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Abstract

In this paper, we regard each edge of a connected graph G as a line segment having
a unit length, and focus on not only the “vertices” but also any “point” lying along such
a line segment. So we can define the distance between two points on G as the length of
a shortest curve joining them along G. The beans function BG(x) of a connected graph
G is defined as the maximum number of points on G such that any pair of points have
distance at least x > 0. We shall show a recursive formula for BG(x) which enables us
to determine the value of BG(x) for all x ≤ 1 by evaluating it only for 1/2 < x ≤ 1.
As applications of this recursive formula, we shall propose an algorithm for computing
BG(x) for a given value of x ≤ 1, and determine the beans functions of the complete
graphs Kn.

1 Introduction

A graph G = (V (G), E(G)) is usually defined as a composite structure of a non-empty and
finite set V (G) and a family E(G) of 2-element subsets in V (G), possibly empty. Each
element in V (G) is called a vertex while each element in E(G) is called an edge. To visualize
this structure, we often draw a figure consisting of points and line segments, which correspond
to vertices and edges, respectively. In this paper, we regard a graphG as such a 1-dimensional
figure and consider that the line segments are mutually disjoint except at their endpoints.
Then, there are infinitely many points on each edge, and an endpoint of an edge lies at a
vertex. Note that we treat a “vertex” and a “point” as different objects. Furthermore, each
edge is assumed to have a unit length.

Under this setting, we can define the distance dG(p, q) between two points p and q as the
length of a shortest curve joining them along a connected graph G and make G be a metric
space having the distance dG(·, ·). Of course, p and q may be not only intermediate points
on line segments but also points at vertices. Now a graph G should be regarded as the set
of points lying over its vertices and edges rather than a combinatorial structure.

In this situation, Negami [10] defined “beans functions” as follows. Let x > 0 be a
positive real number. A set S of points on a connected graph G is called an x-set if for any
points p, q ∈ S one has d(p, q) ≥ x. In particular, if S has the maximum cardinality among
the x-sets in G, then S is said to be maximum. We denote the cardinality of a maximum
x-set of G by BG(x). That is, BG(x) = |S| for a maximum x-set S. Then, we can regard
BG(x) as a non-increasing function BG : R+ → N, where R+ = {x ∈ R : x > 0}, and call it
the beans function of G.

For example, it is easy to see that BCn(x) = max{⌊n/x⌋, 1} for the cycle Cn of length n; it
suffices to put points at equal intervals of length x. Similarly, we have BPn+1(x) = ⌊n/x⌋+1
for the path of order n + 1. Such points arranged at equal intervals can be compared to a
row of beans. That is why the function is called the “beans function”.

The beans function is related to the following two interesting invariants of graphs. Let
k be a non-negative integer. A subset I ⊆ V (G) is k-independent if any two vertices in I
have distance at least k + 1. The k-independence number of G, denoted by αk(G), is the
number of vertices in a maximum k-independent set of G. A subset X ⊆ E(G) is distance-k
matching if any two edges in X have distance at least k. (The distance between two edges
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x = u1u2 and y = v1v2 is defined as the length of a shortest ui-vj path for i, j ∈ {1, 2}.) The
distance-k matching number of G, denoted by µk(G), is the number of edges in a maximum
distance-k matching of G. Note that the values α0(G), µ0(G), α1(G) and µ1(G) are equal to
|V (G)|, |E(G)|, the independence number of G and the matching number of G, respectively.
Moreover, a distance-2 matching is usually called an induced matching. These invariants
have been studied in various papers and are closely related to many other concepts (see
[1, 2, 6, 7, 8, 9, 11, 12] for examples). The magnitude relation between the beans function
BG(x) for a given value of x ≥ 1 and each of the two invariants will be explained in detail
in Section 2.

On the other hand, for x ≤ 1, Negami’s and Enami’s works [10, 4] suggest that there
might be a repeating pattern among the values of BG(x), as follows.

