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The role of reactive oxygen species in the gut immune response of cat fleas 

(Ctenocephalides felis) 
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By 
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ABSTRACT 

Fleas transmit numerous deadly and debilitating diseases, including the causative agents of 

murine typhus and plague. Because initial entry of these infectious agents occurs while 

blood feeding, the immune response in the flea gut is considered to be the first line of 

defense against invading microbes. However, relatively few studies have identified the flea 

immune molecules that effectively resist or limit infection in the gut. In other 

hematophagous insects, an immediate immune response to imbibed pathogens is the 

generation of reactive oxygen species (ROS). In this study, we utilized cat fleas 

(Ctenocephalides felis) to investigate whether natural infections with bacteria induce ROS 

synthesis in the flea gut, and whether production of ROS provides a defense mechanism 

against microbial colonization. Specifically, we assessed the generation of ROS via 

quantitative peroxide assays from fleas that were given uninfected and bacteria-infected 

blood meals. Additionally, we treated fleas with an antioxidant before infection with 

bacteria, and then measured the resultant bacterial load within each flea. Our data shows 

that ROS levels increase in response to infection in the flea gut, and that this increase helps 

to strengthen the flea immune response through the microbicidal activity of ROS. Overall, 

these data yield significant insight into how fleas interact with pathogens in their gut 

lumen, as well as the challenges faced by pathogens upon entering the flea host. 
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1. INTRODUCTION 

 

Fleas are parasitic insects that feed on mammalian or avian blood in order to 

survive. Among the 2,500 described flea species found throughout the world, the cat flea 

(Ctenocephalides felis) is considered to be the most important flea pest of humans and 

many domestic animals (Lemaitre and Hoffmann, 2007, Rust, 2017, Zhou et al., 2012). 

Fleas are responsible for the transmission of numerous pathogens that cause deadly and 

debilitating human diseases, including cat scratch disease, flea-borne spotted fever, 

murine typhus, and plague (Azad et al., 1989, Chomel et al., 2006, Eisen et al., 2006, 

Perry, 2003, Yazid Abdad et al., 2011). This makes their interactions with domesticated 

pets, and subsequently humans, of particular interest as fleas represent a potential threat 

to public health. Thus, it is crucial to understand the mechanisms that lead to the 

transmission of flea-borne pathogens, as well as the flea’s ability as a host to combat 

these infections. 

Because fleas are obligatory blood-feeders, they remain in close contact with their 

vertebrate host and are exposed to their hosts’ microorganisms. Fleas acquire an infection 

while feeding on a diseased host and later transfer the infection to a new host during a 

subsequent bloodmeal. For example, Yersinia pestis, the causative agent of plague, 

creates a biofilm that blocks the entrance to the flea’s digestive tract. This blockage, 

paired with the rapid consumption of large quantities of blood, results in regurgitation of 

plague bacilli into the vertebrate host (Beran, 1994, Jarrett et al., 2004). This feeding 

behavior results in dehydration and starvation, which causes the flea to increase its 

attempts to blood feed (Jarrett et al., 2004). In contrast, murine typhus (Rickettsia typhi) 

and cat scratch disease (Bartonella henselae) are excreted in the flea’s feces and gain 
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access to the vertebrate host when the bite site is scratched (Brown et al. 2019). The 

natural transmission cycle of flea-borne spotted fever (Rickettsia felis) is unknown, but 

this bacterium eventually migrates to and invades the salivary glands of infected flea 

species (Legendre and Macaluso, 2017, Macaluso et al., 2008). Thus, although the final 

mode of transmission may differ, the flea gut is the first organ encountered by flea-borne 

pathogens. 

In general, interactions with disease-causing microorganisms prompt an innate 

immune response in the host to limit and reduce the harmful effects of pathogens; 

however, the immune defense mechanisms utilized by fleas against their pathogens are 

largely unexplored. The generation of reactive oxygen species (ROS) is an immediate 

immune response that limits bacterial growth in the gut of most animals (Lemaitre and 

Hoffmann, 2007). Reactive oxygen species are 

natural by-products of aerobic respiration, but can 

also be produced by certain enzymes as an 

immune defense mechanism (Ha et al. 2005). The 

fruit fly (Drosophila melanogaster) has served as 

a model organism to elucidate the role of ROS 

against ingested microbes. In this insect, dual 

oxidase (DUOX), a member of the NADPH 

oxidase family, synthesizes H2O2, which is 

eventually converted to HOCl—an extremely 

microbicidal ROS (Fig. 1) (Ha et al., 2005). 

