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Abstract

We present a simple sublinear-time algorithm for sampling an arbitrary subgraph H exactly uniformly

from a graph G, to which the algorithm has access by performing the following types of queries:

(1) uniform vertex queries, (2) degree queries, (3) neighbor queries, (4) pair queries and (5) edge

sampling queries. The query complexity and running time of our algorithm are Õ(min{m, m
ρ(H)

#H
})

and Õ( m
ρ(H)

#H
), respectively, where ρ(H) is the fractional edge-cover of H and #H is the number of

copies of H in G. For any clique on r vertices, i.e., H = Kr, our algorithm is almost optimal as any

algorithm that samples an H from any distribution that has Ω(1) total probability mass on the set

of all copies of H must perform Ω(min{m, m
ρ(H)

#H·(cr)r }) queries.

Together with the query and time complexities of the (1 ± ε)-approximation algorithm for the

number of subgraphs H by Assadi et al. [3] and the lower bound by Eden and Rosenbaum [12]

for approximately counting cliques, our results suggest that in our query model, approximately

counting cliques is “equivalent to” exactly uniformly sampling cliques, in the sense that the query

and time complexities of exactly uniform sampling and randomized approximate counting are within

polylogarithmic factor of each other. This stands in interesting contrast to an analogous relation

between approximate counting and almost uniformly sampling for self-reducible problems in the

polynomial-time regime by Jerrum, Valiant and Vazirani [18].
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1 Introduction

“Given a huge real graph, how can we derive a representative sample?” is a first question asked

by Leskove and Faloutsos in their seminal work on graph mining [20], which is motivated

by the practical concern that most classical graph algorithms are too expensive for massive

graphs (with millions or billions of vertices), and graph sampling seems essential for lifting

the dilemma.
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45:2 Sampling Arbitrary Subgraphs Exactly Uniformly in Sublinear Time

In this paper, we study the question of how to sample a subgraph H uniformly at random

from the set of all subgraphs that are isomorphic to H contained in a large graph G in

sublinear time, where the algorithm is given query access to the graph G. That is, the

algorithm only probes a small portion of the graph while still returning a sample with

provable performance guarantee. Such a question is relevant for statistical reasons: we might

need a few representative and unbiased motifs from a large network [21], or edge-colored

subgraphs in a structured database [4], in a limited time. A subroutine for extracting a

uniform sample of H is also useful in streaming (e.g., [1]), parallel and distributed computing

(e.g., [15]) and other randomized graph algorithms (e.g., [17]).

Currently, our understanding of the above question is still rather limited. Kaufman et

al. gave the first algorithm for sampling an edge almost uniformly at random [19]. Eden

and Rosenbaum gave a simpler and faster algorithm [13]. Both works considered the general

graph model, where an algorithm is allowed to perform the following queries, where each

query will be answered in constant time:

uniform vertex query: the algorithm can sample a vertex uniformly at random;

degree query: for any vertex v, the algorithm can query its degree dv;

neighbor query: for any vertex v and index i ≤ dv, the algorithm can query the i-th

neighbor of v;

pair query: for any two vertices u, v, the algorithm can query if there is an edge between

u, v.

In [13], Eden and Rosenbaum gave an algorithm that takes as input a graph with n

vertices and m edges (where m is unknown to the algorithm), uses Õ(n/
√
m) queries1 in

expectation and returns an edge e that is sampled with probability (1± ε)/m (i.e., almost

uniformly at random). This is almost optimal in the sense that any algorithm that samples an

edge from an almost-uniform distribution requires Ω(n/
√
m) queries. In their sublinear-time

algorithm for approximately counting the number cliques [10] (see below), Eden, Ron and

Seshadhri use a procedure to sample cliques incident to a suitable vertex subset S almost

uniformly at random. However, for an arbitrary subgraph H, it is still unclear how to obtain

an almost uniform sample in sublinear time.

Approximate counting in sublinear-time. In contrast to sampling subgraphs (almost)

uniformly at random, the very related line of research on approximate counting the number

of subgraphs in sublinear time has made some remarkable progress in the past few years.

