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COMPUTER VISION-BASED TRAFFIC SIGN DETECTION AND EXTRACTION: A HYBRID 

APPROACH USING GIS AND MACHINE LEARNING  

by 

ZIHAO WU  

(Under the Direction of Xiaolu Zhou) 

ABSTRACT 

Traffic sign detection and positioning have drawn considerable attention because of the recent development 

of autonomous driving and intelligent transportation systems. In order to detect and pinpoint traffic signs 

accurately, this research proposes two methods. In the first method, geo-tagged Google Street View 

images and road networks were utilized to locate traffic signs. In the second method, both traffic sign 

categories and locations were identified and extracted from the location-based GoPro video. 

TensorFlow is the machine learning framework used to implement these two methods. To that end, 

363 stop signs were detected and mapped accurately using the first method (Google Street View image-

based approach). Then 32 traffic signs were recognized and pinpointed using the second method (GoPro 

video-based approach) for better location accuracy, within 10 meters. The average distance from the 

observation points to the 32 ground truth references was 7.78 meters. The advantages of these methods 

were discussed. GoPro video-based approach has higher location accuracy, while Google Street View 

image-based approach is more accessible in most major cities around the world. The proposed traffic 

sign detection workflow can thus extract and locate traffic signs in other cities. For further consideration 

and development of this research, IMU (Inertial Measurement Unit) and SLAM (Simultaneous 

Localization and Mapping) methods could be integrated to incorporate more data and improve location 

prediction accuracy.  

INDEX WORDS: Geographic Information Systems, Hybrid traffic sign detection approach, Computer 

vision, Machine learning, TensorFlow, Google Street View, GoPro, GPS 
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CHAPTER 1 

INTRODUCTION 

Purpose of the Study 

Traffic signs are designed to regulate traffic flow safely by providing information to both 

drivers and pedestrians (Gudigar et al. 2016). Traffic signs deliver fundamental instruction on the 

streets by giving rich road and traffic information. So, detecting traffic signs will help people 

understand their surroundings better while driving on and walking along these streets. According to 

police accident reports (Borowsky et al. 2008), failure to obey traffic signs is one of the major causes 

of road accidents. Thorough and explicit traffic signs play a crucial role in daily road uses, as they 

can reduce vehicle accidents and pedestrian accidents. Traffic sign detection is also one of the critical 

areas of concern, given the rise in autonomous driving. Thus, traffic sign detection and management 

are necessary, indeed significant so, to improve both traffic safety and efficiency (Taylor et al. 2000). 

Traffic sign detection has been explored by researchers in the Intelligent Transportation System (ITS) 

in the past few years.  

The typical Automatic Traffic Sign Detection and Extraction (ATSDE) system includes 

components for detection, recognition, and positioning of cars based on computer vision 

methodologies (Miura et al. 2000) like SIFT (Scale-Invariant Feature Transform), SURF (Speeded 

Up Robust Feature), and ORB (Oriented FAST and Rotated BRIEF) (Rublee et al. 2011). According 

to Miura’s study (Miura et al. 2000), the subjects and patterns of traffic signs can be found in massive 

street-view datasets, such as publicly available Google Street View images. These can be processed 

and analyzed to obtain the geolocation of traffic signs. An increasing number of studies in the 

transportation area is dealing with street view images, according to Zamir and Shah’s study (2010). 

Street view images allow researchers from different fields (urban planning, GIS, computer vision, 

and transportation) to capture and collect traffic sign information at street level from a global scale 

(Anguelov et al. 2010) with easy accessibility. However, traditional manual identification of traffic 
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signs based on these datasets is not feasible due to the extensiveness and variability of these street 

view images. Automatically establishing and maintaining a traffic sign inventory automatically has 

thus become an essential task to utilize the existing datasets better and improve the safety and 

efficiency of the entire transportation system. 

With the development of computer vision algorithms and the improvement of both 

computational and data resources, traffic sign detection has been further explored and developed 

using the traffic sign database with moving vehicles and cameras over the past few decades (Scott et 

al. 2011). Gudigar et al. (2016) proposed a traffic sign detection and classification system based on 

a three-step algorithm, which included color segmentation (Benallal and Meunier 2003), shape 

recognition (Xu 2009), and a neural network for image recognition from photos (Broggi et al. 2007). 

By using these algorithms, it is possible to extract useful information from provided street view 

images. The features compiled from all these images provide road conditions and traffic information. 

Greenhalgh and Mirmehdi (2012) proposed a traffic sign detection system. This system provides for 

having maximum stable likelihood regions by offering robustness even with different lighting 

conditions. The image recognition method used in Greenhalgh and Mirmehdi’s study was based on 

support vector machine (SVM) classifiers, which were refined using the histogram of oriented 

gradient (HOG) features. Maldonado-Bascon et al. (2007) then developed another automatic road-

sign detection and recognition system based on the support vector machine.  

However, it remains a challenging task to extract accurate location information from a vast 

amount of traffic sign images. Most traffic signs need to be automatically digitized with their 

geospatial related attributes noted (Ford et al.2001). Due to the lack of geolocational attributes, it is 

time-consuming to coordinate the information and pinpoint traffic signs using traditional labor-

intensive tagging processes. By analyzing the structured and unstructured data, Stein et al.’s studies 

have attempted to extract knowledge about traffic sign categories, road conditions, and traffic sign 

distributions. Detecting and recognizing traffic sign systems can also be done by mounting a camera 

on a moving vehicle (Stein et al. 2011). Stein et al.’s work contributed to the intelligent transportation 
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system and auto driving systems. However, these tedious labeling and locating tasks also require a 

tremendous amount of labor to keep the traffic sign information up to date (Findley et al. 2011). The 

ongoing fieldwork to locate traffic signs along streets manually also causes safety concerns. Traffic 

signs recognition speed is slow when using only the traditional image recognition methods, such as 

Support Vector Machine (SVM), Histogram of Oriented Gradients (HOG), Scale-Invariant Feature 

Transform (SIFT), and the Speeded Up Robust Feature (SURF). So, traffic sign collection is more 

meaningful than having image pixels. Actual traffic sign images come with additional useful 

information such as location. The traffic sign location information missing challenge is due to the 

capability and effectiveness of traffic sign detection and location extraction.  

