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ABSTRACT

A numerical model based on the Monte Carlo solution of the vector radiative transfer equation has been
adopted to simulate radar signals. The model accounts for general radar configurations such as airborne/
spaceborne/ground based and monostatic/bistatic and includes the polarization and the antenna pattern as
particularly relevant features. Except for contributions from the backscattering enhancement, the model is
particularly suitable for evaluating multiple-scattering effects. It has been validated against some analytical
methods that provide solutions for the first and second order of scattering of the copolar intensity for
pencil-beam/Gaussian antennas in the transmitting/receiving segment. The model has been applied to
evaluate the multiple scattering when penetrating inside a uniform hydrometeor layer. In particular, the
impact of the phase function, the range-dependent scattering optical thickness, and the effects of the
antenna footprint are considered.

1. Introduction

The precipitation radar (PR) at 13.8 GHz on the
Tropical Rainfall Measuring Mission (TRMM) satellite
has played a very significant role in the characterization
of clouds and precipitation particles aloft (Kummerow
et al. 1998; Kozu et al. 2001). Future spaceborne radars
are envisaged to operate at higher frequencies such as
35.5 GHz for the radar planned for the Global Precipi-
tation Measurement (GPM) satellite and its European
version (EGPM; Mugnai 2003). The “CloudSat” radar
at 94 GHz is already deployed to investigate the vertical
structure of clouds (Stephens et al. 2002).

The interpretation of radar scans is always made on
the assumption of negligible multiple-scattering (MS)
effects. However, as the frequency of operations of the

PR is raised, some factors may come into play that have
the potential to enhance the significance of higher or-
der of scattering in the radar echo. Among such factors
are the increase in the optical thickness of the medium,
the decrease of the mean free path of radiation (defined
as the inverse of the extinction coefficient) toward val-
ues comparable to or smaller than the radar footprint
dimension, the increase of scattering versus absorption
cross sections [e.g., for raindrops see Fig. 3.6 in
Gasiewski (1993)], and the modification of hydro-
meteor scattering-phase functions, which become more
peaked in the forward direction. This factor is high-
lighted by the increase of the asymmetry parameter g
[e.g., Fig. 3.7 in Gasiewski (1993) and center-left panels
in Figs. 5 and 7–9 of Battaglia et al. (2006), hereinafter
referred to as Part II]. Because previous studies such as
Ito et al. (1995), Marzano et al. (2003), Kobayashi et al.
(2004, 2005), and Battaglia et al. (2005a) showed that
the borderline of relevance for MS effects lies between
the new-generation spaceborne radars (at Ka and Ku

band) and the TRMM PR at X band (see Kozu et al.
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2001), a detailed investigation of the problem of MS at
frequencies in the millimeter region is a timely en-
deavor.

The MS phenomenon in active remote sensing has
been well studied within the lidar community (see Bis-
sonnette et al. 1995; Bissonnette 1996, and references
therein). In typical lidar configuration, this phenom-
enon is enhanced by the higher optical thickness and
higher single-scattering (SS) albedos typical for visible
and near-infrared regions. Because of the small hori-
zontal footprint of lidar systems (fields of view are
within 0.1–5 mrad), the MS effect is enhanced by the
strongly peaked phase function that is characteristic of
ice/water particles in the optical-scattering regime. This
property allows the analysis to focus on scattering in the
forward direction only and to derive a closed form of
the MS lidar equation (Bissonnette 1996).

When radar systems are used for active remote sens-
ing of precipitation, it is observed that very few studies
on MS effects have been carried out (Hubbert and
Bringi 2000; Oguchi et al. 1994; Ito et al. 1995; Marzano
et al. 2003; Kobayashi et al. 2005). Hubbert and Bringi
(2000) developed a three-body scatter model to explain
flare echoes or “hail spikes,” which are special signa-
tures in reflectivity and differential reflectivity ob-
served at S-band and C-band signals in hailstorms. The
numerical model is restricted to three-body scatter, and
it cannot be extended to general MS theory. A similar
model aimed at validating the second order of scatter-
ing has been developed in our general MS model (sec-
tion 4b). Note also that the mirror-image return, fre-
quently observed in most of the TRMM PR profiles
over ocean (e.g., Olson et al. 2001), is based on an MS
mechanism that involves surface, rain, and then surface.

Oguchi et al. (1994) and Marzano et al. (2003) evalu-
ated MS effects and their impact on rainfall-rate esti-
mates. These studies concluded that MS signals are sig-
nificant, especially in heavy-rain cases. In particular,
Marzano et al. (2003) showed that, in the presence of
strongly attenuating media, MS contributions will en-
hance the detection of rain by partly overcoming the
apparent path attenuation. This effect has an immedi-
ate impact on rainfall retrieval algorithms (e.g., Testud
et al. 1992; Marzoug and Amayenc 1994; Iguchi et al.
2000). In fact, the correction of attenuation is important
in spaceborne monitoring of rainfall for which the fre-
quencies used are higher but the path through the rain
is fairly short. The studies by Oguchi et al. (1994) and
Marzano et al. (2003), however, did not explicitly ac-
count for the effect of the antenna pattern and of the
backscattering enhancement on radiation undergoing
MS. In contrast to these theoretical studies that consid-
ered infinitely extended plane waves (which assump-

tion overestimates the MS effect, as will be shown later
in this study), more recent studies have taken into ac-
count the antenna pattern effect. In the study by Koba-
yashi et al. (2004, 2005), reductions in MS effects were
derived by considering spherical waves with a Gaussian
antenna pattern, including depolarizing effects. Their
conclusion can be summarized as follows. The differ-
ences from the plane-wave results are not significant
when the optical thickness is small. However, when the
latter increases, the differences become significant and
essentially depend on the ratio of radar footprint radius
to the mean free path of hydrometeors. In this regime,
for a radar footprint that is smaller than the mean free
path, the MS (inclusive of the backscattering enhance-
ment) in reflectivity corresponding to spherical waves is
significantly less pronounced than in the case of the
plane-wave theory. Whereas the theory of Kobayashi et
al. (2005) treats a uniform single-layered cloud illumi-
nated by continuous waves, Battaglia et al. (2005a)
simulated the MS for random media in multiple cloud
layers with pulsed radars. The findings by Kobayashi et
al. (2004, 2005) were confirmed in Battaglia et al.
(2005a) in which the reduction in MS due to illumina-
tion by a finite beamwidth is demonstrated for a PR
down-looking configuration for heavy convective rain.
In particular, it was shown how the MS effect vanishes
when passing from a typical PR footprint diameter (on
the order of 4–5 km) to very high resolution airborne
systems (on the order of hundreds of meters) at 35
GHz. As a conclusion from these results, infinitely ex-
tended plane-wave computations can be used only to
pinpoint when MS is negligible; when MS effects are
relevant, this kind of computation is accurate only
when the radar footprint radius is much larger than the
mean free path.

