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Abstract

Users have access to a diverse set of interfaces that can be used to in-

teract with software. Tools exist for automatically generating test data

for an application, but the data required by each user interface is com-

plex. Generating realistic data similar to that of a user is difficult. The

environment which an application is running inside may also limit the

data available, or updates to an operating system can break support for

tools that generate test data. Consequently, applications exist for which

there are no automated methods of generating test data similar to that

which a user would provide through real usage of a user interface. With

no automated method of generating data, the cost of testing increases

and there is an increased chance of bugs being released into production

code. In this thesis, we investigate techniques which aim to mimic users,

observing how stored user interactions can be split to generate data tar-

geted at specific states of an application, or to generate different sub-

areas of the data structure provided by a user interface. To reduce the

cost of gathering and labelling graphical user interface data, we look at

generating randomised screen shots of applications, which can be auto-

matically labelled and used in the training stage of a machine learning

model. These trained models could guide a randomised approach at

generating tests, achieving a significantly higher branch coverage than

an unguided random approach. However, for natural user interfaces,

which allow interaction through body tracking, we could not learn such

a model through generated data. We find that models derived from real

user data can generate tests with a significantly higher branch coverage

than a purely random tester for both natural and graphical user inter-

faces. Our approaches use no feedback from an application during test

generation. Consequently, the models are “generating data in the dark”.

Despite this, these models can still generate tests with a higher coverage

than random testing, but there may be a benefit to inferring the current

state of an application and using this to guide data generation.
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1 Introduction

1.1 Overview

Sets of instructions understandable by computers can be combined to

perform complex functions. This is known as software, and plays a

vital role in every aspect of all areas of the world. Software acts as a

high level layer, allowing complex calculations to be performed on a

computer without needing the low level knowledge of a computer’s

internal workings. There is a high dependency on software in society

and a need for software to work robustly. This is even more important

in high risk domains such as control systems or finance, where a single

mistake could cost greatly or even put life at risk.

Users interact with software through a user interface (UI), which al-

lows users to execute desired actions and observe the results. There

are many kinds of UIs, allowing different and unique methods of in-

teraction with software. The most common interface is the graphical

user interface (GUI), which displays the events possible in an appli-

cation through visual entities (“widgets”) like buttons and text fields.

However recent advances in technologies such as virtual reality have

also exploited natural user interfaces to allow application interaction,

which uses body tracking or information from the real world as input.

1



Chapter 1 Introduction

Developers often have to interact with the UI of an application dur-

ing development to ensure that an application has correct functionality.

This is a form of manual testing.

Testing is the process of finding problems in an application that are

not intended (“bugs”) and is needed to reduce the cost of fixing faults

in software during development, before problems can occur at a later

point. Testing is an expensive part of software development, but is

needed to reduce the chance of unintended behaviour being present in

a released application. Testing is an essential part of the software de-

velopment life cycle, and quality control of software is a key difference

between software projects that succeed, and ones which are cancelled

or fail [70].

As software is increasing in complexity, the cost of developing software

is also increasing [22]. Due to this growing expense, any issues encoun-

tered on released software can have negative economic consequences.

Because of this, the quality of testing during software development can

have a significant effect on the total cost of software development and

maintenance [49]. However, the increase in software complexity, as

well as the range of available inputs that users can interact with, pro-

vide a challenge for automated methods of software testing.

To counteract the high cost of testing, it is often desired to automate

parts of the testing stage. One technique which aids this automation is

the ability to generate input data for an application.

2



1.2 Test Data generation

1.2 Test Data generation

Tests involve executing an application under some condition and ob-

serving the application’s behaviour. Construction of tests can be made

easier or even fully automatic by generating test input data for an ap-

plication. For example, if a value inside the input domain of a function

causes the function to throw some exception which is left uncaught, it

could indicate a bug inside the function.

Many tools exist that can generate test data for an application, each

using some technique of deriving information to aid in test data gener-

ation [45, 101], or using purely random generation [105, 37]. It is not

practical to try all combinations of inputs from the input domain of a

function to exhaustively test for bugs, especially when it is not clear to

an automated test generator what the actual expected functionality of

a program should be [12].

The aim of test data generation is to product test inputs which use a rep-

resentative subset of the available input domain. If some specification

of the application is provided, then the output for each generated in-

put can be evaluated against the specification to check for correctness,

or other forms of error detection can be used (e.g., if the application

halts/never returns when it is given some input, there is a high prob-

ability that this is due to a bug). Usually, an unhandled exception in

an application indicates that unintended use cases and possible side

effects could be present in the source code.

3



Chapter 1 Introduction

1.2.1 Motivation for Automated Test Data Generation

Many tests manually created during software development use hand-

picked input values to ensure that a function is performed correctly

under different scenarios. As stated before, it is unrealistic to test a

function using every combination of values from the input domain, and

evaluating these against the correct, expected output. As a motivating

example, take the following Java class:

1 public class PointHelper {

2 public float getMagnitude ( float x, float y, float z){

3 return (float ) Math.sqrt ((x*x) + (y*y) + (z*z));

4 }

5

6 public float [] normalisePoint ( float x, float y, float

z){

7 float magnitude = getMagnitude (x, y, z);

8 if ( magnitude == 0){

9 throw new IllegalArgumentException (

10 " Magnitude of point must be > 0"

11 );

12 }

13 return new float []{

14 x/magnitude ,

15 y/magnitude ,

16 z/ magnitude

17 };

18 }

19 }

The normalisePoint function will take a three dimensional vector, and re-

turn the corresponding unit vector representing the vector’s direction.

A unit vector always has a magnitude of one. Unit vectors are used

in equations such as lighting in computer graphics. If we are testing

4



1.2 Test Data generation

the normalisePoint function declared on line 6, there are a few testing

objectives which we may try to achieve, for example:

• normalisePoint should return the appropriate mathematical sign

for all inputs (i.e., if a positive value is passed in for x, the first

value in the returned array should also be positive);

• when getMagnitude returns 0, an exception should be thrown;

• getMagnitude of the three values returned from normalisePoint should

always equal 1.

This list is not exhaustive but is a good start to adequately testing the

normalisePoint function. A test designer can then manually construct a

test which calls normalisePoint with certain values, and checks the out-

put returned.

However, it may also be possible to automatically generate inputs to

this function and observe the output [4]. By analysing the code, a test

data generation tool can observe that there is a branching condition

on line 8, when magnitude = 0. Therefore, a test generator can attempt

to solve the getMagnitude function, which the magnitude variable is as-

signed to on line 7. Generating inputs such that the value returned from

getMagnitude equals 0 could involve trying different input values and

observing the output. To solve this function with respect to 0, math-

ematical techniques can be used to find the real root of this equation,

where x=0, y=0, z=0. This is an easily solvable function, and a test can

be automatically generated asserting that an IllegalArgumentException

is thrown when normalisePoint(0, 0, 0) is called.

Having this test automatically generated can save time for developers,

and tests like this can enhance the current set of tests, helping fill gaps
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in a test suite missed during test construction. A developer can read

the generated test, and ignore it, accept it, or modify and accept it. The

automatic generation of this test was cheap, involving no input from

the developer until it is either accepted or rejected into the existing test

cases. A developer also has to validate the correctness of the generated

test, as it could have been generated on a function containing faults.

As stated previously, an unhandled exception can signify erroneous

behaviour in the application, but for this function, was expected be-

haviour.

Automatically generating test data is not always easy. We studied the

getMagnitude function, which was a simple case that can be solved us-

ing well known mathematical techniques of finding real roots of an

equation. However, there are far more complex functions where solv-

ing the equation using the constraints extracted from a function is diffi-

cult or even impossible. For example, when testing a visual application,

any pixel on the computer monitor can become a point of interaction,

possibly triggering events in the underlying application.

For natural user interfaces, how can realistic tests be generated to suffi-

ciently test an application?

Why Test Through a User Interface?

Users interact with software through a user interface. The output from

the software is present in the interface, and any possible inputs are pro-

cessed through the interface. When software interactions are processed

through a user interface, the system acts as a single entity [144] and cer-

tain faults can be revealed that were not detected by other testing lev-

els. Testing the software as a complete system is also the only method
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(a) No play-lists created (b) Play-list created

Figure 1.1. Windows Media Player, a GUI-based application for interacting
with media files such as audio or video.

of acceptance testing [64], which demonstrates that the finished soft-

ware meets the requirements of the customer. Testing traditional soft-

ware typically consist of sequences of API calls and checks ensuring

that the output from each call is correct. However, testing through a

user interface is more difficult. A user interface provides predefined

data structures to an application, and these data structures are much

more challenging to generate automatically. For example,the input for

an application controlled by a Microsoft Kinect input device consists of

a collection of points in 3D space, which collectively represent the body

of the programs user. Without the ability to automatically generate test

data for a user interface, the cost of testing increases and more bugs

may be present in the final system.

As an example, graphical user interfaces provide a visual method of in-

teracting with applications. Figure 1.1a shows Windows Media Player,

an application which allows user interaction through a graphical user

interface. One test for this application could ensure that new play-lists

can be created:

7
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CLICK “playlists”

CLICK “click here”

TYPE “test”

PRESS ENTER

ASSERT “test” exists

Executing this test would result in Figure 1.1b, and the assertion on

the last step would pass. This test executes many components in the

application together, and if one component fails then the test may also

fail.

It is difficult to automatically generate a test similar to that above due

to many reasons. For example, there needs to exist some mapping such

that all available interactions on the graphical user interface are known.

Then, an interaction can be selected. Without this mapping, testing

tools can fall back to an approach which interacts with random coor-

dinates on the screen, but these sequences of interactions are unlikely

to be effective. Even knowing this information, some custom widgets

could limit the potential for GUI test generators, which usually achieve

less than 70% code coverage on average [57, 90, 103], with one recent

study showning test generators on the Android platform to achieve

less than 40% coverage after one hour generation time [33]. A smarter

approach of deciding the positions of generated interactions is needed.

1.2.2 Summary

Testing is an important aspect of software engineering, providing con-

fidence that software will perform as expected. However, manually

writing tests for software can be expensive and repetitive for develop-

8
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ers. Generating tests and test data can be a cheap method of enhancing

a test suite, filling gaps in the tests that were missed during manual

test construction. Generating tests is cheap relative to the cost of man-

ual construction, but generated tests still need inspecting to assert the

correctness of functionality of the subject under test, especially when

test assertions are checked against the current functionality and not the

expected functionality that would be provided by specifications.

In this thesis, we propose techniques which do not need to find and

solve an application’s constraints to generate tests. These techniques

have no access to the source code behind an application, and do not

know the different conditions in the function which tests are targeting.

Instead of relying on a tester to manually construct test cases, it may be

possible to build a model of the interactions between a user and an ap-

plication. This model can then be used to generate novel test data. For

this, we observe interactions from a real user during application use, or

exploit the image processing and object detection area of machine learn-

ing to interact with an application using the only information available

to users: screen shots.

1.3 Structure and Contributions

Chapter 2: Literature Review

An overview of current work in software testing including current prac-

tices, automated test generation, and how to test an application through

the many devices that users have access to for interaction. We focus

more on testing an application through simulating these devices, and

how to generate tests when little information about the target appli-
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cation and environment is known. We found that there was very lit-

tle work on interacting with an application when certain assumptions

are removed, such as knowing what framework or structure is used to

process user interactions. Users do not need this information to under-

stand how to interact with an application.

Chapter 3: Guiding Testing through Detected Widgets from

Application Screen Shots

Without the assumption of a pre-known programming language/frame-

work for handling user interactions, it is difficult to generate test data

for an application. In this chapter, we focus on using machine learn-

ing to create a model from generated data. The contributions for this

chapter are:

Contribution 1: A technique for generating synthetic screen shots of

GUIs in large quantities that are automatically annotated. The gener-

ated screen shots can be used by machine learning algorithms to train

a model capable of automatically annotating screen shots of real GUIs.

The generated data is cheaper than manually gathered data, and the

properties of the whole dataset can be finely controlled during genera-

tion.

Contribution 2: Creating and training a system based on machine learn-

ing and applying this model to the context of testing an application

through interaction with its graphical user interface (GUI). Using a

screen shot, areas of interest in an application’s GUI can be identified

and provided to a test generator.

Contribution 3: An improvement to a random GUI tester through ex-
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ploitation of interesting areas of a GUI, identified from the model trained

in contribution 2. By modifying a random testing algorithm, and focus-

ing generated interactions on those parts of the screen that are likely to

be relevant to a real user, more targeted tests can be generated.

Contribution 4: An empirical evaluation that compares a random tester

guided by interesting areas from contribution 3 against current testing

approaches. Current approaches assume knowledge of the source code

or data structures in an application, and hence, can target generated

interactions in even more specific areas when testing.

Now interactions can be generated using only the information presented

to users, in the next chapter, we compare the models we created using

these machine learning techniques to models we derived from real user

interactions with an application.

Chapter 4: Testing By Example: Graphical User Interfaces

With crowd sourcing platforms like Amazon’s Mechanical Turk [26]

and even crowd testing platforms like Code Defenders [117], it is plau-

sible that user interaction data with an application already exists or can

be purchased. In this chapter, we look at exploiting this user interaction

data to create models capable of automatically generating tests for an

application. The contributions of this chapter are as follows:

Contribution 5: An identification of low-level interaction events that

are needed to replicate user interactions using a keyboard and mouse.

What data is needed to replay a user’s interaction with an application

through an application’s GUI? We identify four key event types that

need to be stored to reconstruct and replay a sequence of user events.

11
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Contribution 6: A technique of processing user GUI interaction data

into a model capable of generating interaction data that is statistically

similar to that of the original user’s interactions. The resulting model

can have different levels of abstraction, from a single user model of the

whole application, to separate models for each window that appears in

an application.

Contribution 7: An empirical study comparing different techniques

of generating models from user interactions, and comparing them to

current testing techniques of testing an application solely through its

GUI. Here, we compare the approaches from chapter 3 against the ap-

proaches that are derived from user data, observing the impact that

sequential data can have on generated sequences of interactions with

an application.

We have generated tests for interaction with a graphical user interface

through two techniques: learning from synthesised data, and learning

from real user data. Now, we investigate if these techniques can also be

applied to a different type of interface: natural user interfaces.

Chapter 5: Testing By Example: Natural User Interfaces

In this chapter, we automatically generate test data for the Leap Motion,

a device which enables interactions with an application through hand

tracking.

Contribution 8: A framework for storing, modelling, and generating

sequences of hand movements similar to that which the Leap Motion

would provide under real usage. By learning from real users, we create

a model that can generate statistically similar data to a real user.

12
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Contribution 9: An empirical evaluation of different techniques of ex-

ploiting user data when testing 5 Leap Motion applications. We pro-

pose different approaches to using user data which change the model

created, and here we identify which approaches are effective and when.

We also compare these approaches to previous approaches.

Contribution 10: An empirical evaluation of the impact that training

data can have on a derived model, and how this influences the gener-

ated test data when testing an application. By combining data from

multiple users, it is possible to create a model capable of generating

more diverse data and therefore testing an application more thoroughly.

Contribution 11: An empirical evaluation showing the effects of split-

ting user data into related sub-groups, and training a model for each

sub-group. The sub-groups are then recombined to form the generated

test data to input into the application under test. Certain areas of user

data are related to others. We look at these relationships and how user

data can be isolated and combined to allow the possibility of generating

more data than that which was originally provided by the user.

Conclusions and Future Work

The conclusion contains a summary of the work undertaken in this the-

sis, with the results achieved. Finally, the end of the thesis presents

future work, extension points and problems identified which need to

be addressed.
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2 Literature Review

2.1 Introduction

When interacting with an application, users often get frustrated when

the application acts in an unexpected way. This usually occurs through

a bug or fault in the application introduced through developer error in

the development or maintenance phase of the program. Throughout

this chapter, software testing, which aids developers in detecting bugs,

will be outlined. Afterwards we study automated techniques which

exist to reduce the high cost of testing.

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Software Testing . . . . . . . . . . . . . . . . . . . . . 16
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2.4 User Interface Testing . . . . . . . . . . . . . . . . . . 43

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 59
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2.2 Software Testing

Software testing consists of observing software executions, validating

that the execution behaves as intended, and identifying any errors dur-

ing the execution [20]. Software testing aims to uncover bugs in com-

puter programs. When a program is given some input, the program’s

output can be compared against the expected output to check for cor-

rectness. The comparator of these outputs is known as an oracle [12]

and decides whether a test passes or fails.

Software testing is not an easy task. Each program has varying lev-

els of testability. A program with high testability means that bugs are

easier to detect, if any exist. Low testability applications increase the

difficulty in detecting bugs and testing, often having scenarios which

are not common. These scenarios can cause behaviour which conflicts

with the specification for certain inputs if these inputs are not specially

handled (edge cases). It is known that certain programming paradigms

such as object oriented programming (OOP) have a lower testability

than other paradigms (e.g., procedural programming) [139].

Software testability varies across different applications. If all bugs in

software caused a program to crash or fail, then software would have

high testability [138] and testing would be easier. However, this is not

the case, and the chance of detecting bugs is lowered as software may

only return incorrect data in specific scenarios. This increases the cost

of testing and the chance of missing bugs which can be released into a

production system, increasing the overall cost of software development.

During development, there are various types of mistakes in software

that can be detected, and various techniques of testing different aspects

of software.
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2.2.1 What is a Software Error, Bug and Failure?

When developing software, it is possible that developers make errors

through misunderstandings of specifications, misconceptions, or inno-

cent mistakes [27]. If an error impacts the software such as to break

the specification, then it is now a fault [27] or bug [50]. If part of the

software cannot perform the required functionality within the perfor-

mance requirements of the software specification, then this is known

as a failure [27]. But how does an error by a developer propagate and

become a failure in the application?

An application has a data-state, a map containing each variable and

their respective values [76]. When a buggy line of code, through devel-

oper error, is executed, the data-state could become infected. The data-

state now contains an incorrect value (data-state error). This can lead

to incorrect program behaviour or a failure if the infected data-state

propagates through the application, rendering the application unusable.

To ensure that developers and users maintain confidence in an applica-

tion, it is important to check for correctness of an application. Some ap-

plications can only have guaranteed correctness if exhaustively tested,

i.e., the output for all possible inputs is checked against the expected

output [138]. Given a simple program that takes a single signed 32-bit

integer, the domain of possible inputs is 4,294, 967,295 in size (assum-

ing -0 and 0 are equivalent). It is infeasible to check the expected output

against actual output for all possible inputs. Instead, a method of select-

ing a subset from the input domain is needed. By analysing the source

code and using values that execute different parts of the source (white

box testing) or by following a program’s specifications and use cases

(black box testing), a representative test set can be built. These tests can
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be categorised into different types.

2.2.2 Testing Methods

The two main types of tests we will discuss are white box and black box

tests. White box testing involves knowledge of the internal workings

of an application.

White Box Testing

White box tests are created to ensure that the logic and structure pow-

ering a program is valid [75]. White box testing consists of a devel-

oper inspecting the source code of an application and designing tests

to achieve some form of coverage over the code base [13]. To guide

white box tests, it is important to have some percentage of the system

which has been tested, so testing effort can be most effectively targeted

at parts of the system likely to contain bugs and which are not already

covered by a test.

Coverage Criteria

If a bug exists, then it can only impact a program if the corresponding

statement is executed. When executing a buggy statement, program

failure can occur, or an infected data-state could propagate and cause

other issues [138].

Applications have various operations which cause different areas of

source code to execute. Different inputs trigger different areas of code

execution. By tracing all possible different executed areas and the paths

between areas, it is possible to create a graph. This is known as a con-

trol flow graph.
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Because a bug needs to be executed in order to impact software, it is

important that most of the source code or states in software is executed

(i.e., a high coverage is achieved) when testing. There are a number of

different coverage criteria that could be used to assess the quantity of

code executed by a test, and each coverage metric reflects specific use

cases triggered by the inputs into a function:

• Function coverage – also known as method coverage, the percent-

age of all functions in an application that have been called.

• Line coverage – also known as statement coverage, the percent-

age of source lines of code (SLOC) executed during testing.

• Condition coverage – the percentage of boolean expressions that

have been assigned both a true and a false value at some point

during test execution.

• Branch coverage – also known as edge or decision coverage, the

percentage of edges in an application’s control flow graph that

have been traversed.

Some coverage criteria subsume others. If complete line coverage (100%)

is achieved, then it must also be the case of complete function cov-

erage. However, on the contrary, complete function coverage could

leave many lines uncovered by a test suite. Throughout this chapter,

we will focus mainly on line and branch coverage, which can be calcu-

lated cheaply at test-time by instrumenting the application’s compiled

byte code and have been used in various other studies (e.g., [45, 116]).

Line Coverage

Line coverage is a measurement of how many lines in a program are ex-

ecuted when the program is tested. Lines can be uncovered for various
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reasons including a function which is never called during testing, or a

branching condition never evaluating to one of the two possible values

with the current test suite.

If a bug is present on a line of code, it can only impact the program

if that line of code is executed. A common requirement for adequate

testing is having all executable lines in a program covered by at least

one test [156]. However, this does not mean that complete (100%) line

coverage will detect all bugs [72].

“ If you spend all of your extra money trying to achieve complete line

coverage, you are spending none of your extra money looking for the

many bugs that wont show up in the simple tests that can let you achieve

line coverage quickly. ”

Cem Kaner, 1996 [72]

Branch Coverage

A branching statement is one which can execute different instructions

based on the value of a variable [72]. For example, an if statement could

go inside the if body if some condition is true, but skip over the body if

the same condition is false. The following Java code shows a function

which calculates the absolute value of some input:

1 int abs (x){

2 if (x < 0)

3 x = -x;

4 return x;

5 }

If we called the function abs with parameter x=-1, we execute lines 2, 3

and 4 achieving 100% line coverage. However, we have only covered

one of two branches. Line 2 is a branching condition, and has two
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possible outcomes depending on the value of x: jump to line 3 and

execute line 4; jump to line 4. Only the first of these outcomes has been

tested when using x=-1 as input. We also need to call the function abs

with a parameter x >= 0 to test the other branch.

Guiding Testing Effort

Different coverage metrics can be used to guide testers when creating

a test set for an application. There is no golden metric that applies

to all applications [72] and that indicates that testing is complete once

complete coverage in this metric is attained. To guide testing effort,

there are other methods that can be utilised.

To help testers identify locations in the source code with a high proba-

bility of masking bugs, Voas [137] presents PIE, a technique for analysing

an application for locations where faults are most likely to remain un-

detected if they were to exist. PIE does not reveal faults, but randomly

samples inputs from the possible input domain and uses statement cov-

erage to identify areas where bugs are most likely to be hidden. It can

see how resilient an application is to small changes (mutations) and use

this to provide feedback to testers.

One criticism of this technique is that random sampling of the input

domain frequently achieves a shallow level of coverage, and more sys-

tematic approaches to generating test data have been shown to increase

coverage achieved [57, 91]. By using a random sample of the possible

input domain, certain metrics predicted by Voas (e.g., propagation and

infection estimates) fall outside the confidence interval bounds when

the same metrics are calculated using the entire input domain [76]. This

is due to the PIE technique being overly sensitive to minor variations
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of parameters and input values. Also using random sampling of the

input domain assumes that a function will take a uniform distribution

of inputs from the entire domain. However, in regular software usage,

certain values and functions appear more often than others. It might

be more beneficial to use an operational profile of the software to target

testing effort into functions which will be executed the most [78].

In summary, white box testing involves designing tests to cover differ-

ent coverage criteria and relies on knowledge of low level implementa-

tion details of the application under test. If these details are unavailable,

black box testing is a possible option.

Black Box Testing

Black box tests do not require low level knowledge of an application.

Instead, the specifications of an application are used when designing

tests. Black box (also known as functional) testing is a methodology

where testers do not use existing knowledge of the internal workings of

the system they are testing, instead creating tests and test inputs from

the specifications of the application [13]. When tests are executed, the

expected result from the specifications can be compared to the actual

result from the application. In depth knowledge of the system is not

required to create black box tests, and tests can be designed solely from

the systems specifications and requirements.

Black box tests can be written in a specification-independent language,

for example, behaviour driven tests when using Behaviour Driven De-

velopment (BDD) [110]. See Figure 2.1 for an example of a behaviour

driven black box test. This test does not require knowledge of the logic

behind the system, and can be written by anyone with a specification of
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GIVEN Gordon is on the login page

WHEN he enters a correct user name

AND he enters a correct password

THEN he successfully logs into the system.

ure

Figure 2.1. A behaviour driven test case to log into a website

what the system should do. This black box test is easy to understand by

anyone, even those without prior programming knowledge. This test

will execute on the final system, consisting of all components working

together and interacting with the system as an end user would. It is

possible to track the coverage achieved by black box tests, but more

difficult to use this information to guide testing effort.

The main difference between white box and black box testing is that

white box testing is mainly used to assert that the underlying logic in an

application is correct, and black box testing relies on ensuring correct-

ness in the specifications of an application. Both white box and black

box tests can be executed against an application, and may reveal faults

if a test performs differently when executed against an application with

a changed code base (e.g., one with a new feature added).

Test Automation

There are several techniques and coverage criteria which can be used

to focus testing effort for an application. Knowing where to focus test-

ing efforts aids in construction of new tests. However, having a devel-

oper manually performing the same tests on an application is tedious

and increases the likelihood of mistakes in the tests. There are several

methods of repeating tests automatically. These tests can run against
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new releases of an application, cutting down the manual testing cost

for newly implemented features and future program releases.

It is common to design test suites that can be executed repeatedly in the

development process of software. These suites consist of various tests

which execute and validate the functionality of the current application

version. If a test which passed on a previous version starts failing af-

ter a new version is released, then this could indicate that a bug has

been introduced by the changes between versions. This is known as a

software regression [133]. Tests which have failed previously due to a

regression have an increased chance of failing when executed against

future releases of the software [85].

There are various frameworks which aid in writing regression tests, like

JUnit [93], TestNG [30] and qunit [134]. These testing frameworks have

methods of running whole test suites, reporting various statistics such

as failing tests, and can be added directly to a developer’s integrated de-

velopment environment. These frameworks come with standard func-

tions such as assertTrue, which takes a single boolean parameter and

fails a test if the parameter evaluates to false. All of these frameworks

are used to construct a type of white box test called a unit test.

Both white box and black box tests can be used to reveal software re-

gressions, but there are also various levels of an application that can be

tested, and each level may reveal different faults in an application.

2.2.3 Test Levels

Applications often have many layers (levels), for example, with some

form of back end layer responsible for storing and providing data to a

24



2.2 Software Testing

front end layer that a user can interact with. Testing an application at

different levels can find faults in each layer, or in interactions between

different layers. Here, we will talk about three test levels: unit, integra-

tion, and system.