Feige gave a (2 + ε)-approximation algorithm with Õ(n/
√
m) queries for the average degree,

which is equivalent to estimating the number of edges, of a graph in the model that only uses

vertex sampling and degree queries [14]. He also showed that any (2− o(1))-approximation

for the average degree using only vertex and degree queries requires Ω(n) queries. Goldreich

and Ron then gave a (1 + ε)-approximation algorithm with Õ(n/
√
m) queries for the average

degree in the model that allows vertex sampling, degree and neighbor queries [16].

Eden et al. recently gave the first sublinear-time algorithm for (1± ε)-approximating the

number of triangles [7]. Later, Eden, Ron and Seshadhri generalized it to (1±ε)-approximating

the number of r-cliques Kr [10] in the general graph model that allows vertex sampling,

degree, neighbor and vertex-pair queries. The query complexity and running time of their

algorithms for r-clique Kr counting are Õ( n
(#Kr)1/3 + min{m, mr/2

#Kr
}) and Õ( n

(#Kr)1/3 + mr/2

#Kr
)

respectively, for any r ≥ 3, where #Kr is the number of copies of Kr in G. Furthermore,

in boths works it was proved that the query complexities of the respective algorithms are

optimal up to polylogarithmic dependencies on n, ǫ and r.

1 Throughout the paper, we use Õ(·) to suppress any dependencies on the parameter ε, the size of the
corresponding subgraph H and log(n)-terms.
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Later, Assadi et al. [3] gave a sublinear-time algorithm for (1 ± ε)-approximating the

number of copies of an arbitrary subgraph H in the augmented general graph model [2].

That is, besides the aforementioned vertex sampling, degree, neighbor and pair queries, the

algorithm is allowed to perform the following type of queries:

edge sampling query the algorithm can sample an edge uniformly at random.

The algorithm in [3] uses Õ(min{m, mρ(H)

#H }) queries and Õ(mρ(H)

#H ) time, where ρ(H) is

the fractional edge-cover of H and #H is the number of copies of H in G. For the special

case H = Kr, their algorithm performs Õ(min{m, mr/2

#Kr
}) queries and runs in Õ( mr/2

#Kr
) time,

which do not have the additive term n
(#Kr)1/3 in the query complexity and running time of

the algorithms in [7, 10]. Eden and Rosenbaum provided simple proofs that most of the

aforementioned results are nearly optimal in terms of their query complexities by reducing

from communication complexity problems [12]. Further investigation of sampling an edge

and estimating subgraphs in low arboricity graphs [8, 9] and approximately counting stars [2]

has also been performed.

Relation of approximate counting and almost uniform sampling. One of our original

motivations is to investigate the relation of approximate counting and almost uniform

sampling in the sublinear-time regime. That is, we are interested in the question whether

in the sublinear-time regime, is almost uniform sampling “computationally comparable” to

approximate counting, or is it strictly harder or easier, in terms of the query and/or time

complexities for solving these two problems? Indeed, in the polynomial-time regime, Jerrum,

Valiant and Vazirani showed that for self-reducible problems (e.g., counting the number of

perfect matchings of a graph), approximating counting is “equivalent to” almost uniform

sampling [18], in the sense that the time complexities of almost uniform sampling and

randomized approximate counting are within polynomial factor of each other. Such a result

has been instrumental for the development of the area of approximate counting (e.g., [23]).

It is natural to ask if similar relations between approximate counting and sampling hold in

the sublinear-time regime.

1.1 Our Results

In this paper, we consider the problem of (almost) uniformly sampling a subgraph in the

augmented general graph model. As mentioned above, this model has been studied in

[2, 3], in which the authors find that “allowing edge-sample queries results in considerably

simpler and more general algorithms for subgraph counting and is hence worth studying

on its own”. On the other hand, allowing edge sampling queries is also natural in models

where neighbor queries are allowed, e.g., in the well-studied bounded-degree model and the

general model: most graph representations that allow efficient neighbor queries (e.g., GEXF,

GML or GraphML) store edges in linear data structures, which often allows efficient (nearly)

uniformly sampling of edges. We refer to [3] for a deeper discussion on allowing edge sampling

queries from both theoretical and practical perspectives.

