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ABSTRACT 

The misclassification simulation extrapolation (MC-SIMEX) method proposed by Küchenho et al. is a 

general method of handling categorical data with measurement error. It consists of two steps, the simulation 

and extrapolation steps. In the simulation step, it simulates observations with varying degrees of 

measurement error. Then parameter estimators for varying degrees of measurement error are obtained based 

on these observations. In the extrapolation step, it uses a parametric extrapolation function to obtain the 

parameter estimators for data with no measurement error. However, as shown in many studies, the 

parameter estimators are still biased as a result of the parametric extrapolation function used in the MC-

SIMEX method.  Therefore, we propose a nonparametric MC-SIMEX method in which we use a 

nonparametric extrapolation function. It uses the fractional polynomial method with cross-validation to 

choose the appropriate fractional polynomial terms. An example is provided based on data from the 

National Health and Nutrition Examination Survey. 
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CHAPTER 1 

INTRODUCTION 

Classical measurement error refers to the truth being measured with additive error (Carroll, Ruppert, 

Stefanski, & Crainiceanu, 2006). Random error and systematic error are two types of error (Taylor, 1997). 

In a set of measurements, systematic measurement errors (also called bias) are consistent, repeatable errors 

(Cimbala, 2009). In this dissertation, the focus is on systematic measurement error. 

Nondifferential and differential are two types of systematic measurement error (Carroll et al., 2006). 

Let W denote the measurement error covariate, which means W is the observed covariate with measurement 

error and without any correction. Let X denote the (unobserved) true and gold standard covariate. Let Y 

denote the binary response variable. Let Z denote another covariate without measurement error in the model. 

The definition of nondifferential measurement error is that W does not depend on the response Y (Carroll 

et al., 2006). For example, in the case of diet, nondifferential measurement error can occur when instead of 

measuring a participant's long-term diet X, the measured W was each participant’s diet in the previous 24 

hours (Carroll et al., 2006). Otherwise, the measurement error is differential. Namely, W provides additional 

information about Y. In the study of the previous example, since the response variable Y, the diagnosis of 

cancer, is obtained first, a subject may change his or her diet after diagnosis. Thus, each participant’s diet 

in the previous 24 hours, W, is correlated with cancer outcome Y (Carroll et al., 2006). 

For a discrete variable, we refer the measurement error as misclassification. Measurement error 

proverbially exists in real data. For example, Armstrong has shown in a study of the relationship between 

lung cancer (Y) and the distance from a residence to a coke oven (X), that misclassification occurred since 

migration—some subjects in the study had moved their home during the follow-up period (Armstrong B. 

G., 1998). Millner et al. pointed out that in a national suicide (Y) study, respondents may not clearly 

understand the specific behavior (suicidal behavior, Y) in question. In addition, there are many more subtle 

steps in the process of attempting suicide that are omitted when using single-item assessment. Hence, 

covariate single-item assessment (X) owns misclassification (Millner, Lee, & Nock, 2015). 
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Measurement error leads to bias in estimated regression coefficients for statistical models; causes 

a loss of power, sometimes profound; and makes graphical model analysis difficult (Carroll et al., 2006). 

Several statistical methods have been proposed to correct estimation bias. Regression calibration is one of 

the popular methods in the misclassification literature used to correct the bias caused by misclassification 

(Armstrong B. , 1985; Carroll & Stefanski, 1990; Fraser & Stram, 2001; Bang et al., 2013). In this method, 

the value of the true covariate X is estimated by regressing X on the naive covariate W (Rosner, Willett, & 

Spiegelman, 1989; Carroll et al., 2006). Based on the regression calibration method, Spiegelman et al. 

studied the effect of misclassification by combining the regression calibration estimator and an estimator 

from the validation data, called the pooled estimator method (Spiegelman, Carroll, & Kipnis, 2001). Cole 

et al. suggested using multiple imputation as a correction method (Cole, Chu, & Greenland, 2006). 

Researchers fit a logistic regression model between the true covariate X and the naive covariate W in the 

validation data. Thus, researchers can replace the naive covariate in the nonvalidation data by the estimated 

probability from the model (Rubin, 1976; Carroll et al., 2006). The corrected score estimator was proposed 

by Zucker and Spiegelman under survival analysis by using a corrected score function to estimate the 

parameters and standard errors (Zucker & Spiegelman, 2008). Simulation and extrapolation (SIMEX) 

method is another statistical approach that can correct the bias created by measurement error in the 

continuous variable(s) (Cook & Stefanski, 1994). 

To deal with the effect of bias caused by misclassified discrete covariates, MC-SIMEX was 

developed from SIMEX by using a parametric extrapolation function and misclassification rates (sensitivity 

and specificity) (Küchenhoff, Mwalili, & Lesaffre, 2006). Just as the SIMEX method, the MC-SIMEX 

method is a simulation-based method that makes efficient use of sensitivity and specificity to produce bias-

corrected estimates.  

The estimated regression coefficients are still, however, biased by using the MC-SIMEX method. 

The estimation bias of misclassification has been shown in the logistic regression by Küchenhoff et al., the 

log-normal accelerated failure time model (AFT model) by Slate and Bandyopadhyay, and the log-logistic 
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AFT model by Sevilimedu (Küchenhoff et al., 2006; Slate & Bandyopadhyay, 2009; Sevilimedu, 2017). 

We notice that the bias may be caused by the parametric extrapolation function used in MC-SIMEX. Said 

function may not approximate the true function plate. 

Therefore, in this dissertation, we modify the MC-SIMEX method by proposing a nonparametric 

MC-SIMEX method. We use a nonparametric extrapolation function, which is estimated by the fractional 

polynomial method with cross-validation. The simulation shows that it corrects the estimation bias well. 

This dissertation is organized as follows. In Chapter 2, we provide a literature review. In Chapter 

3, we introduce the model formulation, discuss the bias of ignoring measurement error in covariates, and 

describe the nonparametric MC-SIMEX method. To assess the performance of the new method and the 

impact of ignoring error in covariates on the estimation of the regression parameters, simulation studies are 

conducted in Chapter 4. An example is presented in Chapter 5 to illustrate the proposed method, followed 

by a general discussion in the last chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, we will review the methods that are used to handle the measurement error in data 

sets. At the end of the chapter, we will introduce the fractional polynomial method, which is used in the 

nonparametric MC-SIMEX method. 

Regression calibration 

Regression calibration (RC) is a standard method of dealing with measurement errors and their 

effects (Bang et al., 2013). It estimates the true covariates X by regressing X against the naive covariate W 

in validation data. Then the X in the nonvalidation data is replaced by the estimated values of X (Bang et 

al., 2013; Carroll et al., 1990). The standard error of the estimate is calculated by the bootstrapping or 

sandwich methods (Carroll et al., 2006). 

Agogo et al. used the RC method to adjust for the attenuation caused by measurement error in 

dietary intake in a single-replicate study design (Agogo et al., 2014). Rosner et al. applied the regression 

calibration method to study the effect of measurement error in fat, calories, or alcohol intake in logistic 

regression (Rosner, Spiegelman, & Willett, 1990). They also suggested the RC method to correct bias of 

relative risk estimates caused by measurement error of exposure that is independent of disease status 

(Rosner, Willett, & Spiegelman, 1989). 

The advantage of the RC method is that it is convenient and highly popular for discrete data and 

nonnormal data (Sevilimedu, 2017). However, the limitation of the RC method is that it only deals with 

nondifferential measurement error. 

Pooled estimator 

Spiegelman et al. developed the pooled estimator based on the regression calibration method by 

combining the regression calibration estimator and an estimator from the validation data (Spiegelman et al., 

2001). When the validation sample is large, the efficiency is increased compared to the regression 
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calibration estimator (Bang et al., 2013). Therefore, choosing an appropriately large validation sample is 

important when using the pooled estimator method (Spiegelman et al., 2001). Bang et al. applied the pooled 

estimation method to survival analysis (Bang et al., 2013). Because the pooled estimator is based on the 

RC estimator, the assumptions of the RC method are also required here. The limitation of the method is 

that large validation data sets are not always available. 

Multiple imputation 

Multiple imputation (MI) is suggested by Cole et al. to deal with the measurement error problem 

(Cole et al., 2006). When applying a multiple imputation procedure, researcher fits a logistic regression 

model between the X and the naive covariate W in the validation data. The naive covariate in the 

nonvalidation data is then replaced with the corrected value by using the estimated probability from the 

model aforementioned (Bang et al., 2013). 

Cole et al. proposed using the MI method to correct the bias of the estimated hazard ratios for end-

stage renal disease (Cole et al., 2006). Edwards et al. pointed out that the estimated bias in the model could 

be corrected by using the MI method to strengthen results from observational studies (Edwards et al., 2015). 

However, the MI method has many limitations. First, the correct specification of the model is 

critical to its successful performance. The second disadvantage is that for survival analysis, the data set 

with censored outcomes is more difficult to implement. Many researchers noted this problem in their work 

(Qi, Wang, & He, 2010; White I. R., 2006). Finally, the performance of the MI method depends on the 

sample size or the proportion validated (Cole et al., 2006). 

Corrected score 

The corrected score (CS) estimator was proposed by Zucker and Spiegelman for use under survival 

analysis by using a corrected score function to estimate parameters and standard errors (Zucker et al., 2008). 

The corrected score function, which equals the true score function in expected value, is used for the 

estimation of the parameters. The standard errors are calculated by the bootstrap method or sandwich 

method (Carroll et al., 2006; Bang et al., 2013; Sevilimedu, 2017). 
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Akazawa et al. applied the CS method to logistic regression to adjust the estimated offset the bias 

from misclassification (Akazawa, Kinukawa, & Nakamura, 1998). Zucker and Spiegelman corrected the 

estimated bias of misclassification in a covariate in Cox model (Zucker et al., 2008). 

An advantage of this method is that it can handle models with both continuous and discrete 

covariates (Akazawa et al., 1998). The limitation of the method is that measurement error distribution must 

be known (Chen, Hanfelt, & Huang, 2015). Also, numerical problems occur when applying the CS method 

at the situation that the count of subjects at risk get smaller as time progresses in survival analysis 

(Sevilimedu, 2017). 

Simulation and extrapolation 

The simulation and extrapolation (SIMEX) method was created by Cook and Stefanski to address 

measurement error of continuous variable (Cook et al., 1994). It assumes that the effect of measurement 

error on an estimator can be determined experimentally via simulations (Cook et al., 1994). The SIMEX 

method consists of two steps: the simulation and the extrapolation steps. In the simulation step, researchers 

add varying degrees of additional measurement error to the data to simulate observations. Researchers then 

obtain the parameter estimators for varying degrees of measurement error based on these observations. In 

the extrapolation step, researchers use a parametric extrapolation function to obtain the parameter 

estimators for data with no measurement error.  

Pina-Sánchez applied the SIMEX method to correct recall errors in duration data (Pina-Sánchez, 

2016). Hardin et al. suggested using the SIMEX method to correct the effect of measurement error on recall 

measurements recorded for calories of saturated fat intake (Hardin, Arnold, Schmiediche, & Carroll, 2003). 

Lederer and Küchenhoff employed the SIMEX method to address the effect of measurement error on dust 

in chronic bronchitis and dust concentration of the Deutsche Forschungsgemeinschaft study (Lederer & 

Küchenhoff, 2006). However, this method can only apply to continuous variables. 



15 

Misclassification simulation and extrapolation 

The misclassification simulation and extrapolation (MC-SIMEX) method was developed by 

Küchenhoff et al. from SIMEX to correct the effect of misclassified discrete covariates (Küchenhoff et al., 

2006). The SIMEX and MC-SIMEX methods use consistent processes, including simulating observations 

in the simulation step. In addition, researchers obtain the parameter estimators for varying degrees of 

measurement error. Then they obtain the parameter estimators for data with no measurement error in the 

extrapolation step. 

Küchenhoff et al. applied the method to address the effect of bias in children's probability of 

developing caries (Küchenhoff et al., 2006). Slate and Bandyopadhyay applied the MC-SIMEX method to 

study the effect of misclassification within periodontal outcomes in the log-normal AFT model (Slate et al., 

2009). Sevilimedu proposed a modified MC-SIMEX method in the log-logistic AFT model and applied it 

in a prospective study  of  dietary  fat  intake  and  risk  of  breast  cancer (Sevilimedu, 2017).  

However, the parameter estimators are still biased due to the parametric extrapolation function used 

in the MC-SIMEX method. 

Fractional polynomial method 

The fractional polynomial (FP) method was first introduced by Royston and Altman for continuous 

covariates and was expanded to categorized covariates by Sauerbrei and Royston to determine if the value 

of p in 𝑥𝑝 yields the best model for the data (Royston & Altman, 1994; Sauerbrei & Royston, 1999; Hosmer,

Lemeshow, & May, 2008). Fractional polynomials are an extended family of curves, whose power terms 

are restricted to a small, predefined set of values (Royston et al., 1994). The powers are selected so that 

conventional polynomials are a subset of the family. When using this method, a more complex model 

should be retained only when there is enough evidence that it is better than a simpler one (Nikolaeva, 

Bhatnagar, & Ghose, 2015).  

Royston and Sauerbrei applied the FP method to model continuous risk variables (Sauerbrei et al., 

1999). Mayer et al. employed the FP method to estimate the half-life periods in nonlinear data (Mayer, 
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Keller, Syrovets, & Wittau, 2013). Zhang introduced the FP method to continuous covariates in the German 

Breast Cancer Study Group (GBSG) database (Zhang, 2016). 

However, the FP method is not suitable for small samples (Nikolaeva et al., 2015). Another 

disadvantage is that lack of flexibility may lead to a poor fit of the models (Sauerbrei et al., 1999).  We will 

introduce the fractional polynomial method in detail in the next chapter. 
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CHAPTER 3 

METHODOLOGY 

This dissertation aims to correct the bias of misclassification in logistic regression by applying the 

nonparametric MC-SIMEX method. In the following sections, we will introduce the logistic regression 

model, the fractional polynomial method, the original MC-SIMEX method, and the nonparametric MC-

SIMEX method in details. 

Logistic regression model 

The logistic regression model is written as the regression model of the log of odds over covariates; 

i.e.,

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑜𝑔
𝑝𝑖

1−𝑝𝑖
= 𝑋𝑖

′𝛽,                                                   (3.1)

where 𝑝𝑖  is the probability of the event that 𝑌𝑖 = 1, 𝑋𝑖 represents binary covariates and β represents

regression coefficients. We set 𝑋0 = 1 corresponding to intercept coefficient 𝛽0.