Unit Testing

Unit testing aims to test an application by parts, ensuring each compo-

nent functions correctly. The different parts an application can be split

into are: functions; classes; modules; etc. A unit is the smallest testable

part of a program. For example, in object-oriented programming, a unit

can be a class or set of classes [151]. A unit test is a set of instructions

that ensures the behaviour of a unit is correct, and observes the output

for correctness using a developer’s judgement. The following unit test

is targeted at the abs function declared earlier:

1 void test_abs_positive (){

2 int x = 10;

3 int r = abs(x);

4 assert (10 == r);

5 }

6 void test_abs_negative (){

7 int x = -5;

8 int r = abs(x);

9 assert (5 == r);

10 }

The test suite above shows two unit tests for the abs function, which cal-

culates and returns the absolute value of the input. To evaluate whether

the functionality of the class is correct, developers use assertions. The

assert function throws an exception if called with an input parameter of

false. Usually, this will fail the test case and alert the developer of a pos-
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sible bug. For the test functions to fully execute and pass, the assertions

need to always evaluate to true.

Unit tests are popular for regression testing. Tests written for one ver-

sion of a unit can also run on newer versions of a unit (e.g., if a new

feature is introduced). If the output of a test differs for the old and new

versions, then this could indicate that a bug has been introduced by

the newly implemented feature (or a bug has been fixed). Because unit

tests focus on small units of an application, they may also guide devel-

opers to the location or area of the application’s source code containing

a bug when they fail.

Integration Testing

It is possible to combine multiple units in an application and test this

combination. This is testing one level above unit tests. Testing the in-

teraction of components and the effect one component has when func-

tioning in a system is known as integration testing.

Integration testing involves writing dummy units called stubs that the

current testing target uses in place of the actual component, so only

the functionality of the current testing target is checked [79]. The main

effort of integration testing is writing stubs. The next test level involves

testing a whole integrated system. This is know as system testing.

System Testing

Unit and integration testing is efficient at testing small parts of an appli-

cation, but bugs could exist in the final system that cannot be detected

from unit tests alone. Sometimes, interactions between components in

26



2.2 Software Testing

an application can cause other issues. To complement unit testing„ a

complete program can be interacted with and tested to ensure that all

the components function correctly when working together (i.e., a sys-

tem test). The system can be seen as an opaque, black box, where tests

are designed to target the specifications of the complete system. These

specifications and tests can be designed even before development be-

gins.

Executing system tests can be automated using capture and replay tools.

The tools observe some form of user interaction, and can replay the

interactions at some point in the future. However, manually creating

tests is expensive. Yeh et al. present Sikuli [t.yeah2009-sikul], a tool

which uses image processing to increase the robustness of capture and

reply tests by searching for the target elements of interactions in screen

shots of the application. Alégroth et al. [152] show that using auto-

mated tools like Sikuli improved test execution speed at Saab AB by

a factor of 16. Using an image processing library like Sikuli can also

aid in maintenance of test cases. By matching image representations

of GUI widgets, modifications to the source code of an application are

less likely to produce a false positive failing test case. However, there

is still a high probability that a change in theme or widget palette will

make these tests fail when no regression has been introduced into the

code base.

Systems tests can function similarly to an end user interacting with

an application. Under normal application usage, users interact with

a user interface which allows interaction with an application without

knowledge of the application’s internal workings. Developers create

end-points to execute functionality of the application at a high level

from the user interface. Applications can usually be controlled solely
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through their interface so long as a developer has linked code in the

software to the interface. There are many types of UIs available, but

three have become more prominent. The three most popular types of

UI are the command line interface (CLI), graphical user interface (GUI)

and natural user interface (NUI). Each UI offers unique benefits and

drawbacks.

One issue with all levels of testing involves how a test checks for cor-

rect functionality. For example in unit tests, choosing correct assertions

relies on knowledge, or a formal set of the specifications of a unit. Be-

cause specifications of a unit or system are not always known, it is dif-

ficult to choose correct assertions. This is known as the oracle problem.

2.2.4 The Oracle Problem

An oracle in software testing is an entity which is able to judge the out-

put of a program to be correct for some given inputs [61]. The oracle

problem occurs because automated techniques of testing cannot act as

an oracle: automated tools may not have prior knowledge or assump-

tions of specifications of a system, and so cannot decide if an output is

valid and correct.

We previously saw a unit test for an abs function, which returned the

mathematical absolute value of an input. We know the specifications to

this function: it returns the positive representation of any input it sees.

We can easily create assertions knowing this, acting as an “oracle”. Au-

tomated tools can call the abs function with random numbers as param-

eters and observe the output. It is also possible to automatically gener-

ate assertions from the observed output values. This is quicker than a

developer having to think of values and manually creating a new unit
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test. However, when using this approach of automatically generating

tests, any bugs in the function will then also be present in the test suite.

This bug can only be detected when an oracle with more knowledge

of the specifications of the function manually validates the assertions

generated, or a test can be checked against formal specifications.

Pastore et al. [107] show that it is possible to use crowd-sourcing as an

oracle. When given some specification, the crowd decides which gen-

erated tests should pass and which should fail. This made it possible

for tests to be generated automatically by developers with a single but-

ton click. Code Defenders [117] also produces crowd sourced oracles.

Developers compete as players in a testing game, with half the players

writing a test suite and the other half introduced subtle bugs into the

application (mutations). A mutant is a simple change to one or several

lines of source code used to assess the quality of a test suite [68]. The

mutating (attacking) team score points by creating mutants that survive

the current test suite written by the testers (defenders), who score points

by killing mutants.

Although it is possible to crowd source the oracle problem, automated

solutions to the oracle problem have received little attention and need

to be studied further. This will allow automated testing techniques to

reach full potential [12].

2.3 Automated Test Generation

In the previous section, different forms of testing were outlined. It

is possible for developers and testers to manually create each type of

these tests. However, techniques for automating creation of tests exist.
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For example, unit tests can be generated [45, 105] or system tests for

GUIs can also be generated [91].

Many tools exist that can automate the creation of tests for some soft-

ware. For instance, AutoBlackTest can be used to simulate users inter-

acting with a GUI [91] and CORE [2] can emulate network interactions

with an application. Over the next section, we will look at tools that

can generate test data for different types of UIs. Test generation tools

are good for producing tests that achieve a high code coverage.

Automated testing works well for producing tests that cover a high

proportion of a program in terms of code coverage. Despite this, auto-

mated testing often fails to reach program areas which rely on complex

interaction, and are limited by the oracle problem [12]. Manually writ-

ten automated tests are carefully designed to target specific areas of

the source code. Rojas et al. [118] found a significant increase in cov-

erage in 37% of applications when seeding manually written unit tests

into a test generation tool, guiding generation of new tests. However,

automatically generated unit tests do have their benefits, such as aug-

menting an existing test suite and are incredibly cheap compared to

manually written tests.

The easiest form of test generation to implement involves sampling ran-

dom values from the available input domain. This is known as random

testing.

2.3.1 Random Testing

Random testing is a black box testing technique [40], having no biases

in generated data through exposure to the internal workings and logic
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of an application. Two basic types of random testing would be sam-

pling from a numerical distribution [66] or generating random charac-

ter sequences [98] for the numeric and character data types respectively.

Unit tests can also be generated using random testing. As an exam-

ple, Randoop is an application which automatically generates unit test

suites for Java applications [105], generating two types of test suites:

1. Contract violations – a contract violation is a failure in a funda-

mental tautology for a given language. An example contract is

A = B ⇐⇒ B = A.

2. Regression tests – tests that can run on an updated version of a

program’s unit to see if the functionality has changed.

To generate test suites, Randoop uses random testing and execution

feedback, randomly selecting and applying method calls to incremen-

tally build a test. As method arguments, Randoop uses output from

previous method calls in the sequence. Because of the random na-

ture, the domain of available method call sequences is infinite. Each

sequence of method calls in the available method call domain can be

a possible test for the program, but finding good sequences is a chal-

lenge. Randoop found a contract violation in the Java collections frame-

work. This was found in the Object class, where s.equals(s) was return-

ing false [105]. Random testing is not only applicable to object oriented

languages. QuickCheck is a random test data generator, which gen-

erates tests for programs written in the functional language Haskell.

Claessen and Hughes [34] found that random testing is suitable for the

functional programming paradigm as properties need to be declared

with great granularity, giving a clear input domain to sample test data

from.
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Random testing is cheap but can also aid more complex test generation

methods. In the DART tool, Godefroid et al. use randomness to re-

solve difficult decisions, where automated reasoning is impossible [52].

When DART cannot decide a method of proceeding, e.g., it cannot find

a value to cover a particular branch in a program, random testing is

used.

2.3.2 Dynamic Symbolic Execution

Dynamic symbolic execution is a technique that can generate test cases

with a high level of code coverage. One example of dynamic symbolic

execution involves executing the application under test with randomly

generated inputs [155] whilst collecting constraints present in the sys-

tem through symbolic execution. Symbolic execution is a method of

representing a large class of executions [77], and which parts of a pro-

gram a class of inputs will execute. Symbolic execution is useful for

program analysis, such as test generation and program optimisation.

Dynamic symbolic execution which relies on random testing still has a

large quantity of values that need to be input through an application to

find the input classes. However, there are methods of selecting points

in the inputs domain that are not purely random, but guided by some

function.

2.3.3 Search-based Software Testing

Search-based software testing (SBST) is an area of test generation that

tries to search the large input landscape through a function which slightly

changes the inputs over time using a guidance metric. SBST samples
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and improves one or more individuals from a search space over time

using meta-heuristic search techniques. An individual is a possible so-

lution to the problem being solved (i.e., a test suite for test generation).

Many individuals are tracked during a search, and are grouped into a

population.

To improve the population over time, some method of comparing the

fitness of an individual against other individuals in the population is

required. The fitness of an individual corresponds to the effectiveness

of the individual of solving the problem at hand [100].

A basic form of search algorithm is hill climbing. Hill climbing uses

a population size of 1, taking a single random individual from the

search space, and investigating the immediate neighbours in the popu-

lation. The neighbours are individuals closest to the current individual,

accessed through minor modifications to the current individual. Hill

climbing is a greedy algorithm; if a neighbour has a higher fitness, then

this neighbour replaces the original individual [94]. The search then

continues from the new individual.

One disadvantage of a greedy approach is related to the shape of a

fitness landscape. Fitness landscapes in test generation usually have

peaks and troughs. Because of this, hill climbing does not always im-

prove over random search and can get stuck following local optima, a

peak in the fitness landscape that is not the highest. A local optimum is

where no neighbours have a fitness that increases over the current best

individual [69]. Random search has a high chance of producing fitter

individuals than hill climbing in a search landscape that is rugged or

when using multiple objectives [60]. However, there are other search

algorithms which avoid this problem.
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Evolutionary Algorithms (EAs) are a set of such algorithms. EAs are

useful for solving problems with multiple conflicting objectives [157].

EAs maintain a population of individuals, which evolve in parallel.

Each individual in the population is a possible solution to the task at

hand, with their own fitness value. One form of EA is the Genetic Al-

gorithm.

A Genetic Algorithm (GA) works on balancing exploitation of individ-

uals in the current population, against exploration of the search land-

scape by looking for new, fitter individuals [63]. Exploitation is a local

search, finding the fittest individual that can be exploited from the cur-

rent population through crossover: the combination of multiple indi-

viduals. Exploration is exploring a wider range of the search domain,

mutating an individual’s genes to introduce new traits into the popula-

tion.

An example tool which utilises SBST is EVOSUITE [45], a tool that au-

tomatically generates unit tests using a genetic algorithm. EVOSUITE

generates tests for any program which compiles into Java Byte-code.

The output is a JUnit test suite which can be used as regression tests

against future changes, and can also find common faults, e.g., uncaught

exceptions or contract violations.

Search-based software testing can generate more than unit tests. Jef-

fries et al. [67] found that using meta-heuristic algorithms to generate

system tests requires several experts in order to be effective. However,

they conclude that the many years of experience between the experts

aids the meta-heuristic’s performance, and that using meta-heuristics

for user interface testing reveals a large amount of low priority or ex-

tremely specific problems. This could limit the effectiveness of search-

based approaches when generating system tests.1
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Meta-heuristic algorithms work with a population of individuals and

apply operators like mutation and crossover to increase the solving-

capability of the population to a given problem. However, results using

meta-heuristics in user interface testing are highly dependent on skilled

testers. In order to solve a problem effectively, meta-heuristics rely on

some method of calculating how effective an individual is to solving

said problem. This is represented as an objective function.

Objective Functions

Objective functions evaluate an individual and calculate the fitness of

the individual against the given problem. Individuals in a population

can be directly compared using this calculated fitness value, and indi-

viduals with a minimal fitness can be discarded. An objective function

can identify the fitter individuals in a population (i.e., the individuals

which are closer to solving the problem). This can be used to guide a

search through the problem domain [136].

For automated testing, many objective functions are used. The most

common objective function directly correlates fitness of a test suite with

a single or combination of code coverage achieved when executing all

tests in the suite [143, 11, 97]. Using this objective function will result

in test suites with high code coverage given enough search time.

Other criteria can also be integrated into objective functions, as code

coverage is not the only important factor in a test suite. One issue with

generated tests is that tests are often difficult for developers to under-

stand. This increases the maintenance cost of generated tests and also

makes it difficult for developers to identify why a generated test is fail-

ing when one does, and whether the fault is with the test case or with
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the actual system. Generating tests and method call sequences can test

robustness or contract violations effectively, but do not take readability

into account [47]. This can often incur a high human oracle cost, but it

is possible to increase readability by adding more criteria to the fitness

function during test generation.

To increase readability of generated tests, SBST and user data can be ex-

ploited to select more realistic function inputs. One example by Afshan

et al. [1] applies a natural language model to generate strings which

are more readable for users, therefore reducing the human oracle cost.

This is achieved through applying an objective function derived from a

natural language model into the fitness function of a search-based test

generator, giving each generated string of characters a score. The score

is the probability of that string appearing in the language model, and

can be used to alter the fitness value of a test suite.

To evaluate the effectiveness of using a language model when gener-

ating strings, Afshan et al. generated tests for Java methods which

take string arguments. The candidate methods were selected from 17

open source Java projects. Tests were then generated for each method

with and without use of the language model, and evaluated in a hu-

man study. Participants of the study were given the input to a method

and in return they provided the output they expected to return. It was

found that in three of the Java methods, using a language model signif-

icantly improved the correct output over not using a language model.

Language models are not the only type of model that can be used to aid

in test generation.
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2.3.4 Model-based Testing

Model-based testing can generate tests, but a model of the target system

is required. A model is represented as a specification, acting as an ora-

cle and knowing expected outputs for given inputs to a function. The

aim is to lower the labour cost of testing through test generation using

a model [102], but creating the model comes with its own labour cost.

Takala et al. [132] found that from an industrial point of view, develop-

ers may be unwilling to spend a significant amount of effort to learn

model-based testing tools, and there should be future work invested

into making these tools easier to use.

Model-based testing can identify the relevant parts of an application

to test, and can even generate a formal model, e.g., a Finite State Ma-

chine (FSM) or Unified Modelling Language (UML) Diagram [38]. For-

mal models could also be created manually by developers instead of

inferred automatically.

Using formal models, some forms of coverage criteria can be derived

such as state coverage and transition coverage [135]. Apfelbaum and

Doyle apply models in the system test phase of a Software Develop-

ment Life-cycle (SDLC) [6]. With the system completed and built, inter-

action as an end user is needed to validate correct functionality. Due to

requirements and functional specification often being incomplete and

ambiguous, applying model based testing in the system test phase can

reduce ambiguity and errors [6]. In this sense, modelling is similar to

flow charting, describing the behaviour of the system that can occur

during execution.

Model based testing can also be used without a specified model of the
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system under test. One such example, MINTEST [106], is a black-box

test generation approach where models are inferred from stored user

execution traces. The inferred model can be used to derive novel no-

tions of test adequacy. To evaluate the approach, mutation testing was

used to measure test adequacy across three applications. It was found

that the resulting test sets were more adequate than random test sets,

and were more efficient at finding faults. However, a program trace for

every possible output of the program was required to infer the model

used when generating tests.

To reduce the number of program traces required to infer models, Walkin-

shaw and Bogdanov [141] present a technique which can execute pas-

sively, with a model provided in advance, or actively, where the de-

veloper is asked questions iteratively about the intended system be-

haviour. The active run configuration forces developers to think about

different scenarios and edge cases. This technique infers a state ma-

chine of the application but using less input from the developer, and

can generate counter examples, i.e., inputs and outputs which do not

hold in a model of a program.

It is also possible to use models to aid in writing integration tests. To

generate stubs, it may be beneficial to use a formal model of the system.

For example, Harel [59] proposes statecharts, which model the flow of

states and transitions in an application. Using state charts, it is possible

to model components of a system. One such technique of modelling

components it by Hartman et al. [62], with an aim to minimize the test-

ing cost of the initial test stubs and test cases. It was found that whilst

statecharts allow modelling of components in different states of the sys-

tem, internal data conditions (i.e., the global state machine’s variables)

and concurrent systems were not supported by this technique. How-
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ever, it is possible to model a system with no access to the source code,

only the statechart and component interactions.

2.3.5 User Guidance

To overcome a local optimal, Pavlov and Fraser [108] ask for assistance

from developers during test generation. To aid in the meta-heuristic

search, developer feedback is included in EVOSUITE’s search. If EVO-

SUITE’s genetic algorithm stagnates in the search, then the best individ-

ual is cloned and the user is allowed to edit this individual. The edited

individual is inserted into the genetic algorithm’s population and the

individual with the poorest fitness is removed. To evaluate user in-

fluence in the search, Pavlov and Fraser semi-automatically generated

tests for 20 non-trivial classes [108]. They gave their own feedback when

the search stagnated until no further improvement could be made. It

was found that semi-automatic test generation improved branch cov-

erage over automatic test generation by 34.63%, whilst reducing the

amount of developer written test statements by 77.82% over manual

testing.

It is possible for the search landscape in certain classes to hinder a

genetic algorithm’s search. When test generation for a given subject

under test cannot be guided by a fitness value, a meta-heuristic algo-

rithm falls back to a random search algorithm. However, Shamshiri

et al. [125] found that as random generation executes around 1.3 times

faster than a GA, random search can quite often outperform a genetic

algorithm for certain classes.

One issue with generated test data is that sequences of calls and the pa-

rameters passed into functions is not representative of real usage of the
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source code. Often, users will perform similar or identical tasks, and

some functions will be called many times more than others. It may be

more important to find bugs in the more commonly called areas of the

code base before those in niche areas. To generate more representative

test data, real operational data can be exploited. It is possible to use

previous knowledge or sample test data from specific distributions rep-

resenting the real data, rather than sampling randomly from the input’s

domain.

For example, Whittaker and Poore show how exploiting actual user se-

quences of actions taken from an application specification can be used

when creating structurally complete test sequences [148], representing

a path from an uninvoked application state to a terminating applica-

tion state. For this, a Markov chain is used where each state of the

chain represents a value from the application’s input domain. Further,

Whittaker and Thomason generate Markov chain usage models [147].

This chain contains values from the expected function, usage patterns,

or previous program versions. The chain can then generate tests that

are statistically similar to the operational profile of the program under

test. It has also been shown by Walton et al. that usage models are a

cost effective method of testing [142].

Common object usage exploits objects in source code and replicates them

in unit tests. The objects were originally created by developers and

have intrinsic insight into the application. Fraser and Zeller use com-

mon object usage to aid in generating test cases, making tests more sim-

ilar to the developer source code [47]. To achieve this, Fraser and Zeller

study the source code and any code available to clients from an API.

Afterwards, a Markov chain is derived representing the interactions of

classes in the users code.
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To generate a test, Fraser and Zeller select a random method as the tar-

get of a test case and then follow the Markov chain backwards until

the selected class has been initialised. Following the chain forward con-

structs an object similar to one observed in the source code, and this

object can then be used as a parameter for methods when generating

tests.

This technique was evaluated using the Joda-Time library, and it was

found that using no user information (no model) achieved the highest

coverage, but generated tests which violated preconditions for the meth-

ods of Joda-Time. Due to a lack of knowledge when using no model,

parts of the Joda-Time specifications are ignored and so unrealistic branches

are set as goals to be covered in the search. Realistically, these runtime

exceptions would not be expected in regular application usage.

It is clear that using user data has a benefit in guiding test generation

tools. User data can also provide operational profiles of an applica-

tion. An operational profile contains the probabilities of an operation

occurring through a system according to user interactions [8]. Finding

the most commonly executed areas of an application may help in iden-

tifying bugs which have a high probability of occurring under normal

usage. The parts of a system that the user executes are logged and prob-

abilities of areas being executed can be calculated. These probabilities

can be used to guide test planning and reveal areas of the system with

high usage which may need more testing effort.

A threshold occurrence probability is assigned as 0.5/N where N is the

total number of test cases for an operation. Test cases are allocated

based on the probability of an operation occurring. After probability

rounding, it is possible for an operation to have zero test cases assigned

(i.e., when the probability is below the threshold occurrence probabil-
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ity) [8]. Operational profile driven testing is useful for ensuring that

the most commonly used operations of a program have been tested ef-

ficiently. This is useful if, for example, the program has to be shipped

early due to other constraints such as lack of funding or time [127].

Using these user-guided techniques, it is possible to generate objects

with complex data structures. Feldt and Poulding combine engineer

expertise, fault detection and simulated operational profiles to influ-

ence test data generation of complex objects [43]. Poulding and Feldt

later found that this approach to generating complex objects is more ef-

ficient than an equivalent data sampler, whilst still being able to sample

uniformly to maintain test data diversity [109].

Evaluating Automatically Generated Tests

The goal of testing is to expose faults or failures in an application, and

this can only happen when tests fail. Tests only fail when an oracle’s

check evaluates to an incorrect value. One issue with generated unit

tests is the quality of their assertions. Automated tools have a difficult

time constructing strong assertions when specifications or a model of

an application is missing. To evaluate the effectiveness of automated

testing technique at exposing faults, there exists datasets of analysed

and reproducible real software faults. Defects4J contains 357 bugs from

five real world applications [71]. This also includes the test cases that

expose these bugs. Test generators can create unit tests for an appli-

cation on a non-buggy version and see if the tests detect the real bug.

Another set of real faults is AppLeak, a dataset of 40 subjects focus-

ing on Android applications which contain some resource leak from

the Android API [115]. AppLeak contains the applications and tests to
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Figure 2.2. Navigating the file directory through a command line interface
and getting the line count of a file.

reproduce the leaks. Using these real faults, it is possible to evaluate

the fault finding capability of automated software testing techniques

through the oracle they use.

2.4 User Interface Testing

Users interact with software through a user interface (UI). When inter-

acting with software through a UI, many components in the software

may be working together, and faults between software components

could be revealed. There are many types of UIs available for devel-

opers to integrate into their application.

2.4.1 Types of User Interfaces

Command Line Interfaces

A command line interface (CLI) allows access to a program solely through

textual input via the computer keyboard. An example of an application

controlled through a CLI is the UNIX wc command, which counts the

number of words, lines, or bytes in a file (see Figure 2.2). CLI applica-
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tions take parameters from a system’s command line, and use textual

output for communication with users. There are various method of

learning about a CLI application, with the most common being a help

flag that can be passed into the application (e.g., wc –help). Using the

help flag returns the documentation of an application, with commands

that are possible and the arguments for each command. Each com-

mands maps to the corresponding source code controlling that func-

tionality when a command is provided by the user through standard

input.

CLIs are more commonly used by expert users, and can be quicker than

other forms of interfaces [119]. The expert knowledge required to use

a CLI-based application presents a problem for automated testing tech-

niques. Tools such as expect [83] exist for writing tests that feed data into

the standard input stream of an application, and monitor the standard

output stream, comparing the output against a predefined expected

value [84]. For applications without expert users, it may be beneficial

to store common combinations of these commands and allow execution

in a graphical, more memorable, way.

Graphical User Interfaces

Figure 2.3 shows Windows File Explorer. This application has similar

functionality to the applications used in the CLI section, but is easier

to interact with. Some notable differences between the CLI and GUI

applications are that the GUI version has support for mouse interac-

tion. The bar at the top of the application window allows quick and

easy access to common functionality such as New Folder and Delete

and the favourites bar allows quick navigation to common areas. The

clickable icons are more user friendly than keybindings, and icons are
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Figure 2.3. Windows File Explorer, allowing file system navigation through a
graphical user interface (GUI).

usually common across a number of applications with each icon per-

forming a similar task. In the CLI, a user has to remember the specific

combination of commands to quickly access these same functions.

Other GUI conventions are present in Windows File Explorer too, like

a scroll bar on the left hand side of the screen. By clicking and dragging

the scrollbar up or down the screen, more content can be seen. Finally,

a menu can be seen at the top of the screen. Menus are good at storing

lots of functionality in a small, compressed space. When clicked, the

menu expands revealing many actions useful to users. An example us-

age of the menu in Windows File Explorer would be File – New Window,

which opens a new Explorer window targeting the same directory as

the current one.

A GUI contains various widgets that can be interacted with, like but-

tons, scrollbars and text input fields. These widgets can have action lis-

teners attached which execute certain code when a user interacts with

a specific widget.

To create a GUI, some type of framework is usually used. An example
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of a GUI framework is Java Swing [41]. Java Swing allows a GUI to

be created by extending the Java class JFrame. A subclass of JFrame

has methods like add, which can add common GUI widgets to the GUI,

and widgets have the method addActionListener which has parameter

of type ActionListener. For example, in Figure 2.3, we could recreate the

New Folder button. We would instantiate the Java Swing button class

(JButton), add it to the JFrame and implement the delete functionality

in the ActionListener linked to this button. When the button is clicked,

Java Swing will call the ActionListener’s actionPerformed method. For

more information on Java Swing and ActionListeners, see The definitive

guide to Java Swing [158].

Testing an application through its GUI can be challenging. It is com-

monplace for capture and replay tools to be used [96], requiring lots of

manual testing effort and producing tests which can easily break when

a GUI is modified. However, there are approaches which can automat-

ically interact with an application’s GUI [92, 15, 103, 37]. These tools

aim to find faults in the underlying application, and the event handlers

which process user input into the application.

Natural User Interfaces

A Natural User Interface (NUI) allows interaction with a computer through

more intuitive techniques, such as body tracking. NUIs provide a con-

stant stream of data to an application which can react to certain events

present in the data, such as predefined gestures. An example of a NUI

is the Leap Motion Controller, which tracks a user’s hands and allows

applications to be controlled by displacing the hand in 3 dimensional

space, or performing gestures like swiping the hand in a specific direc-

tion. Figure 2.4 shows the Leap Motion Controller and an application
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Figure 2.4. The Leap Motion Controller, a Natural User Interface allowing
computer interaction through the use of hand tracking (source: “Modelling
Hand Gestures to Test Leap Motion Controlled Application” [145]).

being controlled by a user’s hand.

The Leap Motion Controller tracks user’s hands through three cam-

eras [80] and converts inputs into a Frame. A Frame is built of var-

ious related substructures, including predefined gestures the user is

performing, hands that were tracked, Pointable objects being held (e.g.

a pencil). Because of the relationship and limits of these substructures,

a Leap Motion Frame is a complex structure which is difficult to auto-

matically generate.

UIs often provide complex data to applications, and automatically gen-

erating this data is not a trivial problem. However, there are a few

approaches that can be used, such as random testing.
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2.4.2 Random GUI Testing

The simplest approach to generating system tests is via random testing.