We prove the following upper bound on sampling subgraphs (exactly) uniformly at random

and provide a corresponding algorithm in Section 3.

◮ Theorem 1. Let H be an arbitrary subgraph. Let G = (V,E) be a graph with n vertices

and m edges. There exists an algorithm in the augmented general graph model that uses

Õ(min{m, mρ(H)

#H }) queries in expectation, and with probability at least 2/3, returns a copy of

H, if #H > 0. Each returned H is sampled according to the uniform distribution over all

copies of H in G. The expected running time of the algorithm is Õ( mρ(H)

#H ).

ICALP 2020
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We stress that our sampler is an exactly uniform sampler, i.e., the returned H is sampled

from the uniform distribution, while to the best of our knowledge, the previous sublinear-time

subgraph sampling algorithms are only almost uniform samplers. That is, they return an

edge or a clique that is sampled from a distribution that is close to the corresponding uniform

distribution. Indeed, it has been cast as an open question if it is possible to sample an edge

exactly uniformly at random in the general graph model in [11].

Our algorithm is based on one idea from [3] (see also [4]) that uses the fractional edge

cover to partition a subgraph H into stars and odd cycles (i.e., Lemma 7). The authors of [3]

also provided a scheme called subgraph-sampler trees for recursively sampling stars and odd

cycles that compose H, while the resulting distribution is not (almost) uniform distribution.

Instead, we show that one can sample stars and odd cycles by using rejection sampling in

parallel (or, more precisely, sequentially but independently of each other) and check whether

they form a copy of H.

To complement our algorithmic result, we give a lower bound on the query complexity

for sampling a clique in sublinear time by using a simple reduction from [12]. We show the

following theorem and present its proof in Section 4.

◮ Theorem 2. Let r ≥ 3 be an integer. Suppose A is an algorithm in the augmented general

graph model that for any graph G = (V,E) on n vertices and m edges returns an arbitrary

r-clique Kr, if one exists; furthermore, each returned clique Kr is sampled according to a

distribution D, such that the total probability mass of D on the set of all copies of Kr is Ω(1).

Then A requires Ω(min{m, mr/2

#Kr·(cr)r }) queries, for some absolute constant c > 0.

Note that the above theorem gives a lower bound for sampling Kr from almost every

non-trivial distribution D. In particular, it holds if #Kr > 0 and D is a distribution that

is only supported on the set of all copies of Kr, e.g., the (almost) uniform distribution on

these copies. Together with the query and time complexities of the (1± ε)-approximation

algorithm for the number of subgraphs H by Assadi et al. [3] and the lower bound by Eden

and Rosenbaum [12] for approximately counting cliques, our Theorems 1 and 2 imply that

in the augmented general graph model, approximately counting the number of cliques is

equivalent to exactly sampling cliques in the sense that the query and time complexities of

them are within a polylogarithmic factor of each other.

Future Work. Considering real-world applications, it would be interesting to relax the

guarantees of the queries available to the algorithm. In particular, one may not be able to

sample vertices or edges exactly uniformly at random, but only approximately uniformly.

For example, there exist works that consider weaker query models in which even uniform

vertex query is disallowed, and instead they sample vertices almost uniformly at random

by performing random walks from some fixed vertex (see, e.g., [5, 6]). Implementing these

changes in the model would result in a weaker guarantee for the distribution of sampled

subgraphs in Theorem 1 but would be potentially more practical.

2 Preliminaries

Let G = (V,E) be a simple graph with |V | = n vertices and |E| = m edges. For a vertex

v ∈ V , we denote by dv the degree of the vertex, by Γv the set of all the neighbors of v, and

by Ev the set of edges incident to v. We fix a total order on vertices denoted by ≺ as follows:

◮ Definition 3. For any two vertices u and v, we say that u ≺ v if du < dv or du = dv and

u appears before v in the lexicographic order.
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For any two vertices, we denote by Γuv the set of the shared neighbors of u and v that

are larger than u with respect to “≺”, i.e., Γuv = {w | w ∈ Γu ∩ Γv ∧ u ≺ w}. Sometimes,

we view our graph G = (V,E) as a directed graph (V, ~E) by treating each undirected edge

e = {u, v} ∈ E as two directed edges ~e1 = (u, v) and ~e2 = (v, u). The following was proven

in [7].

