New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Spring 2020

MECH 235-002: Engineering Mechanics: Statics (Revised for Remote Learning)

Sunil Saigal

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Saigal, Sunil, "MECH 235-002: Engineering Mechanics: Statics (Revised for Remote Learning)" (2020). *Civil and Environmental Engineering Syllabi*. 396. https://digitalcommons.njit.edu/ce-syllabi/396

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

NEW JERSEY INSTITUTE OF TECHNOLOGY

Department of Civil & Environmental Engineering MECH 255: ENGINEERING MECHANICS: STATICS Spring 2020

Text:	Engineering Mechanics: Staics. 14E. By Russell C. Hibbeler
Section:	MECH 235-002
LECTURE Location:	ONLINE
Time:	MONDAY 10:00 AM to 12:50 PM or Prerecorded Lectures
Instructor:	Prof. S. Saigal, Ph.D., P.E. Email: <u>saigal@njit.edu</u> , 213 Colton Hall, 973-596-5443
RECITATION	

Location: Online

- **Time:** To be announced by TA
- TA: Anurudhha Jayasuriya

Prerequisites: Phys 111, Math 112. Provides an understanding of equilibrium of particles and rigid bodies subject to concentrated and distributed forces.

Students must earn a C or better in this course to register for Strength of Materials, MECH237.

ACADEMIC INTEGRITY

Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: <u>http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf</u>.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at <u>dos@njit.edu</u>

SYLLABUS

WEEK	TOPIC		
	Ch 1: Introduction		
1	Ch 2: Statics of Particles, Trig		
	Method (sketch force polygon)		
2	Ch 2: Rectangular Components		
Z	Equilibrium of a Particle		
3	Ch 2: Force in Space		
5	Forces and Equilibrium in Space		
	Ch 3: Rigid Bodies:		
4	Equivalent System of Forces		
	Scalar (Dot) Products		
	Ch 3: Couples and Force-Couple		
5	Systems		
	Equivalent Systems		
6	Ch 4: Equilibrium of Rigid Bodies		
0	Equilibrium of a 2-Force Body		
	MIDTERM EXAM		
7	Ch 5: Centroids and Center of		
	Gravity		
8	Ch 5: Distributed Loads		
9	Ch 6: Truss Analysis: Method of		
,	Joints		
10	Ch 6: Truss Analysis: Method of		
10	Sections		
11	Ch 6: Frame Analysis		
12	Ch 9: Moments of Inertia		
13	Ch 9: Parallel Axis Theorem		
14	Review		
15	FINAL EXAM		

• Students will be informed in advance by the instructor of any modifications or deviation from the syllabus throughout the course of the semester.

SEMESTER WEEKS

MONTH	WEEK #	MONDAY	NOTES
JANUARY			
JANUART	1	27	
	2	3	
FEBRUARY	3	10	
FEBRUARY	4	17	
	5	24	
	6	2	
	7	9	
MARCH		16	SPRING BREAK
	8	23	
	9	30	
	10	6	
APRIL	11	13	
APRIL	12	20	
	13	27	
MAY	14	4	

IMPORTANT DATES

EVENT	DATE		
First Day of Classes	21-Jan		
Withdrawl - 100% refund	31-Jan		
Withdrawl - 90% refund	3-Feb		
Withdrawl - 50% refund	17-Feb 9-Mar		
Withdrawl - 25% refund			
Last Day to Withdraw	6-Apr		
Spring Break	3/15 to 3/22		
Last Day of Classes	5-May		
Final Exams Begin	8-May		
Final Exams End	14-May		
Final Grades Due	16-May		

Course Policies:

- Attendance is mandatory
- Please turn off all electronic devices (including cell phone, laptop, tablet) during class time.
- Bring your textbook to each class meeting or pages from the relevant chapter.
- Bring your calculator.

Grading Policy:

ITEM	TIME	GRADE (%)
Weekly Quizzes	Each Week till Spring Break	15
Homeworks	After Spring Break	20
Mid-Term Exam	Week 7	35
Final Exam	Week 15	30
TOTAL		100

- There will be NO make-up quizzes or exams unless there is documentation provided to the Dean of Students Office to validate your absence.
- Quizzes and Exams must have Free-Body-Diagrams with Force Vectors shown. ALL work must be shown for full credit.