Solving for the 𝑝𝑖 in equation (3.1) gives the following function,

𝑝𝑖 =
𝑒𝑥𝑝(𝑋𝑖

′𝛽)

1+𝑒𝑥𝑝(𝑋𝑖
′𝛽)

(3.2) 

Note that 𝑌𝑖  follows the Bernoulli distribution with parameter 𝑝𝑖  taking the following form

(Rohatgi & Saleh, 2000), 

𝑃𝑟{𝑌𝑖 = 𝑦𝑖} = 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)1−𝑦𝑖 ,

𝑦𝑖 = 0,1.
 (3.3) 

Likelihood function of logistic regression model 

Based on equations (3.1) and (3.3), the likelihood function is as follows, 
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𝐿(𝛽) = ∏ 𝑝𝑖
𝑦𝑖𝑛

𝑖=1 (1 − 𝑝𝑖)1−𝑦𝑖 .  (3.4) 

Next, the log-likelihood turns products into sums and gives the log-likelihood function of the 

logistic regression model, 

𝑙𝑜𝑔𝐿(𝛽) = ∑ {𝑛
𝑖=1 𝑦𝑖log (𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)}.  (3.5) 

Based on equation (3.2), the aforementioned equation could be rewritten in following form, 

𝑙𝑜𝑔𝐿(𝛽) = ∑ {𝑛
𝑖=1 𝑦𝑖𝑙𝑜𝑔 (

exp(𝑋′𝛽)

1+exp(𝑋′𝛽)
) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 −

exp(𝑋′𝛽)

1+exp(𝑋′𝛽)
)}. (3.6) 

Multiple Studies  showed  that the maximum likelihood estimation (MLE) of full log-likelihood  of  

logistic  regression  model  does not  have a closed form (Rohatgi et al., 2000; Hogg, Craig, & McKean, 

2005; Czepiel, 2002; Hilbe, 2017). However, Hogg et al. showed that the MLE exists in general and is 

unique (Hogg et al., 2005). Numerical methods, such as the Newton-Raphson method is widely used to 

obtain the MLE of log-likelihood of the logistic regression model (Rohatgi et al., 2000; Hogg et al., 2005; 

Czepiel, 2002; Hilbe, 2017). In most calculus textbooks, we can find the description and application of the 

Newton-Raphson method to obtain the MLE. Suppose 𝛽0 is an initial guess at the solution and 𝛽1 is the

next guess, which is the horizontal intercept of the tangent line to the curve 𝑙𝑜𝑔𝐿′(𝛽)  at the point 

(𝛽0, 𝑙𝑜𝑔𝐿′(𝛽0)), where 𝑙𝑜𝑔𝐿′(𝛽) is the first derivative of function (3.6). Thus, 𝑙𝑜𝑔𝐿′′(𝛽) represents the

second derivative of function (3.6). Then, 

𝛽1 = 𝛽0 −
𝑙𝑜𝑔𝐿′(𝛽0)

𝑙𝑜𝑔𝐿″(𝛽0)
.            (3.7) 

The aforementioned process is repeated until convergence (Hogg et al., 2005). 

Fractional polynomial method 

The fractional polynomial (FP) method is aimed to determine the value of 𝑝 in 𝑥𝑝 so that the fitted

model yields the best model for the data (Hosmer et al., 2008). In theory, the value of 𝑝 could be any real 
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number. Royston and Altman proposed that a search through a set 𝒫 = {−2, −1, −0.5, 0, 0.5, 1, 2, 3} with 

possible transformation could avoid the complexity of the estimated problem (Royston et al., 1994).  

Basic notation and formula 

Let 𝐽 denote the terms of power 𝑝. In most of studies, 𝐽 = 1 or 2 is the possible value (Hosmer et 

al., 2008). When 𝐽 = 1, there is one term of 𝑥𝑝 in the model, namely, 𝑦 ~ 𝑥𝑝1 , 𝑝1  ∈  𝒫, and called the FP1

model. When 𝐽 = 2, there are two terms of 𝑥𝑝 in the model, namely, 𝑦 ~ 𝑥𝑝1 + 𝑥𝑝2 , 𝑝1  ∈  𝒫, 𝑝2  ∈  𝒫, and

called the FP2 model. Hence there are 8 FP1 models and 36 FP2 models. Note that there are two conventions 

in the transformation (Hosmer et al., 2008). First when 𝑝 = 0 in the fitted model, 𝑥0 is replaced by ln (𝑥).

Second, for models that involve repeated powers such as (𝑝1, 𝑝2) = (2, 2), the second term is multiplied

by ln (𝑥). Namely, the fitted model is  𝑦 ~ 𝑥𝑝1 + 𝑥𝑝2 ∗ ln (𝑥), 𝑝1  ∈  𝒫, 𝑝2  ∈  𝒫.

In the method, the best model is the one with the largest log partial likelihood (Hosmer et al., 2008). 

Let L(0) denote the log partial likelihood of the null model where x is not in the model. Let L(1) denote the 

log partial likelihood of the linear model; that is, 𝑥𝑝 = 𝑥. Let L(𝑝1) denote the largest log partial likelihood

of FP1 models. And L(𝑝1, 𝑝2) denotes the largest log partial likelihood of FP2 models. Note that Royston

et al. pointed out that each term in the FP model contributes approximately 2 degrees of freedom (df) to the 

model, one for the coefficient and one for the power (Royston et al., 1994; Royston, Ambler, & Sauerbrei, 

1999). Hence, to compare the linear model to the best FP1 model, 

𝐺(1, 𝑝1) = −2[𝐿(1) − 𝐿(𝑝1)],        (3.8) 

is approximately distributed as chi-square with 1 df under the null hypothesis of linearity (Hosmer et al., 

2008). Thus, the function,   

𝐺(𝑝1, (𝑝1, 𝑝2) ) = −2[𝐿(𝑝1) − 𝐿(𝑝1, 𝑝2)] (3.9) 

is the test comparing the best FP1 model to the best FP2 model with chi-square and 2 df under the null 

hypothesis that the second FP function term is equal to 0. Similarly, the test comparing the linear and the 

best FP2 model is approximately distributed as chi-square with 3 df. 
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Model fitting 

For FP1 models, choosing 𝑝1  ∈  𝒫, we can fit 8 FP1 models to data by setting the model 𝑦 ~ 𝑥𝑝1.

The power 𝑝1 in the model with the largest log partial likelihood is selected for the next step.

For FP2 models, choosing 𝑝1  ∈  𝒫 and 𝑝2  ∈  𝒫, 36 FP2 models can be obtained to data by setting

the model 𝑦 ~ 𝑥𝑝1 + 𝑥𝑝2 . The power combination (𝑝1, 𝑝2 ) in the model with the largest log partial

likelihood is selected for the next step. 

Closed test 

A closed test could be used to find the best FP model (Hosmer et al., 2008). In the closed test 

procedure, we begin by comparing the linear model to the best of the FP2 models by performing the test, 

𝐺(1, (𝑝1, 𝑝2)) = −2[𝐿(1) − 𝐿(𝑝1, 𝑝2)], (3.10) 

with chi-square and 3 df. If this test result is not significant, then we stop here and the best model we choose 

is the linear model. If the test results are significant, then we compare the best of FP1 models to the best of 

FP2 models via 𝐺(𝑝1, (𝑝1, 𝑝2)). If the test results are significant, then we use the best model of the FP2

models, otherwise we use the best model of the FP1 models as the best fractional polynomial model. 

Original MC-SIMEX method 

This section is based on Küchenhoff et al.'s (Küchenhoff et al., 2006) and Stefanski and Cook's 

(Cook & Stefanski, 1994)work. A misclassification matrix Π is defined with components (Küchenhoff et 

al., 2006),  

Π = [
𝜋00 1 − 𝜋11

1 − 𝜋00 𝜋11
] ,           (3.11) 

where 

𝜋11 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸) = 𝑃(𝑊 = 1|𝑋 = 1), 

𝜋00 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑃) = 𝑃(𝑊 = 0|𝑋 = 0). 
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Hence Π gives the probabilities of misclassification. Note that Π is a K*K matrix where K is the number of 

possible outcomes for X. In addition, Π  is known or can be estimated from validation data (Küchenhoff et 

al., 2006).  

The parameter β in equation (3.1) is the parameter of interest. Let β̂ denote the naive estimation of 

β. The proof for the existence of β̂ and its estimation is given in the works of White (White H. , 1982). 

Because the estimate of β̂ depends on Π, we denote it as β̂(Π). In addition, note that the estimator with no 

misclassification is β̂(𝐼𝑘∗𝑘)., where 𝐼𝑘∗𝑘 is the identity matrix.

In the MC-SIMEX method, the authors define the function (Küchenhoff et al., 2006), 

λ → β̂(Πλ),                                                                (3.12) 

indicating that β̂ (Π𝜆
)  is a function of λ , where λ ≥ 0 . The spectral decomposition shows

Πλ = EΛλE−1, 

where 𝜆  is the diagonal matrix of eigenvalues of Π , and E is the corresponding eigenvector of Π 

(Küchenhoff et al., 2006). Based on function (3.12), if W has a relationship to X as a result of the 

misclassification matrix Π , 𝑊∗ has a relationship to W as a result of the misclassification matrix Π𝜆, then

𝑊∗  has a relationship to X as a result of the misclassification matrix Π1+𝜆 , assuming that the two

misclassification mechanisms are independent. To make function (3.9) well defined, Gastwirth proved that 

det(Π) = 𝜋00 + 𝜋11 − 1 > 0, i.e., 𝜋00 > 0.5 and 𝜋11 > 0.5, is necessary to ensure the existence of Π𝜆

(Gastwirth, 1987). 

The MC-SIMEX method consists of a simulation step and an extrapolation step which is explained 

in detail. 

Simulation step 

The simulation step simulates datasets with varying degrees of misclassification as a result of the 

misclassification matrix Π𝜆.
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For a fixed grid of values 𝜆𝑘 ∈ (𝜆1 … … 𝜆𝑚), 𝑏 = 1, … , 𝐵, 𝑊𝑖, are simulated by,

𝑊𝑏,𝑖(𝜆𝑘) ≔ 𝑀𝐶[Π𝜆𝑘](𝑊𝑖),  𝑖 = 1 … . , 𝑛; 𝑘 = 1, … , 𝑚, (3.13) 

Namely, we can obtain 𝑊𝑏,𝑖(𝜆𝑘) by inflating the misclassification in 𝑊𝑖 by a factor 𝜆𝑘. Hence, we can

denote the naive estimator as, 

�̂�𝑛𝑎(𝜆𝑘): = 𝐵−1 ∑ [𝐵
𝑏=1 �̂�𝑛𝑎(𝑌𝑖, 𝑊𝑏,𝑖(𝜆𝑘), 𝑍𝑖)],

𝑘 = 1, . . . , 𝑚;
𝑖 = 1, . . . , 𝑛.

  (3.14) 

Namely, the mean value of the naive estimators over B bootstrap samples is the naive estimator for a 

particular 𝜆𝑘.

The 𝜆𝑘 values are chosen as 𝜆𝑘 ∈ (0, 2] (Cook et al., 1994). In addition, a large value should be

chosen for B so that the Monte Carlo error is negligible (Cook et al., 1994). Stefanski and Cook showed 

that the MC-SIMEX method performs well using B = 50 (Cook et al., 1994). After the development of the 

computational resource, we can use a larger value for B . 

Extrapolation step 

The corresponding parameter estimates produced with each degree of misclassification are 

extrapolated using a parametric function of the form (Küchenhoff et al., 2006). 

λ → �̂�(Πλ) ≈ 𝐷(1 + λ, Γ), (3.15) 

where D is the extrapolation function, and Γ is the vector of parameters for the extrapolation function. For 

example, 𝐷(1 + 𝜆, Γ) = Γ0 + Γ1(1 + 𝜆) + Γ2(1 + 𝜆)2  is the quadratic extrapolation function. After Γ is

estimated, we extrapolate 𝐷(1 + 𝜆, Γ) to a point on the y-axis where 1 + 𝜆 = 0 to obtain the estimator 

�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥. Namely, 

�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 = 𝐷(1 + 𝜆, 𝛤), 𝜆 = −1.  (3.16) 
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Variance estimation of estimator 

Within a single simulation with B bootstrap samples, a given misclassification matrix, and a fixed 

grid of values 𝜆𝑘, 𝑘 = 1, … , 𝑚 values, the sample variance of the estimator �̂�𝑠𝑖𝑚(𝜆𝑘) could be calculated

by the following formulations, 

�̂�𝑠𝑖𝑚(𝜆𝑘) ≔ 𝐵−1 ∑ {𝐵
𝑏=1 �̂�𝑛𝑎[(𝑌𝑖, 𝑊𝑏,𝑖(𝜆𝑘), 𝑍𝑖)𝑖=1

𝑛 ] − �̂�𝑛𝑎(𝜆𝑘)}2 (3.17) 

where �̂�𝑛𝑎(𝜆𝑘)  is in equation (3.14), k = 1, …, m. Note that 𝑉𝑠𝑖𝑚(0) ≔ 0 . In addition,

�̂�𝑛𝑎𝑖𝑣𝑒(�̂�𝑛𝑎[(𝑌𝑖, 𝑊𝑏,𝑖(𝜆𝑘), 𝑍𝑖)𝑖=1
𝑛 ]) is the variance for each naive estimate, which is calculated based on the

information matrix for each value of 𝜆𝑘. Then, we have,

�̂�𝑛𝑎(𝜆𝑘): = 𝐵−1 ∑ �̂�𝑛𝑎𝑖𝑣𝑒
𝐵
𝑏=1 (�̂�𝑛𝑎[(𝑌𝑖, 𝑊𝑏,𝑖

∗ (𝜆𝑘), 𝑍𝑖)𝑖=1
𝑛 ])    (3.18) 

Stefanski and Cook suggested that the variance estimator of the MC-SIMEX estimator (𝑉𝑆𝑇) is

given by the extrapolation of the difference between the sample variance and the variance obtained through 

the information matrix (Cook et al., 1994). Namely, 

𝑉𝑆𝑇(𝜆𝑘) = 𝑉𝑛𝑎(𝜆𝑘) − 𝑉𝑠𝑖𝑚(𝜆𝑘). (3.19) 

and 

𝑉𝑆𝑇 = lim
𝜆→ −1

(𝑉𝑛𝑎(𝜆) − 𝑉𝑠𝑖𝑚(𝜆)). (3.20) 

nonparametric MC-SIMEX 

Because the parameter estimators are still biased as a result of the parametric extrapolation function 

used in the MC-SIMEX, we propose a nonparametric MC-SIMEX method to correct the estimated bias in 

the logistic  regression  model. 

Simulation step 

In the simulation step, the nonparametric MC-SIMEX method has the same procedure as the 

original MC-SIMEX method, except we use m = 100 because we need to estimate the extrapolation function 
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by the FP method with the cross-validation process. In addition, some power coefficients in 𝒫 require the 

value of the base to be positive, such as 𝜆
1

2. However, based on the original MC-SIMEX method, we 

extrapolate the extrapolation function to the point on the Y-axis where 𝜆 = −1. Hence, we replace 𝜆 in the 

original MC-SIMEX method by exp (𝜆). Küchenhoff et al. pointed out the exponential in 𝜆 works very well 

in the extrapolation process (Küchenhoff et al., 2006).  

