
This is a repository copy of Automated assessment in a programming course for
mathematicians.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/160290/

Version: Published Version

Article:

Bostelmann, Henning orcid.org/0000-0002-0233-2928 (2020) Automated assessment in a
programming course for mathematicians. MSOR Connections. pp. 36-44. ISSN 2051-4220

10.21100/msor.v18i2.1095

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

36 MSOR Connections 18(2) – journals.gre.ac.uk

CASE STUDY

Automated assessment in a programming course for
mathematicians

Henning Bostelmann, Department of Mathematics, University of York, York, UK.
Email: henning.bostelmann@york.ac.uk. https://orcid.org/0000-0002-0233-2928.

Abstract

The paper reports on a programming course for undergraduate Mathematics students in their 2nd

year, with some parts compulsory for single-subject students. Assessment takes the form of several

programming projects. Formative feedback as well as summative assessment is aided by automated

unit tests, which allow for rapid and consistent marking, while focussing marker’s time on students

who require the most help.

Keywords: programming, automated assessment, unit tests, Java.

1. Introduction

Computer Science originates in Mathematics; computers are based on mathematical rules and, early

on, programming was seen as a mathematical activity (Dijkstra 1974). In fact, fundamental

mathematical concepts like sets, functions, their domains and codomains, have their counterpart in

modern programming languages. Vice versa, computer technology plays a central role for

Mathematics, its applications and its importance in society; Jaffe (1984) wrote that “no reflection of

mathematics about us is more striking than the omnipresent computer”, and this is even more valid

in today’s environment.

In that light, it is the author’s opinion that in undergraduate Mathematics, the teaching of computer

programming should be treated on equal footing to other core mathematical subjects, both in

importance and level; though not everyone agrees.1

Certainly, there are substantial differences to usual Mathematics teaching. For one, the UK

admissions process filters applicants by their mathematical abilities, but not their programming

experience; hence a wide range of backgrounds needs to be catered for.

More importantly, in feedback and marking on programming tasks, an even more prominent focus

than usual needs to be put on outcomes: computer programs need to produce the correct result,

exactly adhering to the specified problem, and unlike perhaps in usual Mathematics assessment,

there is typically no meaningful partially correct solution, unless it implements partial functionality.

Without doubt, writing well-structured and well-documented programs is important (“A programmer

is ideally an essayist who works with traditional aesthetic and literary forms as well as mathematical

concepts [...]” – Knuth 1996, p.2); but first and foremost, students as well as teachers need to verify

whether code works correctly. To that end, they need to test it with input data; just reading the source

1 “I never wanted to study coding and won't need it in my future profession so I don't see the

practicality and relevance of it. If I wanted to learn about coding, I would have studied computer

science - this is a waste of my time.” – Anonymous student feedback 2018/19.

mailto:henning.bostelmann@york.ac.uk
https://orcid.org/0000-0002-0233-2928

MSOR Connections 18(2) – journals.gre.ac.uk 37

code is not a reliable way of verification. However, taking this in earnest for marking involves a large

amount of tedious manual work, and might therefore be neglected for time reasons.

In the present case study, we report on a programming course for mathematics students in which

feedback and marking is assisted with automated methods, more technically, automated unit tests.

These are used both for giving rapid feedback to students in computer practicals, and for summative

assessment of programming projects.

They also aid consistency of marking and remove bias, while focusing marker’s time on important

tasks such as written feedback.

2. Background

The module in question is an introductory programming course for Mathematics students in the

second year. It has been taught, in slightly varying forms, at the University of York since the academic

year 2013/14, with the author as module leader.

2.1. Module design

The 10 credit module is intended for single subject Mathematics students in their 2nd year, students

on some joint programmes, as well as Natural Sciences students who may take it as an elective. It

has no prerequisites beyond Calculus and Algebra at first-year level; in particular, no knowledge of

programming is assumed, even if a proportion of the audience has varying levels of experience with

programming in some context.