 

 

Figure 1. Gut immune response in 

fruit flies. ROS are produced by the 

Duox protein in the barrier epithelia 

of D. melanogaster, and the 

extracellular peroxidase domain of 

Drosophila DUOX can transform 

H2O2 into the microbicidal HOCl. 

(Lemaitre & Hoffmann 2007). 
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In this study, we utilized cat fleas to investigate whether natural infections with 

bacteria induce ROS synthesis in the flea gut, and whether production of ROS provides a 

defense mechanism against microbial colonization. Specifically, we assessed the 

generation of ROS via quantitative peroxide assays from fleas that were given uninfected 

and bacteria-infected blood meals. Additionally, we treated fleas with an antioxidant 

before infection with bacteria, and then measured the resultant bacterial load within each 

flea. Our results suggest that ROS levels increase in response to infection in the flea gut, 

and that this increase helps to strengthen the flea immune response through the 

microbicidal activity of ROS. Overall, these data yield significant insight into how fleas 

interact with pathogens in their gut lumen, as well as the challenges faced by pathogens 

upon entering the flea host. 

2. MATERIALS AND METHODS 

2.1. Flea maintenance and bacterial infection 

Newly emerged, unfed cat fleas were purchased from Elward II (EL) Laboratory 

(Soquel, CA, USA). Adult fleas were maintained on defibrinated bovine blood 

(HemoStat Laboratories) within an artificial feeding system (Fig. 2) (Wade & Georgi 

1988). This system was kept in a walk-in environmental chamber at 25°C, 55% relative 

humidity (RH), and a 12:12 h photoperiod. Eggs were collected onto sand in a Petri dish 

to complete development to adulthood, and hatched larvae were fed the dried feces from 

blood-feeding adults. Immature stages were reared at 25°C and ≥ 85% RH in an 

incubator with no light source.  

To infect fleas, the Gram-negative bacterium Serratia marcescens (Carolina 

Biological Supply Company) was grown overnight in a shaking incubator at 25°C in 
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nutrient broth. Infection dose was estimated prior to beginning an experiment by 

measuring the OD600 of the bacterial culture in a BioPhotometer D30 (Eppendorf AG, 

Hamburg, Germany). Once an optical density of approximately OD600 = 5 was reached, 

bacterial cultures were pelleted by centrifugation at 13,000 g for 5 min and resuspended 

in 600 μL of heat-inactivated (HI) blood. Fleas were allowed to feed on the infected 

bloodmeal for 24 h. Absolute doses were determined by plating serial dilutions of the 

treatment culture on nutrient agar, growing them for 48 h at room temperature, and then 

counting the resultant colony forming units (CFUs). 

 
Figure 2. Individual cages within the “artificial dog” unit. The soap solution is a 

mechanism used to prevent fleas from escaping and infesting the room. The soap breaks 

the surface tension of the water causing fleas to sink to the bottom. The heat lamp allows 

for similar temperatures to that of a warm-blooded host. The metal piping maintains the 

blood’s warm temperature while the parafilm provides a thin membrane through which 

the flea can feed in a controlled manner. 

 

Humidity/Temperature 
Monitor 

Heat Lamp 

Individual flea cage 

Soap Solution 
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2.2. Hydrogen peroxide assays 

 

To compare the levels of ROS synthesis, fleas were placed into four groups and 

exposed to one of the following treatments: (1) untreated blood; (2) blood infected with 

bacteria; (3) blood mixed with an antioxidant (see below); or (4) blood mixed with an 

antioxidant, and then blood infected with bacteria (Table 1; Fig. 3). After each treatment, 

the concentration of hydrogen peroxide (ROS of interest) was measured for each group 

using the Pierce™ Quantitative Peroxide Assay Kit according to the manufacturer’s 

instructions for the lipid-compatible procedure. Briefly, whole guts from 20 female fleas 

were hand-dissected, pooled, and homogenized in 200 μL of PBS containing 2 mg/mL 3-

amino triazole (catalase inhibitor). Because fleas had blood in their gut, both “test” 

(methanol-only) replicates and “TCEP Reference” replicates (Bond-BreakerTM TCEP 

Solution, Thermo Scientific) were created as suggested for metal-containing samples. 