Put An = (1/(n + 1), 1/n] for a positive integer n. Then, the interval (0, 1] splits into
these subintervals

∪∞
n=1An. Negami [10] has given the following lower and upper bounds of

BG(x) for x ∈ An:

Theorem 1.1 (Negami [10]). Let n be a positive integer and x ∈ An = (1/(n + 1), 1/n].
Then

n|E(G)|+ t ≤ BG(x) ≤ n|E(G)|+ |V (G)| − 1,

where t = 1 if G is tree, and t = 0 otherwise.

In addition, he has shown that BG(1/n) = n|E(G)|+ t, that is, BG(x) attains the above
lower bound when x = 1/n. Furthermore, Enami [4] has shown that BG(x) also attains the
upper bound over every interval An. Roughly speaking, BG(x) seems to increase by |E(G)|
when n increments. In this paper, we shall conclude that this actually does also for any
intermediate value x, showing the following recursive formula:

Theorem 1.2. Let G be a connected graph and let x ≤ 1 be a positive real number. Then,

BG

(
x

1 + x

)
= BG(x) + |E(G)|.

It should be noticed that the function f(x) = x/(1 + x) is monotonically increasing and
induces a one-to-one correspondence between An and An+1. Thus, the above formula shows
that the difference between BG(x)’s for corresponding values in An and An+1 is equal to
|E(G)|. Using this, we can show the relation between the corresponding values in An and
An+k as the following corollary. If x belongs to An, then x/(1+ kx) belongs to An+k and we
have An+k = {x/(1 + kx) : x ∈ An}.

Corollary 1.3. Let x ≤ 1 be a positive real number and k a natural number. Then,

BG

(
x

1 + kx

)
= BG(x) + k|E(G)|.

This implies that the values of BG(x) over A1 determines all values of BG(x). The
formula in the following corollary makes it clearer. Notice that if x belongs to An, then we
have 1 = nx+ ε with 0 ≤ ε < x and x/(1− (n− 1)x) belongs to A1.
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Corollary 1.4. Let x ≤ 1 be a positive real number and put n = ⌊1/x⌋. Then,

BG(x) = BG

(
x

1− (n− 1)x

)
+ (n− 1)|E(G)|.

In Section 3, we shall prove Theorem 1.2 and its corollaries. As applications of our
recursive formulas, we shall propose an algorithm for computing BG(x) for a given value of
x ≤ 1 in Section 4, and we shall determine the beans functions of the complete graphs Kn

in Section 5. Our terminology for graph theory is quite standard and can be found in [3].

2 Relation to other invariants of graphs

Let G be a connected graph. When x ≥ 1, BG(x) is closely related to the combinatorial
invariants of G mentioned in introduction, the k-independence number and the distance-k
matching number.

Lemma 2.1. Let G be a connected graph and k be a non-negative integer. Then BG(k+2) ≤
αk(G) ≤ BG(k + 1).

Proof. A set of points located at each vertex in a maximum k-independent set of G is a
(k + 1)-set. Thus, αk(G) ≤ BG(k + 1).

Let S = {p1, p2, . . . , pm} be a maximum (k+2)-set on G. For each point pi for 1 ≤ i ≤ k,
let vi be a nearest vertex to pi. Since pi and vi lie on a common edge, which has length 1,
we have dG(pi, vi) ≤ 1/2. Then, for any two distinct points pi and pj, we have vi ̸= vj and
dG(vi, vj) ≥ dG(pi, pj)− 2 · 1/2 ≥ k + 1. Therefore, the set of vertices I = {v1, v2, . . . , vm} is
a k-independent set with m vertices, and hence BG(k + 2) ≤ αk(G).

Lemma 2.2. Let G be a connected graph and k be a non-negative integer. Then BG(k+2) ≤
µk(G) ≤ BG(k + 1).

Proof. A set of midpoints of edges in a maximum distance-k matching of G is a (k + 1)-set.
Thus, µk(G) ≤ BG(k + 1).

Let S = {p1, p2, . . . , pm} be a maximum (k+2)-set on G. For each point pi for 1 ≤ i ≤ k,
let ei be an edge containing pi. Since the length of ei is 1, pi is located at most 1 away
from an endvertex of ei. Then, for any two distinct points pi and pj, we have ei ̸= ej and
dG(ei, ej) ≥ dG(pi, pj)−2·1 ≥ k. Therefore, the set of edges I = {e1, e2, . . . , em} is distance-k
matching with m edges, and hence BG(k + 2) ≤ µk(G).

