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Abstract 

Clostridium difficile infection (CDI) laboratory diagnostic assays have variable performance, 

but reasons behind this variability are not well defined. In contrast to previous findings, the 

PCR ribotype of the organism only appears to be a factor in reduced sensitivity for toxin 

enzyme immunoassays (EIAs), not glutamate dehydrogenase (GDH) EIAs. Growth curve 

data demonstrated that GDH is produced during the exponential phase of growth, and the 

sensitivity of the GDH assay in vivo may be related to the amount of protein produced by 

the organism, as very high levels of GDH were detected during growth of C. difficile in an in 

vitro gut model. Indeed the levels of GDH, measured in both gut model and patient samples, 

correlated with organism bioload. In addition, the median faecal levels of GDH in recurrent 

CDI cases were significantly higher than in patients with a single infection episode. 

Interestingly, when patients had sequential faecal samples tested, 27% with an initial GDH-

positive/toxin-negative result had a subsequent toxin positive sample, after a median of 

eight days. Further studies, with supplementary assays for gut inflammation, are required, 

to determine if these are ‘missed’ infections or insignificant sub-clinical levels of toxin. A 

laboratory test that could predict risk of recurrence would be an important tool to inform 

choice of appropriate C. difficile treatment and prevention options. Indeed GDH detection 

may offer such an opportunity; a cohort of patients has been identified who were 

consistently GDH positive, even after resolution of symptoms, who subsequently 

developed recurrent CDI following additional antimicrobial therapy. The cycle threshold (CT) 

value of PCR assays for the detection of toxin gene may also provide additional information, 

as low CT (<25) was significantly associated with toxin positivity, presence of PCR ribotype 

027 and mortality. Low CT was also associated with recurrence but was not a significant 

finding. 
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1.0 Introduction 

1.1 Historical context 

Clostridium difficile is widely recognised as the predominant cause of nosocomial diarrhoea 

in the western world (Crobach et al, 2009). This anaerobic spore-forming bacillus was first 

identified in 1935 as a commensal bacterium of children, although the authors did note 

that the organism was pathogenic when broth supernatants were injected into Guinea pigs 

(Hall and O’Toole, 1935). The organism was later shown to be the aetiological agent of 

pseudomembranous colitis and antibiotic-associated diarrhoea (AAD) (George et al, 1978; 

Bartlett et al, 1978), after the identification of a clostridial toxin that was neutralised by 

Clostridium sordelii antitoxin in the faeces of pseudomembranous colitis patients and 

patients with antibiotic-associated diarrhoea (Larson and Price, 1977; Rifkin et al, 1977). 

C. difficile infection only represents 10-20% of cases of antibiotic-associated diarrhoea 

(Kelly et al, 1994; Gerding, 1989); Staphylococcus aureus, Clostridium perfringens and 

Klebsiella oxytoca among others, have also been implicated in this condition (Sparks et al, 

2001; Altemeier et al, 1963; Bartlett and Gerding, 2006; Högenauer, 2006). Importantly, 

pseudomembranous colitis may also be caused by Salmonella (Hovius and Rietra, 1982), 

which could cause misidentification as Clostridium difficile infection if imaging alone is used 

for diagnosis. In the majority of cases, however, no organism can be isolated from AAD 

patients, and it is postulated that diarrhoea in some of these patients is as a result of 

disrupted carbohydrate catabolism from depleted anaerobic faecal microbiota (Bartlett, 

2002; Young and Schmidt, 2004). Also, some antibiotics, for example erythromycin and the 

clavulanic acid component of co-amoxiclav, can affect gut motility, and may therefore 

increase frequency and softness of motions in some patients (Barlett, 2002). 

Recently, a new classification of Clostridium difficile has been proposed as 

Clostridioides difficile (Lawson et al, 2016). However, Clostridium difficile still appears to be 

the preferred option in the current literature and the bacterium will be referred to as such 

throughout this thesis. 
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1.2 Virulence factors 

1.2.1 Toxins 

The ability to produce toxins is one of the key factors that makes C. difficile such a 

successful pathogen. The organism produces two large glucosyltransferase protein toxins, 

toxin A and toxin B, both of which target the actin cytoskeleton of cells by inactivation of 

Rho proteins (Ras-homologous proteins), allowing the secretion of chloride ions into the 

gut lumen via cell tight junctions that have become opened (Just et al, 1995; Giry et al, 

1995), resulting in diarrhoea. Toxin A is a 308,103 Da enterotoxin (Dove et al, 1990) with 

approximately 45% homology at the amino acid level with the 269,000 Da cytotoxin toxin B 

(Barroso et al, 1990; Aktories 1997). Although described as an enterotoxin, toxin A also has 

cytotoxic activity; however, toxin B is 100-fold more potent than toxin A (Tucker et al, 1990) 

as a cytotoxin. Both toxins are encoded on a 19.6Kb, non-mobile pathogenicity locus 

(PaLoc), alongside tcdC (regulator), tcdD (positive regulator, nomenclature later changed to 

tcdR) and tcdE (mediator of cell release) (Braun et al, 1996; Hundsberger et al, 1997; Voth 

and Ballard, 2005). Non-toxigenic strains of C. difficile do not contain the PaLoc within the 

chromosome (Rupnik et al, 1998). 

The toxins bind to human epithelial cells via a combined repetitive oligopeptide (CROP) 

domain, and a hydrophobic protein sequence that allows insertion into host membranes 

(Dingle et al,  2008). Despite the high degree of homology, the toxins appear to have 

different effects in experimental models; in a mouse model toxin B causes damage to 

epithelia, and increases inflammation to a much greater extent than toxin A.  Indeed, the 

incidence of mortality in this model is also higher with toxin B, compared with toxin A 

(Carter et al, 2015). In a hamster model, however, toxin A appears to be the more potent 

toxin (Carter et al, 2015). These differences may be due to the fact that the two toxins have 

different target receptors (Chaves-Olarte et al, 1997). In addition, toxin A may have a wider 

range of targets (GTPases) to which it can bind (Pruitt et al, 2012). Mutants lacking either 

tcdA (encoding toxin A) or tcdB (encoding toxin B) have been investigated to determine the 

role of each toxin in virulence (Lyras et al, 2009; Kuehne et al, 2014), with conflicting 

results; one study highlighted that only toxin B was required for virulence, since mutants 

expressing tcdA but not tcdB did not cause disease (Lyras et al,  2009), while the other 

study found that mutants with knocked out expression of either tcdA or tcdB could cause 

disease (Kuehne et al, 2014). 
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During the exponential phase of growth, the regulator tcdC  is expressed in higher 

amounts, thereby inhibiting the expression of tcdA and tcdB (Matamouros et al, 2007); 

once in a stationary phase of growth, tcdR expression initiates expression of tcdA and tcdB 

(Mani and Dupuy, 2001). The product of expression of tcdR also promotes its own 

expression, in a positive feedback loop, thereby increasing the expression of toxins even 

further (Mani and Dupuy, 2001). Increased toxin production has been linked with changes 

to the negative regulator TcdC (Spigaglia and Mastrantonio, 2002; Murray et al, 2009). The 

tcdC gene of a type of C. difficile known as PCR ribotype 027, and certain other 

PCR ribotypes, has been shown to be truncated, producing an altered amino acid sequence 

(Spigaglia and Mastrantonio, 2002; Murray et al, 2009), potentially reducing the ability of 

the negative regulator to repress production of toxins A and B (Spigaglia and Mastrantonio, 

2002). However, a strain with an intact tcdC gene has been shown to be a ‘hyper-producer’ 

of both functional toxins A and B, whilst conversely, a strain with a truncated tcdC 

produced low levels of functional toxins (Murray et al, 2009). There is also considerable 

sequence heterogeneity in tcdB between strains (Stabler et al, 2006), and purified toxin B 

from PCR ribotype 027 was found to be 4-fold more toxic in a mouse model, than toxin B 

from other PCR ribotypes (Lanis et al, 2013). This may imply that factors other than the 

tcdC gene have a role to play in the regulation of toxin production. 

In addition to the two main toxins, a small number of C. difficile strains also produce 

another toxin (binary toxin), which has ADP-ribosyltransferase activity (Voth and Ballard, 

CMR 2005). This toxin is not encoded within the PaLoc, but within a separate Cdt locus; a 

6.2kb region including two toxin genes, cdtA and cdtB, and a regulatory gene (cdtR) 

(Gerding et al, 2014). These two toxins, collectively known as binary toxin, are much 

smaller than toxin A or toxin B, with a relative molecular mass of only 53 kDa and 98.8 kDa 

for CdtA and CdtB respectively (Gerding et al, 2014). It is thought that binary toxin may 

increase cell adherence of C. difficile by causing fibronectin to be displayed on the surface 

of the target cell (Schwan et al, 2014). The clinical significance of binary toxin is still 

uncertain. In one cohort of clinical samples however, the presence of binary toxin genes 

was associated with samples with demonstrable toxin A or B, as measured by cell-

cytotoxicity assay, compared with samples positive for the presence of a toxigenic strain, 

but not free toxin (Berry et al, 2017), suggesting a role in toxin-mediated disease.  In 

addition, mortality was higher in the group positive for the binary toxin genes (RR 1.68). It 

should be noted that this study only detected the presence of cdt genes not free toxin 

however, as assays  for functional binary toxin are not readily available. 
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The genes encoding binary toxin are carried by some of the strains of C. difficile termed 

‘hypervirulent’, such as PCR ribotypes 027, 078 and 251 (Wehrhahn et al, 2018; Rupnik et 

al, 1998; Toxinotyping website database), and it is therefore postulated that binary toxin 

contributes to the more severe infections seen in these PCR ribotypes.  Indeed, there have 

been reports of CDI caused by PCR ribotype 033, a non-toxigenic strain (in that it does not 

contain the PaLoc), but which does produce binary toxin (Eckert et al, 2013). Given that the 

mechanism of action of binary toxin is to increase adherence of C. difficile to the epithelial 

cells but without affecting cell leakage however (Schwan et al, 2014), it is unclear how toxin 

mediated disease occurred in these patients. 

 

1.2.2 Spores 

Clostridium difficile is an anaerobic spore-forming bacterium that forms sub-terminal 

spores on nutrient limitation (Sorg and Sonenshein, 2008). The spores provide protection 

for the organism when in an oxygen-rich environment, as the vegetative cells are extremely 

sensitive to the presence of oxygen (Sorg and Sonenshein, 2008). In addition, the spores 

are heat-stable and resistant to gastric acid, whereas the vegetative cells are not, thereby 

providing protection to the organism when passing through the upper GI tract (Sorg and 

Sonenshein, 2008). Chemicals that induce spores to outgrow into vegetative cells are 

known as germinants, and for C. difficile these include primary bile acids, such as 

taurocholate (Giel et al, ne 2010). These primary bile acids have been found to increase in 

antibiotic-disrupted gut microbiomes (Theriot et al, 2014), due to a decrease in the species 

of gut bacteria that metabolize primary bile salts into secondary bile salts. Indeed, one 

study found that bacteria within the phyla Firmicutes and Bacteroidetes were essential to 

this process, and microbiomes depleted in these organisms were more likely to support the 

germination of C. difficile spores (Theriot et al, 2014). For Bacillus subtilis, the process of 

germination is well documented; the germinant binds to specific receptors on the spore 

and leads to the rehydration of the core, which, in turn, causes the cortex of the spore 

(which surrounds the core) to undergo rehydration and expansion (Setlow, 2014).  At this 

point, the spore has lost its dormancy and the outgrowth of the vegetative cell begins 

(Setlow, 2014). It could be assumed that the process of germination, albeit with different 

germinants from B. subtilis, is similar in C. difficile (De Hoon et al, 2010). It has been 

suggested that primary bile acids require glycine to act as a co-germinant for C. difficile 
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(Sorg and Sonenshein, 2008), as germination was increased when glycine was added to 

media containing taurocholate, compared with taurocholate alone. 

