension of the measures had been discussed for the GYI, the CP, the MV, and the MADET 

to select ‘optimal’ cut-points in the setting with more than three stages (Dong et al., 2017; Nakas 

Figure 3.3. Illustration of the MADET for diseases with three-stage.
The yellow part is the area that the MADET can fall in. The red tetrahedron OABC is the actual
value of the MADET obtained from the statistics. The larger the red tetrahedron, the better the
diagnostic biomarker can correctly discriminate subjects into their true stages. (Source: Dong et
al., 2017)
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et al., 2010). Based on the Ρ  matrix defined in (3.16) and (3.17), the selection criteria are defined 

as follows: 

criterion 1: 
1 2 1

1 2 1 1,1 2,2 ,( , , , ) arg ( 1)
k

k k k
c c c

c c c Max p p p
−

−
  

= + + + −  ;    (3. 47) 

criterion 2: 
1 2 1

2 2 2

1 2 1 1,1 2,2 ,( , , , ) arg ( (1 ) (1 ) (1 ) )
k

k k k
c c c

c c c Min p p p
−

−
  

= − + − + + − (3. 48) 

criterion 3: 
1 2 1

1 2 1 1,1 2,2 ,( , , , ) arg ( )
k

k k k
c c c

c c c Max p p p
−

−
  

=    ; (3. 49) 

criterion 4: 
1 2 1

1 2 1( , , , ) arg ( )
k

k
c c c

c c c Max det
−

−
  

= P . (3. 50) 

The four criteria have different properties and perform comparatively well in different 

distributions. The statistics of the first three criteria incorporate the correct classification rates 

only; however, the MADET, the last criterion, incorporates both correct and false classification 

rates. In this dissertation, we proposed a criterion based on the generalized KL measure, which 

has the characteristics of ruling in/out of a multi-stage disease and incorporates both correct and 

false classification rates. More details of the proposed criterion in the multi-stage setting are 

discussed in Chapter 4.  
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CHAPTER 4

PROPOSED MEASURE

This chapter introduces the generalized total Kullback-Leibler divergence (GTKL) as the 

diagnostic accuracy measure and optimal cut-points selection criterion for multi-stage (k>2) 

diseases.  

4.1. Rule-in and Rule-out information for multi-stage diseases 

The Kullback-Leibler (KL) divergence is applied to estimate the rule-in/out information 

in a diagnostic accuracy test by measuring the distance between two probability distributions 

(Lee, 1999; Samawi et al., 2019). In the multi-stage setting, the KL can also be generalized to 

measure the distance between each pair of stages for the estimation of rule-in/out information.   

4.1.1. Rule-in information 

A continuous biomarker X of a multi-stage disease has k-1 cut-points, where

1 2 1( , , , )kc' c c c −= and 
1 , 1,2, , 1j jc X c j k−   = − . The generalized KL divergence 

summarizes the rule-in information of adjacent pairs of stages using the lower stage as the 

reference. The overall rule-in information is denoted as 1( , ; 1,2,.., 1)in i iD f f i k+ = − , where i 

pertains to the disease stage. From (3.16) and (3.17), we can define the generalized adjacent KL 

divergence of rule-in as: 

1

1 2 1 3 2 1

1
1

1

1

1
1

1 0

1 1

( , ; 1,2,.., 1) ( , ) ( , ) ( , )

( )
( ) ln

( )

( )
( ) ln ,{ , };

( )

j

j

in i i in in in k k

k
i

i

i i

c
k k

i
i k

i j ic

D f f i k D f f D f f D f f

f x
f x dx

f x

f x
f x dx c c

f x
−

+ −

−
+

+

= −

−
+

+

= =

= − = + + +

 
=  

 

 
= = − =  

 

 

 

(4. 1) 

where i denotes the thi  stage and j denotes the test in the 
thj stage.  

Using similar arguments as in (Samawi et al., 2019), we have 
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1 1 1

11
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1 1
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+

+
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 
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1

1
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1 1
1( )

1, 1( )

1 1 1 1 ( )

( )
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( )

j

j j

j j

j jj
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i c c
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−

−
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− −
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 
 +  

  
  

  
1 1 2 1( , ; 1,2,.., 1) ( , ,..., ).in discrete i i kD f f i k R c c c− + −= = − +  (4. 2) 

Note that as the specific rule-in information between two adjacent disease’s stages (say, i+1, i), 

which denoted by 
( 1, ) 1( , ); 1,2,.., 1in i i i iD f f i k+ + = − ,  is given by

1

1

11

1( )1,

( 1, ) 1 1, 1, 1( )

1 1, ( )

( 1, ) 1 ( 1, ) 1 2

( )
( , ) ln ( ) ln

( )

( , ) ( , ,...

j

j j

j j

j jj

c
k k

i c ci j

in i i i i i j i j i c c

j ji j i c cc

in i i discrete i i i i

f xp
D f f P P f x dx

p f x

D f f R c c

−

−

−−

+ −+

+ + + + + −

= = −

+ − + +

  
 = +    

   

= +

  

, ) 1,2,.., 1.kc i k= −

Consequently, (4. 2) can be written as 

1 1

1 ( 1, ) 1 ( 1, ) 1 2 1

1 1

( , ; 1, 2,.., 1) ( , ) ( , ,..., ).
k k

in i i in i i discrete i i i i k

i i

D f f i k D f f R c c c
− −

+ + − + + −

= =

= − = +    (4. 3) 

4.1.2. Rule-out information 

Similar to the rule-in information, the KL divergence can be generalized in the multi-

stage setting to estimate the overall adjacent rule-out information using the higher stage as the 

reference level. The generalized adjacent KL divergence of rule-out is denoted as 

1( , ; 1,2,.., 1)out i iD f f i k+ = − . It can be defined and computed as:

1 1 2 2 3 1( , ; 1,2,.., 1) ( , ) ( , ) ( , )out i i out out out k kD f f i k D f f D f f D f f+ −= − = + + +
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However, as the specific rule-out information between two adjacent diseases’ stages (say, i, i+1), 

which is denoted by 
( , 1) 1( , ); 1,2,.., 1out i i i iD f f i k+ + = − ,  is given by  
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Consequently, (4. 4) can be written as  

 
1 1

1 ( , 1) 1 ( , 1) 1 2 1

1 1

( , ; 1, 2,.., 1) ( , ) ( , ,..., ).
k k

out i i out i i discrete i i i i k

i i

D f f i k D f f R c c c
− −

+ + − + + −

= =

= − = +    (4. 5) 

4.2. Generalized Total Kullback-Leibler divergence (GTKL): summary of rule-in and rule-out 

information for multi-stage (k>2) diseases 

 The GTKL divergence is similar to the total Kullback-Leibler (TKL)  divergence for two-

stage diseases proposed by Samawi et al. (2019). Using same arguments in Samawi et al. (2019), 

the comprehensive information measured using Kullback-Leibler divergence is the sum of the 

generalized rule-in and rule-out information in (4. 2) and (4. 4), and it is computed as 

1 1

1
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1, ,
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( , ; 1,2,.., 1) ( , ; 1,2,.., 1)
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out i i in i i
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−
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+

= =

= − + = −

 
= − +   

 


     (4. 6) 



43 

where the discrete part, 
1
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1, ,

1 1 ,
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−
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= =
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 
 , is corresponding to the 

information of adjacent pairs based on the cut-points 
1 2 1( , , , )kc' c c c −= ; and, the reminder ( )R 

is computed as follows, using the P matrix defined in (3.17): 
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        
  (4. 7) 

4.2.1 Proposed diagnostic accuracy measure and optimal cut-points selection criterion 

As dividing the continuous variable into discrete groups, some information would be lost 

during the process. The summary of rule-in and rule-out information uses a similar concept that 

the reminder, ( )R  , is the loss of information when a continuous biomarker is divided into 

discrete groups when selecting cut-points. To reduce the loss of information, we want to select 

the optimal cut-points which can minimize the loss of information, ( )R  , and maximize the 

information included in the discrete groups. The information from the discrete groups includes 

the information that a biomarker collected. Using similar arguments as the TKL in the two-stage 

setting, and the diagnostic accuracy measure in multi-stage setting can be defined as: 

1
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When the discreteGTKL  is the discrete part from (4. 6). The GTKL is approaching its maximum 

and reducing the reminder to its minimum in (4. 6), with corresponding optimal cut-points for a 

biomarker: 
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Therefore, the corresponding optimal with the maximum information from GTKL is computed 

as: 
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   (4. 10) 

4.3. Special case: three-stage (k=3) diseases 

In the three-stage setting, using the P matrix in (3.18), the proposed measure using KL 

divergence and the corresponding GTKL with optimal cut-points can be computed as: 

( ) ( ) ( )

( ) ( ) ( ) ( )
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     
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+ − + − + − +          
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− +( ) ( )3,3 2,31 ln .R P− +

  (4. 11) 

Then, the discrete GTKL part, for the three-stage disease, is computed as: 

( ) ( )1,1 2,2 1,2 2,2 3,3 2,31 ln 1 lnGTKL p p p p = + − + + − ;   (4. 12) 

where 
1,2ln and 

2,3ln  are the natural logarithm of the diagnostics odds ratios of pairs of stages 

1 and 2, and stages 2 and 3, respectively. As discussed above, when selecting the optimal cut-

points, the GTKL with the optimal cut-points 1 2( , )c c can be obtained by maximizing the measure 

as:  

( ) ( ) 
1 2

1 2 1,1 1 2,2 1 2 1,2 2,2 1 2 3,3 2 2,3( , ) max ( ) ( , ) 1 ln ( , ) ( ) 1 ln ,
c c

GTKL c c p c p c c p c c p c 


= + − + + −   (4. 13) 

and, the corresponding cut-points are: 

( ) ( ) 
1 2

1 2 1,1 1 2,2 1 2 1,2 2,2 1 2 3,3 2 2,3( , ) arg max ( ) ( , ) 1 ln ( , ) ( ) 1 ln .
c c

c c p c p c c p c c p c 


= + − + + −   (4. 14) 
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Besides, when expanding the odds ratios of pairs of stages, the GTKL in three-stage setting can 

be written as: 

( )

( )

1,1 1 2,2 1 2

1,1 1 2,2 1 2

1,2 1 2,1 1 2

2,2 1 2 3,3 2

2,2 1 2 3,3 2
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( ) ( , ) 1 ln

( ) ( , )

( , ) ( )
( , ) ( ) 1 ln .

( ) ( , )

discrete

p c p c c
GTKL p c p c c

p c p c c

p c c p c
p c c p c

p c p c c

 
= + −    

 
+ + −    

(4. 15) 

The expression of GTKL in the three-stage setting can be generalized to k-stages by 

mathematical induction, and the odds ratio of each adjacent pair of stages can be expressed by 

two-by-two classification matrix, 
, , 1 , 1, 1

,

1, 1, 1 , 1 1,

i j i j i j i j

i j

i j i j i j i j

p p p p
OR

p p p p


+ + +

+ + + + +

  
= =        

. This expression of 

discreteGTKL  allows to estimate the cut-points for each pair of stages separately, which provides 

specific information for those two stages. 

The Kullback-Leibler divergence is also generalized by summing all the information 

among pairs of stages 1 and 2, stages 2 and 3, and stages 1 and 3. However, compared to the 

discreteGTKL   using the adjacent pairs (i.e., stages 1 and 2, stages 2 and 3), the performance from 

power analysis of comprehensive measure using all the pairs is more mediocre. The reason 

behind it may be that the information covered by the comprehensive measure is overlayed. The 

information caught from stages 1 and 3 may be overlapped by the other two adjacent pairs and 

results in over-estimation of the true information. Thus, the focus of the dissertation remains on 

evaluating the performance of the adjacent pairs. Studies on how to address the overlapped 

information are encouraged for future research.  
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CHAPTER 5 

SIMULATION STUDY 

 5.1. Power analysis 

Power analysis using the data simulated from normal and gamma distributions is 

conducted to evaluate the performance of the generalized total Kullback-Leibler divergence 

(GTKL) comparing with the existing methods, generalized Youden index (GYI), volume under 

the surface (VUS), known as the hypervolume under the manifold (HUM), and maximum 

absolute determinant (MADET), in the special case of multi-stage diseases when k is 3. The 

analysis is based on two scenarios: 1) whether a biomarker can discriminate subjects among 

stages, and 2) whether a biomarker performs the same as the gold standard. The simulation is 

conducted for the three-stage disease under settings with different values of parameters shown in 

Table 5.1 and Table 5.3 under different scenarios. For each setting, a random sample is simulated 

under the null hypothesis (H0) for 2000 iterations with sample size (20, 20, 20), (50, 50, 50) and 

(100, 100, 100). The 95% quantile of the estimated statistics (GTKL, GYI, VUS, and MADET) 

is obtained, then the mean of the two-thousand 95% quantiles serves as the critical value that is 

used to determine whether the null hypothesis is rejected and further estimates the power of the 

measure. The statistics of different measures are also estimated under alternative hypothesis (Ha) 

based on the settings in Table 5.1 and Table 5.3  with 2000 iterations. H0 is rejected if the 

statistics estimated under Ha is greater than the critical values. The power is the proportion out of 

2000 iterations where the H0 is rejected.  