Extrapolation step 

We use the FP method to approximate the extrapolation function, which is, 

𝜆 → �̂�(Πλ) ≈ 𝐷(1 + 𝜆, Γ).

Since 𝜆 is replaced by 𝑒𝑥𝑝 (𝜆), aforementioned function (which is the same as function 3.15) could be 

rewritten as, 

𝑒𝑥𝑝(𝜆) → �̂�(Π𝑒𝑥𝑝(𝜆)) ≈ 𝐷(𝑒𝑥𝑝(1 + 𝜆) , Γ),    (3.21) 

where D is the extrapolation function, and Γ is the vector of parameters for the extrapolation function. Thus, 

based on the function (3.16), the estimator �̂�𝑛𝑜𝑛𝑝𝑀𝐶−𝑆𝐼𝑀𝐸𝑋 is given by, 

�̂�𝑛𝑜𝑛𝑝𝑀𝐶−𝑆𝐼𝑀𝐸𝑋 = 𝐷(𝑒𝑥𝑝(1 + 𝜆) , Γ).   (3.22) 

For example, if the best nonparametric extrapolation function is the quadratic extrapolation function, then 

𝐷(𝑒𝑥𝑝 (1 + 𝜆), Γ) = Γ0 + Γ1(𝑒𝑥𝑝 (1 + 𝜆))𝑝1 + Γ2(𝑒𝑥𝑝(1 + 𝜆))𝑝2 , 𝑝1 = 1, 𝑝2 = 2.Based on the FP method,

there are 8 FP1 models and 36 FP2 models included in the method.  

To choose the best power coefficient(s) in the nonparametric extrapolation function among the 

power coefficient(s) in the null, linear, FP1, and FP2 models, we use the cross-validation process. We 

separate data into 5 equally sized folds (also called K-fold cross-validation where K = 5) and consider one 

as test data, other 4 as training data. Then the training data are used to obtain the parameters Γ as a result of 

the D function. Thus, with Γ, D function, and 𝑒𝑥𝑝 (𝜆) in the test data, we can obtain the predicted value of 
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�̂� called �̂�𝑝𝑟𝑒𝑑 as a result of 𝐷(𝑒𝑥𝑝 (𝜆), Γ). Let �̂�𝑡𝑒𝑠𝑡 denote the corresponding �̂� to 𝑒𝑥𝑝 (𝜆) in the test data.

Then, the squared prediction error (SPE) is, 

𝑆𝑃𝐸 = (�̂�𝑝𝑟𝑒𝑑 − �̂�𝑡𝑒𝑠𝑡)2. (3.23) 

Repeat the aforementioned steps until each fold used as the test data. Let 𝑆𝑃𝐸𝑖, 𝑖 = 1, … , 𝐾 denote the

squared prediction error for each test data. Let the mean squared prediction error (MPE) denote the average 

squared prediction error of all test data. In other words, 

𝑀𝑃𝐸 = 𝐾−1 ∑ (𝐾
𝑖=1 𝑆𝑃𝐸𝑖), 𝑖 = 1, . . . , 𝐾.  (3.24) 

We choose MPE as an indication of the performance of each model. Let MPE(0) denote the MPE 

of the null model where 𝑒𝑥𝑝 (𝜆) is not in the model. Let MPE(1) denote the MPE of the linear model; that 

is, 𝑒𝑥𝑝𝑝(𝜆) = 𝑒𝑥𝑝 (𝜆). Let MPE(𝑝1) denote the minimum MPE of the 8 FP1 models, and MPE(𝑝1, 𝑝2)

denote the minimum MPE of the 36 FP2 models. Thus, the best fractional polynomial model is the 

minimum of MPE(0), MPE(1), MPE(𝑝1) and MPE(𝑝1, 𝑝2). We use the selected power coefficient(s) in the

best fractional polynomial model in the nonparametric extrapolation function. 

Based on the preceding results, the estimator Γ𝑒𝑥𝑡 is obtained by least squares on [𝑒𝑥𝑝(1 +

𝜆) , �̂�𝑛𝑎(𝜆𝑘)]𝑘=0
𝑚  with fitting a nonparametric model 𝐷(𝑒𝑥𝑝(1 + 𝜆), Γ).  We estimate the estimator 

�̂�𝑛𝑜𝑛𝑝𝑀𝐶−𝑆𝐼𝑀𝐸𝑋 as a result of the model 𝐷(𝑒𝑥𝑝(1 + 𝜆), 𝛤𝑒𝑥𝑡). That is,

�̂�𝑛𝑜𝑛𝑝𝑀𝐶−𝑆𝐼𝑀𝐸𝑋 = 𝐷(𝑒𝑥𝑝(1 + 𝜆), Γ𝑒𝑥𝑡).         (3.25) 

Variance estimation of estimator 

The estimation of the variance in the method is similar to the original MC-SIMEX method. In the 

process, the extrapolation function is replaced by the nonparametric extrapolation function, and 𝜆  is 

replaced by 𝑒𝑥𝑝 (𝜆) in extrapolation function. It can be otherwise expressed as, 

𝑉𝑆𝑇(𝜆𝑘) = 𝑉𝑛𝑎(𝑒𝑥𝑝(𝜆𝑘)) − 𝑉𝑠𝑖𝑚(𝑒𝑥𝑝(𝜆𝑘)).         (3.26) 
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and 

𝑉𝑆𝑇 = lim
𝜆→ −1

[𝑉𝑛𝑎(𝑒𝑥𝑝(𝜆)) − 𝑉𝑠𝑖𝑚(𝑒𝑥𝑝(𝜆))].        (3.27) 

 We use three different extrapolation functions to extrapolate the variance estimation. 

1. We use the quadratic extrapolation function to extrapolate the variance estimation, which is the

same as the original MC-SIMEX method (Küchenhoff et al., 2006; Sevilimedu, 2017). Note that in this 

situation, we use 𝜆  to estimate the variance. Hence Γ𝑒𝑥𝑡.𝑄  is obtained as a result of the model

𝑉𝑆𝑇(𝜆𝑘) ~ 𝜆𝑘 + (𝜆𝑘)2 . Let Q.VAR denote the variance estimation from the quadratic extrapolation

function, 

Q. VAR = Γ𝑒𝑥𝑡.𝑄.0 − Γ𝑒𝑥𝑡.𝑄.1 + Γ𝑒𝑥𝑡.𝑄.2. (3.28) 

2. We use the extrapolation function for �̂�𝑛𝑜𝑛𝑝𝑀𝐶−𝑆𝐼𝑀𝐸𝑋  as the extrapolation function for the

variance estimation. That is, 

𝑉𝐴𝑅 = 𝐷(exp(−1) , Γ𝑒𝑥𝑡.𝑓𝑝)

= Γ𝑒𝑥𝑡.𝑓𝑝.0 + Γ𝑒𝑥𝑡.𝑓𝑝.1(exp (−1))𝑝1 + Γ𝑒𝑥𝑡.𝑓𝑝.2(exp (−1))𝑝2 ,
(3.29) 

where Γ𝑒𝑥𝑡.𝑓𝑝  is obtained as a result of the nonparametric extrapolation function. Note that if the

nonparametric extrapolation function is the best of the FP1 models, there is no 𝑝2 term in the function (3.29).

3. To choose the most appropriate curve for the variance data, we use the same procedure (FP

method with cross-validation) as described in Chapter 3 for choosing a new nonparametric extrapolation 

function for the variance estimation. Let CV.VAR denote the variance estimation from the new 

nonparametric extrapolation function, which is called 𝐷𝑣𝑎𝑟 and where Γ𝑒𝑥𝑡.𝑐𝑣 are the parameters from the

𝐷𝑣𝑎𝑟. Hence,

𝐶𝑉. 𝑉𝐴𝑅 = 𝐷𝑣𝑎𝑟(exp(−1) , Γ𝑒𝑥𝑡.𝑐𝑣)

= Γ𝑒𝑥𝑡.𝑐𝑣.0 + Γ𝑒𝑥𝑡.𝑐𝑣.1(exp (−1))𝑝1 + Γ𝑒𝑥𝑡.𝑐𝑣.2(exp (−1))𝑝2 .
(3.30) 

Note that if 𝐷𝑣𝑎𝑟 is the best of the FP1 models, there is only 𝑝1 term in the function (3.30).
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CHAPTER 4 

SIMULATION STUDY 

A simulation study is conducted to evaluate the performance of the nonparametric MC-SIMEX 

method in a logistic model with differential and nondifferential misclassification error on predictor. In 

section 4.1, we describe the simulation processes. In section 4.2, we describe the algorithms used to estimate 

parameters. Section 4.3 describes the results of the performance of the original and nonparametric MC-

SIMEX methods, followed by the conclusions in section 4.4. 

An overview of simulation methods 

We do the following steps to achieve the simulation work for differential misclassification error: 

Step 1: Assign the values for regression parameters (𝛽0 and 𝛽1). Define the number of iteration B,

the sample size (n), the values of misclassification matrix (𝜋000, 𝜋011, 𝜋100, 𝜋111) and the number of

bootstrap simulation (M) for the differential misclassification error. 

Step 2: Generate n random values for the true binary covariate X which follows Bernoulli 

distribution with the probability 0.5. [randomly select n samples for the true binary covariate X from 

Bernoulli distribution with probability of 0.5.] 

Step 3: Generate true binary response Y which follows Bernoulli distribution according to the 

probability: 

𝑃(𝑌 = 1) = 1/(1 + 𝑒𝑥𝑝(−𝛽0 − 𝛽𝑋𝑋)).  (4.1) 

Step 4: Generate naive covariate W by the misclassification operation (see equation 3.13) with the 

misclass function in R and misclassification matrix for differential misclassification error: 

𝛱𝑑𝑖𝑓𝑓 = [

𝜋000 𝜋001 0 0
𝜋010 𝜋011 0 0

0 0 𝜋100 𝜋101

0 0 𝜋110 𝜋111

] .    (4.2) 



28 

Step 5: Fit the logistic model 𝑦 ∼ 𝑥 using glm procedure in R. Obtain the �̂�𝑡𝑟𝑢𝑒 and 𝑉𝐴�̂�𝑡𝑟𝑢𝑒 from

the true model.  

Step 6: Fit the logistic model 𝑦 ∼ 𝑊 using glm procedure in R. Obtain naive estimators �̂�𝑛𝑎𝑖𝑣𝑒 and

𝑉𝐴�̂�𝑛𝑎𝑖𝑣𝑒 for differential misclassification error  from the naive model.

 Step 7: Repeating step 4 to generate the differential misclassification W* at 𝜆 = (0.5, 1, 1.5, 2) 

respectively, where the 𝜆 is the power of the misclassification matrix: Πλ.

Step 8: At each level of 𝛱𝜆, fit a logistic model with function 𝑦 ∼ 𝑊∗. Obtain the  �̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 and

variance for each model at each 𝜆 level. 

Step 9: Run B times of iterations for steps 7-8 in each simulation. 

Step 10: Use 𝜆 to classify all the results of logistic models at each 𝜆 level. 

Step 11: Based on section 3.3.3, variance estimation is obtained. 

Step 12: Build the models 𝛽 ∼ 𝜆 and  𝑉𝑆𝑇 ∼ 𝜆 with the naive estimators (�̂�𝑛𝑎𝑖𝑣𝑒 and 𝑉𝐴�̂�𝑛𝑎𝑖𝑣𝑒)

using the quadratic extrapolation function. Extrapolate the fitted models to the point on the Y-axis where 

𝜆 = −1. The values on the Y-axis are the �̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 and its estimated variance 𝑉𝐴�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥. By the end of

step 12, we finish the simulation steps of original MC-SIMEX method.  

Step 13: Repeat steps 4-11 with 𝜆 ∈ (0.01,2] with gap 0.02. Create the dataset called extrapolation 

data with average of B �̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 's for each 𝜆, �̂�𝑆𝑇's for each 𝜆 and naive estimators.

Step 14:  Using 5-fold cross-validation method be described in section 3.4.2 we reorganize the 

extrapolation data.  

Step 15: Based on fractional polynomial method described in section 3.2 and fractional polynomial 

process steps described in section 3.4.2, extract the extrapolation function power coefficients for each 

simulation run. 
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Step 16: Using the extrapolation function from step 15, build the model 𝛽 ∼ 𝑒𝜆 and 𝑉𝑆𝑇 ∼ 𝑒𝜆.

Extrapolate the fitted model to the point on the Y-axis where 𝜆 = −1. The values on the Y-axis are the 

�̂�𝑛𝑜𝑛𝑝. 

Step 17: Using the quadratic extrapolation function to estimate the variance of �̂�𝑛𝑜𝑛𝑝 , named 

𝑉𝐴�̂�𝑛𝑜𝑛𝑝.𝑄. Note that here the extrapolation function is 𝑉𝑆𝑇 ∼ 𝜆.

Step 18: Using the extrapolation function from step 15 to estimate the variance of �̂�𝑛𝑜𝑛𝑝, named 

𝑉𝐴�̂�𝑛𝑜𝑛𝑝.

Step 19: [Estimate the power coefficients of extrapolation function for variance using fractional 

polynomial process from the cross-validation data set from step 14.] Using the cross-validation data sets 

from step 14, we do the fractional polynomial process to obtain the power coefficients of extrapolation 

function for variance. 

Step 20: Based on the extrapolation function from step 19, estimate the variance of �̂�𝑛𝑜𝑛𝑝, named 

𝑉𝐴�̂�𝑛𝑜𝑛𝑝.𝐶𝑉. By the end of step 20, we finish one bootstrap simulation run.

Step 21: Repeat steps 1-20 until a set of M Monte Carlo run are completed. We will compare the 

performance of new method in different setting. 

Step 22: The final estimates are average of all Monte Carlo run of �̂�𝑡𝑟𝑢𝑒, �̂�𝑛𝑎𝑖𝑣𝑒, �̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 and 

�̂�𝑛𝑜𝑛𝑝 along with their corresponding mean, SE, RMSE, estimated variances , empirical variances and 

coverage.  

For the nondifferential misclassification error, the difference of simulation work is following: 

In step 1, we need to assign the 𝜋00, 𝜋01, 𝜋10, 𝜋11 values for the nondifferential misclassification

error. 
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In step 4, we generate W by the misclassification operation with the misclassification matrix for 

nondifferential misclassification error: 

Π𝑛𝑜𝑛 = [
𝜋00 𝜋01

𝜋10 𝜋11
] .  (4.3) 

Other steps are similar for the nondifferential misclassification error simulation work. 