Further still, most traffic recognition methods and models are difficult to apply to a broader 

geographic area, because these models were trained in another particular location, the background 

and traffic sign content may vary from different regions. It means old existing methods cannot be 

applied in a different geographic context. Furthermore, using automatic detection to build and 

maintain traffic sign inventory has not been well illustrated in previous studies, especially those big 

geospatial data research (Lee and Kang 2015). 

In order to address these limitations, this study designed a prototype system for processing 

a collection of Google Street View images to extract traffic signs. Given the fast development of 

machine learning techniques and the rapidly growing volume of data, traffic sign extraction and 

positioning can be accomplished using automated image recognition technology (Balali et al. 2013). 

According to the issues noted above, this study developed an economical and effective solution for 

traffic sign detection, positioning, and mapping with high accuracy. The first objective of this 

research is to detect traffic signs by analyzing the spatial features of images. The knowledge 

generated by an object detection system can indicate traffic sign contents, show the categories and 

locations of these traffic signs from the same street view content. The second objective of this 

research is to automatically extract geospatial information with computer vision using artificial 

intelligence techniques on a TensorFlow (a machine learning platform). With CUDA (Compute 
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Unified Device Architecture) parallel computing to accelerate the training and validating the process, 

such a traffic sign recognition model can achieve high confidence in the testing performance. Results 

from this research can contribute to both viable and affordable autonomous vehicle delivery systems. 
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CHAPTER 2 

RELATED RESEARCH 

Traffic asset management 

Traffic asset management is defined as a systematic process of maintaining, updating, and 

rehabilitating traffic assets (roads, bridges, and traffic signs) cost-effectively (McNeil et al. 2000). 

Traffic signs are managed using several approaches based on the known traffic asset inventory 

research (Balali and Golparvar-Fard 2015). A traffic inventory system is a valuable solution that has 

been used in traffic asset management in the past few decades (Vanier 2001). One of the main tasks 

of traffic asset management is the extraction and maintenance of traffic signs across various assigned 

categories. The general approach (Balali and Golparvar-Fard 2015) of a traffic sign management 

system is to use knowledge-based models (Fuchs et al. 2008) to store and update the gathered traffic 

sign inventory information (Maldonado-Bascon et al. 2008) in a database.  

Many state highway agencies in the United States have been trying to develop traffic sign 

inventories in digital form (Mogelmose 2012). It is thus expected that this kind of project will help 

to serve and become the basis for evaluating time, labor, and equipment requirements in future sign 

inventory programs (Eastman 2018). Because of the complexity of the transportation infrastructure, 

traditional transportation infrastructure management has only focused on manually collecting traffic 

assets,  causing both high labor costs and potential safety issues (Djahel 2014). Regular practices 

mainly involve tedious manual data collection and analysis (Balali and Golparvar-Fard 2015). For 

example, Currin’s book, Introduction to traffic engineering: a manual for data collection and 

analysis (Currin 2012) introduced a procedure to collect data of roadway and intersections. Wherein 

multiple observations and human activities are engaged in collecting and recording traffic signs and 

assets for further traffic data processing. Apart from the costly data collection process, regular road 

asset monitoring and maintenance can also be expensive (Šelih et al. 2008).  
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To manage and maintain the regular operation road system, departments of transportation 

need reliable and up-to-date information about the location and condition of road traffic signs (He et 

al.  2017). Updating traffic sign information during road asset management can be time-consuming 

(Murphy 2012) as traffic inventory collection involves complicated and repetitive work that requires 

a lot of personnel and resources (He et al. 2017). In conclusion, because of the limitation of time and 

budget, along with safety considerations in manual data collection, transportation agencies need a 

more efficient way to extract and maintain traffic signs.  

Location-based sign detection 

Researchers from different fields have developed several methods or management systems 

to realize traffic sign extraction (Halfawy 2008). The premise of traffic sign extraction is to search 

for and detect traffic signs. Some researchers introduced traffic sign inventory systems based on 

stereo vision and tracking (Wang et al. 2010). Wang’s system used multiple sensors of high-

resolution cameras to capture Right of Way (ROW) images. The stereo vision technique was 

employed to realize real-time data acquisition and analysis on vehicles. Wang et al.’s research (2010) 

used a computer vision technique to achieve an automated traffic sign inventory system while driving 

the vehicles. However, no coordinates could be extracted in this way, which caused difficulty in 

pinpointing the actual traffic signs on the map.  

Other traffic sign extraction management systems were aiming to acquire spatial information 

along with traffic sign content. Ford et al.’s research (2006) used a mobile device to capture field 

data, such as tracking traffic assets and transferred location data into a GIS database assisted by the 

built-in global positioning systems (GPS) module. It is a good way to acquiring spatial information 

of traffic assets with GPS information and then convert it to GIS data. They provided a direction for 

utilizing GPS information for positioning and locating traffic assets. Comparing with a traditional 
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system for managing transportation assets (Sroub and Mackraz 2003), a better solution to acquire 

geo-tagged traffic assets is to engage image recognition with GPS information.  

