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Abstract

A growing awareness is brought that the safety and security of Industrial Control Systems (ICS) cannot be dealt with in iso-
lation, and the safety and security of industrial control protocols (ICPs) should be considered jointly. Fuzz testing (fuzzing)
for the ICP is a common way to discover whether the ICP itself is designed and implemented with flaws and network se-
curity vulnerability. Traditional fuzzing methods promote the safety and security testing of ICPs, and many of them have
practical applications. However, most traditional fuzzing methods rely heavily on the specification of ICPs, which makes the
test process a costly, time-consuming, troublesome and boring task. And the task is hard to repeat if the specification does
not exist. In this study, we propose a smart and automated protocol fuzzing methodology based on improved Deep Convo-
lution Generative Adversarial Network (DCGAN) and give a series of performance metrics. An automated and intelligent
fuzzing framework BLSTM-DCNNFuzz for application is designed. Several typical ICPs, including Modbus and EtherCAT,
are applied to test the effectiveness and efficiency of our framework. Experiment results show that our methodology outper-
forms the existing ones like General Purpose Fuzzer(GPF) and other deep learning based fuzzing methods in convenience,
effectiveness, and efficiency.

Keywords Fuzz testing · Industrial control protocol · Quality control · Deep adversarial learning · Convolution neural
networks · Long short-term memory · Industry 4.0

Introduction

Industry 4.0 and Smart Manufacturing, as a national plan
for many countries, are promoting a new global round of in-
dustrial prosperity. In manufacturing, there are many safety-
critical control systems, and ensuring their safety based on
IEC 61508 (Bell et al. 2006) and security based on IEC
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62442 (Piggin et al. 2013) has been an important issue in
industry and academia. The safety and security of the en-
tire ICS can be considered in many ways. Some perform
formal verification of embedded programs (Carpanzano et
al. 2014) and others perform penetration testing (Zhang et
al. 2017) to find system vulnerabilities. These efforts in-
deed improve system safety and security. However, intelli-
gent manufacturing requires the increasing interconnectiv-
ity of ICSs. ICPs, as the bridge of communication among
various parts of ICSs, have promoted the construction of
industry informatization and improved the production and
management efficiency, but they also expose ICSs to many
potential risks.

A considerable part of attacks exploit vulnerabilities of
the safety and security of ICPs. On one hand, there are some
inherent flaws of ICPs which are likely caused at the de-
sign and application stage. Safety flaws are introduced at this
time. On the other hand, ICPs have common characteristics,
such as real-time, functional code abuse and unencrypted
messages, which causes increasing frequency and sophisti-
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cation of cyber-threats towards ICPs and influences the secu-
rity of ICPs. It is urgent to take high-performance measures
to mine vulnerabilities of ICPs, regardless of a safety flaw
or a security flaw.

Fuzzing plays a vital role in finding these vulnerabilities
(Bocaniala et al. 2005). Its effectiveness has been proven in
the network protocol testing field by previous work (Hsiang
et al. 2012; Voyiatzis et al. 2015). In the traditional fuzzing
methods, testing data is generated according to the defined
specifications. However, this brings some limitations: such
methods do not work if they encounter unknown specifica-
tions; furthermore, the manual-based design for a specific
protocol is not only demanding but also time-consuming.
With powerful learning ability, some studies have incorpo-
rated deep learning into fuzzing (Godefroid et al. 2017; Böttinger
et al. 2018) to avoid learning the message format of a spe-
cific ICP artificially. Nonetheless, these state-of-the-art deep
learning based fuzzing methods use prior knowledge to deal
with the time-step dimension or the feature vector dimen-
sion of protocol messages independently, which ignores that
they are not mutually independent of each other.

Inspired by this, we integrate the characteristics of LSTM
and Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) to propose a deep convolution generative ad-
versarial networks based fuzzing methodology and design
an automated and intelligent fuzzing framework based on
it, named BLSTM-DCNNFuzz, which covers the time-step
dimension and the feature vector dimension of messages of
ICPs and can generate massive test protocol messages in a
short time. The model can not only break the limitations
above but also be applied to both public and proprietary
ICPs. The contributions are summarized as follows:

(1) We propose a methodology combined by Bi-directional
LSTM (BLSTM) and DCGAN (Radford et al. 2015) to
deal with fuzzing data generation, which can intelligently
learn to generate fake but plausible testing data by itself.

(2) On top of the approach, we build a universal fuzzing
framework, the BLSTM-DCNNFuzz, which can deal with
the fuzz testing of most ICPs.

(3) To evaluate its effectiveness, we propose a series of per-
formance metrics. The experimental results of fuzzing
several ICPs var these metrics in Section IV reveal that
our method is more efficient and more effective than
GPF and other deep learning based fuzzing methods.

The remainder of this paper is organized as follows. Sec-
tion II presents preliminary knowledge. Section III details
optimized DCGAN algorithm and the entire methodology
design. Section IV presents the evaluation results. Section V
discusses the related work. Section VI concludes the paper
and discusses some ideas about future work.

Related work

Fuzzing (Miller et al. 1990; 1995), originally known as ran-
dom testing, is used to find system vulnerabilities and de-
tect abnormal behavior of the system by inputting a large
number of unexpected inputs into the target system, such as
software program crashes or performing unexpected opera-
tions. It has developed for decades, and practice has proven
its effectiveness. The input of fuzzing has the characteristics
of clutter and wide coverage. The skill of fuzzing is illogi-
cal, and it is likely to raise certain exceptions from a logical
point of view.

The Origin of Fuzzing

In 1988, professor Miller developed a fuzzing tool to test
Unix programs’ robustness. At that time, fuzzing was sim-
ply feeding a program with random inputs. But their results
were striking: 25%⇠33% of the programs are crashed un-
der test, underscoring the powerful potential of fuzzy test-
ing. Inspired by the work of Miller et al., more and more
researchers have joined in the research of fuzzy testing tech-
nology and made the methodology applied to more fields.

Traditional Fuzzing Works

The goal of the fuzzing tool is not to evaluate the safety of
systems, but to evaluate the code quality and reliability of
systems. Subsequently, some researchers proposed various
methods to improve fuzz testing.

1) Researches for Traditional Fuzzing Works

In general, there are two kinds of strategy methods to gen-
erate fuzzy test data. (i) Model-based fuzzing (Utting et al.
2012; Peroli et al. 2018; Lunkeit and Schieferdecker 2018)
models the input data based on a specific model. (ii) Grammar-
based fuzzing (Guo et al. 2013; Hodován et al. 2018; Pratama
et al. 2019) utilizes the input data grammar to guide the test
data generation.

