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ABSTRACT Having a cognitive and self-optimizing network that proactively adapts not only to channel
conditions, but also according to its users’ needs can be one of the highest forthcoming priorities of future
6G Heterogeneous Networks (HetNets). In this paper, we introduce an interdisciplinary approach linking the
concepts of e-healthcare, priority, big data analytics (BDA) and radio resource optimization in a multi-tier
5G network. We employ three machine learning (ML) algorithms, namely, naïve Bayesian (NB) classifier,
logistic regression (LR), and decision tree (DT), working as an ensemble system to analyze historical medical
records of stroke out-patients (OPs) and readings from body-attached internet-of-things (IoT) sensors to
predict the likelihood of an imminent stroke.We convert the stroke likelihood into a risk factor functioning as
a priority in a mixed integer linear programming (MILP) optimization model. Hence, the task is to optimally
allocate physical resource blocks (PRBs) to HetNet users while prioritizing OPs by granting them high gain
PRBs according to the severity of their medical state. Thus, empowering the OPs to send their critical data
to their healthcare provider with minimized delay. To that end, two optimization approaches are proposed,
a weighted sum rate maximization (WSRMax) approach and a proportional fairness (PF) approach. The
proposed approaches increased the OPs’ average signal to interference plus noise (SINR) by 57% and 95%,
respectively. The WSRMax approach increased the system’s total SINR to a level higher than that of the
PF approach, nevertheless, the PF approach yielded higher SINRs for the OPs, better fairness and a lower
margin of error.

INDEX TERMS HetNet uplink optimization, MILP, machine learning, patient-centric, network optimiza-
tion, naïve Bayesian classifier, decision tree, logistic regression, ensemble, 6G, resource allocation, spectrum
allocation, big data analytics.

I. INTRODUCTION
Brain strokes are one of the rising health issues and though
they might cause significant disabilities to the patient, imme-
diate treatment can effectively increase recovery chances [1].
According to statistics from England, Wales and Northern
Ireland for 2016-2017, one-third of stroke patients arrived
at the hospital unaware of the date and time their symp-
toms began. The severity of this matter is even starker when
knowing that the average waiting time for a patient from the
start of symptoms until hospital admission is 7.5 hours, with
an additional 55 minutes for door-to-needle time (the time
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between arriving at an emergency department and having
an anesthetic administered). Adding to all that, the patient
is loses 1.9 million neurons each minute until the treatment
begins [2]. Thus, a proactive and timely diagnosis is vital. Big
data analytics (BDA) and machine learning (ML) methods
can be optimally utilized to process disparate data such as
patient’s electronic health record (EHR), diet, genetic data
and their daily routine, and produce a quick and accurate diag-
nosis supporting medical personnel [3]. Thus, saving lives,
improving the level of care, and lowering costs. An example
of using BDA in healthcare is reported by the Medical Centre
at Columbia University, where BDA is used to diagnose com-
plications suffered from bleeding stroke caused by ruptured
brain aneurysms. Using physiological data, complications
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FIGURE 1. Google trends for stroke prediction in the field of machine
learning.

were indicated 48 hours in advance, giving the medical staff
sufficient time to treat the complications [4]. Given its impor-
tance in saving people’s lives, the last five years witnessed a
growing interest in the subject of using ML algorithms for
stroke prediction as illustrated in Fig. 1.

The topic of remote out-patient (OP) monitoring is largely
dependent on two factors; precise medical Internet of Things
(IoT) sensors and a reliable network connection to convey the
relevant data. A cellular connection is preferred over Wi-Fi
or wired connections as it does not restrict the patient’s mobil-
ity. Nevertheless, cellular connections can experience channel
fading and path loss where the connection can become unreli-
able or cannot be established due to a very low signal to inter-
ference plus noise ratio (SINR). A slow fading channel may
indicate that the signal level is inadequate at the instance(s)
when an OP’s critical data must be conveyed urgently to the
healthcare provider.

In this work, we are proposing to use the OP’s data to serve
a dual purpose. In addition to diagnostics, it would guide the
network operator to the OPs with the most pressing needs.
Hence, radio resources can be allocated to them. We contend
that maintaining a high-quality connection between the OP’s
medical IoT and the medical provider is a step towards trans-
forming conventional heterogeneous networks (HetNets)
into a cognitively-personalized e-healthcare-centric service.
Building self-adaptive, intelligent, and self-aware network is
an operator’s high-level objective. Therefore, ML can endow
the network the capability of learning from experience and
improving its performance. Therefore, BDA can transform
the network from being reactive to predictive [5]. Topics
that discusses patient monitoring, radio resource allocation,
prioritization, fairness, and ensemble-aided disease risk pre-
diction are popular in the literature across several disciplines.
However, proposing a HetNet optimization framework that
incorporates all the above is, to the extent of our knowledge,
unique.

The objective of both approaches presented in this work
is to maximize the system’s overall SINR, both of which are
governed by a number of power and physical resource block
(PRB) assignment constraints. Nevertheless, OP prioritiza-
tion is implemented in the assignment process by allocating
the OPswith PRBs of gains relative to their medical state (i.e.,
the stroke likelihood) acquired from an ensemble system.
The main contributions of this paper are: (i) extending our

previous work in [6] to include a larger dataset, and the incor-
poration of newML algorithms including decision tree (DT),
logistic regression (LR), and the ML algorithm we deployed
in [6] (naïve Bayesian (NB) classifier) in an ensemble system
where a soft voting (SV) classifier resides; (ii) rigorously
scrutinizing the classifiers’ performance by conducting var-
ious tests of accuracy, recall, specificity, false-positive rate,
false-negative rate, negative prediction rate, precision, and
F1 score. Furthermore, reporting the cross-validation test
scores for all datasets; (iii) extending the work in [7] to study
the effects of inter-cell interference in HetNets, where we
also added a reliability-aware aspect to the PF approach; (iv)
testing the fairness among users, and conducting the required
sensitivity analysis over 300 instances. The paper is organized
as follows. Section II explores the related work. Section III
illustrates the system model, the ML algorithms, and the
problem formulation. Section IV presents and discusses the
results. The paper concludes with Section V.

II. RELATED WORK
Our proposed system is of an interdisciplinary nature span-
ning the use of machine learning and big data analytics in
cellular network design. In particular it is concerned with
the use of machine learning and big data analytics in health-
care, particularly, disease prediction and hence applying the
knowledge gained in the design of cellular wireless system.
Therefore, we investigate both parts in this section. This
section concludes with a third part highlighting the proposed
link between the former two parts where we infused the two
subjects by proposing a system that optimizes the uplink of
a HetNet considering the intrinsic needs of the human users,
in this case, their medical state.