For example, GUI tests can click on random places in a GUI window,

and this is known as monkey testing. With every click, there is a small

chance that a widget will be activated. Miller et al. [99] developed an

approach of testing UNIX X-Windows applications. Their testing pro-

gram sits between the application and the X-Window display server,

and can inject random streams of data into the application as well as

random mouse and keyboard events. Using this technique, over 40%

of X-Windows applications crashed or halted. Forrester and Miller [44]

later extended this study to Windows NT based applications, finding

that on application crashes, the user often was not given a choice to

save their work or open a different file. Applications also produced

error messages to users showing technical aspects such as memory ad-

dresses and a memory dump.

Monkey testing has been shown to be effective at finding faults when

testing through an application’s GUI, finding many crashes. Monkey

testing is also cheap as no information is required. Android Monkey is

an example monkey testing tools for the Android platform [37], which

generates system tests. Despite being cheap, Choudhary et al. [33] de-

clared Android Monkey “the winner” between multiple Android test-

ing tools. However, monkey testing was effected by the execution envi-

ronment. There is a distinct difference between the Android platform

and Java applications in terms of code coverage, as random testing

is less efficient in Java applications. The reason for this difference is

unknown. Zeng et al. [153] evaluated Android Monkey on the popu-

lar application “WeChat” and found that the random technique often

spent long periods of time exploring the same application screen. There
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were two main reasons for this: 1) Monkey triggers interactions at ran-

dom screen coordinates, having no knowledge of widgets, and this can

waste time; 2) Monkey does not keep track of states already explored,

and can cycle repeatedly between states.

2.4.3 Dynamic Symbolic Execution in GUI Testing

Random testing for GUIs is effective at finding faults, however, it may

be more beneficial to generate more targeted interactions when spe-

cific inputs are required by an application. As an example, Salvesen

et al. [123] use dynamic symbolic execution (DSE) to generate specific

input values for text boxes in an application’s GUI. After a program

has finished execution, input values are grouped together depending

on the path navigated when input into the program. It was found that

using DSE significantly increased code coverage in both applications

used in the case study compared to generation without DSE. Saxena

et al. [124] use DSE in the tool “Kudzu”, which automates test explo-

ration for JavaScript applications. Kudzu uses a “dynamic symbolic in-

terpreter”, which records real inputs of an application and symbolically

interprets the execution, recording the semantics of executed JavaScript

bytecode instructions. Kudzu can generate high coverage test suites for

JavaScript applications using only a URL as input. Kudzu revealed 11

client-side code injection vulnerabilities, of which two were previously

undiscovered.

2.4.4 Model-based GUI Testing

To guide GUI test generators, Memon et al. [35] models the interactions

that occur in GUI applications. Several definitions aid in creating a
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model:

1. Modal Window: A window which takes full control over user in-

teraction, restricting events to those available in the Modal Win-

dow.

2. Component: A pairwise set containing all Modal Windows along

with all elements of the Modal Window which can trigger events

through interaction, and a set of elements which have no Modal

window (Modeless).

3. Event Flow Graph: Can represent a GUI component. An Event

Flow Graph represents all possible events from a component.

4. Integration Tree: A tree representing components. Starting at the

Main component, component A invokes component B if compo-

nent A has an event that leads to component B.

Memon et al. also mentions other GUI criteria such as Menu-open

Events and System-interaction Events. Using these definitions, it is pos-

sible to model GUI applications so long as they are deterministic and

have discrete frames (e.g., no animations such as a movie player). From

the created model of a target application, Memon et al. outline two new

coverage criteria, specifically for applications which use GUIs:

• Event coverage – the percentage of events triggered by a test through

an application’s GUI.

• Event interaction coverage – The percentage of all possible se-

quences of interactions executed between pairs of some quantity

of widgets in a GUI.
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The new criteria provide feedback on a test suite interacting with a GUI.

This can aid in producing a more complete final test suite. Memon et

al. found that the properties of GUIs are different than conventional

software and that different approaches were required to test them [35].

One reason for this is because of the complex structures which are con-

structed when interaction with a GUI widget occurs. The functionality

that the widget is mapped to takes these complex data structures as in-

put. These data structures are difficult to randomly generate. However,

it may be possible to exploit knowledge of the underlying framework

and the data structures used by a GUI to generate new interactions.

GUI Testing Specific Frameworks

Testing an application through a GUI requires interaction with widgets

displayed on the computer screen. No prior knowledge of the applica-

tion is needed, and often GUI testing is a black box approach.

However, identifying widgets in a GUI is not trivial. Each GUI frame-

work uses different data structures and appearances. Consequently,

most methods for testing GUIs rely on predefined underlying struc-

tures. Once the structures are known, it is possible to automatically

rip a model of the system, or use random testing to generate GUI tests.

For instance, Gross et al. proposed a tool which relies on a Java Swing

testing framework [58]. Though the technique may be more abstract,

any tool following the proposed technique will also need to rely on a

similar GUI framework. Bauersfeld and Vos [15] present GUITest, a

tool which relies on the MacOSX Accessibility API. GUITest constructs

a widget tree of all widgets currently on the screen. Then, sensible de-

fault actions are performed. GUITest is a tool which can automatically
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test an application via its GUIs, including complex functionality such

as drag and drop. GUITest became Test*, a tool which aids GUI testers

by deriving a GUIs structure automatically [120] and has been applied

to different industrial scenarios [140]. However, the reliance on a GUI

framework or an accessibility API means that many applications are

still not support by Test*.

Borges et al. [23] link event handlers at a source code level to corre-

sponding widgets displayed in a GUI. This involved mining the inter-

face of many Android applications and deriving associations between

event handlers and UI elements. These associations were gathered

through crowd sourcing and can then be applied to new applications.

Borges et al. found a coverage increase of 19.41% and 43.04% when sup-

plying these associations to two state of the art Android testing tools.

Su et al. present FSMDroid [129], a tool which builds an initial model of

an Android mobile application by statically analysing the source code.

FSMDroid then automatically explores the application, updating the

model as the tool tests. FSMDroid could increase the coverage achieved

by the tests it generated by 84% over other Android model based test-

ing tools, and also needed 43% less tests to achieve this increase. Choi

presents the SwiftHand algorithm [32], which learns a model of the ap-

plication being tested by utilising machine learning. SwiftHand will

then exploit this model, focusing on generating tests for unexplored ar-

eas of the application. Both FSMDroid and SwiftHand learn how to in-

teract with an application through exploring the available interactions

available, and updating a model of the system.

When the specific framework used to create a GUI is known, so are the

underlying data structures of events, or how to interact with a specific

GUI. This opens up the opportunity to use search-based algorithms.
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Search-based GUI Testing

GUI test generators can also be guided using search-based approaches.

Mao et al. present Sapienz [89], an approach to generating system tests

for Android applications. Sapienz has been deployed by Facebook as

part of their continuous integration process, reporting crashes in the

applications deployed by Facebook back to developers. Sapienz can

handle a large amount of commits in parallel by utilising a network

of mobile devices. To generate tests, Sapienz uses a hybrid approach,

utilising both random and search-based algorithms.

When it is possible to get all events present on the screen through an

API or known framework, and know specific GUI states, it is also pos-

sible to guide interaction generation through search-based approaches.

One example of this is by Bauersfeld et al. [16], which presents the

problem of GUI testing as an optimisation problem. Using a metric of

reducing the size of existing test suites to guide the search-based gener-

ation approach, Bauersfeld et al. generate GUI interactions which aim

to maximise the number of leafs in a call sequence tree. To achieve this,

four important steps are needed.

Firstly, the GUI of the application under test is scanned to obtain all

widget information. Secondly, interesting actions are identified (e.g.,

if a button is enabled). Thirdly, each action is given a unique name.

Finally, sequences of actions are executed. The tool runs until a pre-

defined quantity of actions has been generated. Bauersfeld et al. found

that given enough time, this search-based approach could find better

sequences of events than random generation.

This approach of generation was then extended. When GUI states can

be extracted from an application’s source code, the interactions between
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different states can be represented as a graph. Then, search-based ap-

proaches to solving graph theory problems can also be applied to the

problem of GUI testing. Bauersfeld et al. [17] use ant colony optimisa-

tion as a solution to this graph theory representation of the GUI testing

problem. By generating sequences of events during application execu-

tion, no model of the application’s GUI is needed and no infeasibility

can occur. Carino and Andrews [28] evaluate using ant colony optimi-

sation to test GUIs. It was found that using ant colony optimisation

could increase the code coverage achieved by generated tests, and also

the number of uncaught exceptions found.

Su et al. [130] use a different approach in their tool Stoat, a model-

based testing tool which uses search-based techniques to refine the ac-

tual model involved in generating event sequences. Stoat uses a two

phase approach to test generation. Firstly, it takes an application as in-

put and reverse engineers a model of the application’s GUI using static

analysis. This is possible by exploiting the structures in the Android

API. The second phased involves mutating this model to increase the

coverage achieved and the diversity of generated event sequences in

tests. Stoat was found to be more effective than other techniques of

generating Android tests.

Another search-based approach which exploits a model of the appli-

cation is by Mahmood et al. [88]. Their tool, EvoDroid, takes an ap-

plication’s source code as input, and can extract two models: an in-

ternal model of the application’s call graph, and an external model of

the application’s interfaces. EvoDroid uses these models to begin an

evolutionary search of the application’s test input domain, keeping a

population of individuals which represent a sequence of events in the

application under test. However, EvoDroid is hindered by a known
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limitation of search-based approaches: lack of reasoning when select-

ing input conditions [88]. It may be possible to overcome this lack of

reasoning using machine learning techniques to process large quanti-

ties of user data and traces when creating a testing model.

2.4.5 Machine Learning in GUI Testing

Models can be generated from user data that can aid in GUI testing. For

instance, Ermuth and Pradel [42] propose a tool which learns how to in-

teract with GUI elements by observing real user interactions, adapting

data mining techniques into automated testing. When a user interacts

with a GUI, the execution trace is saved and exploited to simulate com-

plex interactions, such as filling in a drop down box. This approach,

and many other recent approaches to testing an application though its

GUIs, work through machine learning techniques with data gathered

through data mining.

It is also possible for a test generator to learn from their own interac-

tions. Mariani et al. presents AutoBlackTest, a technique for generat-

ing test cases for interactive applications through GUI testing [91]. Au-

toBlackTest generates GUI tests and explores the application through

Q-Learning, a machine learning technique which selects optimal deci-

sions based on a finite Markov decision process. AutoBlackTest per-

forms an event from the current GUI widget set, observes the results,

and incorporates the results back into the Q-Learning algorithm for se-

lecting future events. AutoBlackTest generates tests that achieve a high

coverage but can also detect faults in the application missed by devel-

opers [92]. Further, Becce et al. [18] extend AutoBlackTest to search

above and to the left of data widgets for static widgets that can provide
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more information for testers about the type of data to input. Coverage

increases of 6% and 5% were found in the two applications tested when

providing context about data widgets to the tool AutoBlackTest.

Another example of a test generator learning from itself was by De-

gott et al. [36], who apply a reinforcement learning approach to testing

Android applications. This was through presenting the problem of An-

droid GUI testing as the Multi-armed Bandit Problem. This problem

consists of some budget and various gambling machines. Users can

learn which machine has the greatest chance of a high return on bud-

get investment [9]. Degott et al. present each possible interaction with

a widget as a gambling machine, and the budget as the execution time

or interactions remaining. It was found that using two forms of rein-

forcement learning could lead to a coverage increase of 18% and 24%

over the crowd sourcing approach by Borges et al.

It is also possible to apply areas other than machine learning to auto-

mated test generation. One area that links directly with GUI testing is

image processing.

2.4.6 Image Processing in GUI Testing

To improve assertions for applications which use a web canvas, Bajam-

mal et al. present an approach of generating assertions using image

processing techniques [10]. A Document Object Model (DOM), can be

exploited, extracting a map of all widgets in a website to their graphical

representation on the screen. However, the contents of web canvasses

do not have entries in the DOM, being drawn directly to an image

buffer usually using JavaScript. Consequently, this structure cannot

be exploited by testing tools, which see only a single “canvas” element.
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Users can identify the elements inside the canvas as they appear similar

to a normal widget, so have no issues interacting with the application.

Bajammal et al. identified common shapes in web canvasses. However,

many iterations of image processing techniques are needed to identify

isolated shapes, each occurring an overhead in computation time. Once

shapes have been identified, assertions can be generated and used in re-

gression testing.

Sun et al. [131] also use image processing to guide a random GUI test

generator. They investigate an approach of guiding a monkey tester

by identifying interesting interaction locations from screen shots. Their

tool, Smart Monkey, detects salient regions (i.e., interesting areas in the

screen shot for interaction) of a rendered GUI using colour, density and

texture. It was found that Smart Monkey can increase the likelihood of

generating an interesting interaction (i.e., one that interacts with a wid-

get on the GUI) over Android Monkey, although the actually hit ratio

was still fairly low, between 21-55% depending on the application un-

der test. However, the increased likelihood of interesting interactions

enabled Smart Monkey to find crashes using on average 8% less testing

budget than Android Monkey.

2.4.7 Mocking in NUI Testing

Natural User Interfaces (NUIs) allow users to interact with applications

in a more intuitive method without physical contact to keyboard and

mouse or a game controller [24]. NUIs commonly rely on techniques

such as body tracking, requiring efficient algorithms that take up min-

imal computer resources but track users in real time [25]. An example

of a NUI is the Leap Motion Leap [81].
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Only a minimal amount of work exists for automatically testing an ap-

plication via its NUI. This is worrying given their growth in popularity

with systems like virtual reality (VR), and use in different domains such

as medical [73], robotics [128], and touch screen devices [149].

A commonly used NUI is present in mobile devices: sensor and lo-

cation based information. Mobile applications that rely on external

sensors present an interesting problem for automated testing. Mobile

phones contain a high number of sensors that contribute towards a Nat-

ural User Interface. Griebe et al. test context aware mobile phone ap-

plications through their NUI [55]. A context aware application is one

which uses the physical environment around the device as an input,

e.g., the device’s current location. Griebe et al. firstly enrich the UML

Activity diagrams with context specific events, then automatically gen-

erate tests using the enriched UML Activity Diagrams [55]. To evalu-

ate this approach, tests were generated for the “call-a-cab” application,

which relies on a devices current location and also a valid location be-

ing entered by the user as a destination. 32 total tests were generated,

representing all paths through the system with regards to only these

two inputs. Griebe et al. then extended this work with a test frame-

work to allow simulation of sensor-based information [56]. This allows

user motion of the device to be mimicked and used in test suites. Using

the new motion test suites, it is possible to cover the source code which

handles user movement interaction with the application (i.e., the user

physically moving the mobile phone). When the new tests run, gener-

ated sensor-based information is used opposed to the real sensor-based

API. The implication of this is that data can be generated and inserted

into the application through the mimicked API, allowing this function-

ality to be tested through generated test suites.
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2.4.8 Modelling User Data for NUI Testing

To generate data more like that provided by a user, stored user inter-

actions can be exploited. The Microsoft Kinect was an infrared camera

that enabled interactions with applications through full body tracking,

providing information such as location of each joint in the body. The

Kinect is now discontinued,but the technology exists inside devices

such as the HoloLens and Window Hello biometric facial ID systems.

Hunt et al. [65] worked on automatically testing a web browser with

Kinect support. Different methods of generating test data based on

real user data were compared. The first approach was purely random

testing: random coordinates for each joint. The second technique was

using random snapshots of clustered user data. The third approach in-

cluded temporal data, using a Markov chain to select the next cluster to

seed. When comparing the first purely random approach to selecting

snapshots of training data, Hunt et al. found that selecting snapshots

gave a coverage increase over purely random. Further, it was found

that using the Markov chain to include temporal information in data

generation gave a further increase in coverage over snapshots.

2.5 Summary

Software testing is a vital part of the software development life cycle.

This chapter has outlined the main practices of software testing includ-

ing white and black box testing, unit testing, system testing, and the or-

acle problem. Many tools and techniques exist that can automatically

generate tests or test data for applications simulating different types

of user interfaces. There are many approaches to generating test data,
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varying from exploiting available user data, using a model of expected

behaviour of an application, or statically analysing a program and solv-

ing constraints.

It may be beneficial to test an application in a similar way to how a user

would interact with an application. Tests can be generated that interact

with the fully built system using the same input techniques that a real

user would have. This type of test can find bugs missed during lower

level testing techniques, like inter-component interaction.

There is lack of work in interacting with an application directly through

a user interface. Current techniques rely on prior assumptions about

framework usage for user interactions or exploit an accessibility API to

interact with a GUI. Consequently, random testing is used as a fall back

to automatically detect crashes in applications. However, random test-

ing has disadvantages, often only achieving coverage on lines of code

that are “easy” to execute, missing out complex branching conditions

and edge cases.

In the next chapter, we will extend the use of image processing in GUI

applications, presenting a technique with uses only the information

available to users. This information consists of only the visual infor-

mation of the application (i.e., a screen shot) and points of interaction

need to be identified.
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3 Guiding Testing through

Detected Widgets from

Application Screen Shots

This chapter is based on the work “Improving Random GUI Testing

with Image-Based Widget Detection” published In the Proceedings of

the 28th ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2019 [146].

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Automatic Detection of GUI Widgets for Test Gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 106

3.1 Introduction

A Graphical User Interface (GUI) enables events to be triggered in an

application through visual entities called widgets (e.g., buttons). Users
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interact using keyboard and mouse with the widgets within a GUI to

fire events in the application. Automated GUI test generation tools

(e.g., AutoBlackTest [92], Sapienz [89], or GUITAR [95]) simulate users

by interacting with the widgets of a GUI, and they are increasingly ap-

plied to test mobile and desktop applications. The effectiveness of these

GUI test generation tools depends on the information they have avail-

able. A naïve GUI test generator simply clicks on random screen posi-

tions. However, if a GUI test generator knows the locations and types

of widgets on the current application screen, then it can make better

informed choices about where to target interactions with the program

under test.

GUI test generation tools tend to retrieve information about available

GUI widgets through the APIs of the GUI library of the target applica-

tion, or an accessibility API of the operating system. However, relying

on these APIs has drawbacks: applications can be written using many

different GUI libraries and widget sets, each providing a different API

to access widget information. Although widget information can be re-

trieved by accessibility APIs, these differ between operating systems,

and updates to an operating system can remove or replace parts of the

API. Furthermore, some applications may not even be supported by

such APIs, such as those which draw directly to the screen, e.g., web

canvasses [10]. These challenges make it difficult to produce and to

maintain testing tools that rely on GUI information. Without knowl-

edge of the type and location of widgets in a GUI, test generation tools

resort to blindly interacting with random screen locations.

To relieve GUI testing tools of the dependency on GUI and accessibil-

ity APIs, in this chapter we explore the use of machine learning tech-

niques in order to identify GUI widgets. A machine learning system
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is trained to detect the widget types and positions on the screen, and

this information is fed to a test generator which can then make more in-

formed choices about how to interact with a program under test. How-

ever, generating a widget prediction system is non-trivial: Different

GUI libraries and operating systems use different visual appearance of

widgets. Even worse, GUIs can often be customized with user-defined

themes, or assistive techniques such as a high/low contrast graphical

mode. In order to overcome this challenge, we randomly generate Java

Swing GUIs, which can be annotated automatically, as training data.

We explore the challenge of generating a balanced dataset that resem-

bles GUIs in real applications. The final machine learning system uses

only visual data and can identify widgets in a real application’s GUI

without needing additional information from an operating system or

API.

In detail, the contributions of this chapter are as follows:

• We describe a technique to automatically generate labelled GUIs

in large quantities, in order to serve as training data for a GUI

widget prediction system.

• We describe a technique based on deep learning that adapts ma-

chine learning object detection algorithms to the problem of GUI

widget detection.

• We propose an improved random GUI testing approach that re-

lies on no external GUI APIs, and instead selects GUI interactions

based on a widget prediction system.

• We empirically investigate the effects of using GUI widget predic-

tion on random GUI testing.
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In our experiments, for 18 out of 20 Java open source applications tested,

a random tester guided by predicted widget locations achieved a signif-

icantly higher branch coverage than a random tester without guidance,

with an average coverage increase of 42.5%. Although our experiments

demonstrate that the use of an API that provides the true widget details

can lead to even higher coverage, such APIs are not always available.

In contrast, our widget prediction library requires nothing but a screen

shot of the application, and even works across different operating sys-

tems.

3.2 Automatic Detection of GUI Widgets for Test

Generation

Interacting with applications through a GUI involves triggering events

in the application with mouse clicks or key presses. Lo et al. [87] define

three type of widget which appear in GUIs:

• Static widgets in a GUI are generally labels or tooltips.

• Action widgets fire internal events in an application when inter-

acted with (e.g. buttons).

• Data widgets are used to store data (e.g., text fields).

Static widgets do not contribute towards events and interactions, often

only providing context for other widgets in the GUI. We focus on identi-

fying only action and data widgets. One widgets have been identified,

interactions can be automatically generated to simulate a user using

an application’s GUI. The simplest approach to generating GUI tests is

through clicking on random places in the GUI window [44], hoping to
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Figure 3.1. The web canvas application MakePad (https://makepad.github.
io/) and its corresponding DOM. The highlighted “canvas” has no children,
hence widget information cannot be extracted.

hit widgets by chance (e.g., Android Monkey [37]). This form of testing

(“monkey testing”) is effective at finding crashes in applications and is

cheap to run; no information is needed (although knowing the position

and dimensions of the application on the screen is helpful).

GUI test generation tools can be made more efficient by providing them

with information about the available widgets and events. This informa-

tion can be retrieved using the GUI libraries underlying the widgets

used in an application, or through the operating system’s accessibil-

ity API. For example, Bauersfeld and Vos created GUITest [14] (now
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known as TESTAR), which uses the operating system’s accessibility

API to identify possible GUI widgets to interact with, and Mariani et al.

present AutoBlackTest [92], which relies on a commercial testing tool

(IBM Rational Functional Tester) to retrieve widget information. GUI

ripping could also be used [95] to identify all GUI widgets in an ap-

plication to permit systematic test generation. GUI ripping enables ef-

fective testing and flexible support for automation, but there are draw-

backs [103]. GUI trees have to be manually validated, and component

identification issues can lead to inaccurate GUI trees being generated.

Current approaches to testing an application through its GUI rely on an

automated method of extracting widget information from a GUI. Appli-

cations and application scenarios exist where widget information can-

not be automatically derived (as seen in Figure 3.1), and tools may fall

back to random testing. However, object detection and image labelling

may be able to help with this.

In order to improve random GUI testing, we aim to identify widgets

in screen shots using machine learning techniques. A challenge lies in

retrieving a sufficiently large labelled training dataset to enable modern

object recognition approaches to be applied. We produce this data by

(1) generating random Java Swing GUIs, and (2) labelling screen shots

of these applications with widget data retrieved through GUI ripping

based on the Java Swing API. The trained network can then predict

the location and dimensions of widgets from screen shots during test

generation, and thus influence where and how the GUI tester interacts

with the application.
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3.2.1 Identifying GUI Widgets

Environmental factors such as the operating system, user-defined theme,

or choice of application designer effect the appearance of widgets. Each

application can use a unique widget palette. When widget information

cannot be extracted through use of external tools, e.g., an accessibility

API, then this diversity of widgets presents a problem for GUI testing

tools. For example, applications that render GUIs directly to an im-

age buffer (e.g., web canvas applications) generally cannot have their

GUI structure extracted automatically. Pixels are drawn directly to the

screen and there is no underlying XML or HTML structure to extract

widget locations. We propose a technique of identifying GUI widgets

solely through visual information. This is an instance of object detec-

tion.

Machine Learning and Object Detection

Machine learning is a field of computer science that aims to produce sta-

tistical models which rely on patterns in data to perform specific tasks.

One such approach to this is through using a neural network. A neural

network is a function that has trainable weights (parameters). By using

a labelled set of data, it is possible for the function to predict informa-

tion about some input and compare it to the corresponding correct label

in the training data. Then, the weights can be updated in an attempt to

improve the predictions of the network. Seeding all the training data

through the network is known as an epoch, and many epochs can be

performed to improve the predictions of the network. An area which

uses machine learning is object detection.
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Figure 3.2. Objects in a screen shot from the Ubuntu print application’s GUI.

Object detection is the act of identifying objects and their location in an

image. This is a popular area of research in machine learning groups,

with much attention from Facebook [19], Google [53] and Amazon [3].

By using manually annotated data, it is possible to create a machine

learning system that will automatically tag learned classes of objects

in new images. Figure 3.2 shows objects we manually annotated in a

screen shot of a GUI in the Ubuntu print settings application. Girshick

et al. [51] propose the Region-based Convolutional Neural Network (R-

CNN). A convolutional neural network is similar to other neural net-

works, but makes the assumption that the input data is an image. With

this assumption, the network can have less parameters due to the en-

coding of properties in an image [5].

68



3.2 Automatic Detection of GUI Widgets for Test Generation

Figure 3.3. YOLO predicting object class and dimensions in an image. (Source:
“You Only Look Once: Unified, Real-Time Object Detection” [112])

R-CNN works through a CNN and a sliding window, which captures

a small area in the image. Using a sliding window with a CNN has the

consequence of inputting images through the network many times, de-

pending on the size of the image and the step size of the sliding window.

CNNs identify patterns in image data and are expensive to train, which

is exacerbated by the many inputs of a sliding window. However, there

are CNNs that do not rely on a sliding window, instead processing an

entire image at a time. This allows quicker processing of images and is

beneficial in scenarios with limited processing time.

Redmon et al. proposed You Only Look Once (YOLO) [112], a network

which can be trained for object detection and processes a whole image

at once, removing the complications of a sliding window. YOLO pre-

dicts the object type (class), position and dimension of an object. It also

gives each prediction a confidence score.

YOLO takes an image as input, with width and height being a multiple
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of 32 pixels. This is because YOLO downsamples the image by a factor

of 2 for multiple layers of the network. The output of the network is

a N × N grid of predicted objects. N is equal to the width or height

divided by 32. Figure 3.3 shows the raw image and corresponding out-

put from the YOLO network. The image is split using two techniques:

the first one predicts the dimensions of the box surrounding possible

objects in the image (the top image). The thicker the border of the box,

the more confident that YOLO is of the prediction. The second tech-

nique predicts the class of any object with centre point inside this grid

cell (the bottom image). Each colour represents a different class having

the highest probability. Then, these two datasets are merged, and only

boxes with a predicted confidence above a certain threshold (i.e., boxes

with a thick border in the top image) are output as a prediction. The

centre point of these boxes is then used to assign the box a class, de-

pending on the class with the greatest predicted value from the bottom

image.

The original YOLO algorithm was extended by Redmon and Farhadi,

resulting in YOLOv2 [113]. YOLOv2 predicts B boxes per grid cell, re-

sulting in the final number of predictions being N × N × B. YOLOv2

has been used to train many object detection systems, such as Chinese

traffic sign recognition [154] and ship detection [31].

