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Highlights 11 

•! Computational models of cardiac calcium handling are powerful tools to understand 12 

the complex mechanisms underlying physiological and pathophysiological phenomena. 13 

•! This article describes the fundamental equations describing calcium handling at the 14 

spatial, sub-cellular scale. 15 

•! And outlines two different discretisation approaches for practical simulation of spatio-16 

temporal sub-cellular calcium dynamics.  17 

•! Finally, multi-scale integration methods for tissue-scale simulation of stochastic 18 

dynamics are described.   19 

Abstract 20 

Computational models of the heart at multiple spatial scales, from sub-cellular nanodomains 21 

to the whole-organ, are a powerful tool for the simulation of cardiac electrophysiology. 22 

Application of these models has provided remarkable insight into the normal and pathological 23 

functioning of the heart. In these two articles, we present methods for modelling cardiac 24 

electrophysiology at all of these spatial scales. In part one, presented here, we discuss methods 25 

and approaches for modelling sub-cellular calcium dynamics at the whole-cell and organ 26 

scales, valuable for modelling excitation-contraction coupling and mechanisms of arrhythmia 27 

triggers.  28 

Keywords: calcium handling, excitation-contraction coupling, spontaneous activity,	cardiac 29 

tissue, electrophysiology, action potential, propagation, computational modelling  30 

1.! Intro 31 

The periodic cycling of calcium (Ca2+) ions controls excitation-contraction coupling (ECC) in 32 

cardiomyocytes, the mechanism by which electrical excitation triggers the development of 33 

mechanical force [1]. Intracellular Ca2+ homeostasis is relevant for maintaining appropriate 34 

cardiac performance required to meet the dynamic demands of the body, and has also been 35 

linked to pro-arrhythmogenic cellular phenomena [2,3]. Elucidation of the complex and multi-36 

scale interactions which determine the mechanisms by which intracellular Ca2+ cycling 37 

underlies (patho)physiological function is therefore critical not only for fundamental 38 
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understanding of the electro-mechanical system of the heart, but also to the clinical motivations 1 

of treating and managing life-altering and -threatening cardiovascular disease [4,5].  2 

The system maintaining Ca2+ homeostasis comprises multiple membrane transport channels 3 

and sub-cellular structures, the complex interactions of which are challenging to dissect with 4 

purely experimental approaches. Computational modelling has proved a powerful tool to 5 

supplement experimental studies and tease apart the mechanisms of cardiac function in health 6 

and disease [6,7]. However, developing accurate and realistic models of intracellular Ca2+ 7 

homeostasis presents a number of additional challenges compared to the point-source cell 8 

models traditionally used.  Namely, one must attempt to simultaneously account for: (i) the co-9 

localisation between channels at the nanometre scale; (ii) stochastic state transitions in 10 

restricted nanodomains; (iii) the spatial distribution of channels and membrane structures 11 

throughout the intracellular volume; and (iv) the interactions of heterogeneous cells in the 12 

syncytium of cardiac tissue. Over the last decade, multiple research groups have made 13 

significant advancements in the development of methodologies and approaches to address 14 

these challenges [8–20]; within this context, this article focuses on those developed by and 15 

utilised within our lab.  16 

We will first discuss the primary components of the intracellular Ca2+ handling system and 17 

mechanisms of pro-arrhythmogenic phenomena to provide a context for the computational 18 

models. The methods described are focussed on two motivations: (i) modelling cellular spatial 19 

structure-function relationships underlying ECC and dysfunctional homeostasis, and (ii) multi-20 

scale approaches for efficient modelling of Ca2+-dependent spontaneous excitations in tissue. 21 

The computational models referred to are provided open-source and can be found in the lab’s  22 

Github repository (https://github.com/michaelcolman/) and through the lab’s website 23 

(http://physicsoftheheart.com/). This is part one of a two-part article; see Benson et al. in this 24 

issue for part two, which discusses methods for modelling structure-function relationships in 25 

cardiac tissues. 26 

2.!The intracellular Ca2+ handling system 27 

At the whole-cell scale, Ca2+ homeostasis is regulated by the balance of multiple Ca2+ fluxes 28 

and depends on the process of Ca2+-induced-Ca2+-release (CICR; Figure 1A): During cellular 29 

excitation, the L-type-Ca2+-channels (LTCCs) open and permit an influx of Ca2+ from the 30 

extracellular space; the elevated intracellular Ca2+ concentration promotes binding with the 31 

type-2 ryanodine receptors (RyRs), which release a larger amount of Ca2+ from the intracellular 32 