A. USING MACHINE LEARNING/BIG DATA ANALYTICS IN
NETWORK DESIGN/OPTIMIZATION
Significant effort is dedicated currently to endowing wireless
networks with the ability to seamlessly prioritize cellular
users to serve them accordingly. Utilizing big data analytics
for network design was thoroughly discussed in our survey
paper where we observed that the wireless field received
the highest level of attention in this area [8]. Optimizing
the resource allocation within the network can focus on sev-
eral areas, such as spectrum allocation optimization, beam-
former design, power optimization, backhaul management,
computing resource optimization, and cache optimization.
In this paper, we will concentrate on the spectrum allocation
due to its relevance to our present work. The authors in
[9] employed a genetic algorithm (GA) and support vector
machines (SVM) and proposed a network planning tool.
They proposed a metric which is the number of physical
resource block per Megabit (i.e., PRB/Mb) and their target
was to maintain the quality of service (QoS) while minimiz-
ing that metric. Having a faster dynamic spectrum allocation
decision in a cloud-based radio access network (C-RAN)
was the goal of the authors in [10]. They proposed the use
of regression analysis applied to big data collected from a
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monitoring system at Sofia Airport to predict the spectrum
occupancy and usage activity in predefined frequency bands.
Optimizing the spectrum allocation, peer discovery, and route
selection from a delay perspective was the goal of the authors
in [11]. They predicted the vehicle trajectories using inter-
acting multiple model (IMM) estimation and a multi-Kalman
filter (MKF) operating on big data generated by geographic
positioning system (GPS) and geographic information system
(GIS). Game theory is used in the optimization part, where
a coalition formation game is formulated. The authors in
[12] proposed a scheme to solve the coexistence problem
of the Wi-Fi and LTE unlicensed (LTE-U) in the unlicensed
spectrum. The scheme uses Q-learning (QL) to dynamically
allocate blank subframes while maintaining the frame size
(i.e., reducing the subframe length). Further, the authors pro-
posed to share the transmission-related information to let the
LTE-U decide when to allocate the blank subframes, and
to have the blank subframe number dynamically adjustable
relative to the Wi-Fi traffic size.

B. USING MACHINE LEARNING AND BIG DATA
ANALYTICS IN HEALTHCARE AND STROKE PREDICTION
Cardiovascular disease (CVD) prediction using ML/BDA
techniques has been comprehensively discussed in prior lit-
erature. The authors of [12] proposed an approach to help
patients with Parkinson’s disease. Given the fact that the loss
of flexibility is a sign of disease progression, the authors
proposed a system that analyzes big data collected from body
and 3D sensors (e.g., Microsoft Kinect). This gives healthcare
providers an opportunity to track treatment effectiveness and
disease development in real-time. The authors of a compre-
hensive study in [13] employed a NB classifier to predict
heart disease problems. The same classifier was corroborated
by a number of cardiologists in [14] and the classifier’s
accuracy had an agreement of more than 80% with the health
outcomes of the respondents. K-nearest neighbor (KNN),
DT, artificial neural networks (ANN), and SVM algorithms
were compared in [15] for the detection of small ischemic
stroke in brain computerized tomography (CT) images, where
SVM reported the highest prediction accuracy. More than
800 subjects participated in the research in [16] where a
dataset comprising 50 risk factors was collected. KNN and
C4.5 DT algorithms were used to analyze the data using a
WEKA platform to predict stroke incidence. The C4.5 DT
algorithm returned the highest accuracy. The authors in [17]
employed naïve Bayes, ANN, and DT methods and the DT
reported the highest accuracy score. A proof-of-concept study
was conducted in [18] to predict the outcome of stroke throm-
bolysis using SVM. It analyzed a sample of 116 brain CTs
and clinical records and compared the results with prog-
nostication tools. The results were in favor of the SVM.
Predicting the intensive care unit (ICU) transfer decision for
stroke in-patients was the target for the researchers in [19].
DT, SVM, ANN, and logistic regression (LR) ensemble were
employed for that purpose. The results were then compared
to a generalized boosted model (GBM). The results showed

the DT to have a higher accuracy than the other models.
However, the GBM ensemble showed a better result than
the DT. To classify the type of stroke, the authors of [20]
proposed to utilize case sheets for patients’ symptoms using
data mining methods, namely, tagging and maximum entropy
methodologies and machine learning to classify the stroke
type. Towards that end, the authors used SVM, boosting and
bagging, ANN, and random forests algorithms. The results
showed that the ANN yielded higher classification accuracy
than the rest of the algorithms.

C. BRIDGING THE GAP BETWEEN THE TWO TOPICS
Despite the highlighted surge in the literature on self-
optimized and ML-assisted network optimization, this
prior research is still heavily reliant on either terminal-
level or network-level features. Furthermore, the works pre-
sented are mostly agnostic to the users and their needs.
A recent work presented by the authors in [21] proposed a
human brain-aware optimization approach to allocate radio
resources. They developed a probability distribution identifi-
cation (PDI) learning method to predict the delay perceived
by human users and quantify the reliability of this prediction.
Based on a proposed closed-form expression linking wire-
less physical layer metrics and reliability measure, and by
using a Lyapunov-based brain-aware optimization approach
the authors were able to allocate radio resources to human
users according to their delay perception. In a previous work,
we proposed in [6] the use of readings of blood pressure (sys-
tolic and diastolic), total cholesterol levels and daily smoking
rate acquired by non-invasive medical IoT sensors and train
a NB classifier on the OP’s medical record to predict the
likelihood of a stroke. This likelihood is then feedback as
a priority factor in a radio resource optimization model for an
LTE-A network guaranteeing the assignment of high-quality
PRBs to the OPs. Furthermore, we extended the previous
work to include multi-tier HetNets in [7] with a spectrum
partitioning strategy [22] so that inter-tier interference is mit-
igated. Moreover, the system response was investigated over
seven different current states resulting in different priority
levels granted to the OPs.

III. OP-CENTRIC NETWORK OPTIMIZATION FRAMEWORK
In this section, we introduce the system model, before
explaining the role of the machine learning algorithms and all
of the stages of data preparation needed before the data can be
usable in the proposed model. The problem formulation con-
cludes this section, where we present the main mathematical
equations in terms of objective functions and constraints.