During GUI testing, it is beneficial to recognise widgets quickly. By

processing screen shots at a faster pace, more actions can be generated

when giving the same time constrain for test generation (i.e., the same

testing budget). Therefore, we use You Only Look Once (YOLOv2),

proposed by Redmon et al. [112], which labels an image by seeding the

whole image through a CNN once. YOLO is capable of predicting the

position, dimension, and class of objects in an image. YOLOv2 [113] is
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Figure 3.4. A generated Java Swing GUI. Each element has a random chance
to appear. (Source: White et al. 2019 [146])

an extension to YOLO. YOLOv2 predicts B boxes per grid cell. Each box

contains five predicted values: the location (x, y), the dimension (width,

height) and a confidence score for the prediction (c). Predicting multiple

boxes per grid cell aids in training as it allows different aspect ratios to

be used for each box in each cell. YOLOv2 exploits that many objects

have similar shaped boxes in an image. For example, a box which is

thin but wide may repeatedly appear and YOLOv2 would have a pre-

diction per grid cell representing this common box aspect ratio. The

aspect ratios are passed to the algorithm to modify the predicted width

and height of each box. To calculate aspect ratios tuned on the objects

present in GUIs, the dimensions of all boxes in the training data are

clustered into N clusters, where N is the number of boxes predicted per

cell. The centroid of each cluster represents the aspect ratios to supply

to YOLOv2.

A single class is predicted from C predefined classes for each grid cell.

In total, this makes the size of the network’s output N · N · (B · 5 +

C). We can now filter the predicted boxes using the confidence values.

71



Chapter 3 Guiding Testing through Detected Widgets from
Application Screen Shots

Algorithm 3.2.1: RANDOMWIDGETTREE(nodeCount)

nodes = [Container]
while |nodes| < nodeCount

do
{

nodes← nodes
∪

RANDOMWIDGETTYPE()
while (|nodes| > 1)

do


node← sample(nodes, 1)
parent← sample(nodes, 1)
if isContainer(parent) and node ̸= parent

then
{

parent.children← parent.children
∪

node
nodes← nodes \ node

return (nodes[0])

Boxes with a confidence value close to zero may not be worth investi-

gating, and can be eliminated using a lower confidence threshold. This

will be discussed further in section 3.2.3.

Using the YOLOv2 convolutional neural network, we can automati-

cally identify GUI components in a screen shot. We chose the YOLOv2

algorithm for our network due to the speed at testing it can process

entire images, and the accuracy it achieves on predictions. Our imple-

mentation of YOLOv2 only uses greyscale images, so the first layer of

the network only has a single input per pixel opposed to the three (r,g,b)

values proposed in the original network [113]. This decision was firstly

as a preprocessing step for GUIs. GUIs often have clear edges between

widgets to aid in the user experience when using an application. There-

fore, a greyscale image should suffice when identifying widgets. Sec-

ondly, neural networks can over tune themselves to certain inputs. By

converting to greyscale, we eliminate two thirds of the input data and

therefore reduce the possibility of this occurring.
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Algorithm 3.2.2: RANDOMJFRAME(width, height, nodeCount)

procedure ApplyWidget(container,widget)

swingComponent← COMPONENTFROMWIDGET(widget)
i← 0
while i < |widget.children|

do


child←widget.children[0]
APPLYWIDGET(swingComponent, child)
i← i + 1

container.add(swingComponent)

jframe← JFRAME<INIT>(width, height)
rootNode← RANDOMWIDGETTREE(nodeCount)
APPLYWIDGET(jframe, rootNode)
return (jframe)

Figure 3.5. Generated GUIs by two techniques: random widget selection and
placement (left), and random GUI tree generation (right).

3.2.2 Generating Synthetic GUIs

One issue with using a neural network is that it requires large amounts

of labelled data for training. To obtain labelled screen shots, we gen-

erate synthetic applications. A synthetic application is one with no

event handlers, containing only a single screen with random place-

ments of widgets. Generating GUIs allows precise control over the
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Table 3.1. Widgets that the model can identify in a Graphical User Interface

Widget Description Example

Text Field Allows input from the keyboard to be stored in the
GUI to be used later.

Button Allows an event to be triggered by clicking with the
mouse.

Combo Box Allows selection of predefined values. Clicking ei-
ther inside the box or the attached button opens pre-
defined options for users to select.

List Similar to a Combo Box, allows selection of pre-
defined values. Values are present at all times.
Scrolling may be needed to reveal more.

Tree Similar to a list but values are stored in a tree struc-
ture. Clicking a node may reveal more values if the
node has hidden child elements.

Scroll Bar A horizontal or vertical bar used for scrolling with
the mouse to reveal more of the screen.

Menu A set of usually textual buttons across the top of a
GUI

Menu Item An individual button in a menu. Clicking usually
expands the menu revealing more interactable wid-
gets.

Toggle Button Buttons that have two states toggled by clicking on
them.

Tabs Buttons changing the contents in all or part of the
GUI when activated.

Slider A button that can be click-and-dragged in a certain
axis, changing a value which is usually a numeric
scale, e.g., volume of an application.

training data, such as ensuring that the generated dataset contains a

balanced number of each widget, mitigating against the “class imbal-

ance” problem which can negatively effect trained networks by coun-

tering the machine learning assumption of an equal misclassification

cost for all classes [82]. An example generated GUI can be seen in Fig-

ure 3.4. We use 11 standard types of widgets in generated GUIs, which

are shown in Table 3.1.

To generate synthetic applications, we use the Java Swing GUI frame-

work. Initial attempts at generating GUIs by entirely random selection

and placement of widgets yielded GUIs that were not representative

of ones encountered in real applications. The GUIs were unstructured,

with uneven spacing. GUIs could also have far too many, or very few
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widgets, creating packed or sparse GUIs. Real GUIs have structure, and

spacing is used to aid in widget separation and identification. Conse-

quently, the resulting prediction system performed poorly on real GUIs.

To create more realistic GUIs as training data, our approach therefore

generates an abstract tree beforehand, and uses this tree as a basis, as-

signing widgets to each node or leaf before generating the GUI. Figure

3.5 shows the difference in generated GUIs. With the previous, ran-

dom widget selection and placement technique, the layout manager is

responsible for organising the generated GUI and certain areas can be-

come crowded. If we select a widget which can contain children (e.g.,

a list), the same random technique would be called recursively (with

a hard coded maximum depth to stop infinite looping and unrealisti-

cally large/populated GUIs). Certain types of widgets that are children

of the root container are also placed on their own, making most GUIs

fairly sparse. Generating an abstract tree and deriving the GUIs from

this tree creates much more structured, realistic GUIs. The possibility of

looping indefinitely is also removed by generating the tree in advance,

as we predetermine the quantity of nodes that will be present in the

tree, removing the recursive call. By extension, the quantity of widgets

is also predetermined in the GUI that will be generated from the tree.

First, we randomly choose a Swing layout manager. A layout manager

controls how widgets appear on the GUI. One example layout man-

ager is a grid layout, which divides the space in the GUI into an I · Y

grid. Widgets can be placed in each grid cell. With the layout manager

chosen, we then generate a random tree where each node represents

a GUI widget. Only widgets which can contain other widgets can be

assigned child nodes in the tree, for example, a tab pane can have chil-

dren representing other GUI widgets assigned to it, but a button cannot.

Algorithm 3.2.1 shows how a random abstract tree of GUI widget types
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Figure 3.6. A generated GUI tree and the corresponding GUI derived from
the tree.

is generated. Here, the nodes list initially contains a “Container” wid-

get type which is to eliminate an infinite loop later if the RandomWid-

getType() function returns no containers. The call to RandomWidgetType

randomly returns one of the 11 types of widgets. Each widget has the

same probability of appearing but we found that some GUI widgets

are constructed of others when using Java Swing, e.g., a Combo Box

also contains a button, and a scroll bar contains two buttons, one at

each end. When generating data, we have a unique advantage that we

can balanced the number of widgets in GUIs, evenly distributing the

widget types through the generated dataset. We found that menu_items
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has a dependency with a menu. Weighting menu_items with an equal

probability to appear forced menus to also appear on nearly all gen-

erated GUIs. To balance the dataset, we lowered the probability for

menu_items.

To generate a Swing GUI, Algorithm 3.2.2 walks through the generated

tree. Each node is assigned a random position and dimension inside its

parent. The position is randomly selected based on the layout manager.

For example, with a GridLayout, we randomly assign the element in

the current node to a random x, y) coordinate in the grid. However,

with a FlowLayout, the position does not matter as all widgets appear

side by side in a single line. In algorithm 3.2.2 , the container.add method

call in the ApplyWidget procedure is from the JComponent class of Java

Swing, and the random position is seeded here depending on the cur-

rent layout manager. Figure 3.6 shows an example generated tree, and

the corresponding GUI derived from the tree. An interesting observa-

tion about this Figure is that even though only a single tab is selected

at any one time, the contents for the other tabs have also been gener-

ated. These contents are never seen however, as only one snapshot of

the GUI is every taken.

Once a Swing GUI has been generated, Java Swing allows us to auto-

matically extract information for all widgets. This includes the posi-

tion on the screen, dimension and widget type. This is similar to the

approach current GUI testing tools use when interacting with an appli-

cation during test execution.
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3.2.3 A Random Bounding Box Tester

Once widgets can be identified, they may be used to influence a ran-

dom GUI tester. We created a tester which randomly clicks inside a

given bounding box. At the most basic level, a box containing the

whole application GUI is provided, and the tester will randomly in-

teract with this box. One of three actions is executed on the selected

box: a) left click anywhere inside the given box; b) right click anywhere

inside the given box; c) left click anywhere inside the given box and

type either a random string (e.g., “Hello World!” in our implementa-

tion) or a random number (e.g., between -10000 and 10000 in our im-

plementation). We use these two textual inputs to represent the most

common use for text fields: storing a string of characters or storing a

number. Our random tester is a version of Android Monkey [37] we

implemented that uses conventional GUIs in place of Android ones.

Algorithm 3.2.3 shows how the tester can interact with a provided box.

In this algorithm, rand(x, y) returns a random number between x and

y inclusive. LeftClick(x, y) and RightClick(x, y) represent moving the

mouse to position x, y on the screen and either left or right clicking re-

spectively. KeyboardType(string) represents pressing the keys present in

string in chronological order.

We can refine the box provided to this random tester using the trained

YOLOv2 network. We randomly select a box with a confidence greater

than some value C. When seeded to the tester, the tester will click on a

random position inside one of the predicted widgets from the network.

Finally, we can provide the tester with a box directly from Java Swing.

This implementation currently only supports Java Swing applications

but will ensure that the GUI tester is always clicking inside the bound-
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Algorithm 3.2.3: RANDOMINTERACTION(box)

interaction← rand(0, 2)
x← box.x + rand(0, box.width)
y← box.y + rand(0, box.height)
if interaction == 0

then LEFTCLICK(x, y)
else if interaction == 1
then RIGHTCLICK(x, y)
else if interaction == 2

then



LEFTCLICK(x, y)
inputType← rand(0, 1)
inputString← ""
if inputType == 0

then inputString← "Hello World!"

else
{

inputNumber← rand(-10000, 10000)
inputString← inputNumber.toString()

KEYBOARDTYPE(inputString)

ing box of a known widget currently on the screen. Our tool GUIdance

is open-source and can be found and contributed to on GitHub1.

3.3 Evaluation

To evaluate the effectiveness of our approach when automatically test-

ing GUIs, we investigate the following research questions:

RQ3.1 How accurate is a machine learning system trained on synthetic

GUIs when identifying widgets in GUIs from real applications?

RQ3.2 How accurate is a machine learning system trained on synthetic

GUIs when identifying widgets in GUIs from other operating sys-

tem and widget palettes?
1https://github.com/thomasdeanwhite/GUIdance
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RQ3.3 What benefit does random testing receive when guided by pre-

dicted locations of GUI widgets from screen shots?

RQ3.4 How close can a random tester guided by predicted widget loca-

tions come to an automated tester guided by the exact positions

of widgets in a GUI?

3.3.1 Widget Prediction System Training

In order to create the prediction system, we created synthetic GUIs on

Ubuntu 18.04, and to capture different GUI styles, we used different

operating system themes. We generated 10,000 GUI applications per

theme and used six light themes: the default Java Swing theme, adapta,

adwaita, arc, greybird; two dark themes: adwaita-dark, arc-dark, and

two high-contrast themes which are default with Ubuntu 18.04. These

are all popular themes for Ubuntu and were chosen so that the pixel

histograms of generated GUI images were similar to that of real GUI

images.

In total this resulted in 100,000 synthetic GUIs, which we split as fol-

lows: 80% of data was used as training data, 10% as validation data,

and 10% as testing data. To train a machine learning system using this

data, the screen shots are fed through the YOLOv2 network and the pre-

dicted boxes from the network are compared against the actual boxes

retrieved from Java Swing. If there is a difference, the weights of the

network are updated using gradient descent to improve the predictions

next epoch.

It is important to have a validation dataset to determine whether the

network is over-fitting on the training data. This can be done by check-

ing the training progress of the network against the training and valida-
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Figure 3.7. Data inflation transformations. The right images contain a bright-
ness increase; the bottom images contain a contrast increase. The top left im-
age is the original screen shot.

tion dataset. During training, the network is only exposed to the train-

ing dataset, so if the network is improving when evaluated against the

training dataset, but not improving on the validation dataset, the net-

work is over-fitting.

With the isolated training data, we trained a network which uses the

YOLOv2 network. It has been observed that artificial data inflation

(augmentation) increases the performance of neural networks, expos-

ing the network to more varied data during training [122, 39]. Dur-

ing training, we artificially increased the size of input data using two

techniques: brightness and contrast adjustment. Before feeding an im-

age into the network, there is a 20% chance to adjust the image. This

involves a random shift of 10% in brightness/contrast and applies to
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Figure 3.8. The loss values from the YOLOv2 network when training over 100
epochs.

only a single training epoch. For example, an image could be made up

to 10% lighter/darker and have the pixel intensity values moved up

to 10% closer/further from the median of the image’s intensity values.

These transformations can be seen in Figure 3.7. The top left image is

the original, with images to the right containing an increase in bright-

ness, and images below, an increase in contrast.

YOLOv2 trains by reducing the loss value of five different areas in-

volved in the prediction of the bounding boxes:
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• loss_class: The loss value associated with incorrect class predic-

tions;

• loss_dimension: The loss value associated with inaccurate dimen-

sions of predicted Boxes

• loss_obj: The loss value associated with incorrect object detection

(i.e., predicting an object in a grid cell when one is not there, or

missing an object);

• loss_position: The loss value associated with inaccurate predic-

tions of the centre point of a bounding box;

• loss: an aggregation of all of above.

In Figure 3.8, the loss value for two datasets can be seen during train-

ing of the network. The network performance stagnates somewhere

between 40 and 50 epochs on the validation dataset. At this point,

the network is overfitting to the training dataset, where performance is

still slowly improving. In our experiments, we used the weights from

epoch 40, taking the overfitting into account. There are very minor im-

provements against the validation set after epoch 40, but we use 40 also

as an early stopping condition [29].

3.3.2 Experimental Setup

RQ3.1

To evaluate RQ3.1, we compare the performance when predicting GUI

widgets in 250 screen shots of unique application states in real appli-

cations against performance when predicting widgets in synthetic ap-

plications. Screen shots were captured when a new, unseen window
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was encountered during real user interaction. 150 of the screen shots

were taken from the top 20 Swing applications on SourceForge, and

annotated automatically via the Swing API. The remaining 100 screen

shots were taken from the top 15 applications on the Ubuntu software

centre and manually annotated. The network used to predict widget

locations was trained on only synthetic GUIs, and in RQ3.1 we see if

the prediction system is able to make predictions for real applications.

YOLOv2 predicts many boxes, which could cause a low precision. To

lower the number of boxes predicted, we pruned any predicted boxes

below a certain confidence threshold. To tune this confidence threshold,

we evaluated different confidence values against the synthetic valida-

tion dataset. As recall is more important to us than precision, we used

the confidence value with the highest F2-measure to compare synthetic

against real application screen shots. We found this value C to be 0.1

through parameter tuning on the synthetic validation dataset. However,

the actual comparison of synthetic data against real GUI data was per-

formed on the isolated test dataset, to avoid biases in this value of C

being optimal for the validation dataset.

After eliminating predicted boxes with a confidence value less than C,

we can compare the remaining boxes with the actual boxes of a GUI.

In order to assess whether a predicted box correctly matches with an

actual box, we match boxes based on the intersection over union metric.

Intersection-over-union (IoU) calculates the similarity of two boxes in

two dimensional space [111]. We calculate the IoU between the pre-

dicted boxes from the YOLOv2 network, and actual boxes in the la-

belled test dataset. The IoU of two boxes is the area that the boxes

intersect, divided by the union of both areas. An IoU value of one in-

dicates that the boxes are identical, and an IoU of 0 indicates the boxes
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0.82 0.47 0.00

Figure 3.9. Intersection over Union (IoU) values for various overlapping
boxes.

have no area of overlap. See Figure 3.9 for an example of IoU values for

overlapping boxes. The shaded area indicates overlap between both

boxes. We consider a predicted box to be matched with an actual box

when the IoU value is greater than 0.3.

RQ3.2

To evaluate RQ3.2, we use the same principle as in RQ3.1, however, the

comparison datasets are the synthetic test data-set and a set of manu-

ally annotated screen shots taken from the applications in the Apple

store. We gathered 50 screen shots of unique application states, five per

application of the top 10 free applications on the store as of 19th Jan-

uary 2019. Again, each screen shot was taken when a new, previously

unknown window appeared during real user interaction. The screen

shots were manually annotated with the truth boxes for all widgets

present.

RQ3.3

To evaluate RQ3.3, we compare the branch coverage of tests generated

by a random tester to tests where interactions are guided by predicted

bounding boxes. The subjects under test are 20 Java Swing applications,
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including the top six Java Swing applications from SourceForge and the

remaining ones from the SF110 corpus by Fraser and Arcuri [46]. Table

3.2 shows more information about each application. We limited the

random tester to 1000 actions, and conservatively performed a single

action per second. Adding a delay before interactions is common in

GUI testing tools, and using too little delay can produce flaky tests or

tests with a high entropy [48]. Because of the delay, all techniques had

a similar runtime. On a crash or application exit, the application under

test was restarted. Each technique was applied 30 times on each of the

applications, and a Mann-Whitney U-Test was used to test for signif-

icance. Although all the applications use Java Swing, this was to aid

conducting experiments when measuring branch coverage and allow

retrieval of the positions of widgets currently on the screen from the

Java Swing API for RQ3.4. Our approach should work on many kinds

of applications using any operating system.

RQ3.4

To answer RQ3.4, we compare the branch coverage of tests generated

by a tester guided by predicted bounding boxes, to one guided by the

known locations of widgets retrieved from the Java Swing API. The

API approach is similar to current GUI testing tools, which exploit the

known structure of a GUI to interact with widgets. We use the same ap-

plications as RQ3.3. We allowed each tester to execute 1000 actions over

1000 seconds. On a crash or application exit, the application under test

is restarted. Each technique ran on each application for 30 iterations.
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Table 3.2. The applications tested when comparing the three testing tech-
niques.

Application Description LOC Branches

Address Book Contact recorder 363 83
bellmanzadeh Fuzzy decision maker 1768 450
BibTex Manager Reference Manager 804 309
BlackJack Casino card game 771 178
Dietetics BMI calculator 471 188
DirViewerDU View directories and size 219 90
JabRef Reference Manager 60620 23755
Java Fabled Lands RPG game 16138 9263
Minesweeper Puzzle game 388 155
Mobile Atlas Creator Create offline atlases 20001 5818
Movie Catalog Movie journal 702 183
ordrumbox Create mp3 songs 31828 6064
portecle Keystore manager 7878 2543
QRCode Generator Create QR codes for links 679 100
Remember Password Save account details 296 44
Scientific Calculator Advanced maths calculator 264 62
Shopping List Manager List creator 378 62
Simple Calculator Basic maths calculator 305 110
SQuiz Load and answer quizzes 415 146
UPM Save account details 2302 530

3.3.3 Threats to Validity

There is a chance that our object detection network over-trains on the

training and validation synthetic GUI dataset and therefore achieves

an unrealistically high precision and recall on these datasets. To coun-

teract this, we use the third test dataset when calculating precision and

recall values for the synthetic dataset which has been completely iso-

lated from the training procedure.

To ensure that our real GUI screen shot corpus represents general ap-

plications, the Swing screen shots were from the top applications on

SourceForge, the top rated applications on the Ubuntu software centre,

and the top free applications from the Apple Store.

In object detection, usually an IoU value of 0.5 or more is used for a
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Figure 3.10. Precision and recall of synthetic data against real GUIs from
Ubuntu/Java Swing applications.

(a) Manually Annotated (b) Predicted Annotations

Figure 3.11. Manually annotated (a) and predicted (b) boxes on the Ubuntu
application “Hedge Wars”.

predicted box to be considered a true positive (a “match”). However,

we use an IoU threshold of 0.3 as the predicted box does not have to

exactly match the actual GUI widget box, but it needs enough overlap

to enable interaction. Russakovsky et al. [121] found that training hu-

mans to differentiate between bounding boxes with an IoU value of 0.3
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Figure 3.12. Confusion matrix for class predictions.

or 0.5 is challenging, so we chose the lower threshold of 0.3.

As the GUI tester uses randomized processes, we ran all configura-

tions on all applications for 30 iterations. We used a two-tailed Mann-

Whitney U-Test to compare each technique and a Vargha-Delaney A12

affect size to find the technique likely to perform best.

3.3.4 Results

RQ3.1: How accurate is a machine learning system trained on

synthetic data when detecting widgets in real GUIs?

Figure 3.10 shows the precision and recall achieved by a network trained

on synthetic data. We can see that predicting widgets on screen shots

of Ubuntu and Java Swing GUIs achieves a lower precision and recall

than on synthetic GUIs. However, the bounding boxes of most widgets

have a corresponding predicted box with an IoU > 0.3, as shown by

a high recall value. A low precision but high recall indicates that we

are predicting too many widgets in each GUI screen shot. Figure 3.11a

shows an example of a manually annotated image, and Figure 3.11b

shows the same screen shot but with predicted widget boxes.
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The precision and recall values only show if a predicted box aligns with

an actual box. Figure 3.12 shows the confusion matrix for class predic-

tions. An orange (light) square indicates a high proportion of predic-

tions, and blue (dark) square a low proportion. We can see that for syn-

thetic applications, most class predictions are correct. However, the pre-

diction system struggles to identify menu_items and this is most likely

due to the lower probability of them appearing in synthesized GUIs.

The network would rather classify them as a button which appears

much more commonly through all synthesized GUIs. However, as a

menu item and a button has the same functionality (i.e., when clicked,

performs some action), the interaction generated will be equivalent re-

gardless of this misclassification. From the confusion matrix, another

problem for classification seems to be buttons. Buttons are varied in

shape, size and foreground. For example, a button can be a single im-

age, a hyper-link, or text surrounded by a border. Subtle modifications

to a widget can change how a user perceives the widget’s class, but are

much harder to detect automatically.

While this shows that there is room for improvement of the prediction

system, these improvements are not strictly necessary for the random

tester as described in Section 3.2.3, since it interacts with all widgets

in the same manner irrespective of the predicted type. Hence, predict-

ing the correct class for a widget is not as important as identifying the

actual location of a widget, which our approach achieves. However,

future improvements of the test generation approach may rely more

on the class prediction and handling unique classes differently may be

beneficial.

RQ3.1: In our experiments, widgets in real applications were detected with

an average recall of 77%.
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Figure 3.13. Predicted bounding boxes on the OSX application “Photoscape
X”.

RQ3.2: How accurate is a machine learning system trained on

synthetic data when detecting widgets on a different operating

system?

To investigate whether widgets can be detected in other operating sys-

tems with a different widget palette, we apply a similar approach to

RQ3.1 and use the same IoU metric, but evaluated on screen shots taken

on a different operating system and from different applications.

Figure 3.14 shows the precision and recall achieved by the prediction

system trained on synthetic GUI screen shots. We again see a lower pre-

cision and recall on OSX (Mac) GUI screen shots compared to synthetic
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Figure 3.14. Precision and recall of synthetic data against real GUIs from Mac
OSX applications.

GUIs, but we still match over 50% of all boxes against predicted boxes

with an IoU > 0.3.

A lower precision indicates many false positive predictions when us-

ing the OSX theme in applications. An observable difference between

predictions on OSX and on Ubuntu is that our machine learning sys-

tem has greater difficulty in predicting correct dimensions for bound-

ing boxes on OSX. See Figure 3.13 for correctly predicted boxes in the

OSX application “Photoscape X”.

One observation of applications using OSX is that none use a tradi-

tional menu (e.g. File, Edit, etc.). OSX applications instead opt for a

toolbar of icons that function similar to tabs. Our prediction system

could be improved by including this data in the training stage.

For the purposes of testing, an exact match of bounding boxes is less rel-

evant so long as the generated interaction happens somewhere within
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Figure 3.15. Predicted widget boxes and the corresponding heatmap of pre-
dicted box confidence values. Darker areas indicate a higher confidence of
useful interaction locations, derived from the object detection system. (Source:
self)

the bounding box of the actual widget. For example, if a predicted box

is smaller than the actual bounding box of a widget, interacting with

any point in the predicted box will trigger an event for the correspond-

ing widget. IoU does not take this into account, and it is possible that

a box will be flagged as a false positive if IoU < 0.3 but the predicted

box is entirely within the bounds of the actual box. In this case, the pre-

dicted box would still be beneficial in guiding a test generator. Figure

3.15 shows predicted boxes on an OSX application, and the correspond-
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ing heatmap by plotting the confidence values of each box. It is clear

from this image that the predictions can be used to interact with many

widgets in the GUI.

RQ3.2: GUI widgets can be identified in different operating systems using

a widget prediction system trained on widgets with a different theme,

achieving an average recall of 52%.

RQ3.3: What benefit does random testing receive when guided by

predicted locations of GUI widgets from screen shots?

Figure 3.16 shows the branch coverage achieved by the random tester

when guided by different techniques. Table 3.3 shows the mean branch

coverage for each technique, where a bold value indicates significance.

Here we can see that interacting with predicted GUI widgets achieves a

significantly higher coverage for 18 of the 20 applications tested against

a random testing technique. The A12 value indicates the probability of

the tester guided by predicted widget locations performing worse than

the comparison approach. If A12=0.5, then both approaches perform

similarly (i.e., the probability of one approach outperforming another

is 50%); if A12<0.5, the tester guided by predicted widget locations usu-

ally achieves a higher coverage. If A12>0.5 then the tester guided by

predicted widgets would usually achieve a lower coverage. For in-

stance, take Address-book: pv(Pred,Rand) < 0.001 and A12(Pred,Rand)

= 0.032. This indicates that the testing approach guided by predicted

widgets would achieve a significantly higher code coverage than a ran-

dom approach around 96.8% of the time when testing this application.

Overall, guiding the random tester with predicted widget locations

lead to a 42.5% increase in the coverage attained by generated tests.
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Figure 3.16. Branch Coverage achieved by a random clicker when clicking
random coordinates, guided by predicted widgets positions and guided by
the Swing API.