Because of its effectiveness, fuzzing has been studied in
the network protocol testing field. Aitel et al. (2002) devel-
oped a block-based approach by divide the network packet
into several blocks. Greg Banks et al. (2006) proposed a
fuzzy test tool called SNOOZE for stateful network proto-
cols such as SIP, TCP/IP, etc. Devarajan and Ganesh (2007)
released a fuzzy test module based on Sully tool for Modbus,
DNP3 and other industrial control protocols at the Black Hat
Conference, which is mainly used to detect denial of service
attacks, unauthorized command execution and other prob-
lems. Voyiatzis et al. (2015) designed a Modbus-TCP fuzzy
test tool called MTF which builds the test model by Modbus
official instructions.
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2) A Summary of Traditional Fuzzing Works on Industrial

Control Protocols

Since the principle of fuzzing is simple and it can be au-
tomated, fuzzing has been favored by the majority of re-
searchers when proposed. Many researchers have conducted
in-depth research and exploration on fuzzing. These con-
stant efforts make fuzz testing more and more mature.

Fuzzing technology has also been applied to network
protocol testing, and many tools have been developed. Their
works promote the development of network protocol testing
technology, improve the security of network protocol imple-
mentation to a certain extent, and enhance the reliability of
the computer network. Some of these works are for ICPs and
have made a certain contribution to the improvement of the
safety and security of ICPs.

3) Limitations of Traditional Fuzzing Works

Although the above works have promoted the development
of the testing technology of ICPs to a certain extent, most
of these research results are extended based on the origi-
nal Fuzzing framework, and there are some problems as fol-
lows.

a. These existing network protocol fuzzy test tools are
not targeted at the field of industrial control. So these tools
are not only lacking in targeted functional design but also
lack of consideration for the characteristics of ICPs.

b. There are many kinds of industrial control protocols.
And the number of ICPs supported by the existing Fuzzing
test tools is extremely limited (usually supporting only Mod-
bus, DNP3 and a few others), which cannot meet the testing
requirements of most ICPs.

c. There are a large number of private protocols in ICPs,
such as the protocol adopted by Conitel-2020 equipment.
These protocol specifications are usually not disclosed and
cannot be obtained directly, so the message format and ses-
sion process of the protocol cannot be understood. Because
the traditional network protocol fuzzing methods have a strong
dependence on protocol specification, it is difficult to carry
out fuzzing without protocol official instructions.

d. Many tools contain general description methods of the
ICPs and there are general frameworks for common protocol
representations. But in many cases, the network protocols
which need to be tested are proprietary protocols and only
work on a small scale. The formats of proprietary protocols
may not conform to common formats and traditional fuzzing
tools will fail in these cases.

e. Some fuzzing tools are to realize the test of the pro-
tocol by encapsulating the network protocol specification.
Each time a new protocol is tested, its specification needs to
be analyzed. Implementing the details of the specification is
costly and error-prone.

Deep Learning Works for Fuzzing

Nowadays, with strong learning ability, deep learning is be-
ing applied to various fields. As was expected, some studies
have incorporated deep learning into fuzzing.

The fuzzing algorithm of ICPs based on deep learning
is to utilize deep learning technology to solve the problem
of fuzzy test case generation. Network traces are used as
the training set, generation models learn formats of proto-
col from the network traces and the statistical properties.
Through full training, we can get the generation model that
can generate the pseudo-message with very high similarity
to the real message. Then the generation models are used
to guide the generation of pseudo-messages, and pseudo-
messages are taken as test cases and input into the network
systems under test to realize the test of ICPs.

1) Researches of Deep Learning Works for Fuzzing

Godefroid et al. (2008) proposed a sequence-to-sequence
model to learn the input grammar of PDF objects to help
produce fuzzing data for PDF parser. Chockalingam et al.
(2016) utilized an LSTM model to do intrusion detection
about CAN bus protocol. Rajpal et al. (2017) applied a sequence-
to-sequence neural network model to enhance the AFL fuzzer.
It uses RNN as an assistive technology to improve the AFL’s
performance toward stand-alone programs.

2) Contributions of Deep Learning Works for Fuzzing

Compared with traditional fuzzing works, deep learning meth-
ods for fuzzing bypass the process of building protocol spec-
ifications and protocol automata, reducing the workload. More-
over, fuzzing processes based on deep learning algorithm
does not have logic errors or human negligence caused by
the misunderstanding of protocol specifications. Furthermore,
by adjusting the parameters of the neural network, the struc-
ture of the generation model can be fine-tuned so that the
“similarity” between the test cases and the legal input can
be adjusted, which is able to change the effect of the test
while changing the acceptance rate of the test case.

3) Superiorities of Our Method

These efforts contribute a lot to deep learning based fuzzing.
In general, most of them use RNN models and prior knowl-
edge to deal with their fuzzing problems, which ignore the
partial structure of samples. To solve the above limitations
deep learning based fuzzing, the model based on deep learn-
ing has to learn the time-step dimension and the feature vec-
tor dimension of messages of ICPs.

BLSTM layers contain two sub-networks for the for-
ward and backward sequence context respectively which can
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not only cover the time-step dimension like LSTM but also
combining the forward and backward pass outputs. DCGAN
combines the advantages of CNN in learning spatial struc-
ture features and the idea of deep adversarial learning. Ac-
cording to the characteristics of the above two models, we
integrate the BLSTM based model and DCGAN as a core
technique to deal with ICP fuzzing problems. Different than
other existing deep learning methods in theory which just
consider the time-step dimension or the spatial structure fea-
ture, our framework not only learns the mapping between
different bytes of messages of ICPs but also learns the im-
pact of the detailed protocol specification on the bytes from
spatial structure feature dimension.

The feature representation with the time-step dimension
learned by BLSTM is as the training input for DCGAN to
process multidimensional features and generate fake but more
plausible data. The results show our framework performs
better than traditional fuzzing methods and current main-
stream deep learning based models.

Preliminary

In this section, we introduce some preliminary knowledge.
First, the basis of LSTM, GAN and DCGAN is presented.
We then introduce the preliminary knowledge of ICPs and
their common features. Lastly, we give an overview of fuzz
testing and its application in detecting vulnerabilities of ICPs.

Long Short-Term memory

Hochreiter and Schmidhuber first proposed LSTM to over-
come the gradient vanishing problem of RNN (Recurrent
Neural Networks) in 1997. It is a special RNN that intro-
duces an adaptive gating mechanism which can decide the
degree to keep the previous state and avoid the problem of
long-tern dependencies. Given a sequence S = x1, x2, . . . , xl,
where l is its length, LSTM processes it character by char-
acter. At time-step t, the memory ct and the hidden state ht

are updated with the following equations:
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where xt is the input at the current time-step, �u, �f and �o

is the update gate activation, forget gate activation and out-
put gate activation respectively, ĉ is the current cell state, �

denotes the logistic sigmoid function and � denotes element-
wise multiplication.