A. SYSTEM MODEL
In this work, we consider a scenario of a HetNet consisting of
a macro base station (MBS) and two neighboring pico base
stations (PBS) operating in an urban environment. The MBS
coverage range is a radius of 300-600 meters whilst the PBS
has a coverage radius of 40-100 meters. In a previous work
in [7], we assumed the adoption of a spectrum partitioning
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FIGURE 2. Patient-Aware 6G HetNet.

strategy [22] to mitigate the impact of inter-tier interference
on the PBS users caused by the MBS users. In this work,
we consider the effects of the inter-tier interference. The users
belong to two categories: healthy (normal) users, and OPs
as illustrated in Fig. 2 which shows a 6G HetNet scenario
with BDA. As in a real-life scenario, the users are randomly
scattered around the base stations at different distances result-
ing in different received power levels at the base station
from connected UEs. If an OP is assigned a low-level SINR
channel, the healthcare provider may not be notified in an
emergency and the response is thus delayed. Here, a patient
suffering a stroke loses 1.9 million neurons per minute before
the treatment starts [2]. Therefore, the objective is to assign
high-gain PRBs to the OPs according to the severity of their
medical status (i.e., stroke likelihood). The latter is computed
in a cloud-based BDA engine according to the procedure
shown in Fig. 3. Thus, OPs that are prioritized over normal
users will have higher spectral efficiency due to their high
SINR values. This, in turn, will achieve higher throughput
(since spectral efficiency is directly proportional to through-
put). Hence, the OPs will be able to send their data with
minimal delay.

B. MACHINE LEARNING ALGORITHMS
In this work, we use an ensemble system comprising three
supervised learning classifiers, namely, a NB classifier, a DT
classifier, and a LR classifier that work on the OP’s dataset

FIGURE 3. Out-patient priority calculation procedure.

and feed their predicted probabilities of stroke to a soft voting
(SV) classifier. Given a certain feature vector (represent-
ing the OP’s current state), each of the aforesaid classifiers
yields a probability of stroke. Using ensemble learning, those
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TABLE 1. Outpatient medical record (sample).

TABLE 2. Feature values and their corresponding level.

classifiers can be combined into a single predictive model
with higher accuracy, and thus, higher confidence is achieved
in the predicted results.

Table 1 (A) shows a sample of the dataset (i.e., medical
record) of a single OP. Feature variables f1, . . . f4 characterize
the main contributors to a stroke stated in [23], [24] and they
are (Blood Pressure (BP), Cholesterol Level, and Smoking
Rate). The Framingham cardiovascular cohort study [25] is
used to populate the dataset of the individual OPs. The Fram-
ingham study contains readings for more than 3000 persons.
Due to regulatory and privacy reasons, it was not possible
for us to acquire cohort medical records belonging to several
individual patients. Therefore, we segmented parts of the
Framingham dataset in [26] to represent several OPs.

The ranges depicted in Table 1 (A) are based on the ones
in Table 2. To be as medically correct as possible, the dis-
cretized values of f1, . . .f3 are in line with governmental
health institutes or official organizations (e.g., the American
National Institute of Health and the British Stroke Associa-
tion) [27]–[29]. As for f4, it uses the ranges in [30].

The statistical significance of the features employed is
investigated by presenting the P-values with significance
level of 0.05 as indicated in Table. 3. Hence, we can reject the
null hypothesis that there is no relation between the adopted
features and a stroke incident.

1) Naïve BAYESIAN CLASSIFIER
The NB classifier is a probabilistic statistical classifier which
uses a number of independent feature variables fi (e.g. total

TABLE 3. Feature values and their corresponding P-values.

Cholesterol and Blood pressure levels) obtained from a his-
torical dataset (i.e., the OP’s medical record) to determine the
likelihood of an incident c (i.e. a stroke) as shown in Fig. 3.
The classifier is termed naïve because it assumes the feature
variables are unrelated to each other [31]. This classifier is
chosen for the following reasons; (i) it has a track record
in disease risk prediction as in [14] and [32], (ii) its low
complexity incurs less computational burden, (iii) it is an
ideal choice for any two-class concept with nominal features
[33], (iv) it has proven accuracy in Cardio Vascular Disease
(CVD) prediction compared to other approaches [34], [35],
(v) it does not require large training datasets [36].

The classifier’s posterior probability is given as

P (C = c |Fi = fi) = P(C = c)
n∏
i=1

P(Fi = fi|C = c) (1)

where P (C = c) represents the prior probability of stroke,
and the likelihood of F given C is given in (2)

P (Fi = fi |C = c) =

∑n
i=1 (C = c∧Fi = fi)∑n

i=1 (Ci = Ci)
(2)

where the term
∏n

i=1 P(Fi = fi|C = c) depicts the joint prob-
ability.

2) LOGISTIC REGRESSION CLASSIFIER
The main distinctions between the NB classifier and the
LR classifier is that; (i) it is fast and can produce a large
change in response to the feature vector, (ii) it allows for
large discrimination (i.e., a change in one feature may cause
large effect). However, this also means that it suffers from
high sensitivity to feature vector values. This classifier is a
popular tool in disease prediction as in [19], [20], [37]. The
logistic model is based on the logistic function given in (3).
This function is zero when x is -∞, whereas the function is
1 when x is +∞.

f (x) =
1

1+ e−x
(3)

This range is the primary reason for selecting the logistic
model to estimate the probability. The index of combined
features is x and it is given as a linear sum as shown in (4).

x = β0 + β1f1 + β2f2 + . . .+ βnfn (4)

where β0 represents the y intercept and β1 . . . βn are the
regression coefficients, f1, . . . fn depict the feature variables,
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and n is the total number of features in the prediction model
(in this work, n = 4) [38]. The conditional probability can be
written as:

P (C = c |Fi = fi) =
1

1+ e−(β0+
∑n

i=1 βifi)
(5)

whereP (C = c |Fi = fi) represents the conditional probabil-
ity of a certain class variable C = c given a feature vector
FV . Therefore, if C = 1 then the conditional probability for
C = 0 is P (C = 0 |Fi = fi) = 1 − P (C = 1 |Fi = fi). The
values of the line coefficients (i.e., β0 . . . βn) cannot be solved
analytically, therefore, we used solvers to navigate the search
space.

