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Summary. The paper estimates the causal effect of having health insurance on healthcare
utilization, while accounting for potential endogeneity bias. The topic has important policy im-
plications, because health insurance reforms implemented in the USA in recent decades have
focused on extending coverage to the previously uninsured. Consequently, understanding the
effects of those reforms requires an accurate estimate of the causal effect of insurance on uti-
lization. However, obtaining such an estimate is complicated by the discreteness inherent in
common measures of healthcare usage. The paper presents a flexible estimation approach,
based on copula functions, that consistently estimates the coefficient of a binary endogenous
regressor in count data settings.The relevant numerical computations can be easily carried out
by using the freely available GJRM R package. The empirical results find significant evidence
of favourable selection into insurance. Ignoring such selection, insurance appears to increase
doctor visit usage by 62% but, adjusting for it, the effect increases to 134%.

Keywords: Binary endogenous regressor; Copula; Count data; Moral hazard; Penalized
regression spline; Simultaneous estimation

1. Introduction

The Affordable Care Act, which was passed by the US Congress and signed into law by President
Obama in 2010, represented one of the largest expansions of the US social safety net since the
1960s. Through a combination of mandates, subsidies and regulations, the law’s primary goal
was to extend health insurance coverage to the approximately 44 million Americans who, before
the law’s passage, lacked coverage. Such a large expected increase in insurance coverage, in turn,
raised questions about whether the newly insured would respond by increasing their usage
of medical services, possibly straining existing health services infrastructure. Concerns about
medical infrastructure have recently reached new heights in the midst of the 2020 coronavirus
pandemic.

Estimating the effect of insurance on healthcare usage is surprisingly difficult, because of
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the possible simultaneous relationship between a person’s demand for health insurance and his
utilization of healthcare services (Arrow, 1963). This paper presents a case-study which estimates
the causal effect of having health insurance (a binary variable) on healthcare utilization (a count
variable), while accounting for potential simultaneity bias. Health services researchers have
historically ignored such simultaneity, effectively treating insurance status as predetermined,
similarly to age or race. During the mid-to-late 1980s, however, scholars began to address the
possibility that some people seek insurance in anticipation of future healthcare needs.

Ideally, the effect of insurance on healthcare usage should be assessed via a randomized
controlled experiment, with subjects randomly assigned to insurance states. The famous RAND
experiment (Manning et al., 1987) represented an ambitious effort for this, but its findings are
more than 40 years old. Alternatively, one could wait for a ‘natural’ experiment to emerge, as
sometimes happens in the USA when individual states change insurance laws, which, in turn,
might create an environment that mimics random insurance assignment (Finkelstein et al.,
2012).

More often, however, researchers must rely on observational data, which opens up concerns
about simultaneity of insurance and healthcare usage. Cameron et al. (1988) formalized that
simultaneity in an economic model that we present here in abbreviated form. Consider a person
who chooses health insurance and healthcare usage in two stages. In the first stage, before a
potential future health event is known, the person decides whether to acquire insurance. In the
second stage, after knowing whether the health event has occurred, the person finds his optimal
level of healthcare usage.

Focus first on the second stage, in which the person treats as given his individual characteristics
T , insurance status (with j =1 denoting insured and j =0 denoting uninsured) and a potential
health event s. Here, the person seeks to maximize utility subject to his budget constraint,

max
C.s/,e.s/

Uj[C.s/, H{e.s/, s}|T ] subject to C.s/+Pj +pje.s/� I,

where C.s/ represents the person’s consumption of goods that directly contribute to utility
(e.g. pizza and vacations) in health event s, and H.e, s/ is the person’s health level (in income
equivalent), which itself is a function of health event s and healthcare utilization e.s/, which itself
also depends on s. In the budget constraint, Pj represents the price (to the person) of insurance,
which is usually unobserved in most sources of data, unless the person is uninsured, in which
case it equals 0. Term pj, which depends on insurance status and is usually also unobserved,
denotes the unit price of healthcare services. Term I represents disposable income.

Rewinding to the first stage when the possible health event has yet to materialize, the person
chooses his insurance status to maximize the expected utility∫

s

Uj[CÅ.s/, H{eÅ.s/, s|T}]π.s|T/ ds,

where CÅ and eÅ are optimal consumption and healthcare usage obtained from the second-stage
problem, and π denotes the probability density of future health events. If the integral is larger
while insured (j =1) than not (j =0), then the person insures.

Cameron et al. (1988) showed that, with properly specified functional forms, one can derive a
demand function for medical care, with insurance status as a key argument. However, the main
point of their model is that insurance status cannot, in general, be treated as predetermined.
The reason is that insurance status, which is determined in the first stage, depends, in part, on
the person’s expected healthcare usage in the second stage, eÅ.s/. Consequently, such selection
into insurance is likely to muddle the observed link between insurance and healthcare usage.

Researchers have attempted to address this concern by using various techniques, most of
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which can be regarded as variants of the modelling framework that is discussed in Section 2
(e.g. Goldman (1995), Cardon and Hendel (2001), Mello et al. (2002), Deb and Trivedi (2006)
and Zheng and Zimmer (2008)). For the most part, existing studies find that insurance increases
healthcare usage, but there seems to be widespread disagreement about the extent to which the
simultaneity of insurance and usage affects those findings.

When unobserved information—in this case, knowledge of future health needs—
simultaneously affects both the treatment (insurance) and the outcome (healthcare usage),
statisticians refer to the treatment as ‘endogenous’ (Cameron and Trivedi (2013), pages 386–
388). Ignoring endogeneity might produce incorrect estimates of the causal effect of insurance.
For example, if relatively unhealthy people, knowing that they will need to consume healthcare
services, seek insurance coverage to help to pay for those services, then insurance will appear
positively linked to healthcare usage. But such relationships cannot be interpreted as causal,
because (at least part of) the positive link owes to unhealthy people selecting into insurance
coverage. Because healthcare policy in the USA in recent decades has focused on extending
coverage to the previously uninsured, obtaining an accurate estimate of the causal effect of
insurance on usage is crucial to determine whether such reforms will stretch existing healthcare
infrastructure.