A GPS driven platform (Ma and Wang 2014) was utilized to consistently acquire an available 

coordinate reference to collect essential geographical information. Tucker et al. (2009) provided an 

ideal way to gather traffic asset images with geo-tag by using a vehicle-based image recognition 

system with accurate coordinates. Wang’s methods (2014) and Tucker’ s proposed systems (2009) 

both serve as a prototype, that is similar to the Google Street View vehicle. A Google Street View 

vehicle has more sensors and stronger functions to use to detect and gather information along all the 

visited streets. Their solutions overlapped with the Google Street View vehicle solution. However, 

these solutions are expensive. Also, although they proposed a method for data collection, they have 

missed offering an efficient way for data processing.  

Traffic sign recognition and machine learning 

Methods have been developed to detect sign recognition, including color segmentation 

(Crisman and Thorpe 1991), and neural network (Pomerleau 1990). There are serval ways (Chen et 

al. 2011) to recognize a traffic sign by using feature matching (Ren et al. 2009). Ren proposed a 

conventional approach to implement the entire recognition process by utilizing feature matching 

methods (e.g., SIFT or SURF features), wherein the RGB color input images were converted into 

HSV color space (Ren et al. 2009). These methods were using transformation to detect unique shapes 

as potential signs, which could be compared to existing reference signs by using feature matching 

methods. It is classical to recognize traffic signs with traditional image recognition 

methods. However, due to conventional image recognition hindered by the computation 

capacity, only a small size image dataset can be processed in a short time. Therefore, the challenge 

of the fast process on a large dataset remains. Indeed, there is a need to improve image detection 

efficiency and accuracy with a new methodology. Besides, these traditional traffic sign 

recognition methods
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cannot be applied to different geographical contexts and locations. Given such further 

illustration, sign detection has been a less-studied field during the contemporary period.  

Machine learning was defined as a set of methods that can automatically detect patterns in 

data, and this uncovered pattern can predict future data (Murphy 2012). It provides a solution for a 

fast process on a large dataset. Recent studies leverage data from multiple sources to strengthen both 

image detection and image recognition using machine learning. Houben et al. (2013) utilized vision-

based vehicles to realize road detection, obstacle detection, and sign recognition. Other researchers 

also have utilized Convolutional Neural Networks (CNN), a class of deep neural networks in machine 

learning, to recognize and classify traffic signs. Pierre & Yann (Sermanet and LeCun 2011) applied 

CNN to learn features at every level and achieved a final accuracy of 98%. With an increasing 

training network, a new record of 99% accuracy was reached. Besides, Abdi and Meddeb (2017) 

used deep CNN to realize traffic sign detection, recognition, and augmentation. Their classifications 

were using Region of Interest (ROI) with linear SVM. They tested the real-time performance on the 

German Traffic Sign Recognition Benchmark (GTSRB) dataset; both recall and precision were 

higher than 98.8% in seven different category traffic signs. Other models were also applied in this 

multi-class classification competition (Stallkamp et al. 2011), such as the Committee of CNN and 

MLP, IK-SVM, LDA, and 3-NN. Their accuracy ranges from 73.89% to 98.98%, while human 

performance is 98.81%. It is noticeable that there are a few methods that can outperform humans in 

recognition accuracy.  

Further exploration has approved that machine learning algorithms for traffic sign 

recognition can also attain the same level of human performance (Stallkamp et al. 2012). Several 

popular machine learning methods are briefly illustrated here. Multi-column Deep Neural Networks 

(DNN) for image classification is a fit solution (Ciregan et al. 2012) to deal with handwritten 

numbers or traffic signs. They focus on combing several deep neural network (Fukushima and 

Miyake 1982) columns into a Multi-column DNN (MCDNN). In this way, the error rate decreased 

by 30-40%, and thus their method improved the traffic sign recognition accuracy significantly. 

Kiran C. G et al. 
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(2009) used the support vector machine (SVM) to deal with traffic sign detection and pattern 

recognition. In their research, a linear SVM was applied to improve the performance of segmentation. 

At the same time, a multi-classifier non-linear support vector machine with edge-related pixels of 

interest was used for determining traffic sign shape detection and pattern recognition. Their pattern 

recognition results (Kiran et al. 2009) showed higher accuracy than other research. Shustanov and 

Yakimov (2017) used CNN to recognize traffic signs in real-time. Yakimov (2015) developed an 

algorithm for detecting and predicting road traffic signs with vehicle velocity. However, these 

solutions described above only deal with image recognition and detection without extracting the 

spatial attributes of the collected traffic signs. In some cities, traffic signs are required to be 

automatically detected for location information. So, an automatic workflow is also needed for 

managing, identifying, and positioning the traffic signs on a digital map. 

The hybrid method with an innovative solution 

Fortunately, some issues have been resolved using the traffic sign detection 

methods mentioned above, such as traffic sign recognition and parallel computing for image 

processing. However, a more efficient way of detecting and positioning traffic signs is still

missing. Besides, extraction with high location accuracy is needed. The low cost of the whole 

process is also required. To address the remaining gaps, this paper offers a timely and

valuable method that leverages the emerging advanced technologies for collecting, detecting, and 

extracting traffic signs using a hybrid approach. This research used machine learning-based 

approaches to detect and pinpoint traffic signs from both images and videos. Using these two 

methods with both Google Street View images and GoPro videos as input resources to recognize 

traffic signs programmatically, this workflow has much higher accuracy and efficiency in 

different scenarios. The study features a combination of computer vision with machine learning 