Generative Adversarial Network

Generative Adversarial Network, proposed by Goodfellow
et al., is a promising framework to guide the training of gen-
erative models. Specifically, in GAN, a discriminative net-
work D (discriminator) learns to distinguish the reality of a
given data instance, and a generative network G (generator)
learns to confuse discriminator by generating fake but plau-
sible data. In this study, we utilize this feature to generate
plausible sequence messages.

Deep Convolution Generative Adversarial Networks

Prior to introducing DCGAN, it is necessary to briefly in-
troduce CNNs (Convolution Neural Networks), which have
recently enjoyed great success in image and video recogni-
tion. One convention comprises one convolutional layer part
and one pooling layer part in general. A typical CNN con-
sists of many layers, including the input layer, conventions,
the fully-connected layers, the output layer, etc.

Recently, NLP communities pay more and more atten-
tion to CNN and have achieved favorable results in various
text classification tasks (Zhang et al. 2015; Peng et al. 2018).
Different from RNNs accomplished in time-related prob-
lems, CNN is good at learning spatial structure features. Ac-
tually, most messages of ICPs have the following features:
concise format, limited length and compact structure. This
makes CNN a better way to solve this kind of problem if
location features are added in the input.

DCGAN is proposed by Alec Radford et al. (2015) to
bridge the gap between the success of CNNs for supervised
learning and unsupervised learning. This innovation com-
bines the advantages of CNN in processing multidimensional
features and the idea of deep adversarial learning. Due to
certain architectural constraints listed in Table 1, deep con-
volution generative adversarial networks (DCGAN) largely
overcomes the problem of unstable training of GANs, such
as non-convergence, vanishing gradient and mode collapse.
We design our model architecture based on these architec-
tural constraints.

Industrial Control Protocols

ICPs refer to the communication protocol deployed in ICSs.
As composite systems, ICSs have various characteristics,
such as requiring high real-time performance and provid-
ing kinds of specific functions. Correspondingly, message
formats of ICPs tend to be concise. ICSs consist of master
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Table 1 Architecture guidelines for stable Deep Convolutional Gener-
ative Adversarial Networks

# Architecture constraints

1 Replace any pooling layers with strided convolutions (dis-
criminator) and fractional-strided convolutions (generator).

2 Use Batch Normalization in both the generator and the dis-
criminator.

3 Remove fully connected hidden layers for deeper architec-
tures.

4 Use ReLU activation in the generator for all layers except
for the output, which uses Tanh.

5 Use LeakyReLU activation in the discriminator for all lay-
ers.

stations and slave stations. The data transmission and opera-
tion control between them are realized through the ICP. Cur-
rently, various ICPs are deployed in a wide variety of ICSs
around the world. Therefore, it is important to maintain the
safety and security of ICPs.

Fuzz Testing

Fuzz testing is a quick and cost-effective method for finding
severe security defects in software. Traditionally, fuzzing
tools apply random mutations to well-formed inputs of a
program and test the resulting values. As ICSs become more
and more interconnected, flaws at the design stages and im-
plementations of ICPs could allow malicious parties to at-
tack vulnerable systems remotely on the internet. To avoid
this, we utilize fuzzing to discover the flaws in advance to
guide the improvement of ICPs. The workflow is shown in
Fig. 1.

Protocol 
Resolution

Construction of 
New Deformed Data 

Send to 
Test Object

Abnormal 
Information 

Storage 

Exception 
Definition and 
Reproduction

Object
 Exception? Y

N

Fig. 1 General workflow of fuzz testing

DCNNFuzz Framework

In this section, we describe our methodology and the main
aspects of the BLSTM-DCNNFuzz framework in detail. The
overall fuzzing framework includes Data Preprocessing Mod-
ule (DPM), Model Training and MSG (message) Generating
Module (MTMGM), MSG Sending and Receiving Module
(MSRM) and Logging Module (LM). These modules col-
laborate with each other in completing fuzzing tasks.

Preprocessing of ICP Communication Data

The current mainstream ICPs include Modbus, EtherCAT,
Powerlink, Porfinet, Ethernet/IP, TSN (Time Sensitive Net-
works) (Wollschlaeger et al. 2017), and so on. There are
various ways to capture data packets from different ICPs.
The most direct way is to apply appropriate terminal capture
tools to capture the data packets generated by the ICSs from
the real industrial control network environment as training
data. Training data in deep learning significantly influences
model training. Thus after obtaining the raw data, we con-
struct Data Preprocessing Module (DPM) and adopt appro-
priate strategies to preprocess the training data. DPM is di-
vided into three steps and the details are as follows:

1) Data Frame Clustering

The effect of fuzz testing depends predominantly on the test-
ing depth and high code coverage. Protocol messages cap-
tured from the ICP vary in length and message type. The bet-
ter our model comprehends the differences between protocol
messages, the better testing depth we can achieve. We lever-
age a variety of clustering strategies to improve the clas-
sification scores, such as frame length clustering, K-means
clustering and so on. Since sequences which have the same
length always tend to share the same message type, frame
length clustering is to cluster sequences based on their length.
K-means, using Euclidean distance as a similarity bench-
mark, is also applied in the clustering of data frames based
on function codes of data frames. Under these strategies,
data augmentation is executed to a class of messages with
a small percentage. This makes the generated data more di-
verse, which can help improve code coverage.

2) Adding Special Symbols

The other step is to add special symbols to guide DPM to
obtain higher quality training data. The process of capturing
data by DPM can be divided into two categories, as shown in
Fig. 2. First, for a known protocol stack, such as the TCP/IP
protocol stack which Modbus-TCP is running on, the IP
header can be used as a demarcation point. We truncate the
IP header (Including IP source address, destination address
and additional information for some other delivery requests)
and retain a file that holds the IP header for further packet
injection attacks. Then we insert STA (start) as the sequence
start flag at the beginning of the packet body, END (end) as
the sequence end flag. The operation eliminates the influ-
ence of irrelevant information on the model and improves
the quality of the captured data. Second, if the protocol is
unknown, learning with the address is performed, and STA
and END are added directly at the beginning and end of the
entire captured data. Moreover, pad the short sequence with
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uniform character PAD(pad) to the maximum frame length.
It helps unify the sequence length to standardize the training.
Finally, the processed data is stored in the training dataset.