From a more general statistical modelling perspective, many microeconometric models, es-
pecially those that rely on observational data, are plagued by unobserved heterogeneity that
simultaneously correlates with the outcome variable and a right-hand-side explanatory variable
of interest. When the outcome variable is continuous with a distributional shape that lends itself
to linear regression modelling, the standard approach involves finding ‘instruments’ that cor-
relate with the endogenous right-hand-side regressor, but not with the outcome variable. In the
healthcare usage case-study, a possible instrument might be firm size, which is likely to correlate
with a person’s probability of having private insurance, but should not (directly) alter health-
care usage. When such instruments are available, the method of instrumental variables, which
is also known as two-stage least squares, can be employed; see, for example, Greene (2008),
chapter 12, for a textbook treatment of instrumental variables methods. But when the outcome
variable has discreteness or shows distributional patterns that call for non-linear models (such
as generalized linear and additive models), the two-stage least squares method no longer yields
consistent estimates. A number of studies that have sought to quantity the effect of insurance on
healthcare usage, some of which are mentioned below, have introduced methods that attempt to
import the logic of two-stage least squares to more general settings. Unfortunately, as discussed
in the following section, those approaches either lack general applicability and/or may require
substantial computational resources to implement.

This paper emphasizes cross-sectional settings, where the main focus centres on consistent
estimation of the coefficient of a binary endogenous explanatory variable. Throughout, we
assume that the researcher has access to valid instruments. As such, the paper does not consider
panel data methods for addressing endogeneity, such as fixed effects or difference in differences;
nor does it explore instrument-free methods, such as matching (Rosenbaum and Rubin, 1983),
synthetic control (Kreif et al., 2016) or approaches that exploit quirks in the higher order
moments of the distribution of the outcome variable (Lewbel, 2012).

The primary goal of the paper is to investigate the aforementioned case-study by using a
general and flexible estimation approach, based on copula functions, for consistently estimating
the coefficient of a binary endogenous regressor in count data settings. Some existing studies
have attempted different versions of the method that we discuss (e.g. Han and Vytlacil (2017),
Park and Gupta (2012), Radice et al. (2016), Tran and Tsionas (2015), Winkelmann (2012) and
Zimmer (2018)). The work by Zimmer (2018) is the closest to ours since it introduces a copula
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model with binary and Poisson margins, and with an endogenous binary variable. However, our
proposal is far more general in that it allows for a wider range of discrete distributions for the
count variable, for several link functions for the binary margin, for the specification of flexible
covariate effects, for the use of a wider set of copula functions and for the dependence parameter
to be specified as a function of covariates. Using our method, we find statistically significant
evidence that insurance is endogenous with respect to usage of doctors’ services, and that, when
endogeneity is taken into account, the effect of insurance is larger than when endogeneity is
ignored. Health economists refer to such a pattern as ‘favourable selection’, with relatively light
users predisposed towards being insured.

The paper also highlights the newly revised software package GJRM (Marra and Radice,
2020), written for the programming language R (R Core Team, 2020), which greatly eases the
implementation of our model. To the best of our knowledge, there are no alternative copula
regression models, nor respective software implementations, of the type that is discussed in
this paper. Although the construction and estimation of the model proposed rely on many of
the modular functions and routines that are already available in GJRM, extending the software
to accommodate the model, the functional forms and nuances that are needed to address the
aforementioned case-study required a large amount of programming work. Those developments
made it possible to estimate the flexible class of models that are discussed in this paper and hence
allow for more flexible specifications than are possible by using extant methods.

1.1. Existing methods
Instrument-based approaches for addressing endogeneity in non-standard settings fall into two
main categories: two-stage techniques and simultaneous estimation methods. The simplest two-
stage procedure, which also most closely resembles linear two-stage least squares, is the ‘control
function’ approach (Heckman and Robb, 1985; Terza et al., 2008). The first stage involves
regressing the endogenous variable on all explanatory variables, including instruments. This
regression is then used to calculate residuals, which, in the second stage, appear alongside the
endogenous variable as an additional regressor in the main regression of interest. The control
function method is simple and quite general, but it encounters problems when the endogenous
variable is not continuous (Wooldridge (2010), page 746). In our case-study the endogenous
variable is binary and this muddles what exactly constitutes a ‘residual’ from the first stage, with
different types of definition potentially leading to conflicting results.

A second category of approaches, labelled ‘simultaneous estimation methods’, attempt to
assemble the full joint distribution of the outcome variable and the endogenous regressor. The
joint distribution is then typically used for likelihood-based estimation; see, for example, Terza
(1998) and Cameron and Trivedi (2013), pages 385–412. Such approaches usually decompose the
(unknown) joint distribution into the marginal distribution of the outcome conditionally on the
endogenous regressor and the marginal distribution of the endogenous regressor. These meth-
ods, however, can be quite computationally intensive if, as is often assumed, the two marginals
share an unobserved random effect, which then must be integrated out. For example, Deb and
Trivedi (2006) reported that one variant of this approach, based on simulated maximum likeli-
hood, shows ‘quite slow’ convergence, which led them to suggest several simulation acceleration
tricks, including alternative methods for drawing random numbers. Indeed, the simulated maxi-
mum likelihood based code that was generously provided by Deb and Trivedi (2006)—complete
with their ‘accelerators’—applied to the case-study that is explored in this paper required al-
most 30 min to converge on a desktop computer, compared with mere seconds for our proposed
copula-based method.
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The approach that is proposed in this paper falls into the ‘simultaneous estimation methods’
category, but it side-steps the numerical integration obstacle by joining (via copulas) the two
marginal distributions, yielding a closed form expression for the likelihood function. Conse-
quently, parameter estimation and inference are far less computationally taxing.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets.

2. Methodology

This section discusses a recursive copula additive model to estimate the effect of a binary en-
dogenous variable on a count outcome. Details on identification, parameter estimation and
software implementation are also provided.

2.1. The model
To simplify the notation, and without loss of generality, we drop observation index i, while noting
that n observations are available for modelling. We begin by assuming that the joint cumulative
distribution function (CDF) of a binary (endogenous) variable and a discrete outcome variable,
Y1 ∈{0, 1} and Y2 ∈N0 respectively can be expressed as

F12.y1, y2|ϑ/=C{F1.y1|π/, F2.y2|μ, σ/; θ}, .1/

where ϑ = .π, μ, σ, θ/′. Terms F1.y1|π/ and F2.y2|μ, σ/ denote marginal CDFs of Y1 and Y2
taking values in .0, 1/, whereas the symbols π, μ and σ represent marginal distributional pa-
rameters. Function C : .0, 1/2 → .0, 1/ is a two-place copula function which does not depend on
the marginals, and θ is an association copula parameter measuring the dependence between the
two random variables.