◮ Lemma 4 ([7]). For any vertex v, the number of neighbors w of v such that v ≺ w is at

most
√

2m.

Given a graph H, we say that a subgraph H ′ of G is a copy or an instance of H if H ′ is

isomorphic to H. An isomorphism-preserving mapping from H to a copy of H in G is called

an embedding of H in G.

Rejection Sampling. Given a starting distribution ~p and a target distribution ~q supported

on a set R, let M := maxa∈R
~q(a)
~p(a) . Algorithm 1 is called rejection sampling.

Algorithm 1 Rejection sampling with starting distribution ~p and target distribution ~q.

1: procedure RejectionSampling(~p, ~q)

2: M ← maxa∈R
~q(a)
~p(a)

3: while true do

4: sample a from ~p.

5: sample a number t ∈ [0, 1] uniformly at random.

6: if t ≤ ~q(a)
M ·~p(a) then

7: return a

Observe that when the algorithm terminates, the probability that a is returned is ~q(a)

for every a ∈ R. The following lemma is known.

◮ Lemma 5 ([22]). The expected number of iterations of RejectionSampling(~p, ~q) is M .

Edge Cover and Graph Decomposition. We use the following definition of the fractional

edge cover of a graph and a decomposition result based on it by Assadi et al. [3].

◮ Definition 6 (Fractional Edge-Cover Number). A fractional edge-cover of H(VH , EH) is

a mapping ψ : EH → [0, 1] such that for each vertex v ∈ VH ,
∑

e∈EH ,v∈e ψ(e) ≥ 1. The

fractional edge-cover number ρ(H) of H is the minimum value of
∑

e∈EH
ψ(e) among all

fractional edge-covers ψ.

Let Ck denote the cycle of length k. Let Sk denote a star with k petals, i.e., Sk =

({u, v1, . . . , vk},∪i∈[k]{u, vk}). Let Kk denote a clique on k vertices. It is known that

ρ(C2k+1) = k + 1/2, ρ(Sk) = k and ρ(Kk) = k/2.

◮ Lemma 7 ([3]). Any subgraph H can be decomposed into a collection of vertex-disjoint

odd cycles C1, . . . , Co and star graphs S1, . . . , Ss such that

ρ(H) =

o
∑

i=1

ρ(Ci) +

s
∑

j=1

ρ(Sj).

By a result of Atserias, Grohe and Marx [4], the number of instances of H in a graph G

with m edges is O(mρ(H)).

ICALP 2020
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3 Sampling an Arbitrary Subgraph H

In this section, we present sampling algorithms for odd cycles and stars and show how to

combine them to obtain a sampling algorithm for arbitrary subgraphs. Note that we do not

need to know the exact number of edges m to run our algorithm; it is sufficient to have a

constant approximation m̂ of m so that m ≤ m̂ ≤ cm for some c > 1. Such an approximation

can be obtained by using the algorithm from [14, 16]. This increases the query complexity

only by a constant factor. For the sake of simplicity, we will continue to use m in the

following.

3.1 Sampling an Odd-Length Cycle

We describe our algorithm SampleOddCycle for sampling a uniformly random odd-length

k-cycle. For any instance of C2k+1 in the input graph, our goal is to guarantee that it will be

sampled with probability 1
mk+1/2 . Let e1, . . . , e2k+1 be a sequence of edges that represents

a cycle of length 2k + 1. While we can use edge sampling to sample every second edge of

the first 2k edges sequentially, i.e., e1, e3, . . . , e2k−1, and query the edges inbetween, i.e.,

e2, . . . , e2k−2, by vertex pair queries, we use a different strategy to sample e2k and e2k+1.

Let {u, v} = e1. If u has low degree, i.e., du ≤
√

2m, we can afford to sample each neighbor

of u with probability 1/
√

2m and fail if no neighbor is sampled. In particular, we need

that a distinguished neighbor x1 of u is sampled with probability at least 1/
√

2m. However,

if du ≥
√

2m, this is too costly. Instead, we invoke rejection sampling with the following

starting distribution and target distribution.