Communication 
Data Packets 

Capture

Save to Training 
data Set

Data Capture 
Without 

IP Header

Known Protocol Stack

Data Capture 
With 

IP Header

Unknown Protocol  Stack

Industrial Ethernet 
Network

Environment
Fieldbus Network 

Environment

Unknown 
Network 

Environment

Fig. 2 Process of capturing data

3) Data Feature Conversion

The captured sequence is in the native features which can-
not be processed directly. In order for the model to perceive
these features, raw digital protocol messages need to be con-
verted to appropriate types. Prior to learning character em-
beddings (Zhang et al. 2015) about data frames, we use a
character level preprocessing, inspired by Levy and Gold-
berg (2014). We transfer the protocol messages in the ICS
into a hexadecimal sequence based on an alphabet of n char-
acters in the first place. In the alphabet of data frames, there
are 10 digit characters and 6 English letter characters, as
shown in the following:

0 1 2 3 4 5 6 7 8 9 a b c d e f

According to the alphabet, each character in the sequence
is encoded as a one-hot vector of the n dimension x 2
R1⇥n. As depicted in Fig. 3, the position where the character
locates in the alphabet is one, and the rest are zeros. Thus,A
sequence with length l is encoded into a matrix X 2 Rl⇥n,
as the input of character embedding.

Model Architecture and Training Strategies

In this section, we give the model architecture details of
Model Training and MSG(message) Generating Module (MT-

Fig. 3 Process of capturing data

MGM), which is illustrated in Fig. 6. After a while, training
strategies about the model in this study is presented.

1) Model Architecture

There are two components in the model architecture, namely
the generator model and the discriminator model. One of our
design philosophies is to design lightweight models based
on attaining its effect. In virtue of the distinguishing fea-
ture of reducing the consumption of computing resources,
it is convenient to deploy to embedded devices and lays
the groundwork for continuous online learning in the fu-
ture. Referring to the aforementioned DCGAN architecture
constraints and our requirements, we reasonably designed a
simplified architecture of DCGAN which are given in Fig.
6 (b). In general, this framework corresponds to a minimax
two-player game and the adversarial relationship between
the G and the D can be expressed as follows:

minGmaxDV (D,G) = Ex⇠Px [log(D(x))]
+Ez⇠Pz [� log(D(G(z)))]

(4)

where D(x) indicates that the probability that D distinguishes
the real data x to be real, G(z) represents that the probabil-
ity distribution of the noise data z, Px is the distribution of
x and Pz is the distribution of z.

a. Generator. Fig. 6 (a) depicts the network structure
of the generator. The generator applys a deconvolution (Sun
et al. 2015) neural network architecture and consists of mul-
tiple deconvolution layers. Specifically, it replaces pooling
layers with deconvolution layers, which is different from
the traditional convolutional network. Deconvolutions, also
called transposed convolutions or fractional-stride convo-
lution, work through swapping the forward and backward
passes of convolutions. Based on Zero padding and non-unit
strides, the following formula formalizes the output size of
the deconvolutions of the G in this study.

a=(i+ 2p� k)%s (5)



7

DPM

MSRM

LM

Capturing 
Protocol MSG

Training Dataset

Data 
Preprocessing

Description 
Generation 

Training 
Data

Abnormal MSG 
Analysis

Recording  

Logs Analysis

Evaluate Metrics

Data Mutation and Extending Strategies

New 
Training 

Data

Interactive
State
Test 

Test cases 
Sending

Pairs <Si, Ri> 
Receiving

Capture

Industrial 
Control Network

Control Center
Attack

Response

Monitor

Execute

Execute

Generate

Collect

Collect

MTMGMM

Model Training and 
Retraining

Test Cases Generation

Model 
1

Model 
2

Model 
3 ...

Training/Retraining Data 
Analysis

DCGAN Model Design

Load

Mutate

Send special test cases 

Execute

Execute

Save

Saving G in different epochs
Send generated test   cases

Fig. 4 BLSTM-DCNNFuzz framework

o0=s (i0 � 1) + a+ k � 2p (6)

where o0 (o1 = o2 = o) represents the square output size, i0

(i01 = i02 = i0) represents square input size, k (k1 = k2 = k)
represents square kernel size, s represents same strides along
both axes, p represents same padding along both axes, i
(i1 = i2 = i) represent the input size of the next convo-
lution layer, and a represents the number of zeros added to
the bottom and right edges of the input. Here we focus on
the simplified setting, but pay attention to that the formulas
here also generalize to the N-D and non-square cases.

In addition, we adopt batch normalization (BN) right af-
ter each deconvolution and before activation, following Ioffe
and Szegedy (2015). Except for the last layer, BN and ReLU
(Rectified Linear Units) are selected as the activation in rest
layers. The last layer applies Tanh as the activation. Notably,
no pooling layers or fully connected layers are used in the
G. The generator takes noise data z from the uniform noise
distribution Pz as input, and output a 2D matrix which will
be an input to the discriminator model. The 2D matrix can
be seen as a sequence that converts by a character embed-
ding layer and each row represents a character of the proto-
col messages. Here it is considered that an equivalence rela-
tion between the generated matrix of the generator and the
generated intermediate semantics vector of the BLSTM net-
work which is illustrated in Fig. 5. It decodes the output of G
into generated test cases. Hypothetical characters are output
through linear transformation and softmax layer via feeding
the generated matrix of the G as the input to the output part
of the BLSTM network. The training and optimization of the
BLSTM network are mentioned below. The loss function of

the generator is:

Ez⇠Pz [� log(D(G(z)))] (7)

b. Discriminator. In adversarial training, the discrim-
inator model is mainly designed to guide the training of the
G. One-hot representation converts distributed representa-
tions of bytes of each real protocol message into vectors.
The vector includes two dimensions: the time-step dimen-
sion and the feature vector dimension. Most existing models
just take notice of the time-step dimension of texts to obtain
a fixed-length vector, ignoring the spatial structure features.
However, the time-step dimension and the feature vector di-
mension are not mutually independent of each other.

To integrate the features on both dimensions of the ma-
trix, we propose a combined model BLSTM-DCGAN based
on BLSTM and CNN so that the discriminator can hold
not only the time-step dimension but also the feature vec-
tor dimension information. The one-hot vector is a sequence
with a fixed length and dimension and can be regarded as
a matrix. It is converted into another vector by a charac-
ter embedding layer as the input of the BLSTM network
from above. The BLSTM layers contain two sub-networks
for the forward and backward sequence context respectively.
As shown in the left part of Fig. 6 (c), the second BLSTM
layer of the BLSTM network, as an encoder, generates an in-
termediate semantics vector as the input of the CNN (Zhou
et al. 2016). The computation of the ith character is shown
in the following equation, combining the forward and back-
ward pass outputs:

hi =
h
hi �

 
hi

i
(8)

The intermediate semantics vector H = {h1, h2, . . . , hl max},
H 2 Rl max⇥d, can also be viewed as a matrix. l max is
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Fig. 5 BLSTM network structure

the length of maximum frame length of the ICP and d is
the size of character embedding of BLSTM. The l max of
different ICPs is not the same, so the calculation steps on
the discriminators of different ICPs are different. In order
to simplify the operation here, we make d = l max to get a
square input size which contains sequential information. For
the BLSTM network, a cross entropy function is utilized as
the loss function, which is defined as:

H(p, q) = �
X

x
p(x) log q(x) (9)

where p(x) is the real distribution of the sample and q(x) is
the probability of the model output.

