
Synthesis and Analysis of Minimalist
Control Strategies for Swarm

Robotic Systems

Anil Ozdemir

Supervisors: Dr Roderich Groß
Dr Andreas Kolling

Department of Automatic Control and Systems Engineering
The University of Sheffield

A Thesis Submitted for the Degree of Doctor of Philosophy

April 2020

Acknowledgements

I would like to start by thanking my supervisor Dr. Roderich Groß for his encouragement
and guidance throughout my PhD studies. This research would not be possible without
his constant support. His scientific knowledge and expertise were essential in my
transition from student to researcher, and I am extremely grateful for all the knowledge
I have gained from working with him. I would also like to thank to my second supervisor
Dr. Andreas Kolling, for our fruitful scientific discussions.

Additionally I am grateful to all the members of Natural Robotics Lab—Chris,
Fernando, Yuri, Gabriel, Stefan, Matt Doyle, João, Yue, Isaac, and Matt Hall. I would
also like to thank F01 folks—my office-mates and colleagues—Felipe, Manal, Omar,
Laura, Eduardo, Dan, John, Blayze, and Zeke.

I would like to give special thanks to my collaborator Dr. Melvin Gauci for his
constant support during endless nights of submissions. Also, I would like to thank
to my other collaborators Salomé Bonnet and Matt Hall, for all their help with the
e-pucks. I am particularly grateful to Dr Daniela Rus and John Romanishin from MIT,
for enabling the development of gathering control strategy and testing them in the
M-Block robotic platform. Lastly, I would like to thank to João Marques for everything
he taught be about modular robots, and keeping me sane during writing this thesis.

I also want to acknowledge my family for supporting and helping me to move abroad
for my research—I am eternally grateful for you always being there for me! A final
special thanks goes to Huseyin the Hafiz, for encouraging me throughout my studies
and pushing me to pursue a PhD. Finally, I close with my significant other, Hope.
Thanks for supporting and encouraging me to overcome any obstacle. Nay nay nu...

Abstract

The field of swarm robotics studies bio-inspired cooperative control strategies for
large groups of relatively simple robots. The robots are limited in their individual
capabilities, however, by inducing cooperation amongst them, the limitations can be
overcome. Local sensing and interactions within the robotic swarm promote scalable,
robust, and flexible behaviours. This thesis focuses on synthesising and analysing
minimalist control strategies for swarm robotic systems. Using a computation-free
swarming framework, multiple decentralised control strategies are synthesised and
analysed. The control strategies enable the robots—equipped with only discrete-valued
sensors—to reactively respond to their environment. We present the simplest control
solutions to date to four multi-agent problems: finding consensus, gathering on a grid,
shepherding, and spatial coverage. The control solutions—obtained by employing an
offline evolutionary robotics approach—are tested, either in computer simulation or by
physical experiment. They are shown to be—up to a certain extent—scalable, robust
against sensor noise, and flexible to the changes in their environment. The investigated
gathering problem is proven to be unsolvable using the deterministic framework. The
extended framework, using stochastic reactive controllers, is applied to obtain provably
correct solutions. Using no run-time memory and only limited sensing make it possible
to realise implementations that are arguably free of arithmetic computation. Due to
the low computational demands, the control solutions may enable or inspire novel
applications, for example, in nanomedicine.

Table of contents

List of figures xiii

List of tables xix

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 3

1.3 Aim and Objectives . 4

1.4 Preview of Contributions . 5

1.5 Publications . 7

1.6 Thesis Overview . 8

2 Background and Related Work 11

2.1 Emergence and Emergent Behaviour 11

2.1.1 Swarms in Nature . 13

2.1.2 Collective Behaviour . 15

2.1.3 Artificial and Engineered Swarms 16

2.2 Swarm Robotics . 19

2.2.1 Design Principles . 19

2.2.2 Design Approaches . 21

2.2.3 Evolutionary Algorithms and Evolutionary Robotics 23

2.2.4 Control Architectures . 26

viii Table of contents

2.2.5 Computation-free Swarming . 29

2.3 Swarm Robotics Tasks . 31

2.3.1 Finding Consensus . 31

2.3.2 Gathering . 33

2.3.3 Shepherding . 35

2.3.4 Spatial Coverage . 37

2.3.5 Concluding Remarks . 39

3 Spatial Coverage 41

3.1 Introduction . 41

3.2 Problem Definition . 42

3.2.1 Environment and Robot Model 42

3.2.2 Objective . 43

3.2.3 Simulation Setup . 44

3.3 Controller Synthesis . 46

3.3.1 Evaluation of Candidate Solutions 46

3.3.2 Evolutionary Algorithm . 47

3.3.3 Controller Selection . 48

3.3.4 Mathematical Analysis . 49

3.3.5 Grid Search . 51

3.4 Simulation Studies . 53

3.4.1 Performance Comparison with Different Strategies 54

3.4.2 Sensory Noise Analysis . 56

3.4.3 Scalability Analysis . 57

3.4.4 Effect of the Environment Shape 57

3.4.5 Navigating a Maze . 59

3.5 Experiments . 62

3.5.1 Experimental Setup . 62

Table of contents ix

3.5.2 Porting of the Controller . 62

3.5.3 Results . 63

3.6 Discussions . 65

4 Finding Consensus 67

4.1 Introduction . 67

4.2 Problem Definition . 68

4.2.1 Objective . 68

4.2.2 Environment and Robot Model 69

4.2.3 Simulation Setup . 71

4.3 Controller Synthesis . 71

4.3.1 Evaluation of Candidate Solutions 71

4.3.2 Evolutionary Algorithm . 72

4.3.3 Controller Selection . 73

4.4 Simulation Studies . 74

4.4.1 Analysis of the Behaviours . 75

4.4.2 The Effects of the Robot Starting Positions 77

4.4.3 Sensory Noise Analysis . 78

4.4.4 Scalability Analysis . 79

4.4.5 Choosing Between More Than Two Options 80

4.4.6 Choosing Between Unequal Alternatives 81

4.5 Experiments . 82

4.5.1 Porting of the Controller . 82

4.5.2 Experimental Setup . 83

4.5.3 Results . 83

4.6 Discussions . 85

5 Shepherding 89

x Table of contents

5.1 Introduction . 89

5.2 Problem Definition . 90

5.2.1 Objective . 90

5.2.2 Shepherd Agents . 90

5.2.3 Sheep Agents . 92

5.2.4 Simulation Setup . 93

5.3 Controller Synthesis . 94

5.3.1 Evaluation of Candidate Solutions 94

5.3.2 Evolutionary Algorithm . 95

5.3.3 Controller Selection . 96

5.3.4 Mathematical Analysis . 96

5.3.5 Behavioural Analysis . 98

5.4 Simulation Studies . 100

5.4.1 Noise Analysis . 100

5.4.2 Sensitivity Analysis . 101

5.4.3 Sheep Speed Analysis . 102

5.4.4 Scalability Analysis . 103

5.5 Discussions . 107

6 Gathering on a Grid 109

6.1 Introduction . 109

6.2 Problem Definition . 111

6.2.1 Environment and Robot Model 111

6.2.2 Objective . 112

6.2.3 Mathematical Analysis . 113

6.3 Deterministic Control Policy . 115

6.3.1 Context Classes . 116

6.3.2 Controller Design . 118

Table of contents xi

6.3.3 Presentation of Counter-Examples 121

6.3.4 Theoretical Analysis . 142

6.4 Naïve Stochastic Control Policy . 143

6.4.1 Mathematical Analysis . 144

6.5 Optimised Stochastic Control Policy 146

6.5.1 Representation of Candidate Solutions 147

6.5.2 Evolutionary Algorithm . 147

6.5.3 Controller Selection . 148

6.6 Simulation Studies . 149

6.6.1 Scalability Analysis . 149

6.6.2 Sensory Noise Analysis . 151

6.6.3 Comparison with Deterministic Policy 152

6.7 Discussions . 155

7 Conclusions and Future Work 157

7.1 Future Work . 159

References 163

Appendix A Counter-Examples 175

List of figures

2.1 Termite mound. 12

2.2 Examples of emergent behaviour in biological swarms 13

2.3 Cooperative behaviours in nature . 16

2.4 An illustration of Reynold’s flocking model 17

2.5 NASA evolved antenna design . 23

2.6 Evolutionary algorithm working mechanism 25

2.7 Illustrations of two main control architectures 27

3.1 Performance measure and experimental setup for spatial coverage . . . 45

3.2 Fitness dynamics of 50 evolutionary runs 48

3.3 Parameter evolution for the spatial coverage controller. 49

3.4 A pictorial representation of the spatial coverage controller. 50

3.5 Exhaustive search over 4 control parameters with grid cells represent
the (a) mean, (b) maximum fitness performance. 52

3.6 Performance comparison with different spatial coverage strategies . . . 55

3.7 Sensory noise analysis for the spatial coverage strategy 57

3.8 Scalability analysis for the spatial coverage strategy 58

3.9 Spatial distribution of 25 robots in a 300cm × 300cm environment . . . 58

3.10 Spatial distribution of 25 robots in a 1500cm × 60cm environment . . . 59

xiv List of figures

3.11 Spatial distribution of 50 robots in a 600cm × 300cm environments with
(a) no obstacles, (b) a pair of symmetric internal walls, and (c) a pair of
asymmetric internal walls . 60

3.12 A swarm of robots using the computation-free controller to navigate a
maze . 61

3.13 Close view of the robotic platform used in the experiments 62

3.14 Sequence of snapshots taken from a typical experimental trial with 25

physical e-pucks operating in a 300cm × 300cm environment 64

3.15 Physical experiment results for spatial coverage 65

4.1 Illustration of the environment for finding consensus problem 70

4.2 Fitness dynamics of 40 evolutionary runs 73

4.3 A pictorial representation of the finding consensus controller. 74

4.4 Number of trials in which NA and NB robots committed, respectively,
to options A and B . 75

4.5 Sequence of snapshots showing a swarm of 20 simulated robots choosing
option B . 76

4.6 Effects of sensor noise on the swarm performance 79

4.7 Effects of the swarm size on the swarm performance 80

4.8 Performance of a swarm choosing between n options 81

4.9 Ability of the controller to let a swarm of robots choose between unequal
alternatives . 82

4.10 Number of experimental trials in which NA and NB robots committed
to options A and B, respectively . 84

4.11 Breakdown of the 50 experimental trials according to the maximum
number of robots that committed to the same option 84

4.12 Time dynamics of max(NA, NB) . 85

4.13 A sequence of snapshots from a typical experimental trial with 20

physical robots . 86

5.1 Illustration of the experimental setup for shepherding 91

List of figures xv

5.2 Evolutionary dynamics for shepherding 96

5.3 Sequence of snapshots showing a group of shepherds herding a group of
sheep. 99

5.4 Behavioural analysis for shepherding 100

5.5 Sensory noise analysis for shepherding 101

5.6 Parameter sensitivity analysis for shepherding 102

5.7 The effect of sheep speed to the shepherding task. 103

5.8 Scalability analysis for shepherding . 104

5.9 Evolutionary dynamics of 30 runs for 80 generations for extended controller.105

5.10 Pictorial representations of the shepherding controllers. 106

5.11 Sequence of snapshots showing a group of shepherds herding a group of
sheep using extended controller. 107

6.1 An illustration of the sensing model . 112

6.2 An illustration of a gathering scenario with five agents 113

6.3 An illustration of decentralised gathering in a 2D square tile environment114

6.4 Two example configurations, C̄ and C, of five agents 115

6.5 Overview of the 18 unique contexts . 117

6.6 Six example configurations for context K 118

6.7 Four possible configuration for the context A. 119

6.8 An example illustration of four possible contexts 143

6.9 Example configuration of 9 agents with a 4× 3 bounding box 145

6.10 Fitness dynamics of 100 evolutionary runs for gathering 149

6.11 Scalability study results . 150

6.12 Effect of sensory noise . 152

6.13 The comparison of naïve, optimised, and deterministic-optimised control
policies for n = 10 agents . 153

6.14 The comparison of naïve, optimised, and six deterministic control policies
for n = 10 agents . 154

xvi List of figures

6.15 Scalability study with optimised stochastic control policy and a deter-
ministic control policy. 155

A.1 Counter-example 16 . 177

A.2 Counter-example 17 . 178

A.3 Counter-example 18 (I) . 179

A.4 Counter-example 18 (II) . 180

A.5 Counter-example 19 . 181

A.6 Counter-example 20 (I) . 182

A.7 Counter-example 20 (II) . 183

A.8 Counter-example 21 . 184

A.9 Counter-example 22 (I) . 185

A.10 Counter-example 22 (II) . 186

A.11 Counter-example 23 . 187

A.12 Counter-example 24 (I) . 188

A.13 Counter-example 24 (II) . 189

A.14 Counter-example 25 . 190

A.15 Counter-example 26 (I) . 191

A.16 Counter-example 26 (II) . 192

A.17 Counter-example 26 (III) . 193

A.18 Counter-example 26 (IV) . 194

A.19 Counter-example 26 (V) . 195

A.20 Counter-example 27 . 196

A.21 Counter-example 28 (I) . 197

A.22 Counter-example 28 (II) . 198

A.23 Counter-example 28 (III) . 199

A.24 Counter-example 29 (I) . 200

A.25 Counter-example 29 (II) . 201

List of figures xvii

A.26 Counter-example 29 (III) . 202

A.27 Counter-example 30 (I) . 203

A.28 Counter-example 30 (II) . 204

A.29 Counter-example 30 (III) . 205

A.30 Counter-example 30 (IV) . 206

A.31 Counter-example 30 (V) . 207

A.32 Counter-example 30 (VI) . 208

A.33 Counter-example 30 (VII) . 209

A.34 Counter-example 31 (I) . 210

A.35 Counter-example 31 (II) . 211

A.36 Counter-example 32 (I) . 212

A.37 Counter-example 32 (II) . 213

A.38 Counter-example 32 (III) . 214

A.39 Counter-example 32 (IV) . 215

A.40 Counter-example 32 (V) . 216

A.41 Counter-example 32 (VI) . 217

A.42 Counter-example 32 (VII) . 218

A.43 Counter-example 32 (VIII) . 219

A.44 Counter-example 32 (IX) . 220

A.45 Counter-example 32 (X) . 221

A.46 Counter-example 32 (XI) . 222

A.47 Counter-example 32 (XII) . 223

A.48 Counter-example 33 (I) . 224

A.49 Counter-example 33 (II) . 225

A.50 Counter-example 33 (III) . 226

A.51 Counter-example 33 (IV) . 227

A.52 Counter-example 34 . 228

xviii List of figures

A.53 Counter-example 35 (I) . 229

A.54 Counter-example 35 (II) . 230

A.55 Counter-example 35 (III) . 231

A.56 Counter-example 35 (IV) . 232

A.57 Counter-example 36 (I) . 233

A.58 Counter-example 36 (II) . 234

A.59 Counter-example 36 (III) . 235

A.60 Counter-example 36 (IV) . 236

A.61 Counter-example 36 (V) . 237

A.62 Counter-example 36 (VI) . 238

A.63 Counter-example 36 (VII) . 239

A.64 Counter-example 36 (VIII) . 240

A.65 Counter-example 36 (IX) . 241

A.66 Counter-example 36 (X) . 242

A.67 Counter-example 36 (XI) . 243

A.68 Counter-example 36 (XII) . 244

A.69 Counter-example 36 (XIII) . 245

A.70 Counter-example 36 (XIV) . 246

A.71 Counter-example 36 (XV) . 247

A.72 Counter-example 36 (XVI) . 248

A.73 Counter-example 36 (XVII) . 249

A.74 Counter-example 36 (XVIII) . 250

A.75 Counter-example 36 (XIX) . 251

A.76 Counter-example 36 (XX) . 252

A.77 Counter-example 36 (XXI) . 253

A.78 Counter-example 36 (XXII) . 254

A.79 Counter-example 36 (XXIII) . 255

List of tables

3.1 The controller parameters for spatial coverage 49

4.1 The controller parameters for finding consensus 74

5.1 The best controller for shepherding . 97

5.2 The extended controller velocity parameters. 106

6.1 Base sensor readings and number of permutations with context label. . 117

6.2 Possible actions for the 19 contexts . 120

6.3 Remaining deterministic controllers . 140

6.4 Summary of counter-examples . 141

6.5 The optimised control parameters for gathering 151

A.1 The list of counter-examples presented in Appendix A 176

Chapter 1

Introduction

In nature, social animal groups have been observed displaying self-organised be-
haviours (Bak, 1996; Camazine et al., 2001; Krause and Ruxton, 2002). The collective
behaviour of the group is not dictated by a central entity, but rather emerges from the
individuals’ interactions with each other and the environment. Researchers observed
that the cooperative behaviour of social animals is a result of the decentralised organ-
isation of their group structure (Bonabeau et al., 1999). For example, ant colonies
self-organise themselves for finding rich food sources and accordingly, selecting a nest
site. The self-organisation phenomenon has led researchers to emulate such concepts
in artificial swarm systems (Beni, 2005; Dorigo and Şahin, 2004). Taking inspiration
from social animal behaviours, such as swarming of insect colonies, schooling of fish,
and flocking of birds, swarm robotics offers design and coordination solutions for a
large number of relatively simple robots (Şahin et al., 2008; Trianni, 2008).

Robotic systems have been at the core of automation for the past several decades.
Their contribution to modern societies is not only to perform repetitive tasks instead
of humans—as they do not get bored or tired—but also to offer enhanced capabilities.
Some robots perform tasks with astonishing precision, speed, and consistency. Swarm
robotic systems excel in certain tasks that require spatial distribution. As the system is
composed of many units, the robots can solve tasks in parallel, hence faster, and have
high redundancy (Parker, 2008). Moreover, as the robots in the swarm can collaborate,
they potentially can exhibit more advanced capabilities than a group of non-interacting
robots.

Collective behaviour of robots can emerge from local interactions within the group,
enabling it to demonstrate scalability, robustness, and flexibility (Şahin, 2005). All

2 Introduction

three features are inter-dependent on each other. For instance, a swarm of robots
tends to be scalable in the sense that adding more robots to the group would ideally
improve performance until they reach the system’s full capacity. Likewise, the failure
of a few individual units would not affect the system significantly, allowing it to be
robust against individual failures.

Another important aspect is that a swarm of robots is composed of simple units,
meaning that the individual capabilities are limited. The simplicity of the units hold
the potential of scaling them down to the micro- or nano-scale. This is particularly
relevant to nanomedical applications, in which a single complex robot cannot be
deployed due to space and energy constraints (Requicha, 2013). As such, any robot
for these applications would inherently have limited capabilities. Recent advances in
Micro/Nano Electro-Mechanical Systems (MEMS/NEMS) have enabled researchers to
develop initial robotic prototypes of micro/nano sizes (Jalili, 2013). However at present,
these robotic systems cannot utilise sophisticated control architectures, hence, their
information acquisition capacities are strictly limited (Mavroidis and Ferreira, 2013;
Requicha, 2003). These limitations are in line with the swarm robotic design paradigm,
as restricted capabilities of individuals can be elaborated by local interactions within
the group. As a result, there has been a growing interest in researching ‘minimalist’
control strategies for swarms of robots (Brown et al., 2018; Gauci, 2014; Mitrano et al.,
2019; Wareham and Vardy, 2018).

1.1 Motivation

One potential application domain of minimalist swarm robots is in nanomedicine (Re-
quicha, 2013). Nanotechnology is an emerging engineering discipline, enabling the
production of ‘nanorobots’ of size near a nanometre, that is, 80000 − 100000 times
smaller than the diameter of a human hair. In this context, a minimal approach for
designing swarm robotic systems could be beneficial for two reasons. Firstly, minimal
design criteria require less physical features, hence, a robot can be scaled down in
size (Requicha, 2013). There are, however, limitations when to scaling-down in size.
The nanorobots will not be able to use standard robotic hardware, such as, conventional
micro-controllers or sensors (Mavroidis and Ferreira, 2013). Furthermore, energy is
particularly crucial at the micro- or nano-scale. Either the robot cannot be equipped
with certain devices due to the ‘limited’ energy availability, or the operation time of
the robot would be immensely short.

1.1 Motivation 3

Secondly, minimal design allows the production of ‘affordable’, hence ‘disposable’,
units in large numbers (Şahin, 2005). This is important when the nature of the task the
robots are performing necessitates compromising a portion of the group. For example,
during an extraterrestrial land exploration, it is likely for some of the robots to cease
and not return to the operation centre. In addition, if the robotic units can cooperate
with each other, without needing any additional means of communication, this would
further enhance the attainability of the robotic system. Thus, there is a need to develop
control strategies for robotic systems with crucially restricted capabilities in order for
them to be implemented at micro- or nano-scales.

In his doctoral thesis, Gauci (2014) proposed computation-free swarming1, a swarm
robotic design paradigm to control robots of extreme simplicity. Gauci took a minimalist
approach to further simplify the sensor and control architecture needed in a swarm of
robots to exhibit collective behaviour. The major reason for such limitations is derived
from the motivation of implementing ‘minimalist robotic machines’ which can operate
in, for example, a blood vessel. The tasks robotic swarms solve might be trivial for
von Neumann style computers; a central processing unit with dedicated monitoring
device might be sufficient to orchestrate the group of robots (Mitchell, 2009). However,
such implementation is often impractical in real-world applications, particularly in the
human body, where the environment is incredibly stochastic and unpredictable. These
constraints make it arduous to utilise a conventional central approach, such as, motion
planning or guided locomotion. Thus, a reactive decentralised design could be vital to
enable robustness and flexibility in the robotic system for such applications.

The computation-free swarming framework has so far been only tested on a small
set of tasks, where the robots interact either only with each other (Gauci et al., 2014c)
or with static objects (Gauci et al., 2014b) in a homogeneous environment. It is yet
to be seen if this framework is applicable to scenarios where the robots perceive a
wider range of features in their environment. Additionally, given the simplicity of the
controllers obtained by computation-free swarming, scenarios in which the environment
of the robots changes dynamically over time presents a challenge. Furthermore, there
is a need to study the limitations of the framework, ideally identifying some problems
that cannot be addressed by the present formulation.

1The term computation-free here refers to the utilised swarm controllers which are free of arithmetic
computation. The controller design phase, on the contrary, is computationally intensive.

4 Introduction

1.2 Problem Definition

The main focus of this thesis is to synthesise and analyse effective solutions to chal-
lenging swarm robotics problems with a minimalist approach termed computation-free
swarming (Gauci, 2014). The robotic systems we consider in this thesis utilise reactive
and decentralised control architectures; in addition, the swarming agents (robots)
lack arithmetic computation units, communication capabilities, or sophisticated sen-
sor units. Using deterministic control solutions obtained through computation-free
swarming, Gauci et al. (2014c) demonstrated that swarms of robots can accomplish
self-organised aggregation, and can cluster initially dispersed passive objects (Gauci
et al., 2014b). However, the previous work is only one of the first steps towards easing
the transition from conventional swarm robotics to nanorobotics applications in terms
of information processing capabilities, leading to explore, investigate, and develop
further.

Extremely minimalist solutions do not yet exist for various scenarios, such as,
spatial coverage, finding consensus, and shepherding. In contrast to aggregation and
clustering tasks, in spatial coverage, the swarm is tasked to distribute themselves
throughout the environment by first diverging then remaining in their positions. In the
case of finding consensus, the swarm collectively choose one of multiple options in their
environment by congregating at the chosen option. In shepherding task, the robotic
swarm—shepherds—interact with a group of dynamic sheep-like agents in order to
herd them to a predefined goal location. Additionally, potential shortcomings of the
deterministic control approach, within the concept of binary sensing and actuation,
are to be discovered by studying the multi-agent gathering problem.

There is, nevertheless, a compromise to realise the ‘reductionist’ approach in or-
der to minimalise the robotic system. A significant effort has to be made to reduce
the complexity of the system, in both physical components and the control architec-
ture (Wolpert and Macready, 1995). In this thesis, we employ an evolutionary robotics
approach (Nolfi and Floreano, 2000; Trianni, 2008) to synthesise and analyse control
strategies to four problems: spatial coverage, finding consensus, shepherding, and
gathering. Each of the problems has pertinent importance and applications. Starting
from the minimum amount of information required for robots to operate, we investigate
the above four problems with necessary operating conditions. When the swarm’s
performance is insufficient, we relax the strict conditions by upgrading the information
processing requirements and compare the performance trade-offs.

1.3 Aim and Objectives 5

1.3 Aim and Objectives

Given the aforementioned problem statement, the aim of this thesis is twofold. First,
to advance state-of-the-art swarm robotic control algorithms by utilising the minimal
information processing framework—computation-free swarming. Second, to extend the
computation-free swarming framework in multiple directions, including the addition of
stochasticity to the robot’s control system.

The spebegincific objectives to fulfil the aim are:

• To conduct a current state-of-the-art literature review in swarm robotics, as well
as swarm intelligence. Additionally, to identify and compare existing swarm
robotics control strategies.

• To synthesise control strategies for further challenging swarm robotics tasks using
the computation-free swarming framework. The synthesised strategies shall be
followed up by investigating the emerged behaviours.

• To computationally analyse performance and capabilities of the control strategies
through multiple numerical studies. Moreover, to fully or partially, prove that
the developed control strategies are guaranteed to lead to the desired outcome.

• To evaluate the feasibility of the obtained control strategies in practice by
demonstrating them in a physical autonomous differential-wheeled robotic swarm.

• To investigate how the framework can be applied to self-reconfigurable modular
robotic systems.

• To improve the capabilities of the framework by combining multiple sensor units.

• To extend the deterministic structure of the framework by allowing the robotic
units to choose randomly amongst a limited number of predefined actions.

1.4 Preview of Contributions

The following state the contributions of this thesis:

• Design and implementation of a control strategy for groups of memoryless
embodied agents (robots) with single-bit line-of-sight sensors to achieve spatial

6 Introduction

coverage in a two-dimensional bounded environment. Systematic comparison2 of
the proposed strategy is compared against multiple existing strategies, showing
that the strategy outperforms a random walk strategy by 10% more coverage.
This study is followed by systematic investigations in different environment
models including obstacles—the swarm copes well with the restrictions, although,
on average more robots ended up near the boundary resulting in reducing
the efficiency in scenarios without robot redundancy. Demonstration2, for the
first time, of a swarm of such extremely simple agents navigating an a priori
unknown maze. Experiments with a swarm of 25 physical fully autonomous
robots, indicating the feasibility of the computationally obtained control solution
in a real-world scenario.

• Design and implementation of a novel control strategy to a multi-agent collective
choice problem—the first to be free of arithmetic computation, and the simplest
solution to date. The agents extract only 1-trit (i.e. 1 ternary digit) of information
from their environment using a single line-of-sight sensor. The majority of the
agents choose between equal alternatives in 97.3% of the trials. Systematic
examination2 of the problem of choosing between multiple equal alternatives
showed that the swarm is able to choose an option from up to four options
present, and can cope with unequal alternatives. This is followed by systematic
investigations of a large group using up to 100 agents yielding that the swarms’
performance is only affected on a minor level by the increasing number of agents.
The control strategy is ported onto a swarm of 20 physical autonomous robots,
and the obtained results are compared with the simulation studies resulting in a
fairly similar performance.

• Despite the complexity of the shepherding task, it is shown that neither arithmetic
computation nor run-time memory is fundamentally essential to accomplish
the task. The developed control strategy provides the simplest solution to
the problem to date, requiring the shepherd agents to extract only 2-bits of
information. Comprehensive analyses2 of the control parameters and sensor noise
sensitivity demonstrating the robustness of the shepherding control strategy.
Further extension of the control strategy allowing the shepherd agents to extract
2-trits of information from their environment, yielding better scalability with the
increased number of agents.

• Extension of the “computation-free” swarming concept (Gauci, 2014):
2This is done through a computer simulation that employs physical constraints.

1.5 Publications 7

– by allowing the agents to retrieve multiple sensory information, control
policies can take instantaneous spatial configuration into account. The
agents can avoid deadlock situations by using stochastic control policy,

– by allowing the agents to execute an action from a set of eligible actions
with a certain probability.

The extended computation-free swarming concept is then applied to multi-robot
gathering problem on 2D grid.

• Mathematical proof demonstrating that there exists no deterministic control
solutions for a multi-robot gathering problem on 2D grid.

• Development of two stochastic control policies for the multi-robot gathering
problem:

– naïve stochastic control policy chooses an eligible action based on uniform
random selection,

– optimised stochastic control policy chooses an eligible action from an opti-
mised set of probability parameters that also takes the specific context of
an agent into account.

• For the multi-robot gathering problem mathematical proof that the agents, when
using a stochastic control policy (either naïve or optimised), almost surely reach
a Pareto optimal spatial alignment in finite time, irrespective of initial positions.
Demonstration and systematic comparison2 of the naïve and optimised control
policies for flexibility, scalability and robustness.

1.5 Publications

The work presented in this thesis has led to the following peer-reviewed publications:

1. A. Özdemir, J. W. Romanishin, R. Groß, and D. Rus “Decentralized Gathering
of Stochastic, Oblivious Agents on a Grid: A Case Study with 3D M-Blocks,”
2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS),
IEEE, 2019, pp. 245–251.

2. A. Özdemir, M. Gauci, A. Kolling, M. D. Hall, and R. Groß, “Spatial Coverage
Without Computation,” 2019 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp. 9674–9680.

8 Introduction

3. A. Özdemir, M. Gauci, S. Bonnet, and R. Groß, “Finding Consensus Without
Computation,” IEEE Robotics and Automation Letters, 3(3), pp. 1346–1353.
2018.

4. A. Özdemir, M. Gauci, and R. Groß, “Shepherding with Robots That Do Not
Compute,” in Proceedings of the 14th European Conference on Artificial Life
(ECAL). MIT Press, 2017, pp. 332—339.

The author orally presented Publication 3 in Brisbane, Australia at 2018 IEEE
International Conference on Robotics and Automation (ICRA 2018) and Publication 4
in Lyon, France at the corresponding conference. Additionally, the author contributed
to another project that is not featured in this thesis. This work has led to the following
publication:

1. J. V. A. Marques, A. Özdemir, M. J. Doyle, D. Rus, and R. Groß, “Decen-
tralized Pose Control of Modular Reconfigurable Robots Operating in Liquid
Environments,” 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2019, pp. 4855–4861.

1.6 Thesis Overview

The structure of this thesis is organised as follows.

• Chapter 2 provides background and related works for this thesis. Section 2.1
presents the concepts of emergence and emergent behaviour. Section 2.2 presents
the design and control principles for swarm robotics, with a detailed emphasis
on computation-free swarming. Section 2.3 presents related work to the studies
conducted in this thesis in alphabetical order: finding consensus, gathering,
shepherding, and spatial coverage.

• Chapter 3 presents spatial coverage study using a swarm of robots. Section 3.1
introduces the coverage problem. Section 3.2 describes the problem objective
in detail, including the environment and robot model, and simulation setup.
Section 3.3 explains how the control solution is obtained using an evolutionary
algorithm. In particular, the evaluation of candidate solutions, the evolutionary
algorithm setup, controller selection, and mathematical analysis of the selected
controller. Section 3.4 reports simulation studies, including sensory noise analysis,

1.6 Thesis Overview 9

scalability analysis, and navigating a maze. Section 3.5 describes the physical
robotic platform and the experiment setup, and reports the results. Section 3.6
concludes the chapter. This chapter is based on the author’s original work given
in Publication 2.

• Chapter 4 presents a control strategy for a swarm of robots to find consensus in
choosing an option. Section 4.1 introduces the consensus problem. Section 4.2
describes the objective, the environment and the robot model, and the simulation
setup. Section 4.3 explains the evolutionary algorithm setup that has been
used to synthesise the control solution and the evaluation criteria. Section 4.4
analyses the behaviour of the swarm using the synthesised control solution. This
includes analysis of sensory noise, scalability of the swarm, choosing between
more than two options and between unequal options. Section 4.5 describes the
experimental setup, the robotic platform used, and reports the results. Section 4.6
concludes the chapter. This chapter is based on the author’s original work given
in Publication 3.

• Chapter 5 presents a control strategy for the multi-robot shepherding problem.
Section 5.1 introduces the shepherding problem. Section 5.2 describes the ob-
jective, the sheep and shepherd model, and the simulation setup. Section 5.3
explains the evolutionary algorithm setup to synthesise the controllers for shep-
herds, the evaluation criteria, and mathematical analysis of the selected controller.
Section 5.4 analyses sensory noise, sensitivity, and scalability of the system. In
addition, this section presents an advanced control strategy with enhanced sensing
model. Section 5.5 concludes the chapter. This chapter is based on the author’s
original work given in Publication 4.

• Chapter 6 presents decentralised multi-robot gathering strategies and extends
the computation-free swarming framework. Section 6.1 introduces the gathering
problem. Section 6.2 describes the objective, the environment and the robot
model, and mathematical analysis of the objective. Section 6.3 presents a
deterministic control policy, with controller design criteria, as well as, theoretical
analysis of impossibility of finding a deterministic controller for the given problem
definition. Section 6.4 proposes a naïve stochastic control policy, that alleviates
the impossibility of gathering. In addition, a mathematical analysis of the proof
of convergence is given. Section 6.5 proposes an enhanced stochastic control
policy by optimising probability distributions. Additionally, the representation
of candidate solutions, the evolutionary algorithm setup, and selection of the

10 Introduction

controllers are presented. Furthermore, this sections presents mathematical
analysis, an extended version of the proof given in Section 6.4. Section 6.6 reports
the simulation studies for scalability and sensory noise analyses. Section 6.7
concludes the chapter. This chapter is based on the author’s original work given
in Publication 1.

• Chapter 7 summarises this thesis and discusses the contributions. Additionally,
Section 7.1 presents potential future directions of the works presented in this
thesis.

Chapter 2

Background and Related Work

This chapter presents background context and related work for this thesis. Section 2.1
presents the concept of emergence and emergent behaviour in biological groups, and
insights regarding natural swarms and their cooperative behaviours. This is followed
by artificial and engineered swarm systems. In Section 2.2, a brief introduction to
swarm robotics is given alongside common design methods. Particular attention is
given to minimal information processing and computation-free swarming concepts—the
primary design method used throughout this thesis. In Section 2.3, swarm robotics
related tasks are investigated, particularly those which are the main interests of this
thesis, such as finding consensus, gathering, shepherding and spatial coverage.

2.1 Emergence and Emergent Behaviour

The role of emergence is significant in many areas of science, including physics, chemistry,
biology, and systems theory (Bak, 1996). Emergence is a concept of a collective entity
exhibiting a property which its individual parts do not have. For example, the formation
of fractal patterns in snowflakes, ripple patterns in a sand dune, or a mound built by
termites. While all these natural phenomena exhibit emergence, the causes behind
all may be different. For example, snowflakes form unique fractal patterns based on
thermodynamic changes in their own molecules which are triggered by external effects
(e.g. air temperature, humidity in the local proxy). These changes are so sensitive
such that a small difference in the initial conditions can result in a completely different
pattern. Similarly, a sand dune is formed by an external wind effect. On the other
hand, there are biological examples such as a mound built by a colony of self-organised

12 Background and Related Work

Fig. 2.1 An average termite length is up to 1.5 cm, whilst a termite colony can build
a nest mound up to 600 cm in height. That is 400 times the size of a termite. A
ratio that is comparable to the tallest modern-day skyscrapers, for example, Burj
Khalifa—the tallest human-made building—is 487 times taller than the average human
height (considering an average of 1.7m) and for Shanghai Tower—the second tallest
building—the ratio is 371 times. Image is reprinted from Brewbooks (2009).

termites. Only relying on local information sharing, without needing a leader, a
colony of termites can excel at cooperatively carrying and allocating nest-building
materials (Howse, 1970). Grassé et al. (1984) reported that this simple cooperative
behaviour can emerge into a sophisticated nest mound which can be up to 600 cm in
height (see Figure 2.1).

Emergent behaviour can be defined as a global behaviour that emerges through
local interactions between the members of the whole. It is possible to observe emergent
behaviour in nature, in the social life of humans, or in a group of machines (Camazine
et al., 2001). Flocking birds, pedestrian crowd movement, or cooperative box pushing
by multiple robots are amongst some familiar examples. A common feature between
these examples is that they all are self-organised 1. Self-organisation is a process of

1In the literature, it is common that the terms emergent behaviour and self-organisation are used
interchangibly (Bonabeau et al., 1999)

2.1 Emergence and Emergent Behaviour 13

(a) (b)

(c) (d)

Fig. 2.2 Examples of biological emergent behaviour in biological swarms: (a) swarm of
ants, (b) flock of sheep, (c) school of fish, (d) flock of birds. Images are reprinted from
(a) Gordon (2013), (b) Carnemolla (2016), (c) 3atoms (2012), (d) Stass (2015).

forming an ordered structure by initially unordered entities through local interactions.
More on self-organisation will be explained in Section 2.1.1.

2.1.1 Swarms in Nature

It is fascinating how a swarm of animals cooperate with each other to complete specific
tasks, such as gathering food, avoiding predators, or building nest sites (Krause and
Ruxton, 2002). Natural swarm behaviours are great sources of inspiration. The
observed collective behaviours have led to many applications, especially in computer
science and engineering (Beni, 2005; Bonabeau et al., 1999; Bonabeau and Meyer,
2001; Şahin, 2005). For example, numerous bio-inspired optimisation methods have
been developed to minimise logistic costs (Dorigo and Blum, 2005), for cooperative
transportation of warehouse goods (Chaimowicz et al., 2002; Wurman et al., 2008), or
crowd simulation in media (Lin and Chen, 2007).

Biological swarms exhibit impressive flexibility and robustness (Camazine et al.,
2001). In these systems, intelligent group behaviours have been observed. Although
each individual has limited capabilities, through local communication and information

14 Background and Related Work

transmission, they are able to complete sophisticated tasks. Social insects are able
to accomplish tasks beyond the capabilities of an individual. For example, ants can
overcome gaps in their path by attaching to one another, hence forming a ‘bridge’
[see Figure 2.2(a)]. The studies conducted by Graham et al. (2017) showed that the
ants operate in a ‘decentralised’ manner to form a bridge, meaning that they do not
rely on a leader coordinating their actions. Figure 2.2(b) shows an example of sheep
flocking behaviour. A sheep flock can stay and act as a whole even though they are not
coordinated by a shepherd. An example of underwater navigation by a school of fish is
shown in Figure 2.2(c). Schooling is beneficial for fish as it is an effective strategy for
defending themselves against predators. Aerial flocking is also an efficient behaviour
for birds by allowing them to migrate to warmer locations as a group. Figure 2.2(d)
shows an example image of a flock of birds manoeuvring.

Self-organisation

Self-organisation is a group-level property that refers to emerging a behaviour without
external cues. It emerges through interaction within the group members. In natural
swarms, these interactions can occur by means of information transfer in two distinct
ways; signal-based or cue-based. Signal-based information transfer occurs intentionally
by one individual conveying information. Different types of signal-based information-
flow have evolved in nature. For example, bees wiggle dance to indicate the position of a
nearby source of food to other fellow bees. Cue-based information transfer, on the other
hand, is incidental. In cue-based information transfer, the environment is frequently
used as a medium. For example, ants communicate through stigmergy to choose a
nest site. The mechanisms behind the self-organisation can be interdependent and
significantly complex. Two mechanisms can explain how self-organisation transpires;
positive and negative feedback.

The positive feedback mechanism is responsible for amplifying quantities within the
system. It is also known as self-enhancement, facilitation, and autocatalysis (Camazine
et al., 2001). For example, the birth of new individuals increases the number of members
in a community. This can be seen as positive feedback in population dynamics. While
positive feedback is useful for increasing quantities, the nature of amplification can also
be destructive. For example, a high amount of individuals within a group can result in a
shortage of resources, hence, can cause a famine (Camazine et al., 2001). Contrarily, the
negative feedback mechanism is responsible for reducing the quantities in a system. It
stabilises the system by compensating the perturbations and fluctuations. An example

2.1 Emergence and Emergent Behaviour 15

of negative feedback is the death of individuals, resulting in the number of community
members to be stabilised. In cellular biology, self-organised mechanisms often use
negative feedback to achieve and maintain homeostasis (Camazine et al., 2001), that
is, physical and chemical steady-state in a biological system.

Bonabeau et al. (1999) list two additional self-organising behaviours. The first is the
amplification of randomness by means of fluctuations, such as, random walk, making
error, or switching to another task randomly. In a sense, randomness is crucial for
new solutions to emerge and fluctuations can lead to differences in growing structures.
For example, an ant losing the trails of the colony—due to an error—can lead to
finding unexploited food sources. The second additional self-organising behaviour is
relying on multiple interactions. For example, a group of agents can self-organise by
collectively interacting with each others trails in the environment. An extreme example
is that, an individual agent, by interacting only with its own trail, can also self-organise
itself. Thus, multiplicity of in-direct interactions can also emerge into a self-organised
collective behaviour.

2.1.2 Collective Behaviour

Collective behaviours emerge in biological groups of animals as a result of social
interactions between group members (Krause and Ruxton, 2002). These types of social
behaviours are often coordinated, meaning that the group realises a common task by
self-organisation. Collective behaviours are not only limited to achieving a particular
task in the group’s environment. Group-level locomotion, synchronicity, information
transfer, decision-making, or avoiding predators are just a few examples of collective
behaviours.

Swarming is a self-organised collective behaviour that is realised by a group of
animals.2 It refers to ‘living’ as a group and coordinating together. Besides preserv-
ing a group structure, it gives certain advantages to the individual members. It is
observed that flocks of birds make use of spatial alignment to exploit aerodynamic
properties (Ballerini et al., 2008), such as Canadian geese flying in a V-formation as
shown in Figure 2.3(a).

Swarming has other important benefits for species. For example, being in a large
group increases the chance of survival, as the probability of being attacked by a predator

2The term swarming is most commonly refers to the collective behaviour of social insects.
Synonymous terms are flocking for birds, herding for hoofed mammal, and schooling for fish.

16 Background and Related Work

(a) (b)

Fig. 2.3 Cooperative behaviours in nature: (a) v-formation in flock of birds and (b) bait
ball by a school of fish. Images are reprinted from (a) Benson (2007) and (b) Safonov
(2008).

is statistically lower than for that of an alone individual (Partridge, 1982). Moreover, a
large group can act as a single intimidating entity which can confuse a predator (Cech
and Moyle, 2000). An interesting example of this is a bait ball formed by a school
fish as shown in Figure 2.3(b). Foraging and gathering food is another advantage of
staying as a flock, as the individuals can disperse to search and share information to
locate food sources (Pitcher et al., 1982).

2.1.3 Artificial and Engineered Swarms

Reynolds’ seminal simulation algorithm started the artificial swarming paradigm.
Reynolds (1987) developed a distributed model emulating flocking behaviour of birds.
Each agent, or boid, executes a simple set of behavioural rules as given below:

• Cohesion—steer towards the centre of the flock

• Alignment—match velocity with neighbours in close proxy

• Separation—avoid collision with nearby flockmates

The three components of the model are combined linearly to create an equation
of motion. The boids model paves a way to artificially animate swarming, flocking,
herding, or schooling behaviour. Figure 2.4 shows a basic visual expression of the three
rules. The rules are at the microscopic (individual) level and only require local sensing.
The agents neither utilise global information nor are they directed by a leader, resulting
in the collective motion to be generated solely by local interactions between the agents.

2.1 Emergence and Emergent Behaviour 17

(a) Cohesion (b) Alignment (c) Separation

Fig. 2.4 An illustration of Reynold’s flocking model with circular agents. Arrows indicate
the direction the focal agent should move towards. Black dotted circle represent the
region of influence.

Ballerini et al. (2008) observed that the collective behaviour in groups of animals is
achieved more accurately under topological interactions between the neighbours in a
close proxy. Thus, the boids model captures the biological swarming characteristics
and transmits them onto artificial domains.

Once an observed swarming behaviour is expressed in formal mathematical terms, it
becomes reproducible and adaptable. Artificial swarms are not only useful for computer
simulations, but they can also be effective problem solvers. Numerous optimisation
algorithms are inspired by natural self-organising swarming phenomena (Krause et al.,
2013). These optimisation algorithms can be deployed to solve complex real-world
tasks, especially combinatorial optimisation problems such as scheduling problems,
assignment problems, and vehicle routing problems.

Artificial Swarm Intelligence

Beni and Wang (1993) introduced the term swarm intelligence in reference to a
class of cellular robotic systems. Its use spread to cover a range of studies, from
biological societies to robotics. Swarm intelligence simulates the social structures and
interactions in a swarm, similarly to how artificial intelligence simulates the structure
of an individual cognition. A swarm intelligence system usually involves individuals
with limited intelligence forming a group that is distributively controlled by local
interactions and simple rules. The system capitalises on swarm behaviour without
requiring centralised control or a global model, to enable it to solve complex and large
scale problems. The collective behaviour emerges through the communication, sensing
and/or information flow among individuals (Fax and Murray, 2004).