The syllabus is split into a basic part, introducing procedural programming (variables, expressions

and assignments; data types, including floating point numbers; loops and conditional structures;

functions; arrays; character strings; input/output), and an advanced part, including fundamentals of

object-oriented programming (dynamic methods and inheritance). These are presented along

applications from Mathematics, such as approximation algorithms, which are not systematically

taught (beyond a brief discussion of roundoff errors in floating point arithmetic), but presented as

examples in exercises or lectures, without formal justification. Besides programming techniques, the

module also aims to teach associated skills, including documentation.

Figure 1: Participant numbers by academic year; until 2016/17: optional module

‘Programming and Scientific Computing’, from 2017/18: compulsory module

‘Mathematical Skills 2’.

38 MSOR Connections 18(2) – journals.gre.ac.uk

Until the year 2016/17, all of these topics were taught as one optional module ‘Programming and

Scientific Computing’. From 2017/18 on, the content was incorporated into a new compulsory module

‘Mathematical Skills 2: Programming and Recent Advances’: Here students are taught the basic

parts of the programming syllabus (approximately 2/3 of the material) during the Autumn term; in the

Spring term, students can choose between either the advanced programming syllabus or an essay

topic in Pure Mathematics, Applied Mathematics or Statistics. (These choices will not be discussed

further in this article.)

Participant numbers have been rising year on year (Fig. 1) and now exceed 200 students.

2.2. Technical setup

The module aims to teach foundational programming techniques, not (only) for use in mathematical

applications, but as a general employability skill. To that end, a general purpose programming

language is used, rather than an application-, product-, or vendor-specific system, which should

demonstrate all conceptual aspects of a modern programming language (the author includes type

strictness here). It is methodologically difficult to determine which languages are most frequently

used in practice, in particular in an industry setting; that said, existing surveys indicate (TIOBE, 2020;

Bissyandé et al., 2013) that languages of the C family (including C++, Java and vendor-specific

derivatives) continue to be used widely, if not overwhelmingly. Of these, Java appears to be the best

suited in a beginner’s teaching setting.

As a development environment for Java, the module uses BlueJ, which was developed specifically

for education purposes. In a comparatively simple user interface, BlueJ allows students to easily

invoke individual functions of their programs, as well as offering a built-in debugger (also usable for

demonstrations in lectures) and integrated unit test tools, which will become important below.

While BlueJ was originally intended for an ‘Objects First’ approach (Barnes and Kölling, 2016), the

module uses it for a more traditional procedural approach for its basic part, along the first chapters

of Nielsen (2009), with object-oriented techniques introduced only later.

Beyond the standard installation of BlueJ, the module uses – as an example for an external third-

party library – the Apache Commons Math library (Apache 2020).

Teaching materials are provided to students via a Moodle-based VLE, which is also used for some

randomised multiple choice quizzes (cf. Sec. 4).

2.3. Automated assessment

As a particular feature, and focus for this case study, the module aims to use automated assessment

methods for rapid feedback to students as well as for summative assessment. Specifically, teacher-

provided automated unit tests are employed for this purpose.

Unit tests are short pieces of program that run the developer’s code with certain input data, and

compare its output to expected values. They are a longstanding and commonly used tool in software

development (see, e.g., Runeson 2006). Here we use the same techniques for checking that a

student’s work conforms to the specification given in an exercise description.

This allows student as well as teachers to verify rapidly whether a student’s work is functionally

correct. It is a common misconception that programming work (even of a simple kind) can reliably

be checked by reading its source code – even missing out on small errors might make the reader

assume that the program is ‘correct’, whereas it actually never performs the desired functionality. In

other words, student work (as any other program) needs to be tested with relevant input data, rather

MSOR Connections 18(2) – journals.gre.ac.uk 39

than cross-read by the teacher. Unit tests allow us to do this efficiently, freeing up teacher’s time for

other important aspects of the feedback process. Usage of these tests in formative and summative

assignments is further described in Sec. 3 and 4 respectively.

Note that all unit test code in the module is provided by the teacher – students are not required to

write unit tests or to understand the program code underlying them, they simply invoke them from a

graphical user interface. Test code uses the unit test framework JUnit 4 (JUnit 2020), which is

embedded into BlueJ.