5.1.1 Scenario I: whether a biomarker can discriminate subjects among stages 

In the first scenario, the three disease groups are assumed to have the same distributions 

under the null hypothesis:  

1 1 1 2 2 2 3 3 3( , ) ( , ) ( , )N N N     = = or 1 1 1 2 2 2 3 3 3( , ) ( , ) ( , )      =  =  . 
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The distributions under the alternative distributions are different from those under the null 

hypothesis, and they are assumed as the settings in Table 5.1.  

Table 5.1. Distribution settings for power analysis in Scenario I.  

Distribution under H0 Distribution under Ha 

Setting Non-disease Early diseased Fully Diseased Non-disease Early diseased Fully Diseased 

Normal 0 N1(1.0, 1.5) N2(1.0, 1.5) N3(1.0, 1.5) N1(1.0, 1.5) N2(1.0, 1.5) N3(1.0, 1.5) 

Normal 1  N1(0.5, 1.5) N2(1.0, 1.5) N3(1.2, 1.5) 

Normal 2  N1(1.0, 1.5) N2(1.0, 2.0) N3(1.0, 2.5) 

Normal 3 N1(1.0, 1.5) N2(1.0, 1.0) N3(1.0, 0.8) 

Gamma 0 Γ1(5.0, 3.0) Γ2(5.0, 3.0) Γ3(5.0, 3.0) Γ1(5.0, 3.0) Γ2(5.0, 3.0) Γ3(5.0, 3.0) 

Gamma 1 Γ1(5.0, 3.0) Γ2(6.0, 3.0) Γ3(7.0, 3.0) 

Gamma 2 Γ1(4.5, 3.0) Γ2(5.0, 3.2) Γ3(5.0, 3.5) 

Gamma 3 Γ1(5.0, 3.0) Γ2(5.0, 4.0) Γ3(5.0, 4.2) 

Normal Distribution: N (μ, ); Gamma Distribution:Γ(α, ). 

The following figures show density plots for different distributions assumed in the Scenario I 

(see Figure 5.1). The estimated power under the Scenario I is then summarized in Table 5.2. In 

this case, when the estimated measure under the alternative hypothesis is higher than the 

estimated measure under the null hypothesis, it indicates that the null hypothesis is rejected, and 

the measure is able to assess a biomarker’s capability to discriminate subjects among stages. 
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Figure 5.1.  Density plots of the distributions assumed in Scenario I.

a).

b).
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c).

d).



50 

e).

f).
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g).

h).
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Table 5.2. Simulated power in Scenario I. 

Setting Sample Size GTKL GYI VUS MADET 

Normal 0 20 0.0630 0.0565 0.0635 0.0640 

50 0.0360 0.0505 0.0515 0.0590 

100 0.0535 0.0455 0.0490 0.0475 

Normal 1 20 0.0870 0.3010 0.3435 0.1630 

50 0.1540 0.5160 0.6380 0.2985 

100 0.3050 0.8350 0.9130 0.4705 

Normal 2 20 0.1190 0.0815 0.0485 0.1445 

50 0.2860 0.1330 0.0405 0.2815 

100 0.7315 0.3730 0.0505 0.4925 

Normal 3 20 0.1765 0.1255 0.0875 0.1905 

50 0.6010 0.2965 0.1160 0.3980 

100 0.9330 0.5405 0.1370 0.6100 

Gamma 0 20 0.0715 0.0630 0.0590 0.0810 

50 0.0610 0.0575 0.0455 0.0715 

100 0.0525 0.0600 0.0490 0.0850 

Gamma 1 20 0.1880 0.6540 0.7620 0.4120 

50 0.4740 0.9630 0.9815 0.7145 

100 0.9110 1.0000 1.0000 0.9125 

Gamma 2 20 0.0870 0.0390 0.0300 0.0690 

50 0.1610 0.0505 0.0235 0.1240 

100 0.2115 0.0630 0.0170 0.1865 

Gamma 3 20 0.2990 0.0060 0.0000 0.3570 

50 0.6325 0.0045 0.0000 0.6435 

100 0.9445 0.0030 0.0000 0.8535 

Under Scenario I, none of the measures has a dominant well-performance in all kinds of 

distributions. Data with distribution as Normal 1 should consider GYI and VUS as the measures 

to assess the accuracy of the diagnostic test; and, data with distribution as Normal 2, Normal 3 

and Gamma 3 can use GTKL as the accuracy measure of the diagnostic test. Data with 

distribution as Gamma 1 can use any of the measures to test the accuracy since the power is 

similar when the sample size is 100; however, GYI and VUS provide more reliable results as 

both of them also perform well with smaller sample sizes. None of the measures perform well 

with the distribution as Gamma 2 though GTKL gives the highest power. In general, GTKL is 

more inferior to other measures when sample means are different among groups, with the same 

variance. In contrast, GTKL outperforms the others when the sample variance gets more diverse, 

while the sample mean remains the same among groups. The results provide hints for diagnostic 



53 

accuracy measures that our proposed measure, the GTKL, can catch the distinctions among 

stages when the group sample variance is diverse but has a similar group sample mean. 

5.1.2 Scenario II: compare the performance of two biomarkers 

In the second scenario, the three stages are assumed to have different distributions under 

the null hypothesis:  

1 1 1 2 2 2 3 3 3( , ) ( , ) ( , )N N N       or 
1 1 1 2 2 2 3 3 3( , ) ( , ) ( , )          . 

The distributions of the three stages have the settings assumed in Table 3, and Figure 4 displays 

the distributions with density plots.  Table 5.3 shows a summary of the estimated power under 

those settings.  

Table 5.3. Distribution settings for power analysis in Scenario II.   

Distribution under H0 Distribution under Ha 

Setting Non-disease Early diseased Fully Diseased Non-disease Early diseased Fully Diseased 

Normal 0 N1(1.0, 1.5) N2(4.0, 1.5) N3(7.0, 1.5)  N1(1.0, 1.5) N2(4.0, 1.5) N3(7.0, 1.5)  

Normal 1 N1(1.5, 1.0) N2(4.5, 1) N3(7.5, 3) 

Normal 2 N1(1.5, 1.5) N2(4.9, 1) N3(7.5, 2) 

Normal 3 N1(1.5, 1.5) N2(6, 2.5) N3(7.1, 2.5) 

Gamma 0 Γ1(2, 2) Γ2(5, 2) Γ3(7, 2) Γ1(2, 2) Γ2(5, 2) Γ3(7, 2) 

Gamma 1 Γ1(2, 2) Γ2(5.5, 2) Γ3(7., 2) 

Gamma 2 Γ1(3, 3) Γ2(6.5, 2.5) Γ3(9, 2.2) 

Gamma 3 Γ1(3, 3) Γ2(6.9, 2.5) Γ3(7.3, 2) 

Normal Distribution: N (μ, ); Gamma Distribution:Γ(α, ). 

The density plots shown in Figure 5.2 display the distribution under settings assumed in Table 

5.3. The estimated power under Scenario II is then shown in Table 5.4. In this case, when the 

estimated measure under the alternative hypothesis is higher than the estimated measure under 
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the null hypothesis, it indicates that the measure can assess the difference between a biomarker 

and the gold standard. 

Figure 5.2. Density plots of the distributions assumed in Scenario II.

a).

b).
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c).

d).
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e).

f).
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g).

h)
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Table 5.4. Simulated power in Scenario II. 

Setting Sample Size GTKL GYI VUS MADET 

Normal 0 20 0.0435 0.0530 0.0785 0.0510 

50 0.0685 0.0565 0.0470 0.0535 

100 0.0510 0.0535 0.0505 0.0530 

Normal 1 20 0.6020 0.5790 0.4690 0.5880 

50 0.9145 0.9325 0.7480 0.9330 

100 0.9895 0.9965 0.9555 0.9950 

Normal 2 20 0.4800 0.3335 0.2215 0.3190 

50 0.8370 0.6285 0.3660 0.5740 

100 0.9555 0.8710 0.5520 0.8265 

Normal 3 20 0.4385 0.0015   0 0.0010 

50 0.8135 0 0 0 

100 0.9430 0 0 0 

Gamma 0 20 0.0690 0.0715 0.0630 0.0660 

50 0.0705 0.0700 0.0470 0.0595 

100 0.0560 0.0735 0.0555 0.0725 

Gamma 1 20 0.1825 0.1130 0.0815 0.0990 

50 0.2330 0.1830 0.1065 0.1420 

100 0.3405 0.2235 0.0980 0.1395 

Gamma 2 20 0.4125 0.5090 0.5020 0.4735 

50 0.6085 0.8260 0.8305 0.7680 

100 0.9010 0.9815 0.9885 0.9660 

Gamma 3 20 0.3855 0.1900 0.1050 0.1410 

50 0.6205 0.3135 0.1415 0.1980 

100 0.8155 0.4280 0.1575 0.2365 

Under Scenario II, the results also show no dominant measure in all kinds of 

distributions. Data with distributions as Normal 1 and Gamma 2 have apparent differences 

among the three stages. Any of the measures can be used in such situations as the power of all 

the measures is high. GTKL, GYI and MADET show solid performance with data that has 

distribution as Normal 2; however, VUS shows the worse performance. In the distributions 

shown in Normal 3 and Gamma 3, GTKL has much better performance than the other measures. 

The data with such distributions shows substantial overlap between the middle and the last 

stages. In this case, GTKL is suggested as the measure for accuracy tests. Lastly, all measures 

have low power with the distribution shown in Gamma 1. Although GTKL outperforms the 

others, its power is 0.3405 which remains low even the sample size is increased to 100. All in all, 
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GTKL shows better performance than the others when the middle and last stages have heavy 

overlaps.  

5.2. Optimal cut-points selection 

In the diagnostic study, the optimal cut-points are estimated for continuous biomarkers to 

diagnose whether a subject having the disease of interest. Of multi-stage diseases, more than one 

optimal cut-points are expected to identify the staging of the subjects. Among the measures that 

we have discussed above, the GTKL, GYI, and MADET can be directly used as the selection 

criteria; however, HUM, known as the VUS for three-stage diseases, cannot be used as the 

criteria yet have to use the closet-to-perfection (CP) and the maximum volume (MV) measures 

that are derived based on the HUM. In this section, we provide the estimation of the GTKL, 

GYI, VUS, and MADET in the three-stage setting, as well as the corresponding optimal cut-

points selected by the GTKL, GYI and MADET, and the CP and MV with respect to VUS in the 

simulation.  

5.2.1 Indices to evaluate the selection criteria 

To compare the optimal cut-point criteria in three-stage setting, the relative bias (RBias), 

the normalized root-mean-square error (NRMSE), the total correct classification rate (TCCR), 

the percentage of loss of the total correct classification rate (LCCR%), and the maximum-

minimum difference (MMDIF) are obtained in the simulation.  

The NRMSE is provided in the simulation as an example to demonstrate the estimation 

by different selection criteria. Although the root-mean-square error (RMSE) is frequently used 

for measuring the power of the estimation of a model, the RMSE cannot be used in comparing 

values with different scales. In this study, the five diagnostic accuracy measures have different 

scales that the values can be very diverse from each other, so the NRMSE is a more appropriate 
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index to measure the accuracy of the estimation among the measures in this study. Additionally, 

the ranges of the measures are widely different, and the RMSE is therefore normalized by 

dividing the RMSE by the range (i.e., the difference of the maximum and minimum estimates) of 

a measure. In the simulation, in order to obtain the NRMSE, the RBias of the optimal statistics 

was estimated from N rounds of iteration, and its variance is captured by the following formulas:  

1

1ˆ ˆRBias ( )
N

i

i

T T T T
N =

  
= −  

  
 , 

2ˆ ˆVariance ( ) ( ) ( 1)
N

i

i

T T T N= − − . 