In this two-part series of papers, attention is focused
on the two frequencies to be used in the planned GPM
core satellite: 13.8 and 35.5 GHz. First, a general in-
sight into MS effects is given by discussing the impacts
of the different factors involved in the problem (e.g.,
scattering properties, radar configuration, or antenna
pattern). Then, in Part II estimates of the MS effects at
the two GPM frequencies are provided when using
both the configurations of the envisaged spaceborne
radars and those set up in preliminary airborne cam-
paigns.

In this first part, a numerical Monte Carlo (MC)
model suitable for a pulsed active-sensor MS evalua-
tion is described and validated. In section 2, the radar
equation, which is extended to account for MS con-
tributions, is briefly reviewed. Section 3 describes
the MC code developed to evaluate the MS effect in
radar echoes. Using the model, the results obtained for
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the first and second order of scattering are validated
in section 4. In section 5, the model is applied to a
uniform homogeneous layer to explain the general
features of the MS signal. Conclusions are drawn in
section 6.

2. The radar equation in the presence of multiple
scattering

The classical radar equation (e.g., Doviak and Zrnić
1984; Bringi and Chandrasekar 2001) usually provides
the apparent reflectivity as a function of SS contribu-
tions only. Taking an approach similar to that adopted
by Marzano et al. (2003), how to generalize the radar
equation to include MS components is briefly summa-
rized. Here emphasis is on antenna-related quantities
because of their importance in the following develop-
ments.

The apparent (or effectively measured) received
power due to the range gate at distance r in the pres-
ence of MS (higher than the SS contributions) can be
generally expressed (Tsang et al. 1985) as

�PaR�r�� � Ae0�
4�

Fn��̂��Ia�r, �̂�� d�

�
�2

4� �
4�

G��̂��Ia�r, �̂�� d�, �1�

with �Ia(r, �̂)� being the mean value of the apparent
received specific intensity. Here, Fn(�̂) is the normal-

ized (in the sense that the maximum is equal to 1) an-
tenna pattern (equal to the square of the modulus of
the antenna field pattern); G(�̂) � G0Fn(�̂) is the
antenna gain, with G0 � (4�)/�p being the maximum
directive gain and �p � �Fn(�̂) d� being the antenna
pattern solid angle. The maximum antenna equivalent
area is Ae0 � 	2/(4�)G0. When only the first order of
scattering is retained in the apparent specific intensity,
the single- (back-) scattering power is obtained as

�PaR
SS�r�� � Ae0�

4�

Fn��̂��Ia
SS�r, �̂�� d�

�
�2

4� �
4�

G��̂��Ia
SS�r, �̂�� d�. �2�

The integral over the solid angle on the right-hand side
of Eq. (2) can be simplified under the hypothesis that
the SS specific intensity �ISS

a (r, �̂)� is constant within
the antenna main lobe. This condition is true in par-
ticular when dealing with a pencil beam, hereinafter
referred to as the SS pencil-beam (SSpb) approxima-
tion. When carrying out the integral, Eq. (2) reduces to
(Bringi and Chandrasekar 2001)

�PaR
SSpb�r�� �

Ae0G0�2A�r

�4��2
�5|K|2

�4

PT

r2 Za
SSpb, �3�

where 	 is the wavelength, PT is the transmitted power,

r is the range resolution, and ZSSpb

a is the SS apparent
radar reflectivity at range r and is related to the equiva-
lent reflectivity factor Ze by

Za
SSpb�r� � Ze�r� exp��2�

0

r

kext��� d��� � �4

�5|K|2
�

D

�back�D�N�D� dD�A2-way�r�, �4�

A2-way�r� Ze�r�

with |K|2, back, and N(D) being the dielectric factor,
the backscattering cross section, and the size distribu-
tion of the scatterers contained inside the radar back-
scattering volume, respectively. In the simulations,
the dielectric factor is always normalized to that of
water at 0°C (assumed to be equal to 0.93 for all fre-
quencies considered hereinafter). Equation (4) explic-
itly defines also the two-way attenuation A2-way(r) at
range r.

In Eq. (3), �2A is the two-way main-lobe solid angle
given by

�2A � ��Fn��̂�� 2 d�. �5�

For instance, a Gaussian antenna has an antenna pat-
tern of the form

Fn��, �� � exp��4 log2� �2

�3dB
2 �

�2

�3dB
2 ��, �6�

where � and � are the angles in the vertical and hori-
zontal antenna planes and (�3dB, �3dB) are the respec-
tive beamwidths at 3 dB. When the Gaussian antenna is
narrow, it follows that

�2A
Gaussian � ��Fn

2��, �� d� d� ≅
��3dB�3dB

8 log2
. �7�
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By comparing Eqs. (1) and (3) it is therefore possible
to define an apparent MS reflectivity as

Za
MS � ��4�

Fn��̂��Ia�r, �̂��r2 d�

PT

� �4

�5|K|2
�4��2

G0�2A�r
.

�8�

In a similar way, by making use of Eq. (2) ZSS
a (�ZMS

a )
can be computed by Eq. (8) with the single-scattering
contribution ISS

a instead of Ia.
Last, note that Eq. (8) further simplifies to G0�2A �

2� for a Gaussian antenna pattern and to G0�2A � 4�
for pencil-beam-like antennas.