◮ Definition 8. Let u, v be two vertices such that du >
√

2m. Let ~pu be a (starting)

distribution with support Γu such that:

~pu(w) =
1

du
, w ∈ Γu (1)

Let ~qu be a (target) distribution with support Γu such that:

~qu(w) =

{

1√
2m
, w ∈ Γuv

(

1− |Γuv|√
2m

)

· 1
du−|Γuv| , w /∈ Γuv

(2)

We note that by Lemma 4, it always holds that |Γuv| ≤
√

2m. Furthermore,

∑

w∈Γu

~qu(w) =
∑

w∈Γuv

1√
2m

+
∑

w /∈Γuv

(

1− |Γuv|√
2m

)

· 1

du − |Γuv|

=
|Γuv|√

2m
+ (du − |Γuv|)

(

1− |Γuv|√
2m

)

· 1

du − |Γuv|
= 1.

Thus the distribution ~qu is well-defined. Let Mu = maxw∈Γu

~qu(w)
~pu(w) (as in Algorithm 1). Then,

Mu is bounded as follows.

◮ Lemma 9. Let Mu be defined as above. Recall that du >
√

2m. Then Mu = du√
2m

.

Proof. If w ∈ Γuv, we have that ~qu(w)
~pu(w) = du√

2m
. If w /∈ Γuv, we have that

~qu(w)

~pu(w)
=
du(1− |Γuv|√

2m
)

du − |Γuv|
=
du(
√

2m− |Γuv|)√
2m(du − |Γuv|)

≤ du√
2m

, (3)

where the last inequality uses the fact that du >
√

2m. ◭
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Algorithm 2 Sampling a wedge.

1: procedure SampleWedge(G, u, v)

2: if du ≤
√

2m then

3: sample a number i ∈ {1, . . .
√

2m} uniformly at random

4: if i > du then

5: return Fail

6: w ← ith neighbor of u

7: else

8: w ← RejectionSampling(~pu, ~qu) ⊲ see Definition 8

9: return w

Algorithm 3 Sampling a cycle of length 2k + 1.

1: procedure SampleOddCycle(G, 2k + 1)

2: sample k directed edges (u1, v1), . . . , (uk, vk) u.a.r. and i.i.d.

3: if u1, v1, . . . , uk, vk is a path of length 2k − 1 and u1 ≺ v1, ∀i > 1 : u1 ≺ ui, vi then

4: if SampleWedge(G, u1, vk) returns w and w ≺ v1 then

5: return {(u1, v1), . . . , (uk, vk)} ∪ {(vk, w), (w, u1)}
6: return Fail

As there exists a linear number of automorphisms for every cycle, it is crucial in our

algorithm to define a unique embedding based on the order of vertices for every instance of a

k-cycle. Otherwise, bounding the probability that an instance is sampled exactly uniformly

is hard as some instance might be sampled less likely because, e.g., its edges participate

in many overlapping cycles. We take care of this by enforcing that only uniquely defined

embeddings are sampled in SampleOddCycle. In particular, we sample k directed edges

(u1, v1), . . . , (uk, vk) independently and uniformly at random and require that (i) they induce

a path u1, v1, u2, . . . , vk and (ii) for the first edge (u1, v1), u1 is the smallest vertex according

to the order “≺” among all ui, vi, i ≥ 1. Then, we call SampleWedge on the two ends

u1, vk of this path to close a cycle and define an orientation of this cycle by requiring that

w ≺ v1, where for (vk, w) = e2k+1. If any of these requirements is not met, we have not

sampled the uniquely defined embedding we are looking for, and the algorithm fails.

◮ Lemma 10. For any instance of an odd cycle C2k+1 in G, the probability that it will be

returned by SampleOddCycle(G, 2k + 1) is 1
(2m)k+1/2 .