By these lemmas, it is easy to show the following bounds of BG(x).

Theorem 2.3. Let G be a connected graph and x be a positive real number. Then:

(1) BG(x) ≥ max{α⌈x⌉−1(G), µ⌈x⌉−1(G)} for x ≥ 1;

(2) BG(x) ≤ min{α⌊x⌋−2(G), µ⌊x⌋−2(G)} for x ≥ 2.
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3 Recursive formulas

In this section, we prove the main theorem and its corollaries.

Proof of Theorem 1.2. Put y = x/(1 + x). First, we shall show that

BG(y) ≥ BG(x) + |E(G)|.

Let S be a maximum x-set. We partition S into a disjoint union
∪

e∈E(G) Se. The set Se

consists of the points in S lying along an edge e = uv. However, if a point p in S is located
at a vertex v, then we choose only one of the edges incident to v, say e, and consider that p
belongs to Se and to no others.

Suppose that Se is not empty for an edge e = uv and let p1, . . . , pk be the points in Se

lying along e from u in this order. Thus, pk is the nearest point from v in Se. Replace each
point pi with a new point p′i satisfying the following condition:

dG(p
′
i, u) =

1

1 + x
· dG(pi, u)

After that, we add another point p′k+1 on e with dG(p
′
k+1, v) = 1/(1+x) ·dG(pk, v). If there is

no point in Se, then we add a new point p′1 at the center of e. That is, dG(p
′
1, u) = dG(p

′
1, v) =

1/2 exceptionally.
Let S ′

e be the set of points p
′
1, . . . , p

′
k+1 so obtained from Se and put S ′ =

∪
e∈E(G) S

′
e. We

can evaluate the distance between each consecutive pair of points p′1, . . . , p
′
k, p

′
k+1 as follows:

dG(p
′
i+1, p

′
i) = dG(p

′
i+1, u)− dG(p

′
i, u)

=
1

1 + x
· (dG(pi+1, u)− dG(pi, u))

=
1

1 + x
· dG(pi+1, pi) ≥

x

1 + x
= y

dG(p
′
k+1, p

′
k) = (1− dG(p

′
k, u))− dG(p

′
k+1, v)

= 1−
(

1

1 + x
· dG(pk, u) +

1

1 + x
· dG(pk, v)

)
= 1− 1

1 + x
=

x

1 + x
= y

Now let e1 and e2 be two edges having a common end w and let q′i be the nearest point
from w in S ′

ei
for i = 1, 2. Then each of qi’s can be obtained as either p′1 with w = u

or p′k+1 with w = v in the previous. In either case, there is a point qi in Sei such that
dG(q

′
i, w) = 1/(1 + x) · dG(qi, w). Thus we have:

dG(q
′
1, q

′
2) = dG(q

′
1, w) + dG(q

′
2, w)

=
1

1 + x
· dG(q1, w) +

1

1 + x
· dG(q2, w)

=
1

1 + x
· dG(q1, q2) ≥

x

1 + x
= y
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In the exceptional case, that is, when Se1 or Se2 are empty, we have dG(q
′
1, q

′
2) ≥ 1/2 ≥ y.

Therefore, S ′ becomes a y-set and |S ′| = |S| + |E(G)| = BG(x) + |E(G)|. This implies the
desired inequality.

Secondly, we shall show that

BG(y) ≤ BG(x) + |E(G)|.

Let S be a maximum y-set and let Se = {p1, . . . , pk+1} be the set of points in S lying
along an edge e = uv from u in this order. If Se is empty, then S with the midpoint of e
added is still an y-set since y ≤ 1/2. This is contrary to the maximality of S. Thus, Se

contains at least one point p1 while the point pk+1 is the nearest point from v in Se. We may
assume that dG(pi+1, pi) = y for i = 1, . . . , k after moving the points pi’s slightly toward p1.