3. A Monte Carlo approach to simulate the
multiple-scattering reflectivity

To compute the apparent MS reflectivity defined by
Eq. (8), it is necessary to evaluate the received specific
intensity in terms of all relevant scattering orders, as
depicted in Fig. 1. To compute ZMS

a , the vector radiative
transfer equation has been solved by using a sophisti-
cated MC solution technique (Battaglia et al. 2005b).
When reverting to radiative transfer theory, the present
MC approach cannot account for the backscattering en-
hancement phenomenon (see Tsang et al. 1985, chapter
5) because it can only be described adequately by wave
theory. For instance, at the second order of scattering
the model accounts for the second-order ladder term

FIG. 1. Geometry and principles of the forward MC algorithm to compute the MS apparent
reflectivity ZMS

a .

DECEMBER 2006 B A T T A G L I A E T A L . 1637



only [i.e., the conventional MS term as illustrated in
diagram 1b in Kobayashi et al. (2004)] but does not for
the second-order cross term [i.e., the contribution from
interference of two ray paths mutually satisfying the
condition of time-reversal paths as illustrated in dia-
gram 2b in Kobayashi et al. (2004)]. This condition will
lead to an underestimation of the MS effect (see Koba-
yashi et al. 2004, their Fig. 5). However, when consid-
ering spaceborne systems, the high-speed platform mo-
tion will generally break the right backscattering con-
dition. Conversely, the treatment of scattering order
higher than 2 is much easier in our frame.

Instead of using the backward MC technique of Rob-
erti and Kummerow (1999), as done by Marzano et al.
(2003), we have modified the forward MC by Battaglia
and Mantovani (2005). In the case of an active sensor
response simulation, the backward and the forward ap-
proaches give identical statistics when the same number
of photons is launched. The forward code has, however,
the advantage of a complete polarimetric treatment and
the capability of accommodating nonisotropic media.
Both aspects are crucial for the simulation of radar po-
larimetric variables. The MC technique was adopted in
this study because of its flexibility in simulating both
3D-structured clouds and arbitrary antenna patterns.
Because of the 3D nature of the problem as introduced
by the presence of the antenna pattern, it is not possible
to simplify the radiative transfer equation to a 1D ap-
proximation (which has the possibility of analytic and
fast codes) as was done by Ferrauto et al. (2004).

The forward MC code by Battaglia and Mantovani
(2005) (which was available online at http://www.
meteo.uni-bonn.de/mitarbeiter/battaglia/) was devel-
oped for passive remote sensing applications. The al-
gorithm has been modified to simulate the active sensor
response by keeping track of the distance traveled by
each photon and by allowing the radar to be the only
source of radiation. As illustrated in Fig. 1, the radar is
characterized by

1) a locally transmitting rtr and receiving position rrec

(to allow for bistatic antenna configurations)—the
radar antennas can be positioned at any altitude
above, below, or within the cloud, thus allowing for
ground-based, spaceborne, and airborne configura-
tions;

2) two pointing angles �̂tr/rec
rad or, equivalent, two angles

(�tr/rec
rad , �tr/rec

rad ) that correspond to the direction of
the main lobe of the transmitting and of the receiv-
ing antenna, whose unit vector is expressed as

krad
tr�rec � �sin	rad

tr�rec cos
rad
tr�rec, sin	rad

tr�rec

sin
rad
tr�rec, cos	rad

tr�rec�,

with the vertical and horizontal polarization direc-
tions being

vrad
tr�rec � �cos	rad

tr�rec cos
rad
tr�rec, cos	rad

tr�rec sin
rad
tr�rec,

� sin	rad
tr�rec� and

hrad
tr�rec � ��sin
rad

tr�rec, cos
rad
tr�rec, 0�;

3) two antenna pattern functions F tr/rec
n (�̂) (that can be

different in the transmitting and in the receiving seg-
ment), typically identified by the two beamwidths
defined in Eq. (6);

4) a transmission and a receiving polarization state
(like vertical, horizontal, left/right circular polar-
ized); and

5) a range resolution 
r � c
t/2, with 
t being the
pulse duration.

The radar outgoing radiation is simulated by a num-
ber NT of photons per unit time, with NT high enough
to represent the stochastic variability of all processes
involved in photon propagation and interactions when
released from the transmitting radar antenna with an
appropriate polarization state I(0)(rtr) [the Stokes basis
is the one defined in Tsang et al. (1985), e.g., for a
vertical-polarization transmitting radar I(0)(rtr) �
(1.0, 0.0, 0.0, 0.0)]. Note that the overbar indicates the
four-dimensional Stokes vector. Each photon is consid-
ered to carry a unitary energy (so that NT corresponds
to the total emitted power PT), and the angular distri-
bution function is that provided by the antenna pattern.
For instance, to reproduce the Gaussian pattern of Eq.
(6) it is sufficient (House and Avery 1969) to select two
uniform random numbers R1 and R2 and to define

� � ���� 2.0 log�R1� cos�2.0�R2� and

� � ���� 2.0 log�R1� sin�2.0�R2�,

with � � �3DB/�8 log2 and � � �3DB/�8 log2, so
that � and � are Gaussian-distributed random numbers
with zero mean and standard deviations equal to � and
�. The outgoing photon direction can be identified by

�̂i
�1� � a1vrad

tr � a2hrad
tr � a3krad

tr ,

where a1 � x1/(1 � x2
1 � x2

2)1/2, a2 � x2/(1 � x2
1 � x2

2)1/2,
and a3 � 1/(1 � x2

1 � x2
2)1/2, with x1 � tan� and x2 �

tan�.
By so doing, all radiance field properties can be com-

puted from statistical properties of the photon density.
For instance, when the radiance in a particular direc-
tion �̂ at a certain point r is looked for, it is sufficient
to take a surface 
� centered in r and normal to �̂, and
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to count the number of photons n that cross the surface
at �̂ within a small solid angle 
�. The MC stochastic
estimation of the radiance will be

I��̂, r� �

PT �
��,��

n��̂, r�

NT����
. �9�

In the code, each photon is traced inside the medium:
all stochastic processes (distance to collision, probabil-
ity of scattering, direction of scattered photons, etc.) are
simulated as in the MC version for passive sensors and
the associated Stokes vectors are properly modified.
Biasing techniques are applied to prevent the photons
from escaping from the medium and to avoid absorp-
tion events (see section 5.2 in Battaglia and Mantovani
2005).