Spores are able to survive in the environment for long periods, and are resistant to cleaning 

agents that do not contain hypochlorite (Fawley et al, 2007). Environmental contamination 

has been demonstrated in hospital settings where patients with CDI have been treated 

(Fawley et al, 2007; Eckstein et al, 2007) leading to a possible cross-infection risk to other 

patients. In addition, the fact that spores are alcohol-resistant means that alcohol hand 

cleansers are not adequate to decontaminate hands, and good hand-washing with soap 

and water is required to prevent further spread of spores (Wilson et al, 1985; Boyce and 

Pittet, 2002). 

 

1.2.3 Other Virulence Factors 

Given that the walls of cells in the intestines are covered in a mucus layer, C. difficile will 

need to bind to the mucus layer in order to achieve contact with the epithelial cell layer 

(Tasteyre et al, 2001). The flagella of the bacterium play a crucial role in this adherence, 

rather than providing motility to the organism (Tasteyre et al, 2001; Baban et al, 2013). 

Interestingly, C. difficile can adhere to the mucus layer of mice but not the mucus layer of 

pigs (Tasteyre et al, 2001), perhaps suggesting why mice can be used as an infection model 

for this organism. There are differences in the role of flagella in different strains of 

C. difficile (Baban et al, 2013), with some strains having a single flagellum, while others are 

peritrichously flagellated. In addition, flagella appear to play a role in expression of toxins A 

and B (Aubry et al,  2012), as mutants with the gene for flagella protein (fliC) removed had 

significantly increased expression of toxins A and B and the regulator protein TcdR, and had 

increased virulence in a hamster model. In contrast, mutants lacking other flagellar protein 

genes had decreased expression of toxins. A secondary cell signalling molecule, cyclic 

diguanylate (c-di-GMP), decreases expression of genes encoding flagella via the alternative 

sigma factor SigD, and therefore, c-di-GMP also affects expression of toxins (Purcell et al, 

2012, McKee et al, 2013). Further cellular adherence during colonisation is provided by 

C. difficile surface layer proteins (SLP) (Calabi et al, 2002) which have been shown to bind to 

collagen, thrombospondin and vitronectin.  Interestingly, however, they do not provide 

adherence to fibronectin (Calabi et al, 2002), which, as discussed above, is more highly 

expressed in cells affected by binary toxin, suggesting that alternative cell surface proteins 

are involved in adherence to cells after the release of binary toxin. 
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Increased intracellular levels of c-di-GMP also increase clumping of cells, potentially leading 

to biofilm formation (McKee et al, 2013), along with other virulence factors such as a 

putative quorum-sensing protein LuxS (Dapa et al, 2013). There may be a possible link 

between the formation of biofilm and sporulation, as a sporulation mutant, Spo0A, was 

unable to form biofilms (Dapa et al, 2013). In addition, these biofilms are more resistant to 

vancomycin than planktonic cells (Dapa et al, 2013).  

One recent study highlights another possible virulence mechanism for C. difficile, as the 

organism appears resistant to the increased concentration of heme, found in the gut lumen 

when infected epithelial cells use a heme efflux pump (Knipple et al, 2018). Although 

capsule can be demonstrated on some strains of C. difficile by electron microscopy, in vivo 

the presence of capsule does not appear to be required for virulence, as many of the 

strains with capsules were toxin negative strains and were unable to produce infection in a 

hamster model (Davies and Boriello, 1990). In addition, capsule does not appear to be 

related to cell adhesion (Baldassarri et al, 1991). C. difficile also possesses several hydrolytic 

enzymes, although production of these enzymes varies between strains (Seddon et al, 

1990). Virulence, as measured by the Syrian hamster model, appears to correlate with the 

presence of these hydrolytic enzymes (Seddon et al, 1990). It is therefore theorised that 

the enzymes are responsible for damaging tissues within the gut, aiding further adhesion of 

the bacterium (Seddon et al, 1990). A recent study, using whole-genome sequencing to 

identify differences in open reading frames (ORFs) within the accessory genome of 

different C. difficile strains, found several ORFs that were associated with higher virulence 

strains (Lewis et al, 2017). Some of the ORFs could be identified as cell-surface proteins, or 

proteins associated with transcription. However, there were several with unknown 

function, highlighting that there are possibly further virulence factors within the accessory 

genome that are still to be identified.   
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1.3 Clinical manifestations 

The majority of patients with C. difficile infection (CDI) will have symptoms of diarrhoea, 

which can vary from mild to severe, with or without abdominal cramping/pain and colitis 

(including pseudomembranous colitis) (Burnham and Carroll, 2013). Conversely, it is 

recognised that some people can carry C. difficile in their gut without being symptomatic 

(asymptomatic carriage) (Shim et al, 1998). 

In the majority of cases, CDI diarrhoea will begin within a few days of antibiotic use; 

however, onset can vary from concurrent with the antibiotic course to several weeks 

following completion of the course (Mogg et al, 1979).  The watery diarrhoea can be 

extremely debilitating with >10 episodes per day, and often patients become afraid to 

move far from toilet facilities (Madeo and Boyack, 2010; Guillemin et al, 2014). Many 

patients also experience distress and embarrassment while symptomatic, and continued 

anxiety following infection due to the possible recurrence of symptoms (Madeo and 

Boyack, 2010; Guillemin et al, 2014). 

In addition to diarrhoea, patients may also exhibit increased temperature, abdominal 

cramps and increased white blood cell count (Mogg et al, 1979). One study found fever in 

~28% of cases, abdominal cramps in ~22% and increased white cell count in ~50% of cases 

(Bartlett et al, 1980). Leucocytes can also be detected in the faeces of CDI patients, 

although this test is rarely used clinically (Mogg et al, 1979). Increased leakage of albumin 

through the damaged gut can also lead to hypoalbuminaemia, detectable from patient 

serum (Olson et al, ICHE 1994). 

Pseudomembranous colitis, the presence of distinctive plaques (volcano lesions) on the 

colonic surface, is associated with CDI, although it is not present in all cases, even in severe 

infection (Bartlett, 2002). Mogg et al. suggested several reasons why plaques may not be 

visualized on sigmoidoscopy or histology; obscuration by mucus and faecal material, failure 

to sample the plaque/mucosa junction itself, or the timing of the sigmoidoscopy (Mogg et 

al, 1979). In addition, the variation in severity of cases means that not all patients will 

develop pseudomembranous colitis (Bartlett and Gerding, 2008). 

In severe disease, patients may develop paralytic ileus, where the bowel fails to move 

faecal contents through the bowel. If this occurs patients will not exhibit the classic 

diarrhoea seen in most CDI cases (Bartlett and Gerding, 2008). Paralytic ileus may develop 

into toxic megacolon, where the colon swells and dilates as faeces and gas builds up inside 
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the colon (Sunenshine and McDonald, 2006). This is a life-threatening condition, and 

patients may exhibit pain, fever, nausea/vomiting, tachycardia and lethargy (Mogg et al, 

1979). 

Disruption to the normal host gut microbiome provides a niche for the growth and 

proliferation of C. difficile. The phenomenon whereby the normal gut microbiota in healthy 

individuals prevents colonisation by pathogens was first named colonisation resistance by 

van De Waaij et al. in 1971, after observations that healthy mice were not colonised by 

repeated challenges of Enterobacteriacea, but once pre-treated with antibiotics, they 

became colonised (van de Waaij et al, 1971). Additionally, once the antibiotic challenge had 

been removed, colonisation resistance was gradually re-established. Further experiments 

highlighted that anaerobic bacteria, rather than aerobic bacteria, were fundamental to 

colonisation resistance (van de Waaij et al, 1971). Colonisation resistance provides 

protection against overgrowth of endogenous potentially pathogenic organisms (carried in 

small number by many individuals) and exogenous pathogens when ingested (Vollaard and 

Clasener, 1994). The presence of the right balance of microorganisms is further 

strengthened by the importance of other physiological factors such as an intact mucosal 

membrane, gastric acid pH and gut motility (van de Waaij et al, 1983). 
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1.4 Recurrence 

C. difficile infection can recur in ~20% of patients, despite appropriate antimicrobial 

therapy (Cornely et al, 2012; Kelly and LaMont, 2008). In addition, patients who have 

suffered one recurrent episode are at increased risk of developing a second recurrence 

(40%), and then patients with a second recurrence are at even greater risk of developing a 

third recurrence (60%) (figure 1.1)  (McFarland et al, 1994; McFarland et al, 2002). This 

repeated cycle of infection leaves many patients with heightened anxiety about additional 

infections long after resolution of symptoms (Madeo and Boyack, 2010; Guillemin et al,  

2014) and with a higher risk of mortality compared with CDI patients without recurrence 

(36% vs 26%, p <0.001) (Olsen et al, 2015). 

 

 

Figure 1.1 The increasing risk of recurrence of infection for patients with CDI 

 

Recurrence is likely linked to a still depleted gut microbiome; indeed, antibiotics used to 

treat the initial primary case of CDI can also further deplete the natural gut microbiome 

(Kelly and LaMont, 2008). The majority of secondary infections usually occur within 4-8 

weeks, but in one recent study 29% of recurrent cases were seen at up to 12 weeks after 

resolution of the initial infection (Wilcox et al, 2017). The depleted gut microbiome, with 

reduced colonisation resistance, leaves a niche that can be further exploited either by the 

strain responsible for the first infection or by a second strain (Wilcox et al, 1998). The 

recurrence rates in patients treated for their primary CDI with either metronidazole or 

vancomycin appear similar (20.2% vs 18.4% respectively) (Kelly and LaMont, 2008); 

however, patients treated with fidaxomicin have an ~50% reduced risk of recurrence 

compared with vancomycin, presumably due to the narrower spectrum of action of this 
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agent, and its more gut-sparing action (Cornely et al, 2012, Louie et al, 2011). Antibiotic 

treatments will be discussed in further detail later in section 1.7. 

It has been postulated that in addition to lack of colonisation resistance, due to damage to 

the gut microbiome, the host immune response also has a part to play in the risk of 

recurrence. Patients with low levels of either toxin A immunoglobulin gamma (IgG) or 

toxin B IgG were significantly more likely to have recurrent CDI than patients with high 

levels of these immunoglobulins (Kyne et al, 2001a; Aronsson et al, 1985). A recently 

developed human monoclonal antibody against C. difficile toxin B (bezlotoxumab) 

significantly reduced the rate of recurrence, by ~38%, when used as an adjunctive therapy 

alongside normal CDI treatment antibiotics, compared with those patients who received 

antibiotics alone (Wilcox et al, 2017), highlighting the role of the immune system in 

preventing recurrent infections. Interestingly, subjects given a human monoclonal antibody 

against C. difficile toxin A (plus antibiotic) did not have a lower risk of recurrent CDI 

compared with those receiving antibiotics alone. This suggests, but does not prove, that 

toxin B has more importance in human infection than toxin A. 
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1.5 Asymptomatic carriage 

The carriage of C. difficile in the absence of clinical symptoms (diarrhoea) is defined as 

asymptomatic carriage, although a consensus on the exact definition of this condition is 

lacking (Furuya-Kanamori et al, 2015; Crobach et al, 2018). One study indicated that 

asymptomatic carriage has a protective effect, with less risk of these individuals going on to 

develop CDI (Shim et al, 1998), and indeed IgG levels have been shown to be higher in 

asymptomatically colonised individuals (Kyne et al, 2001b), supporting this ‘protective’ 

effect. However, a study following asymptomatically colonised patients in the geriatric 

setting  found that 16.3% of them went on to develop CDI (Nissle et al, 2016). In addition, 

of the eight cases of CDI in the study, seven (87.5%) of them had been asymptomatically 

colonised on admission to the facility (Nissle et al, 2016). This was a small study however, 

and the authors highlight that they did not manage to reach the sample size required to 

have adequate power within the study, mostly because of the difficulty in getting repeat 

specimens from the participants.  In addition, the initial proportion of individuals that were 

positive for C. difficile on admission was high (16.4%), compared with other reported 

ranges of 0.6-15% in the elderly (Furuya-Kanamori et al, 2015), which means the results 

from this study may not be generalisable.  Another, similarly small study, found that 37% of 

the asymptomatically colonised hospitalised individuals went on to develop CDI (Mcfarland 

et al, 1989). It is important however, in studies of this kind, that there is a clear 

differentiation between patients carrying toxigenic and non-toxigenic strains of C. difficile, 

as toxigenic strains appear to increase CDI risk, whereas colonisation by non-toxigenic 

strains is protective (Blixt et al, 2017; Gerding et al, 2018). The proportion of patients who 

developed CDI if they carried a toxigenic strain was three-times that of patients who 

carried a non-toxigenic strain in a recent cohort study (Blixt et al, 2017).  