Dropout and L2 regularization term can reduce the com-
plexity of the model and reduce the risk of overfitting. Con-
sidering the above mentions, the BLSTM network utilizes
both dropout and L2. Since the output of one BLSTM unit is
a two-class, the loss function of a BLSTM unit is obtained:

L<t>
BLSTM (y<t>, ŷ<t>,!1) = �

CP
j=1

y<t>
j log ŷ<t>

j

+�1 k!1k22
(10)

Where C is the size of charcter embedding, y is one-hot unit
of the real character; ŷ is the probability of each class from
the softmax layer; �1 is the weight of the L2 regularization;
!1 is the weight of the BLSTM layers and the output layer.

And the loss function of the BLSTM nettwork for the
sequence S is:

LBLSTM (y, ŷ,!1) =
TxP
t=1

L<t>
BLSTM (y<t>, ŷ<t>,!1) (11)

Where Tx indicates the length of the input sequence.
Since BLSTM layers have access to the forward and

backward context, CNN is utilized to explore more significa-
tive information, such as a hierarchy of representations and
so on. After getting the intermediate semantics vector via
the BLSTM network which adds the location feature in the
input, each filter in CNN can be regarded as a detector that
detects whether a functional unit in the data frame is correct
(Yue et al. 2018), which is conducive to grasping the format
features of the sequence data in ICSs. Different from the G,
the D applies BN and Leaky ReLU as the activation instead
of ReLU to avoid sample oscillation and model instability
except for not applying BN in the input layer (Radford et al.
2015). The discriminator applies strided convolution layers
to replace any pooling layers instead of deconvolution lay-
ers. And z-score is utilized to normalize H . As depicted in
Fig. 6 (c), the following formula formalizes the output size
of the convolutions of the D based on the simplified setting:

o0 =

�
i+ 2p� k

s

⌫
+ 1 (12)

where the formula can also generalize to the N-D and non-
square cases.

Taking an example of one convolution operation in Fig.
6 (c), it involves a 2D filter K 2 Rkr⇥kc , which is applied
to a window of kr characters and kc feature vectors. For ex-
ample, a feature om,n is generated from a window of vectors
Hm:m+kr�1,n:n+kc�1 by:

om,n = f(K ·Hm:m+kr�1,n:n+kc�1 + b) (13)

where m ranges from 1 to (l max�kr + 1), n ranges from
1 to (d � kc + 1), · represents dot product, b 2 R is a bias
and f is Leaky ReLU function. This filter is applied to each
possible window of the intermediate semantics vector H to
produce a feature map O:

O = [o1,1, o1,2, · · · , ol max�kr+1,d�kc+1] (14)

with O 2 R(l max�kr+1)⇥(d�kc+1).
At the end of the network, the sum of the output ma-

trix of the second BLSTM layer and the reshaped output
of strided convolution layers is appied as the input of fully-
connected layers. Sigmoid is utilized in the output layer of
the D to convert the output to a 1x1 discrimination proba-
bility. The specific layout of the CNN network can be seen
from the right part of Fig. 6 (c). The discriminator takes real-
world processed matrix from the BLSTM layers or the out-
put matrix from the generator as its input. The loss function
of the D is:

�Ex⇠Px [log(D(x))]� Ez⇠Pz [� log(D(G(z)))] (15)

Notably, when applying deep adversarial learning to fuzz
testing ICPs, we expect the generated data to have correct
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message formats but with various message content so that
the code coverage and testing depth can be guaranteed. We
draw lessons from the idea of the gradient penalty in WGAN-
GP (Gulrajani et al. 2017) to make the samples more diverse.
The penalty of the loss function of DCGAN is:

⌦(G) = Ex⇠Px [kx�G(z)k1] (16)

The total loss function of DCGAN is:

LDCGABN (D,G) = min
G

max
D

V (D,G) + �⌦(G) (17)

where � is the weight of the penalty. Our target is to mini-
mize LBLSTM (y, ŷ,!1,!2) and LDCGABN (D,G) so that
the difference between the real samples and the generated
samples are minimized.

2) Model Training Strategies

To get a well-trained model, appropriate training strategies
should be taken. Compared with the BLSTM network, DC-
GAN Model training is difficult because the two models
need to be trained synchronously. We have adopted a reason-
able strategy to avoid the emergence of the aforementioned
problems such as model collapse and non-convergence. Ac-
cording to Dai and Le (2015), we pre-train the discriminator
for several epochs, getting parameters of the D which help
form a gradient to guide the generator firstly. Second, Adam
optimizer (Kingma et al. 2014) with tuned hyperparameters
are chosen for both BLSTM and DCGAN, which takes ad-
vantage of adaptive learning rates and momentum. All mod-
els are trained with mini-batch stochastic gradient descent
(SGD) (Sutskever et al. 2013) with a fairish mini-batch size.
And all weights are initialized from a normal distribution.
These tactics help reduce training oscillation and instability.

Our ultimate goal is to leverage the generated fake data
to test the target and trigger more anomalies. One factor that
affects the effectiveness of fuzz testing is test data diversity.
Rich test data tends to find more anomalies. In addition to
mutation and data augmentation (Salamon and Bello 2017),
we save the generator model for several training epochs.
Data generated in different epochs can enrich fuzzing data
diversity. There exists a tradeoff between the correct data
format and data diversity.

Fuzz Testing The Target ICP

With the trained model, we can generate as much test data
as we want. When conducting a fuzz testing, MSG Send-
ing and Receiving Module (MSRM) is in charge of moni-
toring interactive states, sending the test data to the target
and receiving the feedback. Besides recording the relevant
logs during the fuzzing process, the Logging Module (LM)
is applied for abnormal MSGs and logs analysis based on
the following performance metrics.