We can see that even on applications that use a custom widget set

(e.g., ordrumbox), using predicted widget locations to guide the search

achieves a higher coverage. The main coverage increases were in ap-

plications with sparse GUIs, like Address Book (24%→48%) and Dietet-

ics (20%→54%). The predicted widgets also aided the random tester

to achieve coverage where complex sequences of events are needed,

such as the Bellmanzadeh application (22%→28%). Bellmanzadeh is a

fuzzy logic application and requires many fields to be created of dif-

ferent types. Random is unlikely to create many variables of unique
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types but, when guided by predicted widget locations, is more likely

to interact with the same widgets again to create more variables. The

random tester is similar to Android Monkey, but achieves a lower level

of coverage to that Choudhary et al. [33] observed. The coverage levels

achieved by the random tester show that it spends more time perform-

ing uninteresting actions, whereas it is far more likely to interact with

an actual widget when guided by widget predictions

One notable example is the application JabRef, where unguided ran-

dom achieved 6.6% branch coverage, significantly better than random

guided by widget predictions which achieved 5.2%. JabRef is a bibtex

reference manager, and by default it starts with no file open. The only

buttons accessible are “New File” and “Open”. The predicted boxes

contain an accurate match for the “Open” button and a weak match for

the “New File” button. If the “Open” button is pressed, a file browser

opens, locking the main JabRef window.

As we randomly select a window to interact with from the available,

visible windows, any input into the main JabRef window is ignored

until the file browser closes. There are two ways to exit the file browser:

clicking the “Cancel” button or locating a valid JabRef file and pressing

“Open”. There are, however, many widgets on this screen to interact

with lowering the chance of hitting cancel, and it is near impossible to

find a valid JabRef file to open for both the prediction technique and

the API technique. Even if the “Cancel” button is pressed, there is a

high chance of interacting with the “Open” button again in the main

JabRef window.

On the other hand, the random technique has a low chance of hitting

the “Open” button. When JabRef starts, the “New” button is focused.

We repeatedly observe the random technique click anywhere in the tool
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bar and type “Hello World!”. As soon as it presses the space key, it

would trigger the focused button and a new JabRef project would open.

This then unlocks all the other buttons to interact with in the JabRef tool

bar

RQ3.3: In our experiments, widget prediction lead to a significantly higher

attained coverage in generated tests, achieving on average 42.5% higher

coverage over random testing. However, widget prediction can get stuck in

a loop if the amount of identified widgets is low.
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RQ3.4: How close can a random tester guided by predicted widget

locations come to an automated tester guided by the exact positions

of widgets in a GUI?

Using GUI ripping to identify actual GUI widget locations serves as a

gold standard of how much random testing could be improved with

a perfect prediction system. Therefore, Figure 3.16 also shows branch

coverage for a tester guided by widget positions extracted from the

Java Swing API. It is clear that whilst predicted widget locations aid

the random tester in achieving a higher branch coverage, unsurpris-

ingly, using the positions of widgets from an API is still superior. This

suggests that there is still room for improving the prediction system

further.

However, notably, there are cases where the widget prediction tech-

nique improves over using the API positions. One such case is DirView-

erDU. This is an application consisting of only a single tree spanning

the whole width and height of the GUI. If a node in the tree is right

clicked, a pop-up menu appears containing a custom widget not sup-

ported or present in the API widget positions. However, the prediction

approach correctly identifies this as an interactable widget and can gen-

erate actions targeting it.

Another example of this is in the Address Book application. Both guid-

ance techniques lead the application into a state with two widgets: a

text field and a button. To leave this GUI state, text needs to be typed

in the text field and then the button needs to be clicked. If no text is

present in the text field when the button is clicked, an error message

is shown and the GUI state remains the same. However, the informa-

tion of the text field is not retrieved by the Swing API as it is a custom
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widget. The API guided approach then spends the rest of the testing

budget clicking the button, producing the same error message. Pre-

dicted widget guidance identifies the text field, and can leave this state

to explore more of the application. Similar behaviour was observed one

more application.

A final observation is with the Java Fabled Lands application. This

application is a story-based game, with links embedded in the text of

the story, only identifiable by users due to the links being underlined.

The Swing API guided approach only identifies the overall text field,

having to fall back to a random strategy to interact with these links.

However, the detection approach can identify a few of these links and

can navigate through certain scenarios in the story, achieving a higher

code coverage than the API approach in this instance.

RQ3.4: Exploiting the known locations of widgets through an API achieves

a significantly higher branch coverage than predicted locations, however

widget prediction can identify and interact with custom widgets not

detected by the API.

3.4 Discussion

To further investigate the quality of generated interactions using the

random tester, we plotted 1000 interactions with a single GUI. Figure

3.17 shows the points of interaction for each technique. The random

approach has an expected uniform distribution of interaction points

in the GUI. The detection approach refines this and targets each wid-

get. However, we can see that the disabled “next” button has also been

identified and targeted, as well as some text. Finally, the gold standard
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(a) Interaction locations of an unguided
random GUI tester

(b) Interaction locations of a random
GUI tester guided by predicted wid-
gets

(c) Interaction locations of a random
GUI tester guided by the Java Swing
API

Figure 3.17. Interaction locations for a random tester guided by different ap-
proaches.

API approach always interacts with a valid widget.

The quality of the prediction approach is directly related to the training

data of the YOLOv2 network. We tried to improve the precision and

recall of the prediction system. One such method was by selecting a

subset of the training data that had similar statistics to the corpus of

real GUIs. For this, we looked at the following statistics:
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Figure 3.18. Precision and recall of a widget prediction system trained on a
selected subset, or the entire training dataset of labelled GUIs.

• widget location: the probability of a widget appearing in a cell of

the 13x13 grid used by YOLOv2;

• widget dimension: the proportion of the total space in the GUI that

a widget is occupying;

• widget probability: the probability of a widget appearing in a GUI;

• image pixel intensity: the shape of the histograms of all images in

the set combined.

Then, we calculated each metric on the real dataset. These values were

plugged into a genetic algorithm which would select N images from the

training dataset, calculate these metrics and compare against the real

dataset. The fitness function was directly correlated to the difference

in statistics, with an aim to minimise this difference. The crossover

function was single point, swapping elements from the two selected

individuals. The mutation function would replace a random quantity
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Figure 3.19. Precision and recall of synthetic data against manually annotated
application GUIs.

of GUIs in the list with random GUIs taken from the set of training data

that do not currently appear in the list.

Figure 3.18 shows the precision and recall when comparing a network

trained on the data selected by the genetic algorithm, to a network

trained on the entire dataset. From this Figure, the system trained on

more training data has an increased recall on real GUIs, and the system

trained on a subset of the training data has higher precision.

The relationship between recall, precision and code coverage is inter-

esting. It is not immediately obvious whether sacrificing recall for pre-

cision will aid in code coverage, or vice-versa. Future work is needed

into this relationship, and the best method of sampling a subset of data

to maximise the quality of the trained prediction system for object de-

tection. For our experiments, we decided to use the entire set of train-

ing data to expose the network to more variety, but it is entirely possible
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Chapter 3 Guiding Testing through Detected Widgets from
Application Screen Shots

that selecting a subset could produce a better object detection system.

To further investigate if our model can predict widgets in applications

which are not supported by current testing tools, we ran our model

on GUIs where widget information cannot currently be extracted. Fig-

ure 3.19 shows the precision and recall of the model on GUIs that had

to be manually annotated. These applications mainly consist of un-

known GUI framework usage, or drawing widgets directly to the ap-

plication’s screen buffer. This usually involves a unique theme created

by the application’s designer, which is unique from other applications

on the same platform. It is interesting that on these GUIs, our model

achieves a level of performance which is in-between the Ubuntu appli-

cations, and the Mac OSX applications. This could be because these

manually annotated applications ran on Ubuntu so parts of the theme

could appear in the screen shots, and our model has a slight increase in

performance when detection widgets in these screen shots.

When evaluating the performance of the widget prediction model on

screen shots of applications, we currently use the intersection over union

metric, which relies on accurate bounding boxes being predicted. How-

ever when testing applications using their GUI, it is not necessary to

predict good bounding boxes, so long as the bounding boxes have a

high chance of allowing interaction with the widget. One issue with

intersection over union is that a predicted box which is entirely encap-

sulated by the actual widget may be perceived as a false positive, but

would have a 100% chance of interacting with a widget if exploited by

a testing tool . To evaluate the difference between the object detection

intersection over union, and the likelihood of just clicking a widget, we

calculated precision and recall using a new metric: area overlap. This

metric calculates the area of intersection between the predicted bound-
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(a) Synthetic data against Ubuntu
and Java Swing applications
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(b) Synthetic data against Mac OSX
applications
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(c) Synthetic data against manually
annotated applications

Figure 3.20. Precision and recall of the widget prediction modeling using an
area overlap metric

ing box, and the actual widget, and divides it by the area of the pre-

dicted bounding box to give the probability that a randomly generated

coordinate inside the box will click on the actual widget.

Figure 3.20 shows the precision and recall for different datasets using

the new area overlap metric with the same threshold as for the previous

intersection over union metric. Here, we can observe a sharp increase

in both precision and recall in all three dataset comparisons. In our ex-

periments, we used intersection over union, as this is standard practice

in object detection. However, intersection over union may not be the

best metric to evaluate how effective a widget prediction model is at

guiding a tester to click on widgets in a GUI.
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3.5 Conclusions

When applications have no known exploitable structure behind their

GUI, monkey testing is a common fail-safe option. However, it is possi-

ble to identify widgets in a GUI from screen shots using machine learn-

ing, even if the prediction system is trained on synthetic, generated

GUIs. Applying this machine learning system during random GUI test-

ing led to a significant coverage increase in 18 out of 20 applications in

our evaluation. A particular advantage of this approach is that the pre-

diction system is independent of a specific GUI library or operating

system. Consequently, our prediction system can immediately support

any GUI testing efforts.

Comparison to a gold standard with perfect information of GUI wid-

gets shows that there is potential for future improvement:

• Firstly, we need to find a better method of classifying GUI wid-

gets. A tab that changes the contents of all or part of a GUI’s

screen has the same function as a button, so they could be grouped

together.

• We currently use YOLOv2 and this predicts classes exclusively: if

a button is predicted, there is no chance that a tab could also be

predicted. Newer methods of object detection (e.g. YOLOv3 [114])

focus on multiple classification, where a widget could be classi-

fied as a button and as a tab. This could improve the classification

rate of widgets that inherit attributes and style.

• The relationship between precision and recall needs further inves-

tigation. It is not clear what role each metric plays in achieving

code coverage. A higher precision should ensure that less time
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3.5 Conclusions

is spent on wasted interactions, but if certain widgets can never

be interacted with as a result, then this could negatively impact

test generation. What is the trade off between having less false

positives, or a higher recall and increasing test generation time?

• Whilst labour intensive, further improvements to the widget pre-

diction system could be made by training a machine learning sys-

tem on a labelled dataset of real GUIs. To lower effort costs, this

dataset could be augmented with generated GUIs. The perfor-

mance of the prediction system is dependent on the quality of

training data.

• Furthermore, in this chapter we focused on a single operating

system with various themes. However, it may be beneficial to

train the prediction system using themes from many operating

systems and environments to improve performance when identi-

fying widgets across different platforms.

Besides improvements to the prediction system itself, there is potential

to make better use of the widget information during test generation.

For example, if there are a limited number of boxes to interact with,

it may be possible to increase the efficiency of the tester by weighting

widgets differently depending on whether they have previously been

interacted with (e.g., [130]). This could be further enhanced using a

technique like Q-learning (cf. AutoBlackTest [92]) or using solutions to

the multi-armed bandit problem [36].
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4 Testing By Example:

Graphical User Interfaces

In the last chapter, we focused on using deep learning to create a pre-

diction system that can identify patterns in screen shots of GUIs. We

used many screen shots of generated GUIs to train the network power-

ing the system. However, it might be possible to model how real users

interact with an application, and exploit the interactions of these users

to create application-specific models. Adopting the growing trend of

crowd-sourcing would be a useful method of processing and augment-

ing the large quantities of gathered user data.
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Chapter 4 Testing By Example: Graphical User Interfaces

4.1 Introduction

We live in an age of data. It is common for most applications to log

information about the environment they are running in, problems en-

countered and even how users interact with parts of the system. In the

last chapter, we proposed testing techniques which take the current ap-

plication state at a single point in time, identifying interesting parts of

the GUI where interactions may trigger underlying events in the source

code, and then performing these interactions. These techniques have

no concept of time. They do not know if an interaction led to a new

GUI state, or had any impact, and do not differentiate between the first

and last interaction performed. However, a user interacting with a GUI

thinks about future interactions, as well as past and present. Usually a

user has some objective, and performs a sequence of interactions over

time to achieve their goal. For example, when a user is filling out a

form, they usually start from the top and work their way down, finally

clicking a submit button. Analysing this sequential information could

be beneficial for testing tools to generate more realistic event sequences

as test data.

The key contributions of this chapter are:

1. An identification of low-level interaction events that are needed

to replicate user interactions using keyboard and mouse for black

box testing.

2. A technique of processing user GUI interaction data into a model

capable of generating interaction data that is statistically similar

to that of the original user’s interactions.

3. An empirical study comparing different techniques of generat-
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4.2 Modelling GUI Interaction Events

ing models from user interactions, and comparing them to cur-

rent testing techniques of testing an application solely through its

GUI.

In this chapter, we will focus on how effectively a model trained on user

interactions can explore an application versus the approaches from the

previous chapter.

4.2 Modelling GUI Interaction Events

To simulate a user interacting with a GUI, it is necessary to understand

what actions a user can perform that trigger events in the application.

The event-driven programming paradigm enables applications to re-

main in an idle “sleep” state until some event triggers parts of the sys-

tem to execute. As discussed in chapter 2, widgets can have event han-

dlers linked to them, executing code in the application when interaction

occurs. These interactions are triggered through usage of the applica-

tion’s GUI.

To interact with a GUI, two devices are primarily used: keyboard and

mouse. The mouse can move a cursor on the screen, and click to tar-

get specific elements shown to users. A standard mouse usually has a

maximum of five buttons: left click, right click, middle click and but-

ton 4/5 that is usually on the side of the mouse. A mouse usually has a

scroll wheel which can be used to easily navigate a page when contents

are taller than the monitor’s resolution. Keyboards are usually very

specific to locale, but function similarly. Each press and release of the

buttons on the keyboard sends corresponding events to an application,

firing events in the system.

111



Chapter 4 Testing By Example: Graphical User Interfaces

Because of the diversity of keyboards and the large amount of interac-

tions that can occur with the mouse, it is important to employ a gen-

eral set of events that are not locked to one specific keyboard layout or

mouse.

4.2.1 GUI Events

There are many methods of interacting with a Graphical User Interface.

We define 4 categories of user GUI events which encapsulate standard

keyboard and mouse interactions. By combining these events, most

forms of user interaction can be generated for black box testing without

any prior application assumptions.

1. Mouse Event: With the cursor over a GUI’s widget, this event oc-

curs when any of five buttons on the mouse is pressed or released.

This has 10 sub-events across the five buttons on the mouse, a

button pressed event and a button released event. Mouse position

was encoded into the event (e.g., MOUSE_DOWN[100, 100] for a

mouse button press at pixel location 100, 100). Mouse movement

without clicking could also be encoded as a mouse event, but

was not tracked during our experiments as most applications do

not take mouse movement into account, only the location when a

mouse button is pressed.

2. Key Event: Pressing any key on the keyboard. Each key event

is encoded with corresponding triggering key and is split into

two sub events for each key: key down and key up. This leads

to many sub-events, depending on the number of available in-

put keys to users but allows complex interactions such as past-
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ing via short cut key combination (e.g., CTRL-V in four events:

KEY_DOWN[’CTRL’], KEY_DOWN[’V’], KEY_UP[’V’], KEY_UP[’CTRL’]).

3. Scroll Event: With the mouse over a certain position in a GUI,

this event is triggered by the scroll wheel moving. This is split

into two types of scroll event: up or down. Again, the position of

the mouse when scrolling is encoded into the event, as well as the

mouse wheel displacement (e.g., SCROLL_DOWN[100, 100, 10, 0]

for scrolling the mouse wheel down 10 pixels and across 0 pixels

at pixel location 100, 100).

4. Window Change Event: Although not directly triggered by a

user, this event occurs when the title of the currently in-focus win-

dow changes. This could be through an application opening a

new window, or the user clicking on a different window.

These events allow us to record, store and replay any interactions that

a user performs in a GUI through a traditional keyboard and mouse. In

the next section, we look at how we can learn from the events stored

from users, and generate new events.

4.3 Generating GUI Interaction Events

The approaches from the last chapter are incapable of generating some

events that could be recorded from users. For example, we described

a random “monkey” tester that could interact with random positions

in the application through clicking or typing. This could never gen-

erate drag and drop functionality, or a user pressing a short cut key

(e.g., CTRL-V) as every generated interaction is only for that specific

point in time, interactions can never overlap. Dragging and dropping
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is an example of two interactions: mouse button up, and mouse button

down. Because of this limitation of the previous approach, a new ran-

dom baseline is needed capable of generating these newly identified

interactions.

4.3.1 Random Events Monkey Tester

The random approach discussed in the last chapter may have a disad-

vantage over any model which learns from user data due to the new

events that a user model can perform. Models based on user data can

perform more interactions such as scrolling, click-and-drag or holding

down keys.

We created a new random approach which is very similar to the ran-

dom monkey tester in the previous chapter. Firstly, we decide on what

type of action to generate from the ones listed in the previous section,

excluding window change events as these are not directly triggered by

the user, but as a response by the application itself. When an event

type has been decided, we can generate the data that the event type

needs. For example, a mouse event needs three components: a mouse

button, whether the button was pressed or released, and a position on

the screen for the interaction.

This new monkey tester can generate events such as scrolling, click and

drag or holding down keys, but does not have temporal data such as

that of a real user. Interactions generated by the random tester are

not related to the previous, or the next interaction. To include this

sequential-based relationship information, an analysis of user data is

needed.
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Table 4.1. Features of each event type

Event Type Features Description

Mouse Event 2 (positionx, positiony) of cursor in GUI
when the interaction occurred.

Key Event 0 No keyboard data is clustered
Scroll Event 4 (positionx, positiony) of mouse when

scrolling started, and (displacementx,
displacementy) of scroll wheel for current
scroll event.

4.3.2 Generating User Models

When users interact with an application, for each event described in the

previous section, we store all relevant data from the interaction. This

gives a large sequence of data for each user, with corresponding times-

tamps so a time-line of interactions can be constructed.

We group the interactions by type, for example, one group containing

all events where the left mouse button was pressed down. Each event

type has explicit metadata that can be used to replay the interaction, for

example, the position of the cursor in the GUI when the left mouse but-

ton was pressed. Grouping by type allows us to find patterns for each

type of interaction in a user’s data, and this is done through clustering

an interaction type’s metadata. This creates subgroups in the metadata,

and is a form of unsupervised learning. Each subgroup represents sim-

ilar user interactions, and by analysing the user data, we can identify

transitions between subgroups which can influence the interactions we

generate.
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Clustering Events

Table 4.1 shows events recorded from user interactions, the features of

each event, and the description of each feature. In this table, the event

type is a generalisation of user interactions, for example, Mouse Event

represents any interaction occurring through the mouse which could

be LEFT_DOWN, LEFT_UP, RIGHT_DOWN, etc.

With each event type’s features stored, they can easily be clustered. We

used K-means [21] in our implementation. Selecting an appropriate

value of K is important for our test generation technique to perform at

an optimal level. Too many clusters, and there will be a limited number

of paths through the system (there will be a low number of transitions

between each cluster). Too few clusters and some widgets will become

uninteractable, having a large distance between the original point of

user interaction and the cluster centroid. How we select the value of K

is influenced by the amount of data available for us to cluster.

As we store data in chronological order, we can apply techniques from

other areas of computer science which also work with ordered data. As

an example, we look at how human language is processed. Human lan-

guage is an ordered sequence of data. This data consists of words (i.e.,

sequences of characters), and sentences (i.e., sequences of words) with

temporal data present between elements in each of the sequences. Nat-

ural Language Processing (NLP) is a subfield of computer science, with

a goal of processing and studying the patterns present in large amounts

of human language data. To achieve this, NLP develops novel practi-

cal applications, intelligently processing written human language. NLP

involves the processing of sequences of text to infer models describing

the characteristics, syntax, and semantics of the text. However, the tech-
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niques applied are not only limited to textual input. Sequences of user

data gathered from various user interfaces can be analysed using NLP

techniques. For example, one such technique of calculating the transi-

tion probabilities of elements in a sequence is to use an n-gram model.

N-gram - N-grams are language models which store sequential infor-

mation about text. N-grams contain the probabilities of transitions be-

tween each element in sequential data (e.g., a sentence). When an n-

gram is created from a sentence, the data contained would be the prob-

abilities of one word following another. The n of n-gram is actually a

parameter that can be changed to modify the length of sequences gen-

erated. With N=2, the probabilities shown would be for a sequence of

two words appearing one after the other in a given corpus of text. For

example, take the following sentence:

She sells sea shells by the sea shore. The sea shells that she sells are

sea shells for sure.

If we assume N = 2, we can construct the following word pairs:

She sells; sells sea; sea shells;

shells by; by the; the sea; sea shore

The sea; sea shells; shells that;

that she; she sells; sells are;

are sea; sea shells; shells for; for sure

We can calculate the probabilities that one word follows another using
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these groupings, and observe some details about the sentence, for in-

stance:

1. The probability of the word “shells” following the word “sea” is

0.75 (i.e., P(shells|sea) = 0.75)

2. The word “sea” always follows the word “the”: P(sea|the) = 1

We can also apply this technique to the sequential data recorded from

users. By replacing each event in the sequence of user data with the

cluster centroid assigned to an events metadata, we can generate a

probabilistic model. To generate interaction data from this model, we

use a Markov chain. We start by selecting a random element from the

n-gram model and seed the event represented by the cluster centroid

linked to this group. Then, we look at the probabilities of the n-gram

of transitions from this cluster to another. We decide which cluster to

jump to next, weighted by the n-gram probabilities. Now we can look

at the last two interaction groups and the probabilities of jumping to

each group from these two previous groups.

This model can run indefinitely, and has the added advantage of never

tiring as a human tester would. The model represents all user inter-

actions with an application. However, the full set of user interactions

with an application can generate models that are large in size. Given

that unique pages and screens in an application use different interac-

tion events, it may be beneficial to generate smaller, more targeted mod-

els that interact with the application at specific times during testing.
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4.3.3 Application Window-based Models

Having a separate model for each state of an application would aid in

guiding test generation by interacting with certain states more specifi-

cally as a user did than with the application as a whole. For example,

if an application requires a positive integer entered into a textbox at

a certain point in the execution, it will be far easier to generate this

event with a model trained from user data that consists of the subset

of user data which clicks inside the textbox and types a positive inte-

ger, opposed to all possible interactions with the application across all

states. However, inferring an application’s state from the appearance

of its GUI is difficult.

To generate models for unique parts of an application, we chose to iden-

tify parts of an application with a simple, naïve approach. We use only

the title of the currently in-focus window. The advantages of this are

that it requires low computation, but the disadvantage is that applica-

tions which only use a single window but hot-swap the contents of said

window will have inflated, non-specific models.

Now, we follow the same process for the application user model, but

the data provided to the model is filtered to only include interactions

that users performed in the current application’s window. We can grab

the title of the current window, and select the models depending on

this title to guide the generated interaction data. This works so long

as we have seen the current window during training, but we also need

a method of generating interactions for windows that have not been

previously seen.

Using separate models per application window limits the amount of
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training data each model has access to, and this alters the clustering

process and the available values of K in K-means. This creates a chal-

lenge when generating models. Each window in an application has a

diverse quantity of interactions, so a static value of K is not sufficient.

For instance, a confirmation dialog may only have a few interactions,

with an “OK” or “Cancel” button, but the main window may have an

interaction count many magnitudes higher. It is also not practical to

manually choose the number of clusters for each window of an applica-

tion. It is important to balance the number of clusters for each window

to provide the temporal sequential model with sufficient transitions be-

tween clusters, but also to ensure there are enough clusters to interact

with the same widgets that users did by minimising the distance be-

tween each cluster and its centroid.

We experimentally tried many equations to calculate the number of

centroids that should be used. Firstly, we tried diving the number of

cluster centroids by various numbers, e.g., by 10. The problem with

this approach were application screens which had very little interac-

tion points (e.g., pop-up confirmation menus). With a low number of

interaction points, the cluster centroids often appeared in the middle of

groups of widgets present in the application state, and so the test gener-

ators can get stuck in these states. Also, application screens with many

interaction points still have clusters with little data points and a lan-

guage model which is sparse. To fix this issue, we changed the division

to a square root, so as the number of interactions for an application’s

screen increases, so does the amount of data points per cluster. Even-

tually, we select the following equation, where x denotes the number

of user interaction data points available to a specific application’s win-

dow: f loor(min(x, max(5, 3 ×
√

x))). We need to allow a high number

of clusters in relation to a small dataset to enable interactions to be gen-
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erated at all points in a window. However, with a large dataset, we can

have a much lower proportion of clusters with many more data points

in each. This equation has a good balance of allowing many clusters to

appear when only a limited number of interaction points are present in

a window, but will also flush out the transition probabilities when there

are many interaction points by assigning more events to each cluster.

4.4 Evaluation

To observe the impact that user data can have on a model that generates

GUI interaction data, we ask the following questions:

RQ4.1: How beneficial is using a model trained on GUI interactions within

specific windows compared to models trained on interactions with

the whole application, or a number of different applications?

RQ4.2: What is the best approach to generate GUI tests when encounter-

ing a window for which no user data was available to create a

model?

RQ4.3: Does a GUI testing approach in which interactions with GUI com-

ponents are guided by a model based on user data provide better

code coverage than an approach in which interactions are purely

random?

4.4.1 Experimental Setup

To create models based on real user data, we have to record users in-

teracting with applications. Test subject applications were taken from

the last chapter, but in order to maximise the quantity of user data per
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Table 4.2. The applications tested when comparing the three testing tech-
niques.

Number Application Description LOC Branches

1 bellmanzadeh Fuzzy decision maker 1768 450
2 BlackJack Casino card game 771 178
3 Dietetics BMI calculator 471 188
4 JabRef Reference Manager 60620 23755
5 Java Fabled Lands RPG game 16138 9263
6 Minesweeper Puzzle game 388 155
7 ordrumbox Create mp3 songs 31828 6064
8 Simple Calculator Basic maths calculator 305 110
9 SQuiz Load and answer quizzes 415 146
10 UPM Save account details 2302 530

application, we halved the number of subjects to 10 applications. This

allows more transitions to be present in each Markov chain, and more

cluster centroids to be used per application and window. Table 4.2

shows the applications selected. The criteria for application selection

was as follows:

• The application should be complex enough to not be fully ex-

plorable in under three minutes;

• The application should have minimal input/output commands

(e.g., saving and loading to disk);

• The application should be simple to understand and take mini-

mal training for users, having a small amount of unique states

and help menus included in the application.

With 10 applications to test, we recorded 10 participants interacting

with each application. Participants were randomly selected PhD stu-

dents from The University of Sheffield, each studying different areas of

computer science. User recording was split into two phases: a warm

up “training” phase, followed by a “task-driven” phase.
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The warm up phase was the first time any user had interacted with

an application. This was designed to simulate a novice user who is

learning and exploring the application with no real goal of what the

achieve with their interactions. Each participant interacted with each

application for three minutes during the warm up phase.