(i.e., traffic sign detection through image and video procession), geo-localization (i.e., gather geo-

tagged photos and videos), and fast processing 
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(i.e., CUDA parallel computing to accelerate the entire process). The whole workflow can extract 

traffic sign information along streets and also could monitor the shift of road traffic sign database in 

a period.  
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CHAPTER 3 

METHODOLOGY 

A machine learning model principle overview 

Machine learning-based techniques have achieved state-of-the-art performance on traffic 

sign recognition and classification tasks (Gu et al. 2017). There are many typical models, including 

KNN, SVM, Backpropagation, CNN, DNN, and so on. Here, I introduced a model that can be fine-

tuned for a specific task, like traffic sign recognition. This research utilized the Single Shot Multi-

Box Detector (SSD) (Liu et al. 2016) as a feature extractor and used the 2nd version of MobileNets 

(Howard et al. 2017) as a model. MobileNets is a neural network architecture that uses depth-wise 

separable convolutions instead of regular convolutions after the first layer. The depth-wise separable 

convolution is a combination of two different convolution operations: a depth-wise convolution, and 

a point-wise convolution. A depth-wise convolution performs a convolution on each channel 

separately instead of combining the input channels (red, green, or blue are three color channels in a 

pixel) as a regular convolution does. A point-wise convolution is the same as a regular convolution 

but uses a 1×1 kernel. A regular convolution does both filters and combines them in a single step. 

Still, the depth-wise separable convolution separates the process into two stages (one step for 

filtering, and another step for combining). Even though the results of the two approaches are similar 

(Howard et al. 2017), the depth-wise separable reduces the number of multiplications, making the 

model faster than regular convolutions. The details of the algorithm can be found in Howard et al. 

(2017).  

Figure 1 illustrates the process of how standard convolutional filters are replaced by two 

layers, a depth-wise convolution, and pointwise convolution, to build a depth-wise separable filter. 

Taking an image with three input channels (red, green, blue cubes represent three base color 

channels, a cube corresponds with one pixel in the image) as an example, convolution operation 
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combines the values of all the input channels. Standard convolution writes a new output pixel with 

only a single channel (purple cube). This standard convolution consumed (selected 3 × 3 sample 

image size) × 3 channels = 27 operations. Depth-wise convolution does not combine the input 

channels (red, green, blue cubes represent three channels), but it performs convolution on each 

channel separately. For an image with three channels, a depth-wise convolution creates an output 

image that still remains three channels: red, green, and blue channels. Each channel gets its own set 

of weights. The purpose of the depth-wise convolution is to filter the input channels. The depth-wise 

convolution is followed by a pointwise convolution. This pointwise convolution is the same as a 

regular convolution but with a 1×1 filter. The purpose of this pointwise convolution is to combine 

the output channels of the depth-wise convolution (red, green, blue cubes represent three channels) 

to create new features (purple cube). This depth-wise separable convolution consumed (selected 3 × 

3 sample image size) + 3 = 12 operations. This figure illustrates why depth-wise separable 

convolution has a smaller number of multiplications. That is to say, depth-wise separable convolution 

has fewer weights and will be faster.  

Figure 1 The standard convolution is factorized into a depth-wise convolution and pointwise convolution
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The Google Street View image-based Method 

This section explains how to download images from Google Street View and how to utilize 

geo-tagged images around intersections for traffic sign recognition. Figure 2 illustrated the workflow 

of detecting, extracting, locating, and mapping stop signs from Google Street View. More 

details follow in the next section. 

Figure 2 Workflow of the Google Street View method 

Data preparation: Extract intersection and Street View 

For example, stop signs are typically located around road intersections. Road intersections

were derived from a road network based on the Topologically Integrated Geographic Encoding and 

Referencing (TIGER) dataset (Zandbergen et al. 2011). Specifically, I searched all the road 

intersections in the study area using the intersection operation in GIS. When finding all the 

intersections, I created intersection buffers with 20 meters to locate observation points on each street 

in four directions. All these observation points (see Figure 3) were stored in a list 𝐼𝑠 {𝑖1, 𝑖2, 𝑖3 …} to 

be able to request the images from Google Street View server.   
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Figure. 3 Observation points 𝐼𝑠 (red dots) around intersections (green dots) in a sample study area

Stop sign recognition using machine learning 

Google provides many Application Programming Interfaces (APIs). Street View Static API 

can be used to download Street View images with coordinate information. Longitudes, latitudes, and 

heading directions were sent through Street View Static API to download the pictures of an 

observation point in the list 𝐼𝑠. Figure 4 illustrates the Geo-tagged images’ downloading processes.

There are 58,769 recent images downloaded within one year in the study area.  

Figure 4 The process of getting geo-tagged images using Google Street View API 
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After downloading Google Street View images, I used these downloaded geo-tagged 

images to train the traffic sign recognition model. Initially, there were 496 images selected with 

traffic signs or assets from the downloaded street view images. They are 136 stop signs, 75 speed 

limit signs, 188 traffic lights, and 107 fire hydrants. Then, 760 traffic asset records were found and 

marked down with rectangles among these 496 images. In 760 marked records, randomly selecting 

610 records as a training dataset, and the other 150 records as a validation dataset. Additionally,

6250 images were extracted from Google Street View at corresponding 6520 locations around the

intersection in the downtown Statesboro area. These images are used as test dataset. After the initial 

learning process with model evaluation on the validation dataset, all the marked images were put 

into the TensorFlow Object Detection framework to train a new robust traffic sign detection model. 