Proof. Let C2k+1 be any instance of a cycle of odd length 2k + 1 in G. Let x0 be the

smallest vertex on C2k+1 according to the total order “≺”. Let x1, x2k be the two neighbors

of x0 on C2k+1 such that x1 ≺ x2k. Then, we let xi denote the vertices on C2k+1 such that

(xi, xi+1) ∈ E(C2k+1) for 0 ≤ i ≤ 2k − 1 and (x2k, x0) ∈ E(C2k+1). Note that for any C2k+1,

there is a unique way of mapping its vertices to xi, for 0 ≤ i ≤ 2k. Thus, SampleOddCycle

returns C2k+1 if and only if

1. u1 = x0 and v1 = x2k;

2. ui = x2k−2i+3 and vi = x2k−2i+2 for 2 ≤ i ≤ k;

3. SampleWedge(G, u1, vk) returns x1.

Event 1 occurs with probability 1/(2m), and event 2 occurs with probability 1/(2m)k−1,

as each directed edge is sampled with probability 1/(2m).

ICALP 2020
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Now we bound the probability of event 3. In the call to SampleWedge, let u := u1

and v := vk, which satisfies that u ≺ v. We first note that if du <
√

2m in Sample-

Wedge(G, u1, vk), then the vertex x1 will be sampled with probability 1/
√

2m. Now we

consider the case that du ≥
√

2m. Then, RejectionSampling(~pu, ~qu) will return x1 with

probability ~qu1
(x1) = 1√

2m
, as x1 is a common neighbor of u1, vk and u1 ≺ x1. Thus in

both cases, the probability that event 3 occurs is 1√
2m

. Therefore, the probability that

SampleOddCycle returns C2k+1 is 1√
2m
· 1

2m · ( 1
2m )k−1 = 1

(2m)k+1/2 . ◭

3.2 Sampling a Star

Similarly to odd cycles, we observe that every k-star admits an exponential number of

automorphisms. Therefore, we enforce a unique embedding of every instance of a k-star in

our sampling algorithm SampleStar. Let e1, . . . , ek be the petals of an instance of a k-star.

We sample e1, . . . , ek sequentially. If these edges form a star, we output it only if the leaves

where sampled in ascending order with respect to “≺”.

Algorithm 4 Sampling a star with k petals.

1: procedure SampleStar(G, k)

2: Sequentially sample k directed edges {(u1, v1), . . . , (uk, vk)} u.a.r. and i.i.d.

3: if u1 = u2 = . . . = uk and v1 ≺ v2 ≺ . . . ≺ vk then

4: return (u1, v1, . . . , vk)

5: return Fail

◮ Lemma 11. For any instance of a k-star Sk in G, the probability that it will be returned

by the algorithm SampleStar(G, k) is 1
(2m)k .

Proof. Consider any instance of Sk with root x and petals y1, . . . , yk such that y1 ≺
. . . yk. Note that it will be returned by SampleStar if and only if all the directed edges

(x, y1), . . . , (x, yk) are sequentially sampled, which occurs with probability 1/(2m)k. ◭

3.3 Sampling H

Let H be a subgraph. It can be decomposed into collections of o odd cycles Ci and s stars Sj

as given in Lemma 7. We say that H has a (decomposition) type T = {C1, . . . , Co, S1, . . . , Ss}.

◮ Definition 12. Given a graph G, for each potential instance H of H, we say that H
can be decomposed into configurations T = {C1, . . . , Co,S1, . . . ,Ss} with respect to type

T = {C1, . . . , Co, S1, . . . , Ss}, if

1. Ci
∼= Ci for any 1 ≤ i ≤ o, and Sj

∼= Sj, for any 1 ≤ i ≤ s

2. all the remaining edges of H between vertices specified in T all are present in G.

We let fT (H) denote the number of all possible configurations T into which H can be

decomposed with respect to T .
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Algorithm 5 Sampling a copy of subgraph H.

1: procedure SampleSubgraph(G,H)

2: Let T = {C1, . . . , Co, S1, . . . , Ss} denote a (decomposition) type of H.