Ca2+ store (the sarcoplasmic reticulum; SR) into the bulk intracellular space. Homeostasis is 33 

maintained by effluxes through the membrane channels of the sodium-calcium exchanger 34 

(NCX) and the Ca2+ ATPase pump, which remove Ca2+ into the extracellular space, and the 35 

SR-Ca2+-pump (SERCA), which refills the SR.  36 

The distributed spatial structure of the sarcolemmal and SR membranes and their associated 37 

channel proteins facilitates uniform cellular contraction, but also has potentially pro-38 

arrhythmogenic implications. CICR occurs in restricted nanodomains called dyads, which co-39 

localise the LTCCs and RyRs; each dyad contains only a few LTCC and RyR channels 40 

(typically 5-15 and 5-200, respectively [21]) within a very small volume (O(10-3) µm3) where 41 

random state transitions can have important implications. Dyads are distributed throughout the 42 

intracellular volume and are functionally coupled by Ca2+ diffusion, supporting robust whole-43 

cell triggered Ca2+ release which, in normal conditions, can normalise the stochastically-driven 44 

variability of triggered Ca2+ sparks occurring in individual dyads. However, this functional 45 

coupling in combination with inter-dyad heterogeneity has been shown to be a critical factor 46 

underlying the dynamics of Ca2+-transient alternans  [8,22], referring to beat-to-beat 47 

alternations to the magnitude of the Ca2+ transient and developed force which can both directly 48 
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impact cardiac output as well as lead to arrhythmia. Moreover, random openings of single or 1 

few RyRs can raise the local Ca2+ concentration sufficiently to trigger further openings within 2 

the dyad, potentially leading to a whole-dyad event: the spontaneous Ca2+ spark. Spatial-diffuse 3 

coupling amplifies this intrinsic feedback mechanism and provides a dynamical substrate for 4 

the propagation of microscopic fluctuations to the macroscopic scale (whole-cell) as a spark-5 

induced-spark mediated Ca2+ wave (Figure 1B). Activation of NCX as this wave propagates 6 

throughout the intracellular volume results in a transient inward current that can depolarise the 7 

cell membrane as a delayed-after-depolarisation (DAD) or full triggered action potentials (TA; 8 

Figure 1B), potentially triggering spontaneous focal excitations and arrhythmia in tissue. Thus, 9 

stochastic dynamics in sub-cellular Ca2+ handling can have implications on whole-cell and 10 

whole-organ function; accounting for these microscopic features in efficient cell models is one 11 

major challenge faced by the community.  12 

The methods described in this article aim to build multi-scale modelling approaches to 13 

accurately simulate these underlying heterogeneous sub-cellular spatial-dynamics and their 14 

impact on tissue function.  15 

3.!Methods for modelling sub-cellular spatial Ca2+ dynamics 16 

This section describes methods for modelling the structure-function relationships of 17 

intracellular Ca2+ handling at two different levels of detail, corresponding to different 18 

discretisation approaches. The first (Figure 2A), at the coarsest resolution, approximates a cell 19 

as a 3D grid of “calcium-release-units” (CRUs) [8,23] which are comprised of multiple 20 

intracellular and SR compartments, and are thus referred to herein as compartmentalised 21 

models. The second (Figure 2B), higher resolution approach discretises the intracellular spaces 22 

as volumes within which free diffusion occurs [9,12,20], and are thus herein referred to as free-23 

diffusion models. The two models operate at discretisation scales of O(100) µm3 and O(102) 24 

nm3, respectively, and present different advantages: namely, the ability to directly study 25 

structure-function relationships at the super resolution scale (free-diffusion models), and the 26 

ability to carry out high-throughput simulations suitable for statistical analysis 27 

(compartmentalised models). The fundamental schematic structure and governing equations of 28 

the models are the same, described in the next section. Instructions and worked examples for 29 

implementing both of these model types using the source-code developed in the lab is provided 30 

in the Supplementary Material S1 – Worked Examples and the extensive documentations 31 

provided with the code.  32 

3.1.!Fundamental model setup  33 

Whereas some of the fine details may differ, the fundamental structure of whole-cell spatio-34 

temporal models of intracellular Ca2+ handling in the literature in-general comprises five 35 

compartments (Figure 2Aiii, Biii): the intracellular space is split into the compartments of the 36 

dyadic cleft, the local sub-space, and the bulk intracellular space; the SR is split into the 37 

network and junctional compartments (nSR and jSR, respectively). The dyadic cleft can be 38 

treated as a single compartment with volume vds and associated numbers of LTCCs and RyRs 39 