18 Background and Related Work

The main application domain of swarm intelligence is optimisation problems. Dorigo
(1992) proposed the ant system in his doctoral thesis. Five years later, Dorigo and
Gambardella (1997) published Ant Colony System, an optimisation method inspired
by natural swarms. Ant Colony System, more commonly known as, Ant Colony
Optimization (ACO) is a metaheuristic solver that relies on finding optimal paths
in graph structures. ACO makes use of the concept of stigmergy, as each artificial
ant leaves and retrieves virtual pheromones in the environment. An optimal solution
is calculated based on the pheromone concentration in the environment. Particle
Swarm Optimization (PSO) is another metaheuristic optimisation method, that was
introduced by Kennedy and Eberhart (1995). In PSO, each agent, or particle, has a
position and velocity, similar to Reynold’s (1987) boids model. However, in contrast,
the particles can access global information. The particles influence each other like a
social network. After a sufficient number of iterations, the particle swarm converges to
an optimal position (i.e. solution) within the search space.

There are certain intrinsic properties that makes swarm intelligent systems prefer-
able. These are namely, robustness, scalability and flexibility.

• Scalability. Scalability is beneficial in real-world applications, as it allows the
system to be adaptable. For example, without major modifications, the system can
cope with increased agent populations. It can also be a time-saving strategy, as in
a large environment, the agents can distribute themselves effectively. Furthermore,
agents can join or exit from the swarm without interrupting other individuals or
the whole system.

• Robustness. Coping with failures is a crucial part of designing swarm intelligent
systems. The swarm should be able to operate under disturbances without the
system becoming vulnerable. The robustness relates to the scalability of the
system. A system is considered robust to failures if it can cope with the absence
of a portion of the agents. The performance of the system may decrease, however
as long as the goal can be accomplished, the system remains robust.

• Flexibility. Several tasks can be achieved utilising the same swarm intelligent
system with small modifications. Flexibility can also allow the system is to
switch between strategies during an operation. This allows the system to be
more adaptable to dynamically changing environments. Moreover, it is possible
for systems to accomplish further tasks without necessarily ending the operation
and starting again.

2.2 Swarm Robotics 19

Swarm intelligence is not only limited to optimisation problems, it can also be
used as a data mining technique. Ant Colony Optimization and Particle Swarm
Optimization are widely used algorithms to solve optimisation problems. They are also
widely used in the field of data mining. Parpinelli et al. (2001) proposed AntMiner, the
first data mining algorithm that utilises ACO. The authors used ACO as a supervised
classification method within their algorithm. For more detailed review of swarm
intelligence algorithms used in data mining, reader can refer to Martens et al. (2011).

2.2 Swarm Robotics

Swarm robotics can be interpreted as a research domain of swarm intelligence applied to
an embodied multi-robotics platform. Şahin (2005, p. 12) gives the following definition
of swarm robotics:

“Swarm robotics is the study of how large number of relatively simple
physically embodied agents can be designed such that a desired collective
behavior emerges from the local interactions among agents and between
the agents and the environment.”

Nevertheless, the author emphasises that the given quote does not provide a sufficient
definition for swarm robotics. There are multiple research domains in multi-robotics,
namely, collective robotics, distributed robotics and robot colonies. Swarm robotics
distinguishes itself by a few differences. The major differences are that the swarm
robots tend to be simple, low cost, and have minimal capabilities.

Şahin (2005) listed a few distinct properties that differentiate the field of swarm
robotics from other multi-robot systems. The first property is that a swarm robotic
platform consists of mobile and autonomous robots. The number of robots in the
swarm should be large, ideally more than 102. There should be few groups within the
swarm. That means the swarm should not be diverse, but rather homogeneous. For
instance, a team of football-playing robots would not be considered as swarm robots
as the role of each member is different. One of the core ideas of swarm robotics is to
make use of a large number of members. Thus, the robots should be relatively simple
and individually inefficient. In order to keep the system complexity low, local sensing
and communication capabilities are preferable.

20 Background and Related Work

2.2.1 Design Principles

Swarm robotics systems are made up of relatively simple, economically efficient physical
robots that can cooperate with each other (Brambilla et al., 2013; Şahin, 2005).
Swarm robotic systems also feature the three intrinsic properties in swarm intelligence;
flexibility, robustness, and scalability. Ideally, a swarm robotic system should be
flexible in a way that the system responds well to changes in the environment. This is
particularly desirable if the environment is precarious. The system should be robust so
that the performance is not heavily affected by certain disturbances in the environment
or within the system. Scalability is the third intrinsic property. Preferably, the system’s
performance, or ability, should be improved with the increasing number of group
members. Certain design principles reveal these three intrinsic properties.

• Decentralisation. Decentralised control, or distributed control, has been observed
in biological swarms (Deneubourg et al., 1983). Through competent cooperation
rules, the system can solve large-scale problems. An advantage of decentralised
control is that each robot can self-regulate, rather than rely on a central leader.
As no single robot is responsible for the whole system, malfunctioning of one
robot does not lead the task to fail. There is also less communication complexity
than required for central control, allowing the swarm to maintain its reaction
speed. However, global coherency becomes a major challenge, as each individual
requires task specific information (Tan and Zheng, 2013).

• Local Interaction. Sensing and communication are two modes of interaction
that an individual robot can perform. Local interaction is superior to global
interaction with respect to scalability and flexibility (Ijspeert et al., 2001; Mataric,
1998). Due to impracticality and cost associated, global interaction is not suitable
for a large group of robots. As the number of individuals increases in the group,
the sensing and communication complexity increase the information acquisition
exponentially. Additionally, system-wide interactions require more advanced
sensing and communication capabilities, which also increases hardware complexity.
Hence, local interaction strategies are beneficial for a swarm robotic system.

• Homogeneity. Homogeneity is an important design principle for swarm robotics
systems. Ideally, there should be the least amount of labour division (i.e. task
allocation) and the maximum number of individuals within each division (Şahin,
2005; Tan and Zheng, 2013). This is so that the inter-robot interactions can be
modelled and analysed in a predictable way. Additionally, if the robotic swarm

2.2 Swarm Robotics 21

has certain probabilistic characteristics, heterogeneity may make it impossible to
obtain similar behaviours at each run (Balch, 2000).

• Economical. Producing a robotic unit with a relatively low cost allows the mass-
production of a robotic swarm. At the same time, the swarm robotic systems are
energy efficient. In general, a swarm robot is less energy demanding, allowing
it to require a relatively smaller battery. There are also swarm robotic systems
that can use solar energy to recharge their battery during operation (Seyfried
et al., 2004) or even share energy between one another (Escalera et al., 2018).

2.2.2 Design Approaches

In this section, we explain widely used approaches and methods for designing and
controlling a swarm robotic system. There are numerous approaches reported in
the literature, yet there is no standard categorisation. Dudek et al. (1993) proposed
a taxonomy to classify the existing literature for swarm robotics systems based on
technical features such as swarm size, reconfigurability, communication range and
topology, or processing unit abilities. A different taxonomy was introduced by Gazi
and Fidan (2007) categorising the studies as swarm coordination and control, design
approaches, and mathematical modelling. Recently, Brambilla et al. (2013) proposed
a taxonomy for swarm robotics design approaches and analysis methods. We believe
that this thesis benefits the most by using categorisation presented in Brambilla et al.
(2013), thus we adapt it for the rest of this section.

To the best of our knowledge, there is no ‘one specific formal design method’ that
can guarantee to achieve any desired system-level behaviour by designing low-level
individual behaviours under given design specifications. We speculate that this is due
to the ‘richness’ of the behaviours that can be produced by swarms, as well as, the
complexity that arises due to inter-agent and agent-environment interactions. Thus,
swarm robotics system researchers prefer to design a ‘tailored’ system for a given
task and requirements on robotic platforms. As given in Brambilla et al. (2013), two
main-stream design approaches are behaviour-based design and automated design.3

A behaviour-based approach is where a robot’s individual behaviour is manually
designed in an iterative way that is commonly based on trial and error. One of the
main inspirations for this approach comes from observing the behaviour of animals

3From a different perspective, these approaches can also be named as bottom-up and top-down
design approaches, respectively (Crespi et al., 2008).

22 Background and Related Work

in social situations. The design process starts with a swarm of robots executing an
initial behaviour algorithm while being examined by the designer. If the performance
of the robotic swarm is not satisfactory, meaning that it does not produce the expected
collective behaviour, the designer makes changes to the algorithm. The design process
continues by tuning the algorithm until the swarm satisfies the given performance
criteria.

Utilising a Finite State Machine is a common set of methods for designing individual
behaviours. More specifically, Probabilistic Finite State Machines (PFSM) (Minsky,
1967) are frequently used techniques as they function in a similar way to social
insects which have been observed to respond to sensory stimuli in a probabilistic
way (Bonabeau et al., 1997). Behaviours of a robot are encoded as distinct states
that can change depending on the sensory inputs and certain probability thresholds.
PFSM are utilised for several canonical swarm robotic tasks, such as gathering (Soysal
and Sahin, 2005), and collective decision making (Valentini et al., 2016). Artificial
Potential Field is another common behaviour-based design method, specifically for
coordinated motion (Khatib, 1986), exploration (Howard et al., 2002), and pattern
formation (Spears et al., 2004). In basic terms, each robot computes virtual force
vectors and acts upon them; for example, in a coordinated movement task, robots are
attracted to a predefined goal and repelled from obstacles with certain strength based
on the calculated virtual force magnitude.

A drawback of a behaviour-based design approach is that the desired behaviour
may not emerge ‘naturally’ from the low-level individual behaviour. Thus, the set
of behaviour-based methods may lead researchers to design ad-hoc systems that are
not flexible or reusable. In contrast to the aforementioned approach, an automated
design approach first describes the swarm behaviour at a high-level, then ‘generates’ a
low-level individual behaviour. The individual agent behaviour is generated through
optimisation of a utility function associated with a given task. It is an iterative process,
yet the iterations are performed by a computer, unlike the behaviour-based approach.
As the name suggests, this approach makes use of computer-aided design. An example
of an automated design approach is reinforcement learning (Kaelbling et al., 1996; Tan,
1993).

Reinforcement learning techniques allow agents to ‘learn’ a behaviour by positive
and negative feedback provided by a central system. The central system evaluates
agents’ actions based on the provided utility function and gives the agents rewards
or penalties. The agents naturally tend to maximise their rewards, resulting in them

2.2 Swarm Robotics 23

adapting optimal behaviours. In more technical terms, the agents automatically learn
an optimal strategy for a given problem by creating internal state-to-action mapping
mechanisms. There are numerous studies using this technique, however, the method
may suffer from high complexity and space-state dimension problems. For these reasons,
reinforcement learning has a limited scope in swarm robotics community (Panait and
Luke, 2005). A more frequently used approach is known as evolutionary robotics (Nolfi
and Floreano, 2000).

In this thesis, we utilise an evolutionary robotics approach to design control al-
gorithms for swarms of robots. The following section describes evolutionary robotics
in detail, with particular attention paid to motivation and its roots in Darwinian
evolutionary theories.

2.2.3 Evolutionary Algorithms and Evolutionary Robotics

This section starts with a peculiar introduction to evolutionary design paradigm to
emphasise its importance in engineering design. Humans—by their nature—desire
symmetry and they often design using symmetric rules (Norrman, 1999). This, however,
may cause properties of asymmetric structures to be overlooked. In some cases, an
asymmetric design might be superior to symmetric design. For example, Hornby et al.
(2006) discovered this phenomenon while they were designing new antennas for various
aerospace applications in NASA. They deemed to automate the antenna design process,
and proceeded with employing an evolutionary algorithm (Hornby et al., 2006, p. 1):

“Whereas the current practice of designing antennas by hand is severely
limited because it is both time and labor intensive and requires a significant
amount of domain knowledge, evolutionary algorithms can be used to search
the design space and automatically find novel antenna designs that are
more effective than would otherwise be developed.[...]”

The resulting antenna designs appear unusual as can be seen Figure 2.5, yet they far
excel standard design patterns.

Evolutionary robotics is an automated design approach for robotic systems using
evolutionary algorithms. The term design here can refer to both hardware design
and the control architecture of the robotic system. Evolutionary robotics approach
aims to create robust and adaptive systems with the aid of Darwinian evolutionary
theories. The morphology of a robotic system—sensors and actuators—and its control

24 Background and Related Work

Fig. 2.5 An evolved antenna based on a specific NASA aerospace application. The
image reprinted from Hornby et al. (2006).

architecture are considered simultaneously. This is a potential advantage of utilising
an evolutionary robotics approach, as the robotic system is contemplated as a whole to
reduce the inconsistencies between its individual parts. Evolutionary robotics design is
a sophisticated procedure that heavily relies on appropriately utilising an evolutionary
algorithm.

Evolutionary Algorithms

Evolutionary algorithms are a family of population-based metaheuristic black-box opti-
misation algorithms that artificially implement biological evolutionary theories (Eiben
and Smith, 2008). The main principle is to minimise, or maximise, a fitness function4,
over substantial iterations.

During the 20th century, four main streams of evolutionary algorithms were in-
troduced. Fogel et al. (1966) introduced evolutionary programming, the first major
evolutionary algorithm paradigm. Meanwhile, Holland et al. (1992) created the second
major approach called genetic algorithm, that increased in popularity in 1975. In
the early 1970s, Rechenberg and Schwefel proposed evolution strategy optimisation
technique (Rechenberg, 1978). A variation of ‘evolution strategy’ is also widely used in
the studies presented in this thesis. The fourth major algorithm, genetic programming,
was proposed by Koza (1992).

The key concepts of an evolutionary algorithm are natural selection, mutation, and
recombination. A group of candidate solutions (population) compete against each

4A fitness function is a cost, or an objective function in evolutionary computation terms.

2.2 Swarm Robotics 25

Fig. 2.6 A basic evolutionary algorithm mechanism.

other to ‘survive’ for the next iteration. Using an appropriate selection mechanism, a
subset of the population can mutate and/or recombine by a predefined computational
operator to create offspring that will compete in the next iteration. The choice of the
selection mechanism, mutation and recombination operators strictly depend on the
algorithm used. The user can get a desired outcome of the optimisation problem by
varying certain numerical parameters related to these three concepts.

A basic working mechanism of an evolutionary algorithm is illustrated in Figure 2.6.
The algorithm starts with an initial population of λ candidates. In general, the initial
population is randomly generated by the algorithm. Each population member, a
candidate solution, performs the task independently and is assigned a fitness score. In
the next step, all fitness scores are evaluated and the termination criteria checked. In
general, the termination criteria is either a fixed number of iterations or a desired fitness
value with a given tolerance. If the criteria is not satisfied, then the best performing
n individuals are selected as parents, and they reproduce new offspring based on
predefined recombination and/or mutation operators in the algorithm. The members
of the new population perform the task, and are evaluated in the next iteration. If the
criteria is satisfied the algorithm terminates accordingly.

26 Background and Related Work

Evolutionary Robotics

Evolutionary robotics implements a design solution found by an evolutionary algorithm
to a robotic system. In particular, evolutionary robotics approaches are commonly
used for designing a control solution by the swarm robotics community. As it is an
automatic design method, it does not require detailed a priori knowledge about the
problem. The researcher is required to formulate the problem in a high-level, by
designing an appropriate fitness function and certain optimisation parameters. A
typical evolutionary robotics approach consists of three phases; setup, optimisation
process, and analysis.

In the setup phase, a suitable fitness function needs to be designed to evaluate the
performance of the system. It plays a crucial role in the setup, as it determines if the
given candidate solution is a good fit or not. Deploying the control solution requires
genotype-to-phenotype mapping. Genotype refers to the solution that is found by
the evolutionary algorithm. Typically, a genotype refers to an array of numbers that
encodes the control parameters. Phenotype, on the other hand, is the robotic platform
that uses the genotype. Genotype-to-phenotype mapping is important as the control
parameters are fine-tuned for a specific phenotype used in the evolution procedure.

In the optimisation phase, the evolutionary algorithm operates in order to create
and select candidate solutions. This process follows the same procedure as illustrated
in Figure 2.6. Depending on the parameter selection, the optimisation process can
be time consuming. Most researchers prefer to conduct an offline evolution, which
uses a simulated robotic system. Offline evolution has certain advantages compared to
online. Floreano et al. (2008) noted three main challenges for performing an online
evolution; (i) the time it requires, (ii) the robot can damage itself and the process may
terminate, (iii) a human may need to be present to check the activity and the process.
A drawback of offline evolution, however, is that the physical platform is simulated by
a computer. Thus, there may be inconsistencies between the simulated platform and
the physical one.

The final phase is the analysis of the optimisation results. In general, this phase
has two possible outcomes; either the evolved solution is good enough and the design
process is concluded, or it is not good enough, requiring the design process to be
conducted again. If the latter is the case, then the design process restarts with the
setup phase. Potential errors of the design problem can be investigated and a new

2.2 Swarm Robotics 27

(a) deliberative control (b) reactive control

Fig. 2.7 Illustrations of two main control architectures.

set of design parameters can be implemented. The process then continues with the
optimisation followed by the analysis process once again.

In swarm robotics community, there are many examples of evolutionary robotics
studies. Dorigo et al. (2004) conducted an evolutionary robotics approach to synthesise
control strategies for a gathering and coordinated motion task with a swarm of self-
assembling simulated s-bots (Mondada et al., 2003). Trianni and Nolfi (2009) evolved
control solutions for self-organising synchronisation problem using a swarm of s-bots
both in a simulation environment and with physical robots.

2.2.4 Control Architectures

In the previous sections, we covered design principles and common approaches to design
a swarm robotic system. The design approaches we gave in Section 2.2.2 consider
the system-level behaviour for a swarm to achieve a task, thus, acting on a high-level
perspective. Control architectures, on the other hand, operate at the individual level
and are responsible for coupling sensor information and actuation using the given set
of a priori designed instructions. In this section, we explain two control architectures
that are frequently utilised, namely, deliberative control and reactive control.

In general, deliberative control architecture is sophisticated and requires the ac-
companying robot to be computationally competent. It utilises an “sense-plan-act”
paradigm [see Figure 2.7(a)]. Creating a detailed environment model is at the core of
deliberative control. At each control cycle, the robot gathers sensor data and plans
its next action, while continuing building the environment model. Information flows
between multiple channels of sensing and planning modules before the robot takes
action. Thus, inter-robot and robot-environment interactions are solely planned actions.
The deliberative control architecture is rigorous and powerful, however, it comes at the
expense of computationally powerful hardware. Martinoli and Mondada (1997, p. 1)
summarised the deliberative control scheme as follows:

28 Background and Related Work

“[...]First, sensing the environment, then detecting features, then construct-
ing and modifying a world model, reasoning for the task and the world
model in order to find some sequence of actions which might lead to success,
then executing the action sequence one step at the time while updating
the world model and replanning it if necessary at any stage. This is a very
time consuming operation and requires a remarkable computational power
and basic knowledge.”

Considering the given constraints, deliberative control is not suitable for simple
robotic platforms, such as the ones that are used in a swarm robotic system. A reactive
control architecture, on the other hand, does not require an internal representation
of the environment. It is based on acting with regards to the sensory input, without
needing to generate a sophisticated model. Thus, reactive control directly links the
sensory inputs to actuation outputs, following a generic “sense-and-act” paradigm
[see Figure 2.7(b)]. The low-computation demanding nature of the reactive control
architecture renders it more suitable to utilise in swarm robotic systems.

These two architectures hold major differences. A deliberative control architecture
allows making predictions for future actions, based on its past knowledge, however, a
prediction is entirely impossible for a reactive control. Thus, a system designed with
a reactive control scheme has to consider the environment it operates in advance, as
well as the potential interactions it may encounter. This is one of the main reasons
the behaviour-based design approach given in Section 2.2.2 requires a trial and error
process. On the other hand, creating a detailed world-model slows the robotic system
down, as planning requires time and the robot becomes unable to respond to the
changes instantaneously. This is a major advantage of a reactive system, as the name
suggests, it can deal with changes immediately.

Given the above points, a natural question arises; “how much intelligence and
reasoning should a robotic system hold?”. For a sophisticated robot such as one that
performs walking in unknown terrain, finding objects in a room, and/or speaking to
humans, a detailed architecture is required. In contrast, a swarm robotic system is
simple and computationally less demanding, thus the intelligence required can be at a
minimum.

Braitenberg (1986) introduced a number of thought experiments employing ex-
tremely simple “vehicles” and demonstrated that complex behaviours can emerge from
atomic behaviours. The vehicles incorporated a reactive ‘sense-and-act’ paradigm
through their primitive sensors. Sensor readings of a vehicle, e.g. light intensity or

2.2 Swarm Robotics 29

proximity to an object, are directly coupled with its wheels. Depending on the connec-
tion of the sensors and actuators, vehicles were able to exhibit interesting behaviours
such as, “fear”, “aggression”, “love”, or “hate”.

It is worth mentioning one specific reactive control architecture, namely the subsump-
tion architecture proposed by Brooks (1986). The architecture allows the performance of
real-time tasks, without creating symbolic representations of the world. It decomposes
the overall behaviour into smaller sub-behaviours, paving a way to parallelise sensory
inputs while combining them in commonly-shared outputs. In simpler terms, the
architecture tightly couples sensory-motor schemes. Brooks’ approach was significantly
different than widely used traditional AI in the 80s and 90s. Despite several criticisms
made in the Robotics and AI communities, in general, the subsumption architecture was
well-received, especially in the multi-robot community. Several demonstrations showed
the practicality of the architecture. In the light of the practical benefits of system
simplification, the work presented in this thesis is strongly inspired by a ‘minimal
information processing’ framework, so-called computation-free swarming (Gauci, 2014).

The computation-free swarming framework, a novel swarm-robotics design and
control framework, was introduced by Gauci et al. (2014a,c). The framework employs
a simplified control architecture, which may be thought of as a basic version of the
subsumption architecture, utilising an evolutionary robotics approach to design the
system. To make it clearer, hereby the term “computation-free” only refers to the
reactive control architecture, and not to the design method by any means. As the name
suggests, minimal information processing is at the core of this framework. The reactive
nature of the controller and the extreme simplicity of the discrete sensor mechanism
lead the controller to be ‘memoryless’ and ‘free of arithmetic computation’.5 The next
section explains this framework in more detail, discussing its strengths and weaknesses,
as well as presenting additional studies that have adopted it.

2.2.5 Computation-free Swarming

Gauci et al. (2014a,c) proposed the computation-free swarming concept, a swarm robotic
design and control framework. The controller to be designed using the framework
is memoryless and computation-free, thus allowing a group of robots with minimal
processing capabilities to achieve sophisticated tasks. Inspired from a limited sensing

5The obtained controller solution itself does not require a run-time memory or arithmetic compu-
tation.

30 Background and Related Work

mechanism—windshield (Yu et al., 2012), a limited angular field of view—Gauci et al.
(2014a) further reduced the limited sensing mechanism to an extreme by introducing
the line-of-sight sensor.

In the simplest form, a line-of-sight sensor provides discrete readings, such as the
type of object present in the focal robot’s direct line of sight. The sensor does not
provide any qualitative information about the perceived object, such as bearing angle,
distance, or height. The windshield sensor mechanism operates similarly, however, one
major difference is the angle of the field-of-view. When the angle of the view is wide,
multiple objects are likely to be detected within the sensing range. This multiplicity
can then increase the complexity of the controller proportional to the number of distinct
sensing states. On the other hand, a line-of-sight sensor—identical to the field-of-view
sensor with an angle of 0-degree—can detect only one object at a time. This restriction
in the sensing mechanism reduces the necessary processing capabilities of the controller,
as the information collected is minimal.

The controller architecture proposed by Gauci et al. (2014c) is based on a simple
“sense-and-act” paradigm. From one perspective, the controller is a direct mapping
between the sensor reading input to actuation output. More specifically, the information
extracted from the environment, the type of object, is translated onto the motor system.
Utilising only limited sensing, lack of information sharing, fully reactive response, in
addition to not requiring run-time memory, result into the controller to be free of
arithmetic computation.

Self-organised emergent behaviours, by their nature, are complex phenomena Ca-
mazine et al. (2001). Simplification of such complex systems results in better under-
standing of the dynamics. Swarms of simple robots, in the future, can also be useful in
application domains where it is not possible to utilise complex hardware. Considering
this, it is important to design a system in a parsimonious way. Gauci (2014, p. v)
explains the motivation behind the framework:

“[...]The motivation for this work is to contribute in paving the way for
the implementation of swarm robotic systems at physically small scales,
which will open up new application domains for their operation. At these
scales, the space and energy available for the integration of sensors and
computational hardware within the individual robots is at a premium.[...]”

The framework was first applied to the problem of multi-robot aggregation (Gauci
et al., 2014a,c). The robots use a single line-of-sight sensor that returns discrete

2.3 Swarm Robotics Tasks 31

readings about the environment; namely, what the robot is instantaneously pointing
towards. An offline evolutionary robotics approach was conducted to obtain the control
solution in the simulation environment with physically constrained differential-wheel
robots. The proposed controller is the simplest solution to the multi-robot aggregation
problem to date. The authors demonstrated the performance trade-offs using sensors
that varied in an angle of view and sensing range. The controller is also scalable and
succeeded to aggregate up to 1000 robots in a simulation environment.

The framework was then applied to a more complex scenario in the form of object
clustering (Gauci et al., 2014b). This time, the robots had to interact with static items
in the environment to bring them together into a single cluster. A major difference
in this study, however, is using the line-of-sight sensor to differentiate between two
types of objects: robots and static items. This has led to recent developments in
computation-free swarming paradigm.

Johnson and Brown (2015) adopted the framework to explore some additional
problems, such as perimeter formation and foraging, however, only in a simulation
environment. In the follow up work, using novelty search, Brown et al. (2018) discovered
that the framework can also be used to produce wall following, dispersal, and milling
behaviours. Although, the authors did not further investigate the capabilities of the
obtained control strategies. Recently, Wareham and Vardy (2018) formally examined
the computational-free swarming concept for grid-based environments, under certain
assumptions such as discontinuous movements. The authors showed that the design
problem, given an arbitrary task, cannot be solved in polynomial time.6 Even though
the obtained theoretical results are not directly applicable to the previously designed
computation-free controllers, the authors demonstrated that efficient solutions exist for
a restricted class of problems.

2.3 Swarm Robotics Tasks

In this section, we present the swarm robotics tasks we studied in this thesis. Note that
the order is alphabetical, that is, a different order from the presentation in the thesis.
These studies are finding consensus, gathering, shepherding, and spatial coverage.

6The authors acknowledged that the results are only valid if widely believed conjectures (e.g.
P ̸= NP) are true.

32 Background and Related Work

2.3.1 Finding Consensus

Finding consensus is a well-studied problem in the swarm robotics community and
beyond. It is a canonical study for many disciplines, including computer science,
economics, physics, and neuroscience, however, the problem might be referred to
differently. In swarm robotics context, the problem is commonly referred to as “collective
choice” or “collective decision making”. In broad terms, the problem refers to finding a
consensus, or general agreement, by the agents in a collective manner. More often, in
swarm robotics, the problem is solved by a swarm of self-organised agents that do not
have a priori covenant information.

A number of solutions have been proposed for collective choice problems. In some
studies, environmental cues play an important role for choosing an option. While
other studies allow the robots to communicate with each other explicitly, generally,
to share an opinion regarding an option. The designed control strategies vary from
artificial neural networks, to an algorithm that is based on a random walk with various
non-constant waiting times and purely phototaxis behaviours. In this thesis, we are
particularly interested in “best-of-n” and “symmetry breaking”. One can find a detailed
review of the best-of-n problem in a swarm robotics context in Valentini et al. (2017).

Halloy et al. (2007) used robots to explore the collective choice problem in cock-
roaches. Naturally, cockroaches prefer darker shelters over lighter ones. The researchers
introduced a group of robots coated with pheromone such that they were accepted by a
group of cockroaches as conspecifics. The robots were programmed to “[...] explore their
environment autonomously [and] tune their resting time [in the shelters] in relation
to the presence of cockroaches, as cockroaches do” (Halloy et al., 2007). The robots,
being programmed to prefer the lighter shelter, were able to socially influence the
cockroaches so that they, on average, also made this “unnatural” choice. Francesca
et al. (2012) also investigated shelter selection process by cockroaches. The authors
evolved a neural network controller and verified their algorithm with real e-puck robots.
These two works are also interesting in the perspective of animal-robot interaction.

Hsieh et al. (2008) proposed bio-inspired quorum-based stochastic control policies
for assignment of swarm of robots to multiple nest sites. The swarm of robots are
modelled as population fractions for each nest site. Each robot switches between
maximum and constant transition rates in a probabilistic way and is assumed to move
from one nest site to another, as well as, able to estimate the population size of a
nest site. Furthermore, each robot has full a priori knowledge of the interconnection

2.3 Swarm Robotics Tasks 33

topology graph, that is equivalent to equipping the robots with an environment map,
and control parameters with every other robot. The control policy enabled the robots
to successfully redistribute themselves to available nest sites.

Parker and Zhang (2009) studied a scenario in which a group of robots is expected to
choose the best out of a number of unequal options. The robots behaviour is inspired by
the decision-making processes in insects. They employ an active recruitment strategy
that relies on inter-robot communication. The robots start by looking for options and
advocating them to each other, always switching selection to the best-known option.
Once a robot’s selection becomes sufficiently popular (reaching a quorum), the robot
becomes committed to it. This enables the group to reach consensus.

Hamann et al. (2010) studied how a homogeneous group of robots can collectively
choose between two global maxima in a light-intensity field. Each robot moves in a
straight line until it encounters another robot. Then, it stops and counts the total
number of robots in its neighbourhood. If this is above a certain threshold, the robot
measures the light intensity and waits for a time proportional to this intensity. This
creates a positive feedback effect which enables symmetry breaking between the two
options.

Valentini et al. (2016) studied a swarm of robots that collectively choose among
two unequal options. At any moment in time, each robot has an opinion about which
option is best. The robot either explores the option, or exchanges information with its
neighbours. In the latter case, the robot locally broadcasts its opinion for a duration
that is proportional to the perceived quality of the preferred option. Moreover, for a
fixed time period it monitors incoming messages and then updates its opinion using
the majority rule. The robot then switches to exploring the potentially new option,
and the process repeats indefinitely.

In all of the above examples, the agents perform arithmetic computations to
determine where or when to move [e.g. artificial potential fields (Halloy et al., 2007),
artificial neural networks (Francesca et al., 2012), timeouts (Halloy et al., 2007; Hamann
et al., 2010; Valentini et al., 2016) or pseudo-random numbers (Hsieh et al., 2008)]
or to update internal representations [e.g. preferences (Hsieh et al., 2008; Parker and
Zhang, 2009; Valentini et al., 2016)]. Moreover, the agents need to store information
during run time (e.g. quality estimates, behavioural states, or counters). Their sensors
typically provide rich information, such as a count of the number of nearby agents.

34 Background and Related Work

2.3.2 Gathering

Gathering is another canonical problem that is studied actively by the swarm robotics
community. Based on the context, the problem is referred to as robot aggregation (Cor-
rell and Martinoli, 2011), gathering (Gordon et al., 2004), or rendezvous (Alpern,
1995). Gathering is a collective behaviour in which the agents self-organise themselves
in order to congregate at a point in their environment. Gathering is commonly ob-
served in living organisms such as bacteria, fish and mammals (Camazine et al., 2001;
Krause and Ruxton, 2002). It is beneficial for the living groups in multiple ways, for
example, to build a nest, to share thermal energy, or to repel predators (Parrish and
Edelstein-Keshet, 1999).

In nature, it is common that gathering is guided by heterogeneities in the environ-
ment, for example, a warmer nest site would be a better place to shelter. However,
gathering in homogeneous environments has also been observed in nature. Deneubourg
et al. (1990) reported that a group of uniformly distributed bark beetle larvae can
aggregate rapidly in the centre of an homogeneous Petri dish. In an homogeneous
environment, there is no cue to hinder where to meet, it rather dynamically emerges
through the local interactions within the group.

A gathering strategy could be either stochastic or deterministic. A number of
biological models include a certain degree of stochasticity (Deneubourg et al., 1990;
Parrish and Edelstein-Keshet, 1999). Stochasticity in the models is often injected
by random walk, or by response to a gradient such as density of a cluster. In this
thesis, we are interested in both stochastic and deterministic gathering strategies. Both
approaches present advantages and disadvantages. In general, deterministic control
strategies require the initial placement of the robots to form some sort of a connectivity,
or visibility, graph. This requirement renders it difficult for robots to operate in a large
environment due to the constraints in the sensing and communication range. On the
other hand, a deterministic strategy can lead to convergence in the system faster as it
does not constitute randomness.

In the rest of this section, we focus on gathering of multi-agent systems in continuous
and discrete domains. First, we present deterministic and stochastic gathering control
strategies in continuous space. Then, we present gathering strategies for robots
operating in a discrete space.

For gathering in continuous space, a number of solutions require that each robot
determines the relative position of all other robots in its local neighbourhood. For

2.3 Swarm Robotics Tasks 35

example, Ji and Egerstedt (2007) presented a solution that is guaranteed to solve
the gathering problem, provided that the visibility graph corresponding to the robots’
initial spatial distribution is connected. Other solutions required that each robot
determines the bearing of all other robots in its local neighbourhood (Gordon et al.,
2004), again assuming initial connectivity. For robots using a line-of-sight sensor, it
was shown that a single bit of information—whether another robot is detected or
not—could be sufficient to solve the gathering problem, though only if the sensing
range is unlimited (Gauci et al., 2014c).

Barel et al. (2017) proposed a probabilistic algorithm for gathering agents with
1-bit, unlimited range sensors. At every time step, each agent assumed a random
orientation, and then moves forward if no other agent is present in the half-plane
behind it, and rests, otherwise. The correctness of the algorithm was proven under
the assumptions that the agents act synchronously, could jump instantaneously from
one pose to another, and did not have physical bodies. Moreover, to avoid deadlock
situations, the binary sensor was shown to require a half-disk blind region.

Ozsoyeller et al. (2019) presented a solution guaranteeing that a pair of robots,
operating in an environment with polygonal obstacles, was guaranteed to meet almost
surely. The solution involved repetitively tossing a coin to decide whether to rest in
place, or move in a way that covers the environment. The strategy was extended to
more than two robots, provided they could communicate.

For gathering in discrete space, Fatès (2010) presented a gathering algorithm for
agents that could communicate by modifying their environment. The environment was
considered to be a lattice structure and the agents are modelled as virtual amoebas.
Each agent could move randomly into a neighbouring cell based on reaction-diffusion
concentration in their local proxy. The proposed algorithm was robust to sensory noise
and copes well with the presence of obstacles in the environment.

Cord-Landwehr et al. (2016) and Fischer et al. (2017) presented solutions for robots
with constant memory and no memory (oblivious), respectively. The solutions were
guaranteed to converge in linear and quadratic time. They required each robot to
determine the relative position of all other robots in its local neighbourhood, comprising
more than 100 cells, and a visibility graph that is initially connected. The robots were
not embodied; where multiple robots occupy the same cell, all but one were removed.

Walter (2018) proposed two algorithms to solve the gathering problem with hexag-
onal modules. The modules were equipped with light and contact sensors. The
algorithms were distributed and decentralised and did not require the modules to

36 Background and Related Work

communicate with each other. The authors considered a set of observations to show
the convergence of the algorithms.

While the aforementioned examples proposed decentralised control solutions to the
discrete gathering problem with constraints on the agents, they assume unrealistic
prerequisites. Either the setups lack physical constraints, such as the agents are not
embodied (Cord-Landwehr et al., 2016; Fischer et al., 2017) and requiring to modify
their environment as a means of communication (Fatès, 2010), or they are required
to access global information such as their locations and orientations (Walter, 2018).
Unlike previous solutions to the gathering problem with such restricted agents, the
policies we propose in this thesis are not limited to specific initial positions, take
the agent’s embodiment into account, and require only four trits (i.e. ternary digits)
of sensory information, though the latter comes at the expense of unlimited-range
sensing7.

2.3.3 Shepherding

The shepherding problem involves guiding the motion of multiple dynamic sheep agents
by one or more shepherd agents towards a prespecified goal location. Aside from the
shepherding of actual sheep by dogs, this problem, in a more general setting, has
other manifestations—one example is human crowd control in large-scale events by
trained officials. Potential robotic applications involving this task include: containing
oil spillages (oil on the surface of water behaves as a dynamic entity), manipulation of
micro-bacteria, and other uses in nanomedicine (Lien et al., 2005; Requicha, 2003).

Vaughan et al. (2000) conducted one of the earliest studies on the shepherding
problem. They developed a controller strategy to herd (real) ducks using a single robot.
The controller required an external camera system for tracking the robot’s position
and orientation. This, along with information on the centre of mass and size of the
flock of ducks, was computed to provide quasi-instantaneous path planning for the
robot to herd the ducks towards a goal location.

Lien et al. (2005) proposed and analysed several formations that the shepherds can
assume. The shepherds are required to count the number of other shepherds, estimate
the flock size, and construct a graph structure and ideally solve an optimisation problem
on-board. Their work suggested that multiple robotic shepherds are superior to a
single one in solving the problem.

7The sensing range needs to be sufficiently long to cover the environment.

2.3 Swarm Robotics Tasks 37

Strömbom et al. (2014) developed an algorithm based on empirical data from
sheep/dog interactions. The authors conducted a real-life experiment with 46 merino
sheep in South Australia in order to collect movement date. A trained sheepdog is
verbally guided towards the goal location. The proposed algorithm contains two steps:
firstly, the shepherds gather a dispersed flock of sheep; secondly, they herd them to a
goal location. Based on the distribution of the sheep flock, the shepherd agents can
switch behaviour between step one and step two.

Razali et al. (2010) was inspired by the biological immune system model to solve
shepherding problem. The developed algorithm uses immune network theory that
makes the agents adaptable to changes in their environment. Although, the agents
can execute different strategies, and are required to communicate with each other to
estimate whether two agents use a similar strategy or not. Based on three threshold
parameters, the agents can calculate their strategies via a simple action-selection
process.

In contrast to the traditional shepherding problem, Çelikkanat and Şahin (2010)
investigate the navigation of a swarm of robots using informed individuals. Some of the
individuals are externally guided and their task is to steer the rest of the flock in the
direction of the goal. The informed individuals know the goal direction as well as share
information with the other flockmates to have a consensus. Therefore their action is
an outcome of the weighted summation. After the simulations and experiments, the
authors mention that steerability of a swarm of robots depends on the ratio of the
informed members in the swarm and the weight of the choice of direction.

Pierson and Schwager (2015) proposed a control strategy for a multi-agent system
herding non-cooperative sheep agents. The shepherd agents assume unicycle motion
model and capable of performing arithmetic computations to calculate the controller,
ideal heading and velocity. Using Lyapunov theory, the authors proved that this
controller is always guaranteed to herd the flock to the goal location. The work
was further extended to three dimensions in (Pierson and Schwager, 2017) using an
appropriate nonholonomic motion model.

Lee and Kim (2017) proposed a control strategy based on artificial potential fields,
requiring the agents to operate in a bounded and obstacle-free environment. The
shepherd agents are equipped with sensors allowing the agents to measure the relative
distance and bearing angle and velocity (both magnitude and direction) of neighbour
agents. The control strategy requires the shepherds to switch behaviours based on

38 Background and Related Work

various decision criteria. Additionally, the control strategy comprised of 4 control
inputs that requires 4 scaling parameters.

In all of these works, the controller strategies required the shepherd agents to have
memory, perform arithmetic computations, and exchange information with each other.
In addition, they required the sensors to provide sophisticated information, such as,
relative distance and estimating group size.

2.3.4 Spatial Coverage

Spatial coverage is a task performed by a group of agents distributing themselves to
cooperatively cover an environment, or specific regions of interest within. This task has
a number of applications. For instance, agents may be required to monitor a given area,
to log data, or to detect abnormal events and relay an alarm to a central station. The
robots may also be required to service the environment, such as watering or applying
chemicals to a field of crops.

We are interested in self-organised dispersion of a group of agents that cover an
environment simultaneously. This differs from the problem of visiting every location at
once (Choset, 2001) or repeatedly (Rutishauser et al., 2009). Usually this requires the
agents to maintain connectivity as a network or planning their path in advance. These
problems are interesting for certain applications, in the former, when one agent makes
a local observation, it can be shared throughout the whole group. In the latter, over
time the robot pass over every location in the environment, as required in applications
such as lawn mowing or vacuum cleaning.

Spatial coverage may also be used for searching as complete coverage constitutes
a systematic strategy. Consider a situation where a group of robots start at a ‘nest’
location and must forage for a food source at an unknown location (provided it is
within a bounded environment). By spreading out in the environment, the robots
can minimise the expected time for finding the food source; once this is found by a
robot, the information can be shared with the swarm, which would then transition to
a different strategy to begin foraging.

One of the earliest studies of multi-robot coverage was reported by Howard et al.
(2002). The authors showed that a swarm of robots, by emulating the movements of
charged particles in a potential field, could disperse within an office-like environment.
Each robot used relative position information about nearby robots and obstacles. While
the attained formations may not be uniform, they are guaranteed to be stable.

2.3 Swarm Robotics Tasks 39

McLurkin and Smith (2007) studied a strategy to deploy a swarm of robots in a
bounded environment, where each robot moved away from its k nearest neighbours.
For k = 2, the robots obtained an almost uniform distribution, whereas for k ≫ 2, they
ended up at the boundary. They could also disperse in open space while maintaining
connectivity. The robots used an infra-red communication system to obtain relative
positions.

Correll and Martinoli (2006) investigated the performance of swarms of robots when
inspecting parts of a turbine engine. Each robot executes a schema-based decentralised
controller which uses local potential fields to generate its action. The authors performed
simulation and physical robot experiments. The results suggest that detailed geometric
structures should be considered, as environment morphology affects the spatial coverage
performance of a swarm of robots.

Schwager et al. (2006) studied a swarm of robots that, when put in a bounded
environment, assume positions that optimise an a priori unknown utility function.
This could allow regions of importance to be monitored more densely. The robots used
local sensing to sample and approximate the utility function. Their controller achieves
near-optimal coverage, and was tested on the same platform as in McLurkin and Smith
(2007).

Ramaithitima et al. (2015) proposed a solution to the coverage problem that relies
on only touch and bearing sensors. As the environment is not known in advance, the
robots get sequentially deployed, until complete coverage is achieved. The control
strategy is guaranteed to provide a complete coverage for a sufficient number of robots.

Prorok et al. (2011) proposed a combined spatial and non-spatial probabilistic
modelling method. The models focus on spatial distribution and result in accurate
predictions of the performance of the system. The authors apply the Fokker-Planck
diffusion model to an agents spatial distribution over time. The models are validated
through simulation and real robot experiments. However, the latter is only applied to
a single robot scenario.

The aforementioned related work proposed alternative approaches that either require
computation, localisation, or more elaborate coordination strategies. While some of
the works listed may perform better, they are also computationally more demanding.
This renders it difficult to implement extremely simple robotic systems, such as micro-
and nano-scale mobile machines that lack fully-fledged CPUs or wireless radios.

40 Background and Related Work

2.3.5 Concluding Remarks

Recently, there has been a surging interest in exploring what is possible with robots
that operate at a level of extreme simplicity; a question that had hitherto received little
attention (Becker et al., 2013; Groß and Dorigo, 2008; Jones and Mataric, 2003). A ma-
jor motivation for such robotic systems is their potential feasibility for implementation
at small scales, where more conventional robotic systems are not feasible to implement
due to the acute constraints on the space available for hardware (Requicha, 2003).
While the proposed strategies can solve the discussed problems and some of them can
guarantee a solution, they also require complex and sophisticated robot models. The
common feature in the related work presented is that the agents are required obtain
rich (high amount) information from their environment and often store the information
in memory. In addition, they are capable of performing complex calculations, and are
assumed to utilise flawless communication channels. These hardware requirements
render it difficult for large quantities of these robots (e.g. ≫ 103) to be produced.
Moreover, they render it difficult for the platforms to be scaled down in size to the
submillimetre level. In the next chapter, we will present a minimalist control strategy
for multi-agent spatial coverage problem.

Chapter 3

Spatial Coverage

3.1 Introduction

In the previous chapter, we provided background knowledge for swarm robotics, mainly
focusing on evolutionary robotics and computation-free swarming. Additionally, we
reviewed existing literature for the relevant swarm robotic tasks, specifically, finding
consensus, gathering, shepherding and spatial coverage.