Then, the RMSE is computed as: 

2 ˆ( )RMSE Bias Variance T= + ; 

where ˆ
iBias T T= − . ˆ

iT  and T  denote estimated value and the true value of the measure, 

respectively. The RMSE is then normalized by dividing the RMSE by the difference between 

maximum and minimum as: 

ˆ ˆmax( ) min( )

RMSE
NRMSE

T T
=

−
. 

The TCCR is defined as the summation of all the correct classification rates in all stages, 

and it is computed as: 

,

k

i i

i

TCCR p= .  

The LCCR% is an index to compare the TCCR among the criteria, using the Youden index as 

reference (Attwood et al., 2014; Dong et al., 2017). The LCCR% using the GYI as the reference 

is computed as: 



61 
 

 

% 100%GYI M

GYI

TCCR TCCR
LCCR

TCCR

−
=  , 

where GYITCCR  is the total correct classification rate calculated based on the optimal cut-points 

selected by the GYI, while 
MTCCR  is based on the method M (i.e., GTKL, CP, MADET, and 

MV). A positive LCCR% indicates that a measure loses the information of the total correct 

classification rate compared to the GYI; in contrast, a negative LCCR indicates a measure having 

more information on the total correct classification rate compared to the GYI. A larger LCCR 

indicates a measure loses more correct information in contrast to the reference measure. In 

addition to the LCCR%, the maximum-minimum difference (MMDIF) is proposed by Dong et 

al. (2017) to measure the balance of correct classification rates among disease stages, and it is 

computed as: 

11 , 11 ,

11 ,

max( , , ) min( , , )

min( , , )

k k k k

k k

p p p p
MMDIF

p p

−
= . 

A smaller MMDIF indicates a more balanced measure in selecting optimal cut-points.  

5.2.2 Simulation 

Simulation is conducted under the three-stage setting to assess the performance of the 

optimal cut-points selection criteria. The data is simulated for three stages using normal and 

gamma distribution, and the settings for the parameters are shown in Table 5.5. For each setting, 

the random sample is simulated for 10000 iterations (N) with the sample sizes (20, 20, 20), (50, 

50, 50), (100, 100, 100) and (100, 50, 30). The optimal statistics and optimal cut-points are 

estimated using the smoothed kernel approach (Simonoff, 2012; Wand & Jones, 1994). 

Table 5.6 – 5.11 summarized the estimated optimal statistics of the diagnostic measure 

and the corresponding optimal cut-points selected by each measure. The estimation is conducted 



62 
 

 

using kernel estimation as an example. The results give a reasonable estimation, and Rbias and 

NRMSE allow to compare the results among all the measures as they normalized the estimates 

by the range of the estimates from each measure.  

As shown in Table 5.12 - 5.15, the GTKL is not as balanced as the other measures. The 

GYI is the most balanced measure among all. The CP, MV, and MADET have similar results. 

Some settings show that the GTKL has the highest CCR in the middle stage, such as Normal 3 

and Gamma 6 from cut-points selection simulation. In setting Normal 1 and Gamma 4, the 

GTKL performs better with the smaller sample size, and the MADET catches up in the larger 

sample size. Generally, the GYI has the highest TCCR with highest CCRs in the first and last 

stages.  
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Table 5.5. Distribution settings for optimal cut-point selection. 

 Distributions 

Settings Non-disease Early diseased Fully Diseased 

Normal 1 N1(2.0, 2.0) N2(4.0, 2.0) N3(6.0, 2.0)   

Normal 2 N1(2.0, 2.0) N2(4.0, 2.5) N3(6.0, 3.5)   

Normal 3 N1(2.0, 2.0) N2(3.0, 2.0) N3(5.0, 2.0)   

Normal 4  N1(2.0, 2.0) N2(4.5, 2.0) N3(6.0, 1.5)   

Normal 5 N1(2.0, 2.0) N2(5.0, 2.0) N3(6.0, 1.5)   

Normal 6 N1(2.0, 2.0) N2(4, 1.5) N3(5.0, 1.5)   

Gamma 1 Γ1(2.0, 2.0) Γ2(4.0, 2.0) Γ3(6.0, 2.0) 

Gamma 2 Γ1(2.0, 2.0) Γ2(5.0, 2.0) Γ3(6.0, 2.0) 

Gamma 3 Γ1(2.5, 2.0) Γ2(4.0, 2.0) Γ3(5.5, 2.0) 

Gamma 4 Γ1(2.0, 2.0) Γ2(5.0, 2.5) Γ3(7.0, 3.0) 

Gamma 5 Γ1(2.0, 2.0) Γ2(5.0, 2.5) Γ3(5.5, 3.0) 

Gamma 6 Γ1(2.0, 2.0) Γ2(5.5, 2.0) Γ3(6.5, 2.5) 

Normal Distribution: N (μ, ); Gamma Distribution:Γ(α, ) 
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Table 5.6. Relative bias and normalized root-mean-square error of the estimated optimal 

statistics in the normal distribution. 

Sample size 
 n1= n2= n3 

20 

n1= n2= n3 

50 

n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure Stat* RBias NRMSE RBias NRMSE RBias NRMSE RBias NRMSE 

Normal 1 GTKL 1.5236 0.3444 0.1256 0.0743 0.0913 0.0031 0.1141 0.0842 0.1144  
MADET 0.1040 0.0444 0.1378 -0.0448 0.1441 -0.0630 0.1405 -0.0455 0.1287  
GYI 0.7658 -0.0042 0.1294 -0.0291 0.1470 -0.0322 0.1383 -0.0275 0.1299  
CP 0.7253 0.0288 0.1363 0.0293 0.1459 0.0261 0.1477 0.0290 0.1378  
MV 0.1971 -0.0316 0.1271 -0.0500 0.1419 -0.0493 0.1437 -0.0490 0.1260   

         

Normal 2 GTKL 1.1784 0.5043 0.1682 0.1822 0.1348 0.0846 0.1184 0.1722 0.1332  
MADET 0.0783 0.0779 0.1504 -0.0284 0.1417 -0.0440 0.1251 -0.0356 0.1451  
GYI 0.6411 0.0154 0.1319 -0.0188 0.1300 -0.0252 0.1256 -0.0133 0.1353  
CP 0.8033 0.0161 0.1368 0.0198 0.1465 0.0180 0.1284 0.0182 0.1395  
MV 0.1550 -0.0123 0.1307 -0.0389 0.1421 -0.0400 0.1259 -0.0331 0.1350 

           

Normal 3 GTKL 0.9794 0.5165 0.1403 0.1376 0.1344 0.0350 0.1077 0.1686 0.1208  
MADET 0.0435 0.4716 0.1603 0.1600 0.1482 0.0577 0.1500 0.0987 0.1316  
GYI 0.5803 0.0405 0.1427 -0.0068 0.1300 -0.0185 0.1338 -0.0113 0.1312  
CP 0.8348 0.0127 0.1470 0.0169 0.1367 0.0154 0.1460 0.0188 0.1343  
MV 0.1392 -0.0062 0.1413 -0.0345 0.1346 -0.0364 0.1414 -0.0395 0.1259   

         

Normal 4 GTKL 1.9673 0.2834 0.1461 0.0741 0.1382 0.0081 0.1235 0.0836 0.1373  
MADET 0.1044 0.0460 0.1451 -0.0583 0.1485 -0.0828 0.1211 -0.0567 0.1494  
GYI 0.8159 -0.0126 0.1326 -0.0283 0.1388 -0.0326 0.1247 -0.0284 0.1442  
CP 0.7146 0.0317 0.1454 0.0303 0.1448 0.0285 0.1347 0.0309 0.1435  
MV 0.2045 -0.0379 0.1364 -0.0514 0.1351 -0.0535 0.1258 -0.0522 0.1378   

         

Normal 5 GTKL 2.1420 0.2684 0.0951 0.0642 0.1164 0.0037 0.1267 0.0597 0.1120  
MADET 0.0815 0.2113 0.1308 -0.0045 0.1334 -0.0526 0.1353 0.0167 0.1449  
GYI 0.7952 -0.0073 0.1299 -0.0268 0.1318 -0.0277 0.1339 -0.0235 0.1341  
CP 0.7363 0.0263 0.1362 0.0276 0.1460 0.0236 0.1358 0.0256 0.1437  
MV 0.1922 -0.0315 0.1281 -0.0501 0.1376 -0.0468 0.1318 -0.0451 0.1351   

         

Normal 6 GTKL 1.9305 0.3244 0.1484 0.1315 0.1315 0.0646 0.1376 0.1347 0.1269  
MADET 0.1116 0.0130 0.1263 -0.0625 0.1425 -0.0693 0.1132 -0.0486 0.1424  
GYI 0.7864 -0.0099 0.1232 -0.0268 0.1336 -0.0288 0.1240 -0.0265 0.1297  
CP 0.7300 0.0279 0.1287 0.0275 0.1461 0.0243 0.1274 0.0266 0.1436  
MV 0.1955 -0.0313 0.1197 -0.0473 0.1371 -0.0465 0.1170 -0.0454 0.1386 

Stat*: optimal statistics of the measure; RBias: relative bias; NRMSE: normalized root-mean-square error. 
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Table 5.7. Relative bias and normalized root-mean-square error of the estimated optimal 

statistics in the gamma distribution. 

Sample size  
n1= n2= n3 

20 

n1= n2= n3 

50 

n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure Stat* RBias NRMSE RBias NRMSE RBias NRMSE RBias NRMSE 

Gamma 1 GTKL 1.8816 0.3534 0.1331 0.0678 0.1158 -0.0270 0.1186 0.0142 0.1158  
MADET 0.1301 -0.0023 0.1351 -0.0778 0.1327 -0.0846 0.1471 -0.0611 0.1409  

GYI 0.8312 -0.0089 0.1304 -0.0307 0.1365 -0.0327 0.1334 -0.0275 0.1413  
CP 0.6866 0.0362 0.1304 0.0368 0.1467 0.0319 0.1500 0.0338 0.1402  

MV 0.2208 -0.0385 0.1215 -0.0574 0.1402 -0.0545 0.1461 -0.0517 0.1323   
         

Gamma 2 GTKL 2.5377 0.3152 0.1518 0.0653 0.1368 -0.0224 0.1295 -0.0120 0.1159  
MADET 0.0827 0.2596 0.1497 0.0391 0.1439 -0.0146 0.1438 0.1033 0.1383  

GYI 0.7927 0.0119 0.1340 -0.0174 0.1427 -0.0215 0.1245 -0.0092 0.1162  
CP 0.7216 0.0339 0.1467 0.0337 0.1497 0.0280 0.1351 0.0296 0.1343  

MV 0.2018 -0.0396 0.1403 -0.0568 0.1389 -0.0512 0.1319 -0.0475 0.1258   
         

Gamma 3 GTKL 1.0411 0.5546 0.1455 0.1251 0.1223 0.0038 0.1082 0.0849 0.0882  
MADET 0.0607 0.2179 0.1293 0.0229 0.1470 -0.0354 0.1132 0.0379 0.1458  

GYI 0.6268 0.0225 0.1333 -0.0151 0.1294 -0.0248 0.1200 -0.0123 0.1255  
CP 0.8048 0.0193 0.1290 0.0211 0.1380 0.0198 0.1235 0.0198 0.1301  

MV 0.1536 -0.0186 0.1219 -0.0411 0.1341 -0.0441 0.1140 -0.0379 0.1278   
         

Gamma 4 GTKL 1.7228 0.2428 0.0992 -0.0314 0.1084 -0.1019 0.0996 -0.0693 0.1071  
MADET 0.0563 0.3862 0.1526 0.0541 0.1388 -0.0485 0.1395 0.1542 0.1482  

GYI 0.6766 0.0114 0.1362 -0.0240 0.1205 -0.0301 0.1364 -0.0117 0.1327  
CP 0.7833 0.0303 0.1513 0.0312 0.1350 0.0269 0.1504 0.0256 0.1427  

MV 0.1651 -0.0434 0.1395 -0.0627 0.1258 -0.0584 0.1466 -0.0489 0.1366   
         

Gamma 5 GTKL 1.4112 0.2669 0.1157 -0.0349 0.0971 -0.1137 0.1352 -0.0764 0.1257  
MADET 0.0282 1.2330 0.1644 0.5818 0.1417 0.2976 0.1573 0.7345 0.1749  

GYI 0.5635 0.0568 0.1297 0.0086 0.1294 -0.0102 0.1380 0.0190 0.1314  
CP 0.8424 0.0219 0.1440 0.0218 0.1371 0.0206 0.1498 0.0187 0.1499  

MV 0.1358 -0.0325 0.1268 -0.0486 0.1267 -0.0513 0.1404 -0.0399 0.1411   
         

Gamma 6 GTKL 3.0462 0.3135 0.1457 0.0813 0.1368 -0.0061 0.1116 -0.0045 0.1219  
MADET 0.0394 1.2899 0.1815 0.6447 0.1727 0.3720 0.1551 0.7573 0.1933  

GYI 0.6753 0.0419 0.1317 -0.0013 0.1142 -0.0161 0.1292 0.0014 0.1237  
CP 0.8392 0.0171 0.1371 0.0198 0.1398 0.0188 0.1500 0.0163 0.1380  

MV 0.1400 -0.0280 0.1258 -0.0489 0.1234 -0.0490 0.1481 -0.0390 0.1307 

Stat*: optimal statistics of the measure; RBias: relative bias; NRMSE: normalized root-mean-square error. 
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Table 5.8. Relative bias and normalized root-mean-square error of the estimated 

1c
 in the normal 

distribution. 