3. Teaching and formative assessment

Teaching is centred around 9 computer practical (6 for the basic and 3 for the advanced part). Each

practical is supported by 2 lectures which aim to introduce the relevant programming techniques and

demonstrate examples.

Each practical comes with an exercise sheet that is released to students a few days in advance of

the session, and a corresponding code template. During the session, students work independently

on the exercises, but with a teacher present for help; the student/teacher ratio is approximately 15:1.

Figure 2: Unit tests within the practical materials. Screenshot from BlueJ

Unit tests are used in the practicals for rapid feedback. That is, unit tests are supplied with the code

template for each exercise. Students will write code for the relevant exercise, and are requested to

first run their code with relevant input data to verify that it works correctly. Once completed, they run

the unit test and are presented with a ‘traffic lights’ result (Fig. 2). If the unit test passes, they continue

to the next exercise; otherwise they can ask a teacher for assistance. (Failed unit tests will display a

brief explanatory message, but this is often not detailed enough for students to localise the problem.)

Programming to pass these unit tests does require students to stick to the specifications on the

exercise sheet very strictly, in particular to use the correct signatures (function or method names,

input and output parameters and their data types), if not already given in the code template. This is

in fact an intended learning outcome: in any collaborative programming setting – as students would

encounter it in real-world applications – sticking to an agreed programming interface is crucial.

40 MSOR Connections 18(2) – journals.gre.ac.uk

Each exercise sheet contains more exercises than can be solved in one hour (except by the most

experienced students); the remaining exercises are left as homework, with no hand-in, but with

feedback available via unit tests, and questions answered in the following practical session.

4. Summative assessment

The module is assessed on open assessments (Table 1), mainly consisting of 3 programming

projects. These projects are marked semi-automatically; see Sec. 4.1 for details. Since the number

of students on the module makes it impossible to set individual project topics, collusion may present

an issue; we discuss this in Sec. 4.2.

Assessment

component

ti
m

e
 t

o
 w

o
rk

o
n

 a
s
s

ig
n

m
e

n
t

w
e

ig
h

t

in
 m

o
d

u
le

le
n

g
th

 (
L

O
C

)

p
ro

p
o

rt
io

n
 o

f

a
u

to
m

a
te

d

m
a

rk
s

ti
m

e

fr
o

m
 d

e
a

d
li
n

e

to
 m

a
rk

 r
e

le
a
s

e

m
a

n
u

a
l

 m
a

rk
in

g
 t

im
e

p
e
r

s
u

b
m

is
s
io

n

Programming project 1 1 week 5% 50-100 100% 1 day n/a

Programming project 2 6 weeks 25% 200 66% 3 weeks 20 min

Programming project 3 7 weeks 50% 300 50% 3 weeks 30 min

Online quizzes 1 week 15% 100% immediate n/a

Careers exercise 2 weeks 5%

Table 1: Assessment components in Mathematical Skills 2, for students who choose the

advanced programming part. Length of project given in Lines of Code (LOC) excluding

documentation. All numbers except mark weights are approximate and may vary

between years.

In addition to the projects, assessment includes a number of online quizzes based on multiple choice

questions drawn from a random pool, which are presented and automatically marked via the Moodle

VLE, and which students complete in their own time. These should be seen mostly as reading

comprehension tests: they can be answered from absorbing the lecture material, without actually

writing a program. The intention is to ease beginner students into the topic and allow them to collect

marks for basic understanding. A careers exercise, which also counts towards the module mark, is

not further discussed here.

4.1. Programming projects

In setting and marking the programming projects, assessment must be divided into two main parts:

functional aspects (i.e., whether the code works correctly to specification) and non-functional aspects

(whether the code is easy to read, well-structured and well-documented). In both aspects, student

numbers require a distributed approach to marking, raising potential issues with marking

consistency.

MSOR Connections 18(2) – journals.gre.ac.uk 41

In all projects, functional aspects are marked with the aid of unit tests, which are prepared by the

examiner in advance, but are not released to students. Student submissions are first verified against

these unit tests, and a mark as well as an error report automatically generated. Marks are awarded

entirely on the criterion whether the unit tests pass (typically 1 mark per test). The automated score

for the functional part is only modified by the lead marker, and only under strict conditions (typically,

when an entire part of the project fails to work due to a minor deviation, such as a mis-named

function).