3: for all i = 1 . . . o do

4: if SampleOddCycle(G, |E(Ci)|) returns a cycle C then

5: Ci ← C
6: else

7: return Fail

8: for all j = 1 . . . s do

9: if SampleStar(G, |V (Sj)| − 1) returns a star S then

10: Sj ← S
11: else

12: return Fail

13: Query all edges (
⋃

i∈[o] V (Ci) ∪
⋃

j∈[s] V (Sj))2

14: if S := (C1, . . . , Co,S1, . . . ,Ss) forms a copy of H then

15: flip a coin and with probability 1
f

T
(H) : return S

16: return Fail

◮ Lemma 13. For any instance of a subgraph H in G, the probability that it will be returned

by the algorithm SampleSubgraph(G,H) is 1
(2m)ρ(H) .

Proof. For any instance H of H in G, and any configuration T = {C1, . . . , CO,S1, . . . ,Ss} of

H with respect to T , H will be returned by SampleSubgraph(G,H) if and only if

1. Ci is returned in Algorithm 5 for each 1 ≤ i ≤ o, and Sj is returned in Algorithm 5 for

any 1 ≤ j ≤ s;

2. the configuration is returned with probability 1
f

T
(H) in Algorithm 5.

By Lemma 10, each Ci will be returned with probability 1

(2m)|E(Ci)|/2
= 1

(2m)ρ(Ci)
. By Lemma

11 each Sj will be returned with probability 1

(2m)|V (Sj )|−1
= 1

(2m)ρ(Sj )
. Thus, T will be

returned with probability

o
∏

i=1

1

(2m)ρ(Ci)
·

s
∏

j=1

1

(2m)ρ(Sj)
· 1

fT (H)
=

1

(2m)ρ(H)
· 1

fT (H)
.

Finally, since there are fT (H) configurations of H with respect to T , the instance will be

returned with probability fT (H) · 1
(2m)ρ(H) · 1

f
T

(H) = 1
(2m)ρ(H) . ◭

3.4 The Final Sampler

Let XH be an estimate of #H. Such an estimate can be obtained by, e.g., the subgraph

counting algorithm of Assadi et al. [3] in expected time Õ(mρ(H)/#H). We show that by

sufficiently many calls to SampleSubgraph, we can obtain a uniformly random sample of

an instance of H with constant probability.

ICALP 2020
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Algorithm 6 Sampling a copy of subgraph H uniformly at random.

1: procedure SampleSubgraphUniformly(G,H,XH)

2: for all j = 1, . . . , q = 10 · (2m)
ρ(H)

/XH do

3: Invoke SampleSubgraph(G,H)

4: if a subgraph H is returned then return H

5: return Fail

◮ Lemma 14. If #H ≤ XH ≤ 2#H, then Algorithm SampleSubgraphUniformly(G,H,

XH) returns a copy H with probability at least 2/3. The distribution induced by the algorithm

is (exactly) uniform over the set of all instances of H in G.

Proof. Since #H ≤ XH ≤ 2#H, the probability that no instance of H is returned in

q = 10 · (2m)
ρ(H)

/XH invocations is at most

(

1− #H

(2m)ρ(H)

)q

≤ e− #H

(2m)ρ(H)
·q
<

1

3

by Lemma 13. Let H be an instance of H. By Lemma 13, the probability that Sample-

Subgraph(H) returns H is 1
(2m)ρ(H) . Thus, the probability that SampleSubgraphUni-

formly(G,H) successfully output an instance of H is

#H

(2m)ρ(H)
.

Conditioned on the event that SampleSubgraphUniformly(G,H) succeeds, the prob-

ability that any specific instance H will be returned is

pH =

1
(2m)ρ(H)

#H
(2m)ρ(H)

=
1

#H
.

That is, with probability at least 2
3 , an instanceH is sampled from the uniform distribution

over all the instances of H in G. ◭

Finally, we prove the expected query and time complexity of SampleSubgraphUni-

formly.

◮ Lemma 15. The expected query and time complexity of SampleSubgraph-

Uniformly(G,H,XH) is O(mρ(H)/XH).

Proof. We analyze the query complexity of SampleOddCycle(G, 2k + 1) for du1
<
√

2m

and du1
≥
√

2m separately. The probability that du1
<
√

2m is at most 1, and the query

complexity is at most O(1) in this case.