Additionally, a blank was generated that omitted Reagent A. Each sample was transferred 

in duplicate to a microwell plate, and absorbance was measured at 595 nm using a plate 

reader (Synergy H1 plate reader, BioTek). Following subtraction of absorbance for the 

blank, the “TCEP Reference” absorbance was then subtracted from the “test” absorbance. 

Finally, a hydrogen peroxide standard curve was generated to calculate the concentration 

of the samples for each group. Three independent trials were conducted per treatment 

group, and the data were combined and analyzed by ANOVA, followed by Tukey’s 

Multiple Comparison Test using GraphPad Prism. 
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Table 1. Bloodmeal treatment schedule. Fleas were placed into four groups and 

exposed to one of the following treatments: (1) untreated blood (control); (2) blood 

infected with bacteria; (3) blood mixed with an antioxidant; or (4) blood mixed with an 

antioxidant, and then blood infected with bacteria. 

  
Group 24 h 72 h 120 h 144 h 

1 Untreated Untreated Untreated 

End treatment 

2 Untreated Untreated Infected 

3 Antioxidant Antioxidant Untreated 

4 Antioxidant Antioxidant Infected 

 

 

 

Figure 3. Diagram of hydrogen peroxide assays. Guts were dissected from four groups of 

20 female fleas that were untreated, fed an infected bloodmeal, fed an antioxidant, or 

were fed an antioxidant before an infected bloodmeal. Peroxide levels in the pooled guts 

were determined by Pierce™ Quantitative Peroxide Assay Kit according to the lipid 

compatible procedure. 
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2.3. Antioxidant treatment 

 To assess the relative strength of ROS production as a flea defense mechanism, a 

group of fleas was fed on two consecutive occasions, 48 h apart, on blood containing 20 

mM N-acetyl-L-cysteine (antioxidant supplement) (Fig. 4). An additional group was fed 

an untreated bloodmeal. Two days after the second treatment, both groups were given an 

infected bloodmeal as described above. After feeding on infected blood for 24 h, fleas 

were collected for enumeration of S. marcescens (see below). The same protocol for 

antioxidant treatment was followed for the hydrogen peroxide assays (Table 1, groups 3 

& 4). 

 

Figure 4. Diagram of infection intensity assays. Guts were dissected from two groups of 

20 female fleas there were either treated with an antioxidant before an infected bloodmeal 

or received an infected bloodmeal only (no antioxidant treatment). Infection intensity per 

individual flea was determined by plating each homogenized gut on nutrient agar and 

counting the resultant CFU. 
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2.4. Measurement of bacterial infection in fleas 

 Twenty-four hours post infection, whole guts from fleas were hand-dissected, 

homogenized in PBS, and a diluted sample for each individual was spread on nutrient 

agar plates. Plates were incubated at room temperature for 48 h, the number of CFUs was 

recorded, and the CFU number was then used to calculate S. marcescens infection 

intensity in each flea. In order to confirm that all colonies originated from the original 

inoculum, a group of untreated fleas was also examined for the presence of gut microbes 

that may form red colonies similar to S. marcescens. Five independent trials were 

conducted, and each trial consisted of approximately 20 fleas per treatment group. Data 

were combined and analyzed using an unpaired t-test in GraphPad Prism. 

3. RESULTS 

3.1. Peroxide levels increase after bacterial infection in fleas 

 To determine whether a bacterial infection alters ROS synthesis, fleas were fed 

one of four different bloodmeal treatments, and the concentration of hydrogen peroxide 

(ROS of interest) was measured from pooled gut samples. The level of hydrogen 

peroxide was altered by bloodmeal treatment (Fig. 5; ANOVA: p < 0.0001). Specifically, 

peroxide levels were almost twice as high in fleas that were fed bacteria than those that 

were fed an untreated bloodmeal (Fig. 5; Tukey’s: p < 0.005). Additionally, incorporation 

of an antioxidant into a bloodmeal reduced the amount of ROS produced by roughly 75% 

and 85% when compared to untreated (Tukey’s: p = 0.0001) and infected (Tukey’s: p < 

0.0001) bloodmeals, respectively. Moreover, fleas fed an antioxidant before an infected 

bloodmeal increased ROS synthesis by 50% when compared to the antioxidant treatment 

alone (Tukey’s: p = 0.1451); however, peroxide levels were 50% and 70% lower than 
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that of untreated (Tukey’s: p = 0.0030) and infected groups (Tukey’s: p < 0.0001), 

respectively. Thus, these data show that the presence of bacteria increases the generation 

of ROS in the gut of fleas more than blood feeding alone. 