3) DECISION TREES CLASSIFIER
The DT construction procedure is done by splitting the
dataset into descendant subsets. The splitting continues on
repeated splits of the descendant subsets. The notion behind
the tree methods is to have a set of partitions so that the
best class can be determined. The partitions are performed
so as to choose the splits in a way that guarantees that the
leaves are purer than the parent node [39]. DT classifies
vectors by sorting them, starting at the root of the tree down
to some leaf nodes. In this tree, each node specifies a test of
some input feature of the vector, and each branch descending
from that node corresponds to one of the possible values
for this feature [31]. The reasons for choosing DTs are; (i)
their ability to implicitly perform feature selection or variable
screening [20], [40], [41], (ii) they are uncomplicated to
understand, interpret and, visualise, (iii) tree performance is
not affected by nonlinear relationships between parameters,
(iv) their track record in the stroke prediction literature as in
[16], [17], [42].

The purity is measured using a Gini index which is used as
an attribute selection measurewhere the ranking per attribute
is given. The feature (attribute) with the best score is selected
as the splitting feature for the given data subset. Splitting is
done according to an impurity test conducted on a feature
and a splitting subset (e.g., selecting two levels out of three
{moderate, heavy} ⊂ smoking or {moderate, heavy} ⊂ V r

F4
to be on a leaf while the remaining low ⊂ V r

F4
level is

assigned to the other leaf). The binary split resulting in the
maximum reduction in impurity (i.e., highest information
gain) is selected as the splitting criterion. The Gini measure
is given in (6).

Gini (γ ) = 1−
m∑
i=1

(pγi )
2 (6)

where pγi is the probability of a feature vector in training
dataset γ belonging to classCγi of a total number ofm classes.
The probability of an outcome of a certain class is given in (7)
and the sum is calculated over m classes [43], where

pγi =

∣∣Cγi ∣∣
|γ |

. (7)

It should be noted that the possible number of subsets is
2V

r
Fi − 2(excluding the empty subset and the all V r

Fi subset),
where V r

Fi represents the number of distinct values feature Fi
can have. However, in binary splits, this number is further
reduced by omitting the cases where certain values are not
included (e.g., assigning {moderate} ⊂ V r

F4
to one leaf

and {heavy} ⊂ V r
F4

to another leaf and leaving the value
{low} ⊂ V r

F4
unassigned. The weighted sum of the impurity

is calculated for each resulting partition. Thus, if a feature Fi
partitions the dataset γ into γ1 and γ2, then the Gini index of
γ is given in (8).

Ginifi (γ ) =
|γ1|

|γ |
Gini (γ1)+

|γ2|

|γ |
Gini (γ2) (8)

The subset with the minimum impurity (i.e., Gini) for that
feature is selected as its splitting subset. The same strategy is
employed when using features with continuous values where
each possible splitting point must be considered. Thus, extra
computational resources will be required compared to the
prior case.

The impurity reduction incurred by the binary split on
feature Fi is given in (9) is given by

1Gini (fi) = Gini (γ )− GiniFi (γ ). (9)

After forming the DT for an outpatient, the probability of a
given vector of medical measurements is evaluated by tracing
the decisions down the tree till the leaf where this vector
belongs is reached. The probability of a given leaf is then
evaluated as.

P (C = c |Fi = fi) =
0z,Ci∑n
i=1 0z,Ci

(10)

where0z,Ci denotes the number of samples in a leaf belonging
to outpatient z having class Ci. The denominator represents
the total number of samples of all classes in a given leaf.

4) ENSEMBLE MODEL
Ensemble methods train multiple learners on the same dataset
to classify the same feature vector(s). The original goal of
using ensemble systems is comparable to the way a person
seeks advice from several trusted individuals. Hence, this
reinforces the confidence that the decision made was the right
one. Similarly, an ensemble of classifiers can be employed
to increase the classification accuracy. Ensemble systems
provide a method to incorporate various opinions, sometimes
weighing them differently before reaching a concluding ver-
dict. Individual classifiersmay have different errors, however,
they generally agree in terms of their classification deci-
sion. Therefore, averaging the classifiers’ outputs results in
averaging the error component, consequently reducing the
classification error [44], [45] and balancing out the individual
weaknesses of equally well-performing models [46]. The
ensemble architecture of the soft voting (SV) classifier we
employed in this work is illustrated in Fig. 4. The NBC,
LR, and DT serve as base classifiers and their probabilities
are then averaged to produce the voted probability denoted
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FIGURE 4. Ensemble architecture.

by Pvoting. To calculate this probability, let the probability
yielded by each base classifier CLF i given in (1), (5), and
(10) be PCLF1 ,PCLF2 and PCLF3 , respectively. Since all base
classifiers are treated evenly, the SV classifier calculates the
probability as in (11).

Pvoting =
1

|CLF i|

|CLF i|∑
i=1

PCLF i (C = c |Fi = fi) (11)

where Pvoting denotes the ensemble-calculated, averaged-
conditional-probabilities. It should be noted that a future
work is underway where we compare the performance of dif-
ferent ensemble methods (e.g., Random Forest) and examine
their impact on the overall system.

In order to provide weights to the MILP so that the OPs
are assigned higher gain PRBs, a base user priority UPk of 1
is assigned to normal users while OPs are assigned the base
weight plus another weight derived from the multiplication
of a weight parameter α by the voted stroke likelihood Pvoting
thus, granting an effective-yet-reasonable priority:

UPk = 1+ α · Pvoting
∀k ∈ K : z = k, k � NU (12)

The OP’s updated priority is given in (12). Using different
values of α impacts the system response accordingly in terms
of the OPs’ SINR levels as shown in the results section.

C. PROBLEM FORMULATION AND MODEL PARAMETERS
Using our track record inMILP optimization in [6], [7], [47]–
[54], and physical layer modeling in [55]–[60], we developed
the following MILP models introduced in [6] to optimize the
cellular system resource allocation for OPs and normal users.
We consider a scenario where the OPs monitoring system
operates in a HetNet supported by B base stations denoted

FIGURE 5. User interference.

by set B = 1, . . . ,B including both MBS and PBS types,
operating at channels with 1.4 MHz bandwidth. Each base
station b has N PRBs depicted by set N = 1, . . . ,N . The
network serves a total of K users (normal and OPs) denoted
by set K = {1, . . . ,K } by allocating PRB n to connect to BS
b in an instant in time. The goal is to optimize the uplink of
the HetNet, so that the OPs are prioritized over healthy users;
hence, allocating them high-gain PRBs.