Each time a k-order scattering event occurs at point
r(k)

scat, the algorithm computes the contribution to the
received intensity. Because we are dealing with an ac-
tive sensor, this k-order scattering contribution has to
be assigned to a range bin. Therefore, the apparent
range is computed by adding the total distance traveled
by the photon from the transmitting antenna to the
interaction point and the distance between the interac-
tion point and the receiver antenna divided by two:

range�k� � 0.5�dist �rtr → rscat
�k� � � |rrec � rscat

�k� |�.

This distance will correspond to a particular range bin
encompassing all ranges between r � 
r/2 and r � 
r/2.
The k-order-of-scattering contribution to the Stokes
vector received by the radar for a particular photon ( j)
will be

I�a
�k��r��j� � Fn

rec��̂
�k�� Pprop�rscat

�k� → rrec�

� Sscat�rscat
�k� ; �̂i

�k�, �̂
�k�� I� �rscat

�k� �; �10�

Sscat represents the normalized phase matrix (see defi-
nition in Mishchenko et al. 2000) for the medium at the
point r(k)

scat relative to the incoming direction of the pho-
ton before the k-order scattering �̂(k)

i and to the scat-
tered direction toward the receiving antenna �̂(k)

� (unit
vector corresponding to the vector difference rrec �
r(k)

scat). It is obvious that, at the first scattering order
for monostatic radar, �̂(1)

� � ��̂(1)
i . In Eq. (10), the

F rec
n [�̂(k)

� ] scalar term takes into account the antenna
pattern in the receiving segment (this term suppresses
all photons scattered to the radar receiver from outside
the field of view). Term Pprop[r(k)

scat → rrec] is the 4 � 4
propagation matrix that accounts for the extinction of
the signal scattered back to the radar receiver. When
propagating in nonisotropic media, this propagation
matrix will induce polarization effects as well (see sec-
tion 5.3 in Battaglia and Mantovani 2005). When the

photon intensity become smaller than a certain thresh-
old, the tracing is terminated and a new photon is
launched. By summing up over NT photons and over
the different orders of scattering, the algorithm pro-
vides an estimate of the mean apparent intensity re-
ceived by the radar from range r as

�I�a�r�� �
1

NT
�
j�1

NT

�
k�1

Ns

I� a
�k��r�� j� � �

k�1

Ns

I� a
�k��r�, �11�

with Ns being the maximum scattering order. When
using Ns � 1, only SS effects are taken into account.

Equation (11) represents the statistical MC equiva-
lent of the nondimensional term inside the brackets on
the right side of Eq. (8), with the only difference being
that it includes the four Stokes components. When the
radar emits a horizontal wave and the horizontal (ver-
tical) component is considered in the receiving seg-
ment, the copolar reflectivity ZMS

hh (the cross-polar re-
flectivity ZMS

h� ) will be computed by inserting Eq. (10) in
Eq. (8). Therefore, parameters such as ZMS

dr and linear
depolarization ratio LDRMS

�h are easily derived in the
MC simulation as well. Although in this study we con-
sider only isotropic media, because of MS effects cross-
polar reflectivity signals can also of interest, as will be
shown in section 5d.

4. Validation of the code

a. Single-scattering results

To validate the MC procedure, a very simple five-
layer raining atmosphere is used. The five layers are
each 1 km thick and contain raindrops with an expo-
nential hydrometeor size distribution with fixed inter-
cept as in the Marshall–Palmer size distribution (Mar-
shall and Palmer 1948) and equivalent water contents
equal to 0.3, 1.0, 1.8, 2.0, and 2.5 g m�3, with the inten-
sity increasing downward. At 35.5 GHz, this configura-
tion leads to equivalent reflectivities equal to 33.5, 40.5,
43.4, 43.9, and 45.0 dBZ and to attenuations equal to
1.2, 5.1, 9.8, 11.0, and 13.9 dB km�1, respectively. From
these values it is straightforward to reconstruct the SS
pencil-beam apparent reflectivity profile by accounting
for the two-way path attenuation. One detail worth
mentioning concerns the attenuation contribution from
the same range bin where the reflectivity is computed.
In fact, although the reflectivity value is attributed to
the center of a fixed range bin at a distance r, the at-
tenuation is not that corresponding to the same dis-
tance: Eq. (4) is not exact. In contrast, suppose that the
equivalent reflectivity factor is constant and equal to
Ze(r) in the radar bin of thickness 
r ; then we can write
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Za�r� � Ze�r�A2-way�r � �r�2�

�
0

�r

e�2kextz dz

�r

� Ze�r�A2-way�r � �r�2�
1 � e�2�

2�
, �12�

with kext and �r→r�
r � kext
r being the extinction co-
efficient and the optical thickness of the bin, respec-
tively. When passing to logarithmic values, Eq. (12)
provides an attenuation factor (dB) equal to

A2-way�r� � 2 � 4.343�0→r��r�2

� 10 log10�1 � exp��2�r→r��r�

2�r→r��r
�. �13�

Note that only in the limit of small �r→r�
r, [1 �
exp(�2�r→r�
r)]/2�r→r�
r → exp(��r→r�
r) so that
A2-way(r) → 2 � 4.343(�0→r�
r/2 � 0.5�r→r�
r) and the
attenuation can be computed as the two-way attenua-
tion relative to the center of the bin 2 � 4.343�0→ r.