(these parameters can vary between individual dyads); the bulk intracellular space, network SR 40 

space and (optionally) the sub-space can be spatially coupled to their neighbours, whereas the 41 

junctional SR and dyad compartments are spatially isolated. Ca2+ dynamics in each of these 42 

five compartments is described by the general homeostatic equations:  43 
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d[Ca2+ ]

cyto

dt
= β

cyto
D∇

2
[Ca2+ ]

cyto
+φ

cyto
+ v

ss
v
cyto( ) Jss( )



 4 

  (2) 1 

  (3) 2 

   (4) 3 

   (5) 4 

Where transfer between compartments is given by: 5 

   (6) 6 

  (7) 7 

   (8) 8 

And the general form for reaction terms are: 9 

  (9) 10 
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   (13) 14 

Where ∇2 is the spatial Laplacian operator in 3D, β	refers to instantaneous buffering, v refers 15 

to the volumes of the compartments and τ to the time-constants of diffusion. Full equations 16 

and parameters are given in the Supplementary Material S2 – Model description, and in 17 

associated publications [11–13].  18 

3.2.!Discretisation scheme: compartmentalised models 19 
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each dyad as a single CRU (Figure 2A),  corresponding to discretisation in the range 1-2 µm. 22 

Such models assume homogeneous distances between dyads (transverse-longitudinal 23 

anisotropy can still be included) but have proved valuable in mechanistic investigation of Ca2+-24 
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sub-space and network SR can be approximated by coupling the relevant compartment of each 1 

CRU to its six nearest neighbours in each of the principal directions and defining a time-2 

constant of diffusion between them; time-constants can differ between types of compartment, 3 

and in the transverse and longitudinal directions to introduce anisotropy. Thus, the diffusion 4 

terms in equations 1-3 can be approximated with the following discretisation: 5 

   (14) 6 

Where example [11,13] values for the time constants, relative to the longitudinal axis of the 7 

cell, are 2.9∥ and 2.3⊥ ms (cytoplasm), 12∥ and 7⊥ ms (network SR), and 2.2∥ and 1.35⊥ ms 8 

(sub-space). Every other equation is discretised by solving it locally for each CRU, n (= 1, 2 9 

… NCRUs). Different cellular geometries can be specified by defining different extents of the 10 

CRU grid in each direction, representing, for example a typical ventricular cell (15 × 20 × 65 11 

≈ 15 × 20 × 100 µm3) or with adjusted parameters to reproduce variability, remodelling or 12 

similar. Note that distances in this type of model are not explicitly defined, but are rather 13 

captured in the time constants of diffusion. Please see [8] for estimating time-constants based 14 

on distance and local buffering. These models are available in the “Multi-scale cardiac 15 

simulation framework (MSCSF)” repository on the lab’s Github.  16 

3.3.!Discretisation scheme: free-diffusion models 17 

Following the earlier works of Li et al. 2010 [9] and Nivala et al. 2012 [20], an approach was 18 

developed in Colman et al. 2017 [12] to integrate multiple reconstructed cellular structures into 19 

free-diffusion models of spatio-temporal calcium handling (Figure 2B). Fundamental model 20 

setup is similar to those studies, with the addition of mapping functions to describe the 21 

heterogeneous structures of the SR and T-system. This approach discretises the space 22 

explicitly, rather than through compartmentalisation of CRUs. An idealised model is first 23 

created by selecting a volume to correspond to the intracellular space – either a cuboid or a 24 

cylinder with dimensions that match those of cardiac cells (10-20 µm ×	10-20 µm ×	50-150 25 

µm). This volume can be discretised at a chosen resolution in the range Δx = 100 – 250 nm and 26 

the diffusion terms in equations 1-3 are modelled by the isotropic, 6-node finite difference 27 

approximation: 28 

   (15) 29 

3.3.1.! Model setup 30 
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   (16) 1 

   (17) 2 

Where all dyad-specific dynamics ([Ca2+]ds and [Ca2+]jSR terms) are solved only for voxels 3 

containing dyads (note that the above ensures those which do not contain dyads have no 4 

contribution from them). In the fully idealised models, these dyads can be evenly distributed 5 

throughout the cell volume at intervals of 1-2 µm (Figure 2Bii), or according to randomly 6 

produced distributions for theoretical study; the distances between dyads is necessarily limited 7 

to the same discretisation as the chosen space step, Δx.  8 

3.3.2.! Distributing membrane and SR fluxes 9 

In fully idealised approaches, the sarcolemmal membrane (surface and TT) and SR occupy the 10 

entire intracellular volume and are present in every voxel. However, this is not physiologically 11 

representative nor a requirement of this approach: both may be restricted to a subset of the 12 

intracellular voxels and thus have their own structure. The structures themselves can be derived 13 

from experimental imaging data, as described later, or theoretically generated “cartoon” 14 

geometries. Dependent on the available data and desires, some or all of the following 15 

considerations can be included: (i) non-idealised dyad distribution and heterogeneous RyR and 16 