1) Performance Metrics

Some quantitative criteria (Heusel et al. 2017; Lucic et al.
2018; Pourjavad et al. 2019) have emerged only recently
assessing GAN on image generation. There is no unified
validation metric and benchmark in this field. Therefore, in
accordance with our research purpose and specific require-
ments, we proposed the following metrics. Among them,
TCRR and DGD serve as the fuzzing effectiveness met-
rics and ATE serves as the fuzzing efficiency metric.

a. Test Case Recognition Rate (TCRR). TCRR refers
to the percentage of test cases recognized by the test tar-
get. It indicates the proportion of valid test cases. In the fuzz
testing of ICPs, we consider the test case is correct in for-
mat and necessary information if the target can recognize
and respond the test case. The higher TCRR indicates more
generated test cases are similar to the real-world sequences
in format, which shows the testing depth is guaranteed. Con-
versely, the lower TCRR means more test cases are dropped
directly by the target, which indicates that the model needs
to be adjusted or retrained. The formula is shown below:

TCRR =
nRecognized

nSent
⇥ 100% (18)

where nRecognized is the total number of test cases recog-
nized and nSent is the total number of test cases sent.

b. Anomalies Triggered Efficiency (ATE). On the one
hand, ATE refers to the specific anomalies found. On the
other hand, it reflects the number and time of anomalies trig-
gered after sending a fixed number of test cases. It is an im-
portant indicator of the efficiency of models. Since the ulti-
mate goal is to find as many vulnerabilities as possible in a
short time, we consider not only whether anomalies can be
found in the testing but also the testing efficiency. It should
be noted that the number of anomalies found is also related
to the test target. Weak targets will highlight method effi-
ciency. However, in this study, we only focus on the effi-
ciency of the method. The specific formula is as follows:

ATE =
nAnomalies

nAllCases
⇥ 100% +

@
MP
k=1

ti

(19)

where nAnomalies indicates the number of anomalies found,
and the denominator nAllCases is the number of all the test
cases sent, tanomalies records the interval from the last nor-
mal request initiation to the next abnormal feedback (five
maximum values and five minimum values are discarded),
M is the total number of time intervals, ti is the interval of
discovering the ith anomaly, tanomalies = [t1, t2, . . . ., tm]
and @ is the weight of the reciprocal of the sum of time inter-
vals. The larger value indicates the stronger ability to trigger
anomalies.

c. Diversity of Generated Data (DGD). DGD refers to
the ability to maintain the diversity of the training data. More
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diversity of generated test data frames is likely to cause more
exceptions, which presents high code coverage. This indica-
tor focuses on the number of message types in the generated
data. It is also an important indicator of the method effec-
tiveness.

DGD =
nGCategory

nACategory
⇥ 100% (20)

where nGCategory is the total number of message cate-
gories in generated data frames, and nACategory is the to-
tal number of message categories in the training set.

2) Logging and Evaluation

LM is constructed to record feedbacks from the ICP. The
main function of LM is to deal with logs. It consists of
two parts: one is to collect system logging of the master
and slaves themselves; the other part is to record the feed-
back logs of the sent/received data frames to the log file.
In the communication process, normal communication data
and occurred anomalies will be logged into a log file by LM
through collaboration with MSRM.

Experiment

In this section, we evaluate the effectiveness and efficiency
of our methodology by experimentation. To show its supe-
riority, we apply it to test Modbus, one of the widely used
ICPs. To indicate its versatility, another ICP, EtherCAT, is
also applied to test.

Modbus and EtherCAT

1) Modbus-TCP

Modbus protocols have many variants, including Modbus-
TCP, Modbus-UDP and so on. In this study, we use Modbus-
TCP as one of the fuzzing protocols. The message format of
Modbus-TCP is illustrated in Fig. 7.

IP Header TCP Header TCP Data

MBAP Header Function Code Data

Transaction ID Protocol ID Length Field Unit ID

2byte 2byte 2byte 1byte

7byte 1byte max:252byte

ADU (max:260byte)

PDU (max:253byte)

Fig. 7 Message format of Modbus-TCP

It uses master-slave communication mode, in which the
master communicates with the slave by sending and receiv-
ing data frames. In the experiment, different Modbus-TCP
implementations, including Modbus RSSim v8.20, Modbus
Slave v6.0.2, and xMasterSlave v.156, are applied as the
fuzzing targets. Furthermore, to better demonstrate the ef-
fectiveness of our approach, we deploy the serial commu-
nication mode between MCU (Roberts Jr et al. 1972) and
PC, and adopt RS485 bus (Feng and Yu 2012) for signal
transmission to build the real Modbus-TCP network envi-
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ronment. The generated test cases are sent to the real envi-
ronment to test the effects in practical applications.

2) EtherCAT

EtherCAT offers high real-time performance and provides a
master-slave communication mode among the industry de-
vices. A typical EtherCAT network consists of one master
and several slaves as well as Modbus. The master generates
datagrams and sends them to the loop network. These data-
grams are reflected at the end of each network segment and
sent back to the master.

Training Data

In the experiment, training data about the two industrial con-
trol protocols are collected separately.

1) Modbus-TCP

We use Pymodbus (Collins 2013), a python package that im-
plements the Modbus protocol, to generate the training data
frames. Through it, enough different types of data frames
can be generated quickly and conveniently. Specifically, 300,000
pieces of data, including various types, are used as the train-
ing data after data preprocessing. The dataset is divided into
a training set, a verification set, and a test set according to
the proportion of 10-fold cross-validation.

2) EtherCAT

In order to capture the EtherCAT communication data, we
prepare an EtherCAT network environment based ICS as il-
lustrated in Fig. 8. The master station is a Beckhoff (Mack
et al. 2012) industrial PC, and the slave stations include
EK1100, EL1004 and EL2004. ET2000 is used as the on-
line Listener between the master and the slaves. Wireshark
(Orebaugh et al. 2006), running on a computer, fetches and
displays the massive communication data messages from the
listener. After the processing of DPM, these messages serve
as the training data for the BLSTM-DCNNFuzz framework.

Evaluation Setup

1) Experimental Environment

We adopt TensorFlow, one of the popular deep learning frame-
work, to implement the model architecture. To improve the
training efficiency, we train the model on a Windows ma-
chine with 8 processors (Intel (R) Core (TM) i7-6700K
CPU@4.00GHz) 16.0GB memory (RAM) Nvidia GeForce
GTX 1080 Ti (11GB).

Mater Station:
{ Beckhoff Industrial PC }   Capture

  
  

  
  

Listener:
{ ET2000 }

Slave Station:
{ Beckhoff:
EK1100, EL1004, El2004
}

Wireshark Captured Message:
0x0a, 0x00, 0x00, 0x00, 0x00, 0x09, 0x01, 0x80, 
0x00, 0x00, 0x00, 0x00, 0x00, 0x0b, 0x8d, 0x00, 
0x00, 0x00, 0x01, 0x0c, 0x80, 0x00, 0x00, 0x00,
...

Fig. 8 EtherCAT enviroment

2) Model Training Setting

As for the parameter setting, we initialize all weights from
zero-centered Normal distribution with a standard deviation
of 0.02. The mini-batch size is set to 256 in all models.
The keep prob hyperparameter of dropout is set to 0.8. The
learning rate is set to 0.0001 in the Adam optimizer. As to
the Leaky ReLU function in the discriminator model, the
slope of the leak is set to 0.2. We train the models for 100
epochs and save the generator model for every ten epochs to
get plentiful test cases.

Experiment Results

We divide this section into three parts to make clear the
experimental results. We first present and analyze the sta-
tistical result of fuzzing Modbus implementations to evalu-
ate the effectiveness and efficiency of these aforementioned
models. Then we reveal some special anomalies that oc-
curred in the process and find out bugs among these anoma-
lies afterward. Lastly, the experimental results of fuzzing
EtherCAT protocol are shown.