With the warm up phase complete, each participant was given a list of

tasks to perform. The tasks were in a randomized order and if a user

had already performed a task during the task-driven phase, they could

skip over the task. See Appendix A for an example task sheet given to

participant one.

Next, the user data can be used in various ways to generate user mod-

els. Each combination is presented as a different technique which will

be described through each research question.

The techniques used in this chapter are a little different to the tech-

niques from the last chapter. The user models can generate events such

as click and drag, but can also generate the events from the previous

chapter (click and key pressed). In order to ensure that the techniques

from both chapters generate a similar number of events, we have to

define the events from the last chapter. Firstly, a “click” is a mouse

button press and mouse button release. The event generators that are

derived from user data would need to perform two interactions to per-

form an identical interaction as that of event generators from the last

chapter. Because of this, we have to make any event that corresponds

to a “down” and “up” event only perform 0.5 actions. This gives each

technique a fair testing budget (i.e., all techniques could perform 500

mouse clicks which correspond to 1000 mouse down and mouse up

interactions).
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Table 4.3. Techniques of using user data to generate GUI events for interac-
tions.

Acronym Resource Cost Description

APPMODEL User interaction data
for AUT

Derive a sequential model from user interac-
tion data on an application

WINMODEL User interaction data
for AUT

Derive a sequential model from user interac-
tion data for each seen window of an appli-
cation. If currently at an unseen window, fall
back to APPMODEL

WINMODEL-AUT User interaction data
for multiple apps, not
including AUT

Derive a sequential model from user interac-
tion data for each seen window of a set of ap-
plications, not including the AUT. If currently
at an unseen window, fall back to an aggre-
gated APPMODEL of the applications.

RQ4.1: How beneficial is using a model trained on GUI interactions

within specific windows compared to models trained on interactions

with the whole application, or a number of different applications?

This first question evaluates the impact that training data has on the

quality of generated models. This research question aims at comparing

a model that is trained on specific data (e.g., data from the application

under test) against general data (e.g., data taken from applications ex-

cluding the application under test). Also, even if a model is trained

specifically on data from the application under test, it may be possible

to split the training data and generate multiple models, or a model for

each window of the application.

Table 4.3 shows three techniques that will be compared to evaluate the

impact that the source of user data can have on a generated model.

Comparing APPMODEL and WINMODEL will give insight into the

benefits of generating a model per application window. WINMODEL

and WINMODEL-AUT are identical in technique, but the data used

to generate the models differs. WINMODEL-AUT should have much

more data, with many more interaction options. Whilst this can be

beneficial, it can also hinder the number of useful interactions that
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Table 4.4. Techniques of using user data to generate GUI events for interac-
tions.

Acronym Resource Cost Description

APPMODEL User interaction data
for AUT

When encountering an unseen window, use a
model derived from user interaction data on
an application.

RANDOM None When encountering an unseen widow, gener-
ate random event in the bounds of the appli-
cation’s window, similar to what user could,
including scrolling, click and drag, and press
and holding keys.

PREDICTION Screen shot Predict locations of widgets from screen shot
and interact inside the bounds of a random
predicted box. Does not use user data.

GROUNDTRUTH Supported underlying
widget structure

Use exact known positions from Swing API to
interact with widgets. Does not use user data.

WINMODEL-AUT performs. On the other hand, WINMODEL should

have a limited set of interactions available to generate, with most of

them having some impact when performed on the AUT, as users rarely

perform uninteresting actions.

RQ4.2: What is the best approach to generate GUI tests when

encountering a window for which no user data was available to

create a model?

During testing, it is possible that the window title of an application’s

window will not have been seen during user interactions. This unseen

window will have no corresponding model to generate events, so an-

other method of guiding interactions is needed. This could occur if

user submitted content (e.g., the name of the current document being

edited) is included in the window’s title, a new version of the applica-

tion has added additional windows, or various other reasons.

Table 4.4 shows four possible techniques to handle unseen application

windows. To find the better technique of handling an unseen window

in an application, we first compare the two user approaches: RANDOM
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Table 4.5. Techniques of using user data to generate GUI events for interac-
tions.

Acronym Resource Cost Description

RANDCLICK None A random tester from the last chapter that
can click or type at random positions on the
screen.

RANDEVENT None Generate event similar to what user could, in-
cluding scrolling, click and drag and press
and holding keys.

WINMODEL User interaction data
for AUT

The best techniques of using user data com-
bined. Derive a sequential model from user
interaction data for each seen window of an
application. If currently at an unseen window,
fall back to APPMODEL .

and APPMODEL . The better technique will be taken forward to RQ4.3,

and named as USERMODEL . We will also compare the USERMODEL

against the approaches from the previous chapter which do not use

user data, but can still handle unseen application windows: PREDIC-

TION and GROUNDTRUTH .

RQ4.3: Does a GUI testing approach in which interactions with GUI

components are guided by a model based on user data provide

better code coverage than an approach in which interactions are

purely random?

The testing technique with the cheapest resource cost is random testing.

To see whether models generated from user data can outperform ran-

dom testing, we compared the techniques shown in table 4.5. RAND-

CLICK is the random technique from the last chapter, with RANDE-

VENT being the new random tester which can generate events similar

to the models generated from user data. USERMODEL is a combina-

tion of the best techniques taken from RQ4.1 and RQ4.2.
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4.4.2 Threats to Validity

There is a risk of users learning during application interaction, and this

influencing data recorded in the later stages of the experiment. To mit-

igate this, each user interacted with a random ordering of applications,

and performed a random order of tasks. Each user interacted with dif-

ferent applications before and after encountering any specific applica-

tion, but the same set of tasks in a randomised order.

As each testing technique uses randomised processes, there is a risk

that one technique may outperform another due to generating lucky

random numbers. To mitigate against this, each technique ran on each

application for 30 iterations and we used appropriate statistical tests to

evaluate the effectiveness of each technique.

To ensure that all techniques have a fair testing budget, each technique

seeded on average a single interaction per second for 1000 actions. As

the techniques proposed in the last chapter generate interactions that

are a combination of some events of the techniques from this chapter

(e.g., “clicking” instead of “mouse button down” followed by “mouse

button up”), we modified the delay of the techniques for this chapter

appropriately. For example, instead of waiting a full second after press-

ing the mouse button down, a half second delay would occur and when

the mouse button is released, the remaining half second delay will syn-

chronise the time scale of both techniques. The “button down” and

“button up” events also count as half the testing cost of a full “click”

event.
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Figure 4.1. Branch Coverage of techniques APPMODEL , WINMODEL , and
WINMODEL-AUT .

Application WINMODEL APPMODEL WINMODEL WINMODEL-AUT

bellmanzadeh ***0.298 0.253 **0.298 0.289
BlackJack ***0.517 0.388 ***0.517 0.034
Dietetics ***0.543 0.351 ***0.543 0.378
JabRef ***0.066 0.062 ***0.066 0.061
Java-FabledLands 0.100 0.100 0.100 0.102
Minesweeper ***0.845 0.826 0.845 0.839
ordrumbox 0.179 0.180 ***0.179 0.174
Simple-Calculator 0.773 0.791 ***0.773 0.618
SQuiz ***0.452 0.377 ***0.452 0.116
UPM 0.166 0.147 0.166 0.158

Mean 0.383 0.336 0.383 0.282

Table 4.6. Branch Coverage of techniques WINMODEL, APPMODEL, and
WINMODEL-AUT. Bold indicates significance. * Indicates Effect Size (*Small,
**Medium and ***Large).

4.5 Results

RQ4.1: How beneficial is using a model trained on unique windows

against models trained on whole applications or all applications?

Figure 4.1 shows the branch coverage achieved by WINMODEL , APP-

MODEL and WINMODEL-AUT . We can see from table 4.6 that using
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Figure 4.2. Interaction cluster centroids for the “LEFT_DOWN” event when
using the WINMODEL approach.

Figure 4.3. Interaction cluster centroids for the “LEFT_DOWN” event when
using the APPMODEL approach.

models constructed on separate windows (WINMODEL ) achieves a

significantly higher coverage in six of 10 applications when compared

to using a single model for an entire application. Figure 4.2 and 4.3

show the centroids available for application interaction for the same

window, but using either a window specific or application specific model.

These figures show that the window specific model has less choice for

interaction, and therefore a higher probability of selection a cluster cen-

troid that will generate an interesting interaction. From this, we can

conclude that using models based on an application’s windows is bet-

ter than a single model based on user data for an entire application.

However, there is one interesting observation. If we observe the appli-

cations JabRef and ordrumbox, both techniques perform identically. This
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(a) Using the APPMODEL approach (b) Using the WINMODEL ap-
proach

(c) On the “About” screen using the
WINMODEL approach

Figure 4.4. Interaction cluster centroids for the “LEFT_DOWN” event in the
Simple Calculator application.

is an interesting case and is not unexpected. Both of these applications

draw directly to the screen buffers of the application. The window-

based models rely on a unique title for each window in the AUT, but as

these only use a single window with the title never changing, in these

two applications, both of these approaches are equivalent.

The Simple Calculator application is the only application where using

the APPMODEL technique achieves a higher code coverage than WIN-

MODEL . However, the coverage increase here is small, equating to less

than two more branches covered on average by using the APPMODEL

technique. Figures 4.4a, 4.4b and 4.4c show the reason behind this. Sim-

ple Calculator has two screens: the main calculator screen, and an about

screen. The “OK” button on the about screen is in the same location in

the GUI as the decimal point button in the main calculator screen. This

gave APPMODEL more clusters and transitions to this location on the

screen, allowing the button to be pressed more frequently than with the

WINMODEL technique, which generally struggled to achieve branch
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Figure 4.5. Interaction cluster centroids for the “LEFT_DOWN” event when
using the WINMODEL-AUT approach.

coverage in the function responsible for handling decimal points.

The second part of this question involves a model trained on differ-

ent applications than the one under test. Using WINMODEL achieves

a significantly higher coverage in seven of 10 applications when com-

pared to using WINMODEL-AUT . This is not surprising, as using data

derived from the subject under test creates models more targeted and

specific for that subject, being able to interact with the specific widgets

on each screen quicker than a model without the application specific

knowledge. Figure 4.5 shows a large number of cluster centroids for a

basic GUI, and with this large number, the chances of interesting events

being generated is diminished.

RQ4.1: In our experiments, using unique user models per application

window to guide a GUI tester led to tests with a significantly higher

coverage when compared to a single model per application or unique

window models trained on many applications other than the AUT, with an

average coverage increase of 14.0% and 35.8%.

RQ4.2: What is the best approach to generate GUI tests when

encountering a window for which no user data was available to

create a model?

Figure 4.6 shows the branch coverage achieved by techniques APP-

MODEL , RANDOM and WINMODEL-AUT . The difference between
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Figure 4.6. Branch Coverage of techniques APPMODEL and RANDOM

Application APPMODEL RANDOM APPMODEL WINMODEL-AUT

bellmanzadeh 0.298 0.296 **0.298 0.289
BlackJack ***0.517 0.315 ***0.517 0.034
Dietetics **0.543 0.505 ***0.543 0.378
JabRef 0.066 0.066 ***0.066 0.061
Java-FabledLands 0.100 0.100 0.100 0.102
Minesweeper 0.845 0.845 0.845 0.839
ordrumbox ***0.179 0.173 ***0.179 0.174
Simple-Calculator 0.773 0.773 ***0.773 0.618
SQuiz 0.452 0.452 ***0.452 0.116
UPM **0.166 0.117 0.166 0.158

Mean 0.383 0.361 0.383 0.282

Table 4.7. Branch Coverage of techniques APPMODEL, RANDOM, and
WINMODEL-AUT. Bold indicates significance. * Indicates Effect Size (*Small,
**Medium and ***Large).

the APPMODEL and RANDOM techniques is the method of generat-

ing interactions in an application state not seen during user recording.

APPMODEL falls back to an application model when coming across a

previously unseen window, whereas RANDOM instead generates ran-

dom events. APPMODEL achieves a significantly higher coverage in

four of 10 applications, and a similar level of coverage in six of 10 ap-

plications. This leads us to believe that widget information in a GUI

application may be influenced by other windows (i.e., some form of
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Figure 4.7. Branch Coverage of techniques APPMODEL , PREDICTION , and
GROUNDTRUTH .

template exists for each window), and that if a widget is in a certain

place in one window, it has a higher chance of being in the same place

in another window. This is also supported by the result from Simple

Calculator in the last research question, where the knowledge of a but-

ton in the “About” screen increased the probability of a button being

pressed in the main screen when the user data was aggregated.

The WINMODEL-AUT technique is capable of generating tests for un-

seen application windows, and contains a large amount of data. How-

ever, it again under-performs compared to both other testing techniques.

The APPMODEL technique achieves the greatest branch coverage and

will be used later to compare models learned from user data against

other approaches. USERMODEL will be the name used to refer to APP-

MODEL from this point.

As discussed in the previous chapter, there are testing techniques which

can work without user data and these could be used on unseen ap-
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plication states. Figure 4.7 shows the branch coverage achieved by

the test generator USERMODEL which uses a model based on user

data against two approaches from the last chapter: PREDICTION and

GROUNDTRUTH . Table 4.8 shows a statistical comparison of these

techniques.

Application USERMODEL PREDICTION USERMODEL APIGROUNDTRUTH

bellmanzadeh ***0.298 0.253 0.298 ***0.376
BlackJack ***0.517 0.348 0.517 ***0.848
Dietetics 0.543 0.543 0.543 0.559
JabRef ***0.066 0.049 ***0.066 0.061
Java-FabledLands 0.100 ***0.108 0.100 ***0.102
Minesweeper 0.845 0.845 0.845 ***0.852
ordrumbox 0.179 ***0.184 0.179 ***0.195
Simple-Calculator 0.773 0.764 0.773 ***0.855
SQuiz ***0.452 0.110 ***0.452 0.123
UPM 0.166 0.113 0.166 ***0.487

Mean 0.383 0.331 0.383 0.442

Table 4.8. Branch Coverage of techniques USERMODEL, PREDICTION, and
APIGROUNDTRUTH. Bold indicates significance. * Indicates Effect Size
(*Small, **Medium and ***Large).

Using the USERMODEL leads to tests with a significantly higher branch

coverage in four of 10 applications, and significantly lower in two of 10

compared to PREDICTION . When compared to the GROUNDTRUTH

approach, which extracts exact coordinates of widgets from the Java

Swing API, USERMODEL achieves a significantly higher branch cov-

erage in two of 10 applications, and significantly lower in seven of

10. For the applications “JabRef” and “SQuiz”, using a user model

achieves a significantly higher branch coverage when compared to both

other approaches. As discussed in the last chapter, the PREDICTION

and GROUNDTRUTH approaches struggle with JabRef due to a but-

ton opening a modal pop-up which locks the main window, and using

a user model has a much lower probability of triggering this event as

users rarely interacted with the application in this manner, instead cre-

ating a new document. SQuiz uses a menu that controls everything in

the application, from starting a new quiz, to viewing the high score-
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board. Using the sequence data from users aided to achieve a higher

coverage than both other approaches as interaction with elements in

the menus requires sequential events to be triggered. First, the menu

header needs to be clicked, then an element in the newly expanded

menu needs to be pressed. This has a higher probability to occur when

exploiting information stored in sequences of user events, compared to

the other approaches which have a high probability of clicking a widget

outside the expanded menu.

The applications where widget detection performs better are ordrum-

box and Java-FabledLands. These applications swap the contents of the

screen without changing the title of the window. This negated the bene-

fits of using models based on unique window titles. For example, Java-

FabledLands opens a window with a large amount of text, with links

embedded in the text. The text changes when a link is pressed. When

using a widget detection approach, these links can be identified as they

have a unique appearance from the rest of the text. However, a user

model based approach has no method of tracking what state it is in, and

struggles to interact with the text. This is only exacerbated when clus-

tering the position of user clicks is introduced, moving possible points

of interaction further away from the required position. This is similar

with ordrumbox, where windows are introduced, but are painted to the

buffer of the current window so the title remains the same. The user

model approach loses track of what it can interact with in the window

rapidly as it has no feedback from the application.

It is no surprise that GROUNDTRUTH , which uses the known wid-

get locations of all GUI elements outperforms a user model based ap-

proach which is generating events “in the dark”, with no insight into

the response of applications to generated events other than the title
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of the currently focused window. Users can click buttons in differ-

ent locations, and clustering leads to some user positions being slightly

adjusted which can make the difference between triggering the event

bound to a button, or not. It is clear that using an API based approach

to generate tests is superior, but as discussed earlier, there are still ap-

plications where a user model performs better. Also, as stated in the

previous chapter, there are applications which are not supported by an

API based technique, and using a user model could be beneficial to test

these applications, if user data is available.

RQ4.2: The APPMODEL technique achieves a significantly higher

coverage than using RANDOM , with an average coverage increase of

6.1%. This is the highest performing model learned from user data, and will

be referred to as USERMODEL for future comparisons. The new

USERMODEL approach lead to tests with a significantly higher coverage

compared to PREDICTION in four of 10 applications, and significantly

worse in two of 10. Unsurprisingly, GROUNDTRUTH performed

significantly better in most cases than other approaches.

RQ4.3: Does a GUI testing approach in which interactions with GUI

components are guided by a model based on user data provide

better code coverage than an approach in which interactions are

purely random?

Figure 4.8 shows the branch coverage achieved by three techniques:

RANDCLICK , RANDEVENT and USERMODEL . Table 4.9 shows a

pair-wise statistical comparison of these approaches.

We can see from this table that the USERMODEL approach achieves a

significantly higher branch coverage than both randomised approaches.
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Figure 4.8. Branch Coverage of techniques USERMODEL , RANDEVENT ,
and RANDCLICK .

Application USERMODEL RANDEVENT USERMODEL RANDCLICK

bellmanzadeh ***0.298 0.180 ***0.298 0.184
BlackJack ***0.517 0.315 ***0.517 0.034
Dietetics ***0.543 0.261 ***0.543 0.261
JabRef ***0.066 0.047 **0.066 0.062
Java-FabledLands **0.100 0.094 **0.100 0.069
Minesweeper ***0.845 0.729 **0.845 0.819
ordrumbox ***0.179 0.163 ***0.179 0.173
Simple-Calculator ***0.773 0.582 ***0.773 0.455
SQuiz ***0.452 0.110 ***0.452 0.110
UPM ***0.166 0.068 ***0.166 0.042

Mean 0.383 0.241 0.383 0.228

Table 4.9. Branch Coverage of techniques USERMODEL, RANDEVENT, and
RANDCLICK. Bold indicates significance. * Indicates Effect Size (*Small,
**Medium and ***Large).

This is due to the user model approach having a higher probability of

useful interactions compared to a randomised approach, and therefore

it spends less time performing uninteresting actions on the application

under test. When compared to the randomised approaches, USER-

MODEL achieves a significantly higher branch coverage in 10 of 10

applications. There are some differences between CLICKRAND and

EVENTRAND, but these are minor and application specific.
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RQ4.3: In our experiments, using a user model to guide a GUI tester lead to

tests with a significantly higher coverage when compared to randomised

approaches, with an average increase of 58.9% and 68.0%.

4.6 Conclusions

There are currently limited techniques of interacting with an applica-

tion without exploiting some underlying data structure of the GUI. In

this chapter, we investigated the creation of models from real user in-

teraction data with the application under test.

We found that the best approach to generating interaction data is by

splitting the user data and creating separate models targeting different

windows of an application. If a previously unseen window is found, it

is best to fall back to an aggregated version of the window models (i.e.,

a model generated from data of the entire application under test).

We also found that models generated from user data can outperform

the widget detection approach outlined in the previous chapter. This is

rather interesting, as the user models approach are generating data “in

the dark”, with no insight into an application’s reaction to generated

data. However, collecting user data to generate models is very expen-

sive compared to the widget detection approach, which requires only a

screen shot.

The most expensive approach, GROUNDTRUTH , relies on the appli-

cation using a supported GUI framework or exposing the location of

its widgets through an accessibility API. This expensive approach, un-

surprisingly, still achieves the highest branch coverage, using feedback

from the application and wasting very little interactions on uninterest-
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ing events.

There is still much work to investigate:

• By combining user models with widget detection, it may be pos-

sible to merge the advantages of both approaches. The random

widget selection of the detection based approach could be guided

by the bounding boxes that users interact with, and the state in-

ference weakness of using a window title could be improved by

widget detection by including widget information to infer unique

states.

• Using an application model as fall back achieves a higher branch

coverage than using a random technique as fall back. This sug-

gests that there is some common structure in GUIs and that inter-

actions in one GUI screen state can aid in other screen states. This

needs further investigation to identify the relationship between

interactions at a window level and interactions at an application

level.

• The clustering technique for user interactions can often generate

cluster centroids that are not actually inside the interaction box of

a widget. Further investigation is needed in order to develop a

non-destructive clustering technique that maintains information

about the original points of interactions.

• It may be possible to use other GUI testing tools to gather an

initial set of user data. Tools such as FSMDroid [129] or Swift-

Hand [32] explore Android applications and dynamically build a

probabilistic interaction model. Using the interaction data gener-

ated from these tools may aid in gathering user data and improv-

ing the models created in this chapter.
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5 Testing By Example: Natural

User Interfaces

This chapter is based on the work “Modelling Hand Gestures to Test

Leap Motion Controlled Applications” published elsewhere in IEEE In-

ternational Conference on Software Testing, Verification and Validation Work-

shops (ICSTW), 2018.

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Natural User Interfaces . . . . . . . . . . . . . . . . . 145

5.3 Modelling Leap Motion Data . . . . . . . . . . . . . . 149

5.4 Generating Leap Motion Data . . . . . . . . . . . . . 153

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 175

5.1 Introduction

Natural User Interfaces (NUIs) present a difficult problem for test data

generators. The data required by applications which use such devices

is derived from the real world. Generating data resembling real usage
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of the NUI is a challenge. Random testing techniques are unlikely to

generate this data, and creating a constraint-based model is expensive

and will only apply to a single target NUI, as each unique NUI uses

complex and unique data structures.

To aid in data generation, we look at an approach similar to the last

chapter, which learns from data provided by end users and generates

models capable of generating statistically similar data.

Natural User Interfaces (NUIs) allow users to interact with software

through methods such as body tracking, gestures, or touch interfaces [149].

They are a primary input source for virtual reality applications, which

are increasing in popularity. NUIs are also crucial for interacting with

computers in environments where using a keyboard and mouse is not

an option (e.g., surgeons navigating between x-ray images in an oper-

ating room). Testing applications controlled by NUIs is a challenge: no

frameworks exist to automatically generate test data meaning that man-

ual testing is the main form of testing. This requires developers having

to interact with the application for every new feature developed. This

increases the chance of regressions occurring in the application’s code

base.

Testing manually can be repetitive, and there is an increased chance of

bugs making it into the final system when it is the only form of test-

ing. To aid in testing an application, tests can be generated and ran

against an application. For example, there are tools that can automat-

ically generate tests for many different types of applications [45, 105,

91], lessening the testing effort of designing test data and test cases.

Typically, standard software consists of API calls or the event driven

paradigm when interacting with GUI widgets. However, the inputs
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expected by NUI applications are much more challenging to produce

automatically. For example, the input for an application controlled by

a Microsoft Kinect input device consists of a collection of points in 3D

space which collectively represent the body of the program’s user; the

input for an application controlled by a Leap Motion input device con-

sists of data representing the user’s hand and finger joint positions in

3D space. The data structures contain complex relationships (e.g., each

body part needs to be connected at the right place). Here lies a chal-

lenge for test data generators in generating data which abides by the

constraints in the NUI API. Documentation for the API usually does

not give a list of the constraints, or how data is derived from the input,

only increasing the challenge of data generators.

One technique to generate test data automatically is to learn models of

realistic user input, and then to sample these models for new sequences

of input. Hunt et al. [65] demonstrated that this approach can be effec-

tive at generating test data for a web browser application which used

the Microsoft Kinect as input. However, previous work focused only

on one aspect of the Microsoft Kinect input, the body joint positions.

Throughout this chapter, we extend the approach by Hunt et al.. ap-

plying it on the Leap Motion controller, which derives data about a

person’s physical hand including: hand positions, finger positions, fin-

ger gestures, and various other aspects. The data from the Leap Motion

is more complex with more constraints, increasing the test generation

problem. We present a framework to apply NUI test generation to ap-

plications based on the Leap Motion, and evaluate our approach on five

candidates taken from the Leap Motion app store.

Using only a single data model, as Hunt et al. did, to snapshot all the

different aspects of the NUI input data at a single point in time may
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not be the most effective approach. For example, in the Leap Motion

Controller, the hand movement and finger joints shape are encoded to-

gether, but training one model on the combined result eliminates the

possibility of identifying similar finger joint shapes at different posi-

tions in 3-D space. As the hand moves through time, it may form

common shapes but at different positions, and encoding the position

and the shape of the hand separately allows generation of specific hand

shapes at many more positions in 3-D space.

In order to evaluate the benefits of representing the complex NUI data

with multiple models, we present a methodology in which we split the

NUI data into subsets, and learn separate models for each subset. In

our experiments we contrast test data generated from these multiple

models with data generated from a single model of the input data.

In detail, the contributions of this chapter are as follows:

• A framework to model hand interactions, and automatically gen-

erate and replay test cases for the Leap Motion NUI.

• An empirical evaluation of NUI testing on five applications con-

trolled by the Leap Motion controller.

• An empirical evaluation of the influence of the training data on

the resulting code coverage.

• An empirical comparison of generating NUI data from multiple

models vs. a single model.

Our experiments show that our approach to automated NUI testing

can handle the complexity of the Leap Motion controller well, and pro-

duces sequences of test data that achieve significantly higher code cov-
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erage than random test generation approaches. We show that the train-

ing data has a large influence on these results, while the benefits of

splitting NUI data into multiple models are small and application de-

pendent.

5.2 Natural User Interfaces

Natural User Interfaces (NUIs) provide a means of controlling software

by recording a continuous stream of data that represents the position

or motion of the user’s body. For example, the Microsoft Kinect em-

ploys a depth camera that allows a user to interact with an application

through body tracking. Similarly, the Leap Motion Controller is a small

desktop device which tracks the hand and finger positions of the user,

thus providing a natural interface in which the user can point, draw or

gesture with their hands.

NUIs have been used to solve a range of problems. For example, The

Microsoft Kinect has been used in medicine for effective stroke rehabil-

itation, giving doctors access to the body profile of patients from a pa-

tient’s own home, and making exercises more fun and motivating for

patients [150]. The Leap Motion has been used for controller robotic

arms [128] and in many Virtual Reality (VR) applications, being mount-

able on many VR devices.

NUIs rely on a user’s existing knowledge for interactions with applica-

tions: if a menu is on the screen, it is intuitive to reach out and touch

a desired button for progression through an application. Although in-

tuitive for real users, NUIs are difficult to test with an automated ap-

proach. Another issue for test generators is the complexity of data pro-
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Figure 5.1. The data structure used by the Leap Motion Controller

vided by NUIs. Figure 5.1 shows the data structure received from the

Leap Motion API. A Frame has many components, and it is not immedi-

ately clear how to create a Frame for testing purposes. Mostly, NUI ap-

plications are manually tested by the developer of an application, and

only recently was support for capture and replay tools implemented. It

may be beneficial to automatically generate test data, and there exists

work in generating test data for other kind of Natural User Interfaces.