LTCC channel numbers; (ii) structure of the surface sarcolemma and T-system; (iii) structure 17 

of the SR; (iv) relative expression of sarcolemmal and/or SR channels along these membranes.   18 

Distributing dyads according to different spatial geometries involves defining the mapping 19 

functions to correctly relate dyads to voxels. Similar mapping functions can also be used to 20 

localise and distribute the membrane and SR fluxes according to the desired structure. Thus, 21 

we introduce the membrane maps (θmem(p) = n; θmem
-1(n) = p) and SR maps (θSR(q) = n; θSR

-22 
1(n) = q) which relate membrane and SR voxels (p = 1, 2 … P; q = 1, 2 … Q) to the intracellular 23 

space voxel. Note that under these additions, the model is no-longer a homogeneous tri-domain 24 

model, as not every voxel necessarily contains a network SR domain. Thus, the reaction term 25 

for the cytoplasm (equation 9) and SR (equation 10) are updated accordingly: 26 
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Where qJup, qJleak = f(θSR(q)=n[Ca2+]cyto, q[Ca2+]SR,). For any structures considered idealised 1 

(occupying the entire intracellular volume) there is therefore a one-to-one mapping with the 2 

intracellular space, and the general form of the equation is restored.  3 

3.4.!Heterogeneous ion channel expression in the sub-cellular volume 4 

Heterogeneous expression of the flux channels can be incorporated by scaling the local 5 

maximal flux rates and/or channel numbers around the mean while maintaining total channel 6 

expression. For the membrane fluxes this gives: 7 

  (20) 8 

Where X represents any of the membrane fluxes in equation 9. Similarly, for the SR fluxes (Jup 9 

and Jleak): 10 

        (21) 11 

This approach can be equally applied to both compartmentalised and free-diffusion models.  12 

4.! Image-based modelling approaches 13 

This section outlines approaches for modelling controllable and experimentally-matched 14 

heterogeneous structures in both types of spatial cell model. These approaches can be applied 15 

in future studies to help to rigorously establish the link between structure and emergent function 16 

in both physiological and pathophysiological conditions.  17 
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The free-diffusion model developed in Colman et al. 2017 [12] and described above was 19 

specifically designed for the ability to directly include experimental reconstructions of the sub-20 

cellular membrane structures and channel distribution, permitting in silico functional 21 

assessment of specific cellular structure. This section outlines the approaches for processing 22 

and discretising high-resolution cellular structural data for simulations; the reader is referred 23 

to the original paper for further details. The experimental imaging approaches to acquire these 24 

structural data are described elsewhere [24–26]. 25 
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contain their own structure within the intracellular volume. Thus, all that is required is to create 27 

the mapping functions which relate the dyad, membrane and SR voxels to intracellular voxels. 28 

The first step is to segment the desired structures from the imaging data (Figure 3A) based on 29 

user-determined thresholds – the desired output is binary: 1 representing the presence of the 30 

structure, 0 representing its absence.  31 

The dyads in the model should be point-sources occupying one voxel each, and so down-32 

sampling imaging data to the model discretisation should be relatively simple (Figure 3B). The 33 

T-tubules and SR should be continuously connected networks; smoothing of the data may be 34 

required to achieve this. For the T-tubules, the structure may be crudely down-sampled either 35 

using an image-processing tool, or using an explicitly defined threshold for the number of high-36 

resolution voxels which correspond to its presence at low resolution. The process is more 37 
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complex for the SR, as the down-sampled resolutions may significantly obscure the network 1 

structure of the system (Figure 3C). Thus, rather than simple down-sampling, the network is 2 

first skeletonised and the connections along the network are mapped. The skeleton can then be 3 

down-sampled, with the connection map imposed to ensure new connections are not created 4 

through this down-sampling (Figure 3D).  5 

Once we have structures which represent the T-system and SR at the spatial resolution of the 6 

model’s intracellular space, sequentially numbering each element of the geometries allows a 7 

simple mapping of voxel n to structure map p, q. The fluxes interacting with the cytoplasm are 8 

thusly localised to these structures; diffusion of Ca2+ in the SR is solved using the connection 9 

map as a pseudo-1D cable.  10 

If data on channel expression along the membranes are available, then the local flux at each 11 

map element can be scaled according to this relative expression data. The relative expression 12 

should be normalised to meet the constraint that the average is 1 (i.e. whole-cell channel 13 

expression is unaffected) and then this relative expression map defines local p,qGx in equations 14 