Previously, Gauci et al. (2014b,c) demonstrated computation-free swarming for
multi-robot aggregation and clustering tasks. The common aspect for both tasks is
that the robotic swarms are expected to converge towards a point in the space. Whilst
the tasks are not straight-forward, it is yet to be seen if the robotic swarm could
accomplish an opposite scenario in which they need to disperse themselves throughout
the environment. We hypothesise that, using the computation-free swarming framework,
a divergent, self-organised behaviour is achievable in a controllable way such that once
the robots disperse, they can maintain their positions. This behaviour then can lead to
a number of practical applications, including covering an area and navigating a maze.

Following the hypothesis stated above, in this chapter we study the multi-robot
spatial coverage problem for which a group of robots is required to cooperatively cover
an environment or specific regions of interest within. The problem is relevant for a
number of applications. For instance, robots may be required to monitor a given area,
perhaps to log data, or to detect abnormal events and relay an alarm to a central
station. The robots may also be required to service the environment, such as watering
or applying fertiliser to a field of crops. Finally, complete coverage constitutes a
systematic strategy for search.

42 Spatial Coverage

In this work, we assume that the environment is bounded, and that all parts are
to be covered continuously. This differs from the problem of visiting every location
once (Choset, 2001), or repeatedly (Portugal and Rocha, 2011; Rutishauser et al.,
2009). We present the first solution to the spatial coverage problem that is applicable
to anonymous robots that lack the ability to compute, store run-time information,
or communicate. Hence, our control strategy is the first to be free of arithmetic
computation.

This chapter is organised as follows. Section 3.2 presents the problem formula-
tion, including the computation-free control architecture and performance measures.
Section 3.3 describes the evolutionary process to synthesise a controller, and presents
mathematical analysis of the obtain the controller. Section 3.4 presents simulation
studies that evaluate the performance with respect to simple benchmarks, and examine
the effect of sensory noise, swarm size, and environment shape, and abilities of navigat-
ing a maze. Section 3.5 presents experiments with n = 25 physical e-pucks and reports
the results. Section 3.6 concludes the chapter.

3.2 Problem Definition

3.2.1 Environment and Robot Model

Consider a two-dimensional (2D) bounded environment, E ⊂ R2, with n autonomous
mobile robots. The robots are anonymous, that is, indistinguishable from each other
and execute an identical controller. They lack the capability of performing arithmetic
computation, and have no run-time memory. Moreover, they are unable to communicate
with each other, cannot localise, and have no knowledge of the environment, E , nor of
the number of robots, n.

At time t, robot i’s position and orientation is written as xi(t) ∈ E and θi(t) ∈ [0, 2π),
respectively. Robots are modelled as non-overlapping open disks of radius r which are
fully contained in E .

Each robot moves using a differential-drive. The robot’s two wheels are sym-
metrically placed at an inter-wheel distance of dwheel. Its linear (v) and angular (ω)
velocities—in its local reference frame—are

v =
vℓ(t) + vr(t)

2
vmax and ω =

vr(t)− vℓ(t)

dwheel

vmax, (3.1)

3.2 Problem Definition 43

where vℓ(t), vr(t) ∈ [−1, 1] are the normalised left and right wheel velocities along the
ground, vmax is the maximum velocity, and dwheel ≤ 2r.

Each robot is equipped with an unlimited-range1 binary line-of-sight sensor that
detects whether another robot is present in the line of sight directly ahead of the
robot. The sensor “scans” only up to the first encountered object (which might be the
environment boundary). Thus, the sensor is unable to detect a robot if it is behind
obstacles or walls. Note that, the sensor provides neither distance information nor
multiplicity of encountered objects. Formally, the sensor reports

s(t) =

1 if another agent is detected;

0 otherwise.
(3.2)

The robot executes a deterministic controller,

c : {0, 1} −→ [−1, 1]× [−1, 1]. (3.3)

At time t, c assigns sensor reading s(t) to a pair of wheel velocities. Formally,

c(s(t)) = (vℓ(t), vr(t)) =

(vℓ,0, vr,0) if s(t) = 0,

(vℓ,1, vr,1) otherwise,
(3.4)

where (vℓ,k, vr,k) is the pair of wheel velocities for s(t) = k ∈ {0, 1}. Using v =

(vℓ,0, vr,0, vℓ,1, vr,1) ∈ [−1, 1]4, any reactive control strategy can be expressed.

3.2.2 Objective

The coverage literature has used a number of performance criteria for coverage that
either relate to the area a robot covers, special positions robots should occupy, or special
measures of importance of parts of the space. In our work, we consider the following two
performance criteria. The first criterion, cell coverage, determines coverage quality by
relating robot positions to a given partitioning of the environment into cells. The goal
is to occupy every cell with at least one robot. Such a partitioning may be provided by
a user, derived from a utility function that represents the importance of the space, or

1In practice, the robots require sufficiently long sensor range to cover the environment.

44 Spatial Coverage

simply be uniform (as in our scenarios). The second criterion, area coverage, measures
the joint area that is close to some robot.

The cell coverage at time t is defined by

Pcell(t) =
moccupied(t)

m
, (3.5)

where m is the total number of cells and moccupied(t) is the number of cells that contain
at least one robot at time t. It follows that

1/m ≤ Pcell ≤ min(n/m, 1). (3.6)

The area coverage at time t is defined by

Parea(t) =
A
(⋃n

i=1Ni

)
A(E)

, (3.7)

where Ni = {p ∈ E : ∥p− xi(t)∥ ≤ rcover}, rcover > r denotes the distance up to which
the robot covers the environment, and A(S) is the area of S. It follows that

πr2cover
A(E)

< Parea ≤ min
(nπr2cover

A(E)
, 1
)
. (3.8)

Note that the cell partitions and coverage radius have no bearing on the robot’s
behaviour. They are merely used to measure performance. Figure 3.1 illustrates both
performance measures in a square environment with n = 25 robots. The environment
is partitioned into 25 equally-sized square cells.

3.2.3 Simulation Setup

We use an open-source physics-engine Enki (Magnenat et al., 2009), which simulates
the dynamics and kinematics of rigid bodies in 2D. Space is represented continuously
(with floating point precision). The control cycle of the robots is activated every 0.1 s

and the physics are updated at 0.01 s intervals.

The robot platform is the e-puck (Mondada et al., 2009). In Enki, an e-puck
is modelled as a disk of radius r = 3.7 cm and mass 152 g. Its maximum velocity
is vmax = 12.8 cm/s. The inter-wheel distance is dwheel = 5.1 cm. Throughout all
simulation runs, 5% uniform noise is affecting the velocity of each wheel—the default

3.2 Problem Definition 45

(a) (b)

Fig. 3.1 A group of 25 robots performing coverage with two performance measures
illustrated at the beginning (top) and end (bottom) of a trial: (a) Cell coverage uses a
decomposition of the environment (square cells), and reports the fraction of cells with
at least 1 robot; (b) area coverage assumes that each robot covers all points within
a certain range, and reports the fraction of the environment’s area that the robots
collectively cover. The corresponding coverage (percentage) for (a) is 4.0% (top) and
84.0% (bottom). For (b) it is 11.6% (top) and 69.8% (bottom).

46 Spatial Coverage

setup in Enki. The velocity parameters [see Equation (3.4)] are represented as floating
arithetmic digits with 6 figures.

3.3 Controller Synthesis

In this section, we present the controller synthesis. We employ an evolutionary robotics
approach (Gauci et al., 2014c; Nolfi and Floreano, 2000; Trianni, 2008) for designing
the deterministic reactive controller. We first describe how a candidate control solution
is evaluated in Section 3.3.1. Second, we describe the evolutionary algorithm setup that
is used to evaluate the candidate solutions. Third, we explain the controller selection
procedure. Finally, we present the selected controller, and mathematical analysis on
the movement it produces.

3.3.1 Evaluation of Candidate Solutions

Candidate solutions are controllers that are considered by the evolutionary process.
They are represented in continuous space, by quadruples v = (vℓ,0, vr,0, vℓ,1, vr,1) ∈
[−1, 1]4.

For each candidate solution, 20 simulation trials are performed using E = [0, 300]×
[0, 300] (cm) and n = 25 robots. Each trial lasts for T = 120 s, corresponding
to 1200 updates of the robot’s control cycle. The robots are initially placed with
random position and orientation within the same random cell, all chosen from uniform
distributions.

The environment is decomposed into a 5× 5 grid of cells, as shown in Figure 3.1(a).
At the beginning of the trial, all robots are placed with uniformly random orientation
and position at a distance of up to 30 cm from the centre of a uniformly randomly
chosen cell.2 All candidate solutions in a generation are evaluated on the same set of
initial configurations.

2Initialising the robots in a circular region prevents orientation bias.

3.3 Controller Synthesis 47

The performance of the swarm in a trial is measured using the cell coverage measure.3

Formally the fitness function is

F =
2

T (T + 1)

T∑
t=1

tPcell(t). (3.9)

The performance at time t < T is taken into account, weighted by t, to reward
solutions that reach good coverage faster. The constant factor normalises F to (0, 1].4

The overall fitness of the candidate solution is the mean performance across 20 trials.
The fitness function given in Equation (3.9) characterises the desired goal for the
robots, that is, to cover the entire bounded environment with a uniform density.

3.3.2 Evolutionary Algorithm

Candidate solutions are synthesised using the Covariance Matrix Adaptation-Evolution
Strategy (CMA-ES), a black-box optimisation method that is quasi parameter-free
(Hansen and Ostermeier, 2001). In its original version, CMA-ES operates in uncon-
strained real space R2d, where d = 2 in our study. Therefore, we need to perform a
transformation from the candidate solutions provided by CMA-ES onto valid controllers.
We achieve this by applying the following sigmoid-based function to each value in the
candidate solution:

sig(x) =
1− e−x

1 + e−x
, ∀x ∈ R. (3.10)

The only external parameters that are required by the CMA-ES algorithm are the
following: a population size λ, an initial guess of a solution, m(0), and an initial step
size σ(0). We set m(0) = 0 and σ(0) = 0.72. Using Monte Carlo simulations, Gauci et al.
(2014b) reported that these settings provide an approximately uniform distribution
over [−1, 1]2d in the initial generation.

The evolutionary algorithm maximises the fitness function given in Equation (3.9).
In CMA-ES, a population size, λ needs to be chosen. There are no strict guidelines; as
discussed in Hansen and Ostermeier (2001). The authors discuss that whilst a smaller
population size usually converges faster, a larger population size avoids local optima.
To choose λ, we follow the advise given by the authors, that is, λ ≤ 2n+ 10, where

3The area coverage measure was not used during the evolutionary process because it is computa-
tionally more demanding.

4In principle, a 0-value is not possible, as at least 1 cell has to be covered.

48 Spatial Coverage

10
0

10
1

10
2

number of generations

0.2

0.4

0.6

0.8

1.0

fit
ne

ss
 v

al
ue

Fig. 3.2 Fitness dynamics of 50 evolutionary runs for 500 generations. The line plot
shows the mean fitness value and the envelope shows the minimum and the maximum
value of each generation. The number of generations in x-axis is given in logarithmic
scale.

n is the number of control parameters. We use a population of λ = 12 candidate
solutions, of which µ = λ/2 = 6 are selected for reproduction. Initially, the candidate
solutions are generated randomly using uniform distributions. In every generation,
each candidate solution is evaluated via simulation trials as described in Section 3.3.1.
The evolutionary run terminates after 500 generations.

3.3.3 Controller Selection

The source code for interaction between the Enki physics library and CMA-ES was
adapted from the source code used in Gauci et al. (2014c). Although the implementation
of CMA-ES remained the same, substantial changes were made to the remaining source
code, including improvements on the simulation setup, environment model, random
initialisation, maze-wall generation, fitness function calculation, random walk model
and file input/output. The batch-job submission, simulation compiler, visualiser
(renderer), and data analysis source code were written by the author.

In total, 50 evolutionary runs were conducted. The fitness dynamics are shown in
Figure 3.2. In 4 runs, the evolution prematurely converged towards solutions of lower
quality than in the other 46 runs. The mean fitness value for each generation stalls
after approximately 100 generations, indicating, there is only a minor improvement in
the performance.

3.3 Controller Synthesis 49

0 100 200 300 400 500
number of generations

1.0

0.5

0.0

0.5

1.0

ve
lo

ci
ty

 p
ar

am
et

er

v , 0
vr, 0

v , 1
vr, 1

Fig. 3.3 Control parameter evolution for the best controller. Each line plot represents
a velocity parameter.

Table 3.1 The parameters of the best controller.

nothing robot (agent)
vℓ,0 vℓ,1

0.719558 -0.998071
vr,0 vr,1

0.412543 -0.911843

To choose the best controller out of the 50 evolutionary runs, we post-evaluated
the highest-ranked candidate solutions from the last generation of each run using 200

additional simulations, and chose the one with the highest mean performance.

Figure 3.3 shows the evolution of the selected controller parameters. After approx-
imately 50 generations, there is almost no change in the parameters (vℓ,1, vr,1). On
the other hand, for (vℓ,0, vr,0) it took 300 generations to converge to the final values.
This is inline with the fitness dynamics, where there is no significant performance
improvement once the parameters stall.

The following section presents the best controller and mathematical analysis on the
movement it produces.

3.3.4 Mathematical Analysis

The parameters of the best controller are given in Table 3.1. Figure 3.4 shows a
pictorial representation of the controller. The red and blue arcs show the directions

50 Spatial Coverage

0

1

Fig. 3.4 A pictorial representation of the best controller. The red arc shows the
primitive behaviour of the robot when its sensor reads s = 0 (nothing), and the blue
arc shows the behaviour when s = 1 (robot/agent).

the robot would head depending on its sensor reading. The angle and length of the
arcs are proportional to the angular and linear velocities of the controller.

As long as the sensor reading does not change, the robot follows a circular trajectory
of radius R, with an angular velocity ω (Dudek and Jenkin, 2010). We obtain R0 =

9.40 cm and ω0 = −0.77 rad/s for s = 0, and R1 = 56.48 cm and ω1 = 0.216 rad/s for
s = 1. When the robot detects another robot in its line of sight, s = 1, it moves rapidly
backward (with 95.5% of the maximum linear speed) along a circular trajectory, in a
counter-clockwise fashion. Otherwise, it moves forward (with 56.6% of the maximum
linear speed), along a circular trajectory, in a clockwise fashion. If the two radii, R0

and R1 were the same, the robot would remain on its orbit indefinitely (assuming no
collisions), and hence would be unable to spatially disperse. We hypothesise that for
any R0 ≪ R1, spatial separation can be achieved.

We analyse the movement of one individual robot executing the best controller. For
the analysis, we assume that the robots response to changes in the sensor reading s(t)

instantaneously, unlike the simulation setup (see Section 3.2.3—the robot control cycle
is activated every 0.1 s).

Lemma 1. Using wheel speeds (vℓ,1, vr,1) a robot repel from a static robot.

Proof. Recall that we have (vℓ,1, vr,1) = (−0.998071,−0.911843). Using the kinematic
motion model for differential drive robots given in Equation (3.1), the linear and the

3.3 Controller Synthesis 51

angular speeds of the focal robot is

v1 =
−0.998071 + (−0.911843)

2
12.8 = −12.223 cm/s,

ω1 =
−0.911843− (−0.99807)

5.1
12.8 = 0.216 rad/s,

(3.11)

Let’s assume that two robots are aligned in a linear formation from centre-to-centre,
with the focal robot pointing at the centre of the static robot. Then the focal robot
moves backwards with linear speed of 12.223 cm/s and angular speed of 0.216 rad/s,
resulting in a curvilinear trajectory with large curvature.

Whenever the robot stops detecting the static robot due to the curvilinear motion,
it then detects s = 0, causing to drive with the following velocities

v0 =
0.719558 + 0.412543

2
12.8 = 7.245 cm/s,

ω0 =
0.412543− 0.719558

5.1
12.8 = −0.77 rad/s.

(3.12)

The linear and angular velocities given in Equation (3.12) leading the robot to
move forward with an opposite direction of rotation, cause the robot to detect the
static robot. The linear distance travelled by the robot can be given as

dv = (αv0 + βv1)∆t, s (3.13)

where α and β are the number of time-steps (or portions) the robot utilised consecutively,
until it periodically goes back. We have ω0 > ω1, implying that α < β. The distance
travelled,

dv =
(
7.245α− 12.223β

)
∆t < 0, (3.14)

is negative, hence, results in the focal robot to repel from the other robot. ■

Theorem 1. Using wheel speeds (vℓ,1, vr,1) a dynamic robot repels from another dynamic
robot.

Proof. From Lemma 1, we know that a dynamic robot can repel from a static robot.
Let’s assume that two robots are in a linear formation with their sensors pointing
towards on one another’s centre. When both of the robots are dynamic, the time
period that they detect the other robot (s = 1) is shorter, leading to detecting nothing
(s = 0) earlier. However, as both robots are rotating when s = 0, the time period that

52 Spatial Coverage

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,0

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
vr, 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
vr, 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 1

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,1

0.1

0.2

0.3

0.4

0.5

0.6

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,0

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
vr, 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
vr, 0

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,1

-1.0 -0.6 -0.2 0.2 0.6 1.0
v , 1

-1.0

-0.6

-0.2

0.2

0.6

1.0

v r
,1

0.40

0.45

0.50

0.55

0.60

0.65

0.70

(a) (b)

Fig. 3.5 Exhaustive search over 4 control parameters with grid cells representing the
(a) mean, (b) maximum fitness performance. The blue asterisks on the heatmaps show
the optimised controller parameter combination.

they detect s = 0 is also shorter. As a result, the variations from the initial linear
formation would be larger, however, the distance they travelled away from each other
would also be larger than if of one the robots was static. ■

3.3.5 Grid Search

In this section, we perform a grid search over the parameter space, in order to estimate
the (approximate) global optima of the search space and discuss the significance of the
best ‘evolved’ controller. We divide the search space for each of the 4 velocity parameters,
[−1, 1], into 21 data points, and simulate each combination of parameters K = 20

times. This computationally expensive procedure requires a total of 214×20 = 3889620

simulation trials. As in the default setup, we simulated n = 25 robots for T = 120 s.

The results of the grid search is 5-dimensional; four of them are the independent
velocity parameters (between -1 and 1), and the fifth is the fitness value (between
0 and 1). To visualise the 5-dimensional data, we plotted 2-dimensional heatmaps
with (x, y) coordinates represent the velocity parameters, and the cell colour represents
the fitness value. Since there are 4 parameters, and we need to choose 2 at a time,

3.3 Controller Synthesis 53

there are
(
4
2

)
= 6 plots. On the other hand, when one visualises 5D space on 3D

subspace, the other 2 independent parameters become obsolete. In order to highlight
the characteristics of the results, we opt to plot the fitness values in two settings.

In Figure 3.5(a), the grid cell colours represent the mean performance of any
combination of control parameters with the given two velocity parameters. In other
words, the fitness value for (vℓ,0, vr,0) is calculated as the following:

F ∗(vℓ,0, vr,0) = mean(vℓ,1,vr,1)F (vℓ,0, vr,0, vℓ,1, vr,1) (3.15)

In a similar fashion, Figure 3.5(b) shows the maximum performance over the 2D
subspace. Formally,

F ∗(vℓ,0, vr,0) = max
(vℓ,1,vr,1)

F (vℓ,0, vr,0, vℓ,1, vr,1) (3.16)

From Figure 3.5, it is clear that the evolved best controller lies in a global optimum
region (the lighter-coloured regions) in each of the sub-plots. As the robotic model
is differential-wheeled, setting the velocity parameters to their opposite values would
lead to a behaviour that is symmetric. The heatmaps reflect this; for instance, the
combinations of (vℓ,0, vr,1) and (vr,0, vℓ,1) in Figure 3.5(a) and (b) are the same.

The grid search study also highlights the significance of the floating digits used. As
one can see, in some of the regions on the heatmaps, the colour transitions between
two grid cells are sharp, meaning that the changes in performance are significant. This
indicates that using 2 floating digits would lead to a coarse representation, and would
not capture the characteristics of the system as desired. Further simulation results
show that there is a 6.68% and 4.60% increment in performance when using 6 floating
digits compared to 2 and 3, respectively.

Additionally, we performed a sensitivity analysis via means of standard deviation
of the fitness performance. For each of the control parameter pairs (as in Figure 3.5),
we calculated the standard deviation of the average performance (i.e. fitness value).
The results yielded that the (vℓ,0, vr,0) pair has a standard deviation of 0.0748 and the
pair (vℓ,1, vr,1) has a standard deviation of 0.1213 using Equation (3.15). When using
Equation (3.16), the standard deviation values are 0.0386 and 0.0605, respectively.
These results indicate that the swarm’s performance is more sensitive to the changes
for the control parameters (vℓ,1, vr,1) than to (vℓ,0, vr,0).

54 Spatial Coverage

3.4 Simulation Studies

In this section, we evaluate the performance of the controller (Section 3.3.3) using a
series of simulation studies. Unless otherwise stated, we use the same experimental
setup as during the optimisation process (see Section 3.3.1). We report the coverage
performance observed at the end of the simulation trials using both cell coverage and
area coverage metrics as given in Equation (3.5)-(3.7), respectively.

For area coverage, we calculate a lower bound for the smallest radius that can
obtain complete coverage. Coverage radius of rcover can be obtained by using the
following equation derived by Kershner (1939):

nπr2cover =
2π
√
3

9
A(E). (3.17)

By solving Equation (3.17) for n = 25 robots and A(E) = 300× 300 cm2, we obtain
rcover = 37.22 cm.

3.4.1 Performance Comparison with Different Strategies

We compare the computation-free controller against three other controllers:

• Open-loop: The robot moves backward with maximum speed; (vℓ,0, vr,0) =

(vℓ,1, vr,1) = (−1,−1). This controller characterises the robot’s response to
any sensor reading as repelling. Due to symmetry, this strategy is identical to
v = (1, 1, 1, 1).

• Greedy : The robot moves backward with maximum speed if another robot is
detected, (vℓ,1, vr,1) = (−1,−1), and otherwise turns clockwise on the spot with
maximum angular velocity; (vℓ,0, vr,0) = (1,−1). This controller allows the robot
to ‘search’ for the presence of any other robot by rotating on the spot, and
repelling from it once it encounters one.

• Random walk : We use the random walk framework studied in (Dimidov et al.,
2016). The random walk consists of alternating straight-line segments of random
length and on-the-spot rotations by random angles. The nature of the random
walk is characterised by a triple, (ρ, α, β). The first parameter, ρ ∈ (0, 1) controls
the correlation between angles of subsequent segments, while the other two

3.4 Simulation Studies 55

parameters, α ∈ (0, 2] and β ∈ (0,∞), control, respectively, the shape and scale
of the distribution from which the lengths of the segments are drawn (for details,
see Dimidov et al. (2016)). To optimise (ρ, α, β), we follow the same process
that was used for optimizing our computation-free controller. As in Section 3.3.3,
50 evolutionary runs were conducted, and the best controller of each run was
post-evaluated to select the overall best random walk for the present environment.

For each strategy, 1000 trials were performed. Figure 3.6 shows the results. Re-
garding cell coverage (left), the mean performance is 76.0% for the proposed controller,
22.4% for the deterministic open-loop controller, 60.8% for the deterministic, greedy
controller, and 60.8% for the optimised random walk controller, respectively. Regarding
area coverage (right), the mean performance is 71.2% for the proposed controller, 16.0%
for the deterministic open-loop controller, 51.8% for the deterministic, greedy controller,
and 61.3% for the optimised random walk controller, respectively. The proposed
controller achieves a 25.6–38.8% reduction in the uncovered area when compared to the
random walk controller. In addition, its performance is more consistent; the variances
for cell and area coverage are 4.99% and 6.36% for the proposed controller and random
walk controller, respectively. To evaluate the significance of the results, we conducted
a one-way ANOVA test. The F -values for cell coverage is 18543 and for area coverage
is 47395, whilst the p-values are both ≈ 0.0, indicating the swarms’ performance is
significantly different when using one of the four controllers.

3.4.2 Sensory Noise Analysis

We examine the situation that noise is affecting the reading values of the binary
line-of-sight sensor. This noise is in addition to the noise affecting the wheel velocities.

We consider three types of noise:

• False-negative: For s(t) = 1, with probability p ∈ [0, 1] the reading value is
replaced by a random value, X(t) ∈ {0, 1}, which is uniformly chosen at time t.
For s(t) = 0, the original value is retained.

• False-positive: For s(t) = 0, with probability p ∈ [0, 1] the reading value is
replaced by a random value, X(t) ∈ {0, 1}, which is uniformly chosen at time t.
For s(t) = 1, the original value is retained.

• Combined : With probability p ∈ [0, 1] the reading value is replaced by a random
value, X(t) ∈ {0, 1}, which is uniformly chosen at time t.

56 Spatial Coverage

0 20 40 60 80 100
cell coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

0 20 40 60 80 100
area coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

(a) (b)

0 20 40 60 80 100
cell coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

0 20 40 60 80 100
area coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

(c) (d)

0 20 40 60 80 100
cell coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

0 20 40 60 80 100
area coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

(e) (f)

0 20 40 60 80 100
cell coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

0 20 40 60 80 100
area coverage (%)

0.0

0.1

0.2

0.3

fre
qu

en
cy

(g) (h)

Fig. 3.6 Histogram showing the frequency of cell coverage (left) and area coverage
(right) percentages, as observed in 1000 simulation trials with n = 25 robots, controlled
by (a)–(b) our optimised controller, (c)–(d) an open-loop controller, and (e)–(f) the
greedy controller, all of which are deterministic and computation-free, as well as (g)–(h)
the optimised random walk controller, which uses computation to count control cycles
while moving forward and turning, and to generate pseudo-random numbers from
tailored distributions for the step length and turning angle. The environment has
dimensions 300 cm× 300 cm.

3.4 Simulation Studies 57

0 10 20 30 40 50 60 70 80 90 100
noise (%)

0

20

40

60

80

100

co
ve

ra
ge

 (%
)

false-negative cell coverage
false-positive cell coverage
combined cell coverage

false-negative area coverage
false-positive area coverage
combined area coverage

Fig. 3.7 Cell coverage (blue) and area coverage (orange) of n = 25 robots with noisy
sensors and the computation-free controller. Three types of noise: (i) false-negative
(solid), (ii) false-positive (dashed), and (iii) combined (dotted). Mean values and
standard deviations based on 100 simulation trials per level and type of noise. The
environment has dimensions 300 cm× 300 cm.

We run 100 simulation trials for each p ∈ {0, 0.1, 0.2, . . . , 1}.

Figure 3.7 shows the results. The controller is highly robust to noise on only one
sensor reading (i.e. either false-negative or false-positive), with both performance
measures reporting over 60% coverage with 100% noise. The performance degrades
faster if noise is present on both sensor readings (i.e. combined), down to around 20%

at 100% noise. Note, however, that in this case 100% noise represents a purely random
sensor reading.

3.4.3 Scalability Analysis

The default setup contains no redundancy. If a single robot fails, complete cov-
erage can no longer be achieved. We investigate the performance of swarms of
n ∈ {5, 10, 15, . . . , 100} robots in an environment of constant size (the default en-
vironment). Irrespective of the swarm size, the robots are initialised in a circular
region of radius 60 cm, which is uniformly randomly placed within the boundaries of
the environment. We run 100 simulation trials for T = 120 s per swarm size.

Figure 3.8 shows the results. The average performance rapidly improves for up to
around 40 robots, then plateaus, and finally improves again for 80 and more robots.
The presence of the plateau, where the performance may even slightly decrease, is a
counter-intuitive result, to be further investigated in the future.

58 Spatial Coverage

10 20 30 40 50 60 70 80 90 100
number of robots

0

20

40

60

80

100

co
ve

ra
ge

 (%
)

cell coverage
area coverage

Fig. 3.8 Cell coverage (blue) and area coverage (orange) of n = 5, 10, 15, . . . , 100 robots
in a 300 cm× 300 cm environment using the computation-free controller. Mean values
and standard deviations based on 100 simulation trials.

Fig. 3.9 Spatial distribution of n = 25 robots in a 300 cm× 300 cm environment. Each
cell indicates the average number of robots present at the end of 1000 simulation trials.

3.4.4 Effect of the Environment Shape

We investigate the spatial distribution of robots in more detail, and consider the effect
of the environment shape.

Figure 3.9 presents a heatmap of the average number of robots that ended up in
the 25 cells at the end of 1000 simulation trials. On average, the robots are more likely
to be present at the environmental boundary, and in particular, in the four corners.
Note that the robots are unable to detect the boundary. They repel from each other in
an attempt to cover as much area as possible.

To investigate the swarms’ ability to spread through an elongated, narrow corridor,
a further 1000 simulation runs are performed in a 25× 1 cell environment, of 1500 cm×
60 cm dimensions. Figure 3.10 shows a heatmap of the spatial distribution. The results

3.4 Simulation Studies 59

Fig. 3.10 Spatial distribution of n = 25 robots in an elongated, narrow corridor
environment, of dimensions 1500 cm × 60 cm. All robots start from the cell in the
centre and execute the computation-free controller for T = 600 s. Each cell indicates
the average number of robots present at the end of 1000 simulation trials.

are consistent with those obtained in the square environment—the robots are more
likely to end up near the corner than in the centre. However, every cell is covered, on
average, by 0.65 robots or more.

Figure 3.11 shows heatmaps for three 600 cm× 300 cm environments. We assume
a 10 × 5 cell composition. The first environment is free of obstacles. The second
environment is split into two by a thin vertical wall in the centre. The wall contains
an orifice in the middle. The third environment contains two vertical walls, creating a
z-shaped parkour. As the environment is twice the size of the original environment, we
used n = 50 and T = 240 s. In general, the swarm copes well with the restrictions. It
can be noted that the distributions are not fully symmetric in Figure 3.11(b).

3.4.5 Navigating a Maze

In the following, we test the ability of the computation-free controller to make a swarm
navigate a simple but unknown maze. The maze, shown in Figure 3.12a, contains a
number of challenges, including two dead-ends. The robots enter the maze on the
left-hand chamber, at a rate of one per 10 s, 12 s, 15 s, or 30 s. They execute the same
controller as used in the coverage experiments. Robots are removed as soon as they
are fully contained within the right-hand chamber. Figure 3.12b shows the number
of robots within the maze over time. As one can see, the swarm can navigate the
maze with a throughput of 1 robot per 15 s. However, as the input rate of new robots
increases, the maze becomes increasingly crowded, up to the point that no new robots
can be placed.

60 Spatial Coverage

(a)

(b)

(c)

Fig. 3.11 Spatial distribution of n = 50 robots in a 600 cm × 300 cm environment,
with (a) no obstacles, (b) a pair of internal walls, creating an orifice, and (c) a pair of
internal walls, creating a z-shaped parkour. Each cell indicates the average number of
robots present at the end of 1000 simulation trials.

3.4 Simulation Studies 61

(a)

0 600 1200 1800 2400 3000 3600 4200 4800 5400
time (s)

0

100

200

300

400

500

600

nu
m

be
r o

f r
ob

ot
s

current count (10s)
current count (12s)
current count (15s)
current count (30s)

cumulative count (10s)
cumulative count (12s)
cumulative count (15s)
cumulative count (30s)

(b)

Fig. 3.12 A swarm of robots using the computation-free controller to navigate a maze.
New robots enter the left chamber of the maze environment at a constant rate of one
per 10 s, 12 s, 15 s, 30 s. Robots are removed as soon as they are fully within the right
chamber. (a) Snapshot taken after 3600 s with a rate of one robot per 15 s. (b) Number
of robots that are, or have been, within the maze over time for each of the rates.

62 Spatial Coverage

Fig. 3.13 Close view of the robotic platform used in the experiments. The e-puck is
coated in red to be identifiable by other e-pucks. The marker on its top is used by the
tracking system for the post-analysis.

3.5 Experiments

3.5.1 Experimental Setup

To validate the feasibility of computation-free coverage in a real environment, we
conducted experiments using n = 25 physical e-puck robots in a bounded 300 cm ×
300 cm environment. The arena was logically split into a 5× 5 grid of cells of 60 cm×
60 cm dimensions.

For each experimental trial, the e-pucks are initialised in a different cell, as was
done in the computer simulations. The cells are selected using a uniformly random
distribution. Moreover, the robots’ assume random orientations during initialization.
The robots operate for T = 120 s.

3.5.2 Porting of the Controller

We use the e-puck robots (Mondada et al., 2009) to validate the obtained controller on
a physical platform. The e-puck has a CMOS-RGB camera that faces in the forward
direction, and is used to emulate the line-of-sight sensor. Each e-puck is wrapped in a
red ‘coat’ and operates in a well lit, white environment to improve the reliability of
detection. The e-puck is also equipped with a red ‘topper’ to enable easier detection
from the overhead camera for post-analysis. A close view of an e-puck robot is shown

3.5 Experiments 63

in Figure 3.13. Each e-puck is slightly physically different and, due to only having
two wheels, the camera direction, along the pitch axis, may slightly change during a
robot’s movement. To account for these misalignments, the line-of-sight sensor probes
not 1 pixel, but rather a vertical column of 7 pixels, taken symmetrically from the
centre of the image.

The line-of-sight sensor returns a positive reading (s = 1) if the colour of any of
the 7 pixels is not bright5, and a negative reading (s = 0), otherwise.

Even though the experiments in this chapter focuses on a particular robotic system,
e-pucks, in general the control strategy can be used in another ground robotic system
with similar capabilities.6 The strategy can be ported onto a different robotic system,
though, the evolutionary algorithm may need to be re-employed, as the fitness values
strictly depend on the simulation results considering a particular robotic swarm. For
the robotic systems that are highly similar, such as mobile differential-wheeled robots,
one can use Equation (3.1) to obtain the linear and angular velocities for the control
parameters given in Table 3.1. Then, one can convert the linear and angular velocities
back to the control parameters for the desired robotic system.

3.5.3 Results

We performed 20 experimental trials. All trials were recorded by the overhead camera,
and are available in the online supplementary material (Özdemir et al., 2019a). From
these video recordings, the positions of robots could be tracked using OpenCV tracking
library (Bradski, 2000). Figure 3.14 shows an example sequence of snapshots from a
typical trial.

Figure 3.15 summarises experimental results for all trials. On average, the swarm
achieved a cell coverage and area coverage of 65.2% and 64.9%, respectively, which
outperforms the previously obtained benchmarks (recall that the corresponding values
for the random walk controller were 60.8% and 61.3%, in simulation). The reduction in
performance may be attributed to the increased friction between the walls and robots,

5We test (R,G,B) ≺ (180, 180, 140), where (R,G,B) is the RGB triplet of the colour, and ≺
induces the partial order called product (or component-wise) order. Whereas a test if a value is
smaller than another requires computation when implemented by digital circuits, an implementation
in the analogue world is trivial (single high-gain differential amplifier). Note that irrespective of how
the line-of-sight sensor is implemented on the e-puck, the control logic remains free from arithmetic
computation.

6Technically, the robot needs at least 2 degrees of freedom. A robot operating on a water surface
would also be suitable.

64 Spatial Coverage

(a) (b)

(c) (d)

Fig. 3.14 Sequence of snapshots taken from a typical experimental trial with n = 25
physical e-pucks operating in a 300 cm × 300 cm environment. The snapshots were
taken at (a) 0 s, (b) 10 s, (c) 30 s, and (d) 120 s.

3.6 Discussions 65

0 20 40 60 80 100
cell coverage (%)

0.0

0.1

fre
qu

en
cy

0 20 40 60 80 100
area coverage (%)

0.0

0.1

fre
qu

en
cy

(a) (b)

Fig. 3.15 Histogram showing the frequency of cell coverage (a) and area coverage (b)
percentages, as observed in 20 experimental trials with n = 25 robots, controlled by our
optimised controller, which is deterministic and computation-free. The environment
has dimensions 300 cm× 300 cm.

which could prevent them from continuing to rotate upon collision. Other factors
include sensory noise and unknown hardware failures. Out of the 20 trials, 3 robots
powered off during a trial, possibly due to low battery, which was rectified for the
following trials.

3.6 Discussions

In this chapter, we presented the simplest solution so far to the problem of cooperatively
covering an unknown two-dimensional space with a swarm of anonymous mobile robots.
The proposed controller is applicable to robots that lack run-time computation or
storage. The solution requires only a single bit of information per robot—whether or
not another robot is present in its direct line of sight.

A series of computer simulations showed that the controller outperformed a random
walk (both solutions being optimised off-line). On average, in situations with no robot
redundancy, it covered around 71–76% (depending on the coverage measure being used)
of the space, whereas the random walk covered around 61% of the space. The swarm
performance was found to degrade gracefully in the presence of noise. In the case of
either false-negative or -positive noise, the swarm showed robust performance up to a
noise level of 100%. Moreover, the performance was not particularly affected by the
robot density in the environment. An analysis of the spatial distribution revealed that
on average more robots ended up near the boundary, and in particularly any corners,
reducing the efficiency in scenarios without robot redundancy. A further simulation

66 Spatial Coverage

experiment revealed that a constant-rate inflow of robots can navigate a maze up to a
critical rate.

Despite the robots are unable to measure distances, experiments with swarms of 25
physical e-puck robots demonstrated the feasibility of computation-free coverage on a
real physical platform. They revealed a moderate decrease in performance, 65.2% and
64.9% coverage, when compared to simulation trials.

In this chapter, we focused on the coverage performance and bounded regions that
were to be uniformly covered. The simple nature of the control strategy allowed the
robots to consume less energy and power. A potential application in the short-to-
medium term could be deploying a swarm of simple robots for monitoring an area,
logging data, and reporting anomalies. In the next chapter, we will focus on consensus
finding strategies of swarm robots to collectively choose a direction to move.

Chapter 4

Finding Consensus

4.1 Introduction

In the previous chapter, we synthesised and analysed a computation-free control strategy
for multi-agent spatial coverage problem. The agents extracted only a single-bit of
information, whether there is another agent in their direct line of sight. The strategy
allowed the agents to simultaneously cover the environment. The spatial coverage
abilities of the swarm can also lead to a systematic exploration strategy. In addition,
the robotic swarm was also tested in a maze navigation scenario.

We know that the computation-free swarm is able to aggregate at a point in the
environment without any prior knowledge (Gauci et al., 2014c). Now, the question
is, can computation-free swarm agents congregate at a point that is chosen from a
discrete set of alternatives (e.g. two alternatives)? The underlying question requires
the swarm to be able to “find consensus” on which of the alternatives they will ‘choose’.
We hypothesise that a swarm of agents utilising a deterministic computation-free
controller can emerge a self-organised behaviour to choose between multiple equal—or
unequal—alternatives in their environment. Hence, in this chapter, we will investigate
another canonical multi-agent task that requires coordinated movement abilities; finding
consensus.

The ability of groups of decision-making agents to reach consensus has been studied
in a range of disciplines (Bose et al., 2017; Conradt and Roper, 2005; Tsitsiklis, 1984).
In general, a group of agents, for example, humans, animals, robots, are operating in
an environment that presents multiple options to choose from. The agents have some
means of accessing information about these options, and of influencing each other. For

68 Finding Consensus

example, some ant species use pheromone trails to select the most efficient path to a
food source from multiple options (Beckers et al., 1990). In addition, some ant and
bee species perform “house hunting”, in which they collectively select and move to a
new nest site (Visscher, 2007). The objective for the agents is to reach an agreement
on which option to choose. Hereafter, we refer to this problem as the collective choice
problem.

In this chapter, we study the collective choice problem with a group of simplistic
robotic agents, and are interested in the situation where:

• The group of agents is homogeneous, in other words, all agents are identical;

• There are two or more options to choose from;

• The options are of equal value1, so the group of agents is no better off choosing
one over the other;

• The agents’ environment does not contain any cues that could help or hinder the
selection process.

This chapter is organised as follows. Section 4.2 defines the collective choice problem,
the environment model, and the sensing, locomotion, and control capabilities of the
agents. Section 4.3 presents the evolutionary algorithm for synthesising the control
strategy. Section 4.4 presents the results obtained when testing the control strategy on
swarms of simulated robots. Section 4.5 describes how the strategy was ported to a
physical robot platform, and presents the experimental results obtained with swarms
of 20 e-puck robots. Section 4.6 concludes the chapter.

4.2 Problem Definition

4.2.1 Objective

Consider a 2D, bounded environment with two identical, circular objects, A and
B, referred to as options. The options are placed equidistant from the centre of
the environment. The environment does not contain any other cues. The scenario
thus corresponds to the symmetric option qualities and costs variant of the best-of-n

1This assumption is relaxed in Section 4.4.6, where options of different sizes are considered.

4.2 Problem Definition 69

problem (Valentini et al., 2017). A group of N mobile agents is initially placed within
a region in the centre.

The collective choice problem requires the group to commit to either of the two
options within a fixed time period. An agent is considered to be committed to option
X ∈ {A,B}, if it is within a certain range of X. Throughout this chapter, an agent
can commit to at most one option. The group is considered to be committed to option
X, if more than N/2 agents—the majority—are committed to X. Note that even if
the group committed to an option, a minority of agents could still have committed to
the other option, resulting in a split. Splitting is in general undesirable, however, for
simplistic agents, not always avoidable (Franks et al., 2007).

4.2.2 Environment and Robot Model

Each agent is equipped with one line-of-sight sensor at its front, which is able to detect
the type of object at which it is pointing. The sensor has a limited range. At each
time step, t, an agent’s sensor provides one of three possible readings:

s(t) =

2 if an option is detected,

1 if another agent is detected,

0 otherwise.

(4.1)

The agent moves using a differential-drive wheel configuration (Dudek and Jenkin,
2010). In other words, it can move forwards or backwards in arcs of arbitrary radius—
including straight motion and on-the-spot rotation. The agent therefore has two degrees
of freedom, namely the rotational velocities of the left and right wheels, which we
denote by vℓ and vr, respectively. Each wheel velocity can be normalised to the interval
[−1, 1], where −1 and 1 represent a wheel rotating with maximum speed backwards or
forwards, respectively.

We require that the controller2 shall neither perform any arithmetic computations,
nor store any run-time information. From this constraint, it follows that the controller
directly maps the sensor reading onto two parameters in [−1, 1]—one for each wheel

2In the following, we refer to the control strategy simply as the controller.

70 Finding Consensus

velocity. This takes place at each time step t. Formally,

c(s(t)) =
(
vℓ(t), vr(t)

)
=

(vℓ,0, vr,0) if s(t) = 0,

(vℓ,1, vr,1) if s(t) = 1,

(vℓ,2, vr,2) if s(t) = 2,

(4.2)

where vℓ,i ∈ [−1, 1] represents the left wheel velocity corresponding to sensor reading
i ∈ {0, 1, 2}, and similarly for vr,i. Note that the controller is fully specified by the six
parameters.

The experimental setup is shown in Figure 4.1. It defines a region in the centre
for the robots to start from. At the beginning of a trial, N = 20 robots are placed at
random positions and with random orientations within this region. The setup also
defines two commitment regions, one for option A, the other for option B. If a robot
resides within a commitment region, it is considered committed to the corresponding
option.

4.2.3 Simulation Setup

Each agent is a simulated e-puck robot (Mondada et al., 2009), which is a miniature
mobile robot with a differential-drive wheel configuration. The e-puck has a circular
body with a radius of 3.7 cm and a mass of 152 g. The inter-wheel distance is 5.1 cm,
and the maximum wheel velocity is 6.24 rad/s, corresponding to a maximum linear
velocity of the robot of 12.8 cm/s. The line-of-sight sensor is implemented by casting a
ray and checking whether it intersects with any other object. The ray has a length of
200 cm, limiting the range of the sensor.

The simulator is implemented using the built-in e-puck model of the Enki physics
engine (Magnenat et al., 2009). Enki simulates the dynamics and interactions of rigid
bodies in 2D. The simulation physics and the control cycle are updated at rates of 100
times per second and 10 times per second, respectively.

4.3 Controller Synthesis

The problem now reduces to finding the six controller parameters that produce the
desired behaviour. This is an optimisation problem over the real subspace [−1, 1]6 ⊂ R6.

4.3 Controller Synthesis 71

Fig. 4.1 The illustration of the environment. The black lines indicate the boundary of
the environment. The robots start from random positions and random orientations
within the central region. The green solid disks represent options A and B. The
circular regions around them indicate the corresponding commitment regions.

72 Finding Consensus

We approach this problem via the evolutionary robotics approach, where each possible
solution can be assigned a score via some evaluation method. An evolutionary algorithm
is employed to find good solutions by iteratively generating candidate solutions and
using their quality as feedback. Our evaluation method for a candidate solution (i.e. a
controller) consists of running a computer simulation with all agents employing that
controller. A suitable metric is used to determine the quality of the candidate solution
based on the global behaviour that it produces on the agents. Note that while this
process is computationally intensive, it is only run once, and it is run off-board of the
robots. The obtained controller that goes on-board the robots is free of arithmetic
computation. In the following, we describe the evaluation of candidate solutions, the
evolutionary algorithm, and the controller selection.