Sample Size  
n1= n2= n3 

20 

n1= n2= n3 

50 

n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure 1̂c  Rbias NRMSE Rbias NRMSE Rbias NRMSE Rbias NRMSE 

Normal 1 GTKL 2.5800 -0.1874 0.1479 -0.1284 0.1462 -0.0934 0.1483 -0.2295 0.1600 

 MADET 2.4020 0.0078 0.1370 -0.0123 0.1301 -0.0139 0.1156 -0.0163 0.1310 

 GYI 3.0000 -0.0030 0.1170 -0.0008 0.1165 -0.0007 0.1222 0.0075 0.1146 

 CP 2.5779 -0.0118 0.1266 -0.0132 0.1407 -0.0124 0.1381 -0.0094 0.1351 

 MV 2.6140 -0.0139 0.1353 -0.0146 0.1487 -0.0138 0.1401 -0.0114 0.1395 

           

Normal 2 GTKL 4.0826 -0.2705 0.1808 -0.1112 0.1356 -0.0454 0.1225 -0.1757 0.1545 

 MADET 3.0097 -0.1329 0.1140 -0.0472 0.1181 -0.0041 0.1145 -0.0849 0.1352 

 GYI 3.4155 -0.0091 0.0624 0.0108 0.1268 0.0154 0.1227 0.0174 0.1098 

 CP 2.6664 -0.0059 0.1285 -0.0062 0.1342 -0.0035 0.1315 0.0013 0.1333 

 MV 2.7468 -0.0120 0.1316 -0.0102 0.1353 -0.0061 0.1357 -0.0031 0.1344 

           

Normal 3 GTKL 2.3579 -0.3278 0.1706 -0.2313 0.1487 -0.1676 0.1525 -0.3383 0.1580 

 MADET 1.8024 0.0086 0.1303 0.0107 0.1286 0.0055 0.1384 -0.0663 0.1228 

 GYI 2.5000 -0.0698 0.0660 -0.0264 0.0479 -0.0119 0.1458 -0.0122 0.1100 

 CP 2.0717 -0.0281 0.1225 -0.0253 0.1134 -0.0203 0.1251 -0.0182 0.1138 

 MV 2.0576 -0.0237 0.1268 -0.0238 0.1275 -0.0198 0.1414 -0.0194 0.1243 

           

Normal 4 GTKL 2.2670 -0.1062 0.1487 -0.1237 0.1471 -0.1279 0.1389 -0.1709 0.1347 

 MADET 2.3030 0.1034 0.1325 0.0035 0.1232 -0.0343 0.1189 -0.0205 0.1248 

 GYI 3.2500 -0.0054 0.1200 -0.0010 0.1349 0.0006 0.1156 0.0060 0.1218 

 CP 2.7168 -0.0142 0.1346 -0.0157 0.1349 -0.0134 0.1227 -0.0106 0.1195 

 MV 2.7682 -0.0188 0.1431 -0.0190 0.1397 -0.0164 0.1206 -0.0145 0.1190 

           

Normal 5 GTKL 2.2438 -0.0634 0.0546 -0.0902 0.1711 -0.0908 0.1697 -0.1557 0.1528 

 MADET 2.3180 0.2409 0.1697 0.1136 0.1433 0.0303 0.1282 0.0171 0.1223 

 GYI 3.5000 -0.0091 0.1391 -0.0035 0.1455 -0.0003 0.1275 0.0013 0.1234 

 CP 2.8766 -0.0119 0.1169 -0.0136 0.1322 -0.0113 0.1325 -0.0093 0.1185 

 MV 2.9644 -0.0189 0.1091 -0.0188 0.1212 -0.0153 0.1307 -0.0143 0.1219 

           

Normal 6 GTKL 1.6298 -0.1255 0.0951 -0.2462 0.2000 -0.2435 0.1953 -0.1137 0.1608 

 MADET 1.9740 0.1419 0.1581 0.0116 0.1419 -0.0383 0.1127 -0.0386 0.1072 
 

GYI 2.7355 -0.0164 0.1189 -0.0155 0.1065 -0.0134 0.1349 -0.0103 0.1276 
 

CP 2.4664 -0.0232 0.1326 -0.0235 0.1307 -0.0206 0.1482 -0.0184 0.1220 
 

MV 2.4681 -0.0249 0.1276 -0.0255 0.1309 -0.0226 0.1490 -0.0211 0.1233 

RBias: relative bias; NRMSE: normalized root-mean-square error. 
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Table 5.9. Relative bias and normalized root-mean-square error of the estimated 

2c
 in the normal 

distribution. 

Sample size 
 n1= n2= n3 

20 

n1= n2= n3 

50 

n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure 2ĉ  Rbias NRMSE Rbias NRMSE Rbias NRMSE Rbias NRMSE 

Normal 1 GTKL 5.4200 0.0875 0.1482 0.0678 0.1518 0.0502 0.1480 0.0210 0.1445 

 MADET 5.5980 -0.0015 0.1101 0.0049 0.1222 0.0081 0.1218 0.0017 0.1190 

 GYI 5.0000 0.0039 0.0599 0.0019 0.1341 0.0007 0.1263 0.0049 0.1258 

 CP 5.4221 0.0072 0.1172 0.0077 0.1282 0.0064 0.1350 0.0096 0.1265 

 MV 5.3860 0.0085 0.1253 0.0088 0.1331 0.0072 0.1379 0.0101 0.1297 

           

Normal 2 GTKL 7.5285 0.0239 0.1320 0.0578 0.1470 0.0645 0.1586 0.0527 0.1467 

 MADET 6.9484 -0.0625 0.1322 -0.0099 0.1363 0.0127 0.1070 -0.0354 0.1436 

 GYI 6.0512 0.0101 0.0541 0.0131 0.1271 0.0142 0.1211 0.0144 0.1253 

 CP 6.0435 0.0186 0.1185 0.0178 0.1401 0.0162 0.1305 0.0208 0.1142 

 MV 6.0724 0.0151 0.1186 0.0158 0.1370 0.0150 0.1334 0.0176 0.1421 

           

Normal 3 GTKL 5.0232 0.0607 0.1614 0.0472 0.1509 0.0326 0.1600 0.0094 0.1658 

 MADET 4.8421 -0.0320 0.1142 -0.0226 0.1292 -0.0145 0.1219 -0.0484 0.1177 

 GYI 4.0000 0.0193 0.0909 0.0079 0.1404 0.0036 0.1173 0.0086 0.1204 

 CP 4.5491 0.0069 0.1301 0.0081 0.1293 0.0065 0.1376 0.0091 0.1038 

 MV 4.5219 0.0098 0.1405 0.0104 0.1331 0.0082 0.1393 0.0103 0.1338 

           

Normal 4 GTKL 4.6715 0.1310 0.1583 0.0612 0.1321 0.0271 0.1317 0.0229 0.1202 

 MADET 5.1744 0.0510 0.1300 0.0133 0.1163 -0.0013 0.0901 0.0029 0.1297 

 GYI 4.8348 0.0007 0.0404 -0.0079 0.1270 -0.0081 0.1180 -0.0034 0.1272 

 CP 5.4573 0.0028 0.1054 0.0031 0.1340 0.0025 0.1243 0.0055 0.1126 

 MV 5.4014 0.0048 0.1274 0.0044 0.1363 0.0035 0.1280 0.0069 0.1301 

           

Normal 5 GTKL 4.7606 0.1619 0.1679 0.1069 0.1743 0.0704 0.1709 0.0449 0.1550 

 MADET 5.1169 0.1200 0.1612 0.0618 0.1364 0.0239 0.1240 0.0162 0.1349 

 GYI 4.8572 0.0185 0.0532 -0.0061 0.1231 -0.0084 0.1303 -0.0016 0.1348 

 CP 5.5927 0.0046 0.1112 0.0027 0.1234 0.0023 0.1345 0.0054 0.1111 

 MV 5.5738 0.0056 0.1327 0.0035 0.1351 0.0031 0.1388 0.0063 0.1264 

           

Normal 6 GTKL 3.5300 0.1103 0.1737 -0.0047 0.1032 -0.0279 0.0831 -0.0011 0.1030 

 MADET 4.2286 0.0790 0.1573 0.0233 0.1225 -0.0004 0.0910 0.0017 0.0902 
 

GYI 4.0972 -0.0044 0.0421 -0.0098 0.1078 -0.0101 0.1301 -0.0063 0.1241 
 

CP 4.5833 0.0007 0.1135 0.0002 0.1069 0.0002 0.1324 0.0016 0.1206 
 

MV 4.5201 0.0025 0.1179 0.0011 0.1101 0.0006 0.1342 0.0026 0.1297 

RBias: relative bias; NRMSE: normalized root-mean-square error. 
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Table 5.10. Relative bias and normalized root-mean-square error of the estimated 

1c
 in the 

gamma distribution. 

Sample size 
 n1= n2= n3 

20 

n1= n2= n3 

50 

n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure 1̂c  Rbias NRMSE Rbias NRMSE Rbias NRMSE Rbias NRMSE 

Gamma 1 GTKL 0.8469 0.5556 0.1627 0.4612 0.1760 0.3733 0.2416 0.3832 0.1080 

 MADET 0.9894 0.2027 0.1142 0.1409 0.0950 0.1042 0.1504 0.1293 0.1057 

 GYI 1.2247 0.1014 0.1225 0.0798 0.1327 0.0621 0.1380 0.0758 0.1607 

 CP 1.0912 0.0574 0.1328 0.0413 0.1354 0.0323 0.1466 0.0394 0.1583 

 MV 1.1097 0.0658 0.1414 0.0481 0.1283 0.0375 0.1465 0.0455 0.1531 

           

Gamma 2 GTKL 0.7443 0.7448 0.1184 0.6764 0.2872 0.5934 0.2760 0.5307 0.2475 

 MADET 1.1250 0.2243 0.1514 0.1608 0.1662 0.1064 0.1227 0.1375 0.1144 

 GYI 1.4422 0.0664 0.1438 0.0521 0.1386 0.0412 0.1454 0.0489 0.1416 

 CP 1.2274 0.0412 0.1291 0.0297 0.1296 0.0226 0.1447 0.0290 0.1300 

 MV 1.2809 0.0432 0.1289 0.0320 0.1307 0.0250 0.1419 0.0311 0.1309 

           

Gamma 3 GTKL 0.9713 0.4742 0.1504 0.3697 0.1160 0.2986 0.1465 0.3456 0.1180 

 MADET 1.0485 0.2504 0.1465 0.1956 0.1316 0.1527 0.1195 0.1745 0.1219 

 GYI 1.3656 0.0880 0.0409 0.0768 0.1470 0.0641 0.1560 0.0728 0.1295 

 CP 1.2113 0.0549 0.1087 0.0376 0.1369 0.0305 0.1518 0.0372 0.1331 

 MV 1.2148 0.0580 0.1422 0.0400 0.1371 0.0325 0.1539 0.0384 0.1319 

           

Gamma 4 GTKL 0.5911 0.8134 0.0827 0.6413 0.0772 0.5121 0.0823 0.5053 0.1862 

  0.8584         

 GYI 1.2181 0.0787 0.1417 0.0602 0.1303 0.0484 0.1553 0.0578 0.1433 

 CP 1.0619 0.0525 0.1305 0.0328 0.1300 0.0255 0.1366 0.0346 0.1421 

 MV 1.0789 0.0515 0.1294 0.0334 0.1301 0.0262 0.1338 0.0345 0.1395 

           

Gamma 5 GTKL 0.6936 0.8355 0.1522 0.6494 0.1854 0.5355 0.1986 0.5692 0.1927 

 MADET 1.1264 0.3177 0.1682 0.2794 0.1832 0.2435 0.1830 0.2431 0.1497 

 GYI 1.5386 0.0730 0.1200 0.0566 0.1291 0.0476 0.1446 0.0544 0.1390 

 CP 1.3505 0.0574 0.1401 0.0356 0.1360 0.0282 0.1435 0.0367 0.1443 

 MV 1.3646 0.0518 0.1300 0.0336 0.1274 0.0272 0.1457 0.0337 0.1291 

           

Gamma 6 GTKL 0.7484 0.7252 0.1904 0.6778 0.2571 0.6105 0.2642 0.5510 0.2188 

 MADET 1.4041 0.0246 0.1042 0.0232 0.1258 0.0196 0.1226 -0.0168 0.1096  
GYI 1.4865 0.0682 0.1139 0.0513 0.1309 0.0415 0.1462 0.0435 0.1159  

CP 1.2591 0.0396 0.1277 0.0224 0.1156 0.0169 0.1254 0.0209 0.1213  
MV 1.3140 0.0299 0.1337 0.0183 0.1357 0.0152 0.1251 0.0164 0.1291 

RBias: relative bias; NRMSE: normalized root-mean-square error. 
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Table 5.11. Relative bias and normalized root-mean-square error of the estimated 

2c
 in the 

gamma distribution. 