20-21.  15 

4.2.!Image-based modelling using the compartmentalised models 16 

Despite the clear value of the structurally detailed free-diffusion models for investigations of 17 

heterogeneous sub-cellular structure, they are computationally intensive and restricted to the 18 

structural data available or cartoon geometries. The compartmentalised models can also be 19 

used for structurally heterogeneous investigation in a more systematic and general approach. 20 

The range of heterogeneities investigated is more limited than the free-diffusion model (for 21 

example, inter-dyad distance and co-localisation distances are fixed in the current setup of the 22 

model), but can include: numbers of RyRs/LTCCs in each dyad, and the respective dyad and 23 

jSR volumes; the relative expression of all other Ca2+-flux carrying channels in each CRU. 24 

These heterogeneities can be included by producing 3D maps which scale flux strength (or any 25 

other) parameters in individual CRUs relative to the global value, e.g. by directly setting the 26 

local flux scale-factor p,qGx. This section will first discuss methods for producing spatially 27 

correlated relative expression maps, followed by methods for analysing real imaging data to 28 

perform image-based modelling using these idealised models.  29 

4.2.1.! Modelling spatially heterogeneous channel expression 30 

A crude approach to modelling sub-cellular heterogeneity in channel expression could be 31 

simply to use a random number generator to produce a randomly populated scaling map, 32 

imposing a selected probability density function. However, a spatial random field can also be 33 

used which accounts for the spatial correlation in channel expression, ensuring the expression 34 

in one CRU is not independent of that in its neighbour. A random field, �(�), is a random 35 

function over some arbitrary (usually multi-dimensional) system, which can be described as a 36 

set of continuous indexed variables � ∈ Ω, where Ω is an open set of ℝ2 	which describe the 37 

geometry of the system [27,28]. The main statistics of random fields are the mean, variance 38 

and correlation length (length scale), which can have their own functions.  39 

One class of correlated random field is a Gaussian random field (GRF) which uses the Gaussian 40 

probability density function with an exponential covariance (a 1-D GRF is also called a 41 

Gaussian Process) [29]. Through applying Gaussian functions to these statistics, the random 42 

field can be constrained, allowing 3D heterogeneous expression maps (Figure 4A) to be 43 

produced with given spatial parameters. The length-scale, λ, determines the spatial extent of 44 

correlated expression: at the CRU resolution (i.e. 1µm) this is equivalent to a spatially 45 

uncorrelated map; as length scale increases, the rate of spatial variation decreases (Figure 4B). 46 

Anisotropic maps can also be produced wherein the length scales in the transverse and 47 

longitudinal directions are not equal (i.e. λT ≠ λL; Figure 4B), which may be more 48 
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representative of cardiac sub-cellular structure. It is vital to impose the constraint when 1 

producing these maps that the mean scale factor remains 1, such that the inclusion of such 2 

heterogeneity does not affect whole-cell expression.  3 

The impact of such sub-cellular heterogeneity on the spatial and average properties of the Ca2+ 4 

transient can be substantial, in particular when heterogeneity in multiple targets (e.g. SERCA 5 

and RyR) are considered in combination (Figure 4C). Preliminary simulations indicate such 6 

heterogeneities may be linked to both Ca2+-transient alternans and spontaneous excitation. For 7 

those interested in exploring this further, we have developed user-friendly tools to generate 8 

these maps, suitable for use in our simulation framework, which can be found in the 9 

“Sub_cellular_heterogeneity_TOOLKIT” repository on the lab’s Github.  10 

4.2.2.! Methods for data processing for image-based modelling 11 

This section discusses processing cellular imaging datasets in order to extract the information 12 

necessary to generate spatial maps which are congruent with the experimentally measured 13 

properties. In brief, we want to extract the length scales in the transverse and longitudinal 14 

directions which may be used as inputs to generate sets of randomly produced maps with those 15 

properties. A variogram model is used to estimate these length scales from the microscopy 16 

data. 17 

Extracting the variation parameters from microscopy data required the construction of a semi-18 

automatic pipeline which processes the image data into a suitable format for analysis, and a 19 

method of fitting the processed data to some spatial covariance function which includes a 20 

description of correlation length scales. This semi-automatic pipeline is available in the 21 

“Sub_cellular_heterogeneity_TOOLKIT” repository on the lab’s Github, which contains 22 

worked examples for data processing. The process of this analysis is described below.  23 