Remove pk+1 from Se and replace each point pi in Se for i = 1, . . . , k with a point p′i
satisfying the condition

dG(p
′
i, u) = (1 + x) · dG(pi, u).

Then we have:

dG(p
′
i+1, p

′
i) = (1 + x) · (dG(pi+1, u)− dG(pi, u))

= (1 + x) · dG(pi+1, pi) = (1 + x) · y = x

Since dG(p1, u) + ky + dG(pk+1, v) = 1 and (1 + x)y = x,

dG(p
′
k, v) = 1− (1 + x)((k − 1)y + dG(p1, u))

= 1− (1 + x)
(
(k − 1)y + (1− dG(pk+1, v)− ky)

)
= 1− (1 + x)

(
1− y − dG(pk+1, v)

)
= (1 + x) · dG(pk+1, v).

Let S ′
e be the set of points so obtained from Se and put S ′ =

∪
e∈E(G) S

′
e. Now let e1

and e2 be two edges having a common end v and let qi be the nearest point from v in Sei .
Combining the above equality, we can conclude that dG(q1, q2) ≥ (1 + x)y = x in all cases.
Thus, S ′ becomes an x-set and |S|−|E(G)| = |S ′|. This implies that BG(y)−|E(G)| ≤ BG(x)
and the desired inequality follows.

Proof of Corollary 1.3. Put f(x) = x/(1 + x). Then it is easy to see that the kth iteration
of f can be given as:

fk(x) =
x

1 + kx

Applying the recursive formula given in Theorem 1.2, we can carry out the following calcu-
lation:

BG

(
x

1 + kx

)
= BG

(
fk(x)

)
= BG

(
fk−1(x)

)
+ |E(G)|

= · · · = BG(x) + k|E(G)|
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Proof of Corollary 1.4. Put X = x/(1− (n− 1)x). Then it is easy to see that:

x =
X

1 + (n− 1)X

Substituting this and k = n− 1 to the formula given in Corollary 1.3, we obtain the formula
in the corollary.

4 Algorithm for computing the value of BG(x)

Our recursive formulas enable us to suggest an algorithm for computing the value of BG(x)
for any connected graph G and for any given value of 0 < x ≤ 1, say x = a

1. If a ≤ 1/2, then translate it into the corresponding value c = a/(1 − (n − 1)a) in A1,
where n = ⌊1/a⌋. By Corollary 1.4, we only have to evaluate BG(c).

2. For each edge e, assign 0, 1 or 2 and prepare as many unknowns as this number. Since
c > 1/2, each edge contains at most two points in a c-set. Then, this assignment
corresponds to a possible configuration of points, and these unknowns represent the
distances from one end of e to the corresponding points lying on e.

3. Set up simultaneous linear inequalities for all unknowns to bound the distances between
consecutive pairs of points by c and solve them. If they have a solution, then it implies
that BG(c) ≥ s, where s stands for the number of points contained in the given
configuration.

4. Repeating the second and third step for any configurations of points and determine
the maximum value of s taken over the inequalities having solutions. The maximum s
is none other than BG(c). Translate it to the value of BG(a) by the recursive formula.

The computational complexity of this algorithm does not depend on the imput value of
x = a and depends only on the graph G. Unfortunately, exponentially many configurations
will be generated with no restriction. However, they should be restricted since any edge
assigned 0 must be adjacent to another edge with 1 or 2 for example. In addition, by Theorem
1.1, we have known that |E(G)| ≤ BG(c) ≤ |E(G)|+ |V (G)| − 1 for the corresponding value
c, and hence we need to investigate possible configurations of at least |E(G)| and at most
|E(G)| + |V (G)| − 1 points lying on G and their distances. More clever ideas might reduce
the complexity of this algorithm.