The proportion of asymptomatic carriers from different settings varies, for example 

carriage in healthy individuals ranges from 0-15%, while carriage in elderly patients in 

long-term care facilities ranges from 0-51% (Furuya-Kanamori et al, 2015). In the UK only 

0.5% of healthy individuals in the community were found to carry C. difficile. Importantly, 

rates may be lower than reported, depending on how samples are screened; for example, 

PCR for toxigenic C. difficile will ‘miss’ any non-toxigenic strains (Furuya-Kanamori et al, 

2015), although non-toxigenic strains will not go on to cause CDI. The duration that 

individuals remain colonised appears variable, with participants in one study remaining 

positive for C. difficile for a median of 8.5 days (Samore et al, 1994); however, these 

patients were only followed until discharge from hospital. Further, extended studies have 
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found 32% of individuals remained positive for C. difficile for 5-7 months (Kato et al, 2001), 

although these were healthy individuals, not previously hospitalised patients. 

Treatment to eradicate colonisation is not recommended (SHEA/IDSA guidelines) 

(McDonald et al, 2018), as there has been varied success with attempts to use vancomycin 

and metronidazole to successfully eradicate C. difficile (Johnson et al, 1992).  While 

vancomycin did appear to initially eradicate C. difficile, this effect was temporary, and 

carriage rates were actually higher in this group two months after treatment.  There was no 

difference in faecal excretion of C. difficile between patients treated with metronidazole 

and those given a placebo. Given that antibiotic disruption of the gut microbiome is a 

predisposing factor for CDI, theoretically ‘treating’ colonisation, could actually drive 

development of CDI. In addition, faecal excretion of C. difficile is often transient (Johnson et 

al, 1992). Potentially, therefore, knowledge of colonisation status may be more useful in 

terms of antibiotic stewardship and infection prevention, as colonised individuals shed 

spores into the environment for up to six months (Riggs et al, 2007), and onto their skin, 

although at a lower rate than CDI patients (Guerrero et al, 2013). Whole genome 

sequencing of isolates from asymptomatic carriers and CDI cases has shown that 

transmission from carriers may be a rare event, but that carriers are a potential source of 

transmission (Eyre et al, 2013c). Indeed, the authors highlight that the rate of transmission 

is so low that in order to obtain sufficient power, ~3000 individuals would need to be 

included in a study to determine true transmission rates.  
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1.6 Risk factors 

C. difficile infection is not an infection that occurs in otherwise healthy individuals. As 

discussed in section 1.3 of this introduction, perturbation of the gut microbiota provides a 

niche for the growth and proliferation of the organism. This perturbation may be caused by 

many factors, and as such, become risks for developing CDI (Barlett and Gerding, 2008). 

Risk factors for development of CDI include: advancing age, comorbidities, long hospital 

stay and exposure to antibiotics (Bartlett and Gerding, 2008).  

 

1.6.1 Antibiotics 

Almost all antibiotic classes have been associated with CDI, although third-generation 

cephalosporins and clindamycin are historically most often implicated in inducing CDI 

(Bartlett and Gerding, 2008). With the increasing use of alternative antibiotics however, 

several other agents/classes have also been implicated as risk factors for CDI, such as 

fluoroquinolones (Bartlett and Gerding, 2008). The propensity for a specific antibiotic to 

result in CDI could be related to the effect of that drug on the host gut microbiome (Pultz 

and Donskey, 2005), as there appears to be increased risk from those drugs that both 

disrupt the gut microbiome and have no activity against C. difficile. For example, C. difficile 

is generally resistant to cephalosporins, and C. difficile PCR-ribotype 027 is resistant to 

fluoroquinolones (Dingle et al, 2017). Indeed, fluoroquinolone resistance may have been a 

key driver of the increased prevalence of PCR-ribotype 027 prior to 2007 (Dingle et al, 

2017.) 

In a mouse model, antibiotics appear to form three distinct groups, each with decreasing 

propensity to induce CDI (Pultz and Donskey, 2005).  As described above, this effect is 

related to both the activity of the drug against normal gut microbiome and against 

C. difficile itself, with those agents with the narrowest spectrum of action having the least 

propensity to induce infection in the mouse model. There are however, documented cases 

of CDI where the only antibiotic exposure was a single dose, given prophylactically before 

surgery (Privitera et al, 1991), and, indeed, surgery itself has been highlighted as a risk 

factor for CDI, presumably due to the antibiotic exposure (Abou Chakra et al, 2014). The 

bacterial phyla and families affected by different antibiotic classes have been investigated 

using 16S rRNA amplification and pyrosequencing (Vincent et al, 2013). In univariate 

analyses, the phylum Bacteroidetes and the families Bacteriodaceae and Clostridiales 

Incertae Sedis XI were significantly reduced in faecal samples from patients with CDI, 
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compared with controls. In addition, there was a bloom of Enterococcaceae. After multi-

variate analysis, prior use of cephalosporins or fluoroquinolones by the patients and a 

decrease in Clostridiales Incertae Sedis XI within the patient’s faecal samples were 

significantly associated with CDI. It should be noted however, that the faecal samples from 

patients classified as CDI cases, were identified by a mixture of diagnostic methods, 

including toxigenic culture, which only identified the presence of a toxigenic strain. It is 

possible therefore, that the some of the people in the case group were only colonised. 

These factors are still relevant for the acquisition of C. difficile itself however, regardless of 

whether it causes disease or not. 

A systematic review and meta-analysis of risk factors for CDI in 1998 found that exposure 

to antibiotics was significantly associated with both CDI and carriage of C. difficile (Bignardi, 

1998). In addition, antibiotics were ranked, by meta-analysis, with aztreonam having the 

highest odds ratio (OR) of 61.7, although the 95% confidence intervals (CI) were very wide 

at 8.6-444.5. Of interest, cefotaxime was second highest in the ranking with an OR of 36.2 

(95% CI 19-68.9) and fluoroquinolones were about half way down the rankings with an OR 

of 8 (95% CI 4.5-14.3). As this meta-analysis was conducted in 1998 however, many of the 

studies demonstrating risk associated with fluoroquinolones had not been published, and 

so the risk associated with fluoroquinolones in this meta-analysis may be underestimated.  

Fluoroquinolones potentially cause relatively little disruption of the gut microbiota as they 

have little activity against anaerobes (BNF, 2019); however, this class of antibiotics have 

been shown to be a risk factor for the development of CDI. This may partially be related to 

the emergence of a fluoroquinolone-resistant strain of C. difficile, PCR ribotype 027 (Pepin 

et al, 2005). In one study in 2010, 55% of CDI cases had prior exposure to fluoroquinolones 

alone (Howell et al, 2010). In addition, a recent UK study has shown that country-wide 

antibiotic stewardship, restricting the use of fluoroquinolones, correlates with the decrease 

in cases across the UK since 2007 (Dingle et al, 2017), highlighting the impact of this 

antibiotic on driving C. difficile infection. Indeed, antimicrobial stewardship, not just of 

fluoroquinolones, offers the opportunity to modify the risk of CDI in patients. 

 

1.6.2 Polypharmacy 

If risk of CDI is related to disruption of the normal host gut microbiota, it follows that 

increased duration of therapy and multiple concomitant antibiotics would increase the CDI 

risk, as there would theoretically be even more disruption of the gut microbiota. Indeed, a 

https://bnf.nice.org.uk/treatment-summary/quinolones.html
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case/control study demonstrated that CDI cases were significantly more likely to have 

received multiple concomitant antibiotics (Gerding et al, 1986) than controls (80% vs 56% 

respectively, p <0.002). A cohort study in 2011 demonstrated that the risk of CDI increased 

from a hazard ration (HR) of 2.5 for two antibiotics up to 9.6 for those patients who 

received five antibiotics, when compared to patients who received one antibiotic (Stevens 

et al, 2011).  In addition, in a recent multicentre case/control study the risk of CDI 

increased by 1.2 (95% CI 1.1-1.3) for each additional antibiotic the patient received (Davies 

et al, 2016c). In the same study, antibiotics were more likely to have been prescribed for 

treating an infection (acute use) than for prophylaxis. This may be because certain 

antibiotics are unlikely to be used for prophylaxis, or that prophylactic drugs are given for a 

shorter duration. Similarly, in an earlier study, there was a significant difference between 

cases and controls that received antibiotics to treat an infection (59% vs 31% respectively, 

p <0.0001) (Gerding et al, 1986). In addition, significantly more control individuals than 

cases had received short-courses of prophylactic antibiotics (38% vs 20% respectively, 

p <0.01).  

Although the impact of duration of antibiotic therapy is not clear from the literature, due to 

the differing study methodologies used in published studies and the different prescribing 

habits/policies in study centres, one multivariate analysis did find a correlation between 

longer duration of therapy and increased risk of CDI (Pepin et al, 2005a). This was however, 

a retrospective analysis conducted at the height of a PCR ribotype 027 outbreak, so the 

results may not be generalisable. Another retrospective single centre study found a dose 

dependant effect, with an unadjusted HR for risk of CDI of 1.5 for four-seven days of 

antibiotic compared with <four days, increasing to a HR of 3.4 for 8-18 days and 9.8 for >18 

days of antibiotic (Stevens et al, 2011).  There was also an increase in risk of CDI with 

increasing daily doses of antibiotic (Stevens et al, 2011). The risk from antibiotics may not 

only be related to the effects of the agent on the gut microbiota. Of note, some antibiotics 

appear to stimulate increased toxin production over other antibiotics in an in vitro model of 

the human gut (Saxton et al, 2009). 

 

1.6.3 Exposure to healthcare facilities 

CDI is most often diagnosed in patients with previous exposure to a healthcare facility, 

although there has been a rise in the number of cases in otherwise healthy individuals from 

the community setting (Chitnis et al, 2013). Multivariate analyses demonstrate that prior 
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hospitalisation is a risk factor for CDI, even after adjusting for other confounding factors 

such as age (Melzer et al, 2019; Davies et al, 2016c).  Environmental contamination with 

spores of C. difficile has been shown to be higher in healthcare facilities than other 

environments (McFarland et al, 1989) and the spore acquisition rate in patients increases 

with increased length of stay in hospital facilities , from 13% during a two-week stay to 50% 

in stays >four weeks (Raveh et al, 2006). Indeed, the colonisation rate in hospitalised 

patients is higher than in the general population (10-40% vs 2-3%) (Bartlett, 1994; Sundram 

et al, 2009).  It therefore follows that exposure to environments with higher bioload of 

spores would lead to a higher risk of developing CDI. Duration of hospital stay was 

significantly associated with CDI, but not carriage, in a qualitative review of 49 studies 

(Bignardi, 1998).   Interestingly, the PCR ribotypes circulating in the hospital and 

community are largely similar, although certain PCR ribotypes are associated with either 

the community (002, 020 and 056) or hospital setting (027) (Fawley et al, 2016).  In 

addition, although antibiotics are a risk factor for community associated CDI cases 

(Deshpande et al, 2013) there have been reports of these community-onset cases occurring 

without previous exposure to antibiotics (Bauer et al, 2008). 

 

1.6.4 Increased Age 

The number of cases of CDI in the elderly is disproportionately higher than for younger age 

groups, with 93% of deaths due to CDI in the USA in 2008 (McDonald et al, 2006; Miniño et 

al, 2011) and 84% in 2011 (Lessa et al, 2015) occurring in those greater than 65 years old. 