The features of traffic signs were learned, and training parameters (like batch size, initial learning 

rate, and decay factor) were tuned based on the speed and efficiency during the training process. In 

this method, the stop sign was chosen as an example. The trained model was then used to detect 

and locate stop signs on the test dataset, where Google Street View was available. F1-score, recall, 

and precision (Joshi 2018) were used to evaluate model accuracy. Given a training dataset, 𝐷 =

{(𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖  ∈ {0,1}}, 𝑖 = 1 𝑡𝑜 𝑁.  A positive sample (ground truth is true) is 𝑦𝑖 = 1, a

negative sample is 𝑦𝑖 = 0. A model 𝐻 could be built, according to the input sample 𝑥𝑖 , where there

will be a predication 𝐻(𝑥𝑖) . Comparing the prediction 𝐻(𝑥𝑖) with ground truth 𝑦𝑖  , there were thus

four situations as follow: 𝐻(𝑥𝑖) = 1, 𝑦𝑖 = 1 

𝐻(𝑥𝑖) = 1, 𝑦𝑖 = 0

𝐻(𝑥𝑖) = 0, 𝑦𝑖 = 1

𝐻(𝑥𝑖) = 0, 𝑦𝑖 = 0 

In the first situation, the prediction is true, and the ground truth is true; this situation is called 

true positive (TP). In the second situation, the prediction is true, but the ground truth is false; this 

situation is called false positive (FP). In the third situation, the prediction is false, and the ground 
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truth is true; this situation is called false negative (FN). In the last situation, the prediction is false, 

and the ground truth is false; this situation is called true negative (TN). Every sample would become 

one of the four situations. It was thus noticeable that 

prediction number 𝑁𝑝𝑟𝑒 and the total number 𝑁𝑡𝑜𝑡𝑎𝑙 are:  

 𝑁𝑝𝑟𝑒 = 𝑇𝑃 + 𝑇𝑁  (1) 

       𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  (2) 

So, the model accuracy (𝐴𝑐𝑐) became:  

 𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

Further, the recall, precision, and F1-score are illustrated below. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (6) 

According to these equations, recall represents the model  𝐻  detection’s ability for the 

positive sample; precision represents the chance that how many percentages this model can 

distinguish a negative sample capability from a positive sample. The F1-score describes the overall 

performance of the model prediction. The higher the F1-score, the more robust is the detection model. 

The GoPro video-based Method 

GoPro (Figure 5) is a versatile action camera with a useful video stabilization function. It 

can be held by one hand or mounted on a vehicle. It comes with a GPS sensor and an Inertial 

Measurement Unit (IMU). The camera can be used to record videos and take images. The GPS sensor 

provides coordinate information. IMU measures speed (both 2D and 3D speed) and accelerator of 

camera motion.  
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Figure 5 Experiment setting for the GoPro camera 

Data preparation 

In this method, the Statesboro downtown areas were selected as a study area. GoPro was 

mounted on the top of a vehicle to capture street views through the camera and collect locations 

through the GPS sensor. The street view was recorded by GoPro Camera in this experiment. 

The recorded video set at 60 frames per second. So, videos can be sequentially converted to 60

frames in every 1000 milliseconds. There are 124,896 frames extracted from the recorded street-

view videos. The GoPro GPS sensor records coordinate every 55 milliseconds (Table 1) 

simultaneously. Roughly, 19 frames linked with coordinates per second (see Table 2).  

Table 1 GPS trajectory points sample in one route 

Milliseconds Latitude Longitude Altitude(m) 

0 32.42667 -81.7808 43.962 

55 32.42667 -81.7808 44.027 

110 32.42667 -81.7808 44.072 

165 32.42667 -81.7808 44.083 

220 32.42667 -81.7808 44.078 

275 32.42667 -81.7808 44.085 

330 32.42667 -81.7808 44.049 
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Table 2 GPS trajectory linked to corresponding frames with the same timestamp 

Number Milliseconds Latitude Longitude Seconds Frames Frames/Number 

1 0 32.42667 -81.7808 0 0 1 

2 55 32.42667 -81.7808 0.055 3.3 4 

3 110 32.42667 -81.7808 0.11 6.6 7 

… … … … … … … 

17 880 32.42667 -81.7807 0.88 52.8 53 

18 935 32.42667 -81.7807 0.935 56.1 57 

19 990 32.42667 -81.7807 0.99 59.4 60 

Geo-tagging frames and detection of traffic sign 

After recording, all videos were converted to frames for further image recognition. In this 

approach, using a similar way to build a training dataset and evaluation dataset. There are 994 frames 

extracted from selected GoPro videos as input, including 200 stop signs, 200 yield signs, 195 

pedestrian signs, 200 speed limit signs, 100 one-way signs, and 99 do not enter signs. They were 

split into two groups. One is a training dataset with 796 images. Here, using the same training process 

as the Google Street View method, another traffic sign recognition model was trained with marked 

traffic signs (stop signs, yield signs, pedestrian signs, speed limit signs, one-way signs, and do not 

enter signs). The difference in this method is that the training dataset size (796 images) is bigger.

This training dataset contains more traffic sign categories, such as stop signs, yield signs, 

pedestrian signs, speed limit signs, one-way signs, and do not enter signs. This newly trained 

model was used for traffic sign recognition among frames collected by GoPro. After evaluating 

this trained model with a 198-records validation dataset, those frames with traffic signs would be 

sorted out during the image recognition process. Using all the geo-tagged frames with a GoPro 

sensor, a GPS trajectory was plotted, and the detected traffic signs were mapped out. Figure 6 

illustrates the entire workflow below.  