Furthermore, we would like to find an algorithm for determining the formula for BG(x)
over the interval A1, which is divided into several subintervals, like the formulas for BKm(x)
of the complete graph of order m, which can be given in the next section. The authors have
already discussed such dividing points of A1 at which BG(x) is discontinuous in [5].
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5 The complete graphs

As one of applications of our recursive formulas for BG(x), we shall determine the beans
functions of the complete graphs Km. It is easy to see that BK1(x) = 1, BK2(x) = ⌊1/x⌋+1
and BK3(x) = max{⌊3/x⌋, 1} for all x > 0. Thus, we shall assume that m ≥ 3 hereafter. If
we know the values of BG(x) only for x ∈ A1, that is, 1/2 < x ≤ 1, then we can determine
all values of BG(x). So we shall investigate the values of BKm(x), decomposing the interval
A1 = (1/2, 1] into four parts as follows.

Lemma 5.1. If 3/4 < x ≤ 1, then we have

BKm(x) = |E(Km)| =
m(m− 1)

2
.

Proof. It is clear that the set of the midpoints of all edges forms an x-set for any positive
real number x ≤ 1 in general. Thus, we have BKm(x) ≥ |E(Km)| = m(m− 1)/2.

Let C be the family of cycles of length 3 in Km and let ∆ be any cycle in C. Let S be a
maximum x-set with x ≤ 1. We denote the set of points of S contained in ∆ by S∆; that is,
S∆ = S ∩∆. Since each edge is contained in m− 2 cycles in C and |S∆| ≤ ⌊3/x⌋, we have

(m− 2)BKm(x) ≤
∑
∆∈C

|S∆| ≤
(
m

3

)
· ⌊3/x⌋.

This implies that

BKm(x) ≤ m(m− 1)

3 · 2
· ⌊3/x⌋ = |E(Km)| · (1/3) · ⌊3/x⌋.

If 3/4 < x ≤ 1, then we have ⌊3/x⌋ = 3 and BKm(x) ≤ |E(Km)|. Therefore, we have
BKm(x) = |E(Km)|.

Consider the partition S =
∪

e∈E(Km) Se of a maximum x-set in G as in the previous

section and let Ei be the set of edges e of G such that |Se| = i. Notice that |Se| may not
coincide with the number of points in S lying along e since a point in G placed at a vertex v
belongs to exactly one of Se’s for edges e incident to v. Here we assume that x > 1/2. Then
each edge contains at most two points of S and hence E(G) = E0 ∪ E1 ∪ E2. Thus we have
|E(G)| = |E0|+ |E1|+ |E2| and

|S| = BG(x) = |E1|+ 2|E2| = |E(G)|+ |E2| − |E0|

in general. We shall use these notations throughout the proofs below.
A set of edges of a graph G is called a matching if no two edges in the set have a

common end. A maximum matching in G is a matching of the maximum cardinality among
all matchings in G and its cardinality is denoted by µ(G). (As remarked in Section 2,
µ(G) = µ1(G).) It is clear that µ(G) = ⌊m/2⌋ for the complete graph Km.

Lemma 5.2. If 2/3 < x ≤ 3/4, then we have

BKm(x) = |E(Km)|+ 1 =
m(m− 1)

2
+ 1.
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Proof. First, we shall show an example of an x-set S in Km for x ∈ (2/3, 3/4]. Choose one
edge e = uv of Km with endpoints u and v, and take the following points as those in S:

(i) Two points p and q lying on e with dKm(p, u) = 1/8 and dKm(q, v) = 1/8

(ii) A point r lying on each edge incident to u (or v) with dKm(r, u) = 5/8 (or dKm(r, v) =
5/8)

(iii) The midpoints of all edges other than e and edges incident to u or v

The set S consists of these |E(Km)|+ 1 points and it is easy to see that it forms an x-set if
x ≤ 3/4. This implies that BKm(x) ≥ |E(Km)|+ 1.

Now let S be any maximum x-set in Km. Then we have BKm(x) = |E(Km)|+ |E2|−|E0|.
Since BKm(x) ≥ |E(Km)| + 1, we have |E2| − |E0| ≥ 1 and hence |E2| > |E0|. If there are
two edges in E2 which have a common end, then they form a path of length 2 and the four
points in S divide the path into at least three segments. One of these segments must have
length at most 2/3. This implies that x ≤ 2/3, which is contrary to our assumption in the
lemma. Thus, E2 forms a matching in Km.