Homework Policies:

- Homeworks will be assigned and graded online. A hard copy of homework solutions
 must be maintained by students for inspection by instructor, if necessary.
- NO late homework will be accepted.
- All homework MUST include a Free-Body-Diagram to show Force Vectors. All work must be shown for full credit

Helpful Suggestions:

- Take notes and pay attention.
- Ask questions.
- Participate with board work and/or class problem solving.

Tutoring:

Tutoring facilities will be provided for the class. Additional information concerning tutoring will be provided in the class and posted on Moodle

Grade Distribution:

GRADE	FROM	то	
Α	88	100	
B+	82	87	
B+	76	81	
C+	70	75	
С	65	69	
D	60	64	
F	59 or LESS		
W	Voluntary Withdraw before Deadline		
I	Incomplete		

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni.

<u>1 - Engineering Practice:</u> Recent alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

<u>2 - Professional Growth:</u> Recent alumni will advance their skills through professional growth and development activities such as graduate study in engineering, professional registration, and continuing education; some graduates will transition into other professional fields such as business and law through further education.

<u>3 - Service:</u> Recent alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, and humanitarian endeavors.

Our student outcomes are what students are expected to know and be able to do by the time of their graduation:

(a) an ability to apply knowledge of math, science, and engineering

(b) an ability to design and conduct experiments, as well as interpret data

(c) an ability to design a system, component or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

(d) an ability to function on multi-disciplinary teams

(e) an ability to identify, formulate, and solve engineering problems

(f) an understanding of ethical and professional responsibility

(g) an ability to communicate effectively

(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

(i) a recognition of need for, and an ability to engage in life-long learning

(j) a knowledge of contemporary issues

(k) an ability to use techniques, skills and modern engineering tools necessary for engineering practice

Rev. 4/4/12, 9/11/13

Strategies and	Student Learning	Student	Program	Assessment	
Actions	Objectives	Outcomes	Educational	Methods	
		(a-k)	Objectives	/Metrics	
Course Objective 1: Provide transition from Physics (science) to Statics (engineering).					
Present engineering	Able to apply problem-solving	a, e, i	1	Homework, exams	
approach and problem	techniques while building on math			and success in future	
solving techniques	and physics fundamentals relevant			courses.	
used for vector	to force systems in equilibrium.				
analysis. Illustrate applications	Recognize the application of	a, e, i	1	Homework, bonus	
to practical problems	geometry and trigonometry to	<i>a</i> , <i>c</i> , 1	1	problems, and exams.	
of torque, moments,	realistic-type			1	
and couples.	problems. Understand the practical				
	application of cross products and				
	dot products.				
-	aster the concept of two-dimensional	and three-din	nensional vectors	s .	
Illustrate 2D vector	Learn the best approach to	a, e, i	1	Homework and	
components by	determine vector			exams.	
orientation using trigonometry and	components. Understand when and how to apply trigonometry or				
proportions.	proportions in determining vector				
	components.				
Use vivid Power Point	Learn the best approach to	a, e, i	1	Homework and	
examples to	determine vector			exams.	
demonstrate analysis	components. Understand when and				
technique for force	how to apply trigonometry or				
systems on beams and	proportions in determining vector				
trusses and frames. Demonstrate logical	components. Able to visualize orientation of	a, e, i	1	Homework, exams,	
approach to spatial	spatial components and to develop	u, c, 1	1	and bonus challenge	
vectors by	technique to determine these			problems.	
visualization of	components using geometry and				
forces, moments.	projections. Understand application				
of cross products. Course Objective 3: Master the concept of developing free body			s and how to for	mulate and structure	
problems solving techn	niques which is fundamental to the sol			ms.	
Require FBD's, for all	Ability to translate a problem	a, e, i	1	Homework, bonus	
problems and	statement into a FBD and			challenge problems,	
emphasize importance of vector directions.	distinguish tensile and compressive members in trusses and			and exams.	
of vector directions.	frames. Able to understand the				
	effect of friction in a force system.				
Illustrate the approach	Understand the techniques of	a, e, i	1	Homework, bonus	
of going from the	problem solving based upon the use			challenge problems,	
FBD to the problem	of FBD#146;s applied to beams,			and exams.	
solution by formulating the	trusses, and frames. Understand the concepts of centroids and moments				
appropriate equation	of inertia.				
set.	or mortuu.				
Provide numerous	Develop the technique of problem	a, e	1	Homework, exams	
solved problems	solving strategy by repetition for all			and bonus challenge	
available on	topics.			problems.	
web. Require					

Course Objectives Matrix; MECH 235 Statics

numerous homework problems weekly.		Rev. 1/6/13,
		9/11/13