The processed dataset must contain a suitably large quantity of data in order to obtain 24 

meaningful values of longitudinal and transversal length scales. The image data should be 25 

rotated such that the longitudinal and transversal axes are in alignment with the x and y axes 26 

of the image (Figure 5A). Rotated images are then cropped and down-sampled to a resolution 27 

of 1-2 µm (Figure 5A). This down-sampling is essential for length-scale analysis, as we require 28 

a continuous distribution representing the average relative expression of each channel per 29 

CRU, suitable for comparing different CRUs, and therefore need to remove the internal 30 

underlying membrane structure; the down-sampled image should be suitable for visualisaton 31 

as a contour map (Figure 5A). The variogram fitting procedure can then be applied to obtain 32 

the relevant parameters corresponding to that slice (Figure 5A). The process is repeated for all 33 

suitable x-y slices in the z-stack of images, and the summary parameters for the whole-cell can 34 

be obtained. These parameters can then be used to generate sets of 3D heterogeneity maps for 35 

use in simulations (Figure 5B).  36 

5.!Methods for multi-scale investigation of spontaneous calcium 37 

release 38 

Multi-scale investigation of spontaneous Ca2+ release events (SCRE) is one of the major 39 

motivations for developing such detailed models of spatio-temporal Ca2+ handling. The 40 

challenge is that the spatial models discussed above are unsuitable for tissue-scale simulations, 41 

whereas efficient point-source cell models cannot reproduce stochastically induced SCRE. In 42 

parallel with the pioneering work of [18,19,30,31], an independent novel approach was 43 

developed to accurately reproduce the statistics and dynamics of SCRE in efficient cell models 44 

suitable for tissue simulations [11,13,32]. Described in detail in Colman 2019 [13], this 45 

involved the introduction of spontaneous release functions (SRF): analytical waveforms 46 

describing RyR open state occupancy with controllable parameters to match the timing, 47 
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amplitude and duration of SCRE observed in the spatial cell models and/or experiments. These 1 

functions, and algorithms to implement them with dynamic cell models, are packaged with the 2 

MSCSF on the lab’s Github.  3 

5.1.!The Spontaneous Release Functions 4 

The SRF aim to capture the temporal evolution of the open RyR waveform associated with 5 

SCRE, based on simulated SCRE emerging from the compartmentalised 3D cell model (Figure 6 

6A). Waveforms occur in broadly two forms: long-duration, spike-and-plateau like (e.g. at low 7 

Ca2+ load), and short-duration spike-like (e.g. at high Ca2+ load; Figure 6A). The primary 8 

properties of these waveforms which need to be reproduced are: (1) the initiation time, ti, 9 

referring to the time of onset of SCRE; (2) the duration of the waveform; and (3) the amplitude. 10 

These parameters can be used to define SRF which approximate this temporal evolution: 11 

  (22) 12 

   (23) 13 

   (24) 14 

   (25) 15 

   (26) 16 

where ti is the initiation time of the SCRE, tf is the end time (duration, λ, thus = tf-ti), tp is the 17 

time of the peak of the waveform and NRyR_O
peak is the peak of open proportion RyR (Figure 18 

3D). The constants in equations (25,26) were obtained from best fits to the waveforms 19 

observed. The function for the plateau-like waveform (corresponding to durations longer than 20 

300 ms) is derived from the same parameters: 21 

  (27) 22 

Where NRyR_O
plateau is the amplitude of the plateau.  23 

Due to the stochastic nature of SCRE, these properties are all variable and described by 24 

distributions (Figure 6B). In order to appropriately determine individual waveform parameters, 25 

these can be randomly sampled from the defined distributions. 26 

(1) - ti: The probability density functions for the initiation time do not demonstrate a normal 27 

distribution, but rather a skewed distribution. The cumulative frequency is well approximated 28 

by the use of two simple sigmoidal functions (Figure 6B): 29 
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The distribution for ti is therefore determined by four parameters: the initiation time 1 

corresponding to the point where the functions are separated (ti,Sep); the cumulative frequency 2 

at this point (CFti,Sep= F(ti)|ti=ti,Sep), and the gradient parameter of each function (kF1, kF2 - 3 

corresponding to the width of the distribution either side of ti,Sep).   4 

(2) – λ: The distributions for the duration are also non-normal, and well approximated by two 5 

sigmoidal functions describing the cumulative frequency for half of the data either side of the 6 

median duration (MD):  7 

 (29) 8 

Where the widths (DW1, DW2, in ms) are a function of the MD, given by: 9 

  (30) 10 

  (31) 11 

The duration distribution is therefore completely described by the median, MD. Note that the 12 

widths (DW1, DW2) could also be specified directly for complete control over the variability in 13 

duration. Within this, the timing of the peak, tp, varies approximately evenly, occurring between 14 