Data simulation and estimation of parameters 

In this section, we will compare the performance of true model, naive model, original and 

nonparametric MC-SIMEX method in different situations. We conduct M = 300 Monte Carlo run in each 

situation. We consider following parameter settings:  

The sample size 𝑛 ∈ (200,500,1000); 

The true values of 𝛽 : (𝛽0, 𝛽1) = (0,1) and (𝛽0, 𝛽1) = (0, −𝑙𝑜𝑔2);

The differential misclassification matrices are (𝜋000, 𝜋011, 𝜋100, 𝜋111) = (0.9,0.7,0.7,0.8)  and

(𝜋000, 𝜋011, 𝜋100, 𝜋111) = (0.8,0.8,0.75,0.75);

and the nondifferential misclassification matrices are (𝜋00, 𝜋11) = (0.9,0.7) and (𝜋00, 𝜋11) = (0.8,0.8).

In other words, the first differential misclassification matrix setting is: 

Π𝑑𝑖𝑓𝑓.1 = [

0.9 0.3 0 0
0.1 0.7 0 0
0 0 0.7 0.2
0 0 0.3 0.8

] ,   (4.4) 

and the second differential misclassification matrix setting is: 

Π𝑑𝑖𝑓𝑓.2 = [

0.8 0.2 0 0
0.2 0.8 0 0
0 0 0.75 0.25
0 0 0.25 0.75

].      (4.5) 

The first nondifferential misclassification matrix setting is: 
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Π𝑛𝑜𝑛.1 = [
0.9 0.3
0.1 0.7

] ,    (4.6) 

and the second nondifferential misclassification matrix setting is: 

Π𝑛𝑜𝑛.2 = [
0.8 0.2
0.2 0.8

] .                                                                (4.7) 

We use number of bootstrap samples 𝐵 ∈ (50,100,300,500)  for nonparametric MC-SIMEX 

method. A simple logistic regression model 𝑌 ∼ 𝑋  is considered in this simulation study. The binary 

covariate, X, is generated from a Bernoulli distribution with the probability 0.5. The binary response 

variable Y follows Bernoulli distribution with the probability: 

𝑃(𝑌𝑖 = 1) = 1/(1 + 𝑒𝑥𝑝(−𝛽0 − 𝛽1𝑋𝑖)).        (4.8) 

For each simulation run, true estimator, naive estimator, MC-SIMEX estimator, nonparametric 

MC-SIMEX estimator and the corresponding mean, standard error (SE), estimated variances, empirical 

variances are obtained. The estimated values of �̂� and their corresponding performance are obtained as 

average of results of each Monte Carlo run. They are defined as following: 

�̂�𝑡𝑟𝑢𝑒 =
1

𝑀
∑ �̂�𝑡𝑟𝑢𝑒𝑖

𝑀

𝑖=1

, 

�̂�𝑛𝑎𝑖𝑣𝑒 =
1

𝑀
∑ �̂�𝑛𝑎𝑖𝑣𝑒𝑖

𝑀

𝑖=1

, 

�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 =
1

𝑀
∑ �̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥𝑖

𝑀

𝑖=1

, 

�̂�𝑛𝑜𝑛𝑝 =
1

𝑀
∑ �̂�𝑛𝑜𝑛𝑝𝑖

𝑀

𝑖=1

, 

�̂�𝑛𝑜𝑛𝑝 = �̂�𝑛𝑜𝑛𝑝.𝐶𝑉 = �̂�𝑛𝑜𝑛𝑝.𝑄 .

The biases are defined as following: 
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𝑏𝑖𝑎�̂�𝑡𝑟𝑢𝑒 =
1

𝑀
∑(�̂�𝑡𝑟𝑢𝑒𝑖

− 𝛽1)

𝑀

𝑖=1

, 

𝑏𝑖𝑎�̂�𝑛𝑎𝑖𝑣𝑒 =
1

𝑀
∑(�̂�𝑛𝑎𝑖𝑣𝑒𝑖

− 𝛽1),

𝑀

𝑖=1

𝑏𝑖𝑎�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 =
1

𝑀
∑(�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥𝑖

− 𝛽1),

𝑀

𝑖=1

𝑏𝑖𝑎�̂�𝑛𝑜𝑛𝑝 =
1

𝑀
∑(�̂�𝑛𝑜𝑛𝑝𝑖

− 𝛽1)

𝑀

𝑖=1

, 

𝑏𝑖𝑎�̂�𝑛𝑜𝑛𝑝 = 𝑏𝑖𝑎�̂�𝑛𝑜𝑛𝑝.𝐶𝑉 = 𝑏𝑖𝑎�̂�𝑛𝑜𝑛𝑝.𝑄 .

The empirical variances (emp) are defined as following: 

𝑒𝑚�̂�𝑡𝑟𝑢𝑒 =
1

𝑀
∑ 𝑏𝑖𝑎�̂�𝑡𝑟𝑢𝑒𝑖

2

𝑀

𝑖=1

, 

𝑒𝑚�̂�𝑛𝑎𝑖𝑣𝑒 =
1

𝑀
∑ 𝑏𝑖𝑎�̂�𝑛𝑎𝑖𝑣𝑒𝑖

2 ,

𝑀

𝑖=1

 

𝑒𝑚�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 =
1

𝑀
∑ 𝑏𝑖𝑎�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥𝑖

2 ,

𝑀

𝑖=1

 

𝑒𝑚�̂�𝑛𝑜𝑛𝑝 =
1

𝑀
∑ 𝑏𝑖𝑎�̂�𝑛𝑜𝑛𝑝𝑖

2

𝑀

𝑖=1

, 

𝑒𝑚�̂�𝑛𝑜𝑛𝑝 = 𝑒𝑚�̂�𝑛𝑜𝑛𝑝.𝐶𝑉 = 𝑒𝑚�̂�𝑛𝑜𝑛𝑝.𝑄 .

The RMSE are defined as following: 

𝑅𝑀𝑆�̂�𝑡𝑟𝑢𝑒 = 𝑠𝑞𝑟𝑡(𝑒𝑚�̂�𝑡𝑟𝑢𝑒  +  𝑏𝑖𝑎�̂�𝑡𝑟𝑢𝑒
2 ),
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𝑅𝑀𝑆�̂�𝑛𝑎𝑖𝑣𝑒 = 𝑠𝑞𝑟𝑡(𝑒𝑚�̂�𝑛𝑎𝑖𝑣𝑒  +  𝑏𝑖𝑎�̂�𝑛𝑎𝑖𝑣𝑒
2 ),

𝑅𝑀𝑆�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥 = 𝑠𝑞𝑟𝑡(𝑒𝑚�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥  +  𝑏𝑖𝑎�̂�𝑀𝐶𝑠𝑖𝑚𝑒𝑥
2 ),

𝑅𝑀𝑆�̂�𝑛𝑜𝑛𝑝 = 𝑠𝑞𝑟𝑡(𝑒𝑚�̂�𝑛𝑜𝑛𝑝  + 𝑏𝑖𝑎�̂�𝑛𝑜𝑛𝑝
2 ),

𝑅𝑀𝑆�̂�𝑛𝑜𝑛𝑝 = 𝑅𝑀𝑆�̂�𝑛𝑜𝑛𝑝.𝐶𝑉 = 𝑅𝑀𝑆�̂�𝑛𝑜𝑛𝑝. 𝑄.

The 95%CI for each Monte Carlo run is estimated using the following formula: 

95%𝐶𝐼 = �̂� ± 1.96𝑆�̂�.

The coverage probability is assessed according to the percentage of the occurrences of 95%CI 

including the value of the true parameter. 

Results  of  the  performance  of  the methods 

The simulation results table is presented as following table 1. 

Table 1: Form of results table. 

Methods Mean SE RMSE Estimated 

Variance 

Empirical 

Variance 

Bias Coverage 

True . . . . . . . 

Naïve . . . . . . . 

Mcsimex.Q . . . . . . . 

NONP . . . . . . . 

NONP.CV.Var . . . . . . . 

NONP.Q.Var . . . . . . . 

In "Methods" column, the "True" indicate the true model (see section 3.1). The "Naive" stands for 

the naive model (see section 3.1). The "MCsimex.Q" denote the original MC-SIMEX method with 

quadratic extrapolation function. The "NONP" means the nonparametric MC-SIMEX method with same 

extrapolation function for �̂�1 and variance. The "NONP.CV.Var" represent the nonparametric MC-SIMEX 

method using cross-validation process for �̂�1  and variance separately. And the "NONP.Q.Var" implies the 

nonparametric MC-SIMEX method using quadratic extrapolation function. The "Mean" column presents 

the average value of �̂�1 of all Monte Carlo run. 
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The performance of the nonparametric MC-SIMEX estimator is evaluated for different 

combinations of sample size, number of bootstrap samples, true 𝛽s, differential misclassification matrix. 

Results for differential misclassification error 

For differential misclassification error, tables 2 - 13 show that the nonparametric MC-SIMEX 

estimator consistently performs better than the original MC-SIMEX method with quadratic extrapolation 

function in all combinations. The magnitude of the bias associated with the nonparametric MC-SIMEX 

estimator is always lower than that of the original MC-SIMEX method with quadratic extrapolation 

function across all levels of combinations. With regard to the coverage probabilities, the nonparametric 

MC-SIMEX estimator is shown to perform satisfactorily and consistent with the original MC-SIMEX 

method with quadratic extrapolation function across all levels of combinations. 

Results for nondifferential misclassification error 

Tables 14 - 25 show that the nonparametric MC-SIMEX estimator consistently performs better than 

the original MC-SIMEX method with quadratic extrapolation function in all combinations with 

nondifferential misclassification error. Compare to the estimator of original MC-SIMEX method with 

quadratic extrapolation function, the nonparametric MC-SIMEX estimator has lower bias across all levels 

of combinations. With regard to the coverage probabilities, the nonparametric MC-SIMEX estimator is 

shown to perform satisfactorily and consistent with the original MC-SIMEX method with quadratic 

extrapolation function across all levels of combinations. 

Conclusion 

The simulation work in this chapter shows that the original MC-SIMEX method only performs 

better in some situations. For example, when sample size is small (n = 200). In other words, the robustness 

of original MC-SIMEX method relies on small sample size. However, the nonparametric MC-SIMEX 

method proposed in this dissertation presents stronger robustness across all levels of parameter settings. 

Another proof of strong robustness is that compare to the original MC-SIMEX method, the biases of 

estimator in our approach are closer to the bias of true model. In the simulation results tables, the empirical 



35 

variance of nonparametric MC-SIMEX method always larger than the original MC-SIMEX method, since 

we applied the fractional polynomial process in the method. The number of bootstrap samples B is another 

influencing factor for our approach. When B is large enough (𝐵 ≥ 100), the results of our method are 

always better than the original method. Hence, for the nonparametric MC-SIMEX method, B value should 

as large as possible. We proposed three ways to approximate the variance function in our method. The 

𝑉𝐴�̂�𝑛𝑜𝑛𝑝 and 𝑉𝐴�̂�𝑛𝑜𝑛𝑝.𝐶𝑉 are reliable and valid estimators of variance, 𝑉𝐴�̂�𝑛𝑜𝑛𝑝. 𝑄 didn't work very well

in the simulation. In addition, with two kinds of misclassification error (nondifferential and differential), 

the nonparametric MC-SIMEX method works fine. Finally, some researchers reported that the increased 

bias in the MC-SIMEX estimates in the robustness test (Slate et al., 2009; Sevilimedu, 2017). For the 

nonparametric MC-SIMEX method, we haven't found this phenomenon. 
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Table 2: Simulation results based on 300 simulations each with sample size = 1000 and Π_(diff.1): The 

true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.002 0.135 0.131 0.018 0.017 0.002 0.96 

Naive 1.201 0.138 0.313 0.019 0.058 0.201 0.70 

McSimex.Q 1.038 0.198 0.215 0.039 0.045 0.038 0.93 

NONP 1.017 0.216 0.237 0.048 0.056 0.017 0.91 

NONP.CV.Var 1.017 0.228 0.237 0.054 0.056 0.017 0.91 

NONP.Q.Var 1.017 0.196 0.237 0.039 0.056 0.017 0.90 

B = 300 

TRUE 0.999 0.135 0.139 0.018 0.019 -0.001 0.93 

Naive 1.196 0.138 0.307 0.019 0.056 0.196 0.73 

McSimex.Q 1.029 0.198 0.216 0.039 0.046 0.029 0.94 

NONP 1.006 0.218 0.233 0.049 0.054 0.006 0.93 

NONP.CV.Var 1.006 0.218 0.233 0.051 0.054 0.006 0.88 

NONP.Q.Var 1.006 0.196 0.233 0.039 0.054 0.006 0.92 

B = 100 

TRUE 1.002 0.135 0.131 0.018 0.017 0.002 0.95 

Naive 1.193 0.138 0.301 0.019 0.053 0.193 0.73 

McSimex.Q 1.025 0.196 0.210 0.039 0.044 0.025 0.94 

NONP 1.007 0.209 0.255 0.045 0.065 0.007 0.90 

NONP.CV.Var 1.007 0.218 0.255 0.051 0.065 0.007 0.90 

NONP.Q.Var 1.007 0.195 0.255 0.038 0.065 0.007 0.88 

B = 50 

TRUE 0.997 0.135 0.131 0.018 0.017 -0.003 0.97 

Naive 1.192 0.138 0.302 0.019 0.054 0.192 0.72 

McSimex.Q 1.022 0.197 0.219 0.039 0.048 0.022 0.92 

NONP 1.020 0.206 0.318 0.043 0.101 0.020 0.86 

NONP.CV.Var 1.020 0.225 0.318 0.053 0.101 0.020 0.87 

NONP.Q.Var 1.020 0.195 0.318 0.038 0.101 0.020 0.84 
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Table 3: Simulation results based on 300 simulations each with sample size = 500 and Π_(diff.1): The 

true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 0.998 0.191 0.186 0.037 0.034 -0.002 0.96 