Figure 2 shows the departure from the exact analyti-
cal solution for ZSS

a in the case of a spaceborne radar
with a vertical resolution of 500 m and a footprint di-
ameter of 1 km. To give an idea of the accuracy of the
computations performed with the MC technique, in Fig.
2 the MC simulations have been performed for three
different numbers of photons: 102, 104, and 106. Even in
the presence of a strong attenuating profile one million

photons are enough to reach an accuracy of better than
0.2 dB in the whole profile. The accuracy obviously
deteriorates going deeper inside the cloud because of
the reduced number of photons that successfully reach
the deepest layers. In the extreme case when NT � 100,
no photon is able to reach the layer below 2 km. In fact,
the optical thickness above this layer is approximately
equal to 5 so that, on average, only NT exp(�5) � 0.6%
of NT photons reach that layer. This is the reason why
the dashed-diamond line stops at 2.25-km altitude in
Fig. 2. Based on the MC statistics of each range bin
(which will depend on the selected 
r), the code inter-
nally computes the variance of �Ia(r)� defined in Eq.
(11) for each range bin. This can be converted to an
error (related to the MC noise) for each of the analyzed
radar quantities. In Fig. 2, results for each simulation
are plotted with a corresponding error bar that repre-
sents the 3- confidence level based on MC statistical
noise.

b. Relative importance of the contribution from the
second order of scattering

As a test, the importance of the second order of scat-
tering (relative to the first order) has been evaluated in
a homogeneous layer having constant extinction and SS
albedo and a generic phase function p(�) [normalized
by the condition �1

�1 p(�) d cos(�) � 2]. Note that � is
the scattering angle, that is, the angle between the in-
cident and the scattered direction. We expect that the
second order of scattering becomes more relevant with
deeper penetration into the layer; this contribution
should also increase linearly with the SS albedo. For
illustration, consider Fig. 3 in which the nadir down-
looking radar is positioned at an altitude Hradar above
the homogeneous layer (at the point F1). Here we con-
sider a monostatic radar, the antenna pattern of which
is pencil-beam-like in the emitting segment and Gauss-
ian in the receiving segment. At depths between z and
z � 
z, the second-order-of-scattering effect results
from an integral over all possible second order-of-
scattering contributions by photons interacting the first
time at P1 and the second time at P2. Note that P2 has
to be located between the two spheroids with the same
foci F1 and F2 (located at the radar position and in P1)
and with the rotational symmetry axis length equal to
2a1 � 2z � z1 � Hrad and 2a2 � 2(z � 
z) � z1 � Hrad.
In fact, by using the ellipse definition property, the path
undergone by the photons emitted by the radar, scat-
tered in P1 and then scattered back to the radar in P2,
is between Hrad � z1 � 2a1 and Hrad � z1 �2a2, corre-
sponding to an apparent range between Hrad � z and
Hrad � z � 
z. The probability of a photon being scat-
tered at a penetration depth between z1 and z1 � dz1,

FIG. 2. Computed exact SS reflectivity for a 5-km-thick layer of
rain (see text for details). The exact values of ZSS

a are �28.6,
�14.7, �3.8, 7.2, 16.9, 26.7, 30.6, 35.7, 31.7, and 32.9 dBZ for
altitude between 0.25 and 4.75 km, with a step of 0.5 km. The
radar vertical resolution and footprint diameter are 0.5 and 1 km,
respectively. Different numbers of MC photons are used as indi-
cated in the legend (1M � 106, 10K � 104). The error bars cor-
respond to the 3- confidence level based on MC statistical noise.
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dP(z1), is proportional to the SS albedo � and, accord-
ing to Beer–Lambert–Bouguer law, to the factor kext

exp(�kextz1)dz1, that is,

dP�z1� � �kexte
�kextz1dz1. �14�

The fraction of photons being scattered in the ellipsoi-
dal segment with polar angles between  and  � d 
will be

dF ��� � �kext�r���e�kextr���
p���

2
d cos�, �15�

with r( ) � P1P2 and 
r( ) � MN (see Fig. 3 for defi-
nition of points M and N). This fraction of photons,
when going back to the radar, undergoes a path attenu-
ation equal to exp(�kext
�), with 
� � P1P2 � P2P3

and an antenna attenuation corresponding to the angle
!; the scattering angle is given by �sca � ! �  so that
a correction factor equal to p(�sca)/(4�) also has to be
included. Note that the photon scattered both at P1 and
P2 is always less attenuated than the SS photons with
the same apparent range gate. The medium path dif-
ference is equal to F1P3 � F1P0, and it increases with !.

Therefore, using azimuthal symmetry, the total frac-
tion of photons first scattered at P1 and then at any
point will be

�F �z1� � �
�1

�

e�kext�����e�4 log2� �

�3dB
�2 p�	sca�

4�
dF ���.

�16�

Thus, the fraction of photons backscattered twice with
an apparent range between z and z � 
z will be

F �z, �2�� � �
0

z

�F �z1�dP�z1�. �17�

On the other hand, the fraction of photons being back-
scattered only once and with apparent range between z
and z � 
z will undergo an additional z-long path in-
side the attenuating medium (but no antenna suppres-
sion), so that

F �z, �1�� � �kext�ze�kextz
p���

4�
e�kextz, �18�

where p denotes the phase function. The fraction of
photons backscattered twice divided by the fraction
backscattered once, that is, the ratio obtained by divid-
ing Eq. (17) by Eq. (18), provides a way to assess the
magnitude of the second order of scattering relative to
the first order. As a first obvious consideration, this
ratio has a dependence on �, and the higher the SS
albedo is, the higher is the effect.

The analytical model has been exploited to validate
the second-order-of-scattering results as computed with
the MC method. Figure 4 shows the ratio F [z, (2)]/
{�F [z, (1)]} evaluated for different phase functions
when considering an infinite-aperture antenna (so no
antenna suppression factor is present). Figure 4 shows
an almost perfect agreement between the analytical
(line style) and the MC (symbol style) results. The dis-
agreement at optical thickness higher than 5 is due to

FIG. 3. Schematic for the evaluation of the relative magnitude of
the second-order-of-scattering contribution. For explanations see
text.