To bound the probability that SampleWedge(G, u1, vk) is invoked such that du1 ≥√
2m, recall that sampling an edge uniformly at random is equivalent to sampling a vertex

proportionally to its degree and selecting a neighbor uniformly at random. The probability

to sample a neighbor x of u1 is 1/du1
. There are at most 2m/

√
2m =

√
2m vertices that have

degree at least
√

2m, so the probability that a uniformly random neighbor v1 of u1 has degree

at least
√

2m is at most
√

2m/du1
. Therefore, the probability that v1 has degree at least

√
2m,

which is implied by the check u1 ≺ v1 in line 3, is bounded by
√

2m/du1
. By Lemmas 5 and 9,

the expected number of queries in SampleWedge(G, u1, vk) is at most M ≤ du1/
√

2m

if du1
≥
√

2m. Thus, the expected query complexity of SampleOddCycle(G, 2k + 1) is

bounded by
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∑

u1∈V
du1 <

√
2m

du1

2m
·O(1) +

∑

u1∈V
du1 ≥

√
2m

du1

2m
·
√

2m

du1

· du1√
2m
≤ O(1) +

∑

u1∈V
du1 ≥

√
2m

du1

2m
= O(1).

The expected query complexity of SampleStar(G, k) is bounded by k ∈ O(1). It follows

that the expected query complexity of SampleSubgraph(G,H) is at most (o+ s+ |H|2) ·
O(1) ⊆ |H|·O(1). The expected query complexity of SampleSubgraphUniformly(G,H) is

O((2m)
ρ(H)

/XH ·|H|2) = Õ((2m)
ρ(H)

/XH). To bound the expected running time, we observe

that every loop in our algorithm issues at least one query, and we only perform isomorphism

checks on subgraphs of constant size. Thus the running time is still Õ((2m)
ρ(H)

/XH). ◭

The proof of Theorem 1 follows almost directly from Lemmas 14 and 15.

Proof of Theorem 1. For the case that m ≥ mρ(H)/#H, the claim follows from Lemmas 14

and 15. If m < mρ(H)/#H, we can query the whole graph, which requires O(m) degree and

neighbor queries, store the graph and answer the queries of the algorithm from this internal

memory. ◭

4 Proof of Theorem 2

In this section, we give the proof of Theorem 2, which follows by adapting the proofs for the

lower bounds on the query complexity for approximate counting subgraphs given by Eden

and Rosenbaum [12].

◮ Theorem 16 (see Theorems 4.7 and B.1 in [12]). For any choices of n,m, r, cr > 0, there

exist families of graphs with n vertices and m edges, F0 and F1, such that

all graphs in F0 are Kr-free,

all graphs in F1 contain at least cr copies of Kr,

and any algorithm in the augmented general graph model that distinguishes a graph G ∈ F0

from G ∈ F1 with probability Ω(1) requires Ω(min{m,mr/2/cr(cr)r}) queries for some

constant c > 0.

Now we prove our Theorem 2.

Proof of Theorem 2. Let A be an algorithm that for any graph G = (V,E) on n vertices

and m edges returns an arbitrary r-clique Kr, if one exists; and each Kr is sampled according

to D, using f(m, r,#Kr) ∈ o(min{m, mr/2

#Kr·(cr)r }) neighbor, degree, pair and edge sampling

queries.

Let n,m, cr > 0 and let F0,F1 be the families from Theorem 16. Consider the following

algorithm A′: run A on a graph from F0 ∪ F1 and terminate A if it did not produce a

Kr after f(m, r, cr) queries. If it output a clique, A′ claims that G ∈ F1, otherwise it

claims that G ∈ F0. By the assumption, A returns a clique after at most f(m, r, cr) queries

with probability Ω(1) if G ∈ F1 because then G contains at least cr copies of Kr and the

probability mass of D on the set of all copies of Kr is Ω(1). Otherwise, G ∈ F0, which

implies that G contains no triangle. Therefore, A cannot output a triangle from G.

It follows that A′ can distinguish F0 and F1, which is a contradiction to Theorem 16. ◭
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