This semi-automatic marking process can be used in two ways: First, it is possible to set rapid

feedback assignments (Project 1, cf. Table 1) which are marked exclusively on functional aspects,

and almost fully automatically. Marks and automated error reports can then be released as little as

1 day after the deadline; only submissions with particularly low scores receive separate written

feedback by the examiner. Verbal feedback to all students who request it is then given in the following

practical session.

Second, for longer projects (Project 2 and 3), a distributed marking process is used: Automated

reports are generated and shared with 3-4 markers; their role is then to determine why (not whether)

the code fails to work, and to write corresponding feedback to students. This guarantees objectivity

for this part of the assessment: the score is not subject to an individual marker’s decision. It also

allows markers to spend more time on feedback (rather than manual testing), and reduces possible

oversights. In addition, markers assign scores for non-functional aspects along a structured marking

guide and with brief per-item feedback; these items relate to the overall code structure, specific

aspects of the code (e.g., expected function calls), adherence to code style conventions, and

completeness of the documentation – students are typically asked to add Javadoc comments to their

code.

We found the automated marking process to work smoothly in general, though some submissions

need manual fixing – for example, where students use an incorrect directory structure in their

submitted code. These errors typically occur for 1-2% of students and are corrected by the lead

marker without penalty.

Use of automated marking in this way requires some care, because students can easily fail a large

number of these tests by small omissions that may not immediately be obvious. Exact adherence to

the given specification (in particular signatures) is required for tests to yield marks. To some extent,

this is only a reflection of the reality of the subject: in software projects, specifications and

conventions must strictly be followed to arrive at a working product.

On the other hand, some mitigation against such ‘catastrophic failures’ needs to be provided. To that

end, the code template for every project contains a single unit test (the ‘declaration test’) that verifies

not the functionality, but rather the function declaration and signatures in the student’s code, using

the Java Reflection API. Students are advised to use this test before submission to verify their basic

code structure and fix any discrepancies.

4.2. Academic integrity

Project-based open assessment is an appropriate format for this module, since it comes fairly close

to a realistic programming setting. While assessment by closed exam would be possible (and is

sometimes used in similar situations, often with restriction on Internet access and availability of other

resources), it has severe drawbacks: First, because of the limited time available, only the most

elementary question can be asked, and aspects e.g. of code structure and documentation need to

be dropped; second, it is a highly artificial setting which does not occur in real-world applications –

no programmer would, in practice, do their work without Internet access.

42 MSOR Connections 18(2) – journals.gre.ac.uk

However, since student numbers prohibit the setting of individual project topics, plagiarism and

collusion between students is a significant concern, as probably with most other open assessments

in Mathematics. In fact, it is quite common to see some students closely following their peer’s

solutions, with changes only in naming of variables, whitespace, etc. While rare, it has also occurred

that students submitted almost literal copies of each other’s work, sometimes in the form of binary

identical files.

(a)

(b)

(c)

Figure 3: Programming marks vs. core marks in 2018/19. (a) Frequency of marks for the

programming components; (b) frequency of differences between programming and core

marks; (c) scatter plot of individual student’s results.

In order to deal with this situation, marking of projects is assisted by an automatic similarity check.

Specifically, we make use of the software JPlag (KIT, 2020; Prechelt et al., 2002) which is able to

highlights similarities in code between student’s submissions, ignoring trivial changes such as

whitespace, comments, renaming of identifiers, and swapping of lines. Similarities identified by the

tool are then investigated manually. We typically found relatively high numbers of similarities in

Project 1 (sometimes affecting more than 5% of the submissions in various clusters), which are dealt

with by means of mark reductions. After that, collusion cases in projects 2 and 3 are rare.

MSOR Connections 18(2) – journals.gre.ac.uk 43

5. Student performance

Since programming appears to require somewhat different skills than typical Mathematics modules,

and the module counts towards the degree classification, it is fair to ask how student results on the

module compare with those in more traditional subjects.