Naive 1.197 0.196 0.338 0.038 0.075 0.197 0.82 

McSimex.Q 1.029 0.282 0.309 0.079 0.095 0.029 0.95 

NONP 0.999 0.307 0.343 0.099 0.117 -0.001 0.90 

NONP.CV.Var 0.999 0.314 0.343 0.105 0.117 -0.001 0.90 

NONP.Q.Var 0.999 0.278 0.343 0.078 0.117 -0.001 0.88 

B = 300 

TRUE 1.005 0.192 0.178 0.037 0.032 0.005 0.97 

Naive 1.194 0.195 0.346 0.038 0.082 0.194 0.82 

McSimex.Q 1.025 0.281 0.336 0.079 0.112 0.025 0.91 

NONP 1.011 0.302 0.390 0.096 0.152 0.011 0.87 

NONP.CV.Var 1.011 0.317 0.390 0.106 0.152 0.011 0.87 

NONP.Q.Var 1.011 0.278 0.390 0.077 0.152 0.011 0.84 

B = 100 

TRUE 1.008 0.192 0.202 0.037 0.041 0.008 0.95 

Naive 1.209 0.196 0.359 0.038 0.085 0.209 0.82 

McSimex.Q 1.050 0.280 0.333 0.079 0.108 0.050 0.97 

NONP 1.043 0.288 0.388 0.086 0.149 0.043 0.84 

NONP.CV.Var 1.043 0.309 0.388 0.099 0.149 0.043 0.88 

NONP.Q.Var 1.043 0.278 0.388 0.078 0.149 0.043 0.86 

B = 50 

TRUE 0.991 0.191 0.198 0.037 0.039 -0.009 0.95 

Naive 1.186 0.195 0.331 0.038 0.075 0.186 0.84 

McSimex.Q 1.013 0.278 0.324 0.078 0.105 0.013 0.90 

NONP 1.014 0.294 0.431 0.091 0.185 0.014 0.83 

NONP.CV.Var 1.014 0.331 0.431 0.111 0.185 0.014 0.87 

NONP.Q.Var 1.014 0.276 0.431 0.076 0.185 0.014 0.80 
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Table 4: Simulation results based on 300 simulations each with sample size = 200 and Π_(diff.1): The 

true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.025 0.305 0.288 0.093 0.082 0.025 0.96 

Naive 1.208 0.311 0.431 0.097 0.143 0.208 0.90 

McSimex.Q 1.037 0.451 0.500 0.204 0.249 0.037 0.92 

NONP 1.021 0.489 0.557 0.251 0.310 0.021 0.90 

NONP.CV.Var 1.021 0.518 0.557 0.281 0.310 0.021 0.91 

NONP.Q.Var 1.021 0.444 0.557 0.198 0.310 0.021 0.89 

B = 300 

TRUE 1.050 0.306 0.337 0.094 0.111 0.050 0.92 

Naive 1.214 0.312 0.435 0.098 0.143 0.214 0.90 

McSimex.Q 1.044 0.451 0.500 0.204 0.248 0.044 0.92 

NONP 1.025 0.488 0.552 0.252 0.304 0.025 0.89 

NONP.CV.Var 1.025 0.498 0.552 0.264 0.304 0.025 0.89 

NONP.Q.Var 1.025 0.446 0.552 0.199 0.304 0.025 0.89 

B = 100 

TRUE 1.026 0.306 0.328 0.094 0.107 0.026 0.94 

Naive 1.242 0.314 0.473 0.099 0.165 0.242 0.90 

McSimex.Q 1.089 0.453 0.539 0.207 0.282 0.089 0.92 

NONP 1.074 0.482 0.629 0.249 0.390 0.074 0.84 

NONP.CV.Var 1.074 0.508 0.629 0.271 0.390 0.074 0.88 

NONP.Q.Var 1.074 0.447 0.629 0.201 0.390 0.074 0.86 

B = 50 

TRUE 0.998 0.304 0.317 0.093 0.100 -0.002 0.95 

Naive 1.197 0.311 0.425 0.097 0.142 0.197 0.91 

McSimex.Q 1.023 0.441 0.516 0.198 0.266 0.023 0.92 

NONP 1.037 0.454 0.669 0.218 0.446 0.037 0.79 

NONP.CV.Var 1.037 0.513 0.669 0.270 0.446 0.037 0.88 

NONP.Q.Var 1.037 0.441 0.669 0.195 0.446 0.037 0.83 
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Table 5: Simulation results based on 300 simulations each with sample size = 1000 and Π_(diff.1): The 

true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.715 0.131 0.132 0.017 0.017 -0.022 0.95 

Naive 0.221 0.129 1.299 0.017 0.852 0.914 0.00 

McSimex.Q -0.519 0.188 0.325 0.035 0.075 0.174 0.84 

NONP -0.702 0.228 0.252 0.054 0.063 -0.008 0.89 

NONP.CV.Var -0.702 0.224 0.252 0.053 0.063 -0.008 0.90 

NONP.Q.Var -0.702 0.185 0.252 0.034 0.063 -0.008 0.83 

B = 300 

TRUE -0.689 0.131 0.135 0.017 0.018 0.004 0.95 

Naive 0.239 0.129 1.326 0.017 0.888 0.933 0.00 

McSimex.Q -0.488 0.188 0.365 0.036 0.091 0.205 0.77 

NONP -0.668 0.226 0.274 0.053 0.074 0.026 0.85 

NONP.CV.Var -0.668 0.215 0.274 0.050 0.074 0.026 0.82 

NONP.Q.Var -0.668 0.185 0.274 0.034 0.074 0.026 0.80 

B = 100 

TRUE -0.700 0.131 0.138 0.017 0.019 -0.006 0.94 

Naive 0.224 0.129 1.304 0.017 0.859 0.917 0.00 

McSimex.Q -0.511 0.187 0.338 0.035 0.081 0.182 0.77 

NONP -0.692 0.216 0.272 0.048 0.074 0.001 0.86 

NONP.CV.Var -0.692 0.215 0.272 0.049 0.074 0.001 0.84 

NONP.Q.Var -0.692 0.185 0.272 0.034 0.074 0.001 0.81 

B = 50 

TRUE -0.691 0.131 0.128 0.017 0.016 0.002 0.94 

Naive 0.235 0.129 1.319 0.017 0.877 0.928 0.00 

McSimex.Q -0.496 0.186 0.349 0.035 0.083 0.197 0.81 

NONP -0.651 0.206 0.270 0.044 0.071 0.042 0.88 

NONP.CV.Var -0.651 0.219 0.270 0.050 0.071 0.042 0.88 

NONP.Q.Var -0.651 0.185 0.270 0.034 0.071 0.042 0.85 
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Table 6: Simulation results based on 300 simulations each with sample size = 500 and Π_(diff.1): The 

true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.704 0.185 0.200 0.034 0.040 -0.010 0.92 

Naive 0.223 0.182 1.309 0.033 0.873 0.916 0.00 

McSimex.Q -0.517 0.266 0.392 0.071 0.123 0.176 0.85 

NONP -0.708 0.316 0.362 0.103 0.131 -0.015 0.89 

NONP.CV.Var -0.708 0.325 0.362 0.109 0.131 -0.015 0.92 

NONP.Q.Var -0.708 0.262 0.362 0.069 0.131 -0.015 0.87 

B = 300 

TRUE -0.688 0.185 0.188 0.034 0.035 0.005 0.96 

Naive 0.227 0.183 1.315 0.033 0.881 0.920 0.00 

McSimex.Q -0.510 0.270 0.403 0.071 0.129 0.183 0.84 

NONP -0.697 0.310 0.368 0.099 0.136 -0.004 0.90 

NONP.CV.Var -0.697 0.317 0.368 0.106 0.136 -0.004 0.92 

NONP.Q.Var -0.697 0.263 0.368 0.069 0.136 -0.004 0.85 

B = 100 

TRUE -0.706 0.185 0.184 0.034 0.034 -0.013 0.94 

Naive 0.224 0.183 1.308 0.033 0.871 0.917 0.00 

McSimex.Q -0.514 0.265 0.382 0.071 0.114 0.179 0.89 

NONP -0.689 0.296 0.347 0.091 0.121 0.004 0.89 

NONP.CV.Var -0.689 0.303 0.347 0.096 0.121 0.004 0.87 

NONP.Q.Var -0.689 0.262 0.347 0.068 0.121 0.004 0.86 

B = 50 

TRUE -0.689 0.185 0.180 0.034 0.032 0.004 0.96 

Naive 0.227 0.183 1.313 0.033 0.879 0.920 0.00 

McSimex.Q -0.514 0.263 0.396 0.069 0.125 0.179 0.84 

NONP -0.663 0.289 0.398 0.089 0.158 0.030 0.84 

NONP.CV.Var -0.663 0.314 0.398 0.104 0.158 0.030 0.87 

NONP.Q.Var -0.663 0.261 0.398 0.068 0.158 0.030 0.81 
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Table 7: Simulation results based on 300 simulations each with sample size = 200 and Π_(diff.1): The 

true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.704 0.294 0.292 0.086 0.085 -0.011 0.95 

Naive 0.240 0.290 1.351 0.084 0.953 0.933 0.10 

McSimex.Q -0.495 0.423 0.553 0.179 0.267 0.199 0.88 

NONP -0.664 0.486 0.575 0.245 0.329 0.029 0.90 

NONP.CV.Var -0.664 0.498 0.575 0.262 0.329 0.029 0.88 

NONP.Q.Var -0.664 0.417 0.575 0.174 0.329 0.029 0.86 

B = 300 

TRUE -0.704 0.294 0.301 0.087 0.091 -0.011 0.93 

Naive 0.247 0.290 1.362 0.084 0.970 0.940 0.13 

McSimex.Q -0.481 0.424 0.570 0.180 0.280 0.213 0.90 

NONP -0.650 0.484 0.599 0.242 0.357 0.043 0.92 

NONP.CV.Var -0.650 0.504 0.599 0.270 0.357 0.043 0.90 

NONP.Q.Var -0.650 0.418 0.599 0.175 0.357 0.043 0.85 

B = 100 

TRUE -0.696 0.294 0.274 0.086 0.075 -0.003 0.96 

Naive 0.228 0.290 1.333 0.084 0.929 0.921 0.09 

McSimex.Q -0.511 0.422 0.537 0.179 0.255 0.182 0.92 

NONP -0.665 0.457 0.579 0.216 0.334 0.029 0.92 

NONP.CV.Var -0.665 0.488 0.579 0.255 0.334 0.029 0.90 

NONP.Q.Var -0.665 0.416 0.579 0.173 0.334 0.029 0.86 

B = 50 

TRUE -0.673 0.294 0.273 0.086 0.074 0.020 0.98 

Naive 0.236 0.290 1.346 0.084 0.947 0.929 0.12 

McSimex.Q -0.506 0.418 0.548 0.176 0.265 0.187 0.88 

NONP -0.615 0.456 0.643 0.217 0.408 0.078 0.86 

NONP.CV.Var -0.615 0.492 0.643 0.254 0.408 0.078 0.84 

NONP.Q.Var -0.615 0.416 0.643 0.174 0.408 0.078 0.79 



42 

Table 8: Simulation results based on 300 simulations each with sample size = 1000 and Π_(diff.2): The 

true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.003 0.135 0.149 0.018 0.022 0.003 0.90 

Naive 0.564 0.132 0.633 0.017 0.210 -0.437 0.11 

McSimex.Q 0.917 0.194 0.259 0.038 0.060 -0.083 0.87 

NONP 1.030 0.234 0.276 0.056 0.075 0.030 0.93 

NONP.CV.Var 1.030 0.236 0.276 0.058 0.075 0.030 0.93 

NONP.Q.Var 1.030 0.190 0.276 0.036 0.075 0.030 0.83 

B = 300 

TRUE 0.995 0.135 0.136 0.018 0.018 -0.005 0.97 

Naive 0.536 0.132 0.668 0.017 0.231 -0.465 0.04 

McSimex.Q 0.869 0.193 0.274 0.037 0.058 -0.131 0.88 

NONP 0.980 0.238 0.246 0.058 0.060 -0.020 0.93 

NONP.CV.Var 0.980 0.225 0.246 0.054 0.060 -0.020 0.89 

NONP.Q.Var 0.980 0.191 0.246 0.036 0.060 -0.020 0.84 

B = 100 

TRUE 1.008 0.135 0.139 0.018 0.019 0.008 0.96 

Naive 0.549 0.132 0.650 0.017 0.219 -0.451 0.06 

McSimex.Q 0.893 0.194 0.256 0.038 0.054 -0.107 0.91 

NONP 0.991 0.231 0.277 0.055 0.077 -0.009 0.89 

NONP.CV.Var 0.991 0.220 0.277 0.051 0.077 -0.009 0.86 

NONP.Q.Var 0.991 0.190 0.277 0.036 0.077 -0.009 0.83 

B = 50 

TRUE 1.024 0.135 0.146 0.018 0.021 0.024 0.95 

Naive 0.565 0.132 0.630 0.017 0.207 -0.435 0.09 

McSimex.Q 0.919 0.192 0.249 0.037 0.056 -0.081 0.87 

NONP 1.001 0.225 0.312 0.052 0.097 0.001 0.85 

NONP.CV.Var 1.001 0.227 0.312 0.055 0.097 0.001 0.83 

NONP.Q.Var 1.001 0.190 0.312 0.036 0.097 0.001 0.79 
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Table 9: Simulation results based on 300 simulations each with sample size = 500 and Π_(diff.2): The 

true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.012 0.192 0.190 0.037 0.036 0.012 0.96 

Naive 0.569 0.187 0.640 0.035 0.223 -0.431 0.36 

McSimex.Q 0.928 0.275 0.339 0.076 0.110 -0.072 0.90 

NONP 1.041 0.338 0.392 0.117 0.152 0.041 0.90 

NONP.CV.Var 1.041 0.334 0.392 0.116 0.152 0.041 0.88 

NONP.Q.Var 1.041 0.271 0.392 0.073 0.152 0.041 0.81 

B = 300 

TRUE 1.002 0.191 0.190 0.037 0.036 0.002 0.94 

Naive 0.546 0.187 0.668 0.035 0.241 -0.454 0.31 

McSimex.Q 0.887 0.274 0.347 0.075 0.107 -0.113 0.90 

NONP 0.989 0.327 0.383 0.110 0.147 -0.011 0.90 

NONP.CV.Var 0.989 0.330 0.383 0.115 0.147 -0.011 0.89 

NONP.Q.Var 0.989 0.270 0.383 0.073 0.147 -0.011 0.85 

B = 100 

TRUE 1.004 0.191 0.188 0.037 0.035 0.004 0.95 

Naive 0.545 0.186 0.670 0.035 0.242 -0.455 0.31 

McSimex.Q 0.888 0.273 0.344 0.075 0.106 -0.112 0.90 

NONP 0.955 0.314 0.400 0.102 0.158 -0.045 0.87 

NONP.CV.Var 0.955 0.314 0.400 0.104 0.158 -0.045 0.85 

NONP.Q.Var 0.955 0.269 0.400 0.072 0.158 -0.045 0.81 

B = 50 

TRUE 1.000 0.191 0.194 0.037 0.037 0.000 0.96 

Naive 0.548 0.187 0.667 0.035 0.240 -0.452 0.34 

McSimex.Q 0.900 0.271 0.348 0.074 0.111 -0.100 0.91 

NONP 0.960 0.302 0.405 0.095 0.162 0.040 0.87 

NONP.CV.Var 0.960 0.326 0.405 0.111 0.162 0.040 0.88 

NONP.Q.Var 0.960 0.268 0.405 0.072 0.162 0.040 0.82 
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Table 10: Simulation results based on 300 simulations each with sample size = 200 and Π_(diff.2): The 

true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 0.97 0.304 0.311 0.093 0.096 -0.030 0.95 