Sample size 
 n1= n2= n3 

20 

n1= n2= n3 

50 

n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure 2ĉ  Rbias NRMSE Rbias NRMSE Rbias NRMSE Rbias NRMSE 

Gamma 1 GTKL 2.0562 0.5137 0.1177 0.4520 0.2224 0.3531 0.2271 0.3441 0.0923  
MADET 2.4558 0.1214 0.1044 0.0911 0.0883 0.0695 0.1247 0.0828 0.1081  

GYI 2.2361 0.0745 0.0930 0.0495 0.1225 0.0401 0.1190 0.0603 0.1070  
CP 2.4654 0.0435 0.1353 0.0340 0.1302 0.0278 0.1464 0.0377 0.1405  

MV 2.4417 0.0509 0.1388 0.0399 0.1407 0.0325 0.1498 0.0432 0.1551   
         

Gamma 2 GTKL 1.9101 0.6378 0.1298 0.6160 0.2276 0.5472 0.2453 0.3922 0.2017  
MADET 2.6847 0.1562 0.1496 0.1189 0.1329 0.0868 0.1254 0.0900 0.1406  

GYI 2.5000 0.1009 0.0634 0.0670 0.0648 0.0496 0.0449 0.0736 0.0604  
CP 2.6840 0.0438 0.0955 0.0339 0.0814 0.0265 0.1187 0.0363 0.0970  

MV 2.6954 0.0451 0.1300 0.0356 0.1343 0.0282 0.1262 0.0377 0.1061   
         

Gamma 3 GTKL 2.1222 0.5241 0.1183 0.4272 0.1236 0.3291 0.2248 0.3626 0.1015  
MADET 2.4288 0.1350 0.1389 0.1101 0.1270 0.0957 0.1345 0.0980 0.1008  

GYI 2.1189 0.1039 0.0562 0.0645 0.1255 0.0483 0.1239 0.0740 0.0874  
CP 2.3980 0.0465 0.0970 0.0347 0.1208 0.0303 0.1515 0.0381 0.1192  

MV 2.3910 0.0501 0.1144 0.0382 0.1491 0.0333 0.1529 0.0406 0.1347   
         

Gamma 4 GTKL 1.4346 0.8818 0.2069 0.7042 0.2658 0.5216 0.2129 0.4350 0.2047  
MADET 1.9553 0.2887 0.1636 0.2283 0.1602 0.1676 0.1465 0.1881 0.1601  

GYI 1.8279 0.2192 0.0853 0.1165 0.0743 0.0638 0.0574 0.1208 0.0678  
CP 2.1161 0.0462 0.0980 0.0314 0.1068 0.0251 0.1445 0.0361 0.0980  

MV 2.1183 0.0461 0.1197 0.0339 0.1330 0.0274 0.1584 0.0377 0.1056   
         

Gamma 5 GTKL 1.6936 0.9166 0.2489 0.7197 0.2538 0.5567 0.2270 0.5320 0.1898  
MADET 2.6095 0.2002 0.1364 0.1781 0.1385 0.1491 0.1467 0.1401 0.1351  

GYI 2.3783 0.2644 0.1206 0.1561 0.0951 0.1037 0.0751 0.1443 0.0734  
CP 2.6189 0.0580 0.0461 0.0382 0.1096 0.0298 0.1262 0.0406 0.1019  

MV 2.6275 0.0486 0.0988 0.0361 0.1409 0.0291 0.1394 0.0379 0.1401   
         

Gamma 6 GTKL 1.9524 0.5832 0.1400 0.5954 0.2342 0.5518 0.3045 0.4049 0.2656  
MADET 3.1856 -0.0194 0.1068 -0.0149 0.1205 -0.0092 0.1252 -0.0559 0.1358  

GYI 1.4865 1.1745 0.1601 0.8959 0.1873 0.6505 0.1594 0.6922 0.1514  
CP 2.5423 0.0594 0.0386 0.0334 0.1022 0.0246 0.1102 0.0362 0.0307  

MV 2.5760 0.0420 0.1232 0.0300 0.1291 0.0241 0.1413 0.0321 0.1242 

RBias: relative bias; NRMSE: normalized root-mean-square error. 
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Table 5.12. Summary of the correct classification rates and total correct classification rate in the normal distribution. 

Sample size 
n1= n2= n3 

20 
n1= n2= n3 

50 
n1= n2= n3 

100 
n1=100; n2=50; 

n3=30 

Setting Measure 1,1p   
2 2p ，  3,3p  TCCR 1,1p   

2 2p ，  3,3p  TCCR 1,1p   
2 2p ，  3,3p  TCCR 1,1p   

2 2p ，  3,3p  TCCR 

Normal 1 GTKL 0.5407 0.5493 0.5424 1.6323 0.5582 0.5446 0.5525 1.6553 0.5701 0.5399 0.5648 1.6748 0.5070 0.5404 0.6022 1.6497 

 MADET 0.5919 0.5401 0.5895 1.7215 0.5774 0.5545 0.5784 1.7103 0.5741 0.5623 0.5721 1.7085 0.5725 0.5518 0.5857 1.7100 

 GYI 0.6903 0.3845 0.6878 1.7626 0.6853 0.3738 0.6845 1.7436 0.6847 0.3719 0.6846 1.7412 0.6882 0.3718 0.6849 1.7448 

 CP 0.6098 0.5115 0.6079 1.7292 0.6044 0.5119 0.6036 1.7198 0.6041 0.5132 0.6037 1.7209 0.6056 0.5115 0.6035 1.7205 

 MV 0.6159 0.5045 0.6137 1.7341 0.6105 0.5035 0.6095 1.7235 0.6102 0.5042 0.6097 1.7240 0.6113 0.5029 0.6102 1.7243 

                  

Normal 2 GTKL 0.6641 0.4939 0.3515 1.5094 0.7528 0.4512 0.3197 1.5237 0.7954 0.4289 0.3089 1.5332 0.7136 0.4673 0.3295 1.5104 

 MADET 0.6191 0.5178 0.4622 1.5990 0.6609 0.5204 0.4173 1.5986 0.6828 0.5231 0.3956 1.6015 0.6390 0.5109 0.4397 1.5896 

 GYI 0.7479 0.3922 0.5109 1.6510 0.7550 0.3774 0.4967 1.6290 0.7582 0.3759 0.4909 1.6249 0.7579 0.3737 0.5010 1.6326 

 CP 0.6282 0.4926 0.4945 1.6152 0.6238 0.4888 0.4886 1.6012 0.6240 0.4893 0.4874 1.6006 0.6264 0.4889 0.4890 1.6043 

 MV 0.6399 0.4860 0.4929 1.6188 0.6364 0.4820 0.4866 1.6049 0.6372 0.4822 0.4849 1.6043 0.6387 0.4814 0.4876 1.6076 

  
                

Normal 3 GTKL 0.4551 0.5177 0.4787 1.4515 0.4839 0.5046 0.4775 1.4661 0.5038 0.4965 0.4824 1.4827 0.4355 0.5117 0.5192 1.4664 

 MADET 0.4837 0.4862 0.5687 1.5386 0.4819 0.4925 0.5560 1.5304 0.4770 0.5044 0.5475 1.5289 0.4528 0.4948 0.5804 1.5280 

 GYI 0.5909 0.3328 0.6802 1.6039 0.5936 0.3025 0.6802 1.5764 0.5945 0.2923 0.6829 1.5696 0.5934 0.2976 0.6829 1.5738 

 CP 0.5160 0.4586 0.5881 1.5627 0.5103 0.4547 0.5808 1.5459 0.5087 0.4544 0.5815 1.5446 0.5094 0.4522 0.5817 1.5433 

 MV 0.5141 0.4574 0.5908 1.5624 0.5081 0.4542 0.5841 1.5464 0.5062 0.4538 0.5853 1.5452 0.5062 0.4520 0.5860 1.5442 

  
                

Normal 4 GTKL 0.5249 0.4688 0.6585 1.6522 0.5096 0.4372 0.7272 1.6740 0.5021 0.4216 0.7638 1.6875 0.4849 0.4241 0.7723 1.6812 
 

MADET 0.6070 0.4873 0.6417 1.7360 0.5653 0.4847 0.6855 1.7355 0.5467 0.4852 0.7022 1.7342 0.5523 0.4821 0.7017 1.7361 
 

GYI 0.7260 0.3085 0.7711 1.8056 0.7264 0.2890 0.7773 1.7928 0.7261 0.2851 0.7781 1.7893 0.7283 0.2892 0.7752 1.7927 
 

CP 0.6318 0.4852 0.6374 1.7544 0.6292 0.4847 0.6340 1.7479 0.6285 0.4853 0.6334 1.7472 0.6300 0.4844 0.6332 1.7475 
 

MV 0.6387 0.4747 0.6487 1.7621 0.6368 0.4720 0.6459 1.7547 0.6363 0.4717 0.6456 1.7536 0.6372 0.4719 0.6454 1.7545 

1,1p , 2 2p ，  and 3,3p : the correct classification rate for stage 1, 2 and 3, respectively; TCCR: total correct classification rates. 
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Table 5.12. Summary of the correct classification rates and total correct classification rate in the normal distribution (continued).  

Sample size 
n1= n2= n3 

20 
n1= n2= n3 

50 
n1= n2= n3 

100 

n1=100; n2=50; 

n3=30 

Setting Measure 1,1p   
2 2p ，  3,3p  TCCR 1,1p   

2 2p ，  3,3p  TCCR 1,1p   
2 2p ，  3,3p  TCCR 1,1p   

2 2p ，  3,3p  TCCR 

Normal 5 GTKL 0.5395 0.4512 0.5977 1.5883 0.5211 0.4265 0.6538 1.6014 0.5167 0.4092 0.6963 1.6222 0.4895 0.3974 0.7251 1.6119 
 

MADET 0.6569 0.4651 0.5735 1.6955 0.6059 0.4459 0.6395 1.6913 0.5731 0.4349 0.6840 1.6920 0.5680 0.4340 0.6952 1.6972 
 

GYI 0.7586 0.2795 0.7513 1.7894 0.7608 0.2437 0.7695 1.7739 0.7635 0.2362 0.7736 1.7732 0.7634 0.2466 0.7665 1.7765 
 

CP 0.6586 0.4659 0.6050 1.7295 0.6560 0.4618 0.6018 1.7196 0.6576 0.4625 0.6016 1.7217 0.6579 0.4640 0.6004 1.7223 
 

MV 0.6699 0.4576 0.6089 1.7363 0.6683 0.4521 0.6057 1.7261 0.6706 0.4519 0.6054 1.7279 0.6703 0.4542 0.6043 1.7288 
                  

Normal 6 GTKL 0.4198 0.3716 0.7821 1.5735 0.3811 0.3138 0.8896 1.5845 0.3762 0.3031 0.9187 1.5981 0.4108 0.3091 0.9018 1.6217 
 

MADET 0.5545 0.4870 0.6563 1.6978 0.5042 0.4714 0.7332 1.7088 0.4842 0.4659 0.7676 1.7177 0.4840 0.4708 0.7662 1.7210 
 

GYI 0.6376 0.3333 0.8078 1.7786 0.6336 0.3175 0.8142 1.7653 0.6334 0.3145 0.8159 1.7637 0.6335 0.3208 0.8113 1.7656 
 

CP 0.5832 0.4894 0.6586 1.7312 0.5801 0.4873 0.6564 1.7238 0.5805 0.4883 0.6560 1.7247 0.5806 0.4882 0.6559 1.7247 
 

MV 0.5830 0.4788 0.6779 1.7397 0.5797 0.4748 0.6770 1.7316 0.5800 0.4749 0.6772 1.7321 0.5798 0.4762 0.6766 1.7325 

1,1p , 2 2p ，  and 3,3p : the correct classification rate for stage 1, 2 and 3, respectively; TCCR: total correct classification rates. 
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Table 5.13. Summary of the correct classification rates and total correct classification rate in the gamma distribution. 