Assume that E2 contains at least two edges, say u1v1 and u2v2. Since E2 is a matching,
they have no common end and hence form two cycles u1v1u2v2 and u1v1v2u2 in Km. All
edges in these cycles rather than u1v1 and u2v2 belong to E0 ∪E1. For each cycle, if none of
the edges belongs to E0, then this cycle of length 4 contains six points in S and hence there
is a pair of points p and q among the six with dKm(p, q) ≤ 4/6 = 2/3. This is contrary to our
assumption in the lemma, again. Thus, any two edges in E2 are joined by at least two edge
in E0. This implies that |E0| ≥ 2

(|E2|
2

)
≥ |E2|, which is contrary to |E2| > |E0|. Thus, E2

contains only one edges and hence |E2| = 1 > |E0| = 0. Therefore, BKm(x) = |E(Km)| + 1
if 2/3 < x ≤ 3/4.

Lemma 5.3. If 3/5 < x ≤ 2/3, then we have

BKm(x) = |E(Km)|+ µ(Km) =
m(m− 1)

2
+
⌊m
2

⌋
.

Proof. First, we shall show an example of an x-set in G for x ≤ 2/3. Let M be any maximum
matching in Km, which has ⌊m/2⌋ edges. Place two points p and q on each edge uv in M so
that dKm(p, u) = dKm(q, v) = 1/6. Add the midpoint of each of the other edges not belonging
to M . It is easy to see that these |E(Km)| + ⌊m/2⌋ points form an x-set if x ≤ 2/3. Thus,
BKm(x) ≥ |E(Km)|+ ⌊m/2⌋.

Let S be any maximum x-set and suppose that |S| = BKm(x) > |E(Km)|+ ⌊m/2⌋. Then
we have |E2| − |E0| > ⌊m/2⌋ = µ(Km). Since |E2| > µ(Km), E2 contains a pair of edges
which have a common end. If there exist three edges in E2 which form a path of length 3,
then the path contains six points in S and is divided into at least five segments by these
points. This implies that there are a pair of points p and q in S with dKm(p, q) ≤ 3/5, which
is contrary to our assumption in the lemma. Thus, the subgraph ⟨E2⟩ induced by E2 in Km

contains no path of length 3 and hence each of its components is isomorphic to the star K1,s

for some s ≥ 1.
If the edge between two vertices of degree 1 in such a component belonged to E1, then

there would be a cycle of length 3 which contains five points and it would contain a pair of
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pints p and q in S with dKm(p, q) ≤ 3/5, contrary to our assumption, again. Therefore, any
pair of the s vertices of degree 1 in the component isomorphic to K1,s with s ≥ 2 are joined
by an edge in E0 and hence there are s edges in E2 and s(s− 1)/2 such edges in E0 around
it. Thus, each component of ⟨E2⟩ contributes to |E2| − |E0| by a non-positive number if
s ≥ 3 and by 1 if s = 1, 2. We can choose one edge from each component of ⟨E2⟩ to form a
matching in Km and hence the number of components of ⟨E2⟩ does not exceed µ(Km).

In this situation, if there were a component with s ≥ 2, |E2| − |E0| would be less than
µ(Km). Thus, each component of ⟨E2⟩ consists of a single edge with s = 1. This implies
that E2 must be a matching, but it is contrary to |E2| > µ(Km). Therefore we have |S| =
|E(Km)|+ µ(Km) and the lemma follows.

Lemma 5.4. If 1/2 < x ≤ 3/5, then we have

BKm(x) =
m(m− 1)

2
+m− 1.

Proof. Choose any vertex v of Km and take two points p and q on each edge incident to v
with dKm(p, v) = 3/10 and dKm(q, v) = 9/10. Add the midpoints of all edges not incident to
v. Then it is easy to see that these |E(Km)|+m− 1 points form an x-set if x ≤ 3/5. Thus,
|E(Km)| + m − 1 gives a lower bound for BKm(x). By Theorem 1.1, this gives an upper
bound for it, too. However, we can show it easily as follows.