4.3.1 Evaluation of Candidate Solutions

The evaluation uses a bounded square environment with sides 300 cm, containing a
group of N = 20 robots.3 The simulation is run for T = 5000 time steps (i.e. 500 s).
We define a quality measure Q(t), which characterises the distribution of robots at
time step t during the trial:

Q(t) =
1

P
min

N∑
i=1

||xi(t)− xA||2,
N∑
i=1

||xi(t)− xB||2
 , (4.3)

where P = (2r)2N is a scaling factor, r is the radius of the robot’s body, xi(t) is the
position of robot i at time step t, and xA and xB are the positions of options A and
B, respectively. Q(t) is minimised if the robots collectively opt for either option. The
fitness function, to be minimised by the evolutionary algorithm, is

F =
T∑
t=1

tQ(t). (4.4)

The fitness function is the weighted sum of the quality measure Q(t) and the time
step t, over a simulation trial of duration T . By taking the time step into account, the
fitness function rewards solutions for reaching consensus—the earlier, the better.

3Details about their initial placement are described in Section 4.2.2.

4.3 Controller Synthesis 73

10
0

10
1

10
2

number of generations

0.0

0.2

0.4

0.6

0.8

1.0

fit
ne

ss
 v

al
ue

1e10

Fig. 4.2 Fitness dynamics of 40 evolutionary runs for 100 generations. The green line
shows the mean fitness value, and the envelope represents the minimum and maximum
for each generation. The number of generations in the x-axis is given in logarithmic
scale.

4.3.2 Evolutionary Algorithm

We use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and
Ostermeier, 2001). CMA-ES is a derivation-free, stochastic, black-box optimisation
method. We use a population of λ = 20 candidate solutions, of which µ = 10 are
selected for reproduction.4

The algorithm is executed for 100 generations. Each candidate solution is evaluated
20 times per generation [using Equation (4.4)] and the average fitness value is used.

The evolutionary algorithm requires5 a transformation for the candidate solutions
from the real numbers space R2d to [−1, 1]2d. In order to transform the control
parameters, we use a sigmoid-based function, the same as given in Equation (3.10).
Additionally, CMA-ES requires an initial guess of a solution, m(0), and an initial step
size, σ(0). As in Section 3.3.2, we use m(0) = 0 and σ(0) = 0.72. Note that the initial
guess vector m(0) is 2d = 6 dimensional.

Figure 4.2 shows the fitness dynamics of 40 evolutionary runs. The fitness values
are high numbers, and unlike the previous chapter, we are unable to bound them in
the interval of [0, 1]. This is due to the continuous and cumulative nature of the fitness
function.

4We use the same lower bound to determine the population size, λ, as discussed in Section 3.3.2.
However, rather than the bound itself (λ = 16), we chose λ = 20 as the final value.

5Originally, CMA-ES operates in unconstrained real space.

74 Finding Consensus

Table 4.1 The parameters of the best controller [see Equation (4.2)] and the resulting
motion primitive.

nothing robot (agent) option
vℓ,0 vℓ,1 vℓ,2

0.989377 0.999426 -0.106746
vr,0 vr,1 vr,2

-0.348408 0.992379 0.965466

4.3.3 Controller Selection

No changes were made to the CMAS-ES implementation. However, changes made to
the source code were the environment model, random initialisation, fitness function
calculation, and random walk model.

We performed 40 evolutionary runs using the aforementioned settings. For each run,
we examined the controller of the final generation that exhibited on average the best
performance according to Equation (4.4). We observed that six of these 40 controllers
achieved a good performance level. We then conducted preliminary experimental trials
using these six controllers, and opted for a controller that retained a good performance
level in the physical setup. Note that overdesign—also known as overfitting—is a
common issue in evolutionary robotics (Birattari et al., 2016), and may explain why
some controllers perform differently in reality than in simulation (Jakobi et al., 1995).
We refer to this controller as the best controller (see Table 4.1). Figure 4.3 shows a
pictorial representation of the controller. The black straight line indicates the heading
direction of the robot. The red, blue, and green arcs show the directions the robot
would head depending on its sensor reading. The angle and length of the arcs are
proportional to the angular and linear velocities of the controller.

4.4 Simulation Studies

In this section, the best controller is evaluated using simulation experiments. We
evaluate the robots’ commitments after 300 s (i.e. T = 3000 time steps).6

6During the evolutionary process, a larger trial duration of 500 s was used to support the incremental
development of promising solutions. Post-analysis of the best controller, however, revealed that 300 s
is sufficient for the swarm to reach consensus, and hence this trial duration is used throughout all
simulation and physical experiments.

4.4 Simulation Studies 75

0

1

2

Fig. 4.3 A pictorial representation of the best controller. The black straight line is the
heading direction of the robot. The red arc shows the primitive behaviour of the robot
when its sensor reads s = 0 (nothing), the blue arc is when s = 1 (robot) and the green
arc is when s = 2 (option).

4.4.1 Analysis of the Behaviours

We conducted 1000 trials using the setup described in Section 4.2.2.

Figure 4.4 shows the number of trials in which NA ∈ {0, 1, 2, . . . , N} and NB ∈
{0, 1, 2, . . . , N} robots committed, respectively, to options A and B. In 97.3% of the
trials, the swarm committed to one of the options, either A (i.e. NA > N/2) or B (i.e.
NB > N/2). In 12.8% of the trials, the swarm split across both options (i.e. NA > 0

and NB > 0). In Figure 4.4, the inner region of the triangle is virtually empty.7 In
other words, in almost all cases where the swarm split, there were no uncommitted
robots left in the environment (i.e. NA +NB = N).

We now analyse the best controller (see Table 4.1) in more detail. Consider a
robot at time step t. If the robot detects nothing (s(t) = 0), it turns to the right
[(vℓ,0, vr,0) = (0.989377,−0.34840)]. If it detects another robot (s(t) = 1), it moves
forward while slightly turning to the right [(vℓ,1, vr,1) = (0.999426, 0.992379)]. If it
detects an option, it turns to the left [(vℓ,2, vr,2) = (−0.106746, 0.965466)]. Once the
robot loses sight of an option, and detects nothing, it turns to the right, hence likely
detecting the option again. The process of alternatively detecting an option and
nothing results in the robot to approach the (left edge of the) option. If the option is
occluded by other robots, however, these are detected instead, resulting in the robot

7To make outliers visible, a log scale had to be used for the colour bar.

76 Finding Consensus

0 2 4 6 8 10 12 14 16 18 20
NA

0
2
4
6
8

10
12
14
16
18
20

N
B

10
1

10
0

10
1

10
2

nu
m

be
r o

f t
ria

ls

Fig. 4.4 Number of trials in which NA and NB robots committed, respectively, to
options A and B. In total, 1000 simulation trials with N = 20 robots were conducted,
each for a 300 s duration.

moving directly towards them (and the option). This facilitates reaching a consensus
in the swarm. As more robots join, an orbiting behaviour is observed, where each
robot follows the robot in front of it. If there is no such robot, a robot slides along the
perimeter of the option in a clockwise fashion, while alternately detecting the option
and nothing, and keeps doing so until detecting a robot.

Figure 4.5 shows a sequence of snapshots taken from a typical trial. A video recording
of an example trial is available in the online supplementary material (Özdemir et al.,
2018).

4.4.2 The Effects of the Robot Starting Positions

We investigate how the initial starting positions affect the performance of the swarm.
We performed 1000 trials for each investigated scenario.

First, we initialised the robots randomly in a circular region four times larger
than the one used before. The change in performance was not significant—it only
dropped from 97.3% to 96.6%. We then initialised the robots randomly anywhere in
the environment. The majority of the swarm committed in 83.4% of the trials. In

4.4 Simulation Studies 77

Fig. 4.5 Sequence of snapshots showing a swarm of 20 simulated robots choosing option
B. They were taken (from the top left to the bottom right) once 0, 10, 20, 30, 40, and
300 s had elapsed. Initially the swarm aggregates around the centre of the arena. The
motion of the robots causes symmetry-breaking and as a result the swarm collectively
approaches the option on the right. When t = 40 s the robots orbit around option B
and remain committed to their choice.

78 Finding Consensus

addition, when we also changed the sensing range to unlimited (i.e. long enough to
detect any point in the arena), the swarm committed in 94.6% of the trials. These
results show that, as long as the robots have a long enough sensing range, their initial
configuration has only a low impact on performance.

To explore the capabilities of the robots utilising a shorter sensing range in a sparse
initial distribution, we reran the controller evolutionary process using the evolutionary
setup described in Section 4.3 and select best controller for each new setup. The sensor
range was limited to 200 cm (as before), 100 cm, and 50 cm, and in each case, the
robots were initialised randomly anywhere in the environment. For the best controllers,
1000 simulation trials were performed.

The swarm committed in 98.6%, 90.3% and 48.4% of the trials to an option when
the robots were equipped with a sensor range of 200 cm, 100 cm and 50 cm, respectively.
These results indicate that our computation-free swarming framework tolerates some
limitations in the sensor range, but is unable to cope with strictly short sensing range.
This is in line with (Gauci et al., 2014c), which shows for the framework—albeit for
a different task—that there exists no memory-less solution to maintain connectivity,
unless the sensor range is sufficiently large.

Additionally, we explored the connectivity of the swarm. We considered that two
robots are connected if a robot detects another robot using line-of-sight sensor. For
simplicity, we assumed that the graph is undirected (directed graph was converted to
undirected). We measured the number of clusters in the connectivity graph at the
beginning of each of 1000 trials. On average, there were 11.16 clusters when the robots
were initialised as in Figure 4.1. This means initially more than half of the robots were
not connected in the terms of sensing. The number of clusters increased to 14.45 when
the robots were initialised in 4 times larger initialisation region. Accordingly, when
the robots were initialised anywhere in the environment, there were 16.86 clusters on
average. These average number of connected robots indicated that the robots are not
remarkably sensitive to the initialisation process.

4.4.3 Sensory Noise Analysis

We investigate how robust the controller is with respect to sensor noise. False negative
noise was introduced in the robot’s sensor as follows. If the robot had either another
robot or an option in front of it, with probability p it would not detect it; in other

4.4 Simulation Studies 79

0 10 20 30 40 50 60 70 80 90 100
noise (%)

0

4

8

12

16

20
m

ax
(N

A
,N

B
)

all
robot
option

Fig. 4.6 Effects of sensor noise, p, on the swarm performance, max(NA, NB). For
each setting, 100 simulation trials with 20 robots were conducted and averaged. The
duration of trials was 300 s. The error bars represent the ± standard error.

words, it would obtain the incorrect sensor reading s(t) = 0 (nothing). The probability
of misdetection p was varied from 0 to 1 in increments of 0.1.

Figure 4.6 shows the maximum number of robots having committed to the same
option, that is, max(NA, NB). The lilac dotted line represents the performance of the
swarm when the noise is restricted to the detection of options. The swarm copes well
with this type of noise; its performance is affected only for noise levels of ≥ 50%. The
orange dashed line represents the performance of the swarm when the noise is restricted
to the detection of other robots. The performance of the swarm for noise levels of
more than 50% remains at around 9 committed robots, that is, max(NA, NB) ≈ N/2.
Once the robots can no longer detect each other, as expected, the swarm splits in two,
about equally sized, sub-groups. The green solid line represents the performance of the
swarm when the noise is affecting both the detection of other robots and the options.
In this case, the performance drops more rapidly than in the other cases, suggesting
that there is a compounding effect from the different types of noise. This limitation
of the controller may make it unsuitable for applications in unstructured real-world
environments. However, if a noise model is known for a particular environment, this
could be incorporated into the controller evolutionary process, and this may yield a
better controller.

80 Finding Consensus

10 20 30 40 50 60 70 80 90 100
number of robots

0

20

40

60

80

100

m
ax

(N
A
,N

B
) (

%
)

Fig. 4.7 Effects of the swarm size, N , on the swarm performance, max(NA, NB) (in
percentage). For each setting, 100 simulation trials were conducted. The duration of
trials was 300 s. The data is represented using box plots. Here a robot is considered
committed to the option that is nearest.

4.4.4 Scalability Analysis

We investigate the scalability of the controller by measuring the performance for swarms
of N ∈ {10, 20, . . . , 100} robots. Note that the more robots in the swarm, the harder it
would be for all of them to fit inside the commitment region, as defined in Figure 4.1. To
alleviate this problem, and thereby allowing a fair comparison between different swarm
sizes, we removed the boundary of the environment and redefined the commitment
regions to be the left and right half-planes, splitting the environment in its centre in
half. In other words, each robot is committed at all times to its nearest option. We
do not determine if the swarm (majority of robots) commit to the same option, but
rather examine the percentage of robots committing to the options. At the beginning
of each trial, about 50% of the robots are committed to either of the two options.

Figure 4.7 presents the results of 100 trials per setting. The performance scales
reasonably well with the numbers of robots, despite the options being placed at a
constant distance from each other. The average commitment to a same option is
97.9% for 20 robots and 88.5% for 100 robots. When near an option, the swarm orbits
around it. The more robots, the bigger the radius of the orbit becomes. As a result
the performance of large swarms drops with respect to the half-plane measure.

4.4 Simulation Studies 81

1 2 3 4 5 6 7
number of options

0

4

8

12

16

20
m

ax
(N

i)

Fig. 4.8 Performance of a swarm choosing between n options, that is, the maximum
number of robots committed to a same option. For each setting, 1000 simulation trials
were conducted.

4.4.5 Choosing Between More Than Two Options

We explore the scenario with n > 2 options. Apart from the number and positions
of options, the environment remains as shown in Figure 4.1. One option is placed
as option B in Figure 4.1, whereas the remaining n − 1 options are equally spaced
along the circle with the same centre as the environment. With this configuration,
n = 7 is the maximum such that the commitment regions do not overlap. We therefore
performed 1000 trials for each n = 1, 2, . . . , 7.

The results are shown in Figure 4.8. The performance degrades gracefully as the
number of options increases, even though the controller was optimised for n = 2 options.
For n = 7 options, the swarm did not commit in the majority of the trials. We observed
that the swarm could orbit around multiple options. As neighbouring options are in
close proximity, robot were more likely to be attracted by them.

4.4.6 Choosing Between Unequal Alternatives

In this section, we investigate the ability of the swarm to choose between two unequal
alternatives. This scenario corresponds to the asymmetric option qualities and sym-
metric option costs variant of the best-of-n problem (Valentini et al., 2017). Option A

82 Finding Consensus

-100 -80 -60 -40 -20 0 20 40 60 80 100
size of option B relative to size of option A

0

4

8

12

16

20

m
ax

(N
A
,N

B
)

option A
option B

Fig. 4.9 Ability of the controller to let a swarm of robots choose between unequal
alternatives. The bars shows the average percentage of robots committed to options A
and B, respectively (100 simulation trials of 300 s duration). For details, see text.

was kept identical, as shown in Figure 4.1. However, option B was changed in radius
from −100% (implying it is effectively removed) to +100%, by 20% increments. Our
hypothesis was that the larger option, if any, will be preferred. As in Section 4.4.4,
we removed the environment boundary and redefined the commitment regions using
half-planes. This was done to prevent the situation that it is harder for the swarm to
squeeze into a relatively small commitment region, as the physical dimension of the
option increases.

Figure 4.9 shows the percentage of robots committed to options A and B at the
end of 100 trials (per setting). As expected, in trials with equally sized options, the
robots have no preference. As option B becomes smaller or larger, however, the robots
increasingly succeeds in detecting such differences. When option B has twice the radius
of option A, they almost exclusively opt for it.

The finding suggests that while the controller was designed and optimised for a
particular problem—choosing among equal alternatives—it can also be used to choose
the largest of unequal alternatives. The controller would be unable to consistently
choose the smallest of equidistant, unequal alternatives. Moreover, it might favour
smaller but closer options over larger but more distant ones.

4.5 Experiments 83

4.5 Experiments

In this section, the best controller is evaluated using experiments with physical robots.

4.5.1 Porting of the Controller

To validate the controller on a physical platform, we use the e-puck robot (Mondada
et al., 2009). The line-of-sight sensor was emulated using the on-board camera, which
is a 640× 480 active-pixel sensor. To determine the sensor value, a centred a× b pixel
region is used. We chose a = 2 columns to ensure that the emulated sensor points
exactly towards the front, and b = 15 rows to improve the sensing range—misaligned
cameras (pitch axis) would otherwise cause false negatives. The sensor detects the
colour of the object it is pointed at. The sensor reading s(t) = 0 if no object (i.e.
effectively the white boundary) is detected, s(t) = 1 if a red object (robot) is detected,
and s(t) = 2 if a green object (options A or B) is detected. The aforementioned
detection procedure uses arithmetic computation. The controller, however, remains
computation-free.

As described in Section 3.5.2, one can use the same procedure to deploy the control
strategy presented in this chapter in another ground robotic system. It is sufficient
to convert the control parameters in Table 4.1 to linear and angular velocities, then
converting them back to the appropriate motor commands.

4.5.2 Experimental Setup

The robots operate in a 300 cm× 300 cm environment, which is bounded by a white
wall of height 50 cm. The options are represented as green cylinders with a diameter of
24 cm and a height of 10 cm. They are placed as indicated in Figure 4.1.

We distributed the robots in a hexagonal grid pattern as shown in Figure 4.13(a).
Random permutations were used to determine the order of placing the robots on the
20 grid locations. The orientation of each robot was uniformly chosen from [0, π).

The trial was started by broadcasting an infrared signal to all robots using a remote
control. No human intervention took place; where robots ceased motion during a trial,
they were left in the environment. The trial duration was 300 s.

84 Finding Consensus

0 2 4 6 8 10 12 14 16 18 20
NA

0
2
4
6
8

10
12
14
16
18
20

N
B

0
1
2
3
4
5
6
7
8
9
10

nu
m

be
r o

f t
ria

ls

Fig. 4.10 Number of experimental trials in which NA and NB robots committed to
options A and B, respectively. In total, 50 trials with 20 physical e-pucks were
conducted, each for a 300 s duration.

All trials were recorded by an overhead camera at a rate of 25 fps. The recordings
were analysed using the OpenCV (Bradski, 2000) computer vision library. Distortion
effects in the images were removed and the positions of robots tracked automatically.

4.5.3 Results

A set of 50 experimental trials were conducted using N = 20 e-puck robots. Video
recordings of all trials are available in the supplementary materials.

Figure 4.10 shows the number of robots committed to either option A or B (NA

and NB, respectively). In 96% of the trials, the swarm committed to one of the options,
A or B; in other words, the majority of the robots ended up choosing that option. In
25 trials, the swarm committed to A, whereas in 23 trials, it committed to B.

Over the course of the experiments, the robots were set to operate for 300 s, a total
of 1000 times (50 trials with 20 robots). In 2.7% of these cases, the robot ceased motion
at some point during the trial. This may happen for a variety of reasons, including a
lost contact with the battery or a low battery state. Figure 4.11 shows the number
of trials for each combination of max(NA, NB). The colour of each trial indicates

4.6 Discussions 85

0 2 4 6 8 10 12 14 16 18 20
committed robots

0

4

8

12

16

20
nu

m
be

r o
f t

ria
ls

no ceased motion
one ceased motion
two ceased motions
three ceased motions

Fig. 4.11 Breakdown of the 50 experimental trials according to the maximum number
of robots that committed to the same option, max(NA, NB). Each trial is shown with
a colour indicating how many of the 20 physical robots ceased motion.

how many robots ceased motion; the latter was manually determined, through visual
inspection of the overhead video recordings. The more robots with ceased motion, the
more the performance was affected.

Figure 4.12 shows the maximum number of robots committed to the same option
over time, max(NA, NB). The green line indicates the mean and the green envelope
the ± standard error across the 50 trials.

Figure 4.13 shows the behaviour of the robots during a typical trial. In this trial, it
takes approximately 35 s for the first robot to approach the option. The rest of the
robots tend to follow, and the whole swarm is committed to the option after 150 s. The
swarm then remains in the commitment area until the end of the trial.

4.6 Discussions

In this study, we showed that a group of embodied agents can collectively choose,
without arithmetic computation, between multiple alternatives in an environment. The
agents we considered used a single line-of-sight sensor, obtaining a ternary digit of
information about the environment. The agents could not communicate, nor store

86 Finding Consensus

0 50 100 150 200 250 300
time (s)

0

4

8

12

16

20
m

ax
(N

A
,N

B
)

mean of majority
± std. error of mean

Fig. 4.12 Dynamics of max(NA, NB), averaged over the 50 experimental trials with 20
physical robots.

Fig. 4.13 A sequence of snapshots from a typical experimental trial with 20 physical
robots. They were taken (from the top left to the bottom right) once 0, 20, 40, 80, 120,
and 300 s had elapsed. Due to distortion removal, blank pixels occur at the top and
bottom of the images.

4.6 Discussions 87

any information during run time. They directly mapped the sensor reading onto
constant-value motor commands. Compared to previous solutions to the collective
choice problem, the proposed control strategy requires significantly lower informa-
tion processing capabilities—at the expense of a longer sensing range—and could be
implemented on platforms that lack an arithmetic logic unit.

Using computer simulations, we demonstrated that the control strategy was fairly
robust with respect to sensory noise as well as changes in the number of robots or
options. We also showed that the strategy works well for a range of different initial
configurations, provided that the sensor’s range is sufficiently long. We examined the
problems of choosing between equal alternatives and between unequal alternatives. In
the latter case, an option’s quality was reflected by its size (the bigger, the better). To
choose between options of the same size but unequal qualities, the robots would need
to be equipped with sensors to detect such differences. Assuming that only a limited
number of quality levels are possible, our framework could be adapted accordingly.

We ported the control strategy onto the e-puck platform, and performed 50 exper-
imental trials with 20 physical robots. The swarm succeeded in choosing an option
in 96% of the trials, despite some robots ceasing motion during the trials. Note that,
the controller used in the proof-of-concept implementation was free of arithmetic
computations, even though the sensor was not.

The extreme simplicity of our control strategy makes it potentially applicable to
robotic systems operating at the submillimeter-scale. For example, nanorobots could
be configured to collectively target one of multiple regions of interest at a time. In
the next chapter, we will focus on collective behaviours of a swarm of robots that is
moving towards a goal while coordinating another dynamic swarm.

Chapter 5

Shepherding

5.1 Introduction

In the previous two chapters, we proposed control strategies for the multi-agent coverage
and collective choice problems. In the former, the agents retrieved 1-bit (i.e. a binary
digit) of information from their environment, whether another agent is present in their
direct line of sight. In the latter, they additionally needed to detect the presence of an
option (i.e. goal) yielding them to retrieve 1-trit (i.e. a ternary digit) of information
The agents were expected to find consensus by committing to one of the multiple goals
in their environment. This study also allowed us to gain understanding of a collective
behaviour, that is, coordinated movement.

One of the critical features of a swarm is its coordinated movement abilities. If
a swarm of agents exhibit advanced coordination skills, this can be transferrable
onto another task. For instance, coordination can lead the swarm to also be able to
manipulate an object. Ants are a great example from nature; they can carry large prey
to their nest through self-organised coordinated behaviours. Inspired by nature, we
hypothesise that a swarm of computation-free agents can coordinate their movements
to cooperate with each other in order to manipulate another group of objects. Thus,
in this chapter, we further investigate the coordinated movement strategies for the
control agents to coordinate another group of agents in a shepherding scenario.

The shepherding problem involves the shepherd agents to guide the motion of
dynamic sheep agents towards a pre-specified goal location. In addition to the previous
study, which required the agents to distinguish between two objects (i.e. an agent or
a goal), the agents (shepherds) can now distinguish between three objects: another

90 Shepherding

shepherd, the goal, or a sheep agent. Compared to the literature, to the best of our
knowledge, we propose the simplest control solution to the multi-agent shepherding
problem, requiring the agents to extract only 2-bits of information.

This chapter is organised as follows. Section 5.2 defines the problem, details the
computation-free shepherd agent capabilities, the sheep flock model, and the simulation
setup. Section 5.3 presents the evolutionary process for synthesising the shepherd
controllers, detailing the objective function, and the controller selection procedure.
Section 5.4 evaluates the obtained controller through multiple computer simulation
experiments. Section 5.5 concludes the chapter.

5.2 Problem Definition

5.2.1 Objective

Consider an unbounded, continuous-space environment in 2D containing n shepherd
agents, m sheep agents, and an object representing the goal location. The shepherd (or
sheep) agents are anonymous (i.e. indistinguishable) and execute an identical controller.
The shepherds are employing a computation-free controller—their controller lack the
ability of performing arithmetic computations. Moreover, the shepherds do not have
run-time memory and unable to communicate with each other.

The goal is a cylindrical static object, located in g ∈ R2. In the beginning, both
sheep and shepherd agents are uniformly randomly placed in an initialisation region
away from the goal location. Figure 5.1 illustrates the experimental setup. The
shepherding problem is to control the shepherds such that they gather the sheep and
herd them towards the goal location.

5.2.2 Shepherd Agents

A shepherd agent has a line-of-sight sensor pointing forwards. The range of the sensor
is unlimited.1 In a practical scenario, the environment could be bounded. The sensor
would then need to span the entire environment. The sensor reading, s(t), is defined

1This assumption is only to ensure any agent (or the goal) in the environment is detectable by a
shepherd. Practically, it needs to be at least the length of the arena.

5.2 Problem Definition 91

Fig. 5.1 Illustration of the experimental setup. The goal object is represented by the
blue disk, the shepherds and the sheep are indicated by the green and the red disks,
respectively. Initially, the robots are randomly distributed into a circular region of
radius 200 cm and 400 cm away from the goal object. The goal region is the circular
area indicated by the blue dashed line with radius 100 cm from the centre of the goal
object.

92 Shepherding

by the first object that is detected in the line of sight, if any:

s(t) =

0 if no object is detected,

1 if a sheep is detected,

2 if a shepherd is detected,

3 if the goal is detected.

(5.1)

Note that sensor reading s(t) does not contain any information about the distance to a
perceived object, or about the number of objects in a given area.

All shepherds execute an identical controller. The controller is reactive: it maps the
shepherd’s input s(t) onto its output—the pair of wheel velocities, (vℓ, vr). Formally,
the controller c is defined by

c
(
s(t)
)
=
(
vℓ(t), vr(t)

)
=

(vℓ,0, vr,0) if s(t) = 0,

(vℓ,1, vr,1) if s(t) = 1,

(vℓ,2, vr,2) if s(t) = 2,

(vℓ,3, vr,3) if s(t) = 3,

(5.2)

where vℓ,k and vr,k are the left and right wheel velocities for k ∈ {0, 1, 2, 3}. Note that
the controller does not need to store information during run-time, and does not need to
perform arithmetic computations. The velocity pairs in Equation (5.2) are the control
parameters that need to be found for the swarm (i.e. shepherds) in order to produce
the desired global behaviour. The synthesis of the controller c will be presented in
Section 5.3.

5.2.3 Sheep Agents

The behaviour of the sheep agents is not subjected to an evolutionary process, unlike
the shepherds. The sheep agents execute a fixed, manually-designed behaviour in which
they react both to each other and to shepherd agents. This behaviour is based on the
magnitude-dependent motion control model proposed by Ferrante et al. (2012). The
sheep assumed to have omnidirectional vision2, and can distinguish between shepherds
and other sheep; however, they are unaware of the goal. Each sheep is repelled by

2It is typical for natural “prey” to have wide fields of view (Piggins and Phillips, 1996).

5.2 Problem Definition 93

all shepherds and—to a lesser extent—by other sheep3. Let S be the set of (suitably
relabelled) indices of all agents. Formally, the repulsion force is given by

Fi =
∑

j∈S\{i}

cj
∥xi − xj∥2

r̂ji, (5.3)

where xi is the position of sheep i, xj is the position of agent j (either a shepherd or
a sheep, but excluding the focal sheep), r̂ji is the unit vector pointing from agent j

towards sheep i, and cj is 450 if agent j is a shepherd, and 100 otherwise. In other
words, the sheep repel more strongly from the shepherds than from other sheep.

The motion of each sheep is the result of (i) the repulsion force and (ii) a natural
tendency to move forward. The wheel velocities of the sheep model can be given as(

vℓ

vr

)
=

(
K1 K2

K1 −K2

)(
fx

fy

)
+

(
u

u

)
, (5.4)

where fx and fy are the horizontal and vertical components of the repulsion force in
the sheep’s local coordinate frame, K1 = 2.0 and K2 = 1.3 are the linear and angular
gain, and u = 2.0 cm/s is the constant forward speed. The maximum wheel speed for a
sheep is 6.4 cm/s—half of a shepherd’s maximum wheel speed. If the wheel velocities
exceed their range, they get truncated.

5.2.4 Simulation Setup

We conduct simulation trials using Enki (Magnenat et al., 2009), an open-source
2D rigid bodies physics engine. The shepherds and sheep are modelled as e-puck
robots (Mondada et al., 2009). The robots are represented as cylinders of radius
3.7 cm. In order to allow the line-of-sight sensor to make distinctions, the shepherds
are coloured green and the sheep are coloured red. The goal is represented as a blue
cylinder and has a radius of 22.2 cm, which is six times larger than the radius of the
e-puck.

The robots have two wheels arranged in a differential drive configuration (axle length
= 5.2 cm). The robot needs to set the desired velocities of its left and right wheels,
vℓ ∈ [−1, 1] and vr ∈ [−1, 1], where −1 and 1 represent the normalised maximum

3Although it may be unrealistic to assume that a sheep could perceive all other agents in the
environment, the magnitude of the repulsive force decreases as the square of distance, and hence its
effect can be neglected when the other agent is far away.

94 Shepherding

angular velocity at which the wheel can turn backward and forward, respectively. The
default uniform noise of 5% is applied to each value. The corresponding maximum
velocity of the robot ranges in ±12.8 cm/s. The control cycle of the robot is activated
every 0.1 s and the simulation physics is updated every 0.01 s.

5.3 Controller Synthesis

We have devised the structure of a reactive controller, c, for the shepherds [Equa-
tion (5.2)]. The remaining problem is to optimise the eight control parameters that
leads to the desired global behaviour, that is, the shepherding. We employ an evolution-
ary robotics approach to solve this problem (Nolfi and Floreano, 2000; Trianni et al.,
2008), whereby an evolutionary algorithm searches for the ‘best’ controller parameters
that minimise an objective function.

5.3.1 Evaluation of Candidate Solutions

The evolutionary algorithm requires that each candidate solution—controller—is as-
signed a value reflecting its quality (hereafter referred to as fitness) that reflects how
well it addresses the problem. This is achieved by running a number of simulations
using the controller and computing an objective function (hereafter referred to as
fitness function) based on the performance of the agents during these simulations.
Figure 5.1 shows the simulation setup. Initially, n = 10 shepherds and m = 20 sheep
are uniformly randomly distributed within a circular region of radius 200 cm, whose
centre is 400 cm away from the goal.

The fitness function for a single simulation—to be minimised—is

F =
T∑
t=1

tf(t), (5.5)

where T is the duration of a simulation trial and

f(t) =
1

P

m∑
i=1

∥x(t)− xi(t)∥2∥x(t)− g∥2, (5.6)

5.3 Controller Synthesis 95

where P = (2r)2m is the scaling factor, r is the radius of the agents, xi(t) is the
position of sheep i at time t, x(t) is the centroid of the sheep flock at time t, and g is
the position of the goal.

Equation (5.6) takes into account how widely the sheep are scattered and how far
away they are from the goal. The weighted summation over time in Equation (5.5)
rewards solutions for accomplishing the task faster, while still giving prominence to a
stable configuration later on in the simulation. The overall fitness of a controller is
given by averaging F over a number N of simulations with different initial conditions.

5.3.2 Evolutionary Algorithm

We use the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) (Hansen and
Ostermeier, 2001) as the evolutionary algorithm. CMA-ES is a stochastic black-box
optimisation algorithm and operates on real-valued decision variables. It self-adapts
the variance of each decision variable, as well as all the covariances between the decision
variables.

In our problem, the decision variables are the set of all possible left and right wheel
speeds corresponding to the sensor readings of the shepherd robots [Equation 5.2].
Considering normalised wheel speeds, this corresponds to the space [−1, 1]2d, where
d = 4 is the number of possible sensor states. We use a sigmoid-based function to map
the real-valued variables in R to [−1, 1]:

sig(x) =
1− e−x

1 + e−x
, ∀x ∈ R. (5.7)

For this study, we set the population size to λ = 20, where µ = 10 are selected for
reproduction.4 The other two additional settings for the optimiser, we set the initial
guess parameter to m(0) = 0 and the initial step size to σ(0) = 0.72.5

An evolution was run for 80 generations, and in each generation, each of the
λ = 20 candidate solutions was evaluated using N = 50 trials with different initial
configurations of agents. Each trial returned a fitness value according to Equation (5.5),
and the average of these 50 values was used as the overall fitness of that candidate
solution. Each trial lasted 1500 s [i.e. T = 15000 in Equation (5.5)].

4We use the same lower bound to determine the population size, λ, as discussed in Section 3.3.2.
However, rather than the bound itself (λ = 16), we chose λ = 20 as the final value.

5These two parameters are the same as in Chapter 3.

96 Shepherding

0 10 20 30 40 50 60 70 80
number of generations

10
14

10
15

fit
ne

ss
 v

al
ue

Fig. 5.2 Evolutionary dynamics of 30 runs for 80 generations. The average fitness of
each generation is represented by the solid line. The envelope indicates the minimum
and the maximum fitness values in each generation.

5.3.3 Controller Selection

No changes were made to the CMAS-ES implementation. However, changes made to
the source code were the environment model, random initialisation, fitness function
calculation, and sheep model (sensing and actuation).

A set of 30 evolutions were performed. Figure 5.2 shows the evolutionary dynamics
for 80 generations. During the first approximately 20 generations, the fitness values of
the best individuals improve rapidly. The fitness values continue to improve thereafter,
but seem to approach a stable plateau.

The best (i.e. lowest) fitness amongst λ = 20 candidate solutions in the last
generation was considered as the best controller for that evolution. As 30 evolutions
were performed, there were 30 best controller candidates in total. In a post-evaluation
session, each of these 30 controllers was re-evaluated 100 times in simulations trials
with different initial distribution of agents. The controller with the best average fitness
score was selected, and is considered as the best controller across the set of evolutions.
The best controller parameters are provided in Table 5.1.

5.3.4 Mathematical Analysis

In this section, we present theoretical analysis for the behaviours of the shepherds.

Lemma 2. Using control parameters given in Table 5.1, n shepherds can circle m = 1

sheep.

5.3 Controller Synthesis 97

Table 5.1 The best controller velocity pairs.

nothing sheep shepherd goal
vℓ,0 vℓ,1 vℓ,2 vℓ,3

0.9998 0.0082 0.5471 0.9993
vr,0 vr,1 vr,2 vr,3

0.8520 0.9996 0.6098 0.9447

Proof. Using the kinematics equations given in Equation (3.1), we can calculate the
linear and angular speeds of a shepherd when it detects a sheep, (s = 1), as follows

v1 = 6.449 cm/s, and ω1 = 2.488 rad/s, (5.8)

and, when the shepherds detect another nothing (s = 0), or shepherd (s = 2), the
linear and angular speeds are

v0 = 11.852 cm/s, and ω0 = −0.371 rad/s,

v2 = 7.404 cm/s, and ω2 = 0.157 rad/s.
(5.9)

This means that, the shepherds move ‘almost’ in a straight line with a small arc
when they detect nothing, or a shepherd, and make a CCW curvilinear motion when
they detect a sheep, which then causes n shepherds to ‘circle’ the sheep. ■

Lemma 3. Once circled by n shepherds, m = 1 sheep remain inside the circle.

Proof. From Lemma 2, we showed that n shepherds encircle m = 1 sheep. The
shepherds then form a uniformly symmetric ‘circular’ arrangement around the sheep.
We assume that the sheep is in the centre of the virtual circle formed by shepherds,
hence, the position of the sheep, x0 = (0, 0). The positions of n shepherds can be given
as

xi = r cos(θi)̂ı+ r sin(θi)ȷ̂, (5.10)

where xi is the position of the shepherd i, r is the distance between the shepherd to
the sheep, and θi is the angular arrangement of the shepherd in the virtual circle.

The unit distance vector between the sheep and a shepherd, r̂i, can be written as

r̂i = xi − x0 = r cos(θi)̂ı+ r sin(θi)ȷ̂. (5.11)

98 Shepherding

Using the force equation for sheep given in Equation (5.3), the net force applied to
the sheep is

F =
n∑

i=1

cj
∥xi − x0∥2

r̂i

=
n∑

i=1

cj
r2
(
r cos(θi)̂ı+ r sin(θi)ȷ̂

)
=

cj
r

(
n∑

i=1

cos(θi)̂ı+
n∑

i=1

sin(θi)ȷ̂

)
.

(5.12)

Due to the symmetric arrangement of the shepherds, the final summations given
in Equation (5.12) is 0, implying that the net virtual force applied to the sheep is
F = 0. ■

Theorem 2. Once circled by n shepherds, m = 1 sheep can be driven to the goal.

Proof. From Lemma 3, we proved that once m = 1 sheep is circled it remains inside
the circle. Using control parameters (vℓ,3, vr,3), the shepherd closer to the goal detects
the goal (s = 3) and utilise the following linear and angular velocities

v3 = 12.441 cm/s, and ω3 = −0.136 rad/s. (5.13)

The high linear speed (almost at maximum) then results in the shepherds moving
towards the goal. As a result, the virtual circle clustering the sheep stretches towards
the goal. The angular speed of the shepherds allow it to turn in the CW direction (the
same direction as detecting nothing), resulting it to be displaced in the circle. The
other shepherds follows the same routine, resulting the swarm approaching towards
the goal over time. As the circle is stretched towards the goal, the force vector applied
to the sheep is stronger at back than front, resulting a gradient for the sheep to move
towards the goal. ■

5.3.5 Behavioural Analysis

Figure 5.3 shows a sequence of snapshots taken from a simulation trial with the
shepherds using the best controller. At the beginning, the shepherds spread out from
the initial formation towards the periphery of sheep. They then cage the sheep by
orbiting around them in a clockwise manner. As the sheep are repelled more by the
shepherds than by each other, they assume a compact and round formation. While

5.3 Controller Synthesis 99

(a) t = 0 s (b) t = 100 s (c) t = 200 s

(d) t = 400 s (e) t = 600 s (f) t = 1500 s

Fig. 5.3 Sequence of snapshots showing a group of 10 shepherds (green) gathering and
moving a group of 20 sheep (red) towards the goal (blue).

orbiting around the sheep, the shepherds are also attracted towards the goal. This then
results in the gradual movement of the agents, that is, shepherds and sheep, towards
the goal.

To gain a deeper understanding of the shepherding behaviour, we monitored the
sensor reading values of n = 10 shepherds herding m = 20 sheep over 100 additional
simulation trials. Note that the sensor reading values directly determine a shepherd’s
action, that is, wheel velocities, according to Equation (5.2). Figure 5.4 shows the
average number of shepherds detecting objects of different types. Most of the time, the
shepherds detect nothing. This is followed by detecting the presence of other shepherds.
The detection of sheep seems to be relevant only in the initial stages—prior to the
caging being completed. The goal becomes more frequently observed as the agents
approach it, until the agents are caging it as well.

Note that, unlike a conventional sheep flocking model, for example Reynolds (1987)
model, the sheep do not tend to stay as a flock. Thus, the clustering of sheep is solely
based on the shepherd’s action.

100 Shepherding

0 300 600 900 1200 1500
time (s)

0

2

4

6

8

10

nu
m

be
r o

f s
he

ph
er

ds
, n

nothing
sheep
shepherd
goal

Fig. 5.4 Behavioural analysis of the shepherds. The line plots show the average number
of shepherds that detect objects of particular types. The line plots are the average of
100 trial over time. The shepherds can either detect nothing (s = 0), a sheep (s = 1),
another shepherd (s = 2), or the goal (s = 3).

5.4 Simulation Studies

In the following sections, we explore the capabilities of the controller through sensor
noise, speed-parameter sensitivity, and scalability analyses. In these analyses, a success
rate is used to measure the performance of the shepherds. The success rate is defined
as the percentage of sheep that reside within the goal region (see Figure 5.1) after
1500 s.

5.4.1 Noise Analysis

We examine the effect of noise on the performance of shepherds. In particular, we
consider false negative noise; in other words, noise preventing the detection of objects,
that is, sheep, shepherd, or goal. Formally, given an unperturbed sensor reading of
s ∈ {1, 2, 3}, the actual reading value returned by the sensor is 0 with probability p,
and s otherwise. If no object is in the line of sight of the shepherd, the sensor value
remains s = 0. We performed 100 simulation trials for each of p ∈ {0, 0.1, 0.2, . . . , 1}.
In addition, we performed an equivalent number of trials for the situation where only
a single type of sensor reading (e.g. s = 1) was affected by the noise.

Figure 5.5 show the success rates for the different probability levels of noise. The
success rate decreases rapidly if the sensor is subjected to noise levels of more than
p = 0.3 on all readings (green curve). However, the impact of noise varies if only

5.4 Simulation Studies 101

0 10 20 30 40 50 60 70 80 90 100
noise (%)

0

20

40

60

80

100

su
cc

es
s

(%
)

all
sheep
shepherd
goal

Fig. 5.5 Sensory noise analysis. The coloured curves represent different types of sensor
readings that experience noise (see the text for details). Error bars represent standard
deviations. The noise levels in x-axis are given in percentages.

certain readings are subjected to it. For example, if the shepherds cannot reliably
detect the sheep (orange curve) the performance is better than if they cannot reliably
detect the goal (pink curve). The shepherds are also tolerant to the situation where
they cannot reliably detect each other (lilac curve)—even at a noise level of p = 0.5,
they succeed in solving the task cooperatively without any significant degradation in
performance.

5.4.2 Sensitivity Analysis

We examine how sensitive the controller’s performance is with respect to changes in its
parameters. Each of the eight controller parameters [see Table 5.1] was varied from
−1 to 1 in steps of 0.05, with the other seven parameters remained fixed. For each
parameter configuration, 100 trials were performed.

Figure 5.6 shows the average success rate obtained in the sensitivity analysis trials.
The controller is sensitive to the parameters associated with the sensor reading for
nothing (vℓ,0 and vr,0). This is the most commonly observed sensor reading according
to Figure 5.4. On the other hand, the shepherd’s motion when it detects a sheep
(s = 1) is not highly critical, as long as vℓ,1 < vr,1 (i.e. the robot turns left). When the
shepherd detects the goal (s = 3), surprisingly, the velocity of the left wheel, vℓ,3, is not
critical. For vℓ,3 < vr,3, a distinct strategy emerges, where shepherds orbit around both
sheep and goal throughout the trial. When the shepherd detects another shepherd,

102 Shepherding

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
modified parameters

v , 0

vr, 0

v , 1

vr, 1

v , 2

vr, 2

v , 3

vr, 3

w
he

el
 v

el
oc

iti
es

0 20 40 60 80 100
success (%)

Fig. 5.6 Sensitivity analysis. Each of the eight velocity parameters is varied from −1 to
1 while the remaining seven parameters are kept constant. The colour map shows the
average success rate across 100 trials. The dark grey crosses represent the unchanged
parameters of the best controller, as shown in Table 5.1.

there is some leeway in sensitivity as long as vℓ,2 ≤ vr,2, but the margin is smaller than
for the sheep and goal cases.

5.4.3 Sheep Speed Analysis

The default setup for the maximum sheep speed is half of the shepherd’s maximum
speed (vs = 0.5). In this section, we change this condition and analyse the effect of
the sheep speed to the shepherding performance. We performed 100 simulation trials
for maximum velocity setting, with the default setup of n = 10 and m = 20 sheep for
T = 1500 s. Figure 5.7 shows the average success rate obtained in the shepherding
scenario.

One can see that the performance is almost 100% for the majority of the maximum
speed settings. For the faster settings (i.e. vs > 0.5) up to a threshold (vs = 0.9), the
shepherds’ performance has a high success rate (over 90%). When, however, the relative

5.4 Simulation Studies 103

0 200 400 600 800 1000 1200 1400
time (s)

0

20

40

60

80

100

su
cc

es
s

(%
)

v_s:0.1
v_s:0.2
v_s:0.3
v_s:0.4
v_s:0.5

v_s:0.6
v_s:0.7
v_s:0.8
v_s:0.9
v_s:1.0

Fig. 5.7 The effect of sheep speed to the shepherding task: the success rate (as
percentage) is given for each line (maximum velocity ratio, vs, according to the
shepherd’s) over time.

maximum speed is above vs = 0.8, the shepherds performance decreases significantly.
The reason is that, if the sheep are as fast as shepherds, they cannot be caught. As the
environment is unbounded, most of the m = 20 sheep diverge freely. On the other hand,
when the sheep maximum speed is too low (vs = 0.1), it takes a longer time to herd
them to the goal location. As the trial has a fixed duration of T = 1500 s, the setting
vs = 0.1 could not be completed in the time period. One can see the time evolution for
vs = 0.1 in the dark-green line; it takes over 1000 s for it to start increasing (whereas
the others take about 600 s) and it is still climbing when the trial is over (en-route
reaching the goal).