24 

Figure 6 A workflow of the GoPro method 
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Accuracy assessment and improvement 

When presenting the detected traffic signs on the map, it is necessary to evaluate the location 

distance between predictions and ground truth references, the category of traffic signs, and the image 

detection accuracy of traffic signs. In order to calculate the gap between the detected traffic signs 

and a ground truth traffic sign, the predictable traffic sign location 𝐷𝑘 was taken into account for the

distance calculation. A ground truth reference traffic sign 𝑅 was related to a group of prediction 

locations 𝐷𝑘 {𝐷1, 𝐷2, 𝐷3 … 𝐷𝑛 }. Distance from traffic sign prediction location 𝐷𝑘  to the ground

reference traffic sign location 𝑅 was defined as 𝐷𝑘𝑅. The average distance 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑣𝑔 describes

location accuracy. For example, if a traffic sign was detected at seven locations {𝐷1, 𝐷2, 𝐷3 … 𝐷7}

around the ground truth traffic sign 𝑅, the mean center of these seven locations would be taken as 

the predicted location and the average distance 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑣𝑔was determined as:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑣𝑔 = ( 𝐷1𝑅 +  𝐷2𝑅 +  𝐷3𝑅 +  𝐷4𝑅 +  𝐷5𝑅 +   𝐷6𝑅 + 𝐷7𝑅 ) / 7. 

This pattern is illustrated in figure 7. Also, the standard deviation statistics of distance for 

the different traffic signs and routes were calculated as well. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑣𝑔 = ∑ (
𝐷𝑘𝑅

𝑛
)

𝑛

𝑘=1

 

Figure 7 Average distance calculation (Green: detectable traffic sign locations, Red: ground reference) 
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CHAPTER 4 

IMPLEMENTATION OF TRAFFIC SIGN DETECTION 

Google Street View of image-based implementation 

Google Street View image-based method was applied to the City of Statesboro, GA, USA, 

as a study area for testing model usability and accuracy of the proposed solution. A workflow was 

built for this particular implementation. Python was used for developing the process for downloading 

geo-tagged images. Longitudes, latitudes, and heading directions were sent to the Google server 

through Google Street View API to download all the images with their coordinates. The downloaded 

street view images were associated with certain locations, called Geo-tagged images (Figure 8).  

Figure 8 Street view images pop-up map. Green dots: locations of observation points, each pop-up 

window included a downloaded image from Google Street View at the corresponding location 
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Object detection API was implemented to train the model (Figure 9) with the TensorFlow 

framework. Traffic signs were tagged and marked with rectangles on the training dataset 

images. Every rectangle position and dimension was saved in an XML file. It could be expected to

train the model to recognize related traffic sign information by marking down traffic sign 

features among these images. This particular model was trained on a computer equipped with 

GPGPU (General-purpose graphics processing units) with Nvidia GTX 1070 Graphic Card. The 

training process was monitored in the terminal. Also, Tensorboard, a browser-based graph tool, 

was used to monitor and visualize the training and testing process, providing both graphs and 

statistics of the training and evaluation process. 

Figure 9 The training process of traffic sign recognition 

GoPro video-based implementation 

Five routes of street view (Figure 10) were collected in the downtown area of Statesboro 

using a car-mounted GoPro, and there were 124,896 frames extracted from all the videos (Figure 

11). The entire extracting process contained recording a video with GoPro in 1080p 60 frames per 

second for street view. These frames were extracted using Python code.  
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Figure 10 Routes (black lines) in the study area 

(a) Record the street view video (b) Extract frames from the video

Figure 11 Process of converting video to frames (60 fps) 

The extracted frames from GoPro videos were selected to train a new image recognition 

model. The GoPro-based method used this new-trained image recognition model to realize traffic 

sign detection and extraction. Every traffic sign was marked with a rectangle in the training dataset. 

Traffic sign rectangles position and dimension were saved in XML files. I chose 994 images taken 

by GoPro consisting of a training and validation dataset with six sign categories, including 200

stop 
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signs, 200 yield signs, 195 pedestrian signs, 200 speed limit signs, 100 one-way signs, and 99 do not 

enter signs. When the traffic sign recognition model was trained and ready to use, I linked frames to 

the same timestamp GPS coordinates (Figure 12a). These frames with assigned coordinates can then 

be mapped out as point features. For example, one pedestrian sign on the ground could be related to 

multiple frames. (see Figure 12b).  

(a) GoPro GPS records linked to frames (Green: traffic sign detected; Red: ground truth; the mid-top

picture: a pedestrian sign was detected; images point to hollow points without traffic signs)

(b) Locations of geo-tagged frames (Red: ground truth, Green: traffic signs detected)

Figure 12 The relationship between locations of GoPro frames with detectable traffic

signs and locations of ground truth traffic sign 
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CHAPTER 5 

RESULTS 

Google Street View of image-based results 

The trained model was applied to traffic sign recognition in Statesboro, GA, USA. The 

stop signs were successfully detected. Also, I tried the same method to identify the following: :

traffic light and speed limit sign (Figure 13). That is to say, this method can be applied to other 

traffic signs as well. In this result, the stop sign detection result was illustrated as an example. 

Among geo-tagged images, this model detected and extracted stop signs around intersections 

(Figure 14). All the detected stop signs with coordinates are visualized in the digital map (Figure 

15).  

Figure 13 Types of detected traffic signs 

Figure 14 Detected stop signs in different background and lighting situations 
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Figure 15 The automatically detected stop signs overlaid on the Statesboro street map 

Model evaluation and accuracy improvement 

After training and validating the traffic sign recognition model, it was necessary to assess 

the overall accuracy of the model. Iteration also called training step; every iteration will update 

parameters of the neural network. With the number of training steps increasing, the loss value 

decreased from 18 to 0.6. Loss value means how well this model worked on training and validation; 

the lower the loss, the better a model. In this model, the producer accuracy was 93.90%; the user 

accuracy was 95.85%; thus, the overall accuracy of this model reached 99.60%. The F1 score for 

stop sign image recognition was 94.86%. The recall detection ability for this model was 93.9%, the 

precision of this model to distinguish non-stop sign image capability from a stop sign was 95.85%. 
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The F1-score was 94.96%, which means the overall performance for this model, and its prediction 

was robust. The confusion matrix of the 6250-images test dataset is shown in Table 3. 