A substantial advantage of the copula approach is that a joint CDF can be conveniently
formed by utilizing two (in this case) arbitrary univariate marginal CDFs and a function C

that binds them together. As opposed to what is found in classical copula regression settings,
in this work the binary variable y1 appears as an explanatory variable inside μ in the marginal
F2.y2|μ, σ/. Thus, the copula has a recursive structure. This recursive structure implies that y1
is endogenous with respect to y2 if dependence between the two marginals, as captured by θ,
is statistically significant. See Han and Vytlacil (2017) and references therein for some works
which have adopted the same logic in a copula regression context.

The copulas that were implemented in GJRM are reported in Table 1. Table 1 also shows the
relationship between θ and Kendall’s τ -coefficient, which is a measure of association that lies
in the customary range τ ∈ [−1, 1]. Counterclockwise rotated versions of the Clayton, Gumbel
and Joe copulas are obtained by using the formulae in Brechmann and Schepsmeier (2013). For
more details on copulas see, for example, Nelsen (2006). In the current setting, the result of
Sklar (1973) can only guarantee that the copula is unique over the range of the outcomes. In a
regression context, however, this potential issue is less likely to be a concern as noted by several
researchers including Joe (2014), Nikoloulopoulos and Karlis (2010) and Trivedi and Zimmer
(2017), primarily because regression structures in the marginals generate additional variation
in the outcomes and thus more completely cover the outcome domains.

In equation (1), the marginals for Y1 and Y2 are assumed to be specified via one- and two-
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Table 1. Definition of the copulas that are implemented in R package GJRM, with corresponding parameter
range of association parameter θ, one-to-one transformation function of θ and relationship between Kendall’s
τ and θ†

Copula C(p1,p2;θ) Range of θ Transformation Kendall’s τ

AMH ("AMH") p1p2={1−θ.1−p1/.1−p2/} θ ∈ [−1, 1] tanh−1.θ/ −{2=.3θ2/}{θ + .1−θ/2×
log.1−θ/}+1

Clayton ("C0") .p−θ
1 +p−θ

2 −1/−1=θ θ ∈ .0,∞/ log.θ/ θ=.θ +2/

FGM ("FGM") p1p2{1+θ.1−p1/.1−p2/} θ ∈ [−1, 1] tanh−1.θ/ 2
9 θ

Frank ("F") −θ−1 log[1+{exp.−θp1/−1}]
{exp.−θp2/−1}={exp.−θ/−1} θ ∈R\{0} — 1− .4=θ/{1−D1.θ/}

Gaussian ("N") Φ2{Φ−1.p1/,Φ−1.p2/; θ} θ ∈ [−1, 1] tanh−1.θ/ .2=π/ sin−1.θ/

Gumbel ("G0") exp.−[{− log.p1/}θ

+{− log.p2/}θ ]1=θ/
θ ∈ [1,∞/ log.θ −1/ 1−1=θ

Joe ("J0") 1−{.1−p1/θ + .1−p2/θ

−.1−p1/θ.1−p2/θ}1=θ θ ∈ .1,∞/ log.θ −1/ 1+ .4=θ2/D2.θ/

Plackett ("PL") .Q−√
R/={2.θ −1/} θ ∈ .0,∞/ log.θ/ —

Student t ("T") t2,ζ{t−1
ζ .p1/, t−1

ζ .p2/; ζ, θ} θ ∈ [−1, 1] tanh−1.θ/ .2=π/ sin−1.θ/

†Φ2.·, ·; θ/ denotes the CDF of a standard bivariate normal distribution with correlation coefficient θ, and Φ.·/ the
CDF of a univariate standard normal distribution. t2,ζ .·, ·; ζ, θ/ indicates the CDF of a standard bivariate Student
t-distribution with correlation θ and fixed ζ ∈ .2,∞/ degrees of freedom, and tζ .·/ denotes the CDF of a univariate
Student t-distribution with ζ degrees of freedom. D1.θ/ = .1=θ/

∫ θ
0 [t={exp.t/ − 1}] dt is the Debye function and

D2.θ/=∫ 1
0 t log.t/.1− t/2.1−θ/=θdt. Quantities Q and R are given by 1+ .θ−1/.p1 +p2/ and Q2 −4θ.θ−1/p1p2

respectively. Kendall’s τ for "PL" is computed numerically as no analytical expression is available. The argument
BivD of gjrm() in GJRM enables the user to employ the desired copula function and can be set to any of the
values within parentheses next to the copula names in the first column; for example, BivD = "J0". For the
Clayton, Gumbel and Joe copulas, the number after the capital letter indicates the degree of rotation required: the
possible values are 0, 90, 180 and 270. AMH, Ali–Mikhail–Haq; FGM, Farlie–Gumbel–Morgenstern.

parameter distributions respectively: hence the notation that is adopted. However, the com-
putational framework can be conceptually easily extended to distributions with more param-
eters. For the binary endogenous variable Y1, we have considered the Bernoulli distribution
with parameter π ∈ [0, 1] (representing the probability of ‘success’). For the outcome variable,
Y2, GJRM has been extended to include four possible choices for discrete distributions; see
Table 2 for the expressions of their probability mass functions (PMFs) f , expectations and
variances.

Finally, each model’s parameter can be related to covariates and regression coefficients via
an additive predictor η∈R (defined in generic terms in the next paragraph) and a known mono-
tonic one-to-one transformation function (which ensures that the restriction on the respective
parameter space is not violated). For example, if we wish to employ a Gumbel copula model
with Bernoulli and Poisson margins and would like to express π, μ and θ as functions of additive
predictors then gπ.π/= ηπ, gμ.μ/= ημ and gθ.θ/= ηθ, where gπ.·/= logit.·/, gμ.·/= log.·/ and
gθ.·/= log.·−1/. For the binary margin, in this example, we have assumed a logit link function;
however the probit and cloglog-functions have also been implemented.