5.2.1 Natural User Interface Testing

Mobile applications use combinations of regular program inputs (e.g.,

via touch displays), and NUI inputs (e.g., via external sensory data). To

test mobile applications, Griebe et al. describe a framework in which

location information [55] and accelerometer data [56] can be replaced

with mocked data by developers.

Hunt et al. automatically generated test sequences for the Microsoft

Kinect [65]. To generate data, Hunt et al. trained models on data

recorded by users. Similarities in the data are identified through clus-

tering, and sequences of clustered data are used to generate a Markov

chain. The Markov chain is a probabilistic model that can be used to de-
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cide which cluster to seed next during test generation. Clustering was

performed on all features of the data structure but this assumes that all

features have a static (time-unconstrained) relationship.

Hunt et al. used branch coverage to assess the effectiveness of different

NUI data generation methods. The application under test (AUT) was a

web browser adapted for Kinect support. Hunt et al. found that using a

purely random approach for generation, i.e. using randomly sampled

values for each variable in the data structure, performed the worst. Sec-

ond was an approach involving seeding randomly sampled processed

user data. To increase performance further, Hunt et al. generated an

n-gram model from the sequence information collected when record-

ing data and used this model during data generation. A single model

of NUI data may link different independent aspects of the user move-

ment, resulting in biased test generation. For example, if a NUI was to

capture a person running, the body gestures (i.e., the shape of the body

relative to the centre point of the body, without location taking into ac-

count) observed may be a repeated sequence of body positions, but the

actual data will never be repeated as running displaces the body in 3-D

space. Potentially, representing the body location and the joint move-

ment as separate models could be a more effective means of generating

new, realistic test input not observed in the training data. New, realis-

tic data will still resemble the body part being tracked and also moves

smoothly through time. This approach may be particularly important

in the case of NUIs where many potentially independent features are

present in the common input data structure.
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Figure 5.2. Interaction with the application “PolyDrop” through the Leap Mo-
tion

5.2.2 Leap Motion Controller

The Leap Motion Controller is a NUI which tracks a user’s hand move-

ments and gestures. The device (see Figure 5.2) is placed on a desk,

and users place hands above the device to interact with software. The

Controller tracks properties of a hand such as position in 3-D space, the

location of all joints in each finger, the position of the tips of each finger

and many other things. Each data frame received from the Leap Motion

Controller contains a snapshot of the user’s hands at the current time,

providing data up to 200 times per second. Because applications ex-

pect data at this rate, it is important that testing techniques can match

this speed, whilst generating realistic data. Expensive overheads for

testing techniques when generating data could hinder the performance

of a technique, providing less frames to an application than expected.

The Leap API gives applications a complex relational data structure.
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The top level of the structure is a Frame, which contains all relevant

information observed by the Leap at the current time. However, some

aspects of the structure are not only reliant on the current time of cap-

ture. For example, to interact with 2-D applications, a developer re-

places the virtual cursor of the mouse with the Tip Positions of each fin-

ger. However, there is also a Stabilized Tip Position for each finger which

returns a smoothed version of the fingers tip position, directed at 2-D

application interaction, and updates according to the speed which the

finger tip was moving. Stabilized positions allow for more consistent

2-D GUI interactions, specifically with micro movements, but how the

values are calculated does not appear in the API documentation. Due

to a lack of documentation with how some values are calculated in the

Leap Motion API, it may be beneficial to learn from real data observed

in user interactions with applications. This eliminates the need for re-

verse engineering of the algorithms producing these values.

5.3 Modelling Leap Motion Data

We split the Leap Motion data into 5 parts, where each part is modelled

using an n-gram model. An n-gram model represents the probabili-

ties of one element following the n previous elements in a sequence of

data [104]. Using such models has distinct advantages and disadvan-

tages in testing compared to manual testing by users. Once created, a

model is cheaper to execute than having a developer manually test an

application, and can generate long sequences of test data without tiring.

However, a model is only as good as the data used to train it, and may

not generalize to novel kinds of interaction that were not encountered

during training. This may limit the extent to which a NUI application
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can be explored by model-based test generation.

This section shows how user data from the Leap Motion is split into

five separate models, each model representing a unique aspect of the

Leap Motion data structure. The five models are as follows:

• Position: The 3-D position of the palm, relative to vector (0, 0, 0)

in Leap Motion Controller space. This is the physical position of

the hand in 3-D space. Position data is denoted in Figure 5.3 by

three axes and a point labelled with (x, y, z).

• Rotation: The rotation of the palm, stored as Euler angles by the

Leap Motion, we convert to quaternions for modelling. A quater-

nion is a 4-D unit vector that represents an object’s rotation in 3-D

space. Rotational data is denoted in Figure 5.3 by a circle with an

arrow through, representing the quaternion angle of rotation.

• Joints: The 3-D position of each bone joint in the fingers of each

hand, respective to the palm position. All fingers were stored in

the same feature to preserve anatomical constraints between fin-

gers. Joints are denoted in Figure 5.3 by the circles on the fingers

of hands.

• Gestures: The sequence of pre-defined Leap Motion gesture types

performed by the user (Circle, Swipe, Key tap and Screen tap).

This is also split into four child models, one per gesture type. For

the applications tested here, only the circle gesture is used, which

triggers when a Finger performs a circular motion. A circle ges-

ture consists of a circle centre, normal, radius and the duration

that the gesture has been performed for. Circle gestures are de-

noted in Figure 5.3 by a green circle with an arrow.
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(a) User inter-
acting with the
Leap Motion
Controller

Exit

(b) Applica-
tion receiving
data from the
Leap Motion
Controller

(c) Data from
the Leap Mo-
tion Controller
saved for model
generation.

(x, y, z)

(d) Feature
selection ap-
plied to data to
create manually
identified data
subsets.

Figure 5.3. Recording user interactions with the Leap Motion Controller and
splitting data into subsets.

• Stabilized Positions: Each hand also has stabilized data, which

are vectors targeted towards 2-D menu interactions and rely on

time. One example are stabilized tip positions for the tips of each

finger, being a variable amount of time behind the actual hand

data. Stabilized positions are stored in a separate model to pre-

serve 2-D interactions. Stabilized data are denoted in Figure 5.3

by red “X”s representing the stabilized tips of each finger.

For the five models defined, we use user data to generate models. Fig-

ure 5.3 shows how user data is stored as separate data subsets, one

subset per model. User Recording is the process of capturing user in-

teraction with the Leap Motion and hence the application under test.

We intercept this data and use it to train models. First, the data is split

into data subsets. This involves applying feature selection [126] to the

data and training each model on the selected features.

5.3.1 Model Generation

For each data subset, the same technique is applied to generate models.

Firstly, the volume of user data is reduced using K-means clustering.
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5.3).
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cation under
test

Exit

(d) Applica-
tion receiving
generated data

Figure 5.4. Our approach: generating features before combining them into a
realistic data object.

This is similar to the technique from the previous chapter. K-means

clustering groups together related records by Euclidean distance, using

all features in the calculation. The result labels each record with a clus-

ter 0..k where the label is the cluster with the nearest centroid (mean of

all elements in the respective cluster).

Each record is now labelled but the quantity of data has not changed.

To reduce the data, we substitute each record with the centroid of the

assigned cluster. This reduces the total amount of user data to K cen-

troids.

As with the last chapter, the chronological sequence in which each record

was received is stored when recording user data. This sequence can be

replaced by the assigned cluster labels and used to train an n-gram

model, a model containing the probabilities of all transitions of length

N in a sequence.

To generate an n-gram model, a probability tree is constructed from

sequences of data. The tree is of depth N and contains all transitions

of length N from one element of the sequence to other neighbouring

elements. For example, assume that the cluster label sequence is as fol-
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lows: 1, 2, 1, 2, 1, 3. Using n = 2, the probability of observing a record

in cluster 2 following a record in cluster 1 is 2/3, and the probability

of observing 1 after observing 2 is 1.0. Values of K and N were chosen

through parameter tuning. As each model was trained on the target

application, so were the values of K and N. To tune K, values were sam-

pled from 100-1200 clusters and used to test the target application by

recreating the original user data but using clustered data. The value

of K with the highest coverage was used in experiments. A similar ap-

proach was used with N, but with values 2-5.

Each Leap Motion data frame can have an undefined amount of ges-

tures, linked to different fingers i.e. it is possible for a single Leap Mo-

tion frame to have three circle gestures and a swipe gesture. We use an

additional n-gram model to decide which gestures go in which frames.

Specifically, the gesture n-gram model gives the following information:

when to start and stop a gesture; which finger each gesture should be

linked to; and the types of each gesture.

5.4 Generating Leap Motion Data

Once models are trained, Figure 5.4 shows how data produced from

each model can be recombined into valid Leap Motion data. Each

model produces a cluster centroid for the area of the Leap Motion data

structure the model is representing. The centroids from all models are

combined into one data object, and seeded back to the application dur-

ing test generation. This is where our approach differs from the tech-

nique by Hunt et al. [65], which only uses a single model to reconstruct

data. Our approach to testing NUI applications has the advantage that

generated data still resembles the original user data, but is also diverse
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(a) Generation using a random approach.

(b) Generation using a random cluster selection approach.

(c) Generation using the state of the art approach (Hunt et al. [65]).

(d) Generation using an n-gram approach with multiple models.

(e) A sequence from the original user data.

Figure 5.5. Sequences of hands generated as input data using different tech-
niques

enough to test parts of a program not necessarily tested by users. We

identify common patterns in the user data per model, retaining some

relationships that would otherwise be lost when using a single model.

Using the models generated, we propose three methods of generating

mock Leap Motion data:

1. Random: Sample numbers in the Leap Motion’s view range do-

154



5.4 Generating Leap Motion Data

main for all properties of all features. See Figure 5.5a for an exam-

ple sequence of hands generated using this approach.

2. Random Clusters: Randomly select a cluster for all models and

seed the centroid of the clusters. This produces realistic Leap Mo-

tion data at a single point in time, but not over time. All time-

related data is discarded producing ‘mechanical’ hands with no

animation. See Figure 5.5b for an example sequence of hands gen-

erated using this approach.

3. N-gram Model Generation: Use the generated n-gram models

to select the next cluster centroid to seed. This preserves time-

related data, but using separate models eliminates the static rela-

tionships between models preserved in the single model method

by Hunt et al. However, the benefit is that a more diverse range

of data can be produced, e.g., a single hand shape at various po-

sitions in the Controller’s 3-D space can be generated, including

positions that the user did not provide for the respective hand

shape. See Figure 5.5c for example data generated using a single

model (Hunt et al.) or Figure 5.5d for an example using multiple

models.

Each technique reconstructs hands using the following method: 1) gen-

erate model data in isolation by selecting cluster centroids; 2) combine

generated features into single data objects. Using an n-gram model

produces a sequence of data that are statistically similar to the order of

hands seen during user recording. This has a higher probability of gen-

erating realistic sequences of animated data (e.g., a closed hand slowly

opening). In contrast, selecting random clusters produces more uni-

form data but with no animation (e.g., the hand will instantly open in

5 milliseconds, from one from to the next).
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5.4.1 Executing Leap Motion Tests

Our technique generates tests for applications which use the Leap Mo-

tion Controller [81]. The Controller allows interaction with applications

through hand tracking. The Leap API supports many target source

code languages, and works through a background service installed on

a machine, which provides a continuous stream of data to applications

registered as listeners.

Our framework functions as a layer that sits between the application

under test and the Leap Motion background service, replacing the Leap

Motion’s stream of data with automatically generated data. We use a

full mock of the Leap Motion’s Java API. During test generation, when

applications register as a listener for the Leap Motion, our framework

now provides a stream of data in place of the Leap Motion background

service.

To save tests, we store the ordered cluster labels of each model and

the execution time which the generated data frame was seeded to the

AUT. Replaying a test involves using these stored cluster labels to select

the cluster centroids for all models at the appropriate point in time,

before combining all centroids into a data frame. Tests produced by our

tool currently produce sequences of hands that can be played back into

an application. This is useful for regression testing: ensuring that the

current program state after seeding data on the modified application is

equal to the state seen during generation. However, in this chapter, we

do not focus on the problem of state inference.
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5.5 Evaluation

To study NUI testing on the Leap Motion in more detail, we investi-

gated the following research questions:

• RQ5.1: How beneficial is NUI testing with n-gram models gener-

ated from real user data when generating tests for Leap Motion

applications?

• RQ5.2: How does the quantity of training data influence the effec-

tiveness of models generated for NUI testing?

• RQ5.3: How beneficial is a model with separation of NUI data,

which can generate parts of the data structure in isolation, com-

pared to a model trained on a whole snapshot of the NUI data?

5.5.1 Experimental Setup

To answer RQ5.1, we compare the test generation techniques seen pre-

viously in in Figure 5.4, i.e., random test data, random clusters, and

n-gram based test generation. For the Microsoft Kinect, Hunt et al. [65]

observed that the use of an n-gram model resulted in substantial code

coverage increases over the random baselines, and the main question is

whether this effect can also be observed on Leap Motion applications,

where input data is more complex than on the Microsoft Kinect.

To answer RQ5.2, we compare models created using only a single user’s

data, against models created using data from many users. Intuitively,

assuming an equal value of K when clustering, using data from many

users should lead to n-gram models which are less sparse, and have
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a higher diversity in the set of centroids. However, anatomical differ-

ences (e.g., different hand sizes) could have unexpected effects in the

clustering process. To evaluate the effect of user data in test generation,

we use the n-gram model technique with multiple models.

To answer RQ5.3, we evaluate the effects of splitting the Leap Motion

data structure into multiple models. The baseline is the approach out-

lined by Hunt et al. [65] for the Microsoft Kinect, i.e., creating a single

model with the complete Leap Motion data structure interpreted as a

flattened vector of features. To evaluate the effectiveness of splitting

Leap Motion data into multiple models, we use the n-gram model gen-

eration technique with models trained on data from many users for

each application.

Our metric for comparison is line coverage; the amount of lines exe-

cuted in an application divided by the total lines of the application. We

measured line coverage using instrumentation provided by an open

source tool1. To test for significance, we used a Wilcoxon rank-sum test,

with a significant result occurring when p < 0.05. To find the better

approach, we use a Vargha-Delaney Â12 effect size, with a value trend-

ing towards 1 indicating an improvement over the baseline, 0.5 being

no improvement and trending towards zero being a negative impact.

To account for the random nature of our generation techniques, we ran

each configuration for 30 iterations [7], and the code coverage achieved

at the end of a one hour period was used in comparisons.

A one-hour generation time was selected as by this time, most tech-

niques were stuck in a certain application state, unable to progress.

However, coverage increases were still being attained in certain appli-

cations. To select the value of K for clustering, tests were generated

1https://github.com/thomasdeanwhite/Scythe
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(a) ASLDigits (b) GorogoaPuzzle

(c) PaintLeapMotion (d) PolyDrop

(e) Virtual Piano

Figure 5.6. The five applications under test, used to empirically evaluate our
framework.

using predefined sets of clusters between 200 − 1400 and the value of

K achieving the highest coverage was used in experiments. The value

of N was tuned in the same manner but for values between 2 and 4.

As data is recorded separate for each application, values are also tuned

separate.

For evaluation, we chose five applications: four from the Leap Motion
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Airspace Apps Marketplace, and one open source application.

• ASLDigits (Figure 5.6a) is an educational game teaching Ameri-

can Sign Language for the numbers 0-9. There is also a game in

which users score points for using the correct signs for numbers

displayed in a given time limit. ASLDigits contains around 4213

Lines of Code (LOC)

• GorogoaPuzzle (Figure 5.6b) is a puzzle game where unique inter-

actions are performed with the Leap Motion in order to advance

the story, and thereby move to different program states. Gorogoa-

Puzzle contains around 19633 LOC.

• PaintLeapMotion (Figure 5.6c) is an open source app published

on GitHub. This application allows users to paint onto a canvas

with a selection of tools using the Leap Motion. PaintLeapMotion

contains around 1579 LOC.

• PolyDrop (Figure 5.6d) is a physics game in which blocks fall on

to the screen and the player needs to catch them on a bridge con-

trolled by Leap Motion interaction. PolyDrop contains around

8212 LOC.

• Virtual Piano for Beginners (VPfB, Figure 5.6e) is an application

which allows users to play an “air piano”. There is a free play

mode and also an educational mode which teaches users to play

certain songs. VPfB contains around 2276 LOC.

We chose these applications due to their variety of use with the Leap

Motion API. These applications include use of the gestures API, 2-D

menu interactions, advanced processing of the Leap Motion data struc-

tures and other areas. The applications are also dissimilar to one an-
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other. The only information that our technique has of each application

is the data from the Leap Motion background service when user inter-

action occurred.

Data was recorded from five users for each application. The users first

practiced interacting with the Leap Motion on the “Leap Motion Play-

ground”, a training app provided by Leap Motion. Then, users ex-

plored each application in sequence for five minutes. When recording

user data in the last chapter, we provided them with a set of tasks to

complete. For these experiments, we did not instruct them to perform

specific tasks with the applications but allowed them to freely explore

applications.

5.5.2 Threats to Validity

We chose a subset of available applications which use the Leap Motion

Controller. To decide if our framework was applicable to an applica-

tion, we use the following criteria:1) the applications must be in Java,

and use the Leap Motion Java API; 2) the application must be avail-

able publicly, either on the Leap Motion Airspace Apps Store2 or open

source. The applications chosen use different areas of the Leap Motion

API. Some applications, like PolyDrop, make use of the stabilized vec-

tors for menu interactions, whereas others like ASLDigits use the raw

finger joint positions. Only GorogoaPuzzle uses gestures, and only a

circle gesture. The variance in usage of the API means that our tech-

nique can be used on a wide range of applications which use the Leap

Motion Java API.

A threat to external validity is whether the data used in training models

2The Airspace App Store closed in June 2017
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is representative of data that actual users would provide. To mitigate

this, we use data from five users, each interacting with the application

under no guidance. Users were given a short training session on how to

use the Leap Motion Controller, but not on how to use each application.

Users recorded data for five minutes per application, with breaks in

between each app. It is possible that the order of data recording gave

users a chance to learn more about the Leap Motion Controller and

improve usage on later applications. The order in which application

data was recorded changed per person to mitigate against this.

As we are recreating and mocking an API, there is a question as to

whether our mimic API represents the real Leap API. The version of the

Leap API used for these experiments does not support replay of data,

so playback of data through the physical device cannot occur, therefore

the mock API must be used. The Leap API is sparsely documented, and

it is infeasible to recreate the API exactly without knowledge and cal-

culations that are missing from the documentation. To mitigate against

this threat, we have techniques of reconstructing the raw data using

our API before clustering occurs and we ensure that the reconstructed

data seeded through our framework performs similar to the original

user data.

With any developed software there is a potential for faults to occur. To

mitigate against this threat, we have a unit test suite and also make all

the artefacts available publicly on GitHub3 .

3https://github.com/thomasdeanwhite/NuiMimic/tree/nuimimic
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Figure 5.7. Line Coverage for different data generation techniques for each
application.

Table 5.1. Code coverage for different data generation techniques for each
application. Bold is significant (P < 0.05).

N-gram Model Comparison
Random Random Clusters N-gram Model Random Random Clusters

Application Cov. Cov. Cov. A12 P-value A12 P-value

ASLDigits 0.425 0.441 0.468 0.963 < 0.001 0.884 < 0.001
Gorogoa 0.364 0.371 0.371 1.000 < 0.001 0.366 0.109
PaintLM 0.625 0.706 0.689 1.000 < 0.001 0.080 < 0.001
PolyDrop 0.459 0.505 0.534 1.000 < 0.001 0.513 0.838
VPfB 0.589 0.663 0.778 1.000 < 0.001 0.849 0.002

5.5.3 RQ5.1: How beneficial is NUI testing with n-gram models

generated from real user data when generating tests for Leap

Motion applications?

Table 5.1 shows the line coverage achieved by different techniques of

data generation. The two right-most columns show the A12 effect size

when comparing the n-gram model technique to random and random

clusters respectively. Random generation achieves the overall lowest

code coverage, compared to both random clusters and n-gram based

generation. Generating random points in 3-D space and inserting them

into the Leap Motion data structure generates data that is unrealistic

and changes far more rapidly than an application expects. Unsurpris-

ingly, adding structure to the generated data and providing data that

resembles a hand performs significantly better than purely random gen-

eration. Statistical comparison between n-gram based generation and
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random generation shows that the difference is significant in all five

cases, as can be seen in Figure 5.7. Using random clusters for test gen-

eration leads to substantial coverage increase on all 5 apps. The dif-

ference between the random and random clusters approach is that the

random clusters approach exploits domain knowledge, selecting ran-

dom cluster centroids from the model generation stage. Combining

these centroids generates data similar to that which the original user

provided i.e. real data that the Leap Motion could provide to an ap-

plication. However, the random approach generates unrealistic hands

and is very unlikely to generate something resembling actual human

data from the Leap Motion under normal use. This demonstrates how

important it is to generate realistic data.

Compared to random clusters, the n-gram based generation adds tem-

poral data (i.e., realistic movements) across time. N-gram based gen-

eration allows not only the current hand to appear realistic, but a se-

quence of hands to be more human-like. This leads to a significant cov-

erage increase in two of the applications. For Paint Leap Motion the

use of the n-gram interestingly leads to a significant decrease in cov-

erage; for GorogoaPuzzle and PolyDrop there is no significant change.

While overall there is a small average coverage increase, this result jus-

tifies a closer look at the individual applications under test. ASLDig-

its and Virtual Piano for Beginners (VPfB), the applications where the

n-gram based approach performs best, use a Java game engine with

Leap Motion integration. They both require the hand data to repre-

sent specific positions and gestures. For example, ASLDigits uses a ma-

chine learning approach to determine if signs are correctly shown, and

Virtual Piano for Beginners requires specific hand shapes with minute

changes over time. Furthermore, both applications use complex menus

which require precise interactions with menu elements. All these as-
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Figure 5.8. Line Coverage for different data generation techniques for each
application across time.

pects are more likely to occur with n-gram based test generation, lead-

ing to around 114 and 262 more lines of code being covered for ASLDig-

its and VPfB respectively. PaintLeapMotion, the application where the

random cluster technique achieved higher coverage than the n-gram

based approach, is a painting application, where users paint on a can-

vas using hand gestures. While the n-gram based approach generates

more realistic hand sequences, these do not matter for this application:

PaintLeapMotion only uses the finger tips provided by the Leap Mo-

tion API. Users can change tools by moving their hand towards the

back of the Leap Motion Controller’s view and selecting a new tool

from the pop-up menu. Here is a code snippet from PaintLeapMotion:

1 if ( minDepth < ... DRAWING_DEPTH ) {

2 menuPanel .hide ();

3 draw(i);

4 } else if ( minDepth > ... MENU_DEPTH ) {

5 menuPanel .show ();

6 } else {

7 tool. stopDrawing ();

8 menuPanel .hide ();

9 setLastPosition (i, null , null);

10 }
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In this code, minDepth is the minimum position of a finger tip. The Leap

Motion API uses a negative Z-axis so this is the front-most part of the

hand. The selection of random clusters more uniformly samples combi-

nations of cluster centroids, therefore more rapidly changing between

the branches in this function. In the application, this is reflected by

alternating between showing the menu, selecting new tools, and paint-

ing on the canvas very quickly. This leads to an increase of around

43 lines of code over the n-gram model approach. Using the n-gram

model technique can also change tools, but does so at a much slower

speed, following realistic movement. Random generation of test data

is unlikely to move all points in the hand behind the threshold to acti-

vate the pop-up menu so can only paint on the screen using the default

tool, and thus performs poorly on this application. For GorogoaPuzzle

and PolyDrop the likely reason that coverage does not increase with

the use of n-gram models is that both apps require very specific and

complex interactions (e.g., balancing elements on a horizontal bar in

PolyDrop). While n-gram based generation may produce more realis-

tic data sequences, these sequences would need to be tailored to the

specific state of the gameplay. Consequently, both random clusters and

n-gram based generation are likely stuck at the same point in the ap-

plication. Overall, the benefits of using an n-gram model in data gen-

eration are application specific. On applications such as PaintLeapMo-

tion, which do not rely on a steady stream of data with small change

over time, random clusters performs well. Other applications such as

Virtual Piano For Beginners require precise gestures and slow interac-

tions with menu items, which are more commonly generated with the

n-gram based approach, while it is unlikely that the random cluster ap-

proach will generate a hand that remains still long enough to activate a

button. Figure 5.8 shows the change in line coverage during test gener-
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ation. In three of five applications, line coverage is still increasing after

30 minutes for an n-gram model based approach to generation. In two

of five, line coverage is still increasing after 50 minutes. Given more

time, it is plausible that the n-gram model based approach will achieve

an equal level of coverage than random clusters on the PaintLeapMo-

tion application.

Although code can be executed by seeding NUI data, it is impossible

to achieve 100% coverage in certain circumstances. For example, Goro-

goaPuzzle has defensive programming when loading images, ensuring

that the image exists. The cases where an image does not exist cannot

be executed by seeding Leap Motion data alone. Another example of

unreachable code is in PaintLeapMotion, which contains both NUI and

mouse interactions. For our experiments, no mouse interaction could

take place hence there is no possible way to test this code.

RQ5.1: NUI test generation approaches increase coverage on Leap Motion

applications by an average of 14% when compared to a purely random

generation approach, but applications may only use subsets of the complex

NUI input data structures, limiting benefits achievable with n-gram

modelling.

5.5.4 RQ5.2: How does the quantity of training data influence the

effectiveness of models generated for NUI testing?

Table 5.2 shows the mean coverage for different generation techniques

using models trained on both a) a single user’s data or b) all users’ data

for the respective application. For all five applications, the mean cover-

age was greater for a ‘merged’ model that was trained on all users’ data,

as confirmed in Figure 5.9. Of the five applications tested, three appli-
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Figure 5.9. Line Coverage for models using either multiple or single person
data when training for each application.

Table 5.2. Code coverage difference between single and merged data sources
for each application. Bold is significant (P < 0.05).

Source Single Source Merged Source
Application Cov Cov A12 P-value

ASLDigits 0.444 0.468 0.725 0.017
Gorogoa 0.371 0.371 0.536 0.590
PaintLM 0.672 0.689 0.759 < 0.001
PolyDrop 0.467 0.534 0.965 < 0.001
VPfB 0.738 0.778 0.711 0.080

cations achieved a significantly higher code coverage when tested with

the merged model. From this, we can make two conclusions. Firstly,

models that have been trained with more data yield higher code cover-

age. Secondly, a greater volume of training data is beneficial even when

it originates from a number of different users.

Increasing the amount of data available to produce models increases

the data points assigned to each cluster, producing a more diverse set

of cluster centroids to be chosen by models when generating data. Also,

as each cluster contains more elements, the n-gram models represent-

ing transitions between clusters are less sparse, allowing a greater vari-

ance in the sequences generated. The finding that a benefit accrues

from a larger amount of training data, even when it originates from a di-

verse pool of users, is not entirely expected. Users interacting with the
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Figure 5.10. Line Coverage for models using either single or multiple model
generation for each application.