Naive 0.550 0.297 0.711 0.088 0.303 -0.450 0.66 

McSimex.Q 0.889 0.438 0.543 0.192 0.283 -0.111 0.89 

NONP 0.995 0.506 0.608 0.266 0.370 -0.005 0.88 

NONP.CV.Var 0.995 0.536 0.608 0.301 0.370 -0.005 0.88 

NONP.Q.Var 0.995 0.430 0.608 0.185 0.370 -0.005 0.84 

B = 300 

TRUE 0.993 0.305 0.320 0.093 0.102 -0.007 0.94 

Naive 0.575 0.297 0.670 0.088 0.268 -0.425 0.72 

McSimex.Q 0.938 0.438 0.499 0.192 0.245 -0.062 0.93 

NONP 1.035 0.504 0.590 0.263 0.347 0.035 0.93 

NONP.CV.Var 1.035 0.515 0.590 0.281 0.347 0.035 0.90 

NONP.Q.Var 1.035 0.431 0.590 0.186 0.347 0.035 0.87 

B = 100 

TRUE 0.978 0.304 0.322 0.093 0.103 -0.022 0.94 

Naive 0.544 0.297 0.715 0.088 0.303 -0.456 0.67 

McSimex.Q 0.888 0.435 0.529 0.190 0.268 -0.112 0.88 

NONP 0.924 0.483 0.670 0.245 0.444 -0.076 0.85 

NONP.CV.Var 0.924 0.516 0.670 0.281 0.444 -0.076 0.88 

NONP.Q.Var 0.924 0.429 0.670 0.184 0.444 -0.076 0.82 

B = 50 

TRUE 1.038 0.304 0.309 0.093 0.094 0.038 0.93 

Naive 0.567 0.297 0.684 0.088 0.281 -0.433 0.68 

McSimex.Q 0.921 0.432 0.524 0.189 0.269 -0.079 0.90 

NONP 0.958 0.460 0.657 0.222 0.429 -0.042 0.86 

NONP.CV.Var 0.958 0.511 0.657 0.275 0.429 -0.042 0.85 

NONP.Q.Var 0.958 0.427 0.657 0.183 0.429 -0.042 0.84 
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Table 11: Simulation results based on 300 simulations each with sample size = 1000 and Π_(diff.2): The 

true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.69 0.130 0.136 0.017 0.019 0.004 0.94 

Naive -0.375 0.129 0.470 0.017 0.120 0.318 0.32 

McSimex.Q -0.623 0.190 0.251 0.036 0.058 0.071 0.88 

NONP -0.701 0.230 0.266 0.054 0.070 -0.008 0.91 

NONP.CV.Var -0.701 0.237 0.266 0.058 0.070 -0.008 0.90 

NONP.Q.Var -0.701 0.188 0.266 0.035 0.070 -0.008 0.85 

B = 300 

TRUE -0.710 0.131 0.123 0.017 0.015 -0.017 0.96 

Naive -0.378 0.129 0.464 0.017 0.116 0.315 0.33 

McSimex.Q -0.626 0.191 0.239 0.037 0.053 0.067 0.91 

NONP -0.709 0.231 0.270 0.055 0.072 -0.016 0.87 

NONP.CV.Var -0.709 0.232 0.270 0.056 0.072 -0.016 0.86 

NONP.Q.Var -0.709 0.188 0.270 0.035 0.072 -0.016 0.84 

B = 100 

TRUE -0.707 0.131 0.128 0.017 0.016 -0.014 0.96 

Naive -0.388 0.129 0.449 0.017 0.108 0.305 0.32 

McSimex.Q -0.642 0.189 0.221 0.036 0.046 0.051 0.91 

NONP -0.705 0.227 0.271 0.053 0.073 -0.012 0.90 

NONP.CV.Var -0.705 0.226 0.271 0.054 0.073 -0.012 0.85 

NONP.Q.Var -0.705 0.187 0.271 0.035 0.073 -0.012 0.80 

B = 50 

TRUE -0.705 0.131 0.134 0.017 0.018 -0.011 0.95 

Naive -0.374 0.129 0.470 0.017 0.119 0.320 0.30 

McSimex.Q -0.621 0.190 0.245 0.036 0.055 0.072 0.85 

NONP -0.667 0.217 0.313 0.049 0.097 0.026 0.82 

NONP.CV.Var -0.667 0.225 0.313 0.053 0.097 0.026 0.84 

NONP.Q.Var -0.667 0.187 0.313 0.035 0.097 0.026 0.78 
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Table 12: Simulation results based on 300 simulations each with sample size = 500 and Π_(diff.2): The 

true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.694 0.185 0.189 0.034 0.036 -0.001 0.94 

Naive -0.369 0.183 0.499 0.033 0.144 0.325 0.58 

McSimex.Q -0.612 0.271 0.348 0.073 0.115 0.081 0.90 

NONP -0.683 0.317 0.393 0.104 0.154 0.011 0.86 

NONP.CV.Var -0.683 0.334 0.393 0.115 0.154 0.011 0.88 

NONP.Q.Var -0.683 0.266 0.393 0.071 0.154 0.011 0.82 

B = 300 

TRUE -0.693 0.185 0.183 0.034 0.034 0.000 0.94 

Naive -0.378 0.183 0.482 0.033 0.133 0.316 0.55 

McSimex.Q -0.626 0.271 0.324 0.073 0.100 0.067 0.90 

NONP -0.696 0.324 0.372 0.109 0.138 -0.003 0.90 

NONP.CV.Var -0.696 0.326 0.372 0.112 0.138 -0.003 0.89 

NONP.Q.Var -0.696 0.266 0.372 0.071 0.138 -0.003 0.86 

B = 100 

TRUE -0.687 0.185 0.177 0.034 0.031 0.006 0.95 

Naive -0.370 0.183 0.493 0.033 0.138 0.323 0.58 

McSimex.Q -0.615 0.270 0.327 0.073 0.101 0.078 0.90 

NONP -0.654 0.308 0.394 0.100 0.154 0.039 0.88 

NONP.CV.Var -0.654 0.318 0.394 0.107 0.154 0.039 0.88 

NONP.Q.Var -0.654 0.265 0.394 0.070 0.154 0.039 0.82 

B = 50 

TRUE -0.685 0.185 0.188 0.034 0.035 0.008 0.95 

Naive -0.377 0.183 0.482 0.033 0.132 0.316 0.61 

McSimex.Q -0.629 0.270 0.329 0.074 0.104 0.064 0.89 

NONP -0.645 0.299 0.474 0.094 0.223 0.048 0.84 

NONP.CV.Var -0.645 0.321 0.474 0.108 0.223 0.048 0.83 

NONP.Q.Var -0.645 0.266 0.474 0.071 0.223 0.048 0.78 
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Table 13: Simulation results based on 300 simulations each with sample size = 200 and Π_(diff.2): The 

true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.721 0.295 0.293 0.087 0.085 -0.028 0.95 

Naive -0.357 0.290 0.555 0.084 0.196 0.336 0.77 

McSimex.Q -0.594 0.431 0.501 0.186 0.241 0.099 0.92 

NONP -0.657 0.496 0.565 0.259 0.318 0.036 0.88 

NONP.CV.Var -0.657 0.532 0.565 0.295 0.318 0.036 0.93 

NONP.Q.Var -0.657 0.423 0.565 0.179 0.318 0.036 0.85 

B = 300 

TRUE -0.706 0.294 0.292 0.087 0.085 -0.013 0.95 

Naive -0.348 0.290 0.567 0.084 0.202 0.345 0.78 

McSimex.Q -0.577 0.431 0.507 0.186 0.243 0.116 0.91 

NONP -0.643 0.483 0.571 0.247 0.323 0.051 0.88 

NONP.CV.Var -0.643 0.524 0.571 0.287 0.323 0.051 0.91 

NONP.Q.Var -0.643 0.424 0.571 0.179 0.323 0.051 0.85 

B = 100 

TRUE -0.686 0.294 0.295 0.087 0.087 0.008 0.97 

Naive -0.353 0.290 0.563 0.084 0.202 0.340 0.79 

McSimex.Q -0.584 0.430 0.513 0.186 0.251 0.109 0.90 

NONP -0.638 0.473 0.607 0.238 0.366 0.055 0.86 

NONP.CV.Var -0.638 0.514 0.607 0.279 0.366 0.055 0.89 

NONP.Q.Var -0.638 0.422 0.607 0.179 0.366 0.055 0.82 

B = 50 

TRUE -0.675 0.294 0.285 0.086 0.081 0.018 0.96 

Naive -0.380 0.291 0.533 0.084 0.186 0.313 0.77 

McSimex.Q -0.634 0.425 0.515 0.182 0.262 0.059 0.90 

NONP -0.661 0.457 0.692 0.228 0.478 0.032 0.78 

NONP.CV.Var -0.661 0.519 0.692 0.282 0.478 0.032 0.87 

NONP.Q.Var -0.661 0.422 0.692 0.179 0.478 0.032 0.80 
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Table 14: Simulation results based on 300 simulations each with sample size = 1000 and Π_(nondiff.1): 

The true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.011 0.135 0.129 0.018 0.017 0.011 0.96 

Naive 0.632 0.137 0.539 0.019 0.155 -0.368 0.21 

McSimex.Q 0.940 0.191 0.231 0.036 0.050 -0.060 0.89 

NONP 0.976 0.215 0.230 0.047 0.052 -0.024 0.91 

NONP.CV.Var 0.976 0.219 0.230 0.048 0.052 -0.024 0.91 

NONP.Q.Var 0.976 0.190 0.230 0.036 0.052 -0.02 0.87 

B = 300 

TRUE 0.988 0.135 0.132 0.018 0.017 -0.012 0.95 

Naive 0.615 0.137 0.561 0.019 0.166 -0.385 0.17 

McSimex.Q 0.915 0.191 0.237 0.036 0.049 -0.085 0.91 

NONP 0.950 0.215 0.227 0.047 0.049 -0.050 0.93 

NONP.CV.Var 0.950 0.220 0.227 0.049 0.049 -0.050 0.93 

NONP.Q.Var 0.950 0.189 0.227 0.036 0.049 -0.050 0.91 

B = 100 

TRUE 1.010 0.135 0.134 0.018 0.018 0.010 0.96 

Naive 0.625 0.137 0.547 0.019 0.158 -0.375 0.26 

McSimex.Q 0.929 0.191 0.223 0.037 0.045 -0.071 0.92 

NONP 0.967 0.213 0.215 0.046 0.045 -0.033 0.95 

NONP.CV.Var 0.967 0.212 0.215 0.044 0.045 -0.033 0.91 

NONP.Q.Var 0.967 0.190 0.215 0.036 0.045 -0.033 0.91 

B = 50 

TRUE 1.004 0.135 0.140 0.018 0.020 0.004 0.94 

Naive 0.627 0.137 0.546 0.019 0.159 -0.373 0.23 

McSimex.Q 0.930 0.190 0.236 0.036 0.051 -0.070 0.90 

NONP 0.975 0.208 0.254 0.044 0.064 -0.025 0.90 

NONP.CV.Var 0.975 0.215 0.254 0.046 0.064 -0.025 0.89 

NONP.Q.Var 0.975 0.189 0.254 0.036 0.064 -0.025 0.87 
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Table 15: Simulation results based on 300 simulations each with sample size = 500 and Π_(nondiff.1): 

The true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.028 0.192 0.196 0.037 0.038 0.028 0.95 

Naive 0.652 0.195 0.526 0.038 0.156 -0.348 0.57 

McSimex.Q 0.967 0.272 0.285 0.074 0.080 -0.033 0.94 

NONP 0.999 0.309 0.301 0.097 0.091 -0.001 0.94 

NONP.CV.Var 0.999 0.309 0.301 0.095 0.091 -0.001 0.95 

NONP.Q.Var 0.999 0.270 0.301 0.073 0.091 0.00 0.91 

B = 300 

TRUE 0.999 0.191 0.191 0.037 0.037 -0.001 0.94 

Naive 0.624 0.194 0.566 0.038 0.179 -0.376 0.49 

McSimex.Q 0.927 0.271 0.309 0.074 0.090 -0.073 0.92 

NONP 0.971 0.299 0.312 0.091 0.097 -0.029 0.92 

NONP.CV.Var 0.971 0.314 0.312 0.098 0.097 -0.029 0.94 

NONP.Q.Var 0.971 0.268 0.312 0.072 0.097 -0.029 0.90 

B = 100 

TRUE 1.001 0.192 0.182 0.037 0.033 0.001 0.96 

Naive 0.619 0.194 0.568 0.038 0.178 -0.381 0.47 

McSimex.Q 0.916 0.268 0.296 0.072 0.081 -0.084 0.93 

NONP 0.971 0.290 0.310 0.086 0.095 -0.029 0.92 

NONP.CV.Var 0.971 0.303 0.310 0.090 0.095 -0.029 0.91 

NONP.Q.Var 0.971 0.269 0.310 0.072 0.095 -0.029 0.91 

B = 50 

TRUE 1.002 0.191 0.191 0.037 0.036 0.002 0.95 

Naive 0.631 0.194 0.561 0.038 0.179 -0.369 0.52 

McSimex.Q 0.937 0.266 0.336 0.071 0.109 -0.063 0.87 

NONP 0.998 0.290 0.386 0.086 0.149 -0.002 0.86 

NONP.CV.Var 0.998 0.308 0.386 0.093 0.149 -0.002 0.89 

NONP.Q.Var 0.998 0.268 0.386 0.072 0.149 -0.002 0.84 
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Table 16: Simulation results based on 300 simulations each with sample size = 200 and Π_(nondiff.1): 

The true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.02 0.305 0.306 0.093 0.093 0.020 0.94 

Naive 0.634 0.310 0.601 0.096 0.227 -0.366 0.77 

McSimex.Q 0.939 0.433 0.467 0.188 0.214 -0.061 0.92 

NONP 0.968 0.487 0.488 0.244 0.237 -0.032 0.92 

NONP.CV.Var 0.968 0.500 0.488 0.251 0.237 -0.032 0.95 

NONP.Q.Var 0.968 0.431 0.488 0.186 0.237 -0.03 0.9 

B = 300 

TRUE 1.043 0.305 0.325 0.093 0.104 0.043 0.93 

Naive 0.657 0.309 0.586 0.096 0.225 -0.343 0.75 

McSimex.Q 0.972 0.434 0.492 0.189 0.241 -0.028 0.91 

NONP 1.012 0.483 0.536 0.239 0.287 0.012 0.90 

NONP.CV.Var 1.012 0.495 0.536 0.244 0.287 0.012 0.91 

NONP.Q.Var 1.012 0.429 0.536 0.185 0.287 0.012 0.88 

B = 100 

TRUE 0.991 0.304 0.317 0.092 0.100 -0.009 0.93 

Naive 0.638 0.309 0.601 0.096 0.230 -0.362 0.75 

McSimex.Q 0.944 0.429 0.487 0.186 0.234 -0.056 0.92 

NONP 1.001 0.461 0.565 0.215 0.320 0.001 0.89 

NONP.CV.Var 1.001 0.493 0.565 0.234 0.320 0.001 0.89 

NONP.Q.Var 1.001 0.428 0.565 0.184 0.320 0.001 0.88 

B = 50 

TRUE 1.023 0.305 0.318 0.093 0.101 0.023 0.95 

Naive 0.655 0.309 0.590 0.096 0.229 -0.345 0.75 

McSimex.Q 0.958 0.429 0.501 0.187 0.250 -0.042 0.91 

NONP 1.021 0.456 0.633 0.213 0.400 0.021 0.87 

NONP.CV.Var 1.021 0.486 0.633 0.237 0.400 0.021 0.87 

NONP.Q.Var 1.021 0.427 0.633 0.183 0.400 0.021 0.84 
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Table 17: Simulation results based on 300 simulations each with sample size = 1000 and Π_(nondiff.1): 