5.4.4 Scalability Analysis

We examine the performance of the shepherd’s controller in situations where the
number of shepherds (n) and/or sheep (m) are different with respect to the default
setup (i.e. n = 10 and m = 20). The numbers of shepherds considered were n ∈
{5, 10, 15, 20, 30, 40}. The numbers of sheep considered were m ∈ {10, 20, . . . , 100}.
For each combination of n and m, 100 simulation trials with the best controller were
performed. Each trial lasted 1500 s. The initialisation region for all robots remained
the same as shown in Figure 5.1.

Figure 5.8(top) shows the success rate. Due to the dynamic interactions, the relation
between success rate and the number of agents can be nonlinear. The performance
of the shepherd’s controller scales well up to 70 sheep and 10 shepherds (which is the

104 Shepherding

10 20 30 40 50 60 70 80 90 100
number of sheep, m

5

10

15

20

30

40

nu
m

be
r o

f s
he

ph
er

ds
, n

10 20 30 40 50 60 70 80 90 100
number of sheep, m

5

10

15

20

30

40

nu
m

be
r o

f s
he

ph
er

ds
, n

0

20

40

60

80

100

su
cc

es
s

(%
)

Fig. 5.8 Success rates (percentage of sheep retrieved to the goal region, averaged over
100 trials) for different numbers of shepherds and sheep. (top) Controller optimised for
the 4-state sensor, given in Equation (5.1); (bottom) controller optimised for a 6-state
sensor, given in Equation (5.14).

number of shepherds that was used during optimization). Beyond this point, however,
the performance degrades. As the number of other agents in the environment increases,
it becomes less likely for the shepherd to detect the goal. We hypothesise that the
reason for the drop in performance could be that the sight of the goal is occluded for
most of the time.

To alleviate the problem, we equipped the shepherd with a dedicated goal sensor,
which can detect the goal even if behind some agents.6 In this new setup, the shepherd
can distinguish between six sensory states. Accordingly, the sensor reading, s(t), can

6In practice, this is achievable if the goal object is significantly taller than the robots.

5.4 Simulation Studies 105

0 10 20 30 40 50 60 70 80
number of generations

10
13

10
14

10
15

10
16

fit
ne

ss
 v

al
ue

Fig. 5.9 Evolutionary dynamics of 30 runs for 80 generations for extended controller.
The average fitness of each generation is represented by the solid line. The envelope
indicates the minimum and the maximum fitness values in each generation.

be redefined by:

s(t) =

0 if no object is detected,

1 if a sheep is detected,

2 if a shepherd is detected,

3 if only the goal is detected,

4 if both a sheep and the goal are detected,

5 if both a shepherd and the goal are detected.

(5.14)

Note that the sensor is unable to detect a sheep or shepherd if located “behind” the goal.
In the next section, we will explain how we obtain another controller with advanced
sensing modality.

Extended Controller

We conducted 30 additional evolutions using 10 shepherds (with the 6-state sensor) and
20 sheep for a new controller. The evolutionary setup is the same as in Section 5.3.2.
Figure 5.9 shows the fitness dynamics. The controller selection criteria is the same as
Section 5.3.3. We refer to the controller with the lowest average fitness as the extended
controller.

Table 5.2 shows the extended controller parameters. Two additional control pa-
rameters, “sheep and goal” and “shepherd and goal”, allow the shepherds to perform

106 Shepherding

Table 5.2 The extended controller velocity parameters.

nothing sheep shepherd goal sheep and goal shepherd and goal
vℓ,0 vℓ,1 vℓ,2 vℓ,3 vℓ,5 vℓ,5

0.977367 -0.76925 0.568765 0.990289 -0.557135 -0.553871
vr,0 vr,1 vr,2 vr,3 vr,4 vr,5

0.811005 0.695187 0.485442 0.948778 0.859508 0.192682

0

1

2

3
0

1

2

3

4

5

(a) (b)

Fig. 5.10 Pictorial representations of the shepherding controllers—(a) best controller
and (b) extended controller. The arcs indicate the direction the robot will head based
on its sensor reading, s. The numbers on the arcs are the sensor readings.s

an enhanced behaviour. As goal occlusion is no longer an issue, due to the crowded
environment, the performance of the extended controller scales far better with the
number of sheep and shepherds. Figure 5.8(b) shows its success rate.

Figure 5.10 shows both the best and extended controllers as pictorial representations
side-by-side. There are minor differences in the behaviour of the shepherd when it
detects nothing (s = 0), another shepherd (s = 2), or the goal (s = 3). However, there
is a major difference when it detects a sheep (s = 1). This is due to the difference of
‘handling’ sheep, as the extended controller has two additional behavioural rules.

Figure 5.11 shows the behaviour of the shepherds through a sequence of snapshots
taken from a simulation trial using the extended controller. It can be observed that
it is similar to the behaviour using the best controller. The process of herding 100

5.5 Discussions 107

(a) t = 0 s (b) t = 200 s (c) t = 600 s

(d) t = 1000 s (e) t = 1200 s (f) t = 1500 s

Fig. 5.11 Sequence of snapshots showing how a group of 10 shepherds (red) gathering
and moving a group of 100 sheep (green) towards the goal (blue) using the extended
controller.

sheep takes about twice the time as herding 20 sheep. One can find trial videos in
supplementary materials (Özdemir et al., 2017).

5.5 Discussions

This study showed for the first time that the problem of herding a group of dynamic
agents can be addressed by a control group of embodied agents that lack the ability
to compute. The controlling agents needed only to extract 2-bits of information from
their environment—what object they first detect in their line of sight, if any. The
controller directly mapped this information onto constant motor commands. This was
sufficient to move the controlled group (i.e. sheep) reliably to the goal region.

The controller solution—obtained by an evolutionary algorithm—was robust with
respect to sensory noise. It was also flexible with respect to moderate changes in the
number of shepherds and sheep. We also investigated shepherds using 2-trits (i.e. 2
ternary digits) of information. These shepherds were able to simultaneously detect
another agent and the goal, if in the line of sight. This enhanced sensing modality
yielded better scalability with respect to the number of sheep and shepherds.

108 Shepherding

Although various solutions to the collective shepherding problem had been previously
proposed, minimising the information that needs to be gathered and processed by the
individual agents could help pave the way for applications at small scale—such as in
nanomedicine—where the space and energy available for hardware is at a premium.
An example of the shepherding concept in this domain can be observed in the manner
in which white blood cells chase and engulf pathogens in the body. In the next chapter,
we will focus on another self-organised coordination strategy: gathering.

Chapter 6

Gathering on a Grid

6.1 Introduction

Previously, we synthesised and analysed minimalist control strategies for swarms
of robots. In particular, the swarms were operating in two-dimensional continuous
environment, using differential-drive configuration. The robots were equipped with
single line-of-sight sensor to detect the presence of an object in their environment. In
the previous chapter discussing shepherding, we observed that when the environment is
overcrowded with the high numbers of sheep or shepherds, the goal location is occluded.
This then resulted in the robotic swarm being unable to accomplish their task. To
alleviate this problem, we proposed another sensing modality in which two line-of-sight
sensors were combined. The additional sensor, dedicated to perceive only the presence
of the goal, allowed the enhanced swarm to achieve the task.

Getting into physical proximity is often a prerequisite for groups of autonomous
robots that are collaborating to accomplish a specific task. The underlying problem,
referred to as robot aggregation (Correll and Martinoli, 2011), gathering (Gordon et al.,
2004), or rendezvous (Alpern, 1995), is not only relevant for groups of loosely coupled
robots, but also for the units of modular reconfigurable systems that, by physically
assembling with each other, form larger connected entities (Groß et al., 2006). In the
previous chapters, we observed certain drawbacks when the computation-free swarms
were using a deterministic controller. More importantly, due to the deterministic nature
of the controllers, it is possible that there are “deadlock” situations. This means, certain
configurations of the robots repeat over time, leading the robots to be in a stuck position
and prevent them from accomplishing their task. We hypothesise that such situations

110 Gathering on a Grid

can be overcome if a certain level of stochasticity is added to the system. It is possible
that there is some randomness in the system, mostly caused by the environment,
however, such randomness is uncontrollable. On the other hand, if the control system
incorporate stochasticity in a controllable manner, the system could be benefit from it
(e.g. avoid deadlock situations). In this chapter we investigate multi-robot gathering
problem on a grid in order to identify the drawbacks of a deterministic controller in a
discrete, constrained environment, design a control policy that overcomes the deadlock
situations that may occur, and measure the effect of the stochasticity to the system
performance.

We consider the situation in which all robots execute the same control policy, and
are not allowed to exploit any cues from the environment, such as the intensity of
ambient light (Claici et al., 2017; Schmickl et al., 2009). We propose novel decentralised
control policies for gathering a group of embodied agents in a two-dimensional (2D)
square tile environment. The policies are fully decentralised and reactive, and can be
executed on anonymous, oblivious agents with chirality, but no sense of orientation.
Unlike previous solutions to the gathering problem with such restricted agents, our
policies are not limited to specific initial positions, take the agent’s embodiment into
account, and require only four trits (i.e. ternary digits) of sensory information, though
the latter comes at the expense of unlimited-range sensing.

The work presented in this chapter extends the deterministic ‘computation-free’
swarming concept (Gauci et al., 2014c) in two directions. Firstly, it combines multiple
sensor inputs an agent probes in a reactive manner. This then allows the agent to more
precisely navigate in its environment. The extended concept is initially applied to the
decentralised multi-agent gathering problem. It is shown that the deterministic control
policy cannot succeed to gather agents in certain deadlock situations. The impossibility
of guaranteeing gathering using the deterministic control policy demonstrates the
need for stochasticity in the system. Secondly, the deterministic structure of the
computation-free swarming is extended by allowing the agents to take an action based
on a set of probability distributions. Two variations of stochastic control policies are
proposed: a naïve and an optimised control policy. In the former, an agent chooses an
action uniformly randomly from a set of eligible actions. In the latter, an agent chooses
an action with an optimised probability distribution from a set of eligible actions.
Compared to the original computation-free swarming framework, this extension allows
each agent to reactively choose its action based on a few bits of sensory information in
a stochastic, rather than deterministic way.

6.2 Problem Definition 111

The chapter is organised as follows. Section 6.2 describes the gathering problem.
Section 6.3 presents the deterministic control policy and proves the non-existence of a
deterministic control solution. Section 6.4 presents a naïve, stochastic control policy
and proves its convergence. Section 6.5 presents an optimised control policy, which is
a refined variant of the naïve control policy and proves its convergence. Section 6.6
evaluates both control policies through numerical simulation experiments. It examines
how the performance scales with the number of agents, and the robustness of the
system with respect to sensory noise. Section 6.7 concludes the chapter.

6.2 Problem Definition

6.2.1 Environment and Robot Model

Consider an unbounded, obstacle-free 2D square tile environment, containing n em-
bodied mobile agents. The agents are anonymous, that is, indistinguishable from each
other, fully autonomous, and execute an identical controller. Each agent occupies a
tile1, has no orientation, but can distinguish between clockwise and counter-clockwise
(chirality).

Each agent has four sensor units, one per side. Each unit provides a tuple of binary
values, s = (c, v). The first value indicates whether another agent is in physical contact
with the sensor unit; c is true if another agent resides on the corresponding adjacent
cell, and false, otherwise [see Fig. 6.1(a)]. The second value indicates if any other
agent is visible from the sensor unit; v is true if at least one agent resides within the
half-plane next to the unit, and false, otherwise [see Fig. 6.1(b)]. Formally,

c = true if ∃j : (xrel
j , yrelj) = (1, 0),

v = true if ∃j : xrel
j > 0,

(6.1)

where (xrel
j , yrelj) ∈ Z2 denotes the position of agent j in the reference frame that is (i)

local to the sensing agent, and (ii) has its x-axis parallel to the sensor unit’s sensing
direction.2 Note that c = true implies v = true. In other words, the sensor unit
provides a ternary digit of information, s ∈ {(false, false), (false, true), (true, true)}.

1A tile can not be occupied by multiple agents.
2As the agent has no orientation, each of the four sensor units has its own local reference frame.

112 Gathering on a Grid

(a) (b)

Fig. 6.1 An illustration of the sensing model showing (a) the contact and (b) the
visibility sensors. The focal agent is shown as the blue cell and the perceived agent as
the grey cell. (a) the grey agent is in contact (red line), that is, c = true, or s = 2 and
(b) the grey agent is in the visibility zone (red area), that is, v = true, or s = 1.

Alternatively, we can use a trit notation;

s =

0 if (c, v) = (false, false),

1 if (c, v) = (false, true),

2 if (c, v) = (true, true).

(6.2)

Time is assumed to be discrete. In each round, every agent executes one action;
the update order of agents is fixed.3

An agent can choose to remain in its current cell (action a0), or move into any
adjacent cell (actions a1, a2, a3, a4), provided the latter is not occupied. The sensor
data, S = (s1, s2, s3, s4), and actions A = {a0, a1, a2, a3, a4} are provided in a counter-
clockwise order. As the agents have no orientation, the specific starting elements
are irrelevant, as long as they are consistent (e.g. s3 and a3). Figure 6.2 shows an
illustration of scenario with n = 5 agents and the possible actions the focal agent can
choose.

6.2.2 Objective

The configuration, C, of a group of n agents defines their position in space. Formally,
C = {(x1, y1), . . . , (xn, yn)}, ∀i ̸= j : (xi ̸= xj) ∨ (yi ̸= yj), where (xj, yj) ∈ Z2 denotes
the position of agent j in the global reference frame.

3Theoretical analysis presented is also valid if the order changes randomly.

6.2 Problem Definition 113

a1

a2

a3

a4a0

Fig. 6.2 An illustration of a gathering scenario with five agents. The focal agent is
indicated by blue and the possible actions, A, are indicated by blue arrows. The agent
can choose to move any of the four unoccupied adjacent cells (actions a1, a2, a3, a4), or
remain in its position (action a0).

Given a configuration C, let B = (bx, by) denote the dimensions of the corresponding
bounding box. Formally,

bx = 1 +max
i,j

∣∣xi − xj

∣∣ ,
by = 1 +max

i,j

∣∣yi − yj
∣∣ . (6.3)

Consider two configurations, C and C̄, of n agents, with bounding box dimensions
B and B̄, respectively. Configuration C is said to be preferred to configuration C̄,
denoted by C̄ ≺ C, if (bx < b̄x) ∧ (by ≤ b̄y) or (bx ≤ b̄x) ∧ (by < b̄y) (see Figure 6.4).
Figure 6.3 shows an example configuration of agents acting to reduce the dimensions
of the bounding box.

Definition 1. Configuration C is Pareto optimal, if there exists no other configuration
of n agents that is preferred to C.

The agents start from arbitrary cells. The objective of the agents is to collectively
reach, and remain indefinitely, in a Pareto optimal configuration.

Definition 2. A control policy P is said to guarantee gathering if the final configuration
C of n agents is Pareto optimal.

6.2.3 Mathematical Analysis

In this section, we present a mathematical analysis of the gathering problem with given
specifications.

Definition 3. Let η denote the total number of empty cells within the bounding box,
then η = bxby − n.

114 Gathering on a Grid

m1

m4

m2

m3

m5

m1

m4

m2

m3

m5

(a) (b)

Fig. 6.3 An illustration of decentralised gathering in a 2D square tile environment.
An agent can move into any empty, adjacent cell if another agent is perceived in the
corresponding direction (e.g. see blue arrows for agent m1), or remain in its current
cell. Parts (a) and (b) show the situation immediately before and after agent m1’s
move. In this instance, the group’s spatial configuration became more compact—the
dimensions of the corresponding bounding box reduced from 5× 4 to 4× 4 (see green
frames).

Lemma 4. A configuration of n agents contained in a bounding box of dimensions
(bx, by) is Pareto optimal, if and only if η < min{bx, by}.

Proof. First, we consider the case that a Pareto optimal configuration, C, is given.
Without loss of generality, we assume by ≤ bx. If η ≥ min{bx, by} = by, then bx > 1.
Let η1 ≥ 0 and ηr > 0 denote the number of empty cells within the first column and
the remaining columns of the bounding box, respectively. We have η = η1 + ηr. We
can remove the by − η1 > 0 agents from the first column and insert them in some of
the ηr = η − η1 ≥ by − η1 empty cells in the other columns. This would produce a
configuration C̄ that has at least one fewer column and at most the same number of
rows, that is, C ≺ C̄. This however contradicts our assumption that C is Pareto optimal.
Consequently, η = bxby − n < min{bx, by}.

Second, we consider the case of a configuration with bxby − n < min{bx, by}. The
number of empty cells within the bounding box is η = bxby − n < min{bx, by}. In
other words, neither of the dimensions of the bounding box can be reduced, without
increasing the other dimension. Therefore, the configuration is Pareto optimal. ■

6.3 Deterministic Control Policy 115

(a) (b)

Fig. 6.4 Two example configurations, C̄ and C, of five agents are given in (a) and (b),
respectively. C̄ ≺ C, as dimensions of B are smaller than B̄; (bx < b̄x) ∧ (by ≤ b̄y) (see
green frames surrounding the modules). Moreover, C is a Pareto optimal configuration
for five agents.

6.3 Deterministic Control Policy

In this section, we first introduce the necessary concepts for designing a deterministic
control policy, namely context classes and actions. Second, we introduce the concept
of counter-examples in order to reduce the large search-domain. We then present 35
counter-examples that reduced the search-domain of size 331776 to 6. Finally, we
theoretically prove that there exists no determinstic control policy

Algorithm 1 Deterministic Control Policy, PD

1: while true do
2: S ← () ▷ initialise an empty list of sensor readings
3: for all i ∈ {1, 2, 3, 4} do
4: update ci ▷ probe Boolean contact sensor i
5: update vi ▷ probe Boolean visibility sensor i
6: S ← (ci, vi) ▷ add sensor tuple to sensor readings
7: end for
8: a← T [S] ▷ retrieve value of S
9: execute a

10: wait δ units of time
11: end while

Deterministic control policy assumes that there exists a predefined action for any
given list of sensor quadruples. Algorithm 1 shows the formulation of the deterministic
control policy. Each module executes an identical algorithm in each control cycle.
The modules are assumed to be equipped with a ‘lookup table’ that includes a list of

116 Gathering on a Grid

actions, T , corresponding to each sensor reading. A lookup table is simply a list of
(key, value) = (S, a) pairs. A key represents a probed list of sensor readings quadruple,
S = (s1, s2, s3, s4) ∈ S, and value represents the action the module will take, a ∈ A.
We can now define the deterministic controller as a mapping

T : S −→ A
S 7−→ T [S] = a

(6.4)

There are four sensor tuples and each sensor can probe up to three different values.
In total, there are 34 = 81 different sensor quadruples. We categorise the sensor
readings based on their similarity and refer to them with their unique labels to simplify
the analysis. We refer to the unique sensing states of a module as a context. Context
of a module is fully defined by its sensor reading S. In the next section, we describe
the context classes in detail.

6.3.1 Context Classes

We labelled the contexts with a capital letter, starting from A, and added an enumerating
digit for similar contexts. In other words, the contexts with an equal amount of s = 1

and s = 2 sensor readings, but in a different arrangement, have a digit appended.
The 81 contexts are split into 19 equivalent classes. A context can have up to four
rotational symmetric equivalents. We chose a representative ‘base’ sensor reading for
each context, and call the other equivalents as ‘permutations’.

Table 6.1 shows the base sensor readings and the number of permutations for each
context apart from one, K.4 There are three special contexts; A, D1, and F1. Context A
has only one permutation as it is ‘fully symmetric’, whilst contexts D1 and F1 have two
permutations as they are ‘half-symmetric’. All other contexts represented in Table 6.1
have four permutations. For example, the base sensor reading for B is S = (1, 1, 1, 2),
and there are three other permutations; (2, 1, 1, 1), (1, 2, 1, 1), and (1, 1, 2, 1). Figure 6.5
shows the contexts presented in Table 6.1. Each context is illustrated with its base
sensor reading.

A module is in context K if all faces of the module are in contact with another
module, or there is no module in the corresponding half-plane. That means, all
the configurations are grouped as context K if the module is the only module in

4More information on context K will be provided later.

6.3 Deterministic Control Policy 117

Table 6.1 Base sensor readings and number of permutations with context label.

context sensor reading number of
permutations

A (1,1,1,1) 1
B (1,1,1,2) 4
C (1,1,1,0) 4
D1 (2,1,2,1) 2
D2 (1,1,2,2) 4
E1 (2,1,0,1) 4
E2 (1,1,0,2) 4
E3 (1,1,2,0) 4
F1 (0,1,0,1) 2
F2 (1,1,0,0) 4
G (1,2,2,2) 4
H1 (1,0,2,2) 4
H2 (1,2,0,2) 4
H3 (1,2,2,0) 4
I1 (1,0,0,2) 4
I2 (1,0,2,0) 4
I3 (1,2,0,0) 4
J (1,0,0,0) 4

Fig. 6.5 Overview of the 18 unique contexts of the focal agent (white cell). A grey
agent represents an agent in an adjacent cell, that is, an agent in physical contact
(c = true, or s = 2), or an agent that is visible (v = true, or s = 1, for at least one of
the focal agent’s sides). Arrows indicate possible directions of movement. In addition,
an agent may remain in its current position.

118 Gathering on a Grid

Fig. 6.6 Six example configurations for context K. The focal module (white cell) is
situated as a single module, an edge module in three different configurations, a corner
module, and an inner module, respectively. The former two edge configurations are
only possible in a linear arrangement of the modules.

the environment, or it is at the outer edge, or outer corner, of a bounding box, or
completely surrounded by other modules. Formally, a module is in context K if and
only if ∀s ∈ S, s ∈ {0, 2}. There are in total 16 configurations in which a module can
be in context K and Figure 6.6 shows six example configurations.

Context K has a variable number of permutations based on how many faces of a
module detects s = 0 or s = 2. For example, a quadruple S with one contact detection
have four permutations; (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2), whilst S with no
contact detection has only one; S = (0, 0, 0, 0). Contexts with two adjacent neighbours
or two opposite neighbours [e.g. (2, 0, 2, 0) and (2, 2, 0, 0)] are not the same, even
though they share the same amount of contact readings. This situation is similar to
any other label with a number (e.g. D1 and D2 have the same amount of s = 1 and
s = 2), yet, we refer to both of these contexts as K.

6.3.2 Controller Design

In this section, we first present the necessary definitions, and certain assumptions for a
deterministic control policy.

Definition 4. Let c denote an arbitrary context. Then, Ac is the set of possible actions
for c and ac is the action c takes (i.e. ac ∈ Ac).

Remark. Ac is mutable, such that, the set of possible actions for the context c can be
refined.

Definition 5. The list of actions utilised by a deterministic control policy is denoted by
T . Then, T ∈

∏
cAc, that is, a list of actions is an element of the Cartesian product

of all sets of possible actions.

Remark. The disjoint union of list of actions T covers the set of all possible actions;⊔
T =

∏
cAc.

6.3 Deterministic Control Policy 119

Fig. 6.7 Four possible configuration for the context A.

Definition 6. Let |·| denote the cardinality (number of elements) of the set. Then, the
number of possible controllers is

∣∣∏
cAc

∣∣ = ∣∣⊔ T ∣∣.
Previously, we stated that due to lack of orientation, the order of the elements

(sensor readings and actions) does not matter as long as it is consistent. However, in
order to implement the control policy in numerical simulations, we are obliged to choose
a starting element. We choose the first element (s1 and a1) as the North direction, and
proceed in counter-clockwise order. Thus, the order from 1 to 4 would be set as North,
West, South, and East.

Axiom 1. A module in context F2 moves North, that is, aF2 = a1.

Axiom 1 is the assumption we make on the context movement directions. Hereby,
we choose a perspective and set a starter direction for F2 to North (i.e. a1).

Axiom 2. A module in context K does not move, that is, aK = a0.

Axiom 2 is the second assumption on the contexts. A module is in context K if
it is one of the configurations as given in Figure 6.6. It is not permitted to move as
it can only move out of the bounding-box, which contradicts with the control policy
formulation.

Axiom 3. A module in contexts A, D1, and F1 does not move, that is, aA = aD1 =

aF1 = a0.

Axiom 3 is the final assumption made about the contexts. As the modules have
no sense of orientation, they cannot choose a particular direction over another. The
context does not provide any information to establish a unique orientation, and the
module lacks non-determinism to choose one of multiple possibilities. Therefore, we
assume that fully- and partially-symmetric contexts, A, D1, and F1, do not choose a
direction to move. Figure 6.7 shows four possible configurations for the context A. As

120 Gathering on a Grid

Table 6.2 Possible actions for each of the 19 contexts.

context, c possible actions, Ac

A a0
B a0, a1, a2, a3
C a0, a1, a2, a3
D1 a0
D2 a0, a1, a2
E1 a0, a2, a4
E2 a0, a1, a2
E3 a0, a1, a2
F1 a0
F2 a1
G a0, a1
H1 a0, a1
H2 a0, a1
H3 a0, a1
I1 a0, a1
I2 a0, a1
I3 a0, a1
J a0, a1
K a0

the module has no sense of orientation, all four configurations are the same, thus, it is
impossible for the module to favour one direction over another. Table 6.2 shows the
possible actions for each of the contexts.

Remark.
∣∣∏

cAc

∣∣ = 331776 for the possible actions presented in Table 6.2.

From the remark, it is clear that the domain of possible controllers is large. One
can search the whole domain to find a deterministic controller. However, this requires a
proof for each T ∈

∏
cAc, whether the controller is successful or not. On the other hand,

it is possible to reduce the size of the search domain. As such, we introduce ‘counter-
examples’ to eliminate impossible actions. Each counter-example is independent from
the other, although, they are built one after another in a sequential order. In the
next section, we present 35 counter-examples, providing the necessary and sufficient
conditions (assumptions and outcome) for each of them.

6.3 Deterministic Control Policy 121

6.3.3 Presentation of Counter-Examples

In this section, we first define the necessary and sufficient conditions for a deterministic
controller to exist. Then, we proceed by providing a definition for a counter-example
and its ‘type’. Finally, we present 35 counter-examples with details and summarise the
set of possible actions.

Lemma 5. A deterministic control policy PD utilising T is a complete solution if and
only if PD gathers for any number of modules n, any initial configuration C0 with any
fixed update order U in finite time.

Definition 7. A counter-example is a triple E = (T , C0,U) such that E contradicts
with the second term of the bi-conditional statement in Lemma 5.

Remark. A controller T cannot produce a complete solution if there exists at least one
triple E0. For example, assume that there exists an initial configuration C0 of n = n0

modules, with a certain fixed update order U0 that is theoretically impossible to gather
the modules using the controller T . This would contradict with the Lemma 5, thus, E0
would be a counter-example.

Definition 8. A ‘static deadlock’ is a non-Pareto optimal configuration C of modules,
in which, C does not change over time. In other words, the modules remain in their
place indefinitely, thus, gathering is theoretically impossible.

Definition 9. A ‘dynamic deadlock’ is a non-Pareto optimal configuration C of modules,
with a particular update order, that results in fixed-periodic repetition. In other words,
the modules remain in an indefinite cycle, thus, gathering is theoretically impossible.

Algorithm 2 presents a pseudo-code for a function that reduces the space of possible
controllers. The function accepts the ‘current’ space of possible controllers

⊔
T and

a counter-example. In simple terms, every controller that has the same actions for
the contexts that are a priori unknown and participated in the counter-example is
removed from the space of controllers (line 4 − 8). After each counter-example, we
used Algorithm 2 to update the space of possible controllers.

Each counter-example is presented as a ‘modified’ table. We first begin with
describing an ‘example’ counter-example. A Priori Known Contexts are the
contexts that we either assumed (in one of the axioms), or discovered (using a counter-
example). That means, we know what action the contexts should take, thus, the
search space for such dimension is reduced before this counter-example is presented. A

122 Gathering on a Grid

Algorithm 2 Function for evaluating controller T
1: function ReduceControllerSpace(

⊔
T , E = (T , C,U))

2: initialise c̄ ▷ initialise list of unknown contexts that participated in E
3: let T ←

⊔
T ▷ copy

⊔
T into T

4: for all τ ∈
⊔
T do

5: if ∀c ∈ c̄,
∧
(τ [c] = T [c]) then ▷ if c̄’s actions for τ are the same as T

6: T ← T \ τ ▷ remove τ from T
7: end if
8: end for
9: return T ▷ return to the updated union of controllers

10: end function

Counter-example 0
A Priori Known Contexts The contexts with only one action

A Priori Unknown Contexts The contexts that have multiples
actions, i.e. unknown contexts

Unknown Contexts Participated The actions used for the unknown
contexts that are participated

Knowledge Gained The outcome of the counter-example∣∣⊔ T ∣∣ Update The change in the number of
possible controllers

Type of Counter-Example Static or Dynamic Deadlock
Reference in Appendix Caption number in Appendix

Priori Unknown Contexts, on the other hand, are the contexts that have multiple
possible actions so that currently we do not know which action is correct.

Unknown Contexts Participated are the actions used for the unknown contexts
that participated in the counter-example. Note that the ‘unknown contexts participated’
is a subset of ‘a priori unknown contexts’. We can only determine an action is valid or
not if the unknown context is actually present in the counter-example. Knowledge
Gained is a logical statement, that is, the outcome of the counter-example. In other
words, as the counter-example contradicts with the assumption on T , it is the negation
of the logical statement given in Unknown Contexts Participated.∣∣⊔ T ∣∣ Update is the change in the search space dimensions. That means, it
shows the number of possible controllers that exist before the counter-example, and
after. Type of Counter-Example refers to one of the deadlock situations given in

6.3 Deterministic Control Policy 123

Definition 8-9. It is either static or dynamic deadlock. Reference in Appendix
includes all the images of the counter-examples. There are some counter-examples with
a very long period, with the longest being 360. Thus, we only present the full list of
images in Appendix A, as we present an image for each update.

Illustration of initial configuration, C0 is the image of an initial
configuration for the counter-example. For a counter-example with a type of static
deadlock, this is the only image, hence, it is not repeated in the Appendix. Each
module is represented by a different colour. The module colour-spectrum starts with
dark blue and ends with dark red.

We designed counter-examples 1−16 manually. They are solely based on a situation
where if neither of the modules move, gathering becomes impossible.

124 Gathering on a Grid

Counter-example 1
A Priori Known Contexts A,D1,F1,F2,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3, J
Unknown Contexts Participated aJ = a0

Knowledge Gained a0 /∈ AJ∣∣⊔ T ∣∣ Update 331776→ 165888
Type of Counter-Example Static Deadlock

J J

Counter-example 2
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aH3 = a0 ∧ aI1 = a0

Knowledge Gained a0 /∈ AH3 ∨ a0 /∈ AI1∣∣⊔ T ∣∣ Update 165888→ 124416
Type of Counter-Example Static Deadlock

I1 H3

H3 I1

Counter-example 3
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aH1 = a0 ∧ aI3 = a0

Knowledge Gained a0 /∈ AH1 ∨ a0 /∈ AI3∣∣⊔ T ∣∣ Update 124416→ 93312
Type of Counter-Example Static Deadlock

I3 H1

H1 I3

6.3 Deterministic Control Policy 125

Counter-example 4
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aI1 = a0 ∧ aI3 = a0

Knowledge Gained a0 /∈ AI1 ∨ a0 /∈ AI3∣∣⊔ T ∣∣ Update 93312→ 82944
Type of Counter-Example Static Deadlock

I3

I1

I1

I3

Counter-example 5
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aE3 = a0 ∧ aI1 = a0

Knowledge Gained a0 /∈ AE3 ∨ a0 /∈ AI1∣∣⊔ T ∣∣ Update 82944→ 76032
Type of Counter-Example Static Deadlock

I1 E3
E3 I1

Counter-example 6
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aE2 = a0 ∧ aI3 = a0

Knowledge Gained a0 /∈ AE2 ∨ a0 /∈ AI3∣∣⊔ T ∣∣ Update 76032→ 69120
Type of Counter-Example Static Deadlock

I3 E2
E2 I3

126 Gathering on a Grid

Counter-example 7
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aC = a0

Knowledge Gained a0 /∈ AC∣∣⊔ T ∣∣ Update 69120→ 51840
Type of Counter-Example Static Deadlock

C
C

C
C

Counter-example 8
A Priori Known Contexts A,D1,F1,F2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
Unknown Contexts Participated aI2 = a0

Knowledge Gained a0 /∈ AI2∣∣⊔ T ∣∣ Update 51840→ 25920
Type of Counter-Example Static Deadlock

K I2 I2 K

Counter-example 9
A Priori Known Contexts A,D1,F1,F2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
Unknown Contexts Participated aE1 = a0

Knowledge Gained a0 /∈ AE1∣∣⊔ T ∣∣ Update 25920→ 17280
Type of Counter-Example Static Deadlock

E1
E1
K
E1

E1

6.3 Deterministic Control Policy 127

Counter-example 10
A Priori Known Contexts A,D1,F1,F2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
Unknown Contexts Participated aE2 = a0 ∧ aE3 = a0

Knowledge Gained a0 /∈ AE2 ∨ a0 /∈ AE3∣∣⊔ T ∣∣ Update 17280→ 16128
Type of Counter-Example Static Deadlock

K
E2

E3
E2
KE3

Counter-example 11
A Priori Known Contexts A,D1,F1,F2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
Unknown Contexts Participated aH1 = a0 ∧ aH3 = a0

Knowledge Gained a0 /∈ AH1 ∨ a0 /∈ AH3∣∣⊔ T ∣∣ Update 16128→ 13824
Type of Counter-Example Static Deadlock

K H3
K H1

H1 K
H3 K

Counter-example 12
A Priori Known Contexts A,D1,F1,F2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
Unknown Contexts Participated aE3 = a0 ∧ aH1 = a0

Knowledge Gained a0 /∈ AE3 ∨ a0 /∈ AH1∣∣⊔ T ∣∣ Update 13824→ 13248
Type of Counter-Example Static Deadlock

K K
K H1

E3
E3

H1 K
K K

128 Gathering on a Grid

Counter-example 13
A Priori Known Contexts A,D1,F1,F2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
Unknown Contexts Participated aE2 = a0 ∧ aH3 = a0

Knowledge Gained a0 /∈ AE2 ∨ a0 /∈ AH3∣∣⊔ T ∣∣ Update 13248→ 12672
Type of Counter-Example Static Deadlock

K H3
K K E2

E2 K K
H3 K

Counter-example 14
A Priori Known Contexts A,D1,F1,F2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
Unknown Contexts Participated aH2 = a0

Knowledge Gained a0 /∈ AH2∣∣⊔ T ∣∣ Update 12672→ 6336
Type of Counter-Example Static Deadlock

K
H2
H2
K

H2

H2

H2

H2

K
H2
H2
K

6.3 Deterministic Control Policy 129

Counter-example 15
A Priori Known Contexts A,D1,F1,F2,H2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,G,H1,H3, I1, I3
Unknown Contexts Participated aG = a0

Knowledge Gained a0 /∈ AG∣∣⊔ T ∣∣ Update 6336→ 3168
Type of Counter-Example Static Deadlock

K
K
K
K
K
K

K

K

K

K

K

K

K

K

K
K
K
K
K
K

K
G
G
K

G

G

G

G

K
G
G
K

130 Gathering on a Grid

The number of possible controllers,
∣∣⊔ T ∣∣, was reduced from 331776 to 3168, meaning

the search space is reduced by 99.045%. In terms of the knowledge we gained of the
contexts, we list them by the order; aJ ̸= a0, aC ̸= a0, aE1 ̸= a0, aG ≠ a0, aH2 ̸= a0, aI2 ̸=
a0. Even though we reduced the search space significantly, we only gained full knowledge
on G,H2, and J. Prior to the next counter-example, we still do not know what are the
specific actions of the 11 remaining contexts; B,C,D2,E1,E2,E3,H1,H3, I1, I2, and I3.

Algorithm 3 Generating a counter-example E
1: function Simulate(T , C0,U)
2: C ← () ▷ initialise empty set of configurations
3: while (t < TD) ∧ (h! = 0) do ▷ loop until the trial ends
4: update Ct ▷ using Algorithm 1 utilising T for each module
5: C ← Ct ▷ append the list with Ct
6: update η ▷ calculate using bounding-box dimensions
7: t← t+ 1 ▷ increase the time-step counter
8: end while
9: return C ▷ return to the list of configurations with length TD

10: end function
11: function IsPeriodic(C)
12: if ∃!TP s.t. ∀t < (⌊TD/2⌋ − TP),

∧
(Ct = Ct+TP

) then
13: return true ▷ C has a period TP , terminate
14: end if
15: return false ▷ C is not periodic
16: end function
17: initialise C0,U
18: C ← Simulate(T , C0,U)
19: if IsPeriodic(C) = true then ▷ i.e. there exists a period TP

20: E ← (T , C0,U) ▷ counter-example E is generated
21: end if

We then designed a computer algorithm that can ‘generate’ a counter-example by
searching through initial configurations and update orders comprehensively. Algorithm 3
presents a pseudo-code for generating a counter-example from a given set of inputs.
Line 1− 8 and 9− 18 define two salient functions for generating a counter-example.
The first function, Simulate, simulates a group of modules using the deterministic
control policy PD (see Algorithm 1) utilising T , starting from C0, with an update order
U for maximum of TD time-steps.5 Then the function returns C, a list of configurations
(of group of modules) for each time-step. The second function, IsPeriodic, determines
whether the given C comprises a periodic structure.

5TD is set to a sufficiently high number. The successful trials, where gathering is possible,
terminated immediately.

6.3 Deterministic Control Policy 131

For a given T , Algorithm 3 has to be executed using multiple pairs of (C0,U) until
a counter-example is generated. Ideally, one can search for a counter-example in the
whole domain of (C0,U) for a given number of modules n. It may not be a trivial
task to search for all pairs of (C0,U) for a large number n, however, it is feasible to
search over the whole domain for a small number of modules. Considering that, we
systematically searched all possible (C0,U) pairs for n = 4, 5, 6, and 8 in sufficiently
large environments.

For a given number of modules n and environment size (lx, ly), one can calculate
the total number of order updates by n! and the total number of initial configurations
by
(
lxly
n

)
. For example, in order to generate a counter-example in a (3, 2) environment

with n = 4 modules, one needs to perform
(
3·2
4

)
4! = 360 simulations for each controller

T . The number of simulations can be tremendously extensive for larger n, mostly
due to the factorial term. For example, for n = 8 in a (5, 2) environment, the number
of simulations would be 1814400. This is the reason why we gradually increased the
number of modules over the different counter-examples. Once we searched through
all pairs, we then changed the (lx, ly) and n. We first performed Algorithm 3 on
lower number of n when we had large

⊔
T , and increased n when

⊔
T decreased.

Counter-examples 16− 35 followed the same procedure—they all are generated using
Algorithm 3. A challenge is that the same counter-example may appear for different
pairs of (C0,U). We only present those that are novel and contribute to the overall
knowledge we gained.

132 Gathering on a Grid

Counter-example 16
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1, I3
Unknown Contexts Participated aE2 = a1 ∧ aH1 = a1 ∧ aI1 = a1 ∧ aI3 = a0

Knowledge Gained a1 /∈ AE2 ∨ a1 /∈ AH1 ∨ a1 /∈ AI1 ∨ a0 /∈ AI3∣∣⊔ T ∣∣ Update 3168→ 2736
Reference in Appendix Figure A.1

Type of Counter-Example Dynamic deadlock with period of 20

F2

E2K

I3

Counter-example 17
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1, I3
Unknown Contexts Participated aE2 = a2 ∧ aH1 = a1 ∧ aI1 = a1

Knowledge Gained a2 /∈ AE2 ∨ a1 /∈ AH1 ∨ a1 /∈ AI1∣∣⊔ T ∣∣ Update 2736→ 1872
Reference in Appendix Figure A.2

Type of Counter-Example Dynamic deadlock with period of 24

F2I3

E2K

Counter-example 18
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1
Unknown Contexts Participated aE3 = a1 ∧ aH3 = a1

Knowledge Gained a1 /∈ AE3 ∨ a1 /∈ AH3∣∣⊔ T ∣∣ Update 1872→ 1080
Reference in Appendix Figure A.3-A.4

Type of Counter-Example Dynamic deadlock with period of 36

K

I1

E3

F2

6.3 Deterministic Control Policy 133

Counter-example 19
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1

Unknown Contexts Participated aE1 = a2 ∧ aE3 = a2 ∧ aH1 = a0
∧aH3 = a1 ∧ aI1 = a1

Knowledge Gained a2 /∈ AE1 ∨ a2 /∈ AE3 ∨ a0 /∈ AH1

∨a1 /∈ AH3 ∨ a1 /∈ AI1∣∣⊔ T ∣∣ Update 1080→ 972
Reference in Appendix Figure A.5

Type of Counter-Example Dynamic deadlock with period of 28

K

I1

E3

F2

Counter-example 20
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1

Unknown Contexts Participated aE1 = a2 ∧ aE2 = a0 ∧ aE3 = a2
∧aH1 = a1 ∧ aH3 = a1 ∧ aI1 = a1

Knowledge Gained a2 /∈ AE1 ∨ a0 /∈ AE2 ∨ a2 /∈ AE3

∨a1 /∈ AH1 ∨ a1 /∈ AH3 ∨ a1 /∈ AI1∣∣⊔ T ∣∣ Update 972→ 936
Reference in Appendix Figure A.6-A.7

Type of Counter-Example Dynamic deadlock with period of 52

K

I1

E3

F2

Counter-example 21
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1
Unknown Contexts Participated aE1 = a2 ∧ aE2 = a1 ∧ aH1 = a1 ∧ aI1 = a1

Knowledge Gained a2 /∈ AE1 ∨ a1 /∈ AE2 ∨ a1 /∈ AH1 ∨ a1 /∈ AI1∣∣⊔ T ∣∣ Update 936→ 756
Reference in Appendix Figure A.8

Type of Counter-Example Dynamic deadlock with period of 16

K

I1

H2 I3

134 Gathering on a Grid

Counter-example 22
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1

Unknown Contexts Participated aE1 = a4 ∧ aE2 = a1 ∧ aE3 = a0
∧aH1 = a1 ∧ aI1 = a1

Knowledge Gained a4 /∈ AE1 ∨ a1 /∈ AE2 ∨ a0 /∈ AE3

∨a1 /∈ AH1 ∨ a1 /∈ AI1∣∣⊔ T ∣∣ Update 756→ 684
Reference in Appendix Figure A.9-A.10

Type of Counter-Example Dynamic deadlock with period of 44

K

I1

H2 I3

Counter-example 23
A Priori Known Contexts A,D1,F1,F2,G,H2, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,E3,H1,H3, I1

Unknown Contexts Participated aE1 = a4 ∧ aE2 = a1 ∧ aH1 = a1
∧aH3 = a0 ∧ aI1 = a1

Knowledge Gained a4 /∈ AE1 ∨ a1 /∈ AE2 ∨ a1 /∈ AH1

∨a0 /∈ AH3 ∨ a1 /∈ AI1∣∣⊔ T ∣∣ Update 684→ 612
Reference in Appendix Figure A.11

Type of Counter-Example Dynamic deadlock with period of 28

K

I1

H2 I3

6.3 Deterministic Control Policy 135

Counter-example 24
A Priori Known Contexts A,D1,E3,F1,F2,G,H2,H3, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,H1, I1
Unknown Contexts Participated aB = a0 ∧ aD2 = a0 ∧ aE1 = a4

Knowledge Gained a0 /∈ AB ∨ a0 /∈ AD2 ∨ a4 /∈ AE1∣∣⊔ T ∣∣ Update 612→ 579
Reference in Appendix Figure A.12-A.13

Type of Counter-Example Dynamic deadlock with period of 32

D2
E1

F2
E1

Counter-example 25
A Priori Known Contexts A,D1,E3,F1,F2,G,H2,H3, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,H1, I1
Unknown Contexts Participated aE2 = a2

Knowledge Gained a2 /∈ AE2∣∣⊔ T ∣∣ Update 579→ 408
Reference in Appendix Figure A.14

Type of Counter-Example Dynamic deadlock with period of 8

I3
E2

C

F2

Counter-example 26
A Priori Known Contexts A,D1,E3,F1,F2,G,H2,H3, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,H1, I1
Unknown Contexts Participated aC = a1

Knowledge Gained a1 /∈ AC∣∣⊔ T ∣∣ Update 408→ 272
Reference in Appendix Figure A.15-A.19

Type of Counter-Example Dynamic deadlock with period of 48

C

C
C

C

136 Gathering on a Grid

Counter-example 27
A Priori Known Contexts A,D1,E3,F1,F2,G,H2,H3, I2, I3, J,K

A Priori Unknown Contexts B,C,D2,E1,E2,H1, I1
Unknown Contexts Participated aC = a3

Knowledge Gained a3 /∈ AC∣∣⊔ T ∣∣ Update 272→ 136
Reference in Appendix Figure A.20

Type of Counter-Example Dynamic deadlock with period of 8

C

C
C

C

Counter-example 28
A Priori Known Contexts A,C,D1,E3,F1,F2,G,H2,H3, I2, I3, J,K

A Priori Unknown Contexts B,D2,E1,E2,H1, I1
Unknown Contexts Participated aE1 = a4

Knowledge Gained a4 /∈ AE1∣∣⊔ T ∣∣ Update 136→ 48
Reference in Appendix Figure A.21-A.23

Type of Counter-Example Dynamic deadlock with period of 40

K
E1

E1
E1

E1

Counter-example 29

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2,H1
Unknown Contexts Participated aB = a0

Knowledge Gained a0 /∈ AB∣∣⊔ T ∣∣ Update 48→ 36
Reference in Appendix Figure A.24-A.26

Type of Counter-Example Dynamic deadlock with period of 48

I1

I3

H3
G
H1

E1

6.3 Deterministic Control Policy 137

Counter-example 30

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2,H1
Unknown Contexts Participated aD2 = a2 ∧ aE2 = a1 ∧ aH1 = a1

Knowledge Gained a2 /∈ AD2 ∨ a1 /∈ AE2 ∨ a1 /∈ AH1∣∣⊔ T ∣∣ Update 36→ 33
Reference in Appendix Figure A.27-A.33

Type of Counter-Example Dynamic deadlock with period of 126

K
K
I1

K
D2

I3

Counter-example 31

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2,H1
Unknown Contexts Participated aD2 = a2 ∧ aH1 = a1

Knowledge Gained a2 /∈ AD2 ∨ a1 /∈ AH1∣∣⊔ T ∣∣ Update 33→ 30
Reference in Appendix Figure A.34-A.35

Type of Counter-Example Dynamic deadlock with period of 36

K
H2
K

E3

E2
C

138 Gathering on a Grid

Counter-example 32

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2,H1
Unknown Contexts Participated aH1 = a1

Knowledge Gained a1 /∈ AH1∣∣⊔ T ∣∣ Update 30→ 18
Reference in Appendix Figure A.36-A.47

Type of Counter-Example Dynamic deadlock with period of 228

K
E2

E3

E3
E2
K

Counter-example 33

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H1,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2
Unknown Contexts Participated aB = a2

Knowledge Gained a2 /∈ AB∣∣⊔ T ∣∣ Update 18→ 12
Reference in Appendix Figure A.48-A.51

Type of Counter-Example Dynamic deadlock with period of 60

I1

F2

H3
D2 H1

I3

6.3 Deterministic Control Policy 139

Counter-example 34

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H1,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2
Unknown Contexts Participated aD2 = a0

Knowledge Gained a0 /∈ AD2∣∣⊔ T ∣∣ Update 12→ 8
Reference in Appendix Figure A.52

Type of Counter-Example Dynamic deadlock with period of 12

E1
E1
G G

E1
E1

Counter-example 35

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H1,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2
Unknown Contexts Participated aB = a1 ∧ aD2 = a1

Knowledge Gained a1 /∈ AB ∨ a1 /∈ AD2∣∣⊔ T ∣∣ Update 8→ 6
Reference in Appendix Figure A.53-A.56

Type of Counter-Example Dynamic deadlock with period of 40

C

F2

E2H3
G
D1
E1

E1

140 Gathering on a Grid

Table 6.3 Actions for a priori known contexts and the six combinations of actions for
the remaining unknown contexts.

aA = a0 aC = a2 aD1 = a0 aE1 = a2
aE3 = a2 aF1 = a0 aF2 = a1 aG = a1
aH1 = a0 aH2 = a1 aH3 = a1 aI1 = a0
aI2 = a1 aI3 = a1 aJ = a1 aK = a0

(aB = a1) ∧ (aD2 = a2) ∧ (aE2 = a0)
(aB = a1) ∧ (aD2 = a2) ∧ (aE2 = a1)
(aB = a3) ∧ (aD2 = a1) ∧ (aE2 = a0)
(aB = a3) ∧ (aD2 = a1) ∧ (aE2 = a1)
(aB = a3) ∧ (aD2 = a2) ∧ (aE2 = a0)
(aB = a3) ∧ (aD2 = a2) ∧ (aE2 = a1)

In Table 6.3, we present the six possible controllers after the last counter-example
has been applied. Amongst the six remaining controllers, 16 of 19 contexts have the
same action, that is, we have full knowledge of 16 of the contexts. The contexts that
are still unknown are B,D2,E2. Each of them have two possible actions, though not
all combinations are possible.