FIG. 4. Evaluation of the magnitude of the second order of
scattering as a function of the traveled optical thickness for a
uniform layer with different phase functions. The results corre-
sponding to an H–G phase function with g � 0.95 are almost
indistinguishable from those obtained with a Mie phase function
with g � 0.4. Results are computed with no antenna suppression
factor: lines are the analytical solutions, and symbols are the MC
results.
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MC noise that becomes relevant at high optical thick-
nesses. In this case, the impact of the second order of
scattering depends only on the optical thickness � trav-
eled inside the medium: the higher the optical thickness
is, the higher is the MS effect. As an example (see Fig.
4), in an isotropic medium with an albedo equal to 0.1
the second order of scattering has almost the same mag-
nitude as the SS at an optical thickness of 7 whereas in
a Rayleigh medium with the same albedo it is almost
one-half as much at an optical thickness of 6. To evalu-
ate the effect of the increased forward scattering for
higher microwave frequencies, different phase func-
tions have been used in Fig. 4. In particular, we have
included a Rayleigh (for unpolarized radiation), an iso-
tropic, and a Heyney–Greenstein (H–G) phase func-
tion with different g parameters. For comparison pur-
poses, and because of the difference between this
and realistic phase functions in the backscattering re-
gion, we have included a phase function for a distribu-
tion of spherical ice crystals with the same g � 0.4. The
simulations show that an increase in g causes first an
increase in the MS contribution and then a decrease
with the turning point for g around 0.5. For instance,
at an optical thickness of 3 and a phase function with
g � 0.2, 0.4, and 0.95, the corresponding magnitude of
the second order of scattering is 1.57, 1.92, and 1.25
times the value of the corresponding isotropic phase
function. In fact, as g increases, more photons contrib-
ute to the integration in Eq. (16) because photons that
are scattered with scattering angle higher than � �  1

(with  1 � F1P1P4
ˆ ) do not contribute to the integral in

Eq. (16). At a certain point at which practically all ra-
diation is scattered in P1 with scattering angles lower
than � �  1, a further increase in g actually has a nega-
tive effect in terms of the magnitude of the second or-
der of scattering. In effect, the scattering phase function
p(�sca) [which also enters the integral Eq. (16)] de-
creases monotonically with �sca (and in particular has a
minimum at �sca � �). When the scattering at P1 is
mainly in the forward direction, the scattering angles
in P2 will be primarily close to �. The opposite beha-
vior occurs when the scattering at P1 distributes pho-
tons in all the shaded area in Fig. 3, when scattering
angles as large as �/2 are allowed to happen in P2. The
balance between the two effects decreases the ratio
F [z, (2)]/{� F [z, (1)]} for high g (g � 0.5) for the H–G-
like phase functions. This turning point for the g value
will move to higher values when the antenna pattern
is considered. In this case, the effective area to be con-
sidered will be the intersection between the shaded
area of Fig. 3 and the antenna pattern. In the hypo-
thetical case of a phase function that scatters radiation

only in the forward direction (and just allowing for a
small fraction to be backscattered), we can actually
forecast the ratio F [z, (2)]/{� F [z, (1)]} to be equal to
the optical thickness � itself. In this case, the photons
scattered twice are simply those that make the same
exact path as the photons scattered once. Another
factor should be taken into consideration: with more
forward scattering, the differential attenuation between
the first-order-scattered and second-order-scattered
photons (which favors the second-order contribution)
is less pronounced. However, this effect can be ne-
glected when considering spaceborne configurations
(for which the difference F1P3 � F1P0 is typically neg-
ligible).

Note that in Fig. 4, because of the different slopes,
the Rayleigh phase function has less MS than the iso-
tropic one—this is mainly due to the fact that the back-
scattering ratio p(�sca)/p(�) is generally lower and be-
cause more photons are “lost” when scattered at scat-
tering angles higher than � �  1. The result labeled as
“Rayleigh unpol” (“Rayleigh pol”) (see Fig. 7, de-
scribed in section 5b), represents the scalar (vector)
solution of the radiative transfer equation (but in both
cases with unpolarized impinging radiation). When po-
larization is considered, the Rayleigh results are closer
to the isotropic results. In a similar way, the real phase
function gives less MS effect relative to that of the H–G
with the same g; because of the backscattering peak of
the real phase function, the backscattering ratio is typi-
cally lower in this case.

For an infinite antenna beamwidth (see Fig. 4), the
MS tends to increase almost linearly with the optical
thickness: in fact, no antenna factor suppresses the
contributions from regions far away from the radar ze-
nith foot. When the beamwidth is considered (Fig. 5),
the increase with the optical thickness is strongly
damped. When kext becomes sufficiently high, the an-
tenna pattern is no longer important and the results
tend to be equal to those for an infinite-beam-
width-antenna pattern (reproduced in Fig. 5 and indi-
cated as kext � " in the legend). Moreover, at the same
�, the effect is larger for media with higher kext be-
cause the antenna factor suppresses all contributions
from regions far from nadir. The difference between
the dotted lines and the other lines practically accounts
for the departures between taking into account the
antenna pattern or working in the 1D assumption
like Marzano et al. (2003) (which generally overesti-
mates the effect). As before, very good agreement be-
tween the MC results and the analytical model can be
seen by comparing the symbols and line-style curves in
Fig. 5.
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5. Evaluation of MS effects for a homogeneous
layer

The MC code has been used to understand which of
the scattering properties are most relevant when con-
sidering the MS signal. For this purpose, the MS effect
is evaluated for a single-layer atmosphere characterized
by fixing an SS albedo � and a phase function and
varying the extinction coefficient kext independently.