The true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.691 0.131 0.139 0.017 0.019 0.002 0.93 

Naive -0.446 0.133 0.373 0.018 0.078 0.247 0.49 

McSimex.Q -0.661 0.185 0.200 0.034 0.039 0.032 0.93 

NONP -0.685 0.207 0.208 0.044 0.043 0.008 0.93 

NONP.CV.Var -0.685 0.210 0.208 0.043 0.043 0.008 0.94 

NONP.Q.Var -0.685 0.184 0.208 0.034 0.043 0.01 0.92 

B = 300 

TRUE -0.693 0.131 0.132 0.017 0.017 0.000 0.95 

Naive -0.430 0.133 0.399 0.018 0.090 0.263 0.49 

McSimex.Q -0.638 0.185 0.229 0.034 0.050 0.055 0.87 

NONP -0.663 0.201 0.227 0.041 0.051 0.030 0.89 

NONP.CV.Var -0.663 0.209 0.227 0.043 0.051 0.030 0.92 

NONP.Q.Var -0.663 0.183 0.227 0.034 0.051 0.030 0.88 

B = 100 

TRUE -0.686 0.131 0.136 0.017 0.019 0.007 0.94 

Naive -0.429 0.133 0.394 0.018 0.086 0.264 0.55 

McSimex.Q -0.637 0.182 0.206 0.033 0.039 0.056 0.91 

NONP -0.664 0.200 0.217 0.041 0.046 0.029 0.92 

NONP.CV.Var -0.664 0.207 0.217 0.041 0.046 0.029 0.92 

NONP.Q.Var -0.664 0.183 0.217 0.034 0.046 0.029 0.91 

B = 50 

TRUE -0.701 0.131 0.136 0.017 0.018 -0.008 0.93 

Naive -0.435 0.133 0.388 0.018 0.084 0.258 0.50 

McSimex.Q -0.649 0.185 0.213 0.035 0.043 0.044 0.91 

NONP -0.678 0.198 0.280 0.041 0.078 0.015 0.86 

NONP.CV.Var -0.678 0.207 0.280 0.043 0.078 0.015 0.85 

NONP.Q.Var -0.678 0.182 0.280 0.033 0.078 0.015 0.82 
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Table 18: Simulation results based on 300 simulations each with sample size = 500 and Π_(nondiff.1): 

The true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.701 0.185 0.188 0.034 0.035 -0.008 0.95 

Naive -0.437 0.189 0.406 0.036 0.099 0.256 0.76 

McSimex.Q -0.647 0.263 0.280 0.069 0.076 0.046 0.94 

NONP -0.673 0.292 0.295 0.086 0.087 0.020 0.92 

NONP.CV.Var -0.673 0.200 0.295 0.089 0.087 0.020 0.94 

NONP.Q.Var -0.673 0.260 0.295 0.068 0.087 0.02 0.92 

B = 300 

TRUE -0.709 0.185 0.180 0.034 0.032 -0.016 0.96 

Naive -0.444 0.189 0.394 0.036 0.093 0.250 0.74 

McSimex.Q -0.657 0.262 0.266 0.069 0.070 0.036 0.95 

NONP -0.692 0.284 0.277 0.082 0.077 0.001 0.94 

NONP.CV.Var -0.692 0.298 0.277 0.087 0.077 0.001 0.95 

NONP.Q.Var -0.692 0.260 0.277 0.068 0.077 0.001 0.94 

B = 100 

TRUE -0.684 0.185 0.185 0.034 0.034 0.009 0.95 

Naive -0.419 0.189 0.428 0.036 0.108 0.274 0.69 

McSimex.Q -0.624 0.260 0.293 0.068 0.081 0.069 0.92 

NONP -0.657 0.279 0.317 0.079 0.099 0.036 0.92 

NONP.CV.Var -0.657 0.289 0.317 0.081 0.099 0.036 0.92 

NONP.Q.Var -0.657 0.260 0.317 0.068 0.099 0.036 0.90 

B = 50 

TRUE -0.689 0.185 0.188 0.034 0.035 0.004 0.95 

Naive -0.428 0.189 0.421 0.036 0.107 0.265 0.69 

McSimex.Q -0.639 0.259 0.302 0.068 0.088 0.054 0.91 

NONP -0.664 0.275 0.374 0.077 0.139 0.029 0.87 

NONP.CV.Var -0.664 0.296 0.374 0.086 0.139 0.029 0.88 

NONP.Q.Var -0.664 0.259 0.374 0.067 0.139 0.029 0.86 
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Table 19: Simulation results based on 300 simulations each with sample size = 200 and Π_(nondiff.1): 

The true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.695 0.294 0.305 0.087 0.093 -0.002 0.94 

Naive -0.458 0.301 0.459 0.090 0.155 0.235 0.84 

McSimex.Q -0.676 0.419 0.474 0.176 0.225 0.017 0.91 

NONP -0.702 0.457 0.501 0.214 0.251 -0.008 0.89 

NONP.CV.Var -0.702 0.473 0.501 0.222 0.251 -0.008 0.93 

NONP.Q.Var -0.702 0.416 0.501 0.173 0.251 -0.01 0.89 

B = 300 

TRUE -0.698 0.294 0.200 0.087 0.090 -0.004 0.94 

Naive -0.435 0.200 0.478 0.090 0.161 0.258 0.85 

McSimex.Q -0.638 0.419 0.465 0.176 0.213 0.055 0.92 

NONP -0.663 0.459 0.500 0.212 0.249 0.030 0.92 

NONP.CV.Var -0.663 0.483 0.500 0.228 0.249 0.030 0.95 

NONP.Q.Var -0.663 0.414 0.500 0.172 0.249 0.030 0.89 

B = 100 

TRUE -0.718 0.294 0.277 0.087 0.076 -0.025 0.97 

Naive -0.463 0.301 0.439 0.091 0.140 0.230 0.89 

McSimex.Q -0.691 0.414 0.447 0.173 0.200 0.002 0.93 

NONP -0.721 0.442 0.532 0.201 0.282 -0.027 0.88 

NONP.CV.Var -0.721 0.471 0.532 0.209 0.282 -0.027 0.90 

NONP.Q.Var -0.721 0.415 0.532 0.173 0.282 -0.027 0.88 

B = 50 

TRUE -0.683 0.294 0.296 0.086 0.087 0.010 0.95 

Naive -0.450 0.200 0.457 0.090 0.149 0.243 0.85 

McSimex.Q -0.658 0.418 0.460 0.177 0.211 0.036 0.91 

NONP -0.670 0.435 0.576 0.194 0.331 0.023 0.85 

NONP.CV.Var -0.670 0.467 0.576 0.210 0.331 0.023 0.88 

NONP.Q.Var -0.670 0.414 0.576 0.172 0.331 0.023 0.86 
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Table 20: Simulation results based on 300 simulations each with sample size = 1000 and Π_(nondiff.2): 

The true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.01 0.135 0.131 0.018 0.017 0.010 0.97 

Naive 0.584 0.132 0.605 0.017 0.193 -0.416 0.13 

McSimex.Q 0.912 0.189 0.255 0.036 0.058 -0.088 0.87 

NONP 0.992 0.210 0.254 0.045 0.064 -0.008 0.88 

NONP.CV.Var 0.992 0.218 0.254 0.055 0.064 -0.008 0.88 

NONP.Q.Var 0.992 0.187 0.254 0.035 0.064 -0.01 0.86 

B = 300 

TRUE 1.003 0.135 0.132 0.018 0.017 0.003 0.95 

Naive 0.600 0.132 0.580 0.017 0.176 -0.400 0.12 

McSimex.Q 0.938 0.189 0.214 0.036 0.042 -0.062 0.91 

NONP 1.013 0.208 0.229 0.045 0.052 0.013 0.92 

NONP.CV.Var 1.013 0.209 0.229 0.047 0.052 0.013 0.88 

NONP.Q.Var 1.013 0.187 0.229 0.035 0.052 0.013 0.88 

B = 100 

TRUE 1.014 0.135 0.136 0.018 0.018 0.014 0.94 

Naive 0.599 0.132 0.584 0.017 0.180 -0.401 0.15 

McSimex.Q 0.937 0.188 0.235 0.036 0.051 -0.063 0.90 

NONP 1.002 0.204 0.265 0.043 0.070 0.002 0.85 

NONP.CV.Var 1.002 0.210 0.265 0.046 0.070 0.002 0.84 

NONP.Q.Var 1.002 0.187 0.265 0.035 0.070 0.002 0.84 

B = 50 

TRUE 0.994 0.135 0.139 0.018 0.019 -0.006 0.94 

Naive 0.586 0.132 0.600 0.017 0.188 -0.414 0.13 

McSimex.Q 0.914 0.187 0.241 0.035 0.051 -0.086 0.89 

NONP 0.956 0.198 0.279 0.040 0.076 -0.044 0.85 

NONP.CV.Var 0.956 0.211 0.279 0.046 0.076 -0.044 0.85 

NONP.Q.Var 0.956 0.186 0.279 0.035 0.076 -0.044 0.82 
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Table 21: Simulation results based on 300 simulations each with sample size = 500 and Π_(nondiff.2): 

The true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.009 0.192 0.180 0.037 0.032 0.009 0.97 

Naive 0.619 0.187 0.567 0.035 0.177 -0.381 0.47 

McSimex.Q 0.969 0.270 0.287 0.073 0.081 -0.031 0.92 

NONP 1.046 0.297 0.330 0.091 0.107 0.046 0.92 

NONP.CV.Var 1.046 0.308 0.330 0.099 0.107 0.046 0.91 

NONP.Q.Var 1.046 0.266 0.330 0.071 0.107 0.05 0.87 

B = 300 

TRUE 1.004 0.191 0.194 0.037 0.037 0.004 0.95 

Naive 0.583 0.187 0.614 0.035 0.203 -0.417 0.40 

McSimex.Q 0.911 0.268 0.298 0.072 0.081 -0.089 0.95 

NONP 0.974 0.287 0.313 0.085 0.097 -0.026 0.93 

NONP.CV.Var 0.974 0.297 0.313 0.093 0.097 -0.026 0.89 

NONP.Q.Var 0.974 0.265 0.313 0.070 0.097 -0.026 0.91 

B = 100 

TRUE 1.004 0.192 0.190 0.037 0.036 0.004 0.95 

Naive 0.604 0.187 0.595 0.035 0.197 -0.396 0.45 

McSimex.Q 0.944 0.267 0.324 0.072 0.102 -0.056 0.89 

NONP 1.015 0.282 0.368 0.082 0.135 0.015 0.88 

NONP.CV.Var 1.015 0.301 0.368 0.096 0.135 0.015 0.86 

NONP.Q.Var 1.015 0.265 0.368 0.070 0.135 0.015 0.85 

B = 50 

TRUE 1.017 0.192 0.201 0.037 0.040 0.017 0.95 

Naive 0.610 0.187 0.585 0.035 0.190 -0.390 0.44 

McSimex.Q 0.957 0.267 0.317 0.072 0.099 -0.043 0.88 

NONP 1.001 0.281 0.385 0.081 0.148 0.001 0.84 

NONP.CV.Var 1.001 0.303 0.385 0.096 0.148 0.001 0.85 

NONP.Q.Var 1.001 0.264 0.385 0.070 0.148 0.001 0.81 
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Table 22:Simulation results based on 300 simulations each with sample size = 200 and Π_(nondiff.2): 

The true logistic regression coefficients were (0, 1). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE 1.02 0.305 0.295 0.093 0.087 0.020 0.97 

Naive 0.590 0.297 0.649 0.088 0.253 -0.410 0.72 

McSimex.Q 0.922 0.427 0.468 0.182 0.213 -0.078 0.91 

NONP 0.994 0.456 0.529 0.217 0.280 -0.006 0.92 

NONP.CV.Var 0.994 0.493 0.529 0.254 0.280 -0.006 0.88 

NONP.Q.Var 0.994 0.422 0.529 0.178 0.280 -0.01 0.88 

B = 300 

TRUE 0.985 0.304 0.299 0.093 0.089 -0.015 0.96 

Naive 0.570 0.297 0.679 0.088 0.276 -0.430 0.68 

McSimex.Q 0.895 0.426 0.498 0.182 0.237 -0.105 0.91 

NONP 0.924 0.447 0.572 0.206 0.321 -0.076 0.88 

NONP.CV.Var 0.924 0.497 0.572 0.254 0.321 -0.076 0.91 

NONP.Q.Var 0.924 0.422 0.572 0.178 0.321 -0.076 0.85 

B = 100 

TRUE 1.020 0.305 0.315 0.093 0.099 0.020 0.95 

Naive 0.598 0.297 0.640 0.088 0.247 -0.402 0.71 

McSimex.Q 0.932 0.428 0.477 0.184 0.223 -0.068 0.93 

NONP 0.968 0.457 0.582 0.216 0.338 -0.032 0.90 

NONP.CV.Var 0.968 0.485 0.582 0.244 0.338 -0.032 0.90 

NONP.Q.Var 0.968 0.423 0.582 0.179 0.338 -0.03 0.88 

B = 50 

TRUE 1.008 0.304 0.200 0.093 0.090 0.008 0.95 

Naive 0.599 0.296 0.641 0.088 0.250 -0.401 0.69 

McSimex.Q 0.932 0.425 0.490 0.182 0.236 -0.068 0.92 

NONP 0.972 0.444 0.615 0.204 0.377 -0.028 0.87 

NONP.CV.Var 0.972 0.474 0.615 0.231 0.377 -0.028 0.89 

NONP.Q.Var 0.972 0.421 0.615 0.177 0.377 -0.028 0.87 
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Table 23: Simulation results based on 300 simulations each with sample size = 1000 and Π_(nondiff.2): 

The true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.702 0.131 0.130 0.017 0.017 -0.009 0.95 