Table 6.4 shows the summary. The first row of the table shows the details prior to
the first counter-example being applied. Whilst we gain insights after each counter-
example, some of them reveal the ‘full’ knowledge of a context. This can be clearly
seen from the table, where the list of remaining unknown contexts reduces. For
example, after the first counter-example, we fully discovered that aJ ≠ a0, thus, J is
no longer unknown. On the other hand, the rest of the counter-examples reveal a
‘partial’ knowledge of contexts. That means the knowledge is conditional, for example,
(aH3 ̸= a0) ∨ (aI1 ̸= a0). Below, we list the full and ‘explicit’ knowledge gained from
counter-examples (denoted as E#) in an alphabetical order.

• aC ̸= a0 (E7), aC ̸= a1 (E26), aC ̸= a3 (E27) =⇒ aC = a2

• aB ̸= a0 (E29), aB ̸= a2 (E33)
• aD2 ̸= a0 (E34)
• aE1 ̸= a0 (E9), aE1 ̸= a4 (E28) =⇒ aE1 = a2

• aE2 ̸= a2 (E25)
• aG ̸= a0 (E15) =⇒ aG = a1

• aH1 ̸= a1 (E32) =⇒ aH1 = a0

• aH2 ̸= a0 (E14) =⇒ aH2 = a1

• aI2 ̸= a0 (E8) =⇒ aI2 = a1

• aJ ̸= a0 (E1) =⇒ aJ = a1

6.3 Deterministic Control Policy 141

Table 6.4 Summary of counter-examples showing n and (lx, ly) used, the remaining
number of possible controllers and unknown contexts.

CE Index n (lx, ly)
∣∣⊔ T ∣∣ remaining unknown contexts, cu

N/A N/A N/A 331776 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3, J
1 2 (3, 1) 165888 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
2 4 (3, 2) 124416 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
3 4 (3, 2) 93312 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
4 4 (3, 2) 82944 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
5 4 (4, 2) 76032 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
6 4 (4, 2) 69120 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
7 4 (3, 3) 51840 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I2, I3
8 4 (5, 1) 25920 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
9 5 (3, 3) 17280 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
10 6 (3, 3) 16128 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
11 8 (5, 2) 13824 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
12 10 (7, 2) 13248 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
13 10 (7, 2) 12672 B,C,D2,E1,E2,E3,G,H1,H2,H3, I1, I3
14 12 (4, 4) 6336 B,C,D2,E1,E2,E3,G,H1,H3, I1, I3
15 32 (6, 6) 3168 B,C,D2,E1,E2,E3,H1,H3, I1, I3
16 4 (3, 2) 2736 B,C,D2,E1,E2,E3,H1,H3, I1, I3
17 4 (3, 2) 1872 B,C,D2,E1,E2,E3,H1,H3, I1
18 4 (3, 2) 1080 B,C,D2,E1,E2,E3,H1,H3, I1
19 4 (3, 2) 972 B,C,D2,E1,E2,E3,H1,H3, I1
20 4 (3, 2) 936 B,C,D2,E1,E2,E3,H1,H3, I1
21 4 (3, 2) 756 B,C,D2,E1,E2,E3,H1,H3, I1
22 4 (3, 2) 684 B,C,D2,E1,E2,E3,H1,H3, I1
23 4 (3, 2) 612 B,C,D2,E1,E2,H1, I1
24 4 (3, 3) 579 B,C,D2,E1,E2,H1, I1
25 4 (3, 3) 408 B,C,D2,E1,E2,H1, I1
26 4 (4, 4) 272 B,C,D2,E1,E2,H1, I1
27 4 (4, 4) 136 B,D2,E1,E2,H1, I1
28 5 (3, 3) 48 B,D2,E2,H1
29 6 (3, 3) 36 B,D2,E2,H1
30 6 (3, 3) 33 B,D2,E2,H1
31 6 (3, 3) 30 B,D2,E2,H1
32 6 (3, 3) 18 B,D2,E2
33 6 (3, 3) 12 B,D2,E2
34 6 (4, 3) 8 B,D2,E2
35 8 (4, 4) 6 B,D2,E2

142 Gathering on a Grid

6.3.4 Theoretical Analysis

We start this section with a theorem proving the impossibility of finding a deterministic
controller.

Theorem 3. For a given environment and robotic system in Section 6.2, there exists
no deterministic control policy that can guarantee gathering in 2D.

Proof. We reduced the domain of possible controllers, starting from 331776 to 6 using
35 counter-examples. Hereby, we present an additional counter-example in below.

Counter-example 36

A Priori Known Contexts A,C,D1,E1,E3,F1,F2,G,H1,H2,H3
I1, I2, I3, J,K

A Priori Unknown Contexts B,D2,E2
Unknown Contexts Participated N/A∣∣⊔ T ∣∣ Update 6→ 0

Reference in Appendix Figure A.57-A.79
Type of Counter-Example Dynamic deadlock with period of 360

K
I1

H2 K
H3

K
H1

I3

This counter-example has a special meaning. It contradicts with all of the previously
discovered contexts. The participated contexts are E3,H1,H2,H3, I3,K. Even though
we discovered them previously, they failed in gathering the group of modules, yielding
a contradiction with Lemma 5. Therefore, there can exist no deterministic control
policy PD utilising T that is complete. ■

Theorem 4. There exists a deterministic control policy PD that can guarantee gathering
in 1D.

Proof. In the first case, if η = 0, i.e. if there is no hole in the bounding box, we are
done. Let’s assume there is η ≥ 1 holes in the centre of the bounding box of the
modules. In a 1D grid environment, only the contexts F1, I2, J, and K can be defined.
From Axiom 2 and 3, recall that aK = a0, and aF1 = a0. In this proof, we assume that
aI2 = a1 and aJ = a1. Figure 6.8 shows the contexts in an example configuration.

As aF1 = a0, a central module cannot increase or decrease η. Similarly, a module
on the edge—context K, cannot increase the bounding box. On the other hand, actions

6.4 Naïve Stochastic Control Policy 143

K I2 F1 JI2 J

Fig. 6.8 An example illustration of four possible contexts: F1, I2, J, and K.

of both I2 and J are towards the centre of the configuration. After the movement of
I2, a context K becomes J, thus contributes to decreasing η. The only module that
initially cannot move is F1, however, when another module moves to the adjacent cell,
F1 becomes I2. The movement of both I2 and J reduce η by 1, hence, η[k+1] = η[k]−1.
At any moment, either η is decreasing by the actions of I2 and J, or remaining the
same (after the updates of K and F1). Thus, after a round of updates for each module
independent of the order; η[k + 1] ≤ η[k]. Therefore, it is guaranteed that gathering
will be achieved after a finite round of updates. ■

When a deadlock occurs, it becomes theoretically impossible to gather the modules.
We believe that a ‘deadlock’ situation can be avoided if certain level of stochasticity
introduced to the system. In order to test our hypothesis, in the next section, we design
a stochastic control policy. We then present mathematical analysis on the completeness
of gathering.

6.4 Naïve Stochastic Control Policy

In this section, we propose a ‘naïve’ stochastic control policy. Algorithm 4 describes
the naïve stochastic control policy, hereafter referred to as PN .

In each control cycle, the agent chooses uniformly random from the following set
of actions: a0 ∪ {ai ∈ A|i ∈ {1, 2, 3, 4} ∧ (¬ci ∧ vi)}. In other words, the agent can
rest in place, but may move in up to four directions (see Figure 6.3). It is prevented
from moving into a direction that is blocked by an adjacent agent (i.e. ci = true), or
in which no other agent is seen (i.e. vi = false). The control cycle is here assumed to
have some finite length δ. Note that Algorithm 4 is fully reactive, as the agent does
not store any information from the previous cycle.

Compared to the deterministic control policy PD, the stochastic control policy PN is
less detailed. There is no concept of a context, rather, every action is solely determined
by uniform random choice over the eligible actions. There is also no definition of a
controller, however, one can interpret the uniform random choice is a controller. In the

144 Gathering on a Grid

Algorithm 4 Naïve Stochastic Control Policy, PN

1: while true do
2: Ae ← {a0} ▷ initialise set of eligible actions
3: for all i ∈ {1, 2, 3, 4} do
4: update ci ▷ probe Boolean contact sensor i
5: update vi ▷ probe Boolean visibility sensor i
6: if ¬ci ∧ vi then
7: Ae ← Ae ∪ {ai} ▷ add eligible action {ai}
8: end if
9: end for

10: a← select uniformly random from Ae

11: execute a
12: wait δ units of time
13: end while

next section, we will formally prove that the group of modules using PN can almost
surely reach a Pareto optimal configuration.

6.4.1 Mathematical Analysis

Lemma 6. Consider n agents using policy PN . Let C[k] and C[k + 1] denote the
configurations at time steps k and k + 1, respectively, which is immediately before and
after one of the agents was considered. Then, bx[k + 1] ≤ bx[k] and by[k + 1] ≤ by[k].

Proof. At time step k only one agent, say agent j1, was considered. All other agents
will not have moved, that is, ∀j2 ≠ j1 : xj2 [k + 1] = xj2 [k] and yj2 [k + 1] = yj2 [k].
The x-coordinate of the “leftmost” agent at time k is given as xleft = minj2{xj2 [k]}. If
agent j1 was at the left boundary (xj1 [k] = xleft), no agent would have been visible
towards the “left” (v = false), which would prevent the agent from moving in that
direction. Otherwise (xj1 [k] > xleft), agent j1 may have moved, but at most by 1 cell.
In both cases, we have xj1 [k + 1] ≥ xleft. The same argument can be used for the
lower, right and upper boundaries. From this, it follow that bx[k + 1] ≤ bx[k] and
by[k + 1] ≤ by[k]. ■

Corollary 1. Consider n agents using policy PN . Let C[k] denote the configuration at
time step k. Then, ∀l > k : bx[l] ≤ bx[k] and by[l] ≤ by[k].

Theorem 5. Using policy PN , n agents almost surely reach a Pareto optimal configu-
ration in finite time.

6.4 Naïve Stochastic Control Policy 145

by

bx

m 1 2 3

2 3

2 3

4

Fig. 6.9 Example configuration of 9 agents with a 4 × 3 bounding box. The config-
uration is not Pareto optimal, as the same number of agents could be contained in
a 3 × 3 bounding box. The numbers indicate the Manhattan distance between the
corresponding cell and the reference agent, m, of the first column. The blue arcs
illustrate one of the shortest paths from the reference agent to the empty cell in the
last column. If the four agents on this path choose to move in the indicated direction,
whereas all other agents choose not to move, the empty cell is pushed into the first
column, causing the new configuration to be Pareto optimal.

Proof. Let for all k ≥ 0, η[k] = bx[k]by[k]− n denote the number empty cells within
the bounding box at time step k. We prove the theorem by induction.

Base case: η[k] = 0. As η[k] = bx[k]by[k]− n = 0 < min{bx, by}, from Lemma 4 it
follows that the configuration is Pareto optimal. From Corollary 1 it follows that the
configuration remains Pareto optimal indefinitely.

Induction step: η[k] > 0. Without loss of generality, we assume by[k] ≤ bx[k].
Moreover, bx[k] > 1, as otherwise, η[k] = 0. If η[k] = bx[k]by[k] − n < by[k] =

min{bx[k], by[k]}, then it follows from Lemma 4 and Corollary 1 that the configuration
is Pareto optimal and remains so indefinitely. For the case η[k] ≥ by[k], as in the proof
of Lemma 4, we consider that the agents of the leftmost column all relocate to the other
columns (see Figure 6.9). We obtain a positive lower bound for the probability for this
to happen in constant time. We assume that every round one agent chooses to move,
while all others choose not to move. The probability for this to happen in a given round
is at least ϵn, where ϵ = 1

5
is a lower bound for the probability for any eligible action

to be chosen (note that actions are chosen uniformly random). Let us consider the
shortest path from an arbitrary agent of the leftmost column to an empty cell in one
of the other columns (see Figure 6.9). The length of path candidates are determined
by the Manhattan distance, and thus reflecting how the agents may move. Multiple

146 Gathering on a Grid

shortest paths may exist, but in any case only the last cell of a path is an empty cell. At
any round let only the agent that is closest to the empty cell (but part of the remaining
path) move. At most d rounds are required for the empty cell to reach the leftmost
column, where d is the length of the shortest path. As d is bounded by bx[k] + by[k]− 2,
the probability for the agent relocation to have occurred after bx[k] + by[k]− 2 rounds
is at least ϵ(bx[k]+by [k]−2)n. As there could be up to by[k] agents in the leftmost column,
the probability to reach the preferred configuration after U = by[k](bx[k] + by[k]− 2)

rounds is at least p = ϵby [k](bx[k]+by [k]−2)n. From Lemma 6, it follows that the bounding
box dimensions, bx and by, are monotonically decreasing with time, k. In other words,
our lower bound, p, monotonically increases with time, k, and the number of rounds,
U , required for an improvement to occur with at least probability p, monotonically
decreases with time, k. If an improvement occurred, the new configuration would have
at least by ≥ 1 fewer empty cells, resulting in η[k + Un] ≤ η[k] − by[k] ≤ η[k] − 1.
The probability that an improved (preferred) configuration is found within τU rounds
is at least pτ = 1 − (1 − p)τ . We have limτ→∞ pτ = 1. In other words, a preferred
configuration is found almost surely in finite time, reducing η by at least 1. As
∀k : η[k] ≥ 0, only a finite number of improvements are possible. A Pareto optimal
configuration is hence obtained almost surely in finite time. ■

Remark. Time required to reach a Pareto optimal configuration using policy PN can
be arbitrarily large.

6.5 Optimised Stochastic Control Policy

In the previous section, we showed that a group of agents almost surely reach a Pareto
optimal configuration in finite time when using the naïve stochastic control policy, PN .
The policy determines the set of eligible actions and then chooses uniformly random
from this set.

In this section, we consider an alternative stochastic control policy, PO, which is
not restricted to using uniform distributions, but rather takes into account an agent’s
context (see Figure 6.3.1). Depending on the context, an agent can choose between 1
and 5 actions (note that an agent can always choose the option to rest, that is, a0).
An agent in context A can either remain in its current position (action a0) or move
into any direction (a1, a2, a3, a4). As the agent has no orientation, it has to choose
either direction with equal probability. An agent in context B has four possible options
to choose from, and, due to chirality, for each option a dedicated probability can be

6.5 Optimised Stochastic Control Policy 147

chosen. In the following, we optimise the probabilities of choosing the eligible actions
for each specific context. Note that, the Axiom 2 is still valid for this section, however,
Axiom 2 and Axiom 2 are now relaxed. Thus, there is no assumption on the action of
the contexts A,D1,F1, and F2.

6.5.1 Representation of Candidate Solutions

A candidate solution is represented by 27 real-valued parameters in range [0, 1], which,
following normalization, determine the motion probabilities. For example, for context
A, all five actions are possible. However, a single parameter is sufficient, as the
probabilities, p1, p2, p3, and p4, for choosing actions a1, a2, a3, and a4 must be identical
(due to the lack of orientation). Moreover, the probability of choosing a0 must be
p0 = 1− p1 − p2 − p3 − p4.

6.5.2 Evolutionary Algorithm

We employ an evolutionary algorithm for the optimisation process, namely Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) Hansen et al. (2019). CMA-ES is a
derivation-free, black-box optimisation method. It starts with a random population
of λ candidate solutions, and uses a fitness function to select promising solutions for
producing the subsequent generations.

Definition 10. Compactness, denoted as H, of a configuration is the number of empty
cells in the corresponding bounding box, if the configuration is not Pareto optimal, and
0, otherwise. Formally, compactness H at round r can be given as,

H[r] =

η[r], if η[r] ≥ min{bx[r], by[r]};

0, otherwise.
(6.5)

In each generation, every candidate solution is tested against the same set of T = 20

starting configurations. A new set of configurations is produced at the beginning of
every generation. For each configuration, the number of agents is chosen as n = 2 +m,
where m is generated randomly using the exponential cumulative distribution function

148 Gathering on a Grid

given by,

P (m;λ) =

1− e−λm, if m ≥ 0;

0, otherwise,
(6.6)

where 1
λ
= 6 represents the expected value, E[m]. Hence, the expected number of

agents is E[n] = 2 +E[m] = 8. The agents are all placed in random positions within a
grid size of L = 2

⌈√
n
⌉

and are assigned a randomly generated fixed update order.

The fitness function to be minimised by the evolutionary algorithm is,

F =
R∑

r=1

rH[r], (6.7)

where R = 100 is the maximum number of rounds. The performance measure H[r] is
multiplied by round number r to promote faster solutions.

6.5.3 Controller Selection

The source code was written by the author, incuding simulation setup, environment
model, robotic model (sensing and actuation), counter-example algorithms. Imple-
mentation of CMA-ES is different than Chapter 3, 4, and 5, using a Python package
instead of C++ library. Batch-job submission, visualiser (renderer), and data analysis
source code was written by the author.

We conducted 100 evolutionary runs with a population size of λ = 30.6 Each run
was terminated after 3000 generations. Figure 6.10 shows the fitness of the highest-rated
candidate solution per run.

To select the best solution, we considered the solutions that exhibited the lowest
fitness value in the final generation of each run. Each of these 100 solutions was
post-evaluated on T = 200 random configurations using a grid size of L = 100 and
R = 10000 rounds. In the following, we refer to the solution that exhibited the best
mean performance as the optimised stochastic control policy, PO.

Table 6.5 shows the optimised probability distributions for each context. The
context K is omitted, as it is not part of the optimisation process. N/A in probability
parameter pi indicates the impossiblity of choosing the action ai due to contact with

6As in Section 3.3.2, we follow the same advise to choose the population size.

6.6 Simulation Studies 149

10
0

10
1

10
2

10
3

number of generations

10
2

10
3

10
4

10
5

fit
ne

ss
 v

al
ue

Fig. 6.10 Fitness dynamics showing the performance of 100 evolutionary runs over
3000 generations. The green envelope represents the minimum and maximum average
fitness values of λ = 30 solutions for each run, and the green solid line represents the
median fitness values. Both axes are in logarithmic scale.

another module (i.e. si = 2). Hence, the probability parameter, pi = 0 for the action
ai.

Theorem 6. Using policy PO, n agents almost surely reach a Pareto optimal configu-
ration in finite time.

Proof. We choose ϵ to be the lowest probability of the PO controller. If ϵ ̸= 0, then
the proof for Theorem 5 for PN naturally extends to PO. The lowest probability value,
ϵ = min{pi} = 0.000015. Therefore, a Pareto optimal configuration is obtained almost
surely in finite time. ■

6.6 Simulation Studies

In this section, we analyse the performance of the control policies, PN and PO, through
computer simulations using measure H[r], as defined in Equation (6.5).

6.6.1 Scalability Analysis

We investigate the scalability of the control policies. We consider a 2D square tile
environment of size L = 100 containing n ∈ N = {2, 5, 10, 20, 50, 100, 200, 500, 1000}
agents. In the beginning of a simulation trial, the agents are uniformly randomly

150 Gathering on a Grid

10
0

10
1

10
2

10
3

10
4

number of rounds, r

10
1

10
1

10
3

pe
rfo

rm
an

ce
,

[r]

n: 2
n: 5
n: 10
n: 20
n: 50

n: 100
n: 200
n: 500
n: 1000

(a)

10
0

10
1

10
2

10
3

10
4

number of rounds, r

0.0

0.2

0.4

0.6

0.8

1.0

pe
rfo

rm
an

ce
,

[r]

1e4

n: 2
n: 5
n: 10
n: 20
n: 50

n: 100
n: 200
n: 500
n: 1000

(b)

Fig. 6.11 Results of the scalability study with up to 1000 agents in a 100 × 100
environment. Dashed and solid lines show, respectively, the performance using the
naïve (PN) and optimised (PO) control policies. Each line represents the average,
across 100 trials, of H[r], which is 0 for Pareto optimal configurations, and otherwise
equals the number of empty cells in the bounding box. (a) and (b) plot the compactness
using logarithmic and linear axes, respectively.

6.6 Simulation Studies 151

Table 6.5 The optimised control parameters for each context.

c p0 p1 p2 p3 p4
A 0.992677 0.001831 0.001831 0.001831 0.001831
B 0.941329 0.000070 0.044790 0.013810 N/A
C 0.664613 0.001601 0.333195 0.000591 N/A
D1 0.008827 N/A 0.495587 N/A 0.495587
D2 0.996154 0.000463 0.003383 N/A N/A
E1 0.043784 N/A 0.465886 N/A 0.490330
E2 0.165319 0.499262 0.335420 N/A N/A
E3 0.496369 0.004311 0.499320 N/A N/A
F1 0.003692 N/A 0.498154 N/A 0.498154
F2 0.002682 0.499544 0.497773 N/A N/A
G 0.998558 0.001442 N/A N/A N/A
H1 0.556494 0.443506 N/A N/A N/A
H2 0.009498 0.990502 N/A N/A N/A
H3 0.999902 0.000098 N/A N/A N/A
I1 0.000015 0.999985 N/A N/A N/A
I2 0.373871 0.626129 N/A N/A N/A
I3 0.984537 0.015463 N/A N/A N/A
J 0.005356 0.994644 N/A N/A N/A

placed. For each n ∈ N and each control policy (PN and PO), 100 trials of R = 10000

rounds are performed.

Figure 6.11 reports the average performance over the number of rounds. Groups of
n ∈ {2, 5, 10} agents consistently reached a Pareto optimal configuration using either
of the control policies. For these group sizes, the optimised controller, PO, took on
average 39.50%, 26.97% and 30.07% less time to reach a Pareto optimal configuration.
For larger group sizes, it became increasingly unlikely for the agents to reach a Pareto
optimal configuration in the provided time period. However, for groups of n = 1000

agents, the compactness, H[r], still improved during the trial, on average by 9.26%
and 89.20% for PN and PO, respectively. One can find scalability trial videos in
supplementary materials (Özdemir et al., 2019c).

6.6.2 Sensory Noise Analysis

Our analysis in Section 6.4 assumed the absence of sensory noise. As a consequence, it
could be shown that the modules’ bounding box dimensions were monotonically decreas-
ing with time. We now investigate the effect of sensory noise on the performance of both

152 Gathering on a Grid

0 10 20 30 40 50 60 70 80 90 100
noise, pn (%)

10
1

10
1

10
3

10
5

pe
rfo

rm
an

ce
,

[R
]

baseline
N

O

Fig. 6.12 Effect of sensory noise on the performance at the end of 100 simulation trials
(H[R], defined in Equation (6.5), in logarithmic scale). With probability pn, each
sensor unit provides a purely random reading value. Dashed and solid lines represent,
respectively, the naïve (PN) and optimised (PO) control policies. The error bars show
the standard deviation. The dotted line represents a baseline which corresponds to no
movement (H[0]).

control policies. As mentioned in Section 6.2.1, each of the module’s four sensor units
provides one ternary digit of information: s ∈ {(false, false), (false, true), (true, true)}.
In the following, we assume that each sensor unit reports a uniformly randomly chosen
ternary digit with probability pn, and reports the original reading value otherwise. We
increase the noise-level from 0% to 100% by 10% increments. For each level of noise
and control policy, 100 trials are performed with n = 100 agents in a 100× 100 grid
environment. When a module decides to move onto an occupied cell, no action is taken
for the corresponding round. Each trial is run for a constant duration of R = 10000

rounds.

Figure 6.12 shows the performance measure H[r] for all levels of noise and both
policies. For a 10% noise-level, the compactness, H[r], improved during the trial, on
average by 93.68% and 99.63% for PN and PO, respectively. The system improved its
compactness by at least 90% for any noise level up to 20% and 50% for PN and PO,
respectively. For a noise-level of 100%, implying purely random sensor readings, the
system diverged.

6.6.3 Comparison with Deterministic Policy

In this section, we to compare the control policies against multiple other variations.
The first variation is a hybrid deterministic control policy; we take the action with

6.6 Simulation Studies 153

10
0

10
1

10
2

10
3

10
4

number of rounds, r

10
0

10
2

10
4

pe
rfo

rm
an

ce
,

[r]

N

O

DO

Fig. 6.13 The comparison of naïve (green), optimised (orange), and deterministic-
optimised (lilac) control policies for n = 10 agents. Each line represents the average,
across 100 trials, of H[r]. Both axes are in logarithmic scale.

the highest probability value for each context in Table 6.5 as a deterministic action.7

Formally,
ac = argmax {p0, p1, p2, p3, p4}, (6.8)

where ac is the action for the context c. For instance, the highest probability for
context B is p0 = 0.941329, thus the action is a0. We refer to this hybrid control policy
as deterministic-optimised and denote by PDO.

We performed 100 trials in a grid size of L = 100 for n = 10 robots using PN , PO,
and PDO. Figure 6.13 shows the results. The lilac line is the average performance of
PDO. As it is clearly seen, there is no improvement on the bounding box by the agents
using PDO. The reason is the optimised controller was optimised for the “stochastic”
scenario, where it can choose between multiple options with certain probability. Whilst
our assumption for PDO is valid for the high probability actions, it becomes problematic
for probability values close to 0.5. For instance, context E1 chooses the action a4 (as
p4 = 0.49), even though the action a2 has probability p2 = 0.47. As a result of the
accumulative deterministic decisions, the agents remain stuck in deadlock situations
where no improvement is possible.

Recall that in Table 6.3 we presented six deterministic controllers before we con-
cluded that none of them could solve the problem in general. Nevertheless, we can
still measure their average performance, and how fast it converges until a deadlock

7Recall that in Section 6.3.4 we show that there is no deterministic controller can solve the given
gathering problem in general, though, local solutions may exist.

154 Gathering on a Grid

10
0

10
1

10
2

10
3

10
4

number of rounds, r

10
0

10
2

10
4

pe
rfo

rm
an

ce
, H

[r]

N

O

D1
D2

D3
D4
D5
D6

Fig. 6.14 The comparison of naïve (green), optimised (orange), and six deterministic
control policies for n = 10 agents. Each line represents the average, across 100 trials,
of H[r]. Both axes are in logarithmic scale.

situation happens.8 The six deterministic control policies are referred as PD with an
additional subscript to refer the number, e.g. PD1.

Figure 6.14 shows the average simulation results of 100 trials for n = 10 agents using
eight different control policies; PN , PO, PD1 . . . PD6. Compared to the hybrid policy
PDO, the deterministic control policies, PDs, achieved a much better performance.
Every one of the six PD improved the compactness significantly, and they did faster
than the stochastic policies as expected. However, as they could not avoid deadlock
situations in some of the trials, none of them fully succeeded on average. As they share
common actions (16 out of 19 actions are the same) and they are deterministic, we
observe the same trend. An interesting effect, however, occurs after r = 200 rounds,
where the performance of the deterministic policies branch out. After this point, they
show two separate characteristics—each with three controllers.

In Figure 6.14 we show how six deterministic control policies perform compared to
two stochastic controllers for n = 10 agents. However, we did not see how they scale.
As all six controllers follow the same trend, we arbitrarily picked the first one, PD1,
and performed a scalability analysis for n ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000}.

Figure 6.15 shows the result of the scalability study for PO and PD1. One can see
that for the low number of agents (i.e. n = 2, 5), the deterministic policy has full
success. Moreover, the number of rounds to take to gather is faster than the optimised

8In general, deadlocks happen in a relatively small area, after the agents improve the bounding
box.

6.7 Discussions 155

10
0

10
1

10
2

10
3

10
4

number of rounds, r

10
1

10
1

10
3

pe
rfo

rm
an

ce
,

[r]

n: 2
n: 5
n: 10
n: 20
n: 50

n: 100
n: 200
n: 500
n: 1000

Fig. 6.15 The comparison of PO (dashed), and PD1 in a scalability study with up to
1000 agents in a 100× 100 environment. Each line represents the average, across 100
trials, of H[r]. Both axes are in logarithmic scale.

stochastic control policy. Additionally, one can see that the deterministic control policy
improves the bounding box significantly faster than the stochastic policy (for every
other number of agent settings). However, it eventually reaches a deadlock situation
and cannot improve any further.

6.7 Discussions

This chapter introduced an extended version of the computation-free swarming frame-
work: (i) multiple sensor readings were combined in a reactive manner, (ii) stochasticity
introduced to the system in terms of probability distributions. The first extension
allowed the robots to perform more precise actions by enabling it to retrieve more
information from its environment. The agents used binary sensors that indicate whether
other modules are physically in contact or otherwise visible. It has been applied to
design a deterministic control policy for gathering oblivious, embodied agents in a 2D
square tile environment. We proved by aided exhaustive computer simulations that
the gathering problem is unsolvable with current deterministic framework.

The second extension was necessary to overcome observed deadlock situations. We
then proposed two variations of a stochastic control policies: naïve and optimised.
Naïve stochastic control policy was proposed, considering the uniform probability
distribution for the agents to choose from a set of eligible actions. The agents were
mathematically proven to assume a Pareto optimal spatial arrangement almost surely

156 Gathering on a Grid

in finite time. Optimised stochastic control policy was proposed. It took the unique
context of an agent into account, and optimised a probability distribution for each
contexts. The mathematical proof was naturally extended for the latter control policy.
Computer simulation were examined the performance for different number of agents,
or in the presence of sensory noise using either of the stochastic control policies. In
addition, the policies’ performance were compared with each other.

The next chapter will conclude the thesis by summarising the works and presenting
future directions.

Chapter 7

Conclusions and Future Work

In this thesis, we synthesised multiple control strategies for swarms of minimal in-
formation processing robots. The robots required only discrete sensor readings, no
run-time memory, and all executed an identical controller. We followed an evolutionary
robotics approach and “evolved” the swarms’ behavioural rules based on group level
objective function. The control solutions we proposed are the simplest solution to date,
making it applicable to robots that lack arithmetic computation units and memory
storage. The swarms’ collective behaviours emerged from simple local interactions and
produced solutions to four challenging tasks. We then analysed the performance of
the swarms by changing the number of individuals within the groups, by modifying
their environment, and by introducing noise in their sensor units. Additionally, two of
the control strategies (for spatial coverage and finding consensus) were ported onto a
swarm of physical e-puck robots (Mondada et al., 2009).

In the first study, we investigated how a swarm of simple robots can cooperatively
cover an unknown environment without using run-time memory, or sharing information.
The robots used only a single-bit of discrete sensor reading, whether another robot
was present in their direct line of sight or not. Using computer simulations, we showed
that our control strategy can outperform a random walk strategy that was obtained
through the same optimisation setup. Further simulation studies revealed that using
the same control strategy, the swarm can navigate a maze provided by a constant-rate
inflow of robots up to a certain critical rate. We then ported the controller into 25

e-puck robots, operating in an identical physical environment setup, to demonstrate
the feasibility of the computation-free coverage controller. The performance of the

158 Conclusions and Future Work

physical swarm was fairly similar to the simulated robots, dropping on average only
6% and 11% (depending on the performance measure used).

In the second study, we explored the consensus finding abilities of swarms of
extremely simple robots. Solely based on ternary discrete sensory input, the majority
of the swarm was able to commit to either of the options present in the environment in
97.3% of the trials. At the expense of a longer sensing range, the robotic swarms required
significantly lower information processing capabilities compared to the previously
proposed control strategies. We also investigated the capabilities of the strategy in
more challenging situations, where either more than two options were present or false-
negative noise affected their sensors when they perceived an option. We also examined
the control strategy in choosing between unequal alternatives. The quality of an option
was represented by the size of the physical objects, hence, the higher quality object
was larger, providing a stronger stimulus. As expected, the computer simulations
showed that the swarm tended to choose the larger of the two options. We tested the
control strategy using a swarm of 20 physical e-puck robots in 50 experimental trials.
Even though some robots ceased motion during operation, the swarm succeeded in
committing to an option in 48 of the trials.

In the third study, we examined the shepherding task in which the shepherds—the
controlled swarm—cage and herd another ‘sheep-like’ group of robots. The shepherds
used only a single line-of-sight sensor to detect the presence of a sheep, another shepherd,
or the goal location. We observed that, although the shepherds have constant motor
commands, the strategy allowed the shepherds to display three distinct behaviours; (i)
caging sheep, (ii) herding sheep towards the goal location, and (iii) keeping sheep in
the goal. Computer simulation studies showed that the shepherds were robust against
sensory noise and scalable up to a certain extent. When the number of sheep in the
environment was high, the goal became occluded, as a result, the shepherds could cage
the sheep but could not herd them. To alleviate this problem, we proposed an extended
version of our controller. We added another line-of-sight sensor dedicated to perceiving
only the goal. We evolved this extended controller in the same setup and tested in
environments with high numbers of sheep. The enhanced version of the computation-
free controller yielded better scalability for the large number of sheep and shepherds.
The findings regarding the extended controller showed that in challenging situations,
such as overcrowded environments, the limited sensing ability can be overcome by
including an additional dedicated sensor.

7.1 Future Work 159

In the fourth study, contrastingly to the previous three studies, we modelled and
deployed a modular robotic system operating in a 2D square grid environment to
explore the gathering task. We investigated deterministic and stochastic gathering
strategies for oblivious modular robots requiring only a contact and a visibility sensor
on each of their faces. The modules had chirality but no sense of orientation, meaning
that they could only sense the difference between clockwise and counter-clockwise
directions. First, we proved, aided by exhaustive computer simulations, that there
exists no deterministic control policy for the gathering problem with aforementioned
desiderata. This indicated that stochasticity was required to be present in the system.
Therefore, we extended the computation-free swarming framework and proposed two
stochastic control policies: naïve and optimised. Naïve stochastic control policy allowed
the modules to uniformly randomly choose an action from a set of eligible actions.
In the latter case, optimised stochastic control policy considered the configuration
of a module and provided an optimised probability distribution for action selection.
We mathematically proved that the modules reach a Pareto optimal configuration
almost surely in finite time using either of the control policies. Computer simulations
showed that, for up to 1000 robots, the optimised stochastic control policy gathers the
modules faster than the naïve policy. The system also tested for sensory noise, and it
improved compactness up to 20% and 50% of noise level, respectively, however, the
system diverged when there was 100% noise meaning that the sensor readings were
purely random.

The controllers we proposed in this thesis are the simplest solutions for their
own tasks. They provide a baseline against which one can quantify the performance
improvements that more advanced and expensive techniques may offer. One of the
promising directions of the minimalist strategies is enabling simplistic robotic swarms
to be deployed in nanomedical applications. In the future, with the aid of recent
technological advances, swarms of simplistic robots can be miniaturised to micro- or
nano-scale. In the next section, we list future directions for the work presented in this
thesis to be explored further.

7.1 Future Work

In this thesis, we presented minimalist control strategies for a range of bio-inspired
tasks for swarms of robots. In three of the four studies, we used differential-drive
e-puck robots for proof-of-concept robotic implementation. Transferring the control

160 Conclusions and Future Work

strategy onto the physical platform required processing information extracted by the
robots’ camera. This was necessary for the e-puck robot to emulate the line-of-sight
sensor. In the future, there could be bespoke robotic systems that consider both the
controller and the physical hardware design. The future systems could make benefit
of fully integrated ‘sense-and-act’ paradigm and reduce complexities of porting the
controller. In the future, one could address this by studying physical swarm robotics
platforms with reduced hardware complexity (Li et al., 2017; Requicha, 2003; Sitti,
2017), which could benefit from our low-capability control strategy.

Restrictions in the control strategy are necessary when the environment is con-
strained to a small scale—for example in a nanomedical scenario. While producing
a synthetic nanomachine is still a challenge, researchers have been able to synthesise
chemical and biological nanomachines (Cerofolini and Amato, 2013; Requicha, 2013).
This was led to increasing interest for controlling the nanomachines to perform a
multitude of tasks. One particular area of interest is detecting and removing pathogens
from the body using nanorobots. We believe that there are similarities between this
operation and the shepherding problem we presented. The nanorobots—similar to
the shepherds—can identify, approach, attach, and guide pathogens to an outlet. In
the current state, we do not expect the control solutions to work straight away in a
nanorobotic platform. Although, after suitable modelling of the nanomachines, the
pathogens, and the body, one should be able to synthesise a bespoke control solution.

Minimal information acquisition results in less energy or power consumption com-
pared to processing more detailed information. Thus, future studies could take energy
consumption of the robots into account when designing the strategies. In addition, the
minimal control strategies can be seen of as last resort solutions. The robots can be
hard-coded to switch to the minimal controller in cases of malfunctioning. For example,
in the case of their power sources running out of energy, the robots, by switching to a
minimalist energy efficient control strategy, could still gather at a recharge point.

In Chapters 3 and 4, we demonstrated the control strategies using physical e-puck
robots. The robots were equipped with RGB CMOS cameras, and we emulated a line-of-
sight sensor by selecting a few pixels in the centre of the camera frame. We acknowledged
that the proof-of-concept implementation of the control strategies required image pre-
processing, however, the controller logic remained free of arithmetic computation. In
principle, a line-of-sight sensor does not require arithmetic computation, for example,
one can use a single-pixel RGB CMOS sensor with hardwired logic to return one out
of N -values—one per sensor state—based on predefined thresholds. It is also possible

7.1 Future Work 161

to build bespoke sensors that directly function as a line-of-sight sensor, and it is not
required to be an optical sensor. Chemical or touch sensors can be considered and
might enable the control solution to be ported onto sub-millimeter scale robots. This
can then lead to implementation of a computation-free controller for a robot that does
not feature arithmetic logic unit.

For physical implementation of spatial coverage controller, one needs only a binary
line-of sight sensor to detect the presence of a robot. For the decision making controller,
one needs a ternary line-of-sight sensor which can also distinguish between a robot and
an option. For the shepherding controller, a sensor that can distinguish between three
objects—a robot, a sheep and the goal target—is required. One can use two different
sensors, if necessary, and hardwire them to output a single value. For the gathering
controller, using two different sensors is essential, as each robot is required to detect
another robot in distance (e.g. using a binary vision sensor) and a robot that is in
contact (e.g. a binary touch sensor).

Another future direction can include further testing gathering strategies on phys-
ical robotics platforms (Özdemir et al., 2019b; Romanishin et al., 2015) to assess
the feasibility of the strategies and compare them. We proved that there exists no
deterministic control policy in 2D to guarantee a complete solution, there could be,
however, deterministic control policies that guarantee solutions in restricted subsets of
the environment. We hypothesise that a deterministic control policy would provide
a faster solution, as unlike a stochastic policy, it has a certain action to take. Thus,
one could explore designing a deterministic control policy for a bounded environment.
Another future direction would be further studying gathering for predefined ensemble
shapes in two scenarios. First, the modules in a grid can gather into a certain area
and create a 3D assembled structures—for example a chair or a desk. Second, after
the modules assembled, they could collectively move into a direction of interest.

A limitation of minimalist control strategies is that the swarms of robots perform
only one particular task—the one that the controllers were designed for. As an example,
a spatial coverage strategy could not directly be used for finding consensus, as the robots
require an additional sensor state to detect an option. However, multiple swarms of
simplistic robots could be designed, or evolved, integrating cooperation with each other
to accomplish a common task. In nature, this is known as cooperative co-evolution. For
instance, two swarms could be co-evolved to allow one to find consensus on choosing a
site to inspect (e.g. based on chemical density) and herd the other to the area, enabling

162 Conclusions and Future Work

them to cover and monitor the area of interest. Hence, cooperation amongst different
swarms can result in elaborate solutions to complex scenarios.

References

3atoms (2012). School of fish. http://3atoms.tumblr.com/post/25223888588/
schools-of-fish.

Alpern, S. (1995). The rendezvous search problem. SIAM Journal on Control and
Optimization, 33(3):673–683.

Bak, P. (1996). How nature works: the science of self-organized criticality. Copernicus,
New York, NY Copernicus, New York, NY.

Balch, T. (2000). Hierarchic social entropy: An information theoretic measure of robot
group diversity. Autonomous Robots, 8(3):209–238.