 

Figure 5. Data are shown as the mean (± S.E.M.) concentration of 3 independent trials 

combined. The data were analyzed by ANOVA followed by Tukey’s Multiple 

Comparison Test. ** p < 0.005; *** p < 0.001; **** p < 0.0001 

 

3.2. ROS synthesis limits survival of S. marcescens in fleas 

 To determine the effect of ROS generation on bacterial growth in the gut of fleas, 

two groups were fed either untreated or antioxidant-treated blood prior to an infected 

bloodmeal. The bacterial load was measured 24 h later by plating each individual gut on 

nutrient agar and counting the resultant CFUs. Across all experimental trials, the absolute 

dose of S. marcescens per infected bloodmeal was approximately 4.56 x 108 (± 7.3 x 107 

S.E.M.), while the average amount recovered from untreated flea guts was 4,583 (± 721 
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S.E.M.). Although fleas process their blood meals rapidly and digest little before 

defecation, infection prevalence (percentage of individuals infected) after 24 h was 

greater than 80% for the untreated groups. Among fleas that remained infected with S. 

marcescens (excluding individuals that cleared the infection), infection intensity 

increased by 70% when peroxide levels in the gut were lowered with the antioxidant 

treatment (Fig. 6; unpaired t test: p = 0.0016). Overall, these data show that ROS is an 

immune response that limits pathogen survival in the gut of fleas. 

 

 

Figure 6. Data are shown as the mean (± S.E.M.) infection intensity of 5 independent 

trials combined. The data were analyzed using an unpaired t test. 
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4. DISCUSSION 

Although fleas are efficient vectors of disease-causing pathogens, they are not 

willing hosts. Fleas, like all insects, possess an innate immune system that provides 

defense against invading microbes. However, the immune mechanisms that determine 

whether an infected flea eliminates or succumbs to a given pathogen are largely 

unexplored. Here, we present direct evidence that local production of microbicidal ROS 

provides defense against pathogens in the gut of cat fleas.  

Our first experiments showed that, in the presence of bacteria, peroxide levels 

were significantly higher in the guts from infected fleas compared to those from untreated 

individuals. These data support our initial hypothesis that an immediate response to 

infection in the flea gut epithelia is the generation of ROS. This prompted further 

investigation to determine the impact of ROS synthesis on the subsequent survival of 

ingested pathogens. First, we demonstrated that incorporation of an antioxidant into the 

bloodmeal limits ROS production in the flea gut, and that ROS levels remained low when 

fleas were treated with the antioxidant before oral infection with S. marcescens. Next, we 

showed that pathogen survival was significantly higher in the guts from antioxidant 

treated fleas compared to untreated groups. Thus, these data further support our 

hypothesis that ROS production is an inducible immune defense mechanism in the gut of 

cat fleas. These findings are consistent with previous studies that focused on the immune 

strategies utilized by the gut epithelial cells of other insects, such as fruit flies, 

mosquitoes, and rat fleas (Xenopsylla cheopis) (Ha et al. 2005, Ha et al. 2009, Kumar et 

al. 2010, Zhou et al. 2012). Taken together, these results suggest that ROS production is a 

significant component of early flea immune response to bacterial infection. 
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Although we may not be the cat flea’s primary host, they often find residence and 

nutritious blood meals on some of our beloved domesticated pets. Fleas are consistent 

parasites of canine and feline hosts. Our mutualistic relationship with domesticated dogs 

and cats leads cat fleas to interact with humans regularly. Increased risk of parasitic 

interactions with cat fleas leave humans susceptible to increased levels of exposure to 

deadly pathogens. The project yielded significant insight into how fleas interact with 

pathogens in their gut lumen and exposed some of the challenges faced by pathogens 

upon entering the flea host. Further exploration is needed to fully understand the entire 

repertoire of innate defense mechanisms available to fight off pathogens in these insect 

vectors. 
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