Table 3 Confusion matrix for the test dataset 

         Model test results 

Reference data 

Stop sign detected 

(Prediction: YES) 

Stop sign undetected 

(Prediction: NO) 

Total 

There is a stop sign 

(Ground truth: YES) 

231 (TP)  15 (FN) 246 

There is no stop sign 

(Ground truth: NO) 

10 (FP) 5994 (TN) 6004 

Total 241 60 6250 

Accuracy Assessment Recall: 93.90% Precision: 95.85% F1 score: 94.86% 

The GoPro video-based results and accuracy assessment 

Totally, there were 680 video frames detected with traffic signs among selected routes in 

Statesboro. These geo-tagged frames illustrated the spatial distribution pattern of traffic signs, which 

are shown on the digital map below (Figure 16).  It is noticeable that all the detected traffic signs 

were around the ground truth traffic signs.  

As mentioned above, the distance between the traffic sign detected locations and ground 

truth reference points can be calculated. Taking Route B as an example, there were five ground truth 

reference points and 104 frame locations with traffic signs. And the average distance from the 

detected points to the ground truth locations was around 4.8 meters. I also summarized the distance 

between detectable traffic sign locations and ground truth traffic sign locations for the selected four 

routes. The average distance and standard deviation statistical table are listed below (Table 4). 

Overall, the detection performance was robust, and the prediction results were accurate. According 

to the analysis, I mapped out the detected traffic signs for five routes in Statesboro. In the GoPro 

video-based method, there were 32 traffic signs (stop sign, yield sign, pedestrian sign, and speed 

limit sign) detected and overlaid on the street map (Figure 16).  
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Figure 16 Detected traffic signs using GoPro method in Statesboro, GA 

There are four selected routes listed in Table 4. Detected traffic sign number refers to the 

total number of frames detected with a traffic sign along each route. Reference points mean 

the number of traffic signs on the ground in this route. Model detection user accuracy refers to the 

percentage of traffic signs recognized by the trained model in one route. Average distance and 

median distance represent traffic sign positioning and location accuracy. Average distance means 

the mathematical average distance between detected traffic sign locations to ground truth. 

Average distance calculation refers to chapter 3. Median distance is the median number among all 

the distance numbers between detected traffic sign locations to ground truth. The average distance 

and median distance were calculated under NAD83 (North American Datum of 1983) 

projection in ArcGIS. 
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Standard deviation indicates the consistency of the prediction location. A lower number of standard 

deviation means location prediction is more stable.   

Table 4 Detectable traffic sign locations accuracy assessment 

Route No.: 

Traffic No. 

Detected 

traffic signs 

Reference 

points 

Model Detection 

User accuracy 

Avg. Distance 

(meters) 

Med. Distance 

(meters) 

Std. 

Dev 

Route A: 206 16 80% 9.08 6.99 5.00 

Route B: 104 5 92% 4.84 4.03 1.45 

Route C: 94 2 99% 10.45 9.18 3.28 

Route D: 276 9 92% 6.98 7.52 2.04 

Overall 680 32 88% 7.78 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

Summary of this Research 

This research analyzed the traffic signs in the city of Statesboro and illustrated the 

workflow of traffic sign recognition and selected types of road traffic sign extraction. In this 

research, traffic sign detection and positioning workflow were developed to collect and extract 

traffic signs from Google Street View images and GoPro videos. This research provided a new 

approach to build and update the traffic sign database efficiently. Specifically, it is valuable and 

helpful for governments to find damaged traffic signs and rebuild them after a natural disaster.  

Otherwise, it would be labor and time-intensive to engage personnel to check them one by one. 

This research applied artificial intelligence and geographic information techniques to detect and 

locate traffic signs based on images and videos programmatically. Besides, the traffic signs 

extraction processes were also accelerated by leveraging big data and parallel computing 

technology.  

This research used two data sources, one was Google Street View images, and the other 

was GoPro videos. Google Street View is available in many cities that provide worldwide area 

images. They are easy to access and convenient to download so that they can be used to all the 

areas where Google Street Views are available. Therefore, the traffic sign recognition service 

proposed in this study can be applied in a wider geographic area.  

However, the proposed approach is related to the volume of downloadable street 

view images for individual use. For example, a personal user is allowed to download only 25,000 

images per day. However, Google can unlock this limitation for transportation departments 

and related authorities.  

Google Street View is not available in some locations, and some street views are currently 

out of date. Therefore, GoPro video was chosen as a second source. When using GoPro to 

collect data, users can select and control the locations and time of data collection according 

to their 
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individual needs. However, small dataset size is a limitation in the GoPro video-based method. But 

the prototype that is proposed in this research can be used to provide an accessible and cost-

friendly solution. If there was cooperation between a city transportation department and its 

police department, multiple GoPro’s could be mounted on the police cars, which will provide a large 

volume of street view videos without additional costs.  

This research illustrated a clear solution for locating and mapping traffic signs. Using 

GoPro realizes this is an accessible and reliable solution. In this method, I created an economic

traffic sign detection and mapping system. It can pinpoint traffic sign locations 

programmatically. Then it is available to visualize traffic signs on the map by using the data 

generated from the system. 