Note that specifying the dependence parameter as a function of covariates allows for the
strength of the (upper tail, in the above example) dependence between the marginals to vary
across observations (e.g. Marra and Radice (2017), and references therein). Furthermore, be-
cause the dependence parameter in our proposed set-up captures the magnitude (and direction)
of endogeneity, specifying the dependence term as a function of covariates allows endogene-
ity to vary across observations, which is something that has not been previously explored. In
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Table 2. Definition and some properties of the discrete distributions implemented in GJRM†

f (y|μ,σ) E(Y) V(Y)

Poisson ("PO")
exp.−μ/μy

y!
μ μ

Negative binomial type I ("NBI")
Γ.y +1=σ/

Γ.1=σ/Γ.y +1/

(
σμ

1+σμ

)y (
1

1+σμ

)1=σ

μ μ+σμ2

Negative binomial type II ("NBII")
Γ.y +μ=σ/σy

Γ.μ=σ/Γ.y +1/.1+σ/y+μ=σ
μ .1+σ/μ

Poisson–inverse Gaussian ("PIG")
(

2α

π

)0:5 μy exp.1=σ/Ky−0:5.α/

.ασ/yy!
μ μ+σμ2

†These have been parameterized according to Rigby and Stasinopoulos (2005) and are defined in terms of μ and
σ. In all cases, y∈N0 and μ,σ∈ .0,∞/. Since the distributional parameters can take only positive values, the trans-
formation function log.·/ is employed in estimation. α=√

.1=σ2 +2μ=σ/ and Kλ.t/= 1
2

∫ ∞
0 xλ−1 exp{−0:5t.x+

x−1/}dx is the modified Bessel function of the third kind. Argument margins of gjrm()in GJRM enables the
user to employ the desired binary and discrete marginals. For the discrete margin, the possible values are indicated
within parentheses next to the names of the distributions.

our case-study—which seeks to estimate the effect of insurance on healthcare use—we present
evidence that the magnitude of endogeneity is larger among females than among males.

Predictor ηi (where the subscript denoting which parameter the predictor belongs to has been
dropped for simplicity) takes the additive form

ηi =β0 +
K∑

k=1
sk.zki/, i=1, : : : , n, .2/

where β0 ∈ R is an overall intercept, zki denotes the kth subvector of the complete covariate
vector zi (containing, for example binary, categorical, continuous and spatial variables) and
the K functions sk.zki/ represent generic effects which are chosen according to the type of
covariate(s) that is considered. Each sk.zki/ can be approximated as a linear combination of Jk

basis functions bkjk
.zki/ and regression coefficients βkjk

∈R, i.e. (e.g. Wood (2017))

Jk∑
jk=1

βkjk
bkjk

.zki/: .3/

This formulation implies that the vector of evaluations {sk.zk1/, : : : , sk.zkn/}′ can be written as
Zkβk with βk = .βk1, : : : , βkJk

/′ and design matrix Zk.i, jk/=bkjk
.zki/. This enables the predictor

in equation (2) to be written as

η=β01n +Z1β1 +: : :+ZKβK, .4/

where 1n is an n-dimensional vector made up of 1s. Equation (4) can also be written in a more
compact way as η=Zβ, where Z= .1n, Z1, : : : , ZK/ and β= .β0, β′

1, : : : , β′
K/′.

Each βk has an associated quadratic penalty λkβ
′
kDkβk whose role is to enforce specific

properties on the kth function, such as smoothness. Note that Dk depends only on the choice of
basis functions, but not on βk. Smoothing parameter λk ∈ [0, ∞/ controls the trade-off between
fit and smoothness, and plays a crucial role in determining the shape of ŝk.zki/. The overall
penalty can be defined as β′Dλβ, where Dλ = diag.0, λ1D1, : : : , λKDK/. Finally, the smooth
functions are subject to centring (identifiability) constraints (Wood, 2017). The above smooth
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function representation enables us to specify a rich variety of covariate effects (such as linear,
non-linear and geographic effects) and we refer the reader to (Wood, 2017) for full details.

For the previous example (of a Gumbel copula model with Bernoulli and Poisson margins),
the predictors for πi, μi and θi can be written in a compact way as

ηπ =β101n +Z11β11 +: : :+Z1Kβ1K,

ημ =β201n +βendy1 +Z21β21 +: : :+Z2Kβ2K,

ηθ =β301n +Z31β31 +: : :+Z3Kβ3K,

where y1 appears as an (endogenous) predictor in ημ, thus giving the set-up a recursive structure.
Our main interest is the parameter βend, which represents the effect of the binary endogenous
regressor on the predictor of the outcome of interest. In the particular context of a recursive
model with an endogenous regressor the set of covariates might be common across the predictors,
except for the endogenous equation which must include at least one instrument that is not
included in the other predictors (e.g. Han and Vytlacil (2017) and Meango and Mourifie (2014)).

2.2. Identification
Han and Vytlacil (2017) considered a version of this model, but where the outcome variable
is binary instead of a non-negative integer count. Borrowing from the familiar binary probit
set-up, they provided proofs that establish situations where recursive copula constructions have
a full rank Jacobian. Their result requires two conditions. The first is that the copula must show
first-order stochastic dominance with respect to θ, which says that, as F1 increases, so also does
F2, and that such a relationship becomes stronger as θ increases. The second condition is the
presence of an instrument that affects the endogenous regressor but not the outcome variable.
Without such an instrument, it remains possible to write down copula expressions with recursive
structures, but there is no guarantee that specific parameter values yield a unique maximum to
the likelihood function that is formed from the copula expression.

Zimmer (2018) extended Han and Vytlacil’s argument to settings in which the outcome vari-
able follows a Poisson distribution. The extension hinges on the famous ‘law of rare events’,
which states that a Poisson outcome may be viewed as the sum of ‘successes’ from many inde-
pendent Bernoulli trials, so long as the number of trials is large, and the probability of a success
in any individual trial is small (Cameron and Trivedi (2013), page 5). And, because Han and
Vytlacil’s result holds for each individual ‘trial’, their result should also hold for the sum of
many trials, so long as those trials remain independent.

More generally, copula specifications should support recursive structures beyond just binary
and Poisson settings. The reason is that parametric copula functions can be generated by ‘mixing’
marginals distributions that share a common random effect (Trivedi and Zimmer (2007), pages
36–38), and such a mixing method has long been recognized as a way to combine marginals of
disparate forms, beyond just binary and Poisson (Fridman and Harris, 1998). For example, in
trying to form the (unknown) joint distribution for the pair .Y1, Y2/, we can start by decomposing
the joint distribution into a product of marginals:

f2.y2|y1, u/f1.y1|u/,

where y1 appears as a conditioning variable in the marginal for y2. Then, by assuming the
presence of a shared random effect u, with an assumed probability density function fu.u/, and
then numerically integrating out the random effect,∫

f2.y2|y1, u/f1.y1|u/fu.u/du,
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we arrive at a valid joint distribution, albeit one without an analytical expression.
However, as argued in Section 1.1, the numerical integration step can be very computation-

ally taxing, especially for applications with large estimation samples and many explanatory
variables. To side-step such a computational headache, the recursive copula approach replaces
the assumption of a particular distribution for the random effect, fu.u/, with an assumption
about the final form of the joint distribution itself, which, of course, implies some (unknown)
distribution for the random effect.