This may be due to a number of factors including waning immunity and the increased 

frequency of hospital visits likely to occur in this population (Di Bella et al, 2013). In 

addition, increasing Charleson comorbidity score, demonstrating frailty of patients due to 

the number of concomitant comorbidities, is significantly associated with risk of CDI in 

univariate analysis, but not on multivariate analysis after adjusting for age (Davies et al, 

2016c). This may be due to the likelihood that aging patents are the most likely to have 

several comorbidities, and that several of these comorbidities, such as UTI, COPD and 

diabetes may increase the likelihood of the patients being prescribed antibiotic therapy 

(Abou Chakra et al, 2014).  The influence of age on treatment outcomes in CDI can be 

mathematically modelled and has been shown to predict lower clinical cure (17%), greater 

recurrence (17%) and lower sustained clinical response (13%) for each increased decade of 

life (Louie et al, 2013). 
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1.6.5 Proton Pump Inhibitors 

There is conflicting information regarding the risk for CDI that comes from taking proton 

pump inhibitors (PPIs) (Faleck et al, 2016; Dial et al, 2004; Vesteinsdottir et al, 2012), and 

one review of PPIs in 2014 highlights that there is insufficient evidence to either rule-in or 

rule-out PPIs as a risk factor for CDI (Biswal, 2014). The difference in risk reported between 

studies may be due to ascertainment bias; i.e. the choice of the groups in which to study 

this phenomenon (Novack et al, 2014).  Indeed, a recent study comparing risk factors 

between a single-centre cohort and a multi-centre cohort found that PPIs were associated 

with an increased risk in the single-centre cohort (OR 1.8), but not in the multi-centre 

cohort (Davies et al, 2016c). Spores of C. difficile are resistant to gastric acid (Wilson et al, 

1985), therefore, theoretically, increasing gastric pH by using PPIs should have little effect 

on acquisition of C. difficile. It is postulated that PPIs allow microbial colonisation of the 

upper GI tract (Bavishi and Dupont, 2011), however, whether this holds true for C. difficile, 

which usually proliferates in the colon, has yet to be proved. One in vitro study 

demonstrated increased expression of toxin A on exposure to alkaline environments and 

PPIs (Stewart and Hegarty, 2013). Again, however, it is unclear if PPIs would have this effect 

in vivo, as the pH of the colon is already more alkaline. 

 

1.6.6 Risk factors for complicated CDI and recurrence 

In addition to risk factors for a primary case of CDI, there are factors associated with 

increased risk for either complicated infection or recurrence. A systematic review of 24 

studies found; increased age, continued use of antibiotics (following diagnosis with CDI), 

PPIs and the strain type of C. difficile were most frequently associated with recurrence 

(About Chakra et al, 2014). Unfortunately, as the authors did not perform a meta-analysis, 

due to the heterogeneity of the study methodologies, the level of significance of these 

factors cannot be assigned. Indeed, even for the factor >65 years old, the results are 

reported as a combination of HRs (range 1.75-1.92) and ORs (range 1.32-10.42), making 

interpretation of the data difficult. The same authors assessed 18 studies for risk factors for 

complicated CDI, and 30 studies for risk of mortality from CDI; increased age, raised white 

cell count, renal failure (as measured by raised serum creatinine) and the presence of 

comorbidities were frequently associated with complicated CDI cases, while mortality was 

associated with all of these plus hypoalbuminaemia and infection with PCR ribotype 027. 
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Current diagnostic guidelines define severe CDI using white cell counts >15cellx109/L, raised 

serum creatinine (>1.5mg/dL IDSA/SHEA, >133µM or ≥1.5 times baseline for ESCMID) and 

serum albumin <30g/dL (ESCMID only) (McDonald et al, 2018; Crobach et al, 2016). 

 

1.6.7 Prediction of risk 

There have been attempts to combine risk factors into prediction models for recurrent CDI 

with varied success. One recent study used data gathered from a derivation cohort of 7,538 

patients to define the risk factors for the prediction model, before testing in a validation 

cohort of 15,077 patients (Reveles et al, 2018).  Following logistic regression, risks for 

recurrence were identified as prior antibiotic therapy with 3rd- or 4th- generation 

cephalosporins, prior PPI use, prior use of anti-diarrhoea agents, CDI defined as non-severe 

and CDI with community onset. Each risk was assigned a score, which allowed the 

prediction model to classify risk as low, medium or high. In the validation set, those 

classified as low risk had a recurrence rate of 8.9%, those with medium risk had a 

recurrence rate of 20.2% and those with high risk had a recurrence rate of 35.0%. While the 

model appeared successful in the validation cohort, it should be noted that some of the 

factors identified as risks in this study have not been identified previously, such as anti-

diarrhoeal agents, highlighting again the influence of the cohort that is studied and possible 

ascertainment bias.  In addition, this study included cases that were coded as CDI within 

the hospital database. This would likely therefore, include cases diagnosed by NAAT for 

toxin gene; potentially diluting the pool of ‘true’ cases with some patients who simply had 

carriage of C. difficile (Polage et al, 2015).  

In contrast, another group that used the same study design of a derivation (n = 9,386) and 

validation cohort (n = 1,865) were unable to produce a successful prediction model 

(Escobar et al, 2017). Although the sample size of the validation cohort was smaller than 

the first study, the derivation cohort was larger, suggesting that it was unlikely to be 

underpowered. Of note, the first study appears to have included fewer potential prediction 

factors than the second study, and combined several factors into a definition of ‘severe CDI’ 

where only at least one of the factors had to be positive, rather than using each of those 

variables as an independent predictor.  It remains to be seen if the first model still performs 

as well when used on a dataset derived from different facilities or even from a different 

country. 
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1.6.8 Asymptomatic carriage 

Risk factors for asymptomatic carriage are similar to risk factors for CDI and include 

previous hospitalisation, history of CDI, use of PPIs, and presence of anti-toxin B IgG (Loo et 

al, 2011; Kong et al, 2015). Interestingly however, asymptomatic carriers were less likely to 

have been prescribed an antibiotic in the previous eight weeks than CDI patients (OR 1.04 

vs 5.25).  Colonisation may therefore not depend on disruption to the gut microbiota, in 

the same way that CDI does (Furuya-Kanamori et al, 2015). Further research into risk 

factors for asymptomatic colonisation is required, especially in settings outside of the 

hospital.   
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1.7 Treatment 

Guidelines are available for treatment options in C. difficile infection from both the 

European Society for Clinical Microbiology and Infectious Disease (ESCMID) and jointly from 

the Infectious Disease Society of America (IDSA) and the Society for Healthcare 

Epidemiology of America (SHEA) (Debast et al, 2014, McDonald et al, 2018). Whilst the 

IDSA/SHEA guidelines are up-to-date, the European guidelines are some six years old, and 

do not reflect some of the newer trials of recently developed antibiotics, or the latest 

information regarding older therapies. 

Both sets of guidelines recommend that any predisposing antibiotic is stopped, although 

the evidence for this recommendation is unclear from the literature (Debast et al, 2014, 

McDonald et al, 2018). In addition, empirical treatment is recommended on suspicion of 

CDI, while awaiting laboratory test results, in the IDSA/SHEA guidelines (McDonald et al, 

2018). It should be noted however, that diagnostic samples should be taken before staring 

any empirical therapy, as use of concomitant C. difficile targeting antibiotics can affect 

C. difficile recovery from faecal samples (Sunkesula et al, 2013). 

 

1.7.1 Metronidazole 

Metronidazole is a nitroimidazole antibiotic with activity against nucleic acid synthesis by 

disrupting the DNA of microbial cells (Freeman et al, 1997). The amount of drug excreted 

via the bowel is quite low, with the majority of excretion via bile and urine (Bartlett, 2010), 

which is not ideal for a treatment drug for CDI, however it is thought that metronidazole 

can cross into the bowel through the ‘leaky’ cells of the colon that have been affected by C. 

difficile toxin (Sullivan et al, 2001).  Despite not being an ideal treatment option however, 

lack of alternative antibiotics with activity against CDI led to the promotion of 

metronidazole as a treatment of choice (Freeman et al, 1997). 

Mounting evidence demonstrates the inferiority of metronidazole treatment compared 

with other CDI antibiotics. The time to resolution of diarrhoea for patients on 

metronidazole is significantly longer by ~1.5 days, than it is for those on vancomycin 

(Wilcox and Howe, 1995). In addition, there are reports of treatment failure on 

metronidazole; 38% in one study (Fernandez et al, 2004) and 22% in another (Musher et al, 

2005). Of note, in the first study, patients with serum albumin level of <2.5g/L were more 

likely to fail metronidazole therapy (OR 11.7, 95% CI 4.0-31.6), suggesting that these were 
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patients with more severe infection.  Data from a trial of another potential C. difficile agent, 

tolevamer, allowed the direct comparison of metronidazole and vancomycin, as both drugs 

were used as a comparator in the study. Clinical success, defined as resolution of diarrhoea 

and abdominal symptoms, was significantly higher in the vancomycin arm, compared with 

metronidazole (81.1 vs 72.7%, p = 0.02) (Johnson et al, 2014). In addition, when only severe 

cases were compared there was a higher proportion of patients that had clinical resolution 

in the vancomycin arm, compared with metronidazole, although this was not significant at 

the p = 0.05 level (78.5% vs 66.3% p = 0.059). The 2014 ESCMID guidelines still recommend 

oral metronidazole 500mg three times daily for treatment of non-severe CDI, while 2018 

IDSA/SHEA guidelines only recommend using metronidazole when access to alternative 

treatments is restricted, and then only for non-severe cases (Debast et al, 2014, McDonald 

et al, 2018). In a recent network meta-analysis, metronidazole was only ranked 11 out of 

the 13 drugs reviewed (Beinortas et al, 2018), giving further weight to the argument for not 

using metronidazole.  Others argue that there is still a role for metronidazole in the 

treatment of CDI, but that patients should be carefully selected, as younger patients (<65 

years old) with mild disease were significantly more likely to have clinical resolution on 

metronidazole treatment than those patients who were older than 65 with mild disease 

(OR 1.63, 95%CI 1.29-2.06) (Appaneal et al, 2018). 

 

1.7.2 Vancomycin 

Vancomycin is a glycopeptide antibiotic with bactericidal activity against both aerobic and 

anaerobic Gram-positive bacteria.  The drug binds to the cell wall, blocking polymerisation 

of glycopeptides (Hammes and Neuhaus, 1974). This action inhibits synthesis of the cell 

wall and damages the cytoplasmic membrane (Hammes and Neuhaus, 1974). Vancomycin 

is usually used intravenously to treat infections, however, oral administration is 

recommended for treatment of C. difficile, as there is very poor absorption via the gut, 

meaning that high levels of the drug can be achieved in the large intestine to treat the 

infection (Hammes and Neuhaus, 1974). Oral administration of vancomycin may select for 

vancomycin-resistant enterococci (Edlund et al, 1997), which meant at one point, 

metronidazole was used in preference to vancomycin for treatment of CDI (Pelaez et al, 

2002). It should be noted however, that oral metronidazole treatment for CDI has also 

been associated with overgrowth of vancomycin resistant enterococci (Al-Nassir et al, 

2008).  
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Current treatment guidelines state that vancomycin (or fidaxomicin in the US) should be 

used as the first treatment option for all initial episodes of CDI (2018 IDSA/SHEA) or for all 

initial cases of severe CDI (2014 ESCMID) at a dosage of 125mg four times daily (Debast et 

al, 2014, McDonald et al, 2018).  This difference reflects the age of the ESCMID guidelines, 

as recent evidence does not support the use of metronidazole rather than vancomycin for 

mild infections, as described in the section above.  Vancomycin is also the recommended 

treatment option for fulminant or severe CDI in the IDSA/SHEA guidelines, but at a dosage 

of 500mg four times daily, approximately four times the dose recommend by ESCMID, as 

the latter states that the current evidence for increased dosage of vancomycin is not 

sufficient, if the patient does not have ileus. 