To that end, we compare summative marks from the compulsory, ‘basic’ programming component

with exam results from two other modules that most participants take in the same term, Vector

Calculus and Linear Algebra; the average of these two will be referred to as the ‘core’ mark. Only

students which took all three modules are included in the comparison; also, students who missed

any of the assessments, or who had resits ‘as if for the first time’ approved for any of them, have

been excluded from the analysis.

The results for 2018/19 are shown in Fig. 3. One notes that the mark distribution for the programming

part alone (Fig. 3a) is within usual expectations, though possibly somewhat high in the 80-100 range,

as is typically seen with coursework-based assessments. The differences between programming

marks and core marks (Fig. 3b) show that there is a good correlation between general Mathematics

performance and marks in programming, while there are a few wide outliers. This is confirmed by

the scatter plot in Fig. 3c. In short, while there are some Mathematics students with good marks that

struggle with programming tasks (and vice versa), these seem to be an exception rather than the

rule.

6. Conclusions

The module discussed in this paper demonstrates that it is possible to integrate a generic

programming course as a compulsory element into a Mathematics programme. It scales to the size

of undergraduate cohorts, with student performance in line with expectations. Automated unit tests,

when suitably set up, help with providing rapid feedback, ensuring consistency of marking, and

making prudent use of staff resources.

7. References

Apache Software Foundation, 2020. Commons Math library. Available at:

http://commons.apache.org/proper/commons-math/ [Accessed 24 February 2020].

Barnes, D.J. and Kölling, M., 2016. Objects first with Java: a practical introduction using BlueJ, 6th

edition. London: Pearson.

Bissyandé, T.F., Thung, F., Lo, D., Jiang, L. and Réveillère, L., 2013. Popularity, Interoperability,

and Impact of Programming Languages in 100,000 Open Source Projects, IEEE 37th Annual

Computer Software and Applications Conference, Kyoto. pp. 303-312.

http://doi.org/10.1109/COMPSAC.2013.55.

Dijkstra, E.W., 1974. Programming as a Discipline of Mathematical Nature. The American

Mathematical Monthly, 81(6), pp.608-612. http://doi.org/10.1080/00029890.1974.11993624.

Jaffe, A., 1984. Ordering the Universe: The Role of Mathematics. SIAM Review, 26(4), pp.473-500.

JUnit project team, 2020. JUnit 4. Available at: https://junit.org/junit4/ [Accessed 19 February

2020].

Karlsruhe Institute of Technology (KIT), 2020. JPlag - detecting software plagiarism. Available at:

https://jplag.ipd.kit.edu/ [Accessed 10 February 2020].

http://commons.apache.org/proper/commons-math/
http://doi.org/10.1109/COMPSAC.2013.55
http://doi.org/10.1080/00029890.1974.11993624
https://junit.org/junit4/
https://jplag.ipd.kit.edu/

44 MSOR Connections 18(2) – journals.gre.ac.uk

Knuth, D.E., 1996. Selected Papers on Computer Science. Chicago: University of Chicago Press.

Nielsen, F., 2009. A Concise and Practical Introduction to Programming Algorithms in Java.

Springer: London. http://doi.org/10.1007/978-1-84882-339-6.

Prechelt, L., Malpohl, G. and Philippsen, M., 2002. Finding plagiarisms among a set of programs

with JPlag. Journal of Universal Computer Science, 8(11), pp.1016-1038.

http://doi.org/10.3217/jucs-008-11-1016.

Runeson, P., 2006. A survey of unit testing practices. IEEE Software, 23(4), pp.22-29.

http://doi.org/10.1109/MS.2006.91.

TIOBE Software BV, 2020. TIOBE Index. Available at: https://www.tiobe.com/tiobe-index/

[Accessed 11 February 2020].

http://doi.org/10.1007/978-1-84882-339-6
http://doi.org/10.3217/jucs-008-11-1016
http://doi.org/10.1109/MS.2006.91
https://www.tiobe.com/tiobe-index/