1) Statistical Analysis And Results

In this study, we choose the widely used GPF, GAN-based
model and LSTM-based seq2seq mode as fuzzers in the con-
trol group. The targets to be tested are 3 Modbus simulation
softwares mentioned above and the real Modbus network en-
vironment we have built. In order to better evaluate the over-
all effect of the model on the protocol, we combined the ex-
perimental results of the four systems and the weights of the
data obtained in these four targets are 20%, 20%, 20%, 40%
in the holistic data. After fuzzers in the experimental group
and control group are fully trained, fuzz testing is conducted
by sending a total of 270,000 generated test cases to Modbus
implementations through the TCP/502 port.

According to the three aforementioned evaluation indi-
cators, the effectiveness and efficiency of our fuzzing frame-
work BLSTM-DCNNFuzz and fuzzers in the control group
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are evaluated and represented graphically. Details are as fol-
lows.

a. TCRR.
The experimental results of TCRR are shown in Fig. 9.

Due to not involving a continuously learning process, the
performance of GPF has no changing trend on the targets so
that it is represented via a horizontal line when compared
to the other three fuzzing models based on depth learning.
From the perspective of the four models, the performance
of the TCRR indicators is: GPF ⇡ LSTM-based model <
GAN-based model < BLSTM-DCNNFuzz.

Fig. 9 TCRR changes with the training epochs

After training more than 30 epochs, the TCRR rates of
generative adversarial algorithms obviously exceed the GPF
algorithm. And the rising trends of rates slow down signif-
icantly after 60 epochs. The average TCRR rate of GPF is
58. 5% and the TCRR rates for generative adversarial algo-
rithms are 75% to 90%. The final TCRR rate of the LSTM-
based model algorithm is significantly lower than the other
two groups for adversarial learning, which may be caused
by the inability to learn a hierarchy of representations of the
data effectively. Because the seq2seq model based LSTM
is trained in an unsupervised learning environment, it may
result in generating a large number of malformed protocol
message sequences, leading to normal throwing and gener-
ating a rapid increase in the proportion of illegal messages
which we speculate there is a good chance to be the main
cause of the large fluctuation. The function codes and pa-
rameters range of the protocol messages are limited, which
increases the possibility of abnormal recognition in the ran-
dom generation.

For the generative adversarial algorithms from 50 to 100
epochs, the average TCRR rate of BLSTM-DCNNFuzz is
approximately 8% higher than the GAN-based model, which
indirectly indicates that BLSTM-DCNNFuzz is more appli-
cable to test cases generation for ICPs.

b. ATE.

When testing Modbus implementations, we record trig-
gered anomalies and triggered frequency. We compare the
four models combined with the following statistical or cal-
culated data to interpret and assess the ATE indicator better:
categories of Triggered anomalies (CTA), number of Trig-
gered anomalies (NTA), average time interval of Triggered
anomalies (ATITA), true negative rate (TNR) and true posi-
tive rate (TPR) values.

The result comparison shows our proposed methodol-
ogy can trigger more vulnerabilities in a higher frequency
than other models, which represents the testing efficiency of
BLSTM-DCNNFuzz. While we expect performance gains
through the integration of the BLSTM network and DC-
GAN, we are surprised at the magnitude of the gains. BLSTM-
DCNNFuzz beats all baselines on Modbus RSSim v8.20,
Modbus Slave v6.0.2, xMasterSlave v.156 and the real envi-
ronment from the GAN-based model. As for the TPR metric,
BLSTM-DCNNFuzz gets a second higher accuracy. Some
of the previous techniques only work on whether an anomaly
can be triggered, but not the efficiency of triggering anoma-
lies. Our question becomes whether it is possible for our
model when fuzzing targets to consider not only whether
anomalies can be found in the testing but also the testing
efficiency.

For that purpose, we test the four models on the four
fuzzing targets by sending 270000 pieces of fake data gen-
erated by each of the four models. Compared with the other
three models, BLSTM- DCNNFuzz achieves a comparable
testing result as shown in Table 2.

• CTA: Compared with the GAN-based model, the pro-
posed model does not depend on external language-specific
features because it captures features from the output of BLSTM
layer, which has already extracted features from the original
input text. The comparison of columns of CTA indicates that
the customized BLSTM- DCNNFuzz model for the diver-
sity of generating test cases is more capable than the other
three models when dealing with the same protocol.

• NTA & ATITA: NTA represents the total number
of anomalies triggered by the models during test time and
ATITA is the quotient of NTA and test time. The two met-
rics are able to measure the effectiveness of models and the
values are powerful arguments for the effectiveness of our
framework.

• TNR & TPR: BLSTM- DCNNFuzz is an extension
of DCGAN, and the results show that BLSTM-2DCNN can
capture more dependencies in protocol messages. Our method
achieves the best results on the test set, where a false-positive
rate of 5.95

• ATE: ATE represents the overall score of the effi-
ciency of models that integrates CTA, ATITA and TNR. Re-
sults indicate that our model gets the highest average ATE
scores on four fuzzing targets; the model does best on the
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Table 2 Experimental Data Comparison

Test Model
Case

Amount

Training

Time/h

Test

Time/h

Targets CTA NTA ATITA TNR(%) TPR(%)
ATE

Score

BLSTM-DCNNFuzz 270,000 12.13 9.67

Modbus RSSim v8.20 7 265 0.54

94.05 91.17

1.39

Modbus Slave v6.0.2 5 76 1.88 1.06

xMasterSlave v.156 8 109 1.31 1.13

Real Environment 6 59 2.42 1.04

GAN-based model 270,000 8.57 9.52

Modbus RSSim v8.20 5 86 1.66

92.54 92.39

1.09

Modbus Slave v6.0.2 6 57 2.50 0.81

xMasterSlave v.156 5 62 2.30 0.94

Real Environment 4 23 6.21 0.72

LSTM-based model 270,000 5.18 9.51

Modbus RSSim v8.20 4 38 3.76

87.39 93.25

0.76

Modbus Slave v6.0.2 5 21 6.78 0.63

xMasterSlave v.156 4 18 7.93 0.52

Real Environment 3 14 10.20 0.47

GPF 270,000 29.05 9.47

Modbus RSSim v8.20 2 23 6.21

- - - -

0.16

Modbus Slave v6.0.2 2 8 17.84 0.12

xMasterSlave v.156 3 12 11.89 0.19

Real Environment 2 9 15.86 0.08

Modbus RSSim v8.20 among the four targets which may
mean Modbus RSSim v8.20 is a weak target by comparison.

The concrete manifestation of BLSTM-DCNNFuzz is
shown in Table 3, where NTP represents the number of trig-
gered targets. According to the characteristics of the Mod-
bus/TCP protocol data field, the following protocol abnor-
mal feature descriptions which are triggered by our method
can be obtained in the first column of Table 3.