There are several dosing options for treating recurrent infections with vancomycin, 

including tapered and pulsed regimens (Debast et al, 2014, McDonald et al, 2018). Tapered 

vancomycin regimens decrease the total dose each day, gradually weaning the patient off 

the antibiotic (Debast et al, 2014, McDonald et al, 2018), and theoretically allowing the 

host microbiome to begin re-establishing, while still supressing the growth of any 

remaining C. difficile. One study found that vancomycin tapered regimens were significantly 

more successful when the final day contained three doses (81% cured), compared with one 

(61% cured, p =0.03), and when patients had only had ≤two recurrences of CDI (78% 

cured), compared with ≥three recurrences (62%, p = 0.13), although this was not a 

significant finding (Sirbu et al, 2017). Presumably, the higher success rate in patients with 

≤two recurrences of CDI reflects the more damaged microbiome of those patients with 

≥three recurrences, due to repeated treatments. Careful selection of patients suitable for 

tapered vancomycin treatment therefore needs to be considered. A randomised controlled 

trial comparing vancomycin taper with faecal microbiota transplantation (FMT), see section 

1.9.3, was ended early, as futility analysis demonstrated lack of efficacy in both arms; 

vancomycin cure rate 58.3%, FMT cure rate 43.8% (Hota et al, 2017), and the authors cited 

patient selection as a factor in the failure of the study. A systematic review of different 

extended regimens of vancomycin for CDI found that taper-pulse regimens had a higher 

clinical success incidence than pulsed regimens alone (58-100% vs 26-81% respectively) 

(Murphy et al, 2018). It should be noted however, that there is a lack of good quality 

studies of these alternative dosing regimens, as the systematic review only included five 

studies.  
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Recent use of vancomycin as a longer-term prophylactic agent has shown promise, with a 

success rate of 95% over 200 patients-months of follow up (Zhang et al, 2019). This was 

however, a retrospective study, not a study designed to determine the clinical success of 

this regimen. In addition, although there were no reported side effects, there was no 

attempt to determine the level of vancomycin resistant enterococci carried by any of the 

treated individuals. Of note, repeated oral administration of vancomycin can lead to 

elevated serum levels (Edlund et al, 1997), despite poor uptake by the gut, so toxicity in 

long-term oral use of vancomycin should not be ruled out. 

 

1.7.3 Fidaxomicin 

Fidaxomicin is a macrocyclic antibiotic that inhibits bacterial RNA polymerase and therefore 

transcription (Lin et al, 2018). The drug has a narrower spectrum of action than 

vancomycin, and causes less damage to the host gut microbiota, specifically Bacteroides 

spp., and with variable effects on communities of bifidobacteria (Chilton et al, 2014b, 

Chilton et al, JAC 2015). In addition, recurrence of in vitro modelled CDI has been seen with 

vancomycin but not with fidaxomicin (Chilton et al, 2014b). Indeed, in a randomised 

controlled Phase III trial,  in patients treated for a first recurrence of CDI, secondary 

recurrence within 28 days was reduced from 35.5% in the vancomycin arm to 19.7% in the 

fidaxomicin arm, a reduction of ~50%  (p = 0.45) (Cornely et al, 2012, ). The impact of 

fidaxomicin on secondary recurrence within 14 days was even more stark, with 27% of 

patients experiencing recurrence in the vancomycin arm compared with 8% in the 

fidaxomicin arm (p = 0.003). In a second Phase III clinical trial there was also a reduction in 

recurrence of ~50% in the fidaxomicin arm compared to patients treated with vancomycin 

(Louie et al, 2011). Fidaxomicin was only recommended for treatment of recurrent cases of 

CDI in the 2014 ESCMID guidelines, as the initial randomised controlled trials were only 

powered to determine non-inferiority of fidaxomicin compared with vancomycin (Cornely 

et al, 2012, Louie et al, 2011), and there was no evidence at this time regarding the use of 

fidaxomicin in severe infections (Debast et al, 2014). The 2018 IDSA/SHEA guidelines 

however, recommend fidaxomicin as an alternative treatment option to vancomycin, for 

first episodes of CDI (McDonald et al, 2018). 

 



44 
 

The high up-front-cost of fidaxomicin, compared with vancomycin, may influence choice of 

drug for initial episodes. However, economic analyses show that it is as cost-effective to 

use fidaxomicin for the initial case of CDI rather than vancomycin, due to the decreased 

downstream costs associated with the higher recurrence rate with vancomycin (Watt et al, 

2016). Interestingly, sub-group analyses showed that fidaxomicin was cost-saving for 

cancer patients compared with vancomycin. Although this study was conducted in 

Germany and direct healthcare costs will differ across countries, there will be similarities in 

relative patterns of costs. For treating recurrent CDI cases, fidaxomicin is the second most 

cost-effective option, after FMT (Lapointe-Shaw et al, 2016). 

A recent systematic review conducted a network meta-analysis, which allowed the authors 

not only to compare antibiotic treatments for CDI, but also to rank them (Beinortas et al, 

2018).  The comparison included 24 clinical trials (three unpublished at the time of the 

analysis) with 13 different antibiotic treatment options; vancomycin, fidaxomicin, 

metronidazole, tecioplanin, fucidic acid, bacitracin, ridinilazole, LFF571, cadazolid, 

nitazoxanide, surotomycin, tolevamer, rifaximin.  They were unable to include any of the 

studies on faecal microbiota transplant (FMT), probiotics or immunotherapies, as they did 

not meet the inclusion criteria. For sustained clinical cure, teicoplanin (OR 0.37, 95% CI 

0.14-0.94) and fidaxomicin (0.67, 0.55-0.82) performed significantly better than 

vancomycin, and vancomycin performed significantly better than metronidazole (0.73, 

0.56-0.95). The evidence for the use of teicoplanin is limited, however, with only two small 

trials of ~ 50 patients each, both of which date from before 1996. Importantly however, 

vancomycin was superior to all agents for primary symptomatic cure, but vancomycin and 

metronidazole were only ranked ninth and 11th for prevention of recurrence. Patients on 

fidaxomicin had significantly fewer episodes of recurrence than patients on vancomycin or 

metronidazole; thereby having greater sustained clinical cure. This analysis gives further 

weight to the argument of using fidaxomicin as a first-line treatment for CDI. Indeed, as 

discussed above, it may also be the most cost-effective option, due to the decreased risk of 

recurrence and therefore decreased patient time spent in hospital (Watt et al, 2016; 

Burton et al, 2017). 

In addition to its action in sparing the gut microbiota, fidaxomicin appears to persist on the 

spores of C. difficile and inhibits the outgrowth of the vegetative cell from the spore, then 

by  turn, toxin production by the cell in vitro (Chilton et al, 2016). The fact that active 

fidaxomicin can be detected for extended periods after dosing has been completed was 
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first seen in the in vitro human gut model, where fidaxomicin was detectable in the model 

for 21 days after installation had finished, compared with four days for vancomycin (Chilton 

et al, 2014b; Chilton et al, 2015). In addition, detection of toxin from sequential patient 

faecal samples in an in vivo study, demonstrated that while both fidaxomicin and 

vancomycin reduced toxin (A and B) detection at the mid-point (3-5 days) of therapy, only 

samples from fidaxomicin-treated patients maintained low toxin A levels up to the end of 

follow up (19-38 days after treatment initiation) (Thabit et al, 2016). Interestingly, this drop 

in the level of toxin A was even seen in patients treated with fidaxomicin who developed 

recurrence.  There was also a significant association between high toxin levels (both A and 

B) and presence of vegetative cells (p = 0.003 for toxin A and 0.007 toxin B respectively) 

and spores (p <0.001 for both).  This evidence for reduced numbers of spores in faecal 

samples, and the direct effect of fidaxomicin on spore outgrowth discussed above, means 

that it is possible, therefore, that fidaxomicin could reduce onward transmission, as well as 

treating the infection. This hypothesis is supported by a small study in vivo which 

demonstrated reduced environmental contamination in the rooms of patients treated with 

fidaxomicin compared with those treated with vancomycin; 36.8% of environmental 

samples showed contamination vs 57.6% respectively, p = 0.02. (Biswas et al, 2015).  A 

larger, multicentre study substantiates the results of the first, small study but has yet to be 

published (Davies et al, 2019a). 

 Similar to the different dosing regimens for vancomycin, extended fidaxomicin dosing has 

been investigated, as theoretically this would be less detrimental to the gut microbiota. 

Pulsed-tapered and tapered-pulsed dosing allowed recovery of bifidobacteria within an 

in vitro model, whilst still clearing C. difficile infection, and with no signs of recurrence 

during the length of the experiment (Chilton et al, 2015). These data  have been replicated 

in a randomised controlled trial comparing pulsed fidaxomicin over a longer time period 

than standard therapy (200mg twice daily for five days, followed by 200mg once daily on 

alternate days from day 7 to 25) with standard vancomycin therapy of 125mg four times a 

day for ten days (Guery et al, 2018). Sustained clinical cure, defined as initial resolution of 

symptoms and no recurrence, was assessed at three time points; days 40 (30 days post end 

of vancomycin treatment), 55 (30 days post end of fidaxomicin treatment) and 90. There 

was no difference in initial resolution of systems, however the proportion of patients on 

extended-pulsed fidaxomicin with sustained clinical cure at day 30 (after treatment) was 

significantly higher than for those patients on standard vancomycin (70% vs 59% 

respectively, p = 0.03). The difference in sustained clinical cure remained significant at day 
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90, with a 14% difference between fidaxomicin- and vancomycin-treated patients (p = 

0.007). Importantly, the authors also looked at the bacterial diversity in the faecal samples 

from the two different patient groups and showed that bacterial diversity increased in the 

fidaxomicin group over the study period to a greater extent than those in the vancomycin 

arm. Additional data are required to compare extended-pulsed vancomycin regimens with 

the extended fidaxomicin regimen studied here, especially the impact of vancomycin on 

the microbiota over that time.  Without a randomised controlled trial comparing the two 

extended-pulsed regimens it is difficult to know the best choice for patients and, indeed, 

decisions should be taken on a patient-by-patient basis.  
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1.8 Novel antimicrobial treatments 

1.8.1 Tigecycline 

The antibiotic tigecycline, a broad-spectrum agent, has been suggested as a possible 

treatment for CDI, as it has shown activity against C. difficile in vitro, with very low MICs of 

0.06mg/L (Baines et al, 2006). As a broad-spectrum agent tigecycline does affect the gut 

microbiome, particularly affecting the bifidobacteria and bacteroides both in vitro and in 

vivo, although to a lesser extent for bacteroides in vivo (Baines et al, 2006, Nord et al, 

2006). However, the drug did not induce proliferation of the organism or production of 

toxins in the in vitro model (Baines et al, 2006). Of note, in both experiments there was an 

increase in some enterobacteria in patients who received tigecyline (Nord et al, 2006), 

most notably Klebsiella spp.  Enterobacterial bloom has been demonstrated with an in vitro 

model, including gene exchange from carbapenemase-resistant Enterobacteriaceae (CPEs) 

(Rooney et al, 2017a; Rooney et al, 2017b). There is the possibility therefore, that using 

tigecycline could leave patients at increased risk of carbapenemase-resistant 

Enterobacteriaceae colonisation. It should be emphasised, however, that tigecycline has no 

regulatory approval for use as CDI treatment option. 

 

1.8.2 Cadazolid 

Cadazolid, a quinoxolidinone antibiotic was another agent that showed promise in in vitro 

studies against C. difficile. Because the drug inhibits bacterial protein synthesis, it decreases 

production of both toxins and spores of C. difficile (Locher et al, 2014), and appeared 

bactericidal in vitro. In addition, Phase I studies demonstrated that active cadazolid was 

found in the faeces of patients at a peak of 5675 times the levels of the MIC90 0.25mg/L, 

and daily levels of > 1651 times higher than the MIC90 (Gehin et al, 2015). Cadazolid 

reduced the total viable count of C. difficile and the titre of cytotoxin within an in vitro gut 

model to below the limit of detection, when used at doses comparable to those found 

within the human gut, and appeared to have minimal impact on the gut microbiota (Chilton 

et al, 2014a). In addition, there was no recurrence of infection observed within the model. 