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I.,
Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al. (2008). Interaction
ruling animal collective behavior depends on topological rather than metric distance:
Evidence from a field study. Proceedings of the national academy of sciences,
105(4):1232–1237.

Barel, A., Manor, R., and Bruckstein, A. M. (2017). Probabilistic gathering of agents
with simple sensors. Technical report, Technion – Israel Institute of Technology.

Becker, A., Habibi, G., Werfel, J., Rubenstein, M., and McLurkin, J. (2013). Massive
uniform manipulation: Controlling large populations of simple robots with a common
input signal. In Proceedings of the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 520–527. IEEE.

Beckers, R., Deneubourg, J. L., Goss, S., and Pasteels, J. M. (1990). Collective decision
making through food recruitment. Insectes Sociaux, 37(3):258–267.

Beni, G. (2005). From swarm intelligence to swarm robotics. In Swarm Robotics, pages
1–9. Springer Berlin Heidelberg.

Beni, G. and Wang, J. (1993). Swarm intelligence in cellular robotic systems. In Robots
and Biological Systems: Towards a New Bionics?, pages 703–712. Springer.

Benson, J. (2007). V-formation in flock of birds. https://commons.wikimedia.org/wiki/
File:CanadianGeeseFlyingInVFormation.jpg.

Birattari, M., Delhaisse, B., Francesca, G., and Kerdoncuff, Y. (2016). Observing the
effects of overdesign in the automatic design of control software for robot swarms.
In International Conference on Swarm Intelligence, pages 149–160. Springer.

http://3atoms.tumblr.com/post/25223888588/schools-of-fish
http://3atoms.tumblr.com/post/25223888588/schools-of-fish
https://commons.wikimedia.org/wiki/File:CanadianGeeseFlyingInVFormation.jpg
https://commons.wikimedia.org/wiki/File:CanadianGeeseFlyingInVFormation.jpg

164 References

Bonabeau, E., Marco, D., and Theraulaz, G. (1999). Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press.

Bonabeau, E. and Meyer, C. (2001). Swarm intelligence: A whole new way to think
about business. Harvard Business Review, 79(5):106–115.

Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.-L., et al. (1997). Adaptive
task allocation inspired by a model of division of labor in social insects. In BCEC,
pages 36–45.

Bose, T., Reina, A., and Marshall, J. A. (2017). Collective decision-making. Current
Opinion in Behavioral Sciences, 16:30–34.

Bradski, G. (2000). Open source computer vision library.

Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT press.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41.

Brewbooks (2009). Cathedral termite mound. https://www.flickr.com/photos/
brewbooks/3491315062/.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal
on Robotics and Automation, 2(1):14–23.

Brown, D. S., Turner, R., Hennigh, O., and Loscalzo, S. (2018). Discovery and
exploration of novel swarm behaviors given limited robot capabilities. In Proceedings
of the 13th International Symposium on Distributed Autonomous Robotic Systems
(DARS 2016), pages 447–460, Berlin, Germany. Springer.

Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Bonabeau, E., and Theraula,
G. (2001). Self-Organization in Biological Systems. Princeton University Press.

Carnemolla, J. (2016). Flock of sheep in roadway. http://www.allposters.com/-sp/
Flock-of-Sheep-in-Roadway-Posters_i8668862_.htm.

Cech, J. J. and Moyle, P. B. (2000). Fishes: an introduction to ichthyology. Prentice-
Hall.

Çelikkanat, H. and Şahin, E. (2010). Steering self-organized robot flocks through
externally guided individuals. Neural Computing and Applications, 19(6):849–865.

Cerofolini, G. and Amato, P. (2013). Sensing strategies for early diagnosis of cancer
by swarm of nanorobots: An evidential paradigm. In Nanorobotics, pages 331–352.
Springer.

Chaimowicz, L., Campos, M. F., and Kumar, V. (2002). Dynamic role assignment
for cooperative robots. In Proceedings of 2002 IEEE International Conference on
Robotics and Automation (ICRA 2002), volume 1, pages 293–298. IEEE.

Choset, H. (2001). Coverage for robotics – a survey of recent results. Annals of
Mathematics and Artificial Intelligence, 31(1):113–126.

https://www.flickr.com/photos/brewbooks/3491315062/
https://www.flickr.com/photos/brewbooks/3491315062/
http://www.allposters.com/-sp/Flock-of-Sheep-in-Roadway-Posters_i8668862_.htm
http://www.allposters.com/-sp/Flock-of-Sheep-in-Roadway-Posters_i8668862_.htm

References 165

Claici, S., Romanishin, J., Lipton, J. I., Bonardi, S., Gilpin, K. W., and Rus, D.
(2017). Distributed aggregation for modular robots in the pivoting cube model. In
Proceedings of 2017 IEEE International Conference on Robotics and Automation
(ICRA 2017), pages 1489–1496. IEEE.

Conradt, L. and Roper, T. J. (2005). Consensus decision making in animals. Trends
in Ecology & Evolution, 20(8):449–456.

Cord-Landwehr, A., Fischer, M., Jung, D., and Meyer auf der Heide, F. (2016).
Asymptotically optimal gathering on a grid. In Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2016), pages
301–312. ACM.

Correll, N. and Martinoli, A. (2006). Collective inspection of regular structures using
a swarm of miniature robots. In Experimental Robotics IX, pages 375–386. Springer,
Berlin, Germany.

Correll, N. and Martinoli, A. (2011). Modeling and designing self-organized aggregation
in a swarm of miniature robots. The International Journal of Robotics Research,
30(5):615–626.

Crespi, V., Galstyan, A., and Lerman, K. (2008). Top-down vs bottom-up methodologies
in multi-agent system design. Autonomous Robots, 24(3):303–313.

Deneubourg, J.-L., Grégoire, J.-C., and Le Fort, E. (1990). Kinetics of larval gregarious
behavior in the bark beetledendroctonus micans (coleoptera: Scolytidae). Journal of
Insect Behavior, 3(2):169–182.

Deneubourg, J.-L., Pasteels, J. M., and Verhaeghe, J.-C. (1983). Probabilistic behaviour
in ants: a strategy of errors? Journal of Theoretical Biology, 105(2):259–271.

Dimidov, C., Oriolo, G., and Trianni, V. (2016). Random walks in swarm robotics: An
experiment with Kilobots. In Proceedings of the 10th International Conference on
Swarm Intelligence (ANTS 2016), pages 185–196, Cham, Switzerland. Springer.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis,
Politecnico di Milano.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical
Computer Science, 344(2-3):243–278.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66.

Dorigo, M. and Şahin, E. (2004). Autonomous robots: guest editorial. Autonomous
Robots, 17(2-3):111–113.

Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi,
S., Deneubourg, J.-L., Mondada, F., Floreano, D., and Gambardella, L. M. (2004).
Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2/3):223–
245.

166 References

Dudek, G. and Jenkin, M. (2010). Computational Principles of Mobile Robotics.
Cambridge University Press, Cambridge, UK.

Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1993). A taxonomy for swarm
robots. In Proceedings of 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 1993), volume 1, pages 441–447. IEEE.

Eiben, A. and Smith, J. (2008). Introduction to Evolutionary Computing. Springer.

Escalera, J. A., Doyle, M. J., Mondada, F., and Groß, R. (2018). Evo-bots: A simple,
stochastic approach to self-assembling artificial organisms. In Proceedings of the
13th International Symposium on Distributed Autonomous Robotic Systems (DARS
2016), pages 373–385.

Fatès, N. (2010). Solving the decentralised gathering problem with a reaction–diffusion–
chemotaxis scheme. Swarm Intelligence, 4(2):91–115.

Fax, J. A. and Murray, R. M. (2004). Information flow and cooperative control of
vehicle formations. IEEE Transactions on Automatic Control, 49(9):1465–1476.

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., and Dorigo, M.
(2012). Self-organized flocking with a mobile robot swarm: A novel motion control
method. Adaptive Behavior, 20(6):460–477.

Fischer, M., Jung, D., and auf der Heide, F. M. (2017). Gathering anonymous, oblivious
robots on a grid. In Algorithms for Sensor Systems (ALGOSENSORS 2017), pages
168–181. Springer.

Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolutionary robotics. In Springer
Handbook of Robotics, pages 1423–1451. Springer.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence Through
Simulated Evolution. John Wiley.

Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., and Birattari, M. (2012).
Analysing an evolved robotic behaviour using a biological model of collegial decision
making. In From Animals to Animats 12, volume 7426, pages 381–390. Springer-
Verlag Berlin Heidelberg.

Franks, N. R., Hooper, J. W., Gumn, M., Bridger, T. H., Marshall, J. A. R., Groß, R.,
and Dornhaus, A. (2007). Moving targets: Collective decisions and flexible choices
in house-hunting ants. Swarm Intelligence, 1(2):81–94.

Gauci, M. (2014). Swarm robotic systems with minimal information processing. PhD
thesis, The University of Sheffield.

Gauci, M., Chen, J., Dodd, T. J., and Groß, R. (2014a). Evolving aggregation behaviors
in multi-robot systems with binary sensors. In Proceedings of the 11th International
Symposium on Distributed Autonomous Robotic Systems (DARS 2012), volume 104,
pages 355–367, Berlin, Germany. Springer.

References 167

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014b). Clustering objects with
robots that do not compute. In Proceedings of the 2014 International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2014), pages 421–428.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014c). Self-organized
aggregation without computation. The International Journal of Robotics Research,
33(8):1145–1161.

Gazi, V. and Fidan, B. (2007). Coordination and control of multi-agent dynamic
systems: Models and approaches. In Swarm Robotics, pages 71–102. Springer.

Gordon, D. (2013). What ant colony networks can tell us about
what’s next for digital networks. https://www.nextnature.net/
2013/07/what-ant-colony-networks-can-tell-us-about-what%E2%80%
99s-next-for-digital-networks/.

Gordon, N., Wagner, I. A., and Bruckstein, A. M. (2004). Gathering multiple robotic
a(ge)nts with limited sensing capabilities. In Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L. M., Mondada, F., and Stützle, T., editors, Ant Colony Optimiza-
tion and Swarm Intelligence, pages 142–153, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Graham, J. M., Kao, A. B., Wilhelm, D. A., and Garnier, S. (2017). Optimal
construction of army ant living bridges. Journal of Theoretical Biology, 435:184–198.

Grassé, P.-P. et al. (1984). Termitology. Termite anatomy-physiology-biology-
systematics. Vol. II. Colony foundation-construction. Masson.

Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2006). Autonomous self-assembly
in swarm-bots. IEEE Transactions on Robotics, 22(6):1115–1130.

Groß, R. and Dorigo, M. (2008). Evolution of solitary and group transport behaviors
for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5):285–305.

Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Saïd, I.,
Durier, V., Canonge, S., Amé, J. M., Detrain, C., Correll, N., Martinoli, A., Mondada,
F., Siegwart, R., and Deneubourg, J. L. (2007). Social integration of robots into
groups of cockroaches to control self-organized choices. Science, 318(5853):1155–1158.

Hamann, H., Meyer, B., Schmickl, T., and Crailsheim, K. (2010). A model of symmetry
breaking in collective decision-making. In From Animals to Animats 11, volume
6226, pages 639–648. Springer-Verlag Berlin Heidelberg.

Hansen, N., Akimoto, Y., and Baudis, P. (2019). CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195.

Holland, J. H. et al. (1992). Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence.
MIT press.

https://www.nextnature.net/2013/07/what-ant-colony-networks-can-tell-us-about-what%E2%80%99s-next-for-digital-networks/
https://www.nextnature.net/2013/07/what-ant-colony-networks-can-tell-us-about-what%E2%80%99s-next-for-digital-networks/
https://www.nextnature.net/2013/07/what-ant-colony-networks-can-tell-us-about-what%E2%80%99s-next-for-digital-networks/

168 References

Hornby, G., Globus, A., Linden, D., and Lohn, J. (2006). Automated antenna design
with evolutionary algorithms. In Space 2006, pages 19–21.

Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002). Mobile sensor network de-
ployment using potential fields: A distributed, scalable solution to the area coverage
problem. In Proceedings of the 6th International Symposium on Distributed Au-
tonomous Robotic Systems (DARS 2002), pages 299–308, Berlin, Germany. Springer.

Howse, P. E. (1970). Termites: A Study in Social Behaviour. Hutchinson.

Hsieh, M. A., Halász, Á., Berman, S., and Kumar, V. (2008). Biologically inspired
redistribution of a swarm of robots among multiple sites. Swarm Intelligence,
2(2):121–141.

Ijspeert, A. J., Martinoli, A., Billard, A., and Gambardella, L. M. (2001). Collaboration
through the exploitation of local interactions in autonomous collective robotics: The
stick pulling experiment. Autonomous Robots, 11(2):149–171.

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The use
of simulation in evolutionary robotics, pages 704–720. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Jalili, N. (2013). Nanomechanical cantilever-based manipulation for sensing and
imaging. In Nanorobotics, pages 29–40. Springer.

Ji, M. and Egerstedt, M. (2007). Distributed coordination control of multiagent systems
while preserving connectedness. IEEE Transactions on Robotics, 23(4):693–703.

Johnson, M. and Brown, D. S. (2015). Evolving and controlling perimeter, rendezvous,
and foraging behaviors in a computation-free robot swarm. In Proceedings of the
9th EAI International Conference on Bio-inspired Information and Communications
Technologies, pages 311–314. ICST, Brussels, Belgium.

Jones, C. and Mataric, M. J. (2003). Adaptive division of labor in large-scale minimalist
multi-robot systems. In Proceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems, volume 2, pages 1969–1974. IEEE.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings
of International Conference on Neural Networks (ICNN 1995), volume 4, pages
1942–1948.

Kershner, R. (1939). The number of circles covering a set. American Journal of
Mathematics, 61(3):665–671.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
In Autonomous Robot Vehicles, pages 396–404. Springer.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press.

References 169

Krause, J., Cordeiro, J., Parpinelli, R. S., and Lopes, H. S. (2013). A survey of swarm
algorithms applied to discrete optimization problems. In Swarm Intelligence and
Bio-Inspired Computation, pages 169–191. Elsevier.

Krause, J. and Ruxton, G. D. (2002). Living in Groups. Oxford University Press.

Lee, W. and Kim, D. (2017). Autonomous shepherding behaviors of multiple target
steering robots. Sensors, 17(12):2729.

Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L., and Wang, J. (2017).
Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification.
Science Robotics, 2(4).

Lien, J.-M., Rodriguez, S., Malric, J.-P., and Amato, N. M. (2005). Shepherding
behaviors with multiple shepherds. In Proceedings of 2005 IEEE International
Conference on Robotics and Automation (ICRA 2005), pages 3402–3407. IEEE.

Lin, Y.-y. and Chen, Y.-p. (2007). Crowd control with swarm intelligence. In 2007
IEEE Congress on Evolutionary Computation, pages 3321–3328. IEEE.

Magnenat, S., Waibel, M., and Beyeler, A. (2009). Enki: An open source fast 2D robot
simulator. https://github.com/enki-community/enki.

Martens, D., Baesens, B., and Fawcett, T. (2011). Editorial survey: swarm intelligence
for data mining. Machine Learning, 82(1):1–42.

Martinoli, A. and Mondada, F. (1997). Collective and cooperative group behaviours:
Biologically inspired experiments in robotics. In Experimental Robotics IV, pages
1–10. Springer-Verlag.

Mataric, M. J. (1998). Using communication to reduce locality in distributed multiagent
learning. Journal of Experimental & Theoretical Artificial Intelligence, 10(3):357–369.

Mavroidis, C. and Ferreira, A. (2013). Nanorobotics: past, present, and future. Springer.

McLurkin, J. and Smith, J. (2007). Distributed algorithms for dispersion in indoor
environments using a swarm of autonomous mobile robots. In Proceedings of the
7th International Symposium on Distributed Autonomous Robotic Systems (DARS
2004), pages 399–408, Tokyo, Japan. Springer.

Minsky, M. L. (1967). Computation. Prentice-Hall Englewood Cliffs.

Mitchell, M. (2009). Complexity: A guided tour. Oxford University Press.

Mitrano, P., Burklund, J., Giancola, M., and Pinciroli, C. (2019). A minimalistic ap-
proach to segregation in robot swarms. In Proceedings of the 2nd IEEE International
Symposium on Multi-Robot and Multi-Agent Systems (MRS 2019).

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). The e-puck, a robot designed
for education in engineering. In Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, volume 1, pages 59–65.

https://github.com/enki-community/enki

170 References

Mondada, F., Guignard, A., Bonani, M., Bar, D., Lauria, M., and Floreano, D. (2003).
Swarm-bot: From concept to implementation. In Proceedings of 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003), volume 2,
pages 1626–1631. IEEE.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,
and Technology. MIT Press, Cambridge, MA, USA.

Norrman, R. (1999). Creating the world in our image: A new theory of love of symmetry
and iconicist desire. Form miming meaning: Iconicity in language and literature,
pages 59–82.

Özdemir, A., Gauci, M., Bonnet, S., and Groß, R. (2018). Online supplementary
material. http://naturalrobotics.group.shef.ac.uk/supp/2018-002/.

Özdemir, A., Gauci, M., and Groß, R. (2017). Online supplementary material. http:
//naturalrobotics.group.shef.ac.uk/supp/2017-002/.

Özdemir, A., Gauci, M., Kolling, A., Hall, M. D., and Groß, R. (2019a). Online
supplementary material. http://naturalrobotics.group.shef.ac.uk/supp/2019-001/.

Özdemir, A., Romanishin, J. W., Groß, R., and Rus, D. (2019b). Decentralized
gathering of stochastic, oblivious agents on a grid: A case study with 3d m-blocks.
In 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS).

Özdemir, A., Romanishin, J. W., Groß, R., and Rus, D. (2019c). Online supplementary
material. https://doi.org/10.6084/m9.figshare.8527148.

Ozsoyeller, D., Beveridge, A., and Isler, V. (2019). Rendezvous in planar environments
with obstacles and unknown initial distance. Artificial Intelligence, 273:19 – 36.

Panait, L. and Luke, S. (2005). Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434.

Parker, C. A. and Zhang, H. (2009). Cooperative decision-making in decentralized
multiple-robot systems: The best-of-n problem. IEEE/ASME Transactions on
Mechatronics, 14(2):240–251.

Parker, L. E. (2008). Multiple mobile robot systems. In Springer Handbook of Robotics,
pages 921–941. Springer.

Parpinelli, R. S., Lopes, H. S., and Freitas, A. A. (2001). An ant colony based system
for data mining: applications to medical data. In Proceedings of the 3rd Annual
Conference on Genetic and Evolutionary Computation, pages 791–797. Morgan
Kaufmann Publishers Inc.

Parrish, J. K. and Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary
trade-offs in animal aggregation. Science, 284(5411):99–101.

Partridge, B. L. (1982). The structure and function of fish schools. Scientific American,
246(6):114–123.

http://naturalrobotics.group.shef.ac.uk/supp/2018-002/
http://naturalrobotics.group.shef.ac.uk/supp/2017-002/
http://naturalrobotics.group.shef.ac.uk/supp/2017-002/
http://naturalrobotics.group.shef.ac.uk/supp/2019-001/
https://doi.org/10.6084/m9.figshare.8527148

References 171

Pierson, A. and Schwager, M. (2015). Bio-inspired non-cooperative multi-robot herding.
In Proceedings of 2015 IEEE International Conference on Robotics and Automation
(ICRA 2015), pages 1843–1849.

Pierson, A. and Schwager, M. (2017). Controlling noncooperative herds with robotic
herders. IEEE Transactions on Robotics, 34(2):517–525.

Piggins, D. and Phillips, C. (1996). The eye of the domesticated sheep with implications
for vision. Animal Science, 62(2):301–308.

Pitcher, T., Magurran, A., and Winfield, I. (1982). Fish in larger shoals find food
faster. Behavioral Ecology and Sociobiology, 10(2):149–151.

Portugal, D. and Rocha, R. (2011). A survey on multi-robot patrolling algorithms. In
Camarinha-Matos, L. M., editor, Technological Innovation for Sustainability, pages
139–146, Berlin, Germany. Springer.

Prorok, A., Correll, N., and Martinoli, A. (2011). Multi-level spatial modeling for
stochastic distributed robotic systems. International Journal of Robotics Research,
30(5):574–589.

Ramaithitima, R., Whitzer, M., Bhattacharya, S., and Kumar, V. (2015). Sensor
coverage robot swarms using local sensing without metric information. In Proceedings
of 2015 IEEE International Conference on Robotics and Automation (ICRA 2015),
pages 3408–3415. IEEE.

Razali, S., Meng, Q., and Yang, S.-H. (2010). A refined immune systems inspired
model for multi-robot shepherding. In Nature and Biologically Inspired Computing
(NaBIC), 2010 Second World Congress on, pages 473–478. IEEE.

Rechenberg, I. (1978). Evolutionsstrategien. In Simulationsmethoden in der Medizin
und Biologie, pages 83–114. Springer.

Requicha, A. (2013). Swarms of self-organized nanorobots. In Nanorobotics, pages
41–49. Springer.

Requicha, A. A. (2003). Nanorobots, NEMS, and nanoassembly. Proceedings of the
IEEE, 91(11):1922–1933.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.
In ACM Siggraph Computer Graphics, volume 21, pages 25–34. ACM.

Romanishin, J. W., Gilpin, K., Claici, S., and Rus, D. (2015). 3d m-blocks: Self-
reconfiguring robots capable of locomotion via pivoting in three dimensions. In
Proceedings of 2015 IEEE International Conference on Robotics and Automation
(ICRA 2015), pages 1925–1932. IEEE.

Rutishauser, S., Correll, N., and Martinoli, A. (2009). Collaborative coverage using a
swarm of networked miniature robots. Robotics and Autonomous Systems, 57(5):517–
525.

Safonov, A. (2008). Sardine run. https://bit.ly/2YXTA7y.

https://bit.ly/2YXTA7y

172 References

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application.
In Swarm Robotics, pages 10–20. Springer Berlin Heidelberg.

Şahin, E., Girgin, S., Bayindir, L., and Turgut, A. E. (2008). Swarm robotics. Swarm
intelligence, 1:87–100.

Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski,
M., and Crailsheim, K. (2009). Get in touch: cooperative decision making based on
robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems, 18(1):133–
155.

Schwager, M., McLurkin, J., and Rus, D. (2006). Distributed coverage control with
sensory feedback for networked robots. In Robotics: Science and Systems, pages
49–56.

Seyfried, J., Szymanski, M., Bender, N., Estana, R., Thiel, M., and Wörn, H.
(2004). The i-swarm project: Intelligent small world autonomous robots for micro-
manipulation. In International Workshop on Swarm Robotics, pages 70–83. Springer.

Sitti, M. (2017). Mobile Microrobotics. MIT Press, Cambridge, MA.

Soysal, O. and Sahin, E. (2005). Probabilistic aggregation strategies in swarm robotic
systems. In Proceedings 2005 IEEE Swarm Intelligence Symposium (SIS 2005), pages
325–332. IEEE.

Spears, W. M., Spears, D. F., Hamann, J. C., and Heil, R. (2004). Distributed,
physics-based control of swarms of vehicles. Autonomous Robots, 17(2-3):137–162.

Stass, J. (2015). Why do birds flock together? https://www.howitworksdaily.com/
why-do-birds-flock-together/.

Strömbom, D., Mann, R. P., Wilson, A. M., Hailes, S., Morton, A. J., Sumpter,
D. J., and King, A. J. (2014). Solving the shepherding problem: Heuristics for
herding autonomous, interacting agents. Journal of the Royal Society Interface,
11(100):20140719.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the Tenth International Conference on Machine Learning,
pages 330–337.

Tan, Y. and Zheng, Z.-y. (2013). Research advance in swarm robotics. Defence
Technology, 9(1):18–39.

Trianni, V. (2008). Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours
in Groups of Autonomous Robots. Springer, Berlin, Germany.

Trianni, V. and Nolfi, S. (2009). Self-organizing sync in a robotic swarm: a dynamical
system view. Evolutionary Computation, IEEE Transactions on, 13(4):722–741.

Trianni, V., Nolfi, S., and Dorigo, M. (2008). Evolution, self-organization and swarm
robotics, pages 163–191. Springer.

https://www.howitworksdaily.com/why-do-birds-flock-together/
https://www.howitworksdaily.com/why-do-birds-flock-together/

References 173

Tsitsiklis, J. N. (1984). Problems in Decentralized Decision making and Computation.
PhD thesis, MIT, Cambridge, MA.

Valentini, G., Ferrante, E., and Dorigo, M. (2017). The best-of-n problem in robot
swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics
and AI, 4(9).

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016). Collective decision with
100 kilobots: speed versus accuracy in binary discrimination problems. Autonomous
Agents and Multiagent Systems, 30(3):553–580.

Vaughan, R., Sumpter, N., Henderson, J., Frost, A., and Cameron, S. (2000). Experi-
ments in automatic flock control. Robotics and Autonomous Systems, 31(1):109–117.

Visscher, P. K. (2007). Group decision making in nest-site selection among social
insects. Annual Review of Entomology, 52(1):255–275.

Walter, J. E. (2018). Sensor-driven algorithm for self-reconfiguration of modular
robots. In 2018 International Conference on Reconfigurable Mechanisms and Robots
(ReMAR), pages 1–7. IEEE.

Wareham, T. and Vardy, A. (2018). Viable algorithmic options for designing reactive
robot swarms. ACM Transactions on Autonomous and Adaptive Systems, 13(1):5:1–
5:23.

Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search.
Technical Report SFI-TR-95-02-010, Santa Fe Institute.

Wurman, P. R., D’Andrea, R., and Mountz, M. (2008). Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):9–9.

Yu, J., LaValle, S. M., and Liberzon, D. (2012). Rendezvous without coordinates.
IEEE Transactions on Automatic Control, 57(2):421–434.

Appendix A

Counter-Examples

This appendix presents the counter-example images for the dynamic deadlock situations
presented in Section 6.3.3 in Chapter 6 for deterministic multi-agent gathering problem.
The caption states the counter-example ID number, the period of the dynamic deadlock,
and the interval of images in that page. Additionaly, if the images span over one page,
a roman numeral indicates the number of page in the beginning of the caption. Each
module is represented by a different colour. The ‘hatch’ over a module indicates that
it is that module’s turn to take an action.

Table A.1 shows a summary list of 21 counter-examples. It lists the counter-example
ID number, the starting figure reference number, the period of the counter-example,
and a priori unknown contexts that are participated.

176 Counter-Examples

Table A.1 The list of counter-examples presented in Appendix A.

ID Fig.Ref. Period Unknown participated contexts
16 Fig. A.1 20 E2,H1, I1, I3
17 Fig. A.2 24 E2,H1, I1
18 Fig. A.3-A.4 36 E3,H3
19 Fig. A.5 28 E1,E3,H1,H3, I1
20 Fig. A.6-A.7 52 E1,E2,E3,H1,H3, I1
21 Fig. A.8 16 E1,E2,H1, I1
22 Fig. A.9-A.10 44 E1,E2,E3,H1, I1
23 Fig. A.11 28 E1,E2,H1,H3, I1
24 Fig. A.12-A.13 32 B,D2,E1
25 Fig. A.14 8 E2
26 Fig. A.15-A.19 48 C
27 Fig. A.20 8 C
28 Fig. A.21-A.23 40 E1
29 Fig. A.24-A.26 48 B
30 Fig. A.27-A.33 126 D2,E2,H1
31 Fig. A.34-A.35 36 D2,H1
32 Fig. A.36-A.47 228 H1
33 Fig. A.48-A.51 60 B
34 Fig. A.52 12 D2
35 Fig. A.53-A.56 40 B,D2
36 Fig. A.57-A.79 360 N/A

177

F2

E2K

I3

I1H2K

I3

I1H2K

I3

I1H2K

I3

I1H2K

I3 F2

E2K

I3 I3H2

I1

K I3K

E1

I1

I3H1

H1I3

I3H1

H1I3

F2I3

E2K

I3K H2

I1

I3I1 K

E1

I3I1 K

E1

I3

I3

H1

H1

F2

K

I3

E2

I3

I1

K H2 I3

I1

K H2 I3

E1

I1 K I3

H1I3

H1

F2

E2K

I3

Fig. A.1 Counter-example 16. Dynamic deadlock of period 20. Images show 0-20
of 20.

178 Counter-Examples

F2I3

E2K

I1I3

I3I1

E3K

F2I1

H3I1

I1H3

E1

I3 I1K

H1

I3

I3

H1

I3

K

F2

E2

I3

I1

I1

I3

F2

E3

I1

K

I1

H3

H3

I1 I3 K

E1

I1 I3 H1

H1 I3

F2 I3

E2 K

I1 I3

I3 I1

E3 K

F2 I1

H3 I1

I1 H3

E1

I3I1 K

H1

I3

I3

H1

I3

K

F2

E2

I3

I1

I1

I3

F2

E3

I1

K

I1

H3

H3

I1 I3K

E1

I1 I3H1

H1I3

F2I3

E2K

Fig. A.2 Counter-example 17. Dynamic deadlock of period 24. Images show 0-24
of 24.

179

K

I1

E3

F2

K

I1

E3

F2

I3

I1

I1

I3

I3

K

F2

E2

I3

K

F2

E2

H1

I3

I3

H1

E1

I3 I1K

E1

I3 I1K

H3I1

I1H3

I1F2

KE3

I1F2

KE3

I1I3

I3I1

KE2

I3F2

KE2

I3F2

I3H1

H1I3

I3K

E1

I1

I3K

E1

I1

I1

H3

H3

I1

F2

E3

I1

K

F2

E3

I1

K

I3

I1

I1

I3

E2

F2

K

I3

E2

F2

K

I3

H1

I3

I3

H1

K I1I3

E1

K I1I3

E1

H3 I1

I1 H3

E3 K

F2 I1

E3 K

F2 I1

I1 I3

I3 I1

F2 I3

E2 K

F2 I3

E2 K

Fig. A.3 (I) Counter-example 18. Dynamic deadlock of period 36. Images show
0-31 of 36.

180 Counter-Examples

I3 H1

H1 I3 I1

E1

K I3 I1

E1

K I3 I1

H3

H3

I1

K

I1

E3

F2

Fig. A.4 (II) Counter-example 18. Dynamic deadlock of period 36. Images show
32-36 of 36.

181

K

I1

E3

F2

I1

H3

H3

I1

I1

E1

K I3

I3 H1

H1 I3

I3 H1

H1 I3

I3 H1

H1 I3

I3 K

E1

I1

I1

H3

H3

I1

F2

E3

I1

K

I1 H2 K

I3

I1 K I3

E1 I3

H1 I3

H1

I3

E1

I1K K

I3

I1H2 I1

K

F2

E3

H3

I1

I1

H3

E1

I1 I3K

H1I3

I3H1

H1I3

I3H1

H1I3

I3H1

KI3 I1

E1

H3

I1

I1

H3

E3

F2

K

I1 H2I1

I3

K

KI1

E1

I3 H1

I3 H1

I3 E1

I3 K I1

I3

K H2 I1

K

I1

E3

F2

Fig. A.5 Counter-example 19. Dynamic deadlock of period 28. Images show 0-28
of 28.

182 Counter-Examples

K

I1

E3

F2

I1

H3

H3

I1

I1

E1

K I3

I3 H1

H1 I3

K E2

I3 F2

K E2

I3 F2

K H2

I3

I1 K H2

I3

I1

I3 K

E1

I1 I3 K

E1

I1 I3 H1

H1 I3 I1

E1

K I3

I1

E1

K I3 I1

I3

H2 K I1

I3

H2 K

F2 I3

E2 K

F2 I3

E2 K

I3 H1

H1 I3

I3 K

E1

I1

I1

H3

H3

I1

F2

E3

I1

K

I1 H2 K

I3

I1 K I3

E1 I3

H1 I3

H1

I3

E1

I1K K

I3

I1H2 I1

K

F2

E3

H3

I1

I1

H3

E1

I1 I3K

H1I3

I3H1

E2K

F2I3

E2K

F2I3

Fig. A.6 (I) Counter-example 20. Dynamic deadlock of period 52. Images show
0-31 of 52.

183

H2K I1

I3

H2K I1

I3

KI3 I1

E1

KI3 I1

E1

H1I3

I3H1

E1

I1 I3K

E1

I1 I3K

I3

I1 KH2

I3

I1 KH2

I3F2

KE2

I3F2

KE2

H1I3

I3H1

KI3 I1

E1

H3

I1

I1

H3

E3

F2

K

I1 H2I1

I3

K

KI1

E1

I3 H1

I3 H1

I3 E1

I3 K I1

I3

K H2 I1

K

I1

E3

F2

Fig. A.7 (II) Counter-example 20. Dynamic deadlock of period 52. Images show
32-52 of 52.

184 Counter-Examples

K

I1

H2 I3 I1

E1

K I3

I3 H1

H1 I3

I3 K

E1

I1

K H2

I3

I1 I1

E3K

F2 H3

H3I1

I1 E1

KI1 I3

H1

H1

I3

I3

E2

I3

K

F2 H2K

I1

I3 E3K

I1 F2

H3I1

H3 I1

E1

I3 K I1

I3

K H2 I1

I3

K E2

F2

K

I1

H2 I3

Fig. A.8 Counter-example 21. Dynamic deadlock of period 16. Images show 0-16
of 16.

185

K

I1

H2 I3 K

I1

H2 I3 I3

K E2

F2 I3

K H2 I1

I3

K H2 I1

E1

I3 K I1

E1

I3 K I1

H1

I3 H1

I3

KI1

E1

I3 KI1

E1

I3 H2K

I1

I3 E3K

I1 F2

E3K

I1 F2

E3K

I1 F2

H3I1

H3 I1

KI1

E1

I3

H1

I3 H1

I3 I3

K E2

F2 K

I1

H2 I3 K

I1

E3

F2

I1

H3

H3

I1 I3 K

E1

I1 I3 H2

I1

K I3 H2

I1

K

F2

E2 K

I3

I1 H2 K

I3

I1 H2 K

I3

I1 K I3

E1

I1 K I3

E1 I3

H1 I3

H1 I3

E1

I1K I3

E1

I1K

Fig. A.9 (I) Counter-example 22. Dynamic deadlock of period 44. Images show
0-31 of 44.

186 Counter-Examples

I3

I1

KH2

F2 I1

KE3

F2 I1

KE3

F2 I1

KE3

I1 H3

I1H3 I3

E1

I1K I3

H1 I3

H1 F2

E2 K

I3

I3 H2

I1

K

F2

E3

I1

K

I1

H3

H3

I1

I1

E1

K I3

K

I1

H2 I3

Fig. A.10 (II) Counter-example 22. Dynamic deadlock of period 44. Images show
32-44 of 44.

187

K

I1

H2 I3 I1

E1

K I3 I1

H3

H3

I1 I3 K

E1

I1

I3 H2

I1

K F2

E2 K

I3 I3

H1 I3

H1

I1 K I3

E1

I1 H3

I1H3

I1 H3

I1H3

I1 H3

I1H3 I3

E1

I1K

I3

H1 I3

H1 K

I3 F2

E2 I1

K I3H2

E1

I1 I3K

H3

I1

I1

H3

KI3 I1

E1

H2I3 K

I1 E2

F2 I3

K

H1

I3 H1

I3 KI1

E1

I3 H3I1

H3 I1

H3I1

H3 I1

H3I1

H3 I1

E1

I3 K I1

H1

I3 H1

I3 I3

K E2

F2

K

I1

H2 I3

Fig. A.11 Counter-example 23. Dynamic deadlock of period 28. Images show
0-28 of 28.

188 Counter-Examples

D2
E1

F2
E1 D2

E1

F2
E1 B

F2

F2
E1 D2

F2

E1
E1

B
F2

E1

F2
B

F2

E1

F2
D2 E1
E1

F2
B E1

F2

F2

D2 E1
F2

E1
D2 E1

F2

E1
B

F2F2

E1
D2

F2
E1

E1

B
F2

E1
F2

B
F2

E1
F2

D2
E1

E1
F2

B
E1

F2 F2

D2
E1

F2
E1 D2

E1

F2
E1 B

F2

F2
E1 D2

F2

E1
E1

Fig. A.12 (I) Counter-example 24. Dynamic deadlock of period 32. Images show
0-19 of 32.

189

B
F2

E1

F2
B

F2

E1

F2
D2E1
E1

F2
BE1

F2

F2

D2E1
F2

E1
D2E1

F2

E1
B

F2 F2

E1
D2

F2
E1

E1

B
F2

E1
F2

B
F2

E1
F2

D2
E1

E1
F2

B
E1

F2F2

D2
E1

F2
E1

Fig. A.13 (II) Counter-example 24. Dynamic deadlock of period 32. Images show
20-32 of 32.

190 Counter-Examples

I3
E2

C

F2 F2

I3 E2

F2 F2

I3 E2
C

C

I3 E2
C

C

F2 I3
E2

C
C

I3
E2

E2
C

F2

I3 I3
E2

F2

F2

I3
E2

C

F2

Fig. A.14 Counter-example 25. Dynamic deadlock of period 8. Images show 0-8
of 8.

191

C

C
C

C

C
C

C

C

C
C

C

C

C
C

C
C

C
C

C
C

F2 C

C
C

F2 F2

C
C

F2 F2

F2C

F2 F2

F2F2

C F2

F2F2

C
C

F2F2

C
C

CF2

Fig. A.15 (I) Counter-example 26. Dynamic deadlock of period 48. Images show
0-11 of 48.

192 Counter-Examples

C
C

C
C

C
C

C
C

C

C
C

C

C

C
C

C

C

C
C

C
F2

C
C

C

F2

F2C

C
F2

F2F2

C
F2

F2F2

F2

C

F2F2

F2
C

CF2

F2
C

C
C

F2
Fig. A.16 (II) Counter-example 26. Dynamic deadlock of period 48. Images show

12-23 of 48.

193

C

C
C

C

C
C

C

C

C
C

C

C

C
C

C
C

C
C

C
C

F2C

C
C

F2F2

C
C

F2F2

F2 C

F2F2

F2 F2
CF2

F2 F2

C
C

F2 F2

C
C

C F2
Fig. A.17 (III) Counter-example 26. Dynamic deadlock of period 48. Images

show 24-35 of 48.

194 Counter-Examples

C
C

C
C

C
C

C
C

C

C
C

C

C

C
C

C

C

C
C

C
F2

C
C

C

F2

F2 C

C
F2

F2 F2

C
F2

F2 F2

F2

C

F2 F2

F2
C

C F2

F2
C

C
C

F2

Fig. A.18 (IV) Counter-example 26. Dynamic deadlock of period 48. Images
show 36-47 of 48.

195

C

C
C

C

Fig. A.19 (V) Counter-example 26. Dynamic deadlock of period 48. Images show
48-48 of 48.

196 Counter-Examples

C

C
C

C F2

C
C

C F2

F2
C

C

F2

F2 F2

C F2

F2 F2

F2
C

F2 F2

F2

C

C F2

F2
C

C
C

F2

C

C
C

C

Fig. A.20 Counter-example 27. Dynamic deadlock of period 8. Images show 0-8
of 8.

197

K
E1

E1
E1

E1 K
E1

E1
E1

E1 G
I1

E1
E1

H3 D2
I1F2

E1
H3

B
I1F2

F2
H3 A

F2F2

F2 F2
A

F2F2

F2 F2
B H1

F2

F2 I3

D2 H1
E1

F2 I3
G H1
E1

E1
I3

K E1
E1

E1
E1

K E1
E1

E1
E1

G
I1

E1
E1

H3
D2

I1

F2
E1

H3
B

I1

F2F2

H3
A

F2

F2F2

F2

A
F2

F2F2

F2
B

H1

F2F2

I3
D2
H1

E1
F2

I3
G
H1

E1
E1

I3

Fig. A.21 (I) Counter-example 28. Dynamic deadlock of period 40. Images show
0-19 of 40.

198 Counter-Examples

K
E1

E1
E1

E1 K
E1

E1
E1

E1 G
I1

E1
E1

H3 D2
I1 F2

E1
H3

B
I1 F2

F2
H3 A

F2 F2

F2F2
A

F2 F2

F2F2
BH1

F2

F2I3

D2H1
E1

F2I3
GH1
E1

E1
I3

KE1
E1

E1
E1

KE1
E1

E1
E1

G
I1

E1
E1

H3
D2

I1

F2
E1

H3
B

I1

F2 F2

H3
A

F2

F2 F2

F2

A
F2

F2 F2

F2
B

H1

F2 F2

I3
D2
H1

E1
F2

I3
G
H1

E1
E1

I3

Fig. A.22 (II) Counter-example 28. Dynamic deadlock of period 40. Images show
20-39 of 40.

199

K
E1

E1
E1

E1

Fig. A.23 (III) Counter-example 28. Dynamic deadlock of period 40. Images
show 40-40 of 40.

200 Counter-Examples

I1

I3

H3
G
H1

E1
F2

I3

I1
D2
H1

H3
F2

I3

F2
B
K I1

F2

I3

F2
B
K I1

I3
H1

F2
D2
H3 I1

I3
K

F2
B

I1 F2

H1
H3

I3
D2

I1 F2

E1
H3 H1G
I1 I3

E1
H3 E1K
K H1

E1
H3 E1K
K H1

H3I1
E1G

I3 H1

H3K
E1KH1

E1

I1I3
H3GH1

E1

F2I3

I1
D2H1
H3

F2I3

F2
BK

I1

F2I3

F2
BK

I1

I3H1

F2
D2H3

I1

I3K

F2
B

I1

F2
H1

H3

I3
D2

I1

F2
E1

H3

H1
G

I1

I3

Fig. A.24 (I) Counter-example 29. Dynamic deadlock of period 48. Images show
0-19 of 48.

201

E1
H3

E1
K

K
H1 E1

H3

E1
K

K
H1 H3

I1

E1
G

I3
H1 H3

K

E1
K

H1
E1

I1

I3

H3
G
H1

E1
F2

I3

I1
D2
H1

H3
F2

I3

F2
B
KI1

F2

I3

F2
B
KI1

I3
H1

F2
D2
H3I1

I3
K

F2
B

I1F2

H1
H3

I3
D2

I1F2

E1
H3H1 G
I1I3

E1
H3E1 K
KH1

E1
H3E1 K
KH1

H3 I1
E1 G

I3H1

H3 K
E1 K H1

E1

I1 I3
H3 G H1

E1

F2 I3

I1
D2 H1
H3

F2 I3

F2
B K

I1

F2 I3

F2
B K

I1

Fig. A.25 (II) Counter-example 29. Dynamic deadlock of period 48. Images show
20-39 of 48.

202 Counter-Examples

I3 H1

F2
D2 H3

I1

I3 K

F2
B

I1

F2
H1

H3

I3
D2

I1

F2
E1

H3

H1
G

I1

I3

E1
H3

E1
K

K
H1 E1

H3

E1
K

K
H1 H3

I1

E1
G

I3
H1 H3

K

E1
K

H1
E1

I1

I3

H3
G
H1

E1

Fig. A.26 (III) Counter-example 29. Dynamic deadlock of period 48. Images
show 40-48 of 48.

203

K
K
I1

K
D2

I3 K
K
I1

K
D2

I3 K
K
I1

K
D2

I3 K
H2
K

H2

E2

I3

K
H2
K

E3

E2
C

K
H2
K

E3

E2
C

K
H2
K

E3

E2
C

I1
G

I3

H3

H1
E1

F2
D2

I3

I1

H1
H3

F2
B

F2

I1

I3
K

F2
B

F2

I1

I3
K

I3
D1H1

I1

I3
K

H1
GE1

K

I3
K

E2

E3
C

K

K
H2

E2

E3
C

K

K
H2

E2

E3
C

K

K
H2

H1

H3
E1

I3

I1
G

H1

KI3

I3

I1
D1

F2

KI3

F2

I1
B

F2

KI3

F2

I1
B

Fig. A.27 (I) Counter-example 30. Dynamic deadlock of period 126. Images
show 0-19 of 126.

204 Counter-Examples

F2

KI3
H1
K

D2
F2

KI3
H1
K

D2
I1

H2I3
E2
K

E3 K

E3
E2 E2

K

E3

K

E3
E2 E2

K

E3 K
GH1 H1

I3

H3 K
D2H1

I3

F2

K K
GH1

I3

E1

K

K
GH1

I3

E1

K I1
D1

I3

I3

H1

K I1
D1

I3

I3

H1

K I1
D1

I3

I3

H1

K

I1
G

I3
E1

H1

H3 I1
D2

F2
H1
I3

H3 F2
B

F2
K
I3

I1 I3
D1H1 K

I3

I1

H1
GE1 K

I3

K E2

E3
C H2

K

K H1

H3
E1 G

I1

I3 H1

H3
E1 G

I1

I3

Fig. A.28 (II) Counter-example 30. Dynamic deadlock of period 126. Images
show 20-39 of 126.