25 ms after the initiation (ti) and 52 ms before the final time (tf).  15 

(3) - NRyR_O
peak; NRyR_O

plateau: The amplitude correlates strongly with duration, λ: 16 

   (32) 17 

  (33) 18 

Full equations and parameters are presented in the Supplementary Material S2 – Model 19 

description. With this setup, therefore, all parameters of the waveform are derived from two 20 

primary waveform properties: the initiation time, ti, and the duration, λ, which also determine 21 

the peak time and amplitude; the distributions describing the variability of these properties is 22 

entirely described by 5-7 parameters (ti = f(ti_sep, CFti_sep, kF1, kF2); λ = f(MD, DW1, DW2) where 23 

DW1, DW2 = f(MD) or specified). Directly, these parameters can be defined by the user to 24 

investigate the impact of these distributions on cellular SCRE and its manifestation in tissue. 25 

A worked example, introducing a pathophysiological model and deriving the resulting SRF, is 26 

provided in Supplementary Material S1 – Worked Examples.  27 

It is also valuable to be able to determine these distribution parameters dynamically during a 28 

simulation, based on the environmental variable of the SR - Ca2+ load. Specific approximations 29 

can be performed to match the behaviour of the cell models under different conditions (Figure 30 

6C). Moreover, a general and controllable approach was developed to facilitate systematic 31 

analysis in the wide parameter space: The SR dependence of these distribution parameters can 32 

be defined by functions of SR-Ca2+ load and user-defined parameters, offering full control of 33 

SCRE dynamics (Figure 6C): 34 
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  (35) 1 

  (36) 2 

  (37) 3 

  (38) 4 

   (39) 5 

  (40) 6 

   (41) 7 

Where the user-defined parameters refer to: The threshold for SCRE (CaSRthreshold);  The SR-8 

Ca2+ range over which P(SCR) varies from 0 to 1 (CaSRP_range); The maximal SR-Ca2+ above 9 

which SCRE distributions converge (CaSRmax > CaSRthreshold + CaSRP_range);  The minimum and 10 

maximum ti,Sep and MD (ti,Sep
min, ti,Sep

max, MDmin, MDmax); The ti and λ distribution widths at 11 

these extremes (ti,width
min, ti,width

max, λwidth
min, λwidth

max); And the non-linearity of width variance 12 

(Hwidth).  13 

The framework therefore uses the detailed, spatial cell models to derive the form of these SRF 14 

(Figure 6A-B); user inputs and/or SR-Ca2+ load are then used to define the distributions (Figure 15 

6C), from which SRF parameters are randomly sampled to define individual waves (Figure 16 

6D); these can then be integrated with non-spatial cell models, suitable for simulation in tissue 17 

(Figure 6E). This approach provides the means to investigate the mechanisms of 18 

synchronisation and dynamic interactions with tissue structure and arrhythmia conduction 19 

patterns such as re-entry [13].  20 

6.!Summary and conclusions 21 

In this article, we have outlined methods for modelling sub-cellular spatial Ca2+ dynamics in 22 

cardiac cells, from the super-resolution through whole-cell up to the whole-heart scales. Such 23 

models are a powerful tool to investigate the multi-scale mechanisms underlying normal and 24 

abnormal cellular ECC as well as the emergence of Ca2+-dependent arrhythmia.  25 
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 29 

8.!Supporting information 30 

All of the tools discussed in this article are available from the repository 31 

(https://github.com/michaelcolman/).  32 

Worked examples are provided in the Supplementary Material S1 – Worked Examples. 33 
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Full model equations are provided in the Supplementary Material S2 – Model Description.  1 
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Figures 1 

 2 
 3 

 4 

Figure 1: Intracellular Ca2+ handling phenomena. A – Schematic of the cardiac Ca2+ 5 

handling system (left) illustrating the phases of calcium-induced-calcium-release during 6 

electrical excitation, with the relationship between the AP and Ca2+ transient (right). The 7 

primary fluxes are illustrated with the coloured ovals and directional arrows, and the phases of 8 