We formulate this problem as a MILP model. Table 4
defines the sets, parameters, and variables used in the network
optimization problem formulation.

The user’s uplink SINR of an OFDMA network can be
expressed as in [61].

T bk,n =
Qbk,nX

b
k,n∑

w ∈ B
w 6= b

∑
m ∈ K
m 6= k

Qbm,nXwm,n + σ
b
k,n

(13)

Examining the numerator (i.e. signal), Qbk,nX
b
k,n signifies

the signal power received at the base station from user k . Xbk,n
is a binary decision variable, Xbk,n = 1 denotes the connection
of user k to PRB n in base station b. The power received at
base station b from the interfering user(s)m,m 6= k , on the
same PRB is Qbm,nX

w
m,n; while X

w
m,n indicates an interfering

user(s) m connected to another BS w,w 6= b on PRB n.
The AWGN is given as σ bk,n. Equation (13) is graphically
illustrated in Fig. 5.
Rewriting equation (13) gives a quadratic term resulting

from the multiplication of two variables (Binary Xwm,n and
Continuous T bk,n). Hence we follow [62] and define the vari-
able φw,bm,n,k that comprises all the indexes of both afore-
mentioned (i.e., binary and float) variables as indicated in
equation (14).∑

w ∈ B
w 6= b

∑
m ∈ K
m 6= k

Qbm,nφ
w,b
m,n,k + T

b
k,nσ

b
k,n = Qbk,nX

b
k,n

∀k ∈ K, n ∈ N , b ∈ B (14)
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TABLE 4. System sets, parameters, and variables.

where φw,bm,n,k = T bk,nX
w
m,n and it represents the SINR of

user k with PRB n connected to base station b if there is an
interfering user m connected to the other base station w with

the same PRB n; otherwise, it is zero. Due to the introduction
of φw,bm,n,k , it is imperative to linearize this term to solve the
model using linear solvers such as CPLEX. Therefore, several
linearization constraints are employed as given in [6].

We have developed three approaches to solve the resource
allocation problem. The first approach, named WSRMax,
uses an objective function that maximizes theWeighted Sum-
Rate of the SINRs experienced by the users. The second
approach implements fairness among cellular users by adopt-
ing a Proportionally Fair (PF) objective function. The third
approach integrates the second approach with the concept of
reliability. Thus, it is a reliability-aware PF where it sets an
SINR threshold guaranteeing adequate QoS levels to normal
users.

1) MILP FORMULATION FOR THE WSRMax APPROACH
In this approach, the objective is to maximize the system’s
overall SINR. This can be done by maximizing the SINRs of
individual users.

a: BEFORE PRIORITIZING THE OPs
The OPs’ risk factors introduced in the previous section are
scaled into priorities (i.e. weights) and used to grant the OPs
priority over other users. The MILP model is formulated as
follows:

Objective:Maximize
∑
k∈K

∑
n∈N

∑
b∈B

T bk,nUPk (15)

The objective in (15) targets the maximization of the
weighted sum of the users’ SINRs. The OPs have higher
weights (i.e. priorities) than other healthy users and these
weights are relative to the OPs’ calculated risk factor.

Note that all the users share the same initial priority (i.e.,
UPk = 1) as in (16). However, the OPs will have updated
values according to their risk factor. This will ultimately drive
the system into prioritizing the OPs over healthy users dur-
ing PRB assignment. The mathematical formulations related
to the OP weight (priority) calculation was illustrated in
Section III.B.

UPk = 1

∀k ∈ K (16)

Constraints:
The main constraints governing the MILP model’s opera-

tion conform with our previous work in [6] and they ensure
the following:
i- That the sum of powers per PRB connection P for each

user does not exceed the maximum allocated power per
uplink connection PM .

ii- That each PRB in eachBS is to be utilized by amaximum
of one UE only, while each UE preserves the right to
utilize more than one PRB when possible.

iii- Each user is allocated at least one PRB from any base sta-
tion. Thus, no user is left without service. Furthermore,
this stops the MILP from blocking interfering users to
maximize the overall (network-wide) SINR.
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b: AFTER PRIORITIZING THE OPs
In this approach, OPs’ risk factors introduced in the previous
section are scaled into weights to prioritize the OPs over other
users. The MILP model is formulated in the same way as
mentioned in the previous subsection. However, equation (12)
is included in this model to represent the OPs’ weights (i.e.
priorities) while (16) is replaced by (17) to cover the normal
users only, thus

UPk = 1.

∀k ∈ K : 1 ≤ k ≤ NU (17)

2) MILP FORMULATION FOR THE PF APPROACH
Maximizing the logarithmic sum of the user’s SINRs is the
objective in this approach. A slight decrease in the overall
SINR might be observed (due to the nature of the natural
logarithm) but with the added benefit of preserving fairness
among normal users.

a: BEFORE PRIORITIZING THE OPs
All users, in this case, are treated evenly, thus there is no prior-
itization in allocating the radio resources. However, keeping
fairness among users still holds as a necessity. Since the only
part that we are dealing with is the value of the individual
user’s SINR, and to simplify the manipulation of the equation
before adding the natural logarithm, we introduce the opti-
mization variable Sk , to serve as the SINR for each user k
as in [6], where the single-indexed variable Sk substitutes the
three-indexed variable T bk,n as follows

Lk = ln Sk
∀k ∈ K (18)

Calculating Lk as a logarithmic function of the user’s SINR
Sk is carried out in (18). Since the natural log is a concave
function, and tomaintain the linearity of ourmodel, piecewise
linearization was employed through a set of constraints as
in [6].

The objective of this approach is given in (19):

Objective : Maximize
∑
k∈K

Lk (19)

Constraints:
In addition to the previously-mentioned constraints, the PF

approach employs a set of piecewise linearization relations
implemented to linearize the concave function in equation
(18). It should be noted that these relations resemble the line
equation y = mx+hwhere the line coefficients are selected as
in [63]. It is worth noting that the number of constraints used
in the linearization procedure is dictated by the total number
of lines used to cover the linearized interval.

b: AFTER PRIORITIZING THE OPs
The outpatients are prioritized in this case, and equation (18)
is rewritten to reflect the change.

Lk = ln Sk
∀k ∈ K : 1 ≤ k ≤ NU (20)

Equation (20) shows that the log function is applied to
normal users only. The OPs, on the other hand, are assigned
weights instead.