205

E1

H3
E1 K

K
H1

E1

KI3
G

K
H1

F2

KI3
D2

K
H1

F2

KI3
D2

K
H1

I1

H2I3

E3

K
E2

I1

H2I3

E3

K
E2

I1

KI3

H3

I1
D1

K

H3
H1

H3

I1
G

K

H3
H1

H3

I1
G

K

I1
K

H3

F2
D2

I3

I1
K

F2

F2
B

I3

K
K

F2

H1
D2

I3

K
H2

I1

E2
E3

F2

I3
D2

I1

H1
H3

H1

I3
G

K

H1
H3

H1
E1 K

K

E1
H3

H1
E1 K

K

E1
H3

H1
E1 G

K

I3
K

H1
E1 G

K

I3
K

E2
C

E3

K

K
H2

Fig. A.29 (III) Counter-example 30. Dynamic deadlock of period 126. Images
show 40-59 of 126.

206 Counter-Examples

GE1
H3

I1

K
K D2

I3 K

I1

K
K D2

I3 K

I1

K
K D2

I3 K

I1

K
K

D2
I3 K

I1

K
K D2

I3 K

I1

K
K

E2

I3 H2

K

K
H2

E2
C

E3

K

K
H2

E2
C

E3

K

K
H2

E2
C

E3

K

K
H2

H1
E1

H3

I3

I1
G

H1
H3
I1

I3

F2
D2

I3
K
I1

F2

F2
B

I3
K
I1

F2

F2
B

I3
K
I1

H1
I3

D1
I3
K
K

E1
H1
G

K
H2
K

C
E2

E3 K
H2
K

C
E2

E3 K
H2
K

C
E2

E3 I1
G

I3
E1

H1

H3

Fig. A.30 (IV) Counter-example 30. Dynamic deadlock of period 126. Images
show 60-79 of 126.

207

I1
D1

I3

I3

H1

K I1
B

F2

I3

F2

K I1
B

F2

I3

F2

K K
D2H1

I3

F2

K

K
D2H1

I3

F2

K K

E3
E2

I3

I1

H2 K

E3
E2 E2

K

E3 K

E3
E2 E2

K

E3

I3

H3
H1 H1

K
G

F2

KI3
H1
K

D2
E1

KI3
H1
K

G
E1

KI3
H1
K

G

H1

KI3

I3

I1
D1

H1

KI3

I3

I1
D1

H1

KI3

I3

I1
D1

H1

H3
E1

I3

I1
G

I3

H3
H1

F2

I1
D2

I3

I1
K

F2

F2
B

I3

I1
K H1

I3
D1

I3

K
K E1

H1
G

Fig. A.31 (V) Counter-example 30. Dynamic deadlock of period 126. Images
show 80-99 of 126.

208 Counter-Examples

K

K
H2 C

E2

E3 I1

I3
G E1
H1

H3 I1

I3
G E1
H1

H3 K
H1 K E1

E1

H3

K
H1 G

I3

E1

K K
H1 D2

I3

F2

K K
H1 D2

I3

F2

K K
E2

E3

I3

I1

H2

K
E2

E3

I3

I1

H2 I1
D1
H3

I3

I1

K I1
G
H3

H1
K

H3 I1
G
H3

H1
K

H3

F2
D2
H3

K
K

I1 F2
B

F2
K
I3

I1 H1
D2

F2
K
I3

K E2
E3
I1

H2
I3

K

H1
H3
I1

D2
F2

I3 H1
H3
K

G
H1

I3 E1
H3
K

K
H1

E1
E1

H3
K

K
H1

E1

Fig. A.32 (VI) Counter-example 30. Dynamic deadlock of period 126. Images
show 100-119 of 126.

209

I3
K
K

G
H1

E1
I3
K
K

G
H1

E1
K

H2
K

E3

E2
C

K
K
I1

H3
G E1

K
K
I1

K
D2

I3 K
K
I1

K
D2

I3

K
K
I1

K
D2

I3

Fig. A.33 (VII) Counter-example 30. Dynamic deadlock of period 126. Images
show 120-126 of 126.

210 Counter-Examples

K
H2
K

E3

E2
C

I3
K
K

G
H1

E1
I3
K
K

D2
H1

F2 I3
K
K

D2
H1

F2

I3
K
K

D2
H1

F2 H1
H3
K

G
H1

I3 H1
H3
I1

D2
F2

I3 E2
E3
K H2 I1

I3

C
E3
K H2 K

E2
C

E3
K H2 K

E2
E1
G

I3 K K
H1

F2
D2

I3 K K
H1

F2
D2

I3 K K
H1

F2
D2

I3 K K
H1

F2
B

I3 K I1

F2 I3
D2H1
H3 I1

F2

I3
H2E2

E3 K

I1 E2
H2C

E3 K

K E2
H2C

E3 K

K H1
KE1 G
I3

K

Fig. A.34 (I) Counter-example 31. Dynamic deadlock of period 36. Images show
0-19 of 36.

211

H1
KE1 G
I3

K H1
K

F2
D2

I3

K H1
K

F2
D2

I3

K F2
K

F2
B

I3

I1

F2
H3

I3
D2
H1

I1 I1
E3

I3

H2

E2

K I1
E3

I3

H2

E2

K K
E3E2

H2

C

K

K
GH1
K

E1

I3 K
GH1
K

E1

I3 K
D2H1
K

F2

I3 K
D2H1
K

F2

I3

K
GH1
H3

I3
H1

I1
D2

F2

H3

I3
H1

K
H2
I1

E3

I3
E2

K
H2
I1

E3

I3
E2

K
H2
K

E3

E2
C

Fig. A.35 (II) Counter-example 31. Dynamic deadlock of period 36. Images show
20-36 of 36.

212 Counter-Examples

K
E2

E3

E3
E2
K

I3
H1 G

H3
H1
K

F2

I3
D2
K

H1
K

F2

I3
D2
K

H1
K

F2

I3
B
K

F2

I1

H1

I3
D1
K

I3

I1

H1

I3
D1
K

I3

I1

H1

I3
D1
K

I3

I1

H1
E1 G

H3

I3

I1

H1
E1 G

H3

I3

I1

E1
E1 K

H3
H1
K

I3
H1 G

H3
H1
K

I3
K D1
I1

H1
I3

I3
K D1
I1

H1
I3

I3
K D1
I1

H1
I3

I3
K G
K

E1
H1

I3
K D2
K

F2

H1

H1
H3 G
K

I3

H1

H1
H3 G
K

I3

H1

E2
E3 E3
K

K

E2

Fig. A.36 (I) Counter-example 32. Dynamic deadlock of period 228. Images
show 0-19 of 228.

213

H1
G H3

I3

K

H1

H1
D2 K

F2

K

I3

H1
D2 K

F2

K

I3

F2
B K

F2

I1

I3

I3
D1 KH1

I1

I3

I3
D1 KH1

I1

I3

I3
D1 KH1

I1

I3

I3
G H3H1

I1

E1

I3
G H3H1

I1

E1

H1
K H3E1

K

E1

H1
G H3

I3

K

H1

H1
D1

I1I3

I3

K

H1
D1

I1I3

I3

K

H1
D1

I1I3

I3

K

E1
G

KI3
H1

K

F2
D2

KI3
H1

K

I3
G

K
H1 H1

H3

I3
G

K
H1 H1

H3

K E3

K
E2 E2

E3

K H3

I3
H1 H1G

Fig. A.37 (II) Counter-example 32. Dynamic deadlock of period 228. Images
show 20-39 of 228.

214 Counter-Examples

K K

F2
H1

I3
D2

K K

F2
H1

I3
D2

I1 K

F2F2

I3
B

I1 K

H1I3

I3
D1

I1 K

H1I3

I3
D1

I1 K

H1I3

I3
D1

I1 H3

H1I3
E1G

I1 H3

H1I3
E1G

K H3

E1
H1 E1K

K H3

I3
H1 H1G

I3 I1

I3
H1 KD1

I3 I1

I3
H1 KD1

I3 I1

I3
H1 KD1

H1 K

I3
E1 KG

H1 K

I3F2
KD2

H1 K

H1I3
H3G

H1 K

H1I3
H3G

E2 K

E2K
E3E3

H1 I3

H1K
GH3

I3 F2

H1K
D2K

Fig. A.38 (III) Counter-example 32. Dynamic deadlock of period 228. Images
show 40-59 of 228.

215

I3 F2

H1K
D2K

I3 F2

F2I1
BK

I3
H1
I3I1

D1K
I3

H1
I3I1

D1K

I3
H1
I3I1

D1K
E1

H1
I3I1

GH3
E1

H1
I3I1

GH3
E1

E1
H1K
KH3

H1 I3

H1K
GH3

K I3

H1I3
D1

I1 K I3

H1I3
D1

I1 K I3

H1I3
D1

I1

K I3

E1
H1 G
K K I3

F2
H1 D2
K H3

H1
I3

H1 G
K H3

H1
I3

H1 G
K

E3
E2
K

E2
E3

K
G H1

K
H1

H3

I3
D2 H1

KI3 K

F2
D2 H1

KI3 K

F2

Fig. A.39 (IV) Counter-example 32. Dynamic deadlock of period 228. Images
show 60-79 of 228.

216 Counter-Examples

B
F2

I1I3 K

F2
D1

I3

I1I3 K

H1
D1

I3

I1I3 K

H1
D1

I3

I1I3 K

H1

G
I3

I1
E1

H3

H1
G

I3

I1
E1

H3

H1
K H1

K
E1

H3

E1
G H1

K
H1

H3

I3

D1 H1
I3

K
I1

I3
D1 H1

I3
K
I1

I3
D1 H1

I3
K
I1

I3
G E1
H1

K
K

I3

D2
F2

H1
K
K

I3
G

I3

H1
H3
K

H1
G

I3

H1
H3
K

H1
E3
K

E2
E3
K

E2

H3
K

H1
G

I3

H1
K
K

I3
D2

F2

H1
K
K

I3
D2

F2

H1
K
I1

I3
B

F2

F2

Fig. A.40 (V) Counter-example 32. Dynamic deadlock of period 228. Images
show 80-99 of 228.

217

K
I1

I3
D1H1

I3
K
I1

I3
D1H1

I3
K
I1

I3
D1H1

I3
H3
I1

E1
GH1

I3

H3
I1

E1
GH1

I3
H3
K

E1
KE1

H1
H3
K

H1
G

I3

H1

I1

I3

K
D1

I3

H1

I1

I3

K
D1

I3

H1

I1

I3

K
D1

I3

H1

K
H1

K
G

I3

E1

K
H1

K
D2

I3

F2

K
H1

H3
GH1

I3

K
H1

H3
GH1

I3

K
E2

E3

E3
E2
K

I3
H1G

H3
H1
K

F2

I3
D2
K

H1
K

F2

I3
D2
K

H1
K

F2

I3
B
K

F2

I1

H1

I3
D1
K

I3

I1

Fig. A.41 (VI) Counter-example 32. Dynamic deadlock of period 228. Images
show 100-119 of 228.

218 Counter-Examples

H1

I3
D1
K

I3

I1

H1

I3
D1
K

I3

I1

H1
E1G

H3

I3

I1

H1
E1G

H3

I3

I1

E1
E1K

H3
H1
K

I3
H1G

H3
H1
K

I3
KD1
I1

H1
I3

I3
KD1
I1

H1
I3

I3
KD1
I1

H1
I3

I3
KG
K

E1
H1

I3
KD2
K

F2

H1

H1
H3G
K

I3

H1

H1
H3G
K

I3

H1

E2
E3E3
K

K

E2

H1
GH3

I3

K

H1

H1
D2K

F2

K

I3

H1
D2K

F2

K

I3

F2
BK

F2

I1

I3

I3
D1K H1

I1

I3

I3
D1K H1

I1

I3

Fig. A.42 (VII) Counter-example 32. Dynamic deadlock of period 228. Images
show 120-139 of 228.

219

I3
D1K H1

I1

I3

I3
GH3 H1

I1

E1

I3
GH3 H1

I1

E1

H1
KH3 E1

K

E1

H1
GH3

I3

K

H1

H1
D1

I1 I3

I3

K

H1
D1

I1 I3

I3

K

H1
D1

I1 I3

I3

K

E1
G

K I3
H1

K

F2
D2

K I3
H1

K

I3
G

K
H1H1

H3

I3
G

K
H1H1

H3

KE3

K
E2E2

E3

KH3

I3
H1H1 G

KK

F2
H1

I3
D2

KK

F2
H1

I3
D2

I1K

F2 F2

I3
B

I1K

H1 I3

I3
D1

I1K

H1 I3

I3
D1

I1K

H1 I3

I3
D1

Fig. A.43 (VIII) Counter-example 32. Dynamic deadlock of period 228. Images
show 140-159 of 228.

220 Counter-Examples

I1H3

H1 I3
E1 G

I1H3

H1 I3
E1 G

KH3

E1
H1E1 K

KH3

I3
H1H1 G

I3I1

I3
H1K D1

I3I1

I3
H1K D1

I3I1

I3
H1K D1

H1K

I3
E1K G

H1K

I3 F2
K D2

H1K

H1 I3
H3 G

H1K

H1 I3
H3 G

E2K

E2 K
E3 E3

H1I3

H1 K
G H3

I3F2

H1 K
D2 K

I3F2

H1 K
D2 K

I3F2

F2 I1
B K

I3
H1
I3 I1

D1 K
I3

H1
I3 I1

D1 K
I3

H1
I3 I1

D1 K
E1

H1
I3 I1

G H3

Fig. A.44 (IX) Counter-example 32. Dynamic deadlock of period 228. Images
show 160-179 of 228.

221

E1
H1
I3 I1

G H3
E1

E1
H1 K
K H3

H1I3

H1 K
G H3

KI3

H1 I3
D1

I1

KI3

H1 I3
D1

I1 KI3

H1 I3
D1

I1 KI3

E1
H1G
K KI3

F2
H1D2
K

H3
H1
I3

H1G
K H3

H1
I3

H1G
K E3

E2
K

E2
E3

K
GH1

K
H1

H3

I3

D2H1
K I3K

F2
D2H1

K I3K

F2
B

F2

I1 I3K

F2
D1

I3

I1 I3K

H1

D1
I3

I1 I3K

H1
D1

I3

I1 I3K

H1
G

I3

I1
E1

H3

H1
G

I3

I1
E1

H3

H1

Fig. A.45 (X) Counter-example 32. Dynamic deadlock of period 228. Images
show 180-199 of 228.

222 Counter-Examples

KH1
K

E1
H3

E1
GH1

K
H1

H3

I3
D1H1

I3
K
I1

I3
D1H1

I3
K
I1

I3

D1H1
I3

K
I1

I3
GE1
H1

K
K

I3
D2

F2

H1
K
K

I3
G

I3

H1
H3
K

H1

G
I3

H1
H3
K

H1
E3
K

E2
E3
K

E2
H3
K

H1
G

I3

H1
K
K

I3
D2

F2

H1

K
K

I3
D2

F2

H1
K
I1

I3
B

F2

F2
K
I1

I3
D1 H1

I3
K
I1

I3
D1 H1

I3

K
I1

I3
D1 H1

I3
H3
I1

E1
G H1

I3
H3
I1

E1
G H1

I3
H3
K

E1
K E1

H1

Fig. A.46 (XI) Counter-example 32. Dynamic deadlock of period 228. Images
show 200-219 of 228.

223

H3
K

H1
G

I3

H1

I1

I3

K
D1

I3

H1

I1

I3

K
D1

I3

H1

I1

I3

K
D1

I3

H1

K
H1

K
G

I3

E1

K
H1

K
D2

I3

F2

K
H1

H3
G H1

I3

K
H1

H3
G H1

I3

K
E2

E3

E3
E2
K

Fig. A.47 (XII) Counter-example 32. Dynamic deadlock of period 228. Images
show 220-228 of 228.

224 Counter-Examples

I1

F2

H3
D2 H1

I3

F2

F2

I1
B K

I3

I3

I1

I1
H2 H2

I3

I3

K

I1
H2 E3

E2

I3

K

I1
H2 E3

E2

I3

K

F2
K D2

H1

H1

K

I3
H3 G

H1

E1

K
E1H3 K

H1

H3

I3
E1

I1
G
H1

H3

I3
E1

I1
G
H1

H3
H1 E1
K

K
E1

H3
H1 E1
K

K
E1

I1
H1 H3
I3

G
E1

F2
H1

I1

I3
D2
H3

I3
E1

I1

H1
G
H3

I3
H3

F2

H1
D2

I1

I3I1

F2

K
B

F2

I3I1

I1

H2

H2I3
E2

I1

K

E3

H2I3
E2

I1

K

E3

H2I3

Fig. A.48 (I) Counter-example 33. Dynamic deadlock of period 60. Images show
0-19 of 60.

225

H1
F2

K
D2
KI3

H1
I3

K
G
H3

H1 H1
E1

K
K

H3
E1 H1

E1

I3
G

I1
H3

H1
E1

I3
G

I1
H3 E1

E1

H1
K

K
H3 E1

E1

H1
K

K
H3 E1

H3

H1
G

I3

I1

H3
I1

H1
D2

I3

F2
H3
I1

E1
GH1

I3

I1

F2

H3
D2H1

I3

F2

F2

I1
BK

I3

I3

I1

I1
H2H2

I3

I3

K

I1
H2E3

E2

I3

K

I1
H2E3

E2

I3

K

F2
KD2

H1

H1

K

I3
H3G

H1

E1

K
E1 H3K

H1

H3

I3
E1

I1
G
H1

H3

I3
E1

I1
G
H1

Fig. A.49 (II) Counter-example 33. Dynamic deadlock of period 60. Images show
20-39 of 60.

226 Counter-Examples

H3
H1E1
K

K
E1

H3
H1E1
K

K
E1

I1
H1H3
I3

G
E1

F2
H1

I1

I3
D2
H3

I3
E1

I1

H1
G
H3

I3
H3

F2

H1
D2

I1

I3 I1

F2

K
B

F2

I3 I1

I1

H2

H2 I3

E2
I1

K

E3

H2 I3
E2

I1

K

E3

H2 I3
H1

F2

K
D2
K I3

H1
I3

K
G
H3

H1

H1
E1

K
K

H3
E1 H1

E1

I3
G

I1
H3 H1

E1

I3
G

I1
H3 E1

E1

H1
K

K
H3

E1
E1

H1
K

K
H3 E1

H3

H1
G

I3

I1
H3
I1

H1
D2

I3

F2
H3
I1

E1
G H1

I3

Fig. A.50 (III) Counter-example 33. Dynamic deadlock of period 60. Images
show 40-59 of 60.

227

I1

F2

H3
D2 H1

I3

Fig. A.51 (IV) Counter-example 33. Dynamic deadlock of period 60. Images
show 60-60 of 60.

228 Counter-Examples

E1
E1
G G

E1
E1 E1

E1
G D2

E1

F2
E1

E1
G D2

E1

F2

F2

E1
D2 D2

E1

F2

F2

E1
D2 D2

E1

F2

F2

F2
B D2

E1

F2

F2

F2
B B

F2

F2

F2

F2
B D1

I3
H1

F2

F2
B D1

I3
H1

H1
I3

D1 D1
I3
H1 H1

I3
D1 D1

I3
H1 E1

E1
G D1

I3
H1

E1
E1
G G

E1
E1

Fig. A.52 Counter-example 34. Dynamic deadlock of period 12. Images show
0-12 of 12.

229

C

F2

E2H3
G
D1
E1

E1 E3
E2

E2H3
G
D1
E1

E1 E3
E2

E2H3
G
B

F2

E1

D2
C

H1H3
K
B

F2

E1 D2
C

H1H3
G

H2
I3

H1 D2
C

E1 I1
D1

H2
I3

K

D2
C

E1 I1
D1

H2
I3

K B
C

F2 I1
D1

H2
I3

K B
C

F2 I1
D1

H2
I3

K

D2
B

F2 I1
D1

H2
I3

K D2
B

F2 I1
D1

E3
C

K E2
A

I3 I1
B

E3
C

K

Fig. A.53 (I) Counter-example 35. Dynamic deadlock of period 40. Images show
0-11 of 40.

230 Counter-Examples

E2
B

I3 I1
D2
G
E1

H3 E2
B

I3 I1
D2
G
E1

H3 E2
B

I3 F2
B
K
E1

E1

C
B

C F2
B
K
E1

E1
E1

D2

E1 F2
G

G
E1

E1
E1

E3

E1 F2
D2

D2
H1

E1

E1

E3

E1 F2
D2

D2
H1

E1 C
E3

E1 F2
B

D2
H1

E1 E1
H3

E1 F2
D1
G

E2
C

E1
H3

E1
E2D1

G
E2

E3 E1
H3

E1
CD1

K
H1
D2 E1

H3

F2
CB

K
H1
D2

Fig. A.54 (II) Counter-example 35. Dynamic deadlock of period 40. Images show
12-23 of 40.

231

H1
H3

I3
CH2

G
H1
D2 K

I1

I3
CH2

D1
E1
D2 K

I1

I3
CH2

D1
F2

B

K
I1

I3
CH2

D1
F2

B K
I1

I3
CH2

D1
F2

B K
I1

I3
BH2

D1
F2

D2

K
I1

I3
AH2

B
I3
E2 K

I1

C
AE3

B
I3
E2 H3

I1

E1
BG

D2
I3
E2

H3
I1

E1
BG

D2
I3
E2 H3

I1

E1
BG

D2
C

C
E1

F2

E1
BK

B
C

C

Fig. A.55 (III) Counter-example 35. Dynamic deadlock of period 40. Images
show 24-35 of 40.

232 Counter-Examples

E1

F2

E1
D2G
G
E1

E1
E1

F2

H1E3
D2

D2
E1

E1
E1

F2

H1E3
D2

B
E1

C

E1

F2

H1E3
D2

B
E1

C

C

F2

E2H3
G
D1
E1

E1

Fig. A.56 (IV) Counter-example 35. Dynamic deadlock of period 40. Images
show 36-40 of 40.

233

K
I1

H2 K
H3

K
H1

I3 I3
K H2

H1
K

K
H1

I3

I3
K H2

H1
K

K
H1

I3 I3
K H2

H1
K

H3
K I1

H1
I3 K

K
K

H3
K I1

H1
I3 K

H3
K

I1
H2 K

H1
I3 K

H3
K

I1
H2 K

KI1
H3

H3
K

I1
H2 K

KI1
H3

K
H1

KH2
I3

H2K
I1

K
E1

KH2
I3

H2K
I1

K
E1

KH2
I3

H2K
I1

K
H3

I3K
H1

H2
I3
K

H1
K

I3K
H1 H2

I3
K

H1
K I1

H3
K

H2
I3
K

H1
K I1

H3
K K

H1
I3

K
K I1

H3
K

Fig. A.57 (I) Counter-example 36. Dynamic deadlock of period 360. Images
show 0-15 of 360.

234 Counter-Examples

K
H1

I3
H3
K K

I1
H2 H3

KI1 H3
K K

I1
H2

H3
H3I1 H1

H2 K
K

K H3
H3I1 H1

H2 K
K

K

I1
E3K H1

E3 K
K

K I1
E3K H1

E3 K
K

K

I1
H2K KH2

K
K

H3 K E2
I3 KE2

K
K

H3

K E2
I3 KE2

K
K

H3 I3 H1
H1 KH2

K
K

H3

I3 H1
H1 KH2

K
K

H3 I3 K
H1 H2K

I3
K

H1

I1
H3
K H2K

I3
K

H1
I1

H3
K KK

H1
I3

K

I1
H3
K KK

H1
I3

K
K
I1

H2 KK
H1

I3
H3

Fig. A.58 (II) Counter-example 36. Dynamic deadlock of period 360. Images
show 16-31 of 360.

235

K
I1

H2 H3K
K I1H3

I3
K H2

H3H1
K I1K

I3
K H2

I1E1
H2 KK

I3
K H2

I1E1
H2 KK

H1
I3 K

I1H3
H2 KK

H1
I3 K

KK H2
I3H1

H1
I3 K

KK H2
I3H1

KI1
H3

KK H2
I3H1

KI1
H3

I3K K
H1K

H2K
I1

I3K K
H1H3

H2K
I1 I1

K H3
KH3

KK
K I1

H2 H3
H3H1

KK
K I1

H2 H3
H3H1

KK
K K

E3 I1
E3H1

H3K
K KH2

I1
H2K

H3K
K KH2

I1
H2K

Fig. A.59 (III) Counter-example 36. Dynamic deadlock of period 360. Images
show 32-47 of 360.

236 Counter-Examples

H3K
K I3E2

KE2
K

H3K
K I3E2

KE2
K

H3K
K H1H2

I3H1
K

H3K
K H1H2

I3H1
K

H1I3
K H1K

I3K
H2

H1I3
K KK I1

H3
H2

H1I3
K KK I1

H3
H2

KH1
I3 KK I1

H3
K

H3H1
I3 H2K K

I1
K

H3KI1
H2K K

I1
H3

KKI1 H2
H1 I3

K
H3

KH2K H2
E1 I3

K
I1

KH2K H2
E1 I3

K
I1

KH2K K
H3 H1

I3
I1

H2KK K
H1 E1

I3
K

H2KK K
H1 E1

I3
K

Fig. A.60 (IV) Counter-example 36. Dynamic deadlock of period 360. Images
show 48-63 of 360.

237

H2KK H3
H1 H3 I1K

H2KK H3
H1 H3 I1K

E3KK I1
H1 E3 KK

E3KK I1
H1 E3 KK

H2
H3K I1
K H2 KK E2

H3K K
K

E2
I3K

E2
H3K K
K

E2
I3K H1

H1I3 K
H2

H2
I3K

K
H1I3 I3

H2
K

H1K K
KH1 I3

K
K

H1I3

K
KH1

I1K
H3
KI3 K

KK
I1H3

H3
K

I1

K
KK

I1H3
H3
K

I1
K

H3K
KH3
I1

H2
I1

H3
H3H2

KI1
I1

H2
K

E3
H1E3

KI1
K

K
K

Fig. A.61 (V) Counter-example 36. Dynamic deadlock of period 360. Images
show 64-79 of 360.

238 Counter-Examples

E3
H1E3

KI1
K

K
K

H2
H1

H2 KK
K

K
I3

H2
H1

H2 KK
K

K
I3

H2
H1

K KI3
K

K
E1

H2 K
H1 KI3

K
H3

H1 H2 K
H1 KI3

K
H3

H1

H2 K
E1 K

I1 K
H3

K H2 K
E1 K

I1 K
H3

K

K H2
H3 I3

I1 K
H1

K K H2
I1 I3
K K

E1
H2

K K
I1 H1
K I3

H3
H2 H1 K

K H1
I3 I3

KH2

H1 K
K H1
I3 I3

KH2
H1 H3

K K
I3

I1KH2

K H3
I3 K

H1
I1KK

H3 I1
I3 H2

H1
KKK

Fig. A.62 (VI) Counter-example 36. Dynamic deadlock of period 360. Images
show 80-95 of 360.

239

H3 I1
I3 H2

H1
KKK

H3 I1I1
H2

K
KKH3

K KI1 H2K
I3H1H3

K KK H2H2
I3E1I1

K KK H2H2
I3E1I1

K I3K KH2
H1H3I1

H1 I3I3 K
H2 H1KK

H1
I1

I3 H3
H2 KKK

H1
I1

I3 H3
H2 KKK

K
I1

H1 H3
K KKI3

H3
K

H1 I1
K H2KI3

H3
K

K I1
H3 H2K

I1

H1
K

H3 K
H3 KH2

I1 H1
K

H3 K
H3 KH2

I1

H1
K

E3 K
I1 KE3
K H1

K
E3 K

I1 KE3
K

Fig. A.63 (VII) Counter-example 36. Dynamic deadlock of period 360. Images
show 96-111 of 360.

240 Counter-Examples

K
K

H2 K
I1 H3

H2K K
KE2
K

K H3
E2I3

K
KE2
K

K H3
E2I3 K

KH1
K

I3 H3
H2H1

K
KH1
K

I3 H3
H2H1 H2

I3K
K

I3 H1
KH1

H2
I3H3
KI1

H1
KK K

H1H3
I3I1

K
KK

K
H1H3

I3I1
K
KK K

H1I1
I3K

H3
KH2

H3
KI1 I1

K
H3
KH2 H3

KK I1
I3

K
H1

H2

I1
H2K K

I3
K
E1

H2
I1

H2K K
I3

K
E1

H2

I1
H2I3 K

H1
K

H3
K

KH2
I3 I3

H1
H1
K

K

Fig. A.64 (VIII) Counter-example 36. Dynamic deadlock of period 360. Images
show 112-127 of 360.

241

KH2
I3 I3

H1
H1
K

K
KH2I1
I3

K
H1
K

H3

I3KI1
H1

K
K
K

H3
I3KK

H1
H2

H3
K

I1

I1
H3K
K

H2
H3
K

I1 I1
H3K
H3

K
H1

H2
K

I1
H3K
H3

K
H1

H2
K K

I1K
E3

K
H1

E3
K

K
I1K

H2
H3
K H2K K

I1K
H2

H3
K H2K

I3
KK E2H3

K E2K I3
KK E2H3

K E2K

H1
I3K H1H3

K H2K H1
I3K H1H3

K H2K

H1
I3I3 KH1

H2 KK K I1
I3 H3H1

H2 KK

Fig. A.65 (IX) Counter-example 36. Dynamic deadlock of period 360. Images
show 128-143 of 360.

242 Counter-Examples

K I1
I3 H3H1

H2 KK K I1
H1 H3K
K KI3

H2 K
H1 I1H3
K KI3 H2 K

K I1H3
H3 K

I1

H2
I3

K KK
H3 H1

I1 H2
I3

H2 KK
I1 E1
K

H2
I3

H2 KK
I1 E1
K K

H1
H2 I3K

I1 H3
K

K
E1

K I3H2
K H1
K K

E1
K I3H2

K H1
K

H3
H3

K
I1

H2
K H1
K H3

H3
K

I1
H2

K H1
K

I1
E3

K
K

E3
K H1
K I1

E3
K

K
E3

K H1
K

I1
H2

H3
KH2K K

K KE2H3
I3E2K K

K
Fig. A.66 (X) Counter-example 36. Dynamic deadlock of period 360. Images

show 144-159 of 360.

243

KE2H3
I3E2K K

K KH2H1
I3H1K H2

I3

I3KH1
H1KK H2

I3 I3KK
H1KI3 K

H1

I1
H3K
KKI3 K

H1
I1

H3K
KK

I1
H3
K

I1
H3K
KK

I1
H3
K

K
I1H3

H2K
I1

H3
K

K
I1H3

H2H3
K
I1

H2
K
KH1

KE3
K
I1

E3

K
KH1

KE3
K
I1

E3
K
KH1

KH2
I3
K H2

K
KH1

KH2
I3
K H2 K

KH1
KH2

E1
I3 K

K
KK

H3
H2H1

I3 H1 K
KK

H3
H2H1

I3 H1

Fig. A.67 (XI) Counter-example 36. Dynamic deadlock of period 360. Images
show 160-175 of 360.

244 Counter-Examples

K
KK

H3
H2KI1

E1 K
KK

H3
H2KI1

E1

I3
KH2

H1
KKI1

H3 I3
KH2

E1
KH2K

I1

H1
I3K

H3
KH2K

I1 H1
I3K

K
H1

H2
I3
K

H1
I3K

K
H1

H2
I3
K K I1

H3
K

H1
H2

I3
K

K I1
H3

K
K

K
H1

I3 H2 K
I1

K
H3

K
H1

I3

H2 K
I1

K
H3

K
H1

I3 H2 K
I1

K
H3

H3
KI1

H2
I3
K

H1
K

H3
KI1 H2

I3
K

E1
K

I1
H2K

H2
I3
K

E1
K

I1
H2K K

H1
I3

H3
K

I1
H2K

Fig. A.68 (XII) Counter-example 36. Dynamic deadlock of period 360. Images
show 176-191 of 360.

245

K
H1

I3
K

H1
K H2
I3 H3

K I1K
H1

K H2
I3

H3
K I1K

H1
K H2
I3 H3

K I1K
K

I3 K
H1

I1
H2 KK

H3
I3 K

H1 I1
H2 KK

H3I1
H3
K

K
K KH2

H1I1
H3
H3 K

K KH2
H1I1

H3
H3

K
K KE3

H1K
I1

E3 K
K KE3

H1K
I1

E3

K
H3 K

H2 KK
I1

H2 K
H3 K

E2 KI3
K E2

K
H3 K

E2 KI3
K E2

K
H3 K

H2 KH1
I3 H1

K
H3 K

H2 KH1
I3 H1

K
H1 I3
K H2H1

I3 K

Fig. A.69 (XIII) Counter-example 36. Dynamic deadlock of period 360. Images
show 192-207 of 360.

246 Counter-Examples

K
H1 I3
K H2KI1

H3
I3

K H1
K KKI1

H3

I3
K H1
K KKI1

H3
I3

H3 H1
K KH2K

I1

I1H3 K
K H3H2K

I1 I1K K
H1 H3

H2
I3
K

KK H2
E1 I1

H2
I3
K KK H2

E1 I1
H2

I3
K

KK H2
H3 I1

K
H1

I3 I3H1
H2K K

K
H1

I3

I3H1
H2K K

K
H1

I3 I3H1
H2K K

H3
KI1

H1K
KK I3

H3
KI1

H1H3
KK I3

I1
H2K

KH3
H3K

I1I1
H2K

H3H1
H3H2

I1K
KK

Fig. A.70 (XIV) Counter-example 36. Dynamic deadlock of period 360. Images
show 208-223 of 360.

247

H3H1
H3H2

I1K
KK

E3H1
I1E3
KK

KK

H2K
I1

H2 KK
H3K

H2K
I1

H2 KK
H3K

E2
K

K
E2 I3K

H3K E2
K

K
E2 I3K

H3K

H1
K

I3
H2 H1K

H3K H1
K

I3
H2 H1K

H3K

K
H2

I3
K H1K

H1I3 H3
H2 I1K KK

H1I3

H3
H2 I1K KK

H1I3 H3
K I1K KI3

KH1

I1
K KK H2I3

H3H1 I1
H3 KK H2

I1 H3K

K
H3 I3H1

H2I1 KK K
I1 I3E1

H2K KH2
Fig. A.71 (XV) Counter-example 36. Dynamic deadlock of period 360. Images

show 224-239 of 360.

248 Counter-Examples

K
I1 I3E1

H2K KH2 I3
I1 H1H3

KK KH2

I3
K E1H1

KK H2K I3
K E1H1

KK H2K

I1K H3H1
H3K H2K

I1K H3H1
H3K H2K

KK E3H1
I1K E3K

KK E3H1
I1K E3K

KK H2K
I1K

H2
H3

I3K
E2

K
KK

E2
H3

I3K
E2

K
KK

E2
H3

I3K
H2

H2
KI3

H1
H1

H1K
K

H2
I3I3

K
H1

H1I3
K

K
I3H1

K
K

KI3
H3

K I1
H1

K
K

K
I1 H3

H3 I1
K

K
K

Fig. A.72 (XVI) Counter-example 36. Dynamic deadlock of period 360. Images
show 240-255 of 360.

249

K
I1 H3

H3 I1
K

K
K

H2
I1 I1

H3 K
K

K
H3

H2
K I1
I1 K

H2
H3
H3

K
K K
I1 K

E3
E3

H1

K
K K
I1 K

E3
E3

H1
K

I3 K
K KH2 H2

H1

K
I3 K
K KH2 H2

H1
K

E1 K
I3 KK H2

H1

H3
H1 K

I3 KH1
H2 K

H3
H1 K

I3 KH1
H2 K

H3
K KI1

KE1
H2 K

H3
K KI1

KE1
H2 K

H1
K KI1

I3H3
K H2

E1
H2 KK

I3I1
K H2

H3
H2 I3K

H1I1
K K

KH2
I3I3

H1K
H1 K

Fig. A.73 (XVII) Counter-example 36. Dynamic deadlock of period 360. Images
show 256-271 of 360.

250 Counter-Examples

KH2
I3I3

H1K
H1 K

KH2 I1
I3

KK
H1 H3

KK I1
H1

KI3
K H3

KK K
H1

H2I3
H3 I1

KK K
H1

H2I3
H3 I1

KH3 K
K

H2
I1 H3 I1

H1H3 I3
K H2I1 K K

E1I1 I3
H2 H2K K K

E1I1 I3
H2 H2K K K

H3I1 H1
H2 KK K I3

KK H1H2
KI3 H1 I3

KK KH2
H3I3 H1

I1

KK KH2
H3I3 H1

I1 KI3 KK
H3H1 K

I1

KI3 H2K
I1H1 H3
K K

I1
H2H3

I1K H3
K

Fig. A.74 (XVIII) Counter-example 36. Dynamic deadlock of period 360. Images
show 272-287 of 360.

251

H2
I1

KH3
KH3 H1
K H2

I1
KH3

KH3 H1
K

E3
K

KI1
KE3 H1
K E3

K
KI1

KE3 H1
K

H2K
H3I1

KH2 K
K

E2I3
H3K

K
E2

K
K

E2I3
H3K

K
E2

K
K

H2H1
H3I3

K
H1

K
K

H2H1
H3I3

K
H1

K
K

KH1
H1I3

K
K

H2
I3

KK
H1

I1 K
H3

H2
I3

KK
K

I1 I3
H3

K
H1

KK
K

I1 I3
H3

K
H1

KH2
H3

K I3
I1

K
H1

KH2
H3

K
I1I1

H3
K

H1
H2 K

I3
I1K

H3
K

Fig. A.75 (XIX) Counter-example 36. Dynamic deadlock of period 360. Images
show 288-303 of 360.

252 Counter-Examples

E1
H2 K

I3
KK
I1

H2
E1

H2 K
I3

KK
I1

H2

H3
K K

H1
KI3
I1

H2
K

K H1
H1

I3I3
KH2

K
K H1

H1
I3I3
KH2 K

H3 H1
K

I3
I1 KH2

K
H3 K
K

H1
I1 I3K K

I1 H3
H2

H1
K I3K

K
I1 H3

H2
K

K
I1

H3 H2
K H1

K
H3

K
I1

H3

H2
K H1

K
H3

K
I1

H3 E3
K H1

K
E3

K
K
I1

H2K K
H3

H2
K

K
I1

H2K K
H3

H2
K

K
I1

E2K K
H3 E2K

I3
K

E2K K
H3 E2K

I3
K

Fig. A.76 (XX) Counter-example 36. Dynamic deadlock of period 360. Images
show 304-319 of 360.

253

H2K K
H3 H1K

H1
I3

H2K K
H3 H1K

H1
I3

KK H2
H1 KI3

H1
I3

KK H2
H1 H3I3

K I1

KK H2
H1 H3I3

K I1 KI3 K
K H3H1

K I1

KI3 K
H3 I1H1

H2 K K
I1

H3
H3 I1K

H2 K

H1
I1

H3
K KK H2

I3 E1
K
I1

K KH2 H2
I3

E1
K
I1

K KH2 H2
I3 H3

K
I1

K I3H2 K
H1

H1
K
K

H2 I3K K
E1 H1

K
K

H2 I3K K
E1

H1
K
K

H2
I1

K H3
H3 H1

K
K

H2
I1

K H3
H3

Fig. A.77 (XXI) Counter-example 36. Dynamic deadlock of period 360. Images
show 320-335 of 360.

254 Counter-Examples

H1
K
K

E3
K

K I1
E3 H1

K
K

E3
K

K I1
E3

K
K
K H2 K

H3 I1
H2 K

K
K E2 I3

H3 KE2

K
K
K E2 I3

H3 KE2
H2

I3
K H1 I3

H1 KH2

H2
I3
K K H1

H1 I3K
K

H1
I3 K H1

K I3K

K
H1

I3 K K
K

I1
H3

H3
KI1

K K
K

I1
H3

H3
KI1

K K
K

I1
H3

H3
KI1

K H2
H3

K
I1

I1
H2K

H3 H2
H3

K
I1

I1
E3K

E3 K
H1

K
K

I1
E3K

E3 K
H1

K
K

K H2
I3

H2 K
H1

K
K

Fig. A.78 (XXII) Counter-example 36. Dynamic deadlock of period 360. Images
show 336-351 of 360.

255

K H2
I3

H2 K
H1

K
K

I3 K
E1

H2 K
H1

K
K

I3 H1
H1 H2

H3
K

K
K

I3 H1
H1 H2

H3
K

K
K

I1
E1
K H2

H3
K

K
K I1

E1
K H2

H3
K

K
K

I1
H3
K K

H1
H2

I3
K K

I1
H2 K

E1
H2

I3
K

K
I1

H2 K
H3

K
H1

I3
Fig. A.79 (XXIII) Counter-example 36. Dynamic deadlock of period 360. Images

show 352-360 of 360.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Aim and Objectives
	1.4 Preview of Contributions
	1.5 Publications
	1.6 Thesis Overview

	2 Background and Related Work
	2.1 Emergence and Emergent Behaviour
	2.1.1 Swarms in Nature
	2.1.2 Collective Behaviour
	2.1.3 Artificial and Engineered Swarms

	2.2 Swarm Robotics
	2.2.1 Design Principles
	2.2.2 Design Approaches
	2.2.3 Evolutionary Algorithms and Evolutionary Robotics
	2.2.4 Control Architectures
	2.2.5 Computation-free Swarming

	2.3 Swarm Robotics Tasks
	2.3.1 Finding Consensus
	2.3.2 Gathering
	2.3.3 Shepherding
	2.3.4 Spatial Coverage
	2.3.5 Concluding Remarks

	3 Spatial Coverage
	3.1 Introduction
	3.2 Problem Definition
	3.2.1 Environment and Robot Model
	3.2.2 Objective
	3.2.3 Simulation Setup

	3.3 Controller Synthesis
	3.3.1 Evaluation of Candidate Solutions
	3.3.2 Evolutionary Algorithm
	3.3.3 Controller Selection
	3.3.4 Mathematical Analysis
	3.3.5 Grid Search

	3.4 Simulation Studies
	3.4.1 Performance Comparison with Different Strategies
	3.4.2 Sensory Noise Analysis
	3.4.3 Scalability Analysis
	3.4.4 Effect of the Environment Shape
	3.4.5 Navigating a Maze

	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Porting of the Controller
	3.5.3 Results

	3.6 Discussions

	4 Finding Consensus
	4.1 Introduction
	4.2 Problem Definition
	4.2.1 Objective
	4.2.2 Environment and Robot Model
	4.2.3 Simulation Setup

	4.3 Controller Synthesis
	4.3.1 Evaluation of Candidate Solutions
	4.3.2 Evolutionary Algorithm
	4.3.3 Controller Selection

	4.4 Simulation Studies
	4.4.1 Analysis of the Behaviours
	4.4.2 The Effects of the Robot Starting Positions
	4.4.3 Sensory Noise Analysis
	4.4.4 Scalability Analysis
	4.4.5 Choosing Between More Than Two Options
	4.4.6 Choosing Between Unequal Alternatives

	4.5 Experiments
	4.5.1 Porting of the Controller
	4.5.2 Experimental Setup
	4.5.3 Results

	4.6 Discussions

	5 Shepherding
	5.1 Introduction
	5.2 Problem Definition
	5.2.1 Objective
	5.2.2 Shepherd Agents
	5.2.3 Sheep Agents
	5.2.4 Simulation Setup

	5.3 Controller Synthesis
	5.3.1 Evaluation of Candidate Solutions
	5.3.2 Evolutionary Algorithm
	5.3.3 Controller Selection
	5.3.4 Mathematical Analysis
	5.3.5 Behavioural Analysis

	5.4 Simulation Studies
	5.4.1 Noise Analysis
	5.4.2 Sensitivity Analysis
	5.4.3 Sheep Speed Analysis
	5.4.4 Scalability Analysis

	5.5 Discussions

	6 Gathering on a Grid
	6.1 Introduction
	6.2 Problem Definition
	6.2.1 Environment and Robot Model
	6.2.2 Objective
	6.2.3 Mathematical Analysis

	6.3 Deterministic Control Policy
	6.3.1 Context Classes
	6.3.2 Controller Design
	6.3.3 Presentation of Counter-Examples
	6.3.4 Theoretical Analysis

	6.4 Naïve Stochastic Control Policy
	6.4.1 Mathematical Analysis

	6.5 Optimised Stochastic Control Policy
	6.5.1 Representation of Candidate Solutions
	6.5.2 Evolutionary Algorithm
	6.5.3 Controller Selection

	6.6 Simulation Studies
	6.6.1 Scalability Analysis
	6.6.2 Sensory Noise Analysis
	6.6.3 Comparison with Deterministic Policy

	6.7 Discussions

	7 Conclusions and Future Work
	7.1 Future Work

	References
	Appendix A Counter-Examples