Cadazolid had similar efficacy to vancomycin for the treatment of C. difficile in a Phase II 

study (Louie et al, 2015) but with greater sustained clinical cure due to a reduction in 

recurrence of 18.2-25.0% for the different dose regimens tested compared with 50% 

recurrence in the vancomycin arm. A recent report however, from two Phase III 

randomised clinical trials of cadazolid compared with vancomycin, only demonstrated non-
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inferiority to vancomycin in one of the two studies (Gerding et al, 2019) and the drug is no 

longer being developed for use in CDI. Importantly however, cadazolid was found not to be 

inferior to vancomycin in either of the trials when the investigators determined if clinical 

cure had occurred, instead of a per protocol analysis. The authors highlighted that the lack 

of a standardised definition of clinical cure makes such per protocol analyses difficult. 

 

1.8.3 Ridinilazole 

Antibiotics that target C. difficile but with a narrow spectrum of action can potentially 

provide greater protection to the gut microbiota. One such agent, ridinilazole is currently in 

Phase III trials (Clinicaltrial.gov, 2019). Ridinilazole has a low MIC90 of 0.25µg/ml against 

C. difficile; lower than fidaxomicin MIC90 0.5µg/ml (Goldstein et al, 2013), but MICs were 

raised for isolates with known multiple resistance to other agents, although this was not 

statistically significant (Freeman et al, 2015). Exposure to sub-MIC levels of ridinilazole 

reduced production of toxin A and B by 91 and 100% respectively when measured using a 

commercial EIA with a limit of detection of 0.31ng/mL (Bassères et al, 2016). In addition, 

sub-MIC levels of the antibiotic appear to inhibit the formation of the cell septum during 

cell division, thereby affecting the ability of the organism to proliferate (Bassères et al, 

2016). 

The narrow spectrum of action of this antibiotic is demonstrated when used within the 

human gut model, as Clostridium spp. were the only commensal bacteria that declined 

after the installation of the drug to the model (Baines et al, 2015). Unlike the cadazolid gut 

model study described above however, the total count of C. difficile did not fall below the 

limit of detection, although counts did fall by ~1.5 log10 cfu/mL over the seven days of 

installation, with a further fall of 2 log10 cfu/mL by the end of the experiment.  In addition, 

the level of toxin, as measured by cell-cytotoxicity assay, dropped below the limit of 

detection ~ 7 days after the end of the instillation of the drug.  Ridinilazole was found to be 

safe and well tolerated in a Phase I study, with a mean concentration of 547 times the 

MIC90 detected within faecal samples of patients on day 5 of receiving 250mg twice daily 

(Vickers et al, 2015). 

In a Phase II randomised controlled trial comparing ridinilazole with vancomycin that was 

powered for non-inferiority, ridinilazole actually demonstrated superiority to vancomycin, 

with 66.7% of patients having sustained clinical cure at 30 days, compared with 42.2% in 

https://clinicaltrials.gov/ct2/show/NCT03595553
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the vancomycin arm (Vickers et al, 2017), estimated difference 21.1% (90% CI 3.1-39.1, p = 

0.0004). In several sub-group analyses, sustained clinical cure was higher with ridinilazole, 

however due to the low sample size these were not significant. For PCR ribotype 027 

sub-group analyses, sustained clinical cure was higher in the vancomycin group, but again 

this was not significant. In addition, there was a high proportion of participants in this study 

who were <65 years old, which may not truly reflect the population most likely to require 

this treatment option.  The Phase III study has only just begun recruiting, so results from 

this study will not be available for at least another two years. 

 

1.8.4 Surotomycin 

Another antibiotic that was found not to be inferior to vancomycin in a Phase II RCT was 

surotomycin, a daptomycin-derived antibiotic (Lee et al, 2016). The rate of initial clinical 

cure was similar between the two different doses of surotomycin (125mg twice a day and 

250mg twice a day) compared with vancomycin standard therapy with >86% success in all 

three groups. As with other newly developed drugs with a narrower spectrum of action 

than vancomycin, the recurrence rate of 17.2% for 250mg surotomycin twice daily was 

significantly lower than the recurrence rate of 35.6% in the vancomycin arm (p = 0.035). 

Sustained clinical cure was not significantly different between any of the comparisons, 

however the sustained clinical cure in the 250mg surotomycin arm was 70.1% compared 

with 56.1% in the vancomycin arm. Interestingly, although the recurrence rate was higher 

in patients from any of the arms receiving concomitant antibiotics, the recurrence rate in 

these patients in the 250mg surotomycin arm was lower than for vancomycin patients who 

received concomitant antibiotics (37.5 vs 58.8%). The Phase II data demonstrating non-

inferiority for initial clinical cure was supported by both in vitro model data and animal 

model data, where surotomycin was effective at killing C. difficile, and was comparable to 

vancomycin (Chilton et al, 2014c, Mascio et al, 2012). It should be noted however, that 

surotomycin did not prevent recurrence in the in vitro model and led to overgrowth of 

Enterobacteriacae (Chilton et al, 2014c).   

The Phase II results did not appear to translate into efficacy in Phase III RCTs however (Boix 

et al, 2016; Daley et al, 2017). In one Phase III trial the proportion of patients with clinical 

cure when treated with 250mg twice daily of surotomycin (79%) was lower than for 

patients treated with standard vancomycin therapy (84%), and surotomycin therefore 

failed to show non-inferiority (Boix et al, 2016). Importantly, the reduction in recurrence 
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seen in the Phase II studies was not seen in this Phase III study, as sustained clinical cure 

was similar between the two arms of the study with 60.6% of surotomycin patients 

remaining cured of their infection compared with 61.4% of patients treated with 

vancomycin. Interestingly sustained clinical cure was higher for patients treated with 

surotomycin vs those treated with vancomycin if the infection was caused by PCR ribotype 

027; however this was not statistically significant. In contrast, in the second Phase III study, 

surotomycin was found not to be inferior to vancomycin for initial clinical cure; the authors 

suggest this difference may be due to some differences in the patient populations in these 

studies, with those in the second study being younger (median age 57.1 vs 61.3% years) 

and with milder disease (32.6 vs 25.6%) (Daley et al, 2017). However, again, the decrease in 

cases of recurrence demonstrated in the Phase II study was not seen (Daley et al, 2017), as 

sustained clinical cure was not significantly different between the two arms (63.3% vs 

59.0% respectively).  There was a higher impact on sustained clinical cure for PCR ribotype 

027 infections  with a significantly higher number of patients remaining free from 

recurrence when treated with surotomycin (64.4%) compared with those treated with 

vancomycin (37.8%), similar to the previous study (Boix et al, 2016; Daley et al, 2017). The 

authors suggest that the conflicting results between the Phase II and Phase III studies may 

be due to the high rate of recurrence seen in the patients treated with vancomycin in the 

Phase II study, as the lower rates of recurrence in the vancomycin arm of the surotomycin 

Phase III studies were similar to those seen in Phase III studies of other antibiotics used to 

treat C. difficile (Daley et al, 2017). In addition, the definition of CDI in the Phase II and III 

studies differed, with diagnosis in Phase II requiring a positive stool test for toxin A and/or 

B, while diagnosis in the Phase III studies was based on a positive stool test by either a toxin 

detection assay or by NAAT for toxin genes. Indeed >50% of cases in the Phase III studies 

were diagnosed by NAAT (Boix et al, 2016; Daley et al, 2017). This highlights the difficulty in 

designing randomised controlled trials, as the impact of the baseline characteristics of the 

patients enrolled, how CDI is diagnosed, and the definitions of cure and recurrence, can 

influence the results of the study, as demonstrated by both the surotomycin and cadazolid 

studies. It is very unlikely that either of these two antibiotics will be taken further in 

development as a treatment option for CDI. 
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1.8.5 Other novel antibiotics 

Several other antibiotics are being developed or are being used for the treatment of CDI, 

including ramoplanin, fusidic acid, nitazoxanide, LFF571 and rifaximin, with varying rates of 

success (Petrosillio et al, 2018). Current evidence on the efficacy of these agents is 

insufficient however to show superiority over fidaxomicin and ridinilazole (Beinortas et al, 

2018). Rifaximin, although bactericidal for C. difficile, is not recommended for use in the 

treatment of CDI due to the high levels of resistance found in C. difficile isolates (NG et al, 

2019).  However, rifaximin used as a follow-on treatment for either metronidazole or 

vancomycin standard therapy has been shown to reduce recurrence by ~50% from 29.5% in 

the placebo group to 15.9% in those that received rifaximin, although this was not a 

statistically significant finding (Major et al, 2018). 
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1.9 Alternative treatment options 

Alternative methods, other than traditional antimicrobial therapy for curing CDI, have been 

investigated. As CDI is a toxin-mediated disease, it makes sense that binding the toxin 

within the gut lumen may reduce the impact the toxin can have on the gut tissue. One 

agent developed for this purpose is tolevamer, a polymer that neutralises both toxin A and 

toxin B (Braunlin et al, 2004). Tolevamer not only resolved infection in 80% of the treated 

mice in a CDI mouse model, but also none of the animals had a relapse of infection when 

treatment was stopped (Kurtz et al, 2001).  This is in contrast to those mice that had been 

treated with metronidazole where 80% had relapse of infection after withdrawal of the 

metronidazole treatment.   When used to treat a simulated CDI infection in an in vitro gut 

model however, tolevamer was not able to reduce cytotoxin levels within the model 

(Baines et al, 2009). Indeed, tolevamer failed to show efficacy in Phase III studies (Johnson 

et al, 2014). In addition, in a recent meta-analysis tolevamer was significantly inferior when 

compared to all of the agents in the comparison, with the exception of LFF571 and 

bacitracin (Beinortas et al, 2018). 

 

1.9.1 Immunoglobulin 

Pooled human immunoglobulin was suggested as an adjunctive therapy in 1997, but 

current guidelines do not recommend its use, due to a lack of evidence regarding efficacy 

(Salcedo et al, 1997; Debast et al, 2014, McDonald et al, 2018). Indeed, a systematic review 

in 2016 only found a total of 17 published studies examining passive immunotherapy in 

humans (Diraviyam et al, 2016). While the studies were generally favourable, there was a 

lack of rigorous, controlled studies to enable the true effect of this treatment option to be 

determined (Diraviyam et al, 2016). 

 

1.9.2 Bezlotoxumab 

A more focussed immunotherapy has been developed, rather than using pooled 

immunoglobulins as described above. Two humanised monoclonal antibodies were 

developed, one anti-toxin A, actoxumab, and one anti-toxin B, bezlotoxumab; when mixed 

together denoted as actoxumab-bezlotoxumab. Bezlotoxumab binds within the CROP 

domain of toxin B, thereby preventing toxin B from binding to cells of the gut epithelium 

(Orth et al, 2014). In a mouse model of acute infection, actoxumab-bezlotoxumab 
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significantly reduced fluid accumulation and protected the gut epithelium, with no 

evidence of inflammation or damage to the epithelial cells (Yang et al, 2015). In addition, 

when mice, pre-treated with actoxumab-bezlotoxumab and that survived an initial primary 

infection with C. difficile, were re-challenged with an antibiotic, they were protected 

against further infection, unlike mice that had not been pre-treated with actoxumab-

bezlotoxumab (Yang et al, 2015).  Warn et al have used rodent models to demonstrate a 

period after primary infection during which the risk for recurrent infection is highest (Warn 

et al, 2016). This ‘at-risk window’ is due to possible spore outgrowth when the antibiotic 

that had been used to treat the primary infection has been stopped and the concentration 

has fallen, combined with a lack of recovery of the host microbiota. In rodent models, 

actoxumab-bezlotoxumab reduces the risk of recurrence during this ‘at-risk window’ and 

thereby provides time for the microbiota to recover, leading to fewer recurrent infections 

(Warn et al, 2016). 