It is not obvious, neither a priori nor ex post, which assumption is stronger: assuming a
distribution for the random effect, or assuming an analytical form for the final joint distribution.
But the latter offers two advantages. First, it makes estimation more manageable. Second, the
availability of many off-the-shelf copula functions enables a researcher to test the robustness
of the distributional assumption by easily changing the form of the copula. Such checks of
robustness are not as straightforward in shared random-effects settings, because the distribution
of the random effect, fu.u/, must be symmetric about zero for the signs of the coefficient estimates
to have natural interpretations, which strongly restricts available choices for the form of fu.u/.

2.3. Estimation
For notational convenience, let us suppress for the moment the conditioning on parameters and
observation index i and recall that F1 and F2 indicate the marginal CDFs and f2 the PMF of
y2. The joint distribution in equation (1) is a CDF, whereas for maximum likelihood estimation
we need the joint probability mass function f12 of a binary random variable Y1 and a discrete
random variable Y2. Using the fact that f2.y2/=F2.y2/−F2.y2 −1/, this can be expressed as

f12.y1, y2/=[C{F1.0/, F2.y2/}−C{F1.0/, F2.y2/−f2.y2/}]1−y1 [f2.y2/−C{F1.0/, F2.y2/}
+C{F1.0/, F2.y2/−f2.y2/}]y1 , .5/

where F1.0/ represents Pr.Y1 = 0/. The following shows how equation (5) is derived. If Y1 = 0
then Pr.Y1 = 0, Y2 =y2/= Pr.Y1 = 0, Y2 �y2/− Pr.Y1 = 0, Y2 �y2 − 1/, which can be calculated
by using C{F1.0/, F2.y2/}− C{F1.0/, F2.y2 − 1/}. If Y1 = 1 then Pr.Y1 = 1, Y2 = y2/ = Pr.Y1 =
1, Y2 � y2/ − Pr.Y1 = 1, Y2 � y2 − 1/, which, exploiting the result for the Y1 = 0 case, can be
obtained as F2.y2/−C{F1.0/, F2.y2/}− [F2.y2 − 1/−C{F1.0/, F2.y2 − 1/}]. Expression (5) is
convenient computationally, first because it involves only the evaluation of two joint CDFs
(instead of four; the case in which Pr.Y1 = 1, Y2 =y2/ would be calculated naively) and second
because it avoids the evaluation of F2 for negative arguments. Note that the presence of a binary
endogenous variable in ημ (see, for example, the last paragraph of Section 2.1) does not alter
the construction of the joint PMF; f12.y1, y2/ can be written as f2|1.y2|y1/f.y1/; hence its form
does not change if ημ includes y1.

Assuming that a random sample {.y1i, y2i, zi/}n
i=1 is available, the log-likelihood function can

be written as

l.δ/=
n∑

i=1
..1−y1i/ log[C{F1.0|πi/, F2.y2i|μi, σi/; θi}−C{F1.0|πi/, F2.y2i|μi, σi/

−f2.y2i|μi, σi/; θi}]y1i log[f2.y2i|μi, σi/−C{F1.0|πi/, F2.y2i|μi, σi/; θi}
+C{F1.0|πi/, F2.y2i|μi, σi/−f2.y2i|μi, σi/; θi}]/,

where πi =g−1
π .ηπi /, μi =g−1

μ .ημi /, σi =g−1
σ .ησi / and θi =g−1

θ .ηθi /. Parameter vector δ is given as
.βT

π , β′
μ, β′

σ, β′
θ/′ which contains the coefficient vectors of additive predictors ηπi , ημi , ησi and ηθi .

Because of the flexible predictors’ structures that are employed here, the use of a classic



962 G. Marra, R. Radice and D. M. Zimmer

(unpenalized) optimization algorithm is likely to result in smooth function estimates which may
not reflect the true underlying trends in the data (e.g. Wood (2017)). Therefore, we maximize

lp.δ/= l.δ/− 1
2δ′Sλδ, .6/

where Sλ =diag.λπDπ, λμDμ, λσDσ, λθDθ/, with each smoothing parameter vector containing
all the smoothing parameters that are related to the corresponding D-component, and the over-
all λ is defined as .λ′

π, λ′
μ, λ′

σ, λ′
θ/′. To estimate δ and λ, we have extended the efficient and stable

trust region algorithm with integrated automatic multiple-smoothing-parameter selection that
was proposed by Marra et al. (2017) to the context of copula models with binary and discrete
margins. For all the copulas and margins in Tables 1 and 2, the analytical score and Hessian of
lp.δ/ that is required for estimation have been tediously derived and verified by using numerical
derivatives. It is worth noting that these quantities have been implemented in a modular fash-
ion; hence it will be in principle easy to extend our algorithm to other parametric copulas and
marginal distributions that are not considered in this work. As stressed in Section 1, although the
implementation of the models proposed exploited many of the functions and routines that are al-
ready available in GJRM, extending the software to accommodate the new developments required
a large amount of programming work, which resulted in a set of newly introduced functions.

At convergence, confidence intervals for any linear and non-linear function of δ can be reli-
ably obtained by using the Bayesian large sample approximation δ ∼a N{δ̂, −Hp.δ̂/−1}, where
Hp.δ̂/−1 is the model’s penalized Hessian and superscript ‘a’ denotes ‘asymptotically distributed
as’. Furthermore, it can be proved that δ̂ −δ0 =OP.n−1=2/ as n→∞, where δ0 is the ‘true’ pa-
rameter vector. Appendices A and B in the on-line supplementary material provide details on
the estimation algorithm and confidence intervals, as well as some asymptotic results.