The entire workflow discussed here can be utilized by related departments and technology 

companies. Traffic sign detection, extraction, positioning, and mapping using GIS, GPS, computer 

vision, and machine learning can be utilized by local authorities to monitor, maintain and 

update traffic sign inventory effectively and economically. This method can be widely used for 

road traffic sign maintenance to improve efficiency, reduce costs, and deliver a smart traffic sign 

inventory in cities. Further still, this research provides a way to pinpoint traffic signs with high 

location accuracy, which can also contribute to the autonomous vehicle driving systems.  

Comparison of the Different Approaches 

There are two different approaches applied in this research. These two approaches 

share some commonalities, but they also have individual differences. Below, three main 

aspects of difference in the discussion: Traffic sign image classification, location 

prediction accuracy, implementation convenience and method accessibility. 

Firstly, both the Google Street View-based method and the GoPro video-based method 

used computer visualization with image recognition technology. This research utilizes object 

detection based on image recognition technology. However, the training images come from 

two different 
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sources, Google Street View images and GoPro Video frames. The Google Street View method uses 

stop signs and the others as a training dataset downloaded from Google Street View. The GoPro 

video method uses six different categories of traffic signs. As a result, when training just one 

category from Google Street View images, like stop signs, a  higher image recognition accuracy

than the GoPro Video-based method is achieved. GoPro Video-based method selected six different

traffic signs to apply image recognition, which took longer to get decent accuracy.  

Secondly, these two approaches have different traffic sign location accuracy. The 

Google Street View image-based method has a prediction buffer distance of 20 meters. In contrast, 

the GoPro Video-based method has a higher location accuracy of 7.7 meters, improved by

driving an onboard GoPro camera with GPS. Multiple video frames also achieved the prediction

with higher location accuracy.  

Thirdly, implementation convenience and method accessibility are also different. It is 

convenient to download Google Street View images online. And these images are available in most 

large cities in the United States. In comparison, it takes much more time to collect street view using 

GoPro video-based approach for the same study area. Also, there is a download volume limitation 

hindered by Google Street View API. Besides, Google Street View is not up to date in some areas. 

However, the GoPro video method can be applied to everywhere there is a road, even though the 

GoPro videos collection may be limited by certain conditions such as weather.  

Further Research 

Some other methods and algorithms are available to be used to detect and pinpoint traffic 

signs. For example, SLAM (Simultaneous localization and mapping) can measure the distance from 

the viewpoint to the object, which produces an accurate scale from the recorded frame location to 

the ground truth location. It can be used to pinpoint traffic signs by measuring key points between 

two frames (Figure 17). While looking and snapping on the same key points (Mur-Artal et al. 2015), 
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the change of view position and the movement of the camera in rotation and its transmission 

dimension can be calculated. Vision SLAM with IMU (Inertial Measurement Unit) can improve the 

detection accuracy in the horizontal distance (Tang et al. 2015). The system error radius of prediction 

for a candidate likelihood area can be narrowed down from 7 meters to 2 meters. 

Figure 17 Triangularization to evaluate the location of object X 

Structure from Motion (SfM) can be used to estimate camera pose and also help rebuild 

3D construction (Carrivick et al. 2016). Due to GoPro coming with a single camera, it is

appropriate to choose mono-camera vision SLAM to realize 3D reconstruction. Besides, GoPro 

equipped with IMU can measure acceleration and orientation and angular velocity in a moving 

situation. IMU measurement won’t change too much in a stable movement, which is called the 

IMU draft issue (Carrivick et al. 2016). Given the camera can provide image and visual 

information, I can take this advantage to solve the IMU draft issue in slow and stable movement 

situations. Combining SLAM with IMU can offer a positive solution for 3D reconstruction. With 

3D reconstruction, a computer will understand the real world with scale. In a word, it is possible to 

know the distance from point A to point B. After 3D reconstruction, I can use deep learning to 

extract the frame and outline of traffic signs from the mesh generated by cloud points. So, it is 

possible to detect traffic sign locations in this way. With higher accuracy achieved by using the

SLAM method in spatial scale, it will be 
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possible to predict and pinpoint traffic signs within a minimal buffer area, the radius of which 

could then be controlled within one-meter accuracy.  

Augmented Reality (AR) (Todeschini et al. 2019) technology can also be integrated into 

future work. It can generate a 3D traffic sign model in addition to locating their positions, thereby 

delivering better visualization. This new workflow (Figure 18) and its expected technical progress 

can be applied to crewless delivery vehicles as well as other inertial navigation platforms. 

Figure 18 Traffic sign detection and extraction with SLAM 
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APPENDIX A  

ABBREVIATIONS 

IMU: Inertial Measurement Unit 

SLAM: Simultaneous Localization and Mapping 

ITS: Intelligent Transportation System 

ATSDE: Automatic Traffic Sign Detection and Extraction 

SIFT: Scale-Invariant Feature Transform 

SURF: Speeded Up Robust Feature 

ORB: Oriented FAST and Rotated BRIEF 

GIS: Geographic Information System 

GPS: Global Positioning System 

CUDA: Compute Unified Device Architecture 

RGB: Red, Green, Blue 

HSV: Hue, Saturation, Value 

CNN: Convolutional Neural Networks 

ROI: Region of Interest 

GTSRB: German Traffic Sign Recognition Benchmark 

MLP: Multilayer Perceptron 

SVM: Support Vector Machines 

IK-SVM: Intersection Kernel Support Vector Machines 

DNN: Deep Neural Networks 

MCDNN: Multi-column Deep Neural Networks 

SSD: Single Shot Multi-Box Detector 

TIGER: Topologically Integrated Geographic Encoding and Referencing 

API: Application Programming Interface 

GPGPU: General-Purpose Graphics Processing Units 

NAD83: North American Datum of 1983 

SFM: Structure from Motion 

AR: Augmented Reality 
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