Sample size 
n1= n2= n3 

20 
n1= n2= n3 

50 
n1= n2= n3 

100 
n1=100; n2=50; 

n3=30 

Setting Measure 1,1p   
2 2p ，  3,3p  TCCR 1,1p   

2 2p ，  3,3p  TCCR 1,1p   
2 2p ，  3,3p  TCCR 1,1p   

2 2p ，  3,3p  TCCR 

Gamma 1 GTKL 0.7116 0.5267 0.4638 1.7021 0.6879 0.5463 0.4876 1.7217 0.6575 0.5405 0.5411 1.7391 0.6560 0.5122 0.5653 1.7335 
 

MADET 0.6718 0.5555 0.5611 1.7884 0.6460 0.5603 0.5707 1.7771 0.6295 0.5658 0.5814 1.7767 0.6406 0.5583 0.5824 1.7813 
 

GYI 0.7420 0.4152 0.6667 1.8238 0.7313 0.4017 0.6726 1.8057 0.7229 0.4043 0.6768 1.8040 0.7292 0.4089 0.6701 1.8083 
 

CP 0.6579 0.5286 0.6051 1.7916 0.6502 0.5278 0.6042 1.7821 0.6462 0.5311 0.6071 1.7844 0.6505 0.5300 0.6049 1.7854 
 

MV 0.6721 0.5187 0.6079 1.7987 0.6632 0.5163 0.6079 1.7873 0.6582 0.5189 0.6116 1.7888 0.6627 0.5185 0.6092 1.7904 
                  

Gamma 2 GTKL 0.7123 0.5248 0.4487 1.6858 0.6910 0.5437 0.4518 1.6865 0.6660 0.5304 0.4881 1.6845 0.6437 0.4531 0.5780 1.6748 
 

MADET 0.7432 0.5438 0.4626 1.7495 0.7157 0.5434 0.4836 1.7426 0.6952 0.5450 0.5010 1.7411 0.7059 0.5292 0.5116 1.7466 
 

GYI 0.8076 0.4096 0.5850 1.8021 0.7977 0.3967 0.5845 1.7789 0.7939 0.3928 0.5889 1.7757 0.7970 0.4013 0.5871 1.7854 
 

CP 0.7135 0.5052 0.5352 1.7538 0.7059 0.5042 0.5330 1.7431 0.7043 0.5056 0.5361 1.7460 0.7075 0.5068 0.5346 1.7489 
 

MV 0.7372 0.4962 0.5298 1.7632 0.7294 0.4949 0.5279 1.7521 0.7277 0.4959 0.5310 1.7546 0.7304 0.4972 0.5298 1.7574 
                  

Gamma 3 GTKL 0.6324 0.4945 0.3762 1.5031 0.6011 0.5060 0.4200 1.5271 0.5743 0.5038 0.4676 1.5456 0.5870 0.4777 0.4716 1.5363 
 

MADET 0.5945 0.5034 0.4845 1.5824 0.5706 0.5127 0.4934 1.5767 0.5515 0.5250 0.4979 1.5744 0.5603 0.5103 0.5086 1.5792 
 

GYI 0.6785 0.3412 0.6213 1.6409 0.6703 0.3162 0.6309 1.6174 0.6643 0.3084 0.6386 1.6113 0.6685 0.3203 0.6303 1.6191 
 

CP 0.5859 0.4679 0.5498 1.6036 0.5758 0.4666 0.5483 1.5907 0.5727 0.4671 0.5491 1.5889 0.5770 0.4670 0.5486 1.5926 
 

MV 0.5899 0.4660 0.5489 1.6048 0.5791 0.4647 0.5480 1.5918 0.5757 0.4650 0.5492 1.5899 0.5795 0.4650 0.5491 1.5936 
                  

Gamma 4 GTKL 0.6110 0.5408 0.3827 1.5345 0.5600 0.5095 0.4664 1.5359 0.5184 0.4618 0.5582 1.5383 0.5155 0.4250 0.6072 1.5477 
 

MADET 0.6650 0.5166 0.4248 1.6063 0.6289 0.5088 0.4649 1.6026 0.5937 0.5019 0.5062 1.6017 0.6142 0.4989 0.5011 1.6143 
 

GYI 0.7286 0.3610 0.5947 1.6843 0.7191 0.3201 0.6212 1.6604 0.7137 0.2990 0.6436 1.6563 0.7180 0.3260 0.6247 1.6688 
 

CP 0.6396 0.4662 0.5313 1.6371 0.6307 0.4626 0.5308 1.6242 0.6281 0.4643 0.5334 1.6258 0.6328 0.4665 0.5330 1.6322 
 

MV 0.6484 0.4618 0.5283 1.6384 0.6399 0.4594 0.5273 1.6266 0.6372 0.4608 0.5303 1.6283 0.6413 0.4628 0.5302 1.6343 

1,1p , 2 2p ，  and 
3,3p : the correct classification rate for stage 1, 2 and 3, respectively; TCCR: total correct classification rates. 
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Table 5.13. Summary of the correct classification rates and total correct classification rate in the gamma distribution (continued).  

Sample size 
n1= n2= n3 

20 
n1= n2= n3 

50 
n1= n2= n3 

100 
n1=100; n2=50; 

n3=30 

Setting Measure 1,1p   
2 2p ，  3,3p  TCCR 

1,1p   
2 2p ，  3,3p  TCCR 

1,1p   
2 2p ，  3,3p  TCCR 

1,1p   
2 2p ，  3,3p  TCCR 

Gamma 5 GTKL 0.5520 0.5151 0.3796 1.4467 0.4991 0.4780 0.4648 1.4419 0.4629 0.4407 0.5311 1.4348 0.4722 0.4229 0.5449 1.4399 
 

MADET 0.6324 0.5091 0.3762 1.5176 0.6165 0.5099 0.3918 1.5181 0.6006 0.5078 0.4086 1.5170 0.6005 0.4970 0.4228 1.5204 
 

GYI 0.6994 0.3906 0.5056 1.5956 0.6902 0.3571 0.5210 1.5684 0.6857 0.3402 0.5319 1.5578 0.6882 0.3507 0.5354 1.5742 
 

CP 0.6178 0.4582 0.4711 1.5472 0.6079 0.4523 0.4728 1.5330 0.6044 0.4518 0.4735 1.5297 0.6084 0.4534 0.4761 1.5379 
 

MV 0.6211 0.4523 0.4697 1.5431 0.6127 0.4500 0.4700 1.5327 0.6095 0.4503 0.4705 1.5303 0.6123 0.4511 0.4733 1.5367 
                  

Gamma 6 GTKL 0.7076 0.4861 0.3399 1.5336 0.6938 0.5163 0.3271 1.5372 0.6741 0.5084 0.3533 1.5359 0.6516 0.4243 0.4400 1.5158 
 

MADET 0.7632 0.4764 0.3119 1.5516 0.7613 0.4851 0.3052 1.5515 0.7627 0.4998 0.2963 1.5588 0.7402 0.4623 0.3449 1.5473 
 

GYI 0.8212 0.3369 0.5456 1.7036 0.8111 0.2534 0.6100 1.6744 0.8080 0.1793 0.6772 1.6645 0.8076 0.2254 0.6432 1.6762 
 

CP 0.7243 0.4229 0.4618 1.6090 0.7158 0.4097 0.4616 1.5872 0.7149 0.4075 0.4602 1.5825 0.7164 0.4116 0.4655 1.5935 
 

MV 0.7419 0.4122 0.4501 1.6042 0.7357 0.4071 0.4476 1.5904 0.7360 0.4071 0.4458 1.5889 0.7356 0.4090 0.4505 1.5951 

1,1p , 2 2p ，  and 
3,3p : the correct classification rate for stage 1, 2 and 3, respectively; TCCR: total correct classification rates. 
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Table 5.14. The percentage of the loss of correct classification rate and the maximum-minimum 

difference in the normal distribution. 
  

MMDIF LCCR% 

Setting Measure n1= n2= 

n3=20 

n1= n2= 

n3=50 

n1= n2= 

n3=100 

n1=100; 

n2=50; 

n3=30 

n1= n2= 

n3=20 

n1= n2= 

n3=50 

n1= n2= 

n3=100 

n1=100; 

n2=50; 

n3=30 

Normal 1 GTKL 1.3576 0.9696 0.7355 1.0019 7.3925 5.0642 3.8135 5.4505  
MADET 0.6965 0.4939 0.3741 0.5031 2.3318 1.9098 1.8780 1.9945  

GYI 1.2034 1.0229 0.9651 1.0458 -- -- -- --  
CP 0.3409 0.2600 0.2304 0.2654 1.8949 1.3650 1.1659 1.3927  

MV 0.3920 0.3062 0.2744 0.3127 1.6169 1.1528 0.9878 1.1749       
    

Normal 2 GTKL 2.3690 2.0886 1.9636 2.1804 8.5766 6.4641 5.6434 7.4850  
MADET 0.9487 0.8586 0.8196 0.8575 3.1496 1.8662 1.4401 2.6338  

GYI 1.4461 1.2474 1.1366 1.2928 -- -- -- --  
CP 0.4553 0.3769 0.3439 0.3906 2.1684 1.7066 1.4955 1.7334  

MV 0.4869 0.4128 0.3829 0.4254 1.9503 1.4794 1.2678 1.5313       
    

Normal 3 GTKL 2.0615 1.4264 1.0082 1.6241 9.5018 6.9970 5.5364 6.8242  
MADET 0.9821 0.8272 0.7117 0.8837 4.0713 2.9180 2.5930 2.9102  

GYI 1.8989 1.6645 1.5459 1.6772 -- -- -- --  
CP 0.4678 0.3575 0.3185 0.3575 2.5687 1.9348 1.5928 1.9380  

MV 0.4667 0.3627 0.3264 0.3647 2.5874 1.9031 1.5545 1.8808       
    

Normal 4 GTKL 1.4101 1.2027 1.1142 1.2000 8.4958 6.6265 5.6894 6.2197  
MADET 0.8496 0.6712 0.5777 0.6820 3.8547 3.1961 3.0794 3.1572  

GYI 1.7566 1.7834 1.7842 1.7902 -- -- -- --  
CP 0.4281 0.3730 0.3516 0.3766 2.8356 2.5045 2.3529 2.5213  

MV 0.5030 0.4478 0.4254 0.4516 2.4092 2.1252 1.9952 2.1309       
    

Normal 5 GTKL 1.7188 1.5071 1.3464 1.4001 11.2384 9.7243 8.5157 9.2654  
MADET 1.0642 0.9200 0.8087 0.8965 5.2476 4.6564 4.5793 4.4638  

GYI 2.2004 2.3823 2.4134 2.3642 -- -- -- --  
CP 0.5046 0.4556 0.4359 0.4549 3.3475 3.0611 2.9044 3.0509  

MV 0.5720 0.5241 0.5042 0.5238 2.9675 2.6946 2.5547 2.6851       
    

Normal 6 GTKL 2.6171 2.4842 2.3836 2.3280 11.5315 10.2419 9.3894 8.1502  
MADET 0.9813 0.8575 0.7896 0.8196 4.5429 3.2006 2.6082 2.5261  

GYI 1.6070 1.5942 1.5987 1.5612 -- -- -- --  
CP 0.4290 0.3739 0.3526 0.3686 2.6650 2.3509 2.2113 2.3165  

MV 0.5054 0.4541 0.4354 0.4482 2.1871 1.9090 1.7917 1.8747 

MMDIF: maximum minimum difference; LCCR%: percentage of loss of classification rate. 
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Table 5.15. The percentage of the loss of CCR and the maximum-minimum difference in the 

gamma distribution. 