2.4. The R GJRM package
The models can be employed via the gjrm() function in the R package GJRM. An example of
the syntax is

fl <- list(y1 ˜ z1 + s(z2) + s(z3),
y2 ˜ y1 + z1 + s(z2),

˜ z1 + s(z3),
˜ z1 + s(z2))

md <- gjrm(fl, margins = c("probit", "NBI"), BivD = "PL", Model = "B")

where fl is a list containing four equations. The first equation is for parameter π of the Bernoulli
distribution of the binary endogenous regressor y1 with probit link function (logit and cloglog
are also allowed for). The second and third equations are for parameters μ and σ of the discrete
distribution of the outcome of interest y2, which in this example is negative binomial (NB)
type I ("NBI"). Finally, the fourth equation is for the copula dependence parameter θ. Argu-
ment BivD specifies the copula function and Model="B" means that a bivariate model is
employed. Symbol s() refers to the smooth function that was mentioned in Section 2.1. The
default is bs="tp" (penalized low rank thin plate spline) with k=10 (the number of basis
functions) and m=2 (the order of derivatives). However, argument bs can also be set to, for
example, cr (penalized cubic regression spline), ps (P-spline) and mrf (Markov random field),
to name but a few. Functions such as AIC(), summary() and predict() can be employed in
the usual manner. Function post.check() will produce, for the discrete margin, a histogram
and normal Q–Q-plot of randomized normalized quantile residuals (Dunn and Smyth, 1996).
Building on the results of Kalliovirta (2008), we have been looking into implementing diag-
nostics based on bivariate randomized normalized quantile residuals; more theoretical work is
required here and these may be available in future releases of GJRM. Appendix C in the on-line
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supplementary material presents the results of a simulation study and supports the empirical
effectiveness of the approach proposed.

3. Case-study

The Affordable Care Act, which aimed to extend health insurance coverage to the previously
uninsured, might have led to increased usage. For this, assessing the effect of the law requires
an accurate estimate of the effect of insurance on the usage of medical services.

This section applies the proposed method to estimate the effect of insurance status (a binary
variable) on doctor visits (a count variable). The method finds statistically significant evidence
that insurance is endogenous with respect to usage of doctor services. When endogeneity is taken
into account, the effect of insurance is larger than when endogeneity is ignored.

3.1. Data
The estimation sample, drawn from the 2010 wave of the Medical Expenditure Panel Survey,
was originally used by Zimmer (2018). The sample considers all respondents in the 2–64 years
age range who are not covered by any form of federal or state public health insurance pro-
gramme. The outcome variable records a person’s number of visits in January 2010 to a family
or general practice physician. (Most private insurance plans in the USA reset deductibles at the
start of the calendar year, so focusing on January usage should capture a stronger insurance
effect.) Following standard practice in health economics research, we opt to study discrete count
measures of usage, rather than total spending, for three reasons. First, count measures of usage
link better to economic theory, where ‘demand’ reflects the number of units that are consumed,
not the total spending on those units. Second, discrete measures of usage avoid confusion about
‘charges’ versus ‘spending’, which usually differ. Third, with nearly 90% of medical spending
in the USA channelled through third-party payers, discrete count measures are likely to suffer
from less recollection error. The final estimation sample contains n=13137 unique individuals.

Sample means appear in Table 3. Insurance appears to correlate with a person’s number of
visits to a doctor, but that relationship cannot be interpreted as causal, because insured and
uninsured people appear to differ along several other dimensions. Specifically, insured subjects
are older, on average, than their uninsured counterparts and are more likely to be female,
employed and healthy.

As discussed above, the model requires that at least one variable appears in the insurance

Table 3. Sample means for the 2010 Medical Expenditure
Panel Survey data†

Results for Results for
insured, uninsured,
n=9302 n=3835

Doctor visits in January 0.08 0.05
Age 44.1 41.4
Female 0.53 0.48
Fair or poor health 0.09 0.18
Employed 0.85 0.61
Firm size > 50 0.43 0.11
Firm has multiple locations 0.56 0.20

†All respondents are in the age range 25–64 years, and are not
covered by public insurance.
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marginal, but not in the utilization equation. The bottom two rows of Table 3 show two candi-
dates:

(a) firm size and
(b) an indicator of whether the firm has multiple locations.

(These variables equal 0 for non-employed subjects.) Firm size should influence insurance status
because of economies of scale that make it cheaper for larger firms to offer health coverage. Lit-
erature on human resource information systems (Chae et al., 2011) argued that larger firms with
dedicated human resource staffs should also have more developed infrastructures for enrolling
employees into insurance plans (Hendrickson, 2003). Furthermore, because of differences in
state level mandates, firms with multiple locations are likely to harmonize their insurance of-
ferings in accordance with the strictest jurisdiction in which they operate. However, these two
variables are unlikely to affect usage (directly), especially after controlling for employment status.
It also is worth noting that health economics research offers many examples of employer-specific
information serving as identifying instruments in contexts that are similar to the one that is ex-
plored in this case-study (Dowd et al., 1991; Meer and Rosen, 2004; Deb and Trivedi, 2006;
Selden and Hudson, 2006).

3.2. Model specification
Each marginal includes as control variables age, gender, health status (fair or poor health) and a
proxy for income (employment status). The presence of these socio-economic measures—called
‘demand shifters’ in economics—in models of healthcare and insurance demand follows from
economic theory (Cameron et al., 1988), and, as a consequence, they have become standard in
such settings. US law precludes insurance companies from using other potential demand shifters
in setting premiums, implying that, economically, such information remains ‘unobserved’ when
people purchase insurance. Consequently, we do not include other demand shifters in either
marginal. Rather, the copula dependence parameter will pick up the influence of those factors.

Table 4. AIC-values for various copulas and discrete marginal distributions
for doctor visits†

Copula AIC-values for the following distributions:

Poisson Poisson–inverse NB I NB II
Gaussian

N 20018.42 19879.48 19890.38 19864.83
Clayton 90 19998.39 19881.22 19891.79 19862.93
Clayton 270 20023.20 19882.13 19892.63 19870.38
Joe 90 20023.62 19883.87 19894.03 19871.87
Joe 270 19998.09 19881.34 19891.91 19863.03
Gumbel 90 20023.47 19883.53 19893.76 19871.46
Gumbel 270 20008.84 19879.91 19890.69 19862.21
AMH 20004.93 19880.38 19890.94 19862.65
FGM 20001.53 19880.64 19891.21 19862.57
Student t 20056.04 19909.04 19920.38 19890.51
Plackett 19997.74 19880.64 19891.22 19861.99
Frank 19998.24 19880.62 19891.20 19862.04

†For the insurance status variable, the conventional probit link function is
employed. (Using the Bayesian information criterion led to the same choice of
marginal distribution and copula.) The lowest AIC-value is in italics.
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The marginal distribution for visits to a doctor and the copula are chosen by using the Akaike
information criterion AIC evaluated for all possible combinations of discrete distributions and
copulas that are available in GJRM. For the insurance status variable, all the three link func-
tions (probit, logit and cloglog) led to the same conclusions in our case-study; hence we present
only the results that were obtained by using the classical probit link. Note that we used only
the rotated 90◦ and 270◦ versions of the Clayton, Gumbel and Joe copulas because the data
support the presence of negative dependence between the responses, and therefore it would not
make sense to consider rotations allowing for positive dependence. From Table 4, we can see
that the Plackett copula with NB II margin appears to offer the best fit. This corroborates other
evidence that this distribution often outperforms alternative count data distributions, especially
in settings, such as that considered here, where the count variable shows large probability mass
at zero (Cameron and Trivedi (2013), pages 84–85). The fact that the Plackett, Gaussian, Frank,
Farlie–Gumbel–Morgenstern and Ali–Mikhail–Haq copulas produce similar AIC-values sug-
gests a lack of asymmetric dependence since these copulas’ shapes show relatively symmetric
dependence patterns in each tail (as opposed to the Clayton, Gumbel and Joe copulas, which
exhibit asymmetric dependence).