Objective : Maximize
∑

k∈K,1≤k≤NU
Lk +

∑
k∈K,k�NU

SkUPk

(21)

The multi-objective function in (21) (i) Assigns OPs pri-
ority by allocating the OPs PRBs with high SINRs reflecting
their relative priority, (ii) maximizes the sum of the SINRs
assigned to all users, and (iii) achieves fairness by assigning
healthy users PRBswith comparable SINRs. These objectives
were implemented by adding both the summation of a log
function of the healthy users’ SINRs (i.e. Proportional Fair-
ness) and the weighted sum of the OPs’ SINRs (OPs priority).
Constraints:

The model satisfies the constraints of the previous model.
In addition to equation (17) and the same set of equations
for the piecewise linearization that was used before, however,
the difference is in the range of users it is applied to (applied
only to the normal users).

3) CALCULATING THE RECEIVED POWER
The received signal power (in Watts)Qbk,n varies according to
two elements, namely, the distance between the user and the
BS and the channel conditions. The received signal power at
the base station is given as

Qbk,n = PHb
k,nA

b
k (22)

whereHb
k,n denotes Rayleigh fading and A

b
k represents power

loss due to attenuation (distance-dependent path loss) [64]
and is given by (23) and (24), for the MBS and the PBS,
respectively, where

A(dBm) = 128+ 37.6 log10
distance(meters)

1000
(23)

A(dBm) = 140.7+ 36.7 log10
distance(meters)

1000
(24)

Equation (25) is used to unify the units by converting the
power to Watts.

A(mw) = 10
A(dBm)

10 (25)

IV. RESULTS AND DISCUSSION
We consider a HetNet serving an urban environment, hence
the Rayleigh fading channel model with path loss. The results
evaluate two scenarios; the first depicts the HetNet state
before prioritising the OPs. In this scenario, equal base pri-
ority (i.e., weight) of 1 is granted to all users. The second
scenario shows the HetNet state after prioritising the OP
through the updated priorities according to the value of the
tuning factor α and their voted stroke likelihood.
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A cloud-based arrangement is assumed where each OP has
their personal dataset constructed from their medical history
and daily observations over the course of 200 days, with the
requirement to periodically extend the dataset by append-
ing recent observations. Moreover, the proposed approach
assumes a system that is in operation and the outpatient is
being assessed by the voting system where multiple classi-
fiers reside. We divided our dataset into two parts, a training
set and a testing set, the training set comprised of 140 entries
is used to train, i.e., fit the classifiers, and the test set with
60 entries is used to compare and verify the classifiers’ per-
formance. Furthermore, we would like to bring to the reader’s
attention that the ensemble’s role in this work is to report
the soft-voted stroke likelihood. Since the outpatients are all
under continuous monitoring, they are favoured according to
their probability of stroke as long as the system is opera-
tional. The OPs’ stroke likelihood Pvoting were 0.42, 0.84, and
0.65 for users 8, 9 and 10 (i.e., OP 1, 2, and 3), respectively.
Moreover, the use of equation (12) produced 1.42 ≤ UPk ≤
1.84, 1.84 ≤ UPk ≤ 2.68, 3.1 ≤ UPk ≤ 4.25, 5.2 ≤ UPk ≤
9.4 user priorities according to tuning factor values of α of 1,
2, 5, and 10, respectively.

A. CLASSIFIERS COMPARISON AND EVALUATION
In this section, we investigate the performance of the methods
described in the previous section. There are several perfor-
mance metrics for ML algorithms and certain metrics are
known by more than one name. Since we have a binary
classification problem, we refer to a prediction as ‘‘positive’’
if a classifier predicted P (C = c |Fi = fi) ≥ 0.5, indicat-
ing the occurrence of an event (e.g., stroke). Alternatively,
if P (C = c |Fi = fi) < 0.5 then the classifier predicted a no-
event (e.g., no stroke), hence is translated as a ‘‘negative’’ pre-
diction. In order to investigate the classifiers’ performance,
we use a test dataset of 60 entries where the outcome of all
entries (i.e., feature vectors) are known (i.e., observed) to us
and register the prediction results. Consequently, there will be
four outcomes; (i) a correct positive prediction, named true
positive (TP), indicating P (C |Fi) ≥ 0.5 and an observed
output of 1, (ii) an incorrect positive prediction, named false
positive (FP), indicating P (C |Fi) ≥ 0.5 and an observed
output of 0, (iii) a correct negative prediction, named true
negative (TN), indicating P (C |Fi) < 0.5 and an observed
output of 0, and (iv) an incorrect negative prediction, named
false negative (FN), indicating P (C |Fi) < 0.5 and an
observed output of 1. The following metrics are computed
through the use of these outcomes.

1) ACCURACY
Defined as the ratio of true (i.e., correct) predictions to the
total number in the dataset and is given in (26). Accuracy
measures how well the classifier did in predicting the occur-
rence of an event as well as no-event.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100% (26)

2) SENSITIVITY, TRUE POSITIVE RATE (TPR), OR RECALL
Defined as the classifier’s ability to pick an event of inter-
est. Thus, accurately classifying actual positive values by
labelling them as TP (i.e., stroke =1), and is given in (27).
In this work, it measures the classifier’s ability to correctly
classify an individual as at-risk.

Sensitivity =
TP

TP+ FN
× 100% (27)

3) SPECIFICITY, TRUE NEGATIVE RATE (TNR)
Is a measure of the classifier’s ability to pick the occurrence
of a no-event of interest. In other words, it is the classifier’s
ability to accurately identify actual negatives (i.e., stroke=0)
in the test dataset. Thus, accurately classify an individual as
risk-free.

Specificity =
TN

TN + FP
× 100% (28)

4) PRECISION, POSITIVE-PREDICTIVE VALUE (PPV)
Answers the question of how many of those who we pre-
dicted as at risk are actually at risk? Thus, it is the ratio of
accurate positive predictions to the total number of positively-
classified feature vectors, as in (29).

Precision =
TP

TP+ FP
× 100% (29)

Precision is a vital measure when the FP’s cost is high.
In our case, this corresponds to granting a high priority to
an outpatient that is not really in a high risk.

5) NEGATIVE-PREDICTIVE VALUE (NPV)
NPV answers the question of how many of those who we
predicted as at no risk are actually not at risk. Thus, it is the
ratio of feature vectors accurately classified as negative (i.e.,
TN) to the total number of classifications belonging to class
stroke = 0, as denoted in (30).