MMDIF LCCR% 

Setting Measure n1= n2= 

n3=20 

n1= 

n2= 

n3=50 

n1= n2= 

n3=100 

n1=100; 

n2=50; 

n3=30 

n1= n2= 

n3=20 

n1= n2= 

n3=50 

n1= n2= 

n3=100 

n1=100; 

n2=50; 

n3=30 

Gamma 1 GTKL 1.3203 0.9868 0.7616 0.8787 6.6729 4.6519 3.5976 3.5976 

MADET 0.6407 0.4336 0.3127 0.4124 1.9410 1.5839 1.5133 1.5133 

GYI 1.0568 0.9221 0.8453 0.8927 -- -- -- -- 

CP 0.3379 0.2693 0.2370 0.2677 1.7655 1.3070 1.0865 1.0865 

MV 0.4040 0.3289 0.2932 0.3261 1.3762 1.0190 0.8426 0.8426 

Gamma 2 GTKL 1.4465 1.2991 1.1949 1.1519 6.4536 5.1942 5.1360 5.1360 

MADET 1.0540 0.8632 0.7022 0.8464 2.9188 2.0406 1.9485 1.9485 

GYI 1.6734 1.4278 1.2616 1.4347 -- -- -- -- 

CP 0.5404 0.4668 0.4312 0.4759 2.6802 2.0125 1.6726 1.6726 

MV 0.6139 0.5414 0.5064 0.5499 2.1586 1.5065 1.1883 1.1883 

Gamma 3 GTKL 2.0230 1.3070 0.9050 1.1489 8.3978 5.5830 4.0775 4.0775 

MADET 0.9242 0.6774 0.5265 0.6487 3.5651 2.5164 2.2901 2.2901 

GYI 1.6047 1.3730 1.3021 1.3528 -- -- -- -- 

CP 0.4195 0.3128 0.2709 0.3161 2.2731 1.6508 1.3902 1.3902 

MV 0.4349 0.3291 0.2869 0.3314 2.2000 1.5828 1.3281 1.3281 

Gamma 4 GTKL 2.1656 1.7123 1.3910 1.2427 8.8939 7.4982 7.1243 7.1243 

MADET 1.1504 0.9391 0.7576 0.8605 4.6310 3.4811 3.2965 3.2965 

GYI 1.9853 1.8221 1.6868 1.7389 -- -- -- -- 

CP 0.5124 0.4173 0.3762 0.4212 2.8024 2.1802 1.8415 1.8415 

MV 0.5322 0.4445 0.4059 0.4477 2.7252 2.0357 1.6905 1.6905 

Gamma 5 GTKL 2.4481 1.7875 1.4180 1.3408 9.3319 8.0655 7.8958 7.8958 

MADET 1.2487 1.0922 0.9969 1.0095 4.8884 3.2071 2.6191 2.6191 

GYI 2.3452 2.0353 1.8339 2.0148 -- -- -- -- 

CP 0.5970 0.4650 0.4104 0.4732 3.0333 2.2571 1.8038 1.8038 

MV 0.5676 0.4589 0.4138 0.4638 3.2903 2.2762 1.7653 1.7653 

Gamma 6 GTKL 2.3027 2.2420 2.0106 1.8328 9.9789 8.1940 7.7260 7.7260 

MADET 2.0895 2.1045 2.1172 2.0502 8.9223 7.3399 6.3503 6.3503 

GYI 5.7566 7.6860 10.7359 6.5849 -- -- -- -- 

CP 1.0641 0.9235 0.8565 0.9384 5.5529 5.2078 4.9264 4.9264 

MV 1.0186 0.9234 0.8785 0.9325 5.8347 5.0167 4.5419 4.5419 

MMDIF: maximum minimum difference; LCCR%: percentage of loss of classification rate. 
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5.3. Summary 

The simulation shows that the measures have strengths in different distributions. Also, 

they are beneficial for different study purposes. The GYI performs the best when the study does 

not target the middle stage. On the other hand, the GTKL and MADET performs better when the 

study focuses on identifying subjects in the middle stage. The CP and MV are more balanced 

compared to the other three measures as they have relatively smaller values than the others, 

according to the results of MMDIF and LCCR% in most settings. As shown in the power 

simulation under the Scenario I, the GTKL performs well when the group variance is diverse. In 

the simulation of optimal cut-points selection, the GTKL has higher CCR in the middle stage 

when the sample size is small (i.e., 20 and 50). A smaller sample size commonly produces a 

more significant variance. Thus, the GTKL has higher CCR in the middle stage in some settings. 

The exciting finding gives a clue for future studies about estimation of cut-points, primarily 

when the research focuses on detecting subjects in the middle stage. 

The choice of diagnostic accuracy measures does not solely depend on the power of the 

tests but also depends on the target population and the goal of diagnosis. In other words, when a 

diagnostic test is designed to distinguish subjects in the first and last stages, GYI would give the 

highest correct classification rates for this purpose. If a diagnostic test is designed to separate 

subjects between the first and second stages, GTKL and MADET would be good choices as their 

correct classification rates are higher in the first two stages. VUS and its corresponding cut-point 

selection criteria (i.e., CP and MV) give similar correct classification rates across all stages; 

however, they may not be appropriate when a diagnostic test is targeting a specific stage. They 

can serve as validation measures and provide conventional correct classification rates when there 

is a strong difference among the distributions of all stages.   
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The simulation has been conducted in some other distributions that are not shown in the 

tables shown above since our research scope is to generalize Kullback-Leibler divergence to 

medical diagnosis. The results indicate that all measures have different kinds of characteristics 

that have been mentioned above. GTKL has the highest power when the distributions of stages 

strongly overlap and higher correct classification rates in the first and second stages, although its 

total correct classification rate is lower than others. Providing highest total correct classification 

rate, especially the high rates of the first and last stages, GYI is a robust measure when a 

diagnostic measure targets the population in the healthy and diseased population rather than the 

population in the transition stage. MADET is slightly similar to GTKL which provides higher 

power when the stages’ distributions overlap. VUS, CP and MV are more balanced measures 

which do not give extreme results but generally similar results among all disease stages. Overall, 

VUS, CP and MV are suggested to evaluate a diagnostic test in the preliminary stage of the 

research and provides conventional results. GTKL, GYI and MADET can be used to refine the 

accuracy of a diagnostic test since they provide sharper evaluations for diagnosis in different 

stages and distributions.  

    In conclusion, when choosing a diagnostic accuracy measure, the distribution of the 

data gives an idea of which diagnostic accuracy measure would have the highest power. In 

addition, the target population is critical in choosing the measure based on the stage of diagnosis 

in which a test focuses.  
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CHAPTER 6 

REAL DATA ANALYSIS 

In this chapter, a dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

is used to demonstrate the application of the generalized total Kullback-Leibler (GTKL) 

divergence, along with the comparison of existing measures including the generalized Youden 

index (GYI), volume under the surface (VUS), closest-to-perfection (CP), maximum volume 

(MV), and maximum absolute determinant (MADET).   

6.1. Introduction of Alzheimer’s Disease and Dementia 

Alzheimer’s disease is the most common form among the diseases related to dementia 

that can become worse over time. According to the Centers for Disease Control and Prevention, 

dementia is a prevalent brain impairment among adults at least 65 years of age, with 5.0 million 

adults suffering from dementia in 2014, and the prevalence of dementia is projected to be nearly 

14 million by 2060 in the United States (CDC, 2019). Dementia is not a specific disease yet a 

general term of brain impairment with various kinds of symptoms including losing the ability to 

remember, think, and make decisions that affect daily life (CDC, 2019). ADNI provides data that 

tracks the progression of Alzheimer’s disease over time to study this irreversible 

neurodegenerative disease using biomarkers and clinical measures (ADNI, 2017).   

6.2. Data analysis 

6.2.1 Data file from ADNI 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 
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neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). 

The data file used in this study identifies the subjects into three clinical stages as the 

cognitive normal (CN), mild cognitive impairment (MCI), and dementia at the baseline. The 

staging of Alzheimer’s disease is based on the global clinical dementia rating (CDGLOBAL) 

with 0, 0.5, and greater than 1 indicating non-diseased, early diseased and fully diseased, 

respectively.  

The data file provides test results from five potential biomarkers for Alzheimer’s disease 

including three biomarkers from core cerebrospinal fluid (CSF) and two biomarkers from 

magnetic resonance imaging (MRI). Blennow, Hampel, Weiner, and Zetterberg (2010) 

summarized the importance of early detection of Alzheimer’s disease and the clinical treatments 

related to potential CSF biomarkers based on previous studies (Das, Murphy, Younkin, Younkin, 

& Golde, 2001; Garcia-Alloza et al., 2009; Levites et al., 2006). The data file includes results of 

total tau (TAU), phosphorylated tau (PTAU), and the 42 amino acid form of amyloid- (Abeta). 

These three CSF biomarkers reflect the pathology of Alzheimer’s disease and have been 

proposed as candidate markers for prediction of cognition decline as the progression indicator of 

dementia. Previous studies also discussed the other two potential biomarkers of Alzheimer’s 

disease measured from MRI: rate of volume change of hippocampus and whole-brain. Those 

studies discovered the potential relationship between the volume change and the initiative of 

Alzheimer’s disease, relating to the injury and death of neurons (Duthey, 2013; Grundman & 

Delaney, 2002; Shaffer et al., 2013).  
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6.2.2 Statistics obtained in the analysis 

Data analysis is conducted based on the proposed measure and the five exiting measures 

using biomarkers, including Abeta, TAU, PTAU, rate of volume change of hippocampus, and 

whole-brain. Overall, we compute the optimal statistics of the GTKL, GYI, VUS, MADET, CP, 

and MV with their optimal cut-points. Additionally, the generalized PPV and NPV proposed by 

Samawi (2020) are calculated to assess the performance of optimal cut-point selection based on 

the GTKL, GYI, MADET, CP, and MV, as follows: 

Generalized predictive values: 
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where, 1p , 2p  and 3p  are the prevalence of stages 1 (CN), stage 2 (MCI), and stage 3

(dementia), respectively. 

Using the gold standard in the dataset (CDGLOBAL), the prevalence of Alzheimer’s 

disease in different stages is approximated as 0.72 ( 1p ), 0.2 ( 2p ) and 0.08 ( 3p ) for stages 1, 2 

and 3, respectively according to the estimation based on the estimations from Kantarci et al. 

(2009); Mitchell and Shiri‐Feshki (2009); (Roberts & Knopman, 2013).  

6.2.3 Results 

The dataset consists of 415 subjects with 114, 256, and 45 subjects for the CN, MCI, and 

dementia groups, respectively. Due to missing values, the actual sample sizes for each biomarker 



81 

vary and are smaller than the group sizes. Table 6.1 provides a summary of the descriptive 

statistics of the biomarkers in the ADNI dataset.   

Table 6.1. Summary of descriptive statistics of five biomarkers of Alzheimer’s disease.

Biomarker 
Stage 1 Stage 2 Stage 3 

N1 Mean1 SD1 N2 Mean2 SD2 N3 Mean3 SD3 

Cerebrospinal 

Fluid 

Abeta 114 205.59 55.09 255 159.27 52.19 45 141.67 44.38 

TAU 114 69.68 30.37 252 108.24 59.43 43 118.12 65.30 

PTAU 114 24.86 14.58 256 37.50 18.85 45 38.11 18.94 

Brain Imaging Hippocampus 100 7265.68 826.03 197 6298.47 1109.42 34 5301.94 929.43 

Whole-Brain 112 1,004,949 104,189 252 999,015 112,557 44 943,771 116,078 

The distributions of the biomarkers in the three clinical stages are shown in density plots 

displayed in Figure 6.1. The optimal statistics of GTKL, GYI, VUS, and MADET are calculated 

and showed in Table 6.2, and the corresponding optimal cut-points are shown in Table 6.3. As 

mentioned above, the VUS is not directly used in optimal cut-point selection; instead, the 

optimal cutpoints estimated based on the measures derived from the VUS, the CP, and the MV 

are calculated (see Table 6.3).  
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a) AbetaEr

b) TAUError! Unknown switch argument.

Figure 6.1. Density plots of the distribution of biomarkers  in different clinical stages.
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c) PTAUError! Unknown switch argument.

d) HippocampusError! Unknown switch argument.
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e) Whole-BrainError! Unknown switch argument.
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Table 6.2 The estimated optimal statistics of diagnostic accuracy measures. 

Measure Cerebrospinal fluid Brain imaging 

Abeta TAU PTAU Hippocampus Whole-Brain 

GTKL 0.8801 0.7497 0.7676 1.7714 0.2464 

GYI 0.5453 0.4193 0.4566 0.8052 0.2776 

MADET 0.0126 0.0200 0.0514 0.1046 0.0097 

VUS 0.3670 0.3333 0.3332 0.5431 0.2706 

Table 6.3. The estimated optimal cut-points corresponding to the optimal statistics in Table 6.2.