3.3. Results
The main results appear in Table 5. The left-hand panel shows estimates from a simple NB II

Table 5. Estimates (with standard errors in parentheses) obtained from the univariate NB II model, the
recursive Plackett copula model with Bernoulli distribution (with probit link) for insurance and NB II distribution
for doctor visits, and the control function approach

Results for simple Results for Plackett Results for control
NB II, doctor visits copula function

Doctor Insured Doctor Insured†
visits visits

Insured 0.62 1.34 — 1.56 —
(0.09) (0.22) — (0.29) —

Age 0.02 0.02 Spline 0.02 Spline
(0.003) (0.003) (0.003)

Female 0.27 0.21 0.18 0.20 0.05
(0.07) (0.07) (0.03) (0.07) (0.01)

Fair or poor health 0.94 1.02 −0:45 1.08 −0:14
(0.08) (0.08) (0.04) (0.09) (0.01)

Employed −0:16 −0:40 0.31 −0:46 0.13
(0.08) (0.11) (0.03) (0.13) (0.01)

Firm size > 50 — — 0.68 — 0.16
— — (0.03) — (0.01)

Firm has multiple locations — — 0.62 — 0.18
— — (0.03) — (0.01)

Constant −4:31 −4:35 −0:12 −4:49 0.46
(0.19) (0.18) (0.03) (0.19) (0.01)

Overdispersion σ (95% 0.22 0.21 0.22
confidence interval) (0.18, 0.29) (0.16, 0.28) (0.16, 0.28)

First-stage residuals — — — −1:01 —
— — — (0.30) —

Dependence τ (95% — −0:19
confidence interval) (−0:28, −0:09)

†Ordinary least squares.
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Fig. 1. Estimated smooth effect of age on insurance status on the scale of the predictor, and associated
95% pointwise intervals: the jittered rug plot, at the bottom of the graph, shows the covariate values

specification, with no attempt to address the endogeneity of insurance. Focusing first on the
control variables, usage appears to increase with age and health problems. Females have more
visits to a doctor than their male counterparts, and employed subjects report fewer visits to a
doctor than those not working. Finally, turning to the main result of interest, the simple NB
II specification shows that insurance correlates with an approximate 62% increase in visits to a
doctor.

Attempting to correct for possible endogeneity bias, the second panel shows the results for the
preferred Plackett copula specification. Most of the control variables exhibit similar estimates
to those of the simple NB II set-up, although the effect of being employed becomes larger
(more negative). As for insurance, the coefficient estimate suggests that, after correcting for
endogeneity, insurance leads to an approximate 134% increase in visits to a doctor, which is
substantially larger than the effect that was reported by the simple NB II model. Results for
the dependence parameter (converted to Kendall’s τ ) appear at the bottom of Table 5. The
finding of negative dependence suggests that unobserved traits that induce certain people to
enrol in insurance also tend to reduce the usage of doctor services. Such a pattern, which is
often called ‘favourable selection’ by health economists, is similar to what appears in other
studies of insurance and healthcare usage (e.g. Finkelstein and McGarry (2005), Pauly (2005)
and Cameron and Trivedi (2013)).

3.4. Spline estimate
The model proposed uses a smooth function for the age variable in the insurance equation.
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Table 6. Estimates (with standard errors in parentheses) obtained from
the recursive Plackett copula model with NB II margin and dependence
parameter allowed to vary by gender

Results for Results for Results for
doctor visits insured dependence

Insured 1.38 — —
(0.22) — —

Age 0.02 Spline —
(0.004) —

Female 0.29 0.18 −0:45
(0.08) (0.03) (0.21)

Fair or poor health 1.02 −0:45 —
(0.08) (0.04) —

Employed −0:42 0.31 —
(0.11) (0.03) —

Firm size > 50 — 0.68 —
— (0.03) —

Firm has multiple locations — 0.62 —
— (0.03) —

Constant −4:38 −0:12 −0:62
(0.18) (0.03) (0.26)

Overdispersion σ (95% 0.21 — —
confidence interval) (0.16, 0.27) — —

The graph of the estimated effect is shown in Fig. 1. There appears to be some non-linearity
in the estimated shape, although it could be reasonably argued that the functional form looks
roughly linear and hence that a parametric effect would adequately describe the effect of age.
We would indeed agree with this course of action. Generally, the main point about using flexible
specifications is to avoid making a priori, potentially questionable, assumptions. In this case,
the relationship turned out to be roughly linear, suggesting that a simpler model specification
is acceptable. The plot suggests that, as subjects age, their probabilities of having insurance
also increase, and that such an increase seems less marked for individuals in the 39–48 years
age range. This finding, which has been long recognized in health economics, is likely to reflect
that medical risks increase with age, leading to increases in demand for insurance to mitigate
financial uncertainty that is associated with those risks (Arrow, 1963).

3.5. Alternative specifications
For comparison, Table 5 reports estimates from a simple control function approach; the first
stage uses a linear probability model for insurance; then residuals from the first stage are included
in the second stage NB II specification for visits to a doctor. Following other applications of
the control function method for binary endogenous variables (Terza et al., 2008), we use the
simplest definition of a residual (i.e. the difference between the observed binary outcome and
the predicted probability of the outcome) despite aforementioned potential problems with such
practice (Wooldridge (2010), page 746). The coefficient of insurance is 1.56, which is slightly
larger than, but nonetheless comparable with, the estimate from the copula approach. Further,
the coefficient of the first-stage residuals is negative and statistically significant, which confirms
the finding of favourable selection.