It is useful to introduce the “scattering optical thick-
ness, ” defined as the integral over distance of the scat-
tering coefficient (i.e., particle density times scattering
cross sections):

���z� � �
Htop

z

kext� dz, �19�

where Htop indicates the altitude of the top of the me-
dium.

a. Magnitude of the successive orders of scattering

The MC code records the contribution of each order
of scattering I (k)

a (r) to the total signal Ia(r) [see Eq.
(11)]. In particular, it is possible to evaluate the mag-
nitude of the successive orders of scattering by comput-
ing the ratio f(k) � I (k)

a (r)/Ia(r). Figure 6 shows the
magnitude of different orders of scattering when going

inside the medium for an unpolarized Rayleigh phase
function. The incoming radiation is collimated at nadir,
and no antenna pattern suppression factor is considered
in the receiving segment. The radar vertical resolution
is selected to be so small (
r � 50 m) that kext
r K 1;
in other words, the radar pulse (multiplied by 0.5 times
the speed of light) is much shorter than the mean free
path. If this condition is not fulfilled, the scaling prop-
erties with the scattering optical thickness no longer
hold. At ranges within which the scattering optical
thickness is equal to 1, the contributions of the first and
second orders of scattering to the radar signal are ap-
proximately 30%, whereas the third and the fourth or-
ders of scattering contribute approximately 20% and
10%, respectively. It is obvious that the contributions
from higher scattering orders increase with the scatter-
ing optical thickness. Figure 6 indicates that the peak
contribution of each scattering order decreases with
scattering order while the scattering optical depth as-
sociated with the peak contribution of each scattering
order increases with scattering order. Note that the re-
sults plotted in Fig. 6 correspond to an albedo � � 0.5,
but identical results have been found for other albedos.
Therefore, at the same scattering optical depth, the re-
sult is independent of the values assumed for the albedo
and the extinction coefficient of the medium but de-
pends only on the product of the two. For the second
order of scattering, this can be understood by looking at
the integral in Eq. (17): when spaceborne configura-
tions are considered, the product of the three terms
exp[�kext
�( )], exp[�kextr( )], and exp(�kextz1) can
be taken out of the integral because it is practically
equal to exp(�2kextz). Therefore, Eq. (17) becomes

FIG. 5. Same as Fig. 4, but including the effect of the antenna
pattern. A uniform layer with different phase functions (black
lines for unpolarized Rayleigh; gray lines for H–G with g � 0.4)
and extinction coefficients (as indicated in the legend; km�1) is
considered. The results are evaluated with an antenna pattern
with a horizontal resolution of 5.2 � 5.2 km2. The curves labeled
by kext � " correspond to no antenna-pattern suppression factor
(so they reproduce the corresponding results of Fig. 4). Lines
correspond to the analytical solutions; symbols correspond to the
MC results.

FIG. 6. Evaluation of the magnitude of the k order of scattering
f(k) as a function of the traveled scattering optical thickness for a
uniform layer with an unpolarized Rayleigh phase function. No
antenna suppression factor is considered.
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F �z, �2�� � ��kext�
2e�2kextzH �2��z�, �20�

where H (2) is related to the phase function of the me-
dium and the radar bin width 
z only. The same kind of
argument can essentially be used for the successive or-
der of scattering, except that the geometry is not as
simple. Because at order (n) it is expected that

F �z, �n�� � ��kext�
ne�2kextzH �n��z�, �21�

in the relative contributions of the different orders of
scattering f(k) the term exp(�2kextz) will cancel out
(and with it the dependence on kext). The same results
are therefore found for equal �kext values. Slightly dif-
ferent curves are found when different phase functions
are used. This invariance property fails when the an-
tenna suppression factor exp[�4 log2(!�/�3dB)2] is
taken into account.

b. Relative weight between single scattering and
total signal

For radar computations, it is relevant to evaluate the
magnitude of the first order of scattering relative to that
of the total signal. Figure 7 shows the total signal versus
the SS signal (in decibel scale, i.e., 10 times the loga-
rithm in base 10 of the quantity) for different phase
functions. Because no antenna pattern is considered,
these values can be considered as the highest reachable
for a given scattering optical thickness. For a medium
with H–G with g � 0.4 or a Rayleigh phase function and
a scattering optical depth of 2, the total signal Ia can be
18 and 11.4 dB higher than the SS signal I (1)

a , respec-
tively. These results reflect the method employed by

Marzano et al. (2003). However, when an antenna pat-
tern configuration like that envisaged for the GPM sat-
ellite is taken into account, the results are very differ-
ent, as shown in Fig. 8. The antenna pattern strongly
reduces the MS effect when media with smaller extinc-
tion coefficient (i.e., higher mean free path) are consid-
ered. In the limit kext → 0 the antenna factor does not
play any role, whereas for kext → " the antenna pattern
completely suppresses the MS effect. As shown in Fig.
8, with a horizontal resolution footprint on the order of
5 km, the antenna effect is negligible for media for
which the extinction coefficient is higher than 5 km�1.
However, these values are never exceeded when real
hydrometeors are considered for frequencies below 35
GHz (see Part II). A fortiori, the antenna pattern plays
a major role even when airborne configurations are
considered.

c. Evaluation of the damping distance for
single-layered cloud

The MS contribution has another important feature:
when single-layer cloud structures are present, the
cloud appears thicker to the radar than it really is. In
Fig. 9 the MS and the SS reflectivities for a single uni-
form layer with a scattering optical depth equal to 1,
with an optical depth equal to 2, and with different
extinction coefficients (and with clear air underneath)
are shown. The figure compares favorably to Fig. 2 in
Ito et al. (1995). A polarized Rayleigh phase function is
considered. The SS reflectivities are different for dif-

FIG. 7. Ratio between the total signal and the first-order-of-
scattering contribution as a function of the scattering optical
thickness for different phase functions (as indicated in the leg-
end). No antenna suppression factor is considered.

FIG. 8. Ratio between the total signal and the first order of
scattering as a function of the scattering optical thickness for the
Rayleigh unpolarized (black lines) and for the H–G with g � 0.4
(gray lines) phase function. Media with different extinction coef-
ficients are considered, and an antenna pattern with a horizontal
resolution of 5.2 � 5.2 km2 is applied in the receiving antenna.
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ferent kext (more extinguishing Rayleigh media have
higher backscattering). Here, ZSS

a decays inside the
layer; attenuation (dB) is equal to 8.6859� at an optical
depth equal to �. When the boundary of the cloud is
reached at �� � 1, the SS reflectivities abruptly vanish;
in contrast, the MS reflectivity decreases gradually, in-
dicating the loss of the SS contribution, but remains
significant below the lower boundary of the cloud. To
have an idea about how far this signal can go in the
region below the cloud, we can introduce a decay thick-
ness d↓10dB, defined as the depth that has to be traveled
inside the clear-air region below the cloud so that the
reflectivity could decay by 10 dB (from the MS reflec-
tivity value sensed at the bottom of the cloud). As an
example, the cloud with kext � 0.5 km�1 has a reflec-
tivity at the rear-cloud-edge altitude equal to ZMS

a � 10
dBZ. The apparent reflectivity ZMS

a decays to 0 dBZ
only at �� � 1.45, so that d↓10dB � 0.45/(0.5 � 0.5) �
1.8 km. Note that in Fig. 9 the clear region has no
additional scattering optical depth: the values plotted
along the x axis at scattering optical depths greater than
1 are an extrapolation at larger ranges based on the SS
albedo and the extinction coefficient of the cloud itself.