Leap Motion have different anatomy (e.g., hand sizes, finger lengths)

and may interact with the controller in specific ways. Apparently, the

benefits of generalizing over a diverse pool of data outweigh the dis-

advantages that might be expected from anatomical differences. This

suggests that in future work, crowd-sourcing interactions from a large

pool of users should be an effective way of building models for NUI

testing.

RQ5.2: Test generation using models trained with more than one source of

training data outperformed those using only a single data source, leading to

an average coverage increase of 5.5%. This suggests that pooling data

across a number of users is beneficial, even though the users differ in their

anatomy (e.g., their hand sizes and finger lengths).

5.5.5 RQ5.3: How beneficial is a model with separation of NUI data,

which can generate parts of the data structure in isolation,

compared to a model trained on a whole snapshot of the NUI

data?

Table 5.3 shows the mean code coverage after testing the two forms of

model generation: a single model or multiple models. The single model

approach generates entire data frames at once, by selecting a centroid

169



Chapter 5 Testing By Example: Natural User Interfaces

Table 5.3. Code coverage for single or multiple model generation for each
application. Bold is significant (P < 0.05).

Data Generation Single Model Multiple Models
Application Cov Cov A12 P-value

ASLDigits 0.452 0.468 0.751 < 0.001
Gorogoa 0.369 0.371 1.000 < 0.001
PaintLM 0.706 0.689 0.070 < 0.001
PolyDrop 0.479 0.534 0.510 0.926
VPfB 0.781 0.778 0.483 0.879

from Leap Motion data clustered as a complete set of features. The mul-

tiple model approach generates data from models clustered from sub-

sets of the data set, then combining data from each model into a data

frame. For ASLDigits and GorogoaPuzzle the multiple model based

approach achieves a significantly higher code coverage; on PaintLeap-

Motion the coverage is significantly lower. The coverage difference can

be seen in Figure 5.10. On the other two applications the mean cov-

erage is slightly higher with multiple models, but differences are not

significant. These results show that the decision to use multiple mod-

els for generating data is application specific. The application which

benefits mostly from use of a single model is PaintLeapMotion. From

RQ5.1 we already know that random clusters perform better at inter-

acting with the tool menu items of this application. Similarly, using a

single model is more likely to reproduce the interactions with the tool

menu in the training data, while creating separate models leads to less

reproduction, and exploration of new combinations. For example, on

PaintLeapMotion we used 1200 clusters, and the single model simply

learns the temporal relationships between these clusters. In contrast,

when splitting the data into five models, we end up with substantially

more possible interactions (i.e., 12005 possible combinations). A sin-

gle model approach explores the input space much quicker, leading to

27 more lines of code being covered than using multiple models. Con-
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sequently, applications with simple interactions may be more suited

to a single model approach, whereas applications which require more

complex sequences of inputs are better suited for a multiple model ap-

proach.

GorogoaPuzzle benefits from the use of multiple models. It uses two

main forms of interaction: circle gestures and hand movements. The

first screen of GorogoaPuzzle requires a specific circle gesture before

progression in the story can occur. However, advancing in the story

does not necessarily increase code coverage, as the same code is used

to handle all circle interactions. To achieve a higher coverage, tests need

to advance far into the storyline, where complex sequences of interac-

tions are introduced and needed to advance further. Using multiple

models allows for more degrees of freedom in the generated data, and

thus succeeds slightly more often in progressing in the GorogoaPuzzle

storyline, achieving around 39 more lines of code covered.

ASLDigits also attained a significantly higher code coverage using a

multiple model approach. Multiple models performs better than sin-

gle model due to the application expecting specific finger-joint shapes

corresponding to the ASL sign for 0-9, requested by the application.

The single model approach merges hand positions and rotations from

all interactions with the application, which decreases the amount of

unique finger-joint shapes available; in contrast, the multi-model ap-

proach covers this with an explicit model, achieving around 67 more

lines of code covered. Virtual Piano for Beginners is an interesting ap-

plication when comparing single to multiple models. In RQ5.1, n-gram

generation achieved a higher coverage than random clusters because

it could generate a still hand to interact with the game menu. How-

ever, a single model approach can also generate a steady hand. Single
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model works well for this application due to the position and rotation

being encoded with finger positions. To play the correct key on the pi-

ano in a tutorial song, the single model n-gram has to generate a single

sequence corresponding to the user pressing the key. However, simi-

lar to with PaintLeapMotion, the multiple model approach has a much

higher search space, so is less likely to generate the sequence to activate

the key and progress with the song, covering around 7 less lines of code

than using a single model.

RQ5.3: Using multiple models is beneficial when applications use specific

features in isolation. If a more precise replication of the training data is

required, using a single model approach may be beneficial.

5.6 Discussion

As with the last chapter, we also tried to create models which were

based on an inferred state from the application. Previously, we in-

ferred the state by simply using the title of a window. However, most

Leap Motion applications only use a single window, so this is infeasi-

ble. Instead, we investigated a method of inferring the application state

through a screen shot, but this is not trivial.

We tried two approaches of inferring the application state. The first ap-

proach is using the histogram of pixel intensity values and comparing

this against previously seen histogram, using some threshold to check

for equality. The second approach was to use a discrete cosine transfor-

mation and a sliding window to greedily match areas of the screen per

screen shot.

Figure 5.11 shows the coverage achieved by the approach which uses a
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Figure 5.11. Line Coverage for models using either an application model or a
window model for test data generation for each application.
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Figure 5.12. Line Coverage over time for models using either an application
model or a window model for test data generation for each application.

separate model for each window. We found that the benefits from us-

ing window models was not clear over using an application model. It

seemed that in most cases, a window model achieved similar or lower

coverage than using an application model. This is mainly due to the

time required to infer the program’s state. With each screen shot iden-

tified as a new state, the cost of state inference increases over the ex-

penditure of the testing budget. The coverage in these plots is lower

than that of the empirical evaluation as the techniques were limited

to only 10 minutes generation time. The implementation and perfor-

mance of the tool overall was also improved after this comparison. It is
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unknown whether using window models will give an advantage after

10 minutes of execution, but as the computation cost of state inference

increases, this is unlikely.

Another problem when using window models was that the n-gram

models were too sparse. The application models were far less sparse

due to the increased amount of data in the clustering and generation of

the sequence model, with more transitions between cluster groups.

When starting this comparison between application and window mod-

els, we expected that coverage using an application model should di-

verge, but the more specific window models should be able to over-

come these difficult testing objectives that hinder progress. However,

Figure 5.12 shows that this is not the case, with both approaches usually

performing the same, or one being clearly better at achieving coverage

from the start of testing.

Another approach we tried to increasing coverage was generating smoother

sequences of hands. Instead of instantly changing between cluster cen-

troids, we tried to linearly interpolate between clusters. However, as

with the window models, the time taken for the interpolation again

outweighed the benefits of generating a smoother sequence of hands.

To improve the interpolation time, we also tried using a Bezier curve to

interpolate between the next B clusters. Whilst the overhead was much

lower, the Bezier curve changed the positions of important information

in the sequence of centroids and these tests missed core functionality

that could be tested without interpolation.
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5.7 Conclusions

The Leap Motion allows users to interact with applications through

hand tracking. We have created a model and test generation frame-

work for the Leap Motion, capable of generating data by learning from

real user interactions. This demonstrates that the idea of NUI testing

generalizing to other, more complex NUI devices than the previously

studied Microsoft Kinect. It is also conceivable that the approach gen-

eralizes to other systems which use complex inputs e.g., Autonomous

Driver-Assistance Systems, which alert drivers to possible future haz-

ards [54, 86].

There are various points of future work from this chapter:

• Splitting Leap Motion data structures into separate models expo-

nentially increases the amount of data available during test gener-

ation. Each model generates data in isolation, and interacts with

other models when combining data in complex ways, producing

data that was never recorded from the original user. However,

if applications rely on precise positioning of a user’s hands for

interaction as captured in the training data, then the increased

quantity of possible data can be as much a hindrance than an ad-

vantage. In our experiments, two out of five applications showed

a clear benefit from splitting data, but we also found an example

where coverage decreased. A challenge thus lies in identifying

when to split data, and when not to split data. A possible solu-

tion might be to use a hybrid approach, where data is sampled

from either of the two approaches with a different probability.

• When training models from multiple sources of training data, in-
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creased data size leads to higher code coverage. This occurs even

when the data is from different users. Potentially, this insight

opens up the possibility to gather data through crowd sourcing

from many individuals, and using that to train user-independent

models for data generation.

• Currently, playback of tests takes the same time as generation, but

future work is to minimize the generated tests by removing sub-

sequences which have no impact on final code coverage. This

will leave tests that are easier to understand by developers and

can execute in far less time than the one hour generation budget.

• A further angle for future work lies in the generalization of mod-

els. We limited training data to individual applications, but will

it be possible to create generalized models that can be used on

applications without previous user data to train models with?

• Currently, our tool only provides a sequence of Leap Motion data

that can be played back into the AUT. Future work involves iden-

tifying the current program state from the contents of the screen

and providing regression tests with oracles. This can then be used

in mutation testing.

• We tried two additional approaches to increase coverage, of which

none worked. The computational overhead needs careful consid-

eration when implementing a new technique. If the overhead is

too great, then the quantity of data is reduced substantially. How-

ever, generating more realistic data may be beneficial for testers

when inspecting tests that fail and could be revealing some fault.

The effects on code coverage of generating more realistic test data

(e.g., through interpolation) is unknown. Further work is needed

in investigating whether generating more realistic sequences can
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find more faults, and the relationship and benefits of generating

more realistic data.

Finally, our experiments have also shown that programs controlled with

complex NUI interfaces may also have complex program behaviour,

where blindly generating data may not achieve best results. In games

like GorogoaPuzzle, thorough testing requires actions that are tailored

towards the current state of the application. This suggests a need of

identifying such program states, and learning different models for dif-

ferent program states.
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6 Conclusions and Future Work

The data provided to applications from user interfaces varies in com-

plexity, from basic commands of a command line interface to complex

structures derived from human movement. For test generation tools,

generating data to test the functionality of applications which rely on

this data is a difficult task.

In this thesis, we have investigated approaches to creating models that

can generate test data which resembles that which would be provided

by a user interface. This data can then be seeded into applications at

test time to execute the event handlers linked to specific events.

6.1 Summary of Contributions . . . . . . . . . . . . . . . 179

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . 183

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . 187

6.1 Summary of Contributions

Graphical user interfaces rely on keyboard and mouse interactions to

trigger event handlers in the application under test. Test generation

tools need to know the coordinates of widgets in an application’s GUI
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to trigger events at targeted event handlers, but this relies on the appli-

cation providing information about all of its widgets. Sometimes, this

is not possible.

6.1.1 Identifying Areas of Interest in GUIs

The first contribution is a technique of generating synthesised data for

training a system using machine learning. Generated data is automati-

cally tagged and could be left running unsupervised to generate large

quantities of training data.

The second contribution is a technique of predicting the widget infor-

mation from screen shots alone, using a system trained on synthetic

data. The machine learning system is capable of predicting widgets in

real applications, achieving a recall of around 77% when identifying

widgets on the same operating system. Using a different operating sys-

tem, the same system can recall around 52% of widgets in the GUIs of

10 applications.

The third contribution compares the code coverage of tests generated

by two techniques. The first is a random testing approach guided by

the machine learning system which predicts the information of wid-

gets in an application’s GUI, and the second is a random GUI event

generator (i.e., a “monkey tester”). We found that the widget detection

system guided by predicted widget information can achieve a signifi-

cantly higher branch coverage in 18 of 20 applications, with an average

increase of 42.5%. This is due to the predictions by the system guiding

a random tester into generating more interesting interactions, clicking

locations on the screen with a higher probability of triggering an event

handler and hence executing more of the application’s code.
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The fourth contribution compared a random tester guided by the wid-

get prediction system to a technique which exploits the Java Swing API

(i.e., a golden standard of the prediction system). From this compari-

son, it is clear that the prediction system can be improved substantially.

One interesting observation was that the prediction system can identify

custom widgets in applications not supported by the technique which

exploits the Java Swing API, and can actually achieve a higher coverage

in certain scenarios where the coverage of the API technique diverges

or has to default to a monkey testing approach (e.g., if links were em-

bedded inside a text field widget).

Contribution five outlines the data required to accurately store, replay,

and create models that can generate events similar to that of a user

interacting with an application soley through a computer’s keyboard

and mouse. We identify four types of events that can be generated by

users.

The sixth contribution looked at real users to inspire a test data gener-

ator. Real users are likely to only interact with interesting areas of an

application’s GUI, and interactions generated by models derived from

real user data is similar. Models were trained on data recorded from 10

users, each interacting with the same 10 applications. The models can

generate events statistically similar to that of a user, but are limited by

the input data.

The seventh contribution was an investigation into the effectiveness of

models derived from user data. It was found that training models spe-

cific to each application’s window was beneficial over using a model

based on the entire dataset for an application, generating more targeted

events and achieving a significantly higher branch coverage. It was

also found that using a model trained on user data could outperform

181



Chapter 6 Conclusions and Future Work

the widget prediction approach by exploiting sequential information to

interact with elements such as menus which require more than a single

interaction at a single point in time to effectively trigger the underlying

event handlers behind such widgets. However, the approach which

exploits the Java Swing API again achieves a significantly higher cov-

erage than any approach based on user data. There were applications

where using a model derived from user data could achieve a signifi-

cantly higher coverage than the approach that exploits Java Swing, and

this was again due to the temporal information stored in the user mod-

els, giving it the ability to generate realistic sequences of events across

a given time frame.

Chapter 5 presented a technique of interacting with the Leap Motion, a

device where it is extremely difficult to extract event handlers,. How-

ever, the technique in Chapter 5 can be applied to general natural user

interfaces.

6.1.2 Generating Natural User Data

Contribution eight was a framework capable of recording, storing, pro-

cessing, and generating data for the Leap Motion device. The data gen-

erated is statistically similar to that of the real users used to derive the

model.

The ninth contribution was empirical investigation into effectiveness of

a model trained on real user data. The model trained on user data sig-

nificantly outperformed a purely random testing technique, which sam-

ples random points in the input domain for all values in the Leap Mo-

tion data structure. However, the sequential information in the model

is not always required to maximise coverage of generated tests.

182



6.2 Future Work

The next contribution, 10, was an empirical evaluation of the impact of

training data, and how the effect of combining multiple users’ data into

a single model. Using more user data increases the data points inside

the model, and the number of data points in a models transition table.

This lead to a significant increase in the coverage achieved when using

multiple users’ data over a single, isolated user.

Contribution eleven was an empirical evaluation of the effectiveness of

splitting a user’s data into smaller sub-groups, and creating a model

which controlled generation of the data in that sub-group. All models

would generate the data representing the area of the Leap Motion API

of the data they were derived from, and then the data was combined

before being seeded into an application. This technique was applica-

tion specific. More data could be generated, including data which the

user did not provide, but this inflated domain of possible generated

data could also be a hindrance where specific sequences of data were

needed.

In the next section, we look at interesting observations and future work

bought about through this thesis.

6.2 Future Work

In this thesis, we lay down some foundations for testing applications

without the assumption of a known source code language or data struc-

ture that could be exploited to generate test data. This has opened up

several new challenges that need to be addressed.
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6.2.1 Graphical User Interface Patterns

Widget Detection

When predicting widgets in a GUI, the prediction model could identify

interesting areas of interaction. However, it is clear from the compar-

ison between the prediction model and the gold standard “API” ap-

proach that the performance could be improved.

Chapter 4 shows an interesting observation when training a model on

a subset of the generated screen shots of GUIs. Our aim here was to ex-

pose the model to data that has a greater similarity to that of real GUIs,

and therefore increase the model’s performance on real GUIs. The sub-

set was selected using a genetic algorithm, which aimed to reduce the

difference for certain metrics between a real set of GUIs, and the gener-

ated subset. It is interesting that the trained model achieved a higher

precision on real GUIs than the model trained on all data, but a lower re-

call. This could be due to the increased exposure to more data that the

model trained on all generated GUIs had. However, this presents an

interesting question: what is the best trade off between recall and pre-

cision when testing GUIs through widget detection? When presented

with a smaller testing budget, it may be beneficial to use a high preci-

sion and a lower recall than when testing with a high budget, and this

relationship needs further investigation.

The model could be improved by training on a real set of GUI screen-

shots. However, this is expensive to gather. It may be possible to aug-

ment a set of real application GUIs with synthesised GUIs, or to begin

automatically tagging a real set of application screen shots using our

model and refining the automated tags. This would increase the diver-
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sity of the data that the model is exposed to, whilst lowering the cost of

manual labelling.

We need a better method of identifying the classes that the model pre-

dicts. The widgets in a GUI can look very similar. Users identify the

widget type using context, and what is around the widget. For example,

buttons usually have centred text, whereas a textfield could look iden-

tical but have left aligned text. More recent methods of object detection

can predict multiple classes, and this would aid in class predictions of

the model. A button and a tab may have the same effect: change all or

part of the screen, so why predict them as mutually exclusive?

When studying the performance of a purely random tester on an ap-

plication’s GUI, we observed a lower level of coverage to that which

Choudhary et al. [33] observed using Android Monkey on Android ap-

plications. This is interesting, as it reinforces the idea that random test-

ing in Java applications is less efficient than in Android applications.

One possible reason for this could be that the widgets in Android ap-

plications take up a higher proportion of the screen space than with

traditional Graphical User Interfaces, increasing the likelihood that a

random tester would hit a widget. This needs to be studied in greater

detail, as it may be possible to improve the performance of random

testing on traditional GUI applications through changing factors like

window size, to allow the greatest possible chance for interaction with

a widget by a random tester.

User Model Creation

In Chapter 5, we found that for certain applications, using a model

trained on the whole dataset of user interactions could outperform one
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trained on the current window of an application. For this to happen,

there needs to be some pattern in an application’s GUI. Are there gen-

eral patterns in GUIs that can be identified? Is it possible to identify

patterns in an application’s GUI whilst testing and exploit this informa-

tion?

By combining a model derived from user data with the prediction model

from Chapter 3, it may be possible to strengthen both approaches and

achieve a higher coverage. The detection approach can aid in state in-

ference, which was a weakness of the models derived from user data

when only a single window was used for an application as this inflated

the possible interaction points that could be generated.

When clustering user interaction with a GUI, it is possible that the cen-

troid of the cluster falls outside of the interaction box of a widget. We

use K-means clustering as our data grouping algorithm. When the data

is clustered, we replace user data points with the centroids of the clus-

ter each point was assigned to. This is a destructive form of data com-

pression, and can mean the difference between pressing a button on a

GUI, and clicking an uninteresting area of the GUI due to the cluster

centroid being outside the bounds of a widget. Some other form of

data compression needs to be investigated, which suffers less from this

problem, allowing a more representative set of points from the original

user’s data. This problem also extends to the clustering technique used

when generating data for Natural User Interfaces.

6.2.2 Natural User Interface Patterns

In our experiments, we trained models solely on the data extracted

from user interactions with the application under test. In future, we
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need to remove the assumption of pre-existing user data with an appli-

cation, as this is not always the case. Can a general corpus of data or

model be created that can apply to any application?

We found that using more user data can lead to models which generate

tests with a higher code coverage. This creates the possibility for a

study on the trade-off between quantity of user data, and quality of the

trained model. At some point, it is expected that the potential gain from

adding more user data should be outweighed by the cost of collecting

more user data.

We tried two additional approaches to guiding the data generated by

the model in an attempt to increase the code coverage achieved. The

first was to train models specific to the current screen contents. How-

ever, the computational overhead for this meant that far fewer inter-

actions could be generated and consequently, the performance did not

improve.

The second approach was to interpolate between the last seeded cluster

and the next cluster selected from the model. Again, as the interpola-

tion took time, the time synchronisation between the original user data

and the interpolated data was destroyed, and although the same quan-

tity of data was seeded, the actual diversity of the data was diminished.

6.3 Final Remarks

Users can be put off using software when encountering bugs in normal

application use. Automated testing and data generation can help to

cover different areas of an application’s source code, and is valuable to

augment manually written test suites.
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We presented approaches to generating test data and system-level events

for applications using two types of user interfaces. This thesis con-

tributes new techniques for generating test data by either learning from

synthesised data, or from real user interactions with an application.

Our approaches suffer from generating data blindly and seeding it to

the application “in the dark”. If we had some method of inferring an

application state through screenshot alone, it may increase the perfor-

mance of the models through guiding the generated data. However,

state inference is a difficult and expensive problem. Because of this,

the duration of test generation and execution is often large and we cur-

rently have no method of reducing the size of the tests, as we cannot

check which events trigger state changes.

In the future, with a better technique of inferring states, it may be pos-

sible to isolate specific data points in a sequence of generated test data,

and link this back to a specific state change in the application. This

would allow developers to see which event sequence led directly to

some application state, without ever leaving their integrated develop-

ment environment. The techniques in this thesis can be applied to sys-

tems which use continuous streams of data (such as NUIs) or event-

driven programs (such as GUIs). It may be possible to apply these

techniques to generate test data for other types of applications such as

cyberphysical systems [74], emulating network requests and mocking

components in software for integration testing.
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A Participant task sheet

Here is a participant task sheet as described in Chapter 4. Every appli-
cation and every task was randomised for each user, to reduce the learn-
ing effect of interacting with certain applications before others.
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GUI Interaction Experiment

Participant 1

Application 1

Minesweeper

No information is required for this application.

Please run Minesweeper.sh from the user directory.

3 Minute Warm Up

Application 1: Minesweeper

Tasks:

[ ] - Start a game of JMine

[ ] - Flag a mine location

[ ] - Close the window and play a Difficult game of JMine

[ ] - Find a mine in a corner

[ ] - Win a game

[ ] - Close the window and play a Medium game of JMine

[ ] - Close the window and play an easy game of JMine

[ ] - Flag a location where there is not a mine

[ ] - Find a mine



Application 2

JabRef

No information is required for this application.

Please run JabRef.sh from the user directory.

3 Minute Warm Up

Application 2: JabRef

Tasks:

[ ] - Mark an entry

[ ] - Find an entry using the "Search" functionality

[ ] - Generate using ArXiv ID (e.g., arXiv:1501.00001)

[ ] - Open the preferences (don't change anything!)

[ ] - Add a book

[ ] - Add an article

[ ] - Clean up entries in the current library (add some if they

do not exist)

[ ] - Add an entry from a web search

[ ] - Add a duplicate entry and remove using "Find Duplicates"

function.

[ ] - Add a string to the current library

[ ] - Rank an entry 5 stars

[ ] - Create a new Bibtex library

[ ] - Unmark an entry

[ ] - Add a new group and at least one article to the group

[ ] - Add an InProceedings

[ ] - Save the library in /home/thomas/jabref

Application 3

Dietetics

Information

- Translation: peso corporeo - body weight

- Translation: altezza - height

- Translation: eta - age

Please run Dietetics.sh from the user directory.

3 Minute Warm Up

Application 3: Dietetics

Tasks:

[ ] - View the notes on BMI (translation: Note sul BMI)

[ ] - View information on the BMI formula (translation:

Informazioni forumule)

[ ] - Classify someone as "sovrappeso"

[ ] - Classify someone as "sottopeso"

[ ] - Calculate BMI for a created person

[ ] - View the program info

[ ] - Classify someone as "con un obesita di primo livello"



Application 4

Simple Calculator

No information is required for this application.

Please run Simple_Calculator.sh from the user directory.

3 Minute Warm Up

Application 4: Simple Calculator

Tasks:

[ ] - Perform a calculation using multiplication

[ ] - View the about page

[ ] - Chain together 4 unique calculations without clearing the

screen.

[ ] - Perform a calculation using multiplication of a negative

number.

[ ] - Perform a calculation using addition

[ ] - clear the contents of the screen (do a calculation then

clear if it is already clear)

[ ] - Perform a calculation using non-integer numbers

[ ] - Perform a calculation using subtraction

[ ] - Perform a calculation using division

[ ] - Calculate the square root of 9801

Application 5

UPM

Information

- To perform the tasks, a new database needs to be created

first.

Please run UPM.sh from the user directory.

3 Minute Warm Up

Application 5: UPM

Tasks:

[ ] - Copy the password of an account (add one if none exist)

[ ] - Create a new database

[ ] - Add an account with a generated password

[ ] - Edit an existing account (add one if none exist)

[ ] - View an existing account

[ ] - Add an account with a manual password

[ ] - Add an account to the database

[ ] - Export a database

[ ] - Put a password on a database

[ ] - Copy the username of an account (add one if none exist)

[ ] - View the "About" page



Application 6

blackjack

No information is required for this application.

Please run blackjack.sh from the user directory.

3 Minute Warm Up

Application 6: blackjack

Tasks:

[ ] - Bet 200

[ ] - Enter a game of Black Jack

[ ] - Get a picture card

[ ] - Lose a round

[ ] - Bet 50

[ ] - Get blackjack (picture card and an ace)

[ ] - Lose a round

[ ] - Win a round

[ ] - Bet 500

[ ] - Bet 1000

[ ] - Win a round

[ ] - Bet 100

[ ] - Bet 20

Finally:

[ ] - Bet everything you have (go "all in")

Application 7

ordrumbox

No information is required for this application.

Please run ordrumbox.sh from the user directory.

3 Minute Warm Up

Application 7: ordrumbox

Tasks:

[ ] - Create a piano track and include it in the drum beat

[ ] - Play a song

[ ] - Change the volume

[ ] - Add a filter to a track

[ ] - Create a drum beat

[ ] - Rename an instrument

[ ] - Change the gain

[ ] - Change the pitch

[ ] - Decrease the tempo

[ ] - Change the frequency

[ ] - Increase the tempo

[ ] - Save a song beat

[ ] - Create a new song



Application 8

SQuiz

No information is required for this application.

Please run SQuiz.sh from the user directory.

3 Minute Warm Up

Application 8: SQuiz

Tasks:

[ ] - Start a new quiz (translation: Nuova Partita)

[ ] - Place on the score board

[ ] - Get a question wrong

[ ] - View the about page

[ ] - View the rankings page (translation: classifica)

[ ] - Get a question right

[ ] - Get a question either right or wrong

[ ] - View the statistics page

Application 9

Java Fabled Lands

No information is required for this application.

Please run Java_Fabled_Lands.sh from the user directory.

3 Minute Warm Up

Application 9: Java Fabled Lands

Tasks:

[ ] - View the current code words

[ ] - Enter combat

[ ] - Save the game

[ ] - View the original rules

[ ] - Buy or sell an item at a market

[ ] - View the quick rules

[ ] - Loot an item

[ ] - Load a new game

[ ] - Load a hardcore game

[ ] - View the "about" page

[ ] - Write a note

[ ] - View the ship's manifest



Application 10

bellmanzadeh

No information is required for this application.

Please run bellmanzadeh.sh from the user directory.

3 Minute Warm Up

Application 10: bellmanzadeh

Tasks:

[ ] - Set an alternative description and values for all current

variables (create variables if they do not exist).

[ ] - Add an objective function (create variables if they do

not exist)

[ ] - Add a Boolean type variable

[ ] - Add a constraint (create variables if they do not exist)

[ ] - Add an Integer type variable

[ ] - Add a Float type variable
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