In a pooled analysis of two randomised controlled trials for standard therapy combined 

with actoxumab-bezlotoxumab, actoxumab alone or bezlotoxumab alone, bezlotoxumab 

significantly reduced recurrence by ~38% compared with standard therapy plus placebo, 

with no impact on initial clinical cure (Wilcox et al, 2017). Interestingly, although there was 

reduced recurrence in the actoxumab-bezlotoxumab arm compared with placebo, there 

was no additional benefit over the arm devoted to bezlotoxumab alone. This supports the 

hypothesis that toxin B is more important for clinical infection than toxin A, as discussed in 

the virulence section of this introduction. However, sub-group analyses demonstrated a 

greater effect from actoxumab-bezlotoxumab in participants that had an infection caused 

by PCR ribotype 027, compared with bezlotoxumab alone, although this was not significant 

and numbers in each group were small. In vitro data suggests that changes in some of the 

epitopes on the toxin B protein in the CROP region in some strains of C. difficile, including 

PCR ribotype 027, correlated with decreased bezlotoxumab potency (Hernandez et al, 

2015). While further studies in humans, with much larger numbers are required to 

understand fully any decreased effect against certain PCR ribotypes of C. difficile, 

bezlotoxumab provides a way to reduce not only recurrent infections, but also the number 

of days a patient spends in hospital (Basu et al, 2018).  Reduced hospital readmissions and 

costs associated with recurrent CDI, such as additional antibiotics, nursing and other 

healthcare costs, make bezlotoxumab a cost-effective option, with 0.12 quality-adjusted 

life-years (QALYs) gained compared with placebo (Prabhu et al, 2017), and $19,824 saved 

per QALY gained. 



54 
 

 

1.9.3 Faecal Microbiota Transplantation 

Faecal microbiota transplantation (FMT) is recommended for patients that have had 

multiple recurrences of CDI, and who have failed antimicrobial therapy (Debast et al, 2014, 

McDonald et al, 2018). Augmentation of a patient’s gut microbiome by using an infusion of 

donor faeces was first reported in 1958 by Eiseman et al, and the idea gained increased 

interest after the publication of a randomised controlled trial between FMT and 

vancomycin with or without bowel lavage for treating recurrent CDI (van Nood et al, 2013). 

Patients who had had at least one recurrence of CDI were eligible for inclusion, although 

the majority of cases 35/43 had >one recurrence. For those randomised to receive FMT, 

13/16 (81.3%) were cured (with no recurrence within ten weeks) after one infusion, while a 

further two patients were cured after a second infusion from a different donor; giving 

overall cure in 93.8% of patients with one or two infusions. In comparison, only 31% of the 

patients in the vancomycin arm and 23% of patients in the vancomycin with bowel lavage 

arm remained free from CDI after ten weeks. The trial showed superiority of FMT over both 

vancomycin regimens early (p <0.0001), and the study was stopped, as it would have been 

unethical to continue with patients in the failing vancomycin arms. It should be noted that 

the proportion of patients who failed to have resolution of symptoms after treatment with 

vancomycin was higher than anticipated, which could have been due to the selection of 

patients with multiple recurrences (van Nood et al, 2013). Interestingly, the vancomycin 

regimen was 500mg four times a day, rather than 125mg, and it could be argued that this 

higher dose of vancomycin would be even more detrimental to the gut microbiome, and 

thereby not allow re-establishment of colonisation resistance, leading to further 

recurrences. Another randomised controlled trial of 64 patients however, also found a 

significant difference between the numbers of patients with no recurrence at eight weeks 

when treated with FMT vs 125mg four times per day of vancomycin (Hvas et al, 2019). FMT 

was also found to be superior to fidaxomicin (200mg twice a day) with 71% of patients 

treated with FMT remaining symptom free at eight weeks compared with 33% of patients 

treated with fidaxomicin (p = 0.009) (Hvas et al, 2019). 

Many of the randomised controlled trials on FMT are small, and therefore more liable to be 

influenced by confounders, such as the population studied. Meta-analysis can be used to 

determine if the pooled results are generalisable to a larger population. A recent 

meta-analysis of FMT randomised controlled trials included eight studies in the analysis, 
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with a total of 537 patients (Hui et al, 2019). Pooled relative risk for recurrence with FMT 

was 0.38 (95% CI 0.16-0.87, p = 0.02) with an overall recurrence rate of 11% (Hui et al, 

2019), demonstrating the effectiveness of this treatment option. 

Guidelines for the use of FMT have been issued jointly by the British Society of 

Gastroenterology (BSG) and the Healthcare Infection Society (HIS) (Mullish et al, 2018) to 

try to provide some standardisation to the use of this currently unregulated treatment 

option. Concerns over safety are partially addressed, with recommendations over the 

selection of potential donors (Mullish et al, 2018). The need for FMT should be judged on 

an individual patient basis however, balancing patient cure with possible unknown long 

term consequences. Donor selection is not only based on the results of screening for 

infectious diseases, which needs to be extensive, but also concerns the general health of 

the donor; the link between gut microbiome composition and health is still being 

investigated but there are increasing reports of the role that the microbiome plays in other 

health conditions (Skonieczna-Żydecka et al, 2018; Zheng et al, 2019). One 

recommendation in the guidelines, for example, is to use donors with a body mass index 

(BMI) of ≥18 and ≤30kg/m2, as there have been reports in mice of donor faeces from obese 

mice causing thin mice to become obese (Ridaura et al, 2013).  In addition, there have been 

case reports of patients dying from aspiration pneumonia when FMT was delivered via 

nasogastric (NG) or nasoduodenal (ND) tube (Bang et al, 2017; Baxter et al, 2015; van 

Beurden et al, 2017). The current recommendation is to use NG, ND, nasojejunal tube or 

enema for infusion of FMT (Mullish et al, 2018), but that NG should be used with caution in 

patients with risk of regurgitation. An alternative to liquid FMT is pre-prepared 

gastric-resistant faecal capsules, which can be swallowed (Youngster et al, 2016).  

 

1.9.4 Microbiome therapeutics 

Attempts have been made to reduce the risks associated with FMT by producing 

preparations of organisms that may perform the same function of FMT, namely resolution 

of the gut microbiome. RBX2660 is a suspension of live microbes that has been used with 

some success when used in a similar way to FMT, with an overall success of 87.1% in 

preventing a further episode of recurrence within eight weeks (Orenstein et al, 2016). It 

should be noted that the primary end-point of this study was product related adverse 

events (AEs), and 28/31 patients experienced at least one AE. These were mostly 

gastrointestinal in nature, and the majority resolved within seven days; there were no 
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product related serious AEs.  An alternative agent being developed, SER109 only uses 

spores from Firmicutes, rather than a suspension of microbes (Khanna et al, 2016). 

Theoretically, this reduces the possibility of transferring an unknown infectious agent to 

the recipient. However, although Phase Ib trial results appeared successful with 96.7% of 

patients remaining recurrence free, the Phase II trial results of this agent have so far not 

proved successful (Khanna et al, 2016; press release from Seres Therapeutics 2019). A post-

trial analysis by the company suggests that the decreased efficacy of SER-109 could have 

been due to suboptimal dosing, as a lower dose was used than the Phase Ib study. In 

addition, CDI was defined using PCR-based diagnostics; further testing of samples 

demonstrated that a significant number of these patients did not have C. difficile toxin in 

their samples (press release from Seres Therapeutics, 2019). If patients who were only 

carriers of C. difficile rather than having C. difficile infection were included on the study, 

this would have impacted the outcome measure for the trial. Further studies of SER-109 

are therefore continuing (press release from Seres Therapeutics, 2019). 

In addition, the use of non-toxigenic C difficile to enhance colonisation resistance and, 

therefore, reduce recurrence, has been investigated via RCT (Gerding et al, 2015). The oral 

formulation of spores was found to be well tolerated and patients in the treatment arm 

reported fewer events of diarrhoea and abdominal pain than patients in the placebo arm. 

Four different doses of spores were evaluated, and a dose dependant effect was found, 

with faecal colonisation seen in 71% of patients treated with the highest dose, compared 

with 63% of patients treated with the lowest dose.  In addition, reduction of recurrence 

was dose dependant, with the lowest recurrence rate in the patient group that received 

the highest dose of spores (5% vs 30% placebo, OR 0.28, P=0.006). Although not 

demonstrated in vivo, the PaLoc has been transferred to non-toxigenic strains within the 

laboratory (Brouwer et al, 2016), suggesting that there may be a potential risk if using non-

toxigenic C. difficile as a treatment option.  

 

1.9.5 Microbiome protective therapeutics 

In addition to the therapeutics discussed above, that have been designed to enhance the 

microbiome, there are investigational drugs that are designed to reduce the negative 

impact of antibiotics on the gut microbiota, and so reduce the risk of CDI.  SYN-004 

(ribaxamase) is a beta-lactamase that is designed to be taken orally at the same time as a 

beta-lactam antibiotic (Connelly et al, 2017). The beta-lactamase then degrades the 
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antibiotic that is excreted within the gastrointestinal tract of the patient, thereby 

protecting the gut microbiome from damage by the antibiotic. Results from Phase IIa and 

IIb studies indicate that SYN-004 is effective at reducing the level of ceftriaxone in the gut 

of patients to below the level of detection (Kokai-Kun et al, 2017a), and reduced the risk of 

subsequent CDI by 2.4% (95% CI -0.6-5.9, p=0.045) (Kokai-Kun et al, 2017b).  Another agent 

in development is DAV-132. This is an oral adsorbent agent, which binds to antibiotics 

excreted via the gastrointestinal tract, thereby lowering the antibiotic concentration and 

protecting the microbiota (de Gunzberg et al, 2015). DAV-132 is currently being 

investigated in an RCT in Europe (clinicaltrial.gov, 2019).    
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1.10 Infection control and prevention 

The financial burden on the healthcare economy from this pathogen is considerable. Each 

case has been estimated to cost the NHS approximately £7,000 due to the increased use of 

isolation facilities, specialised barrier nursing and extended hospital stay (Wiegand  et al, JHI 

2012), with estimates of $5.4-6.3 billion per year in the US (Zhang et al, BMC Infec Dis 

2016). In the UK, there is increased financial pressure on NHS Trusts as a result of financial 

penalties for failing to meet infection reduction targets set by the Department of Health 

(Department of Health, 2016).  Therefore, although the driver of Department of Health 

targets is reduction of morbidity and mortality, the reduction of the burden of C. difficile 

infection also has important economic implications, as well as those for the care and well-

being of patients, and there are several measures that can be taken to reduce C. difficile 

burden. 

 

1.10.1Transmission 

Transmission of C. difficile is via the faecal-oral route, following ingestion of spores, 

presumably primarily from contaminated hands (Durovic et al, 2018). A recent review of 24 

transmission studies found 53.3% of studies reported that, in the hospital setting, direct 

contact with a previous case was the source of infection; however 40% reported that 

contact with the hospital environment was the source for cases of CDI (Durovic et al, 2018). 

In addition, the most commonly cited environmental source was the patients’ room 

(25% of studies), followed by wards (13%), bathrooms (13%) and toilets (13%). Indeed, the 

risk of acquiring C. difficile after being nursed in a room that previously housed a patient 

positive for C. difficile was 1.73 (95% CI 1.15-2.55), with a mean time to acquisition of 3.2 

days, compared with 18.9 days for those patients nursed in areas that did not previously 

house C. difficile-positive patients (MacFarland et al, 1989). A multivariate analysis of 

factors affecting acquisition of C. difficile found admission to a room that previously housed 

a patient positive for C. difficile was independently associated with C. difficile acquisition 

(hazard ratio 2.35) (Shaughnessy et al, 2011). The risk appears to be highest within the first 

48 hours of exposure to that environment with a relative risk of 2.23 (95% CI 1.24-4.01) 

(MacFarland et al, 1989). There have been several recent transmission studies, using a 

combination of typing techniques and spatial links to demonstrate likely transmission from 

a previous CDI case (Walker et al, 2012; Martin et al, 2018; Mawer et al, 2017; Eyre et al, 

2017; Eyre et al, 2013a).  In all of these studies a direct or indirect link between previous 



59 
 

CDI cases or C. difficile positive patients could only be demonstrated for ~20% of cases. This 

highlights that there may be alternative sources of transmission, in addition to previous CDI 

cases. Infection control and prevention methods however try to reduce the likelihood of 

transmission via these pathways. 

Hand hygiene is a key way of reducing the risk of C. difficile transmission and/or acquisition. 