NPV =
TN

TN + FN
× 100% (30)

6) FALSE-PREDICTIVE VALUE (FPV)
Also known as false alarm ratio, it represents the rate of
misclassifying a class stroke = 0 as stroke = 1. It measures
the frequency of false alarm and is given in (31).

FPR =
FP

FP+ TN
× 100% (31)

7) FALSE-NEGATIVE RATE
Ameasure telling how erroneous a classifier can be inmissing
events (i.e., stroke=1). It is the ratio ofmisclassified positives
to the total number of positives, as in (32).

FNR =
FN

FN + TP
× 100% (32)
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8) F1 SCORE
Defined as a function of both precision and recall values given
in (29) and (27), respectively. This score is a measure of the
balance between precision and recall as the former highly
focuses on true positives, whilst the latter focuses on true
negatives. Thus, providing an equal weight for both precision
and recall as it is the harmonic mean of the two as given in
(33).

F1Score =
2.precision.recall
precision+ recall

(33)

It should be noted that since there are three separate
datasets (one per outpatient), hence, there are not only four
classifiers to investigate, but there is also a need to examine
the performance of these classifiers over three datasets as
illustrated in Table 5.

The proposed SV classifier achieved higher accuracy com-
pared to the other classifiers. Moreover, it had the lowest
combined FPR and FNR which motivates its employment in
this work. We further scrutinized the accuracy aspect of the
proposed SV classifier using 10-folds cross-validation and
the results yielded 87.5%, 85.5%, and 88.5%, for the three
data sets, respectively.

B. PERFORMANCE METRICS
While it is important to scrutinize the classifiers at hand and
verify their performance, however, given the nature of our
work, there are several performance metrics that are more
vital than others. Hence we highlight their importance in this
section. Accuracy is an important metric in our work due
to the fact that it gives a balanced insight on the classifier’s
overall performance. FNR is the most important metric from
the point of view of saving a patient’s life, i.e., it tells us
the proportion of ill people who are miss-classified. The
F1-score takes misclassified entries (i.e., FP and FN) into
account. Depending on the application, it can be as important
as accuracy in our case.

Before proceeding into the results of the MILP model, it is
worth noting that we used the parameters in Table 6.

C. THE WSRMax APPROACH
1) BEFORE PRIORITIZING THE OPs
This scenario considers the operation of a HetNet where all
users share the same base user weight (i.e. priority) of 1. The
results in Fig. 6. indicate that the OPs (represented by users 8,
9, and 10) are assigned PRBs of comparable gains resulting in
near-average SINRs. This is due to the fact that the MILP’s
aim is to maximize the HetNet’s overall SINR. In order to
measure fairness, we considered emphasizing the Standard
Deviation (SD) of the users’ SINRs, hence, to quantify how
close the calculated SINR values are to the mean, in this case,
the SD was 195. Moreover, an extensive sensitivity analysis
was carried out for the 300 independent realizations of the
channel and the results with 95% confidence intervals per
user are indicated in Fig. 6. The average SINR lied between
2166 and 2691.

TABLE 5. Comparing the machine learning methods.

FIGURE 6. User SINR before OP prioritization (WSRMax approach).

2) AFTER PRIORITIZING THE OPs
The goal in this scenario is to utilize BDA/ML to prioritize
the OPs over normal users by means of the ensemble system.
As a result, high gain PRBs will be allocated to the OPs
according to their risk factor guaranteeing them high-level
SINRs. Comparing Fig. 6. and Fig. 7. clearly highlights that
the OPs (i.e., users 8, 9, and 10) were granted PRBs with
high SINRs. The overall system performance is a trade-off
(optimally-selected) between guaranteeing the assignment of
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TABLE 6. Model parameters.

FIGURE 7. User SINR after OP prioritization (WSRMax approach).

high SINRs to the OPs versus decrease in the average SINR
(between 2% (∝= 1) and 19% (∝= 10) in comparison to the
SINR in the first scenario.

The reason behind the reduction in the average SINR is
because the system was forced to a PRB assignment scheme
where the maximization of the OPs’ individual SINRs is
prioritized over the total SINR. Fairness between normal
users was marginally impacted in this approach as will be
shown in the following subsection. The impact of converting
the probability of stroke to a risk factor and using several
values of the tuning factor (i.e. α = 1, 2, 5 and 10) can
be observed by comparing the increase in the OPs’ average
SINRs. Taking the case of user 9 (the most critical user with
a probability of 0.84) having an SINR lower than users 1, 3,

FIGURE 8. Effects of changing α on average SINR and fairness (WSRMax
approach).

FIGURE 9. The impact of α, both user and average SINR (WSRMax
approach).

8, and 10, the average SINR witnessed an increase from 17%
(α = 1) to 57% (α = 10) granting this user an average SINR
higher than all users. Individual users had an average SINR
ranging from 1042 to 3776 for α = 10.

3) THE IMPACT OF α ON FAIRNESS AND SINR
The parameter α is a tuning factor that is used to convert
the minute value of the voted probability (i.e., Pvoting) of
stroke acquired from the ensemble system to a risk factor as
depicted in equation (12). Moreover, this parameter enables
the reciprocity between the average SINR and the attainable
fairness among the users quantified by the SD. We used
different values of α to study the effects on the SD and the
average SINR. We examined the effects of using different
vales of α on the SD and the average SINR as shown in Fig. 8.
and in Fig. 9.

Increasing the value of α forced the system to concentrate
on the OPs. Accordingly, the system’s overall SINRwas opti-
mally traded-off to increase the OPs’ SINRs while minimally
impacting fairness among users as shown in Fig. 8. It should
be noted that examining the OPs’ SINRs and comparing
them against their corresponding risk factor values reveals an
increase in the SINR in an order conforming to that depicted
in Fig. 9, where the PRB assignment granting the highest
SINR was allocated to user 9 which is the user with the
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FIGURE 10. User SINR before OP Prioritization (PF Approach).

highest risk factor (priority). Furthermore, user 8 which has
the lowest risk factor among the three OPs was given the
lowest SINR among the OPs and very close to the system’s
average SINR. As the value of α increased (i.e., α = 5, 10),
user 8 is granted higher SINRs in comparison to other healthy
users.

D. THE PF APPROACH
1) BEFORE PRIORITIZING THE OPs
In this scenario, the goal is to maximize the logarithmic sum
of the user’s SINRs. Thus, no priority is given to any user
in particular. Fairness is applied as a consequence due to the
nature of the natural log in the objective function in (19). The
results depicted in Fig. 10. are in agreement with the ones
depicted in Fig. 6.