The efficiency of the fuzzing test focuses on the vulner-
ability discovery and the testing execution time. The test ef-
ficiency is represented as the number of vulnerabilities di-
vided by the testing execution time. As can be seen from
Table 3, compared with the results of other deep learning
methods in Table 2, our fuzzing test method has higher fre-
quencies to discover more vulnerabilities. NTP which repre-
sents the number of triggered targets can be used as a metric
for the code coverage of fuzz testing.

In short, the experimental results in Table 3 present spe-
cific experimental data of BLSTM-DCNNFuzz for the four
fuzzing targets. It also highlights that BLSTM-DCNNFuzz
can not only guarantee the capability of discovering vulner-
abilities but also increase the frequency of anomalies trig-
gering and improves test efficiency.

c. DGD. The message categories learned by GPF is con-
stant and the coverages of different GPF are different, so
it is not discussed in this part. The testing depth has in-
creased as illustrated in Fig. 9 at the expense of reducing
the code coverage of fuzz testing. Therefore, we need to

Table 3 Triggered Anomalies and Triggered Frequency of BLSTM-
DCNNFuzz

Triggered Anomalies
Frequency

(Times)

ATITA

(Mins)
NTP

Slave crash 27 21.11 4
Station ID xx off-line 142 4.01 3

Using abnormal function
code 108 5.28 4

Automatically closes the
window 53 10.75 4

Data length unmatched 126 4.52 4
Abnormal address 43 13.26 3
Integer overflow 5 114.00 2
File not found 3 190.00 1

Debugger memory
overflow 2 285.00 1

maintain high test case diversity on the premise of attain-
ing high TCRR rates. A total of 13 categories of Modbus
data frames are prepared in the raw data. When the training
epochs is 10, the diversity of the three deep learning based
models maintains the best. After training, some message cat-
egories are generally lost, as presented in Fig. 10. BLSTM-
DCNNFuzz and LSTM-based model have a good perfor-
mance on maintaining basically the test case diversity, which
illustrates the two models can learn the time-step dimen-
sion of protocol messages. And owing to the BLSTM model
containing two sub-networks for the forward and backward
sequence context respectively, it is able for the BLSTM-
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DCNNFuzz to exploit information from both the past and
the future, which performs better than LSTM-based model.
Usually, the richer the data type, the higher code coverage
we are likely to achieve, and the stronger ability a model
has to detect anomalies. Thus as presented in Table 3, our
trained model can effectively detect kinds of anomalies.

Fig. 10 Data diversity retention

2) Bugs Founded

The result is exciting that we have successfully triggered
anomalies. Some anomalies have been defined and described
in the detailed protocol specification so we are not surprised
by their triggers. But there are some weird anomalies which
are not declared before and cause some unexpected prob-
lems. The following describes in detail some representative
anomalies among these which are probably bugs.

Much abnormal information is displayed at the console
of the simulation software when the Modbus Rssim is at-
tacked by the generated data frames. For a while, it goes
crash. In detail, the software pop-ups windows prompt box
after we send about 3500 data frames, indicating that the
program has crashed. We send data frames range from 3450th
to 3500th to the other two Modbus implementations, Mod-
bus Slave and xMasterSlave, with no anomaly occurring.
This comparison indicates that Modbus Rssim has some er-
rors in the emulating Modbus-TCP protocol.

Another exception worth discussing is “Station ID xx
off-line, no response sent” in Modbus Slave. The log indi-
cates that “Station ID 32 off-line, no response sent” after
sending about 6540 data frames. But we observe that the sta-
tion 32 is still online. The phenomenon makes us believe that
there is an implementation flaw with the slave state judg-
ment.

In fuzz testing the xMasterSlave, we find that the soft-
ware automatically closes the window itself at times. Through

the analysis of the system log, we conclude that memory
overflow is the cause of the software crash, which suggests
that the programmer may not consider the exception of pop-
ulating with data boundary values when implementing the
simulator.

In further attacks of fuzz testing the three simulation
softwares and the real environment, anomalies such as “Us-
ing Abnormal Function Code”, “Data length Unmatched”,
“Integer Overflow” and “Abnormal Address” occur on a reg-
ular basis. We record the test cases that cause these anoma-
lies and all abnormal feedbacks from the three softwares and
the real Modbus-TCP network environment are counted for
further analysis. Other anomalies, such as “File not Found”
and “Debugger Memory Overflow” and so on, are found
only once or twice and thus are not discussed in detail.

3) Applying The Method to Another ICP-EtherCAT

As shown in Table 4, we detected these potential vulner-
abilities, including man-in-the-middle (MITM), MAC ad-
dress spoofing, slave address attack, packet injection, work-
ing counter (WKC) attack and so on, in EtherCat via the new
trained BLSTM-DCNNFuzz. In the experiment, we send the
generated data messages Si to the slave stations and record
the corresponding received message Ri. Massive message
pairs < Si, Ri > are obtained. According to the abnormal
protocol characterization above, we analyze and compare
the specified field values and obtained the following statis-
tical results. Experiments on the EtherCAT protocol prove
that our method has great versatility.

Table 4 Potential Vulnerabilities and occurrences times in EtherCAT

Potential Vulnerabilities NTA Sent Number

Packet injection attack 118 times 30,000
Man in the middle attack 26 times 30,000
Working counter attack 209 times 30,000
MAC address spoofing 41 times 30,000
Slave address attack 13 times 30,000
Unknown attack 197 times 30,000

Discussion and conclusion

In this study, we propose an effective fuzzing methodology
to generate fake but plausible fuzzing protocol messages of
ICPs. This methodology utilizes BLSTM and DCGAN to
learn the sequential structure of real-world messages and
generate similar data frames without knowing the detailed
protocol specification in advance. We ultimately evaluate
this method by fuzzing two safety-critical ICPs, including
Modbus-TCP and EtherCAT. The results indicate that our
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methodology has good expansibility and can apply to a se-
ries of ICPs.

In future studies, we expect to build a smarter and more
automated network protocol fuzzing system deployed in em-
bedded devices. The lightweight system can apply the man-
ner of online learning to learn protocol specifications or mes-
sage formats of different protocols automatically. Consider-
ing the current situation, we intend to perform the study in
the following aspects. First, we want to do further explo-
ration of other architectures to enhance our methodology,
such as WGAN-GP and Transformer-XL (Dai et al. 2019).
Second, more intelligent log analysis methods and result
analysis strategies are required to raise the efficiency of sta-
tistical analysis. The ultimate goal of our study is to integrate
each excellent architecture and processing module to form a
hybrid model and a complete software system, which can
deal with most network protocols, including stateful proto-
cols and non-stateful protocols.
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