When no antenna is accounted for, results are almost
independent of the SS albedo and the extinction of the
layer; in rough terms, the MS is strongly damped in less
than one-half of the thickness of the layer. The d↓10dB

values obtained when a realistic spaceborne configura-
tion is taken into account are lower than the previous
ones, as expected, and this reduction is more pro-
nounced with low extinction coefficients. In particular,

this excludes the possibilities of second trip echoes. In
fact, with current pulse repetition frequencies of space-
borne radars (on the order of 2500–5000 Hz) the dis-
tance between successive pulses is on the order of 120–
60 km—that is, far higher than a typical thickness of a
cloud. We thus can infer that MS cannot produce ech-
oes seen by the next pulse.

d. Evaluation of LDR signals

Another important MS effect is the presence of
strong cross-polarized components in the received ra-
dar signal. The linear depolarization ratio LDRMS

�h �
ZMS
�h /ZMS

hh has been evaluated for a homogeneous layer
characterized by different phase functions. Figure 10
presents the results of the simulation performed with
no antenna pattern suppression. A polarized Rayleigh
and two Mie phase functions (with asymmetry param-
eters equal to 0.4 and 0.7, respectively) are considered.
As before, the results scale up with the scattering opti-
cal depth, with the LDR signal monotonically increas-
ing with this quantity [a result already known in the
lidar counterpart; e.g., Sassen and Zhao (1995); Hu et
al. (2001)]. At small scattering optical depths, more-
forward-peaked phase functions cause larger LDRs,
but the reverse is true at scattering optical depth
greater than 2. However, for asymmetry factors lower
than 0.4, as are commonly found at GPM frequencies,
and at scattering optical depth greater than 2, the re-
sults tend to be almost independent of the phase func-
tion. Note how very high values close to 0 dB can be

FIG. 9. The MS and SS signal from layers with different extinc-
tion coefficients but with the same scattering optical thickness. An
SS albedo � equal to 0.5 and a Rayleigh-polarized phase function
are considered. In the legend, the values in brackets represent the
different extinction coefficients of the layer (km�1).

FIG. 10. LDRh� as a function of the scattering optical depth for
three different phase functions as indicated in the legend. No
antenna suppression factor is considered here. For the computa-
tion performed with the Mie phase function with g � 0.7, the MC
noise is illustrated by error bars. In this case, 2 � 106 photons have
been used.
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found at large scattering optical depth (#5), a signature
that will be particularly relevant in Part II of this series.
Again, when the antenna pattern is considered, the
magnitude of LDR can be strongly reduced. The results
do not scale up with the scattering optical depth any
more: at the same ��, homogeneous layers with small
SS albedos and extinction coefficients produce LDR
signals that are smaller than in the layers characterized
by high SS albedos and extinction coefficients.

6. Discussion and conclusions

A numerical code based on an MC procedure that is
capable of simulating the polarized signal of a (mono-
static/bistatic) radar as sensed from nonisotropic media
has been described and validated. The method is not
able to account for backscattering enhancement. How-
ever, this effect has been shown to be negligible (Koba-
yashi et al. 2005) in the spaceborne systems that are the
foci of this work. The code has been exploited to have
insight into the MS phenomenon by using a uniform
layer as a case study. The magnitude of the SS with
respect to the total radar return (see Fig. 7) is primarily
a function of the scattering optical depth [defined in Eq.
(19)], with the MS effect increasing with the traveled
scattering optical depth. When the antenna suppression
factor is omitted, results in spaceborne configuration
are found to depend only on the product �kext. The
asymmetry parameter of the phase function also plays
an important role, with MS contributions increasing
when passing from the Rayleigh phase function to the
phase function with g values around 0.4 (see Fig. 4).
Realistic asymmetry factors do not exceed this value at
GPM frequencies (see Part II).

Similar to the results of Kobayashi et al. (2004, 2005),
the Battaglia et al. (2005a) study also shows that, at
scattering optical depth greater than 2, antenna pattern
plays a key role in reducing the MS contributions. In
essence, what really matters is the interplay among the
radiation mean free path, the radar footprint (and thus
the product of the satellite altitude and the tangent of
the beamwidth), the scattering-layer SS albedo coeffi-
cient, and the distance traveled inside the medium. The
importance of MS effects increases with the depth trav-
eled, with the SS albedo of the scattering medium
(which enhances the probability of scattering events vs
absorption events), and for mean free paths that are
much lower than the horizontal resolution. When GPM
footprints are considered, the MS effects are certainly
reduced to those values obtained for an infinite-beam-
width-like antenna for extinction coefficients on the or-
der of 5 km�1. When less extinguishing media are
considered, however, the suppression by the antenna
pattern can be substantial (see Fig. 8). Therefore, the

approach used by Oguchi et al. (1994) and Marzano et
al. (2003) generally overestimates the MS effects when
typical spaceborne radar conditions are met, because
they effectively assume plane-wave incidence. Their so-
lution can a fortiori only exclude the presence of MS
when absent but cannot be used to assess the effective
amount of the MS contributions. This factor is even
more critical when airborne configurations are exam-
ined. In agreement with results already present by Ito et
al. (1995), section 5c reveals that MS effects can be
responsible for overestimation in the detection of cloud
bottom boundaries, and section 5d shows that MS en-
hances the cross-polarized component. This is believed
to be a key signature of MS effects.

In Part II, the MC numerical model presented here
serves as the basis for simulating the SS and MS radar
return at the GPM frequencies for different inhomoge-
neous hydrometeor profiles extracted from some cloud-
resolving-model simulations.
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