Let S be a maximum x-set in Km and suppose that |S| = BKm(x) > |E(Km)| +m − 1.
Then we have |E2| − |E0| > m − 1 and hence |E2| ≥ m = |V (Km)| in particular. In this
case, the subgraph induced by E2 in Km contains a cycle C and the cycle C contains 2|C|
points in S. These points divides C into 2|C| segments and hence there is a pair of points
p and q in S with dKm(p, q) ≤ |C|/2|C| = 1/2. This implies that x ≤ 1/2, contrary to our
assumption in the lemma. Therefore, we have BKm(x) ≤ |E(Km)|+m− 1 if 1/2 < x ≤ 3/5
and the lemma follows.

Theorem 5.5. Let Km be the complete graph of order m ≥ 3 and let n ≥ 1 be any natural
number. Then:

BKm(x) =



n ·m(m− 1)

2
+m− 1

(
1

n+1
< x ≤ 3

3n+2

)
n ·m(m− 1)

2
+
⌊m
2

⌋ (
3

3n+2
< x ≤ 2

2n+1

)
n ·m(m− 1)

2
+ 1

(
2

2n+1
< x ≤ 3

3n+1

)
n ·m(m− 1)

2

(
3

3n+1
< x ≤ 1

n

)
m− 1

(
1 < x ≤ 3

2

)⌊m
2

⌋ (
3
2
< x ≤ 2

)
1 (2 < x)

Proof. We have evaluated the value of BKm(x) for 1/2 < x ≤ 1 in Lemmas 5.1, 5.2, 5.3 and
5.4. Our recursive formulas given by Theorem 1.2 and its corollaries enable us to determine
the value of BKm(x) for a positive real number x ∈ An = (1/(n+ 1), 1/n], as follows.
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Any formula in the lemmas can be expressed by the form BKm(x) = |E(Km)| + α(m)
for x ∈ A1 = (1/2, 1], where α(m) stands for a function depending only on m. Since
X = x/(1− (n− 1)x) belongs to A1, we have

BKm(x) = BKm(X) + (n− 1)|E(Km)| = n|E(Km)|+ α(m)

by Corollary 1.4. The function fn−1(x) = x/(1 + (n − 1)x) maps A1 to An bijectively and
translates 1/2, 3/5, 2/3, 3/4 and 1 into 1/(n + 1), 3/(3n + 2), 2/(2n + 1), 3/(3n + 1) and
1/n, respectively. Thus, the first four cases in the formula correspond to the four cases given
in Lemmas 8, 7 6 and 5 in order.

Now, we shall determine the value of BKm(x) for x > 1. It is obvious that a pair of the
farthest points lie at the midpoints of two non-adjacent edges in Km and that they have
distance 2. Thus, we have BKm(x) = 1 for x > 2. Notice that each edge contains at most
one of points in any x-set for x > 1.

Let M a maximum matching in Km and take the midpoint of each edge in M . Then,
these ⌊m/2⌋ points form an x-set if x ≤ 2. Let S be an x-set for x ≤ 2 in Km. If
BKm(x) > ⌊m/2⌋ = µ(Km), then the edges containing points in S does not form a matching.
Thus, there are two edges among them which have a common end and form a cycle of length
3 with another edge. Since such a cycle contains at least two points in S, then we have
x ≤ 3/2. Therefore, BKm(x) = ⌊m/2⌋ if 3/2 < x ≤ 2.

Choose a vertex v of G and take the m − 1 points p lying on edges incident to v so
that dKm(p, v) = 3/2. It is clear that these points form an x-set if x ≤ 3/2 and hence
BKm(x) ≥ m − 1. Let S be a maximum x-set in Km. If BKm(x) > m − 1, then there is a
cycle C consisting of some edges each of which contains one point in S. That is, C contains
exactly |C| points in S and we conclude that x ≤ 1. Therefore, we have BKm(x) = m− 1 if
1 < x ≤ 3/2.

Notice that the theorem holds for K3 of course. However, the second and third cases in
the formula give the same value 3n+ 1 and hence they should be unified to one case.
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