However, a 46% reduction in the SD is observed when
comparing this scenario and the one in Subsection IV.B.1.
The average SINR ranged between 1905 and 2251. Sensitiv-
ity analysis was implemented over 300 different realizations
of the HetNet. The results with a 95% confidence interval are
illustrated in Fig. 10.

2) AFTER PRIORITIZING THE OPs
In this approach, the OPs are prioritized according to their
risk factors using the objective function in (21). Therefore,
the OPs are granted high-gain PRBs resulting in high SINRs
as illustrated in Fig.11. The OPs’ SINRs were boosted by up
to 95% observed by user 9with α = 10. However, the average
system SINR ranged between 1093 (α = 1) and 1113 (α =
10).

The healthy users were noticeably affected by the intrinsic
nature of the natural log, and the exclusion of the OPs from
the logarithmic term in the objective function resulted in
granting the healthy users lower SINRs in comparison to the
OPs’ SINRs. Fig. 12. depicts the average users’ SINR in a
logarithmic scale where narrower confidence intervals can be
observed in this approach.

3) THE IMPACT OF α ON FAIRNESS AND SINR
Increasing the OPs’ priority by adjusting the tuning factor α
has similar effects to the ones observed in the previous sub-
section. Using the PF approach, boosts the OPs’ SINRs by up

FIGURE 11. User SINR after OP prioritization in linear scale (PF approach).

FIGURE 12. User SINR after OP Prioritization in logarithmic Scale (PF
Approach).

FIGURE 13. Effects of changing α on average SINR and fairness (PF
Approach).

to 95%, but has resulted in reducing the overall system SINR
by up to 48%while maintaining a good fairness interpreted as
a stable and very low SD as illustrated in Fig.13. Observing
Fig. 14, it can be clearly seen that the OPs’ are granted
SINRs approximately three times the system’s average SINR.
Furthermore, the analogy between the priorities (weights)
granted to the OPs and the corresponding increase in their
SINRs is highlighted.
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FIGURE 14. The impact of α, both user and average SINR (PF approach).

FIGURE 15. User SINR before OP prioritization (Reliability-aware PF
approach).

It should be noted that user 9, despite having a higher
priority than user 10, was assigned a PRB with SINR very
close to the SINR of user 10 when α = 1, 2. This is due to
the fact that user 10 has already better channel conditions than
user 9 as indicated in Fig. 10. Thus, it would require higher
values of the tuning factor α to bias the system towards user
9 and this can be seen in α = 5 and 10 in Fig. 14.

4) THE RELIABILITY-AWARE PF APPROACH
In this approach, we are enhancing the SINR values for the
normal users that are impacted by the logarithmic sum. This
is done by setting a minimum SINR where the users that are
subjected to this constraint have guaranteed reliable service
levels [65].

5) BEFORE PRIORITIZING THE OPs
This approach shares the same objective of the PF approach
in Section IV.D.1. However, a constraint is added to the
model guaranteeing a minimum SINR of 21 dB for all users.
The results depicted in Fig. 15 show a similar trend to the
ones illustrated in Fig. 10. However, preserving a minimum
SINR level with no prioritization means that there is a slight
impact on the system-wide SINR. Thusly, we observed a 5%
decrease in the system’s average SINR for the PF approach
before and after introducing reliability. Here

Sk ≥ ψ

∀k ∈ K : 1 ≤ k ≤ NU (34)

6) AFTER PRIORITIZING THE OPs
The impact of the natural logarithm on healthy users moti-
vated the inclusion of a constraint guaranteeing the minimum

FIGURE 16. User SINR after OP prioritization (Reliability-aware PF
approach).

FIGURE 17. Effects of changing α on average SINR and fairness
(Reliability-aware PF approach).

FIGURE 18. The impact of α, both user and average SINR
(Reliability-aware PF approach).

SINR level as in [65]. This results in an additional level of
reliability with fairness in the PF approach, and here

Sk ≥ ψ

∀k ∈ K : 1 ≤ k ≤ NU (35)

Constraint (35) works under the objective in (21) to
guarantee a minimum SINR level specified by the param-
eter ψ . The result of introducing this constraint is shown
in Fig. 16.

The OPs’ SINRs are boosted by up to 23% observed by
user 9 with α = 10. However, the OPs’ SINRs are now
reduced in comparison with the previous scenario before
introducing reliability as shown in Fig. 11. The results
show narrower confidence intervals than under the WSRMax
approach indicating a further reduction in the error values.
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7) THE IMPACT OF α ON FAIRNESS AND SINR
Introducing the reliability aspect to the PF approach resulted
in improving the system’s average SINR with a marginal
increase in the SD. However, better fairness is observed when
increasing the tuning factor α as indicated in Fig. 17. Further-
more, the average SINR is increased by 32% in comparison
to the reliability-unaware PF approach. The OPs’ SINRs
witnessed a 30% increase when employing the reliability-
aware PG approach as shown in Fig. 18. Moreover, the OPs
were granted SINRs that are approximately 70% higher than
the system’s average SINR

V. CONCLUSION
This work introduced two interdisciplinary approaches to
transform conventional HetNets in 6G by endowing them
with a user-centric machine learning dimension. To that end,
a BDA-powered framework was proposed to play part in
uplink radio resource allocation optimization of HetNets. The
target is to prioritize stroke outpatients within the HetNet to
provide them with the optimal wireless resources. Moreover,
the assigned resources should be proportional to the severity
of the patients’ medical state (i.e., stroke likelihood), which
is predicted using an ensemble system classifying readings of
vital signs acquired from body-attached and nearby IoT sen-
sors. Two approaches, namely, the WSRMax and the PF are
presented and compared in terms of fairness and in terms of
the average SINR (both at the system and the user level). The
WSRMax approach enhanced the OP’s average SINR by up
to 57%, whereas the PF approach improved the SINR by up to
95%. Depending on the value of tuning factor α, normal users
reported an average SINR ranging between 2163 and 1263
using the WSRMax approach, while the reliability-aware
PF approach attained an SINR ranging from 1089 to 1066
(depending on α). Using the SD to quantify fairness among
users, the WSRMax scored between 104 and 156, while the
reliability-aware PF approach ranged between 44 and 74.
Furthermore, to add confidence in the estimated probability
of stroke, the ensemble system is examined and the voting
classifier yielded up to 93% accuracy, a false positive rate
of 2.8% and a false negative rate of 11%.
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