CICR are labelled: 1) Ca2+ influx through the LTCCs during excitation; 2) Ca2+ release from 9 

the SR through the RyRs; 3) diffusion into the bulk intracellular space; 4) binding with the 10 

contractile proteins; 5) mechanical relaxation releases Ca2+ back into the bulk space; 6) refilling 11 

of the SR through SERCA and Ca2+-efflux through NCX. B – illustration of the mechanisms 12 
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of spontaneous excitation. The left panels show snapshots of calcium dynamics in the 1 

schematic (upper) and using simulated data (lower). In the upper panels, the green regions 2 

indicate high Ca2+ concentration and dyads undergoing Ca2+ release are circled in red dotted 3 

lines. Illustrated are: 1) spontaneous Ca2+ spark; 2) propagation in the transverse direction 4 

triggering more sparks; 3) propagation in the longitudinal direction, activating dyads on 5 

neighbouring T-tubules. The right panel shows examples of the Ca2+ concentration, INCX 6 

waveform and membrane potential associated with a stimulated excitation followed by a 7 

spontaneous Ca2+ release event, illustrating a case in which the DAD both does and does not 8 

manifest as a full triggered AP; the dotted line represents zero in y.  9 

  10 
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 1 

 2 
 3 

Figure 2: Schematics of the two different approaches for spatial cell modelling. A – the 4 

compartmentalised model involves coarse-graining the volumes associated with each dyad into 5 

a calcium-release-unit (i; CRU), which are arranged in a regular grid to form the cell (ii). The 6 

compartments of each CRU and the relevant fluxes and inter-compartment transfer are 7 

illustrated in (iii). Labelled are the dyadic cleft space (DS), sub-space (SS), bulk cytosolic space 8 

(CYTO), network and junctional SR spaces (NSR, JSR), and a T-tubule (TT). B – the free-9 

diffusion model involves discretising the intracellular space as a free-diffusion volume (i), with 10 

voxels which both do and do not contain dyads; dyads are regularly distributed throughout the 11 

volume of the intracellular space (ii). The structure of each voxel is almost identical to that of 12 

a CRU (iii), with the exception of the presence or absence of dyads, TTs or the SR (according 13 

to the maps).  14 

 15 

  16 
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 1 
Figure 3: Processing structural data for direct image-based modelling. A – Example of a 2 

slice of electron-microscopy images of cardiac sub-cellular structure from which simulation 3 

geometries can be produced (data from [24] and image from [12]). B – Reconstruction of the 4 

surface sarcolemma (light brown), T-tubules (dark brown) and dyad locations (blue dots) 5 

within the intracellular space (purple volume). C – Reconstruction of the SR in 3D (purple) 6 

and method for down-sampling (D).   7 
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 2 
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Figure 4: Illustration of using spatial random fields to model sub-cellular channel 4 

expression heterogeneity. A – Example of a 3D GRF map, visualised using a contour plot 5 

applied to 2D slices of the back surfaces, and semi-transparent contours throughout the volume; 6 

two individual 2D slices are also shown for clarity. B – Example slices showing isotropic 7 

(upper) and anisotropic (lower) GRF maps produced at different length scales and anisotropy 8 

ratios. C – Examples of the influence of sub-cellular heterogeneity in RyR, SERCA and/or 9 

NCX emerging from GRF maps with different length-scales. The plot visualises a linescan of 10 

Ca2+ concentration along the longitudinal axis of the cell (y-axis) in time (x-axis). 11 

  12 
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 1 
Figure 5: Image-based modelling using the compartmentalised models. A – Illustration of 2 

the processing required to extract length scales from cellular imaging data (in this example of 3 

SERCA expression). B – Examples of 2D slices from three independently produced GRF maps 4 

based on the parameters extracted from two different cells.  5 

 6 

 7 

  8 
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 1 

Figure 6: The computational framework for multi-scale simulation of spontaneous 2 

calcium release. A - 3D, microscopic Ca2+ handling model (left), illustrating the 3D grid of 3 

calcium release units (CRUs; upper panel) and the compartments and Ca2+ fluxes within a 4 

single CRU (lower panel). Labelled are the dyadic cleft space (DS), sub-space (SS), bulk 5 
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cytosolic space (CYTO), network and junctional SR spaces (NSR, JSR), and a T-tubule (TT); 1 

simulated SCRE (right) showing three snapshots of Ca2+ waves at low (left) and high (right) 2 

SR-Ca2+; lower panels are overlays of 100 simulations at each SR-Ca2+. B – Statistics of SCRE, 3 

showing the distributions associated with initiation time (left), duration (middle) and peak RyR 4 

(right). Examples of two functions – and their relevant parameters – to fit the cumulative 5 

frequency of initiation time are shown. C – Defining the distribution parameters based on SR-6 

Ca2+, illustrating the Dynamic Fit model (left) and General Dynamic model (right). D – 7 

Illustration of the analytical spontaneous release functions, defined by the parameters randomly 8 

sampled from the initiation time and duration distributions. Those illustrated correspond to the 9 

highlighted waveforms in A. E – Schematic of the non-spatial cell model (left), illustration of 10 

the tissue models (middle), and example simulation of a SCRE mediated focal excitation 11 

(right).   12 