Table 6 also shows estimates from a specification in which the copula dependence parameter
is given a regression structure. Such a set-up makes sense if endogeneity, as captured by the
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Table 7. Estimates (with standard errors in parentheses)
obtained from the recursive Plackett copula model with
marginal for doctor visits specified as Poisson

Results for Results for
doctor visits insured

Insured 1.63 —
(0.17) —

Age 0.01 Spline
(0.003)

Female 0.16 0.18
(0.07) (0.03)

Fair or poor health 1.04 −0:45
(0.07) (0.04)

Employed −0:55 0.32
(0.09) (0.03)

Firm size > 50 — 0.67
— (0.03)

Firm has multiple locations — 0.62
— (0.03)

Constant −4:20 −0:13
(0.17) (0.03)

Overdispersion σ (95% — —
confidence interval)

Dependence τ (95% −0:27
confidence interval) (−0:36, −0:19)

dependence term, differs with respect to observable characteristics. This specification does not
alter the main substantive conclusions about the link between insurance and physician usage,
but, as shown in the rightmost column of Table 6, gender appears to correlate significantly
with the magnitude of dependence. (Other explanatory variables did not appear to alter depen-
dence significantly.) Recalling that overall dependence, as reported at the bottom of Table 5, is
−0:19, the numbers in Table 6 imply that, once converted to Kendall’s τ , dependence among
females is −0:24, with 95% interval .−0:34, −0:14/, whereas dependence among males is −0:14,
with 95% interval .−0:25, − 0:02/. Thus, despite the slight overlap in confidence intervals, the
results suggest that females exhibit stronger favourable selection than do their male counter-
parts. This is likely to reflect higher levels of risk aversion among females: a finding that is
widely reported in both economics and psychology research (Hartog et al., 2002; Agnew et al.,
2008; Eckel and Grossman, 2008; Borghans et al., 2009). Medical research has attempted to link
such gender disparities in risk aversion to differences in levels of testosterone (Sapienza et al.,
2009).

Finally, along the lines of Zimmer (2018), Table 7 shows results from a model in which the
marginal for visits to a doctor is specified as Poisson, which Table 4 suggests offers the worst fit
of the count distributions under consideration. Estimates from this set-up find a larger insurance
effect and a larger (negative) dependence estimate, suggesting that some of the unaccounted-for
overdispersion in visits to a doctor is infecting those parameter estimates.

4. Conclusions

In trying to estimate the causal effect of insurance on healthcare utilization, researchers must
confront the likelihood that people seek insurance in anticipation of future healthcare needs.
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Ignoring such endogeneity bias might produce misleading estimates. The topic has important
policy implications, because health insurance reforms that have been implemented in the USA in
recent decades have focused on extending coverage to the previously uninsured. Consequently,
understanding the effects of those reforms requires an accurate estimate of the causal effect of
insurance on utilization. However, obtaining such an estimate is complicated by the discreteness
that is inherent in common measures of healthcare usage.

This paper presents an estimation approach, based on copula functions, that consistently
estimates the coefficient of an endogenous regressor in count data settings. The method is
general in the types of non-linear data patterns that it can accommodate. Moreover, the statistical
significance (or lack thereof) of the copula dependence parameter provides a convenient means to
assess the presence of endogeneity. The results of our case-study point to evidence of favourable
selection into insurance and, once favourable selection has been taken into account, the effect of
insurance is larger than when it is ignored. Specifically, ignoring favourable selection, insurance
appears to increase doctor visit usage by 62% but, adjusting for favourable selection, the effect
increases to 134%. The results also suggest that females exhibit larger favourable selection than
do males.

When health insurance is not required, health economists often worry about adverse selection,
which is characterized by relatively unhealthy people being disproportionately drawn towards
insurance coverage. The sicker risk pool might require insurance companies to increase premi-
ums, potentially driving out the least sick members of the risk pool, resulting in an even sicker
pool. In the extreme, this cycle might keep repeating, resulting in a ‘death spiral’ in which the
insurance market ceases to exist. However, the finding of favourable selection suggests that con-
cerns about death spirals might be misplaced. Many commentators warned that the Affordable
Care Act, with its relatively weak mandate that everyone obtain coverage, might encourage
death spirals in private insurance markets. The finding of favourable selection into such markets
might partially explain the evident lack of such death spirals to date.

As presented in this paper, the marginals and copula are parametrically specified with sev-
eral choices possible. Furthermore, all the parameters of the joint distribution assumed can
be specified as flexible functions of covariates which can help to uncover interesting patterns
in the data as highlighted in our empirical application. The numerical computations can be
easily and efficiently carried out by using the newly revised R package GJRM. The estimation
framework proposed does not require computationally taxing simulation-based estimators as
is the case with other simultaneous estimation approaches. Specifically, as elaborated in Section
1.1, the copula approach is computationally more efficient than an approach that is based on
shared unobserved random effects since it side-steps the problem of integrating out such ef-
fects. However, it could be argued that, because equation (5) requires the evaluation of CDFs,
when using elliptical copulas (i.e. the Gaussian and Student t-distributions) integration is still
required. We found that this was not problematic for this paper since we deal with the bivariate
case, and because there are not redundant calculations. Increasing the number of margins will
surely increase the computational cost of the approach based on elliptical copulas. In such a
case, a proper exploration of the practical advantages and disadvantages of various alternatives
is warranted.

It is worth noting that the methodology that was developed in this paper, although flexible,
is fundamentally parametric, and as such it may suffer from the usual potential drawbacks
resulting from model misspecifications. Developments where the margins and/or copula function
are estimated by using non-parametric techniques (e.g. Kauermann et al. (2013)) were explored.
However, we found that these were limited with respect to the inclusion of covariate effects and
required large sample sizes to produce reliable results in a regression context.
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Despite its parametric flavour, the approach proposed enables a large amount of model ex-
ploration via the many functional forms that have been included in the newly revised R package
GJRM. Specifically, the GJRM package offers a wide menu of marginal distributions and copula
functions—far more than are emphasized in this paper. Moreover, the spline capabilities permit
a large degree of flexibility in how regressors relate to outcome variables and model parameters.
Thus, a researcher can explore a vast number of permutations of functional forms and regressor
effects using nothing more than simple changes in computer syntax. Such exploration, although
certainly not non-parametric, captures the spirit of non-parametric approaches in that it enables
the data to point to meaningful model structures. Moreover, such ease of exploration has the
potential to reveal interesting economic patterns that might otherwise remain hidden. As a key
example presented here, the apparent difference in selection effects between males and females
would have remained undetected if we had not had access to such an easy-to-employ framework
for model assembly.
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