Estimated 

Cut-points 

Cerebrospinal Fluid Brain Imaging 

Abeta TAU PTAU Hippocampus Whole-Brain 

GTKL 
1̂c 191.50 74.67 24.52 6649.28 1,023,917 

2ĉ 158.59 133.24 39.74 4925.29 899,145 

GYI 
1̂c 181.46 81.97 25.58 6815.26 1,022,717 

2ĉ 181.46 101.06 25.58 5784.19 937,262 

MADET 
1̂c 186.16 58.00 24.40 7025.60 1,025,544 

2ĉ 154.07 101.56 41.13 5532.20 927,991 

CP 
1̂c 190.9 68.12 22.29 7033.32 1,032,416 

2ĉ 131.24 114.75 32.83 5499.27 920,270 

MV 
1̂c 190.08 67.67 21.68 7002.24 1,033,179 

2ĉ 130.93 116.22 35.24 5522.44 918,283 
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Table 6.4. The corresponding correct classification rates. 

Biomarkers Measures 11p 22p 33p

Abeta GTKL 0.6135 0.1504 0.7324 

GYI 0.6556 0 0.8897 

MADET 0.6359 0.1698 0.689 

CP 0.6161 0.4189 0.4386 

MV 0.6196 0.4200 0.4351 

TAU GTKL 0.6466 0.4032 0.3340 

GYI 0.7186 0.1523 0.5485 

MAD 0.4224 0.3643 0.5450 

CP 0.568 0.3646 0.4525 

MV 0.5622 0.3771 0.4424 

PTAU GTKL 0.6492 0.3094 0.3339 

GYI 0.6819 0 0.7749 

MAD 0.6454 0.3382 0.3016 

CP 0.5728 0.2205 0.5476 

MV 0.5484 0.2819 0.4654 

Hippocampus GTKL 0.7757 0.5117 0.3850 

GYI 0.7336 0.3375 0.7341 

MAD 0.6621 0.4732 0.6437 

CP 0.659 0.4847 0.6309 

MV 0.6712 0.4698 0.6399 

Whole Brain GTKL 0.4512 0.4128 0.3952 

GYI 0.4552 0.3003 0.5221 

MAD 0.4458 0.3385 0.4921 

CP 0.4228 0.3833 0.4665 

MV 0.4202 0.3914 0.4599 
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Table 6.5. Generalized predictive values (i.e., PPV and NPV) and likelihood ratios of 

biomarkers. 

Biomarkers Measures PPV1 PPV2 NPV 

Abeta GTKL 0.2097 0.1624 0.8913 

GYI 0.1822 0.1530 0.8829 

MADET 0.2293 0.1641 0.8875 

CP 0.2744 0.1784 0.8909 

MV 0.2762 0.1786 0.8904 

TAU GTKL 0.2360 0.2525 0.8425 

GYI 0.2307 0.1778 0.8329 

MADET 0.1815 0.1787 0.8577 

CP 0.2114 0.2079 0.8502 

MV 0.2112 0.2118 0.8506 

PTAU GTKL 0.2336 0.1375 0.8642 

GYI 0.1729 0.1448 0.8585 

MADET 0.2386 0.1347 0.8647 

CP 0.1845 0.1518 0.8730 

MV 0.1896 0.1481 0.8748 

Hippocampus GTKL 0.3353 0.5586 0.8731 

GYI 0.2942 0.3414 0.8825 

MADET 0.2811 0.3995 0.8920 

CP 0.2814 0.4079 0.8922 

MV 0.2845 0.4020 0.8911 

Whole-Brain GTKL 0.2174 0.1603 0.7680 

GYI 0.2241 0.1369 0.7677 

MADET 0.2218 0.1421 0.7683 

CP 0.2189 0.1468 0.7697 

MV 0.2185 0.1480 0.7698 
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6.3. Discussion 

Based on the distribution graphs in Figure 6.1, the biomarkers Abeta and PTAU are not 

functional biomarkers that can discriminate subjects among three stages, since the middle stage 

almost entirely overlaps with the other two stages. According to the optimal statistics in Table 

6.2, hippocampus has the highest statistics compared to other biomarkers, and the results are 

consistent among all measures. Also, the plots show that hippocampus has the most distinct 

distribution curve among the three clinical stages. 

The optimal cut-points of Abeta and PTAU selected by GYI are identical. Consequently, 

the correct classification rate at the middle stage is zero for both biomarkers. The results imply 

that Abeta and PTAU are not suitable biomarkers to distinguish subjects among three stages in 

this study although the optimal statistics of these two biomarkers are closed to the optimal 

statistics of TAU and slightly higher than the values of whole-brain. Except GYI, all four 

methods can identify two different optimal cut-points of Abeta and PTAU; however, the results 

are not promising.  

The biomarkers TAU, hippocampus, and whole-brain show comparatively more distinct 

distributions compared to the other two. The optimal statistics of TAU lies between the values of 

Abeta and PTAU, and it is slightly higher than the statistics of whole-brain. Hippocampus has 

much higher statistics than others using all measures. Thus, hippocampus is the best biomarker 

that can discriminate subjects among three stages of Alzheimer’s disease. Among all diagnostic 

accuracy measures, GYI is consistent and promising in identifying subjects in the first and the 

third stages. The other measures are comparatively well except GTKL has a lower correct 

classification rate of the last stage in some cases. However, the GTKL generally has the highest 

correct classification rate of the middle stage and provides more information when a diagnostic 

test aims to recognize subjects in the middle stage. Detecting subjects in the early stage of the 



89 

disease is significant for Alzheimer’s disease as it is an irreversible disease that progresses over a 

long period. The brain changes caused by Alzheimer’s disease may begin 20 years or more 

before any symptoms appear (Gaugler, James, Johnson, Marin, & Weuve, 2019). Additionally, 

the generalized predictive values shown in Table 6.5 indicate that the GTKL has the highest 

PPV2. The results suggest that the GTKL has predicted the true stage of the subjects in the 

middle stage better than the other measures, mainly when using biomarkers TAU, hippocampus, 

and whole-brain.  

Early diagnosis and intervention are essential in slowing down the progression of the 

diseases. Gaugler et al. (2019) mentioned the reasons that seniors believe early diagnosis is 

important not just for early intervention of the disease but also helps them understand what is 

happening with the disease and allow the family to plan for the future. Compared to the existing 

measures, the proposed measure GTKL, has high correct classification rates of stage 1 and stage 

2, which is the specificity of stages 1 and 2, respectively, using hippocampus as the biomarker. 

The specificity of stages 1 and 2 emphasizes the rule-out information and provides essential 

information for diagnosing Alzheimer’s disease in the early stage.  

Conclusively, the GTKL is a better criterion compared to others when using the 

hippocampus as the biomarker for early diagnosis for subjects in stage 1 and stage 2. Its 

classification rates in early diagnosis are the highest among all measures. When the diagnosis of 

early-stage is not the primary focus, GYI gives better overall correct classification rates. 

Additionally, the MADET, CP, and MV are more balanced in identifying subjects among three 

stages as their correct classification rates are reasonably well in all three stages. Lastly, 

hippocampus has been the best performance in the scenario of three-stage setting, and Abeta has 

decent performance in the situation of the two-stage setting.  
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CHAPTER 7 

FINAL REMARKS, CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH  

7.1 Final remarks and conclusion 

Accuracy has played a critical role in diagnostic tests. The accuracy of a diagnostic test is 

essential to placing patients with adequate treatment plans; thus, measuring the accuracy of a test 

has significant clinical implications. Traditionally, diagnostic accuracy tests, like Youden index 

and ROC curve, have been guiding clinical decisions, and further assisting in designation of 

clinical guidelines. Although plenty of studies have been conducted to improve the accuracy of 

diagnostic tests, limited studies have been performed to assess the accuracy of a diagnostic test 

for multi-stage diseases. Additionally, selecting optimal cut-points for multi-stage diseases is 

more challenging for multi-stage diseases compared to two-stage diseases.  

In this innovative study, the Kullback-Leibler (KL) divergence, from information theory, 

is applied to measuring diagnostic accuracy and generalized to estimate the optimal cut-points 

for multi-stage diseases. Also, this study conducts massive simulation under three-stage setting 

(i.e., the special case of multi-stage diseases) to assess the performance of the proposed measure, 

the generalized total Kullback-Leibler (GTKL) divergence, the generalized Youden index (GYI), 

hypervolume under manifold (HUM), closest-to-perfection (CP), maximum volume (MV), and 

maximum absolute determinant (MADET) in terms of the power of detecting the difference 

among the distributions of different stages and selecting optimal cut-points for multi-stage 

diseases (Attwood et al., 2014; Dong et al., 2017; Nakas et al., 2010; Xiong et al., 2006). 

Additionally, this study adapts normalized statistics, like relative bias, normalized root-mean-

squared error, maximum-minimum difference, and percentage of the loss of total correct 

classification rate, to compare the performance of diagnostic accuracy measures. The simulation 

results indicate that there is no dominant winner in general.  
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This study also provides an example of the application of the measures for multi-stage 

diseases, using a dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The 

results concord the simulation study and highlight the strengths of different diagnostic accuracy 

measures. It provides clues for early diagnosis of Alzheimer's disease. For example, the GTKL is 

capable of detecting subjects in the first and the second stages with the highest correct 

classification rates in these two stages (1.2874); and, the GYI has the best performance in 

identifying subjects in the first and the last stages with the correct classification in these two 

stages (1.4678), using hippocampus as the biomarkers. The study provides exciting exploratory 

outcomes in improvement of diagnostic accuracy tests for multi-stage diseases, especially for 

those who want to discover biomarkers for early diagnosis.  

7.2 Limitations and future research 

 In this study, the GTKL has shown some advantages in detecting subjects in the middle 

stage of a multi-stage disease and has been beneficial for early diagnosis; however, the total 

correct classification rate is slightly lower than the other measures, especially in the last stage of 

the disease. Also, although the performance of the measure is compared in terms of the balance 

among all disease stages, no existing standardized methods can be used to compare the 

performance of the measures since they have different properties. Even though the balance of a 

measure is evaluated based on percentage of the loss of total correct classification rate and the 

maximum-minimum difference, the question about whether the balance of a measure should be 

used as a criterion for comparison remains dubious. For two-stage diseases, high correct 

classification rates in both stages are desired. Nevertheless, for multi-stage diseases, the demand 

for a high correct classification rate of a specific stage relies on the interest of clinical needs. For 

instance, when a clinical test is designed to identify subjects in the early stages, the correct 
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classification rates of the early stages are expected to be as high as needed. Alternatively, when a 

clinical test is considered to identify patients in the later stages, the correct classification rate of 

the last stage would be more critical compared to the others. It is ideal to have a balanced 

diagnostic test with high correct classification rates among all stages, yet it is hard to achieve in 

reality. Hence, a method that can evaluate performance of different diagnostic accuracy 

measures, besides the balance, is desired in future study.  

Additionally, diagnostic accuracy measures range differently thus the accuracy of a 

biomarker is not comparable among different measures. The generalized predictive values 

proposed in an on-going project by Samawi et al. (2020) provides general statistics for the 

comparison among measures. However, the generalized predictive values depend highly on the 

prevalence of the disease and cannot be generalized to a different population. Consequently, 

future study is encouraged to compare the performance of various diagnostic accuracy measures 

using methods that do not depend on prevalence like diagnostic likelihood ratios.  

Moreover, the estimation conducted in this study is restricted in using the kernel 

approach; so, simulation of estimation using other approaches is also encouraged for comparison 

of the performance of the diagnostic measures, as well as the estimation of their confidence 

intervals. Research about the properties and strengths of different measures under various 

distributions is desired in the future.  

Furthermore, early diagnosis provides ample time for health practitioners to fight with 

severe diseases specifically for the diseases without a cure; however, the area of diagnostic tests 

for multi-stage diseases lacks real data applications. Therefore, there is a need to develop reliable 

and practical diagnostic accuracy measures, which further help improve diagnosis to assist in 

designing clinical treatments and guidelines.  
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 Lastly, in a lot of cases that a disease does not have a gold standard or even the gold 

standard cannot be one-hundred percent accurate, a single biomarker is less than satisfactory for 

confirmation of clinical diagnosis. Also, when using genetic and epigenetic biomarkers in cancer 

diagnosis and treatment evaluation, a single biomarker is not enough to identify the subtypes of 

cancer or confirm the staging of cancer patients. As a result, generalization of the single 

biomarker measures to multiple biomarkers is an exciting topic in the future study of the 

diagnosis for multi-stage diseases.  
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