Naive -0.423 0.129 0.400 0.017 0.087 0.270 0.45 

McSimex.Q -0.660 0.185 0.192 0.034 0.036 0.033 0.95 

NONP -0.703 0.194 0.207 0.038 0.043 -0.010 0.94 

NONP.CV.Var -0.703 0.209 0.207 0.045 0.043 -0.010 0.92 

NONP.Q.Var -0.703 0.183 0.207 0.033 0.043 -0.01 0.91 

B = 300 

TRUE -0.690 0.131 0.141 0.017 0.020 0.003 0.93 

Naive -0.405 0.129 0.426 0.017 0.099 0.288 0.38 

McSimex.Q -0.631 0.185 0.214 0.034 0.042 0.062 0.93 

NONP -0.677 0.193 0.217 0.038 0.047 0.016 0.91 

NONP.CV.Var -0.677 0.206 0.217 0.044 0.047 0.016 0.90 

NONP.Q.Var -0.677 0.183 0.217 0.033 0.047 0.016 0.90 

B = 100 

TRUE -0.701 0.131 0.134 0.017 0.018 -0.008 0.95 

Naive -0.409 0.129 0.423 0.017 0.098 0.284 0.40 

McSimex.Q -0.639 0.186 0.222 0.035 0.046 0.054 0.92 

NONP -0.668 0.191 0.272 0.036 0.074 0.025 0.87 

NONP.CV.Var -0.668 0.200 0.272 0.042 0.074 0.025 0.85 

NONP.Q.Var -0.668 0.183 0.272 0.033 0.074 0.03 0.84 

B = 50 

TRUE -0.684 0.131 0.131 0.017 0.017 0.009 0.95 

Naive -0.419 0.129 0.411 0.017 0.094 0.274 0.45 

McSimex.Q -0.656 0.181 0.220 0.033 0.047 0.037 0.89 

NONP -0.685 0.189 0.268 0.037 0.071 0.008 0.83 

NONP.CV.Var -0.685 0.207 0.268 0.044 0.071 0.008 0.84 

NONP.Q.Var -0.685 0.182 0.268 0.033 0.071 0.008 0.81 
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Table 24: Simulation results based on 300 simulations each with sample size = 500 and Π_(nondiff.2): 

The true logistic regression coefficients were(0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.686 0.185 0.190 0.034 0.036 0.007 0.96 

Naive -0.418 0.183 0.436 0.034 0.114 0.276 0.66 

McSimex.Q -0.652 0.262 0.311 0.069 0.095 0.041 0.90 

NONP -0.696 0.274 0.337 0.077 0.113 -0.003 0.88 

NONP.CV.Var -0.696 0.200 0.337 0.092 0.113 -0.003 0.90 

NONP.Q.Var -0.696 0.259 0.337 0.067 0.113 0.00 0.86 

B = 300 

TRUE -0.678 0.185 0.194 0.034 0.038 0.015 0.94 

Naive -0.420 0.183 0.431 0.034 0.112 0.273 0.66 

McSimex.Q -0.656 0.261 0.308 0.068 0.093 0.037 0.92 

NONP -0.692 0.271 0.349 0.076 0.122 0.001 0.90 

NONP.CV.Var -0.692 0.299 0.349 0.093 0.122 0.001 0.89 

NONP.Q.Var -0.692 0.259 0.349 0.067 0.122 0.001 0.85 

B = 100 

TRUE -0.697 0.185 0.187 0.034 0.035 -0.004 0.94 

Naive -0.407 0.183 0.445 0.034 0.116 0.286 0.65 

McSimex.Q -0.636 0.261 0.305 0.068 0.090 0.057 0.89 

NONP -0.652 0.271 0.346 0.076 0.118 0.041 0.89 

NONP.CV.Var -0.652 0.283 0.346 0.082 0.118 0.041 0.85 

NONP.Q.Var -0.652 0.259 0.346 0.067 0.118 0.04 0.87 

B = 50 

TRUE -0.698 0.185 0.185 0.034 0.034 -0.004 0.94 

Naive -0.411 0.183 0.434 0.033 0.109 0.282 0.65 

McSimex.Q -0.640 0.260 0.288 0.068 0.080 0.053 0.93 

NONP -0.662 0.271 0.342 0.076 0.116 0.031 0.90 

NONP.CV.Var -0.662 0.291 0.342 0.088 0.116 0.031 0.90 

NONP.Q.Var -0.662 0.259 0.342 0.067 0.116 0.031 0.88 
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Table 25: Simulation results based on 300 simulations each with sample size = 200 and Π_(nondiff.2): 

The true logistic regression coefficients were (0, -log2). 

Methods Mean SE RMSE 

Estimated Empirical 

Bias Coverage Variance Variance 

B = 500 

TRUE -0.7 0.294 0.298 0.086 0.089 -0.007 0.94 

Naive -0.431 0.291 0.473 0.085 0.155 0.262 0.87 

McSimex.Q -0.673 0.416 0.461 0.174 0.212 0.021 0.91 

NONP -0.712 0.435 0.513 0.195 0.262 -0.019 0.88 

NONP.CV.Var -0.712 0.485 0.513 0.241 0.262 -0.019 0.91 

NONP.Q.Var -0.712 0.413 0.513 0.170 0.262 -0.02 0.88 

B = 300 

TRUE -0.688 0.294 0.283 0.087 0.080 0.005 0.95 

Naive -0.421 0.291 0.481 0.085 0.157 0.272 0.85 

McSimex.Q -0.658 0.418 0.456 0.175 0.206 0.035 0.92 

NONP -0.685 0.434 0.511 0.193 0.261 0.008 0.90 

NONP.CV.Var -0.685 0.473 0.511 0.232 0.261 0.008 0.91 

NONP.Q.Var -0.685 0.413 0.511 0.170 0.261 0.008 0.89 

B = 100 

TRUE -0.723 0.295 0.200 0.087 0.089 -0.030 0.95 

Naive -0.404 0.291 0.504 0.085 0.170 0.289 0.81 

McSimex.Q -0.630 0.413 0.473 0.171 0.220 0.063 0.91 

NONP -0.637 0.437 0.566 0.196 0.318 0.056 0.84 

NONP.CV.Var -0.637 0.467 0.566 0.229 0.318 0.056 0.87 

NONP.Q.Var -0.637 0.411 0.566 0.169 0.318 0.06 0.86 

B = 50 

TRUE -0.689 0.294 0.268 0.086 0.072 0.004 0.97 

Naive -0.417 0.291 0.480 0.085 0.154 0.276 0.83 

McSimex.Q -0.641 0.416 0.455 0.174 0.204 0.052 0.93 

NONP -0.660 0.414 0.577 0.181 0.331 0.033 0.83 

NONP.CV.Var -0.660 0.461 0.577 0.221 0.331 0.033 0.87 

NONP.Q.Var -0.660 0.411 0.577 0.169 0.331 0.033 0.88 
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CHAPTER 5 

APPLICATION TO NHANES DATA 

Introduction 

The National Health and Nutrition Examination Survey (NHANES) is a program of the Centers for 

Disease Control and Prevention (CDC) which focus on a variety of health and nutrition measurements. The 

NHANES program began in the 1960s and after 1999 it became a continuous, annual (CDC, 2017a). It uses 

a multistage sampling design to select participants from the United States. Approximately 5,000 randomly 

selected, confidential and voluntary residents across the United States have the opportunity to participate 

in the latest NHANES (CDC, 2017a). This program is unique because it consists of two parts: interviews 

and laboratory examinations. Hence, we can discover the accuracy of participants self-reported data by 

comparing the interview data and laboratory examination data. 

We use the data from the NHANES to show how our new method corrects the bias produced by 

the MC-SIMEX estimator in a logistic regression in an epidemiological study. We are interested in the 

association between obesity (exposure) and diabetes (outcome). In the NHANES data, we included male 

aged 50 to 60 participating in NHANES in 2010. The variables that are provided in this dataset include: 

SEQN - respondent sequence number, RIDAGEYR - age at screening adjudicated (in years), mobesity - 

obesity status as measured BMI determined on 30 lb./in^2 (CDC, 2017b), srobesity - obesity status as self-

reported BMI determined on 30 lb./in^2 (CDC, 2017b), diabetes - self-reported diabetes's status, HBP - 

participant has been told by a doctor or other health professional that he/she had hypertension, also called 

high blood pressure. For simplicity, there is no distinction between type 1 and type 2 diabetes, and we 

assume that diabetes's status and HBP status were reported with no misclassification. 

Misclassification matrix 

The obesity status was categorized into two classes, no (0) and yes (1). When individuals' BMI was 

great than and equal to 30 lb./in^2, it was considered as obesity. When individuals' BMI was less than 30 

lb./in^2, it was considered as non-obesity. The BMI value calculated from self-reported height and weight 
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was considered as “self-reported BMI”, hence the obesity status assessed by “self-reported BMI” was 

considered as a naive covariate (misclassified exposure, W). The BMI value calculated from laboratory 

examines height and weight was considered as “measured BMI”, hence the obesity status assessed by 

“measured BMI” was considered as a true covariate (true exposure, X). 

The misclassification matrix Π is estimated using the validation data since we have both measured 

and self-reported height and weight for each individual. Table 26 and 27 are the frequency table of the 

obesity by diabetes's status. 

Table 26: Table of srobesity by mobesity when diabetes = 1 

srobesity 

mobesity 

1 0 

1 46 5 

0 8 25 

Table 27: Table of srobesity by mobesity when diabetes = 0 

srobesity 

mobesity 

1 0 

1 119 19 

0 33 281 

We use tables 26 and 27 to estimate the misclassification matrix Π, 

Π = [

0.94 0.22 0 0
0.06 0.78 0 0

0 0 0.83 0.15
0 0 0.17 0.85

].        (5.1) 

This is obvious differential misclassification matrix; hence the misclassification error of obesity 

status is the differential misclassification error based on the diabetes's status. 
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Analysis 

We categorize the obesity status into two categories: individual was considered as obesity when 

their BMI was great than and equal to 30. And individual was considered as non-obesity when their BMI 

was less than 30. Then we treat the obesity status due to “self-reported BMI” as naive covariate (W) and 

the obesity status due to “measured BMI” as the true covariate (X). 

In this section, we will compare three methods: naive method, original MC-SIMEX method and 

nonparametric MC-SIMEX method with three ways of variance estimation approach. 

Results 

In the dataset, there were a total of 536 observations. The mean age among all participants was 54.8 

years with standard deviation 3.16. Out of 536 observations, 84 individuals had diabetes, 189 individuals 

had self-reported obesity status which equals 1, and 206 individuals had measured obesity status which 

equals 1. 215 participants have been told by a doctor or other health professional that he/she had 

hypertension (high blood pressure). 

The results presented in this section are those of a logistic model, the model considered here adjusts 

for the obesity, age and hypertension: 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 = 1) = �̂�0 + �̂�1 ∗ 𝑜𝑏𝑒𝑠𝑖𝑡𝑦 + �̂�2 ∗ 𝑅𝐼𝐷𝐴𝐺𝐸𝑌𝑅 + �̂�3 ∗ 𝐻𝐵𝑃. (5.2) 

With the misclassification matrix Π, following table shows the results: 

Table 28: Estimation results of estimator based on NHANES data with B = 200 

Methods (SE) 95%CI 

TRUE 1.004(0.259) (0.496, 1.512) 

Naive 1.068(0.253) (0.572, 1.564) 

McSimex.Q 1.054(0.340) (0.388, 1.719) 

NONP 1.001(0.336) (0.342, 1.660) 

NONP.CV.Var 1.001(0.397) (0.223, 1.779) 

NONP.Q.Var 1.001(0.336) (0.342, 1.660) 
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Again, the true method means the laboratory measured covariate was used in the GLM process in 

R, which means covariate "obesity"  has been replaced by "mobesity" in the model 5.2. Similar to the true 

method, the naive method means the naïve (self-reported) covariate was used in the GLM process, which 

means covariate "obesity" has been replaced by "srobesity" in the model 5.2. 95%CI means 95% confidence 

interval of �̂�1. The plots of 95% confidence intervals for all methods are shown in figure 1. Since overlaps 

of confidence intervals of estimators among all methods occur, the estimators are not significantly different 

from each other. Based on table 28 and figure 1, for the �̂�1, estimator of our new method is closer to the 

estimator of true method compare to the MC-SIMEX method. We used nonparametric process in the new 

method, hence the estimated variances of estimator are larger than those from original MC-SIMEX method. 

The results in the above table can be interpreted as follows: The nonparametric MC-SIMEX method 

indicates that after adjusting for age and hypertension, we expect to see about 172% (which is exp^(1.001)-

1) increase in the odds of having diabetes for an individual with obesity than an individual without obesity.

The MC-SIMEX method estimate that about 187% (which equals exp^(1.054)-1) increase in the odds of 

having diabetes for an individual with obesity than an individual without obesity. Meanwhile, based on the 

true model, about 173% (which is exp^(1.004)-1) increasing was estimated. When we use the naive model, 

about 191% (which is exp^(1.068)-1) increasing was estimated. 
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Figure 1: Plot of the MCsimex, naive, new method and true method with their 95% confidence intervals. 

The x-axis represents the type of estimator and the y-axis represents the estimator values 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

Misclassification error is pervasive in medical and epidemiology research. There are a lot of 

literature on it, but we found that there are still some areas unexplored. One of them is to improve the 

accuracy of MC-SIMEX method estimator. In this dissertation, we aim to reduce the bias of MC-SIMEX 

method estimator by studying the effect of misclassification in logistic model. We found that the original 

MC-SIMEX method extrapolation function cannot approximate the true function in some situation. We 

proposed nonparametric MC-SIMEX method which use the fractional polynomial method to approximate 

the extrapolation function.  

The simulation shows that the bias of MC-SIMEX method estimator is visible. It also showed that 

the improved MC-SIMEX method, nonparametric MC-SIMEX method, is a reasonable, general 

approximation with the same assumption but less biased estimator was created. The nonparametric MC-

SIMEX method with fractional polynomial process and cross-validation process works very well in all 

considered setting in this dissertation. In addition, the results are consistence both for differential and 

nondifferential misclassification error on predictor. 

This dissertation has certain limitations. First, in this dissertation, we only focus on a simple logistic 

model with two confounding predictors and a misclassified binary variable. This simple setting may not 

suffice. Second, we didn't consider missing observations in the new proposed method. However, there is 

few such perfect figures as in our study. Third, we only focus on misclassified predictor in this dissertation. 

But, misclassified binary outcome and misclassified multilevel variable are also common in statistical 

analysis. Finally, determining the most appropriate approach way of estimated variance is another 

challenge. 

This dissertation opens up possibilities for future research in biostatistics. First, misclassified 

multilevel variable can be further explored. Second, unknown distribution of data is another challenge in 

the future. Third, considering that survival analysis is also a large category in statistics, expanding our new 
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methods to survival analysis with the censor data can be further proved. Finally, development of the new 

method in the model where multiple binary variables have misclassification errors could be evaluated. 
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