In one study, when the hands of nursing staff were checked for contamination after contact 

with patients positive for C. difficile carriage, 59% of them became contaminated 

(MacFarland et al, 1989), including their fingernails, fingertips, palms and the underside of 

rings. One important difference for hand hygiene with C. difficile however, is that alcohol 

skin gels are ineffective against the spores of the bacterium.  Indeed, as discussed in 

section 1.2.2, the spores are resistant to alcohol (Wilson et al, 1985). Hands can however, 

be effectively cleaned by physical washing, with standard soap and water or antibacterial 

soaps (Boyce and Pittet, 2002). However current ESCMID guidelines only recommend 

switching from alcohol-based gels to soap and water in a C. difficile outbreak setting, due to 

the effectiveness of alcohol-based gels for preventing other hospital-acquired infections 

(Tschudin-Sutter et al, 2018). The guidelines also recommend using personal protective 

equipment (PPE) including gowns and gloves in both outbreak and endemic settings, 

although the use of PPE is a stronger recommendation for the outbreak situation than the 

endemic setting (Tschudin-Sutter et al, 2018).  Isolation of patients is recommended in both 

endemic and outbreak situations (Tschudin-Sutter et al, 2018) although there is no 

recommendation on if this should be in individual rooms, or via cohorting of symptomatic 

patients together, presumably due to the differing availability of individual side rooms in 

different institutions.  

Individual side rooms may make decontamination of the environment easier, as all 

high-touch areas should be decontaminated, using an appropriate cleaning agent, on a 

daily basis, and after vacation of the room by the patient (Tschudin-Sutter et al, 2018). The 

spores of C. difficile have been shown to remain in the hospital environment for up to 12 

weeks, with only a ≤3 log10 reduction from the starting inoculum during that time (Otter 

and French, 2009), and are more likely found in room of patients with symptomatic CDI, as 

opposed to asymptomatic carriage (MacFarland et al, 1989; Riggs et al, 2007). In one study, 

where floors were intentionally contaminated with a C. difficile spore preparation of 106cfu, 

spores could be recovered up to five months later (Kim et al, 1981). When the starting 

inoculation was 104cfu however, spores could only be recovered at a maximum of four 
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weeks later; demonstrating that a higher starting inoculum enhances the chance that some 

spores will remain in the environment long-term.  In addition to contamination via 

contaminated hands, the environment can also be seeded by spores via aerosolisation 

(Best et al, 2010), most commonly when there is activity near a symptomatic patient. 

Aerosolised spores can also be recovered from the air above toilets following flushing, 

thereby further contaminating the environment (Best et al, 2012). Hypochlorite-based 

agents are more effective than those containing quaternary ammonium compounds at 

removing C. difficile spores from the environment (Fawley et al, 2007), and accelerated 

hydrogen peroxide-based agents are comparable with bleach containing 5g/L free chlorine, 

at inactivating spores in ≤10 minutes (Perez et al, 2005). 

Cleaning practices must be maintained at an appropriate level; one outbreak of C. difficile 

has been associated with failure to adequately clean the re-usable mop-heads that were 

used to clean the ward (Sooklal et al, 2014). Several of the cleaning agents described above 

can be hazardous to cleaning staff, if not used appropriately (Perez et al, 2005), and require 

all high-touch areas to be physically cleaned adequately. Alternative, no-touch systems for 

room decontamination have now been developed. These consist of systems using either 

ultra-violet-C (UVC) light, or hydrogen peroxide vapour (HPV).  UVC systems, where the 

light damages the bonds in DNA, require direct line-of-sight with the surface to be 

decontaminated and reduce the number of spores on surfaces by 2-4log10 (Havill et al, 

2012; Nerandzic et al, 2010). HPV systems, in contrast, which damage membrane lipids, 

DNA and protein by free radicals, reduce the number of spores on surfaces by ~6log10 

(Havill et al, 2012). As highlighted by a review in 2015, however, currently most studies of 

these systems have been tested on seeded environmental surfaces (Barbut, 2015) and 

further evaluation of their clinical impact is required. 

 

1.10.2 Surveillance 

Surveillance of CDI cases is recommended in both the endemic and outbreak setting 

(Tschudin-Sutter et al, 2018), however the evidence level for this is low. Nevertheless, it is 

logical that up-to-date knowledge of the current number and location of cases, along with 

the strain associated with those cases can help to direct available infection prevention and 

control resources better. Surveillance requires accurate diagnosis however; methods that 

can also detect colonised patients as well as actual cases of CDI could falsely inflate 

reported CDI rates (Davies et al, 2017; Longtin et al, 2013). In Europe, the European Centre 
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for Disease Prevention and Control (ECDC) has initiated a standardised programme of 

surveillance of C. difficile (ECDC,  2019.) to overcome the issue that several European 

countries do not have national CDI surveillance programmes of their own.  The results of 

the pilot project, reported in 2016, demonstrate that two of those countries without their 

own national systems had high levels of PCR ribotype 027 (van Dorp et al, 2016), perhaps 

due to a lack of knowledge about circulating outbreak strains.  Additional to the issue of 

accurate diagnostics, surveillance systems can only record those cases that were clinically 

suspected and therefore tested; thereby missing potential cases. Results from a study of 

482 hospitals across 20 countries in Europe in 2012-2013 estimated that there were a total 

of ~40,000 missed cases per annum in those 482 hospitals (Davies et al, 2014). Indeed, the 

proportion of cases attributed to PCR ribotype 027 in a country was inversely correlated 

with the testing rate in that country (Davies et al, 2014), again suggesting that lack of 

knowledge about circulating strains prevents appropriate outbreak control methods being 

put in to place. An earlier study of 97 hospitals in 34 countries in Europe demonstrated a 

correlation between the number of tests performed/10,000 patient bed days (pbds) and 

the number of cases/10,000pbds (Bauer et al, 2008), supporting the adage ‘the more you 

look, the more you find’. However, this was not replicated in the later study (Davies et al, 

LID 2014) for either reported, or actual measured cases of CDI.  This may be due to the 

increased sample size of the later study, thereby possibly including centres with greater 

heterogeneity of testing policies (Davies et al, 2014). These differences however, highlight 

the need for standardised case definitions, diagnostic methods, clinical parameters and 

appropriate denominators for rate data, to make surveillance successful. 

 

1.10.3 Antibiotic stewardship 

C. difficile infection is most often precipitated by antimicrobial exposure, as discussed 

earlier in the introduction. Antimicrobial stewardship may therefore reduce the burden of 

CDI; reducing the number of potentially susceptible patients would reduce the number of 

CDI cases. The decrease in cases since 2007 seen in two areas within the UK, has been 

correlated with the decrease in fluoroquinolone and cephalosporin prescribing over the 

same period within those regions, but not with overall levels of antimicrobial prescribing 

(Dingle et al, 2017). Importantly, PCR ribotype 027 is resistant to fluoroquinolones, in 

contrast to many other types of C. difficile (Freeman et al, 2018), and in one of the two 

regions the proportion of cases due to PCR ribotype 027 dropped from ~67% to ~3% during 



62 
 

the period of decreased fluoroquinolone use.  Currently, antibiotic stewardship is largely 

driven by the policies of local centres, or by national guidelines (Debast et al, 2014; 

McDonald et al, 2018). In the developing era of personalised medicine however, there may 

be potential for diagnostic assays that can predict those patients who would be most 

susceptible to C. difficile infection and, therefore, those in whom antimicrobial stewardship 

would be most advised. These tests may focus on markers of dysbiosis of the gut 

microbiota, such as the levels of bacterial metabolites found in the urine (Obrenovich et al, 

2017), or on carriage of specific organisms, such as C. difficile. 
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1.11 Typing methods 

Investigation of C. difficile outbreaks is reliant on being able to distinguish between 

different strains of the bacterium, for which several methods have been developed. Gurtler 

developed a method using the DNA sequence of the region encoding the intergenic spacer 

region between the 16S and 23S ribosomal subunits of C. difficile (Gurtler,  1993). This 

highly variable region of DNA can be cleaved into sections using restriction endonucleases, 

with the resultant unique pattern of DNA fragments attributed to a specific PCR ribotype 

(Stubbs et al, 1999). Improvements made to the sequence of the primers used, improved 

the reproducibility of the method (Bidet et al, 1999), and this method was then used by the 

Clostridium difficile Ribotyping Network of England and Northern Ireland (CDRN). The CDRN 

was developed as a response to the growing number of CDI cases in England, with an aim 

to drive down transmission (Wilcox, et al, 2012). Recent advances in technology have 

allowed a shift from visualisation of the fragments using gel electrophoresis, to 

measurement of fragment lengths on a sequencer (Fawley et al, 2015), enabling greater 

standardisation of the method. The current library of strains held at the CDRN is >900 

(personal communication). 

PCR ribotyping, although used world-wide, is not the only typing system for C. difficile, for 

example PCR ribotype 027 is also known as pulsed field gel electrophoresis (PFGE) NAP1, 

restriction enzyme assay (REA) B1 or toxinotype III (McDonald  et al, 2005; Rupnik et al, 

1998). Due to the large sections of DNA, cleaved by enzymes from the whole genome of 

the organism in PFGE, separation of the fragments takes longer than standard 

electrophoresis, and requires alternating and rotating currents to be applied to the gel 

(Schwartz and Cantor, 1984; Wren and Tabaqchali, 1987). PFGE was first used to define 

strains of C. difficile in 1996 (Kato et al, 1996), demonstrating that some patients had 

relapse of their original infecting strain, while others acquired a new infection with a 

different strain (reinfection). PFGE has modest discrimination for strains of C. difficile, and 

some strains are non-typeable using this method, due to DNA degradation (Kato et al, 

1996; Alonso et al, 2005). Improvements to the method however, have reduced DNA 

degradation, and therefore, increased the number of isolates for which a PFGE type can be 

derived (Corkill et al, 2000; Alonso et al, 2005). 

C. difficile can also be typed based on the toxin genes within the genome, when compared 

to a reference strain, VP1 10463 (Rupnik et al, 1998).  Restriction fragment length 

polymorphism (RFLP)-PCR amplifies the section of DNA containing the toxin genes tcdA and 
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tcdB, which is then cut with DNAse enzymes and checked for polymorphisms (Rupnik et al, 

1998). Ten overlapping PCR amplification products enable the entire PaLoc to be analysed 

(Rupnik et al, 1998), with 31 toxinotypes currently known (Toxinotype website database, 

2019). 

Several other typing methods have been used for C. difficile, including serogrouping 

(Delmee et al, 1985), restriction endonuclease analysis (REA) (Devlin et al, 1987), multilocus 

sequence type (MLST) (Marsh et al, 2010) and multilocus variable-number tandem repeat 

analysis (MLVA) (Fawley et al, 2008; Fawley and Wilcox, 2011). Each method has a different 

level of discrimination; MLVA does achieve increased discrimination over PCR ribotyping, 

and can be used for enhanced analysis of transmission where the same PCR ribotype has 

been identified (Fawley et al, 2008; Fawley and Wilcox, 2011). MLST is less discriminatory 

than MLVA but can provide information on the genetic lineage of the isolate (Marsh et al, 

2010). Advances in technology have made whole genome sequencing (WGS) of C. difficile 

available to many laboratories. Although termed whole genome sequencing, the sequence 

of the entire genome is not determined, for example the region used for PCR ribotyping is 

not included in WGS (Eyre et al, 2013b), making it impossible to derive a PCR ribotype from 

WGS currently. One advantage of methods such as PCR ribotyping, MLVA and WGS over 

other typing methods, is that they can be used to track transmission as they can be 

adjusted to examine the relatedness of isolates, not just place isolates into a defined 

category, as, for example, PFGE does (Eyre et al, 2013b). 
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1.12 Epidemiology 

C. difficile infection became of public interest in the UK and worldwide after several high-

profile incidents in healthcare institutions (Kostkova et al 2013). These outbreaks were 

often associated with the PCR ribotype 027 (McDonald et al, NEJM 2005; Pepin et al, 2004; 

Loo et al, 2005). Typing of C. difficile isolates is therefore, a useful tool for examining the 

spread of infection and understanding outbreaks, and new typing methods, such as WGS, 

provide new information on transmission pathways for CDI. Indeed, although CDI was 

traditionally thought to spread from case to case, the source of infection in the majority of 

cases remains unclear, as a recent study reported that only 20-25% of inpatient CDI cases 

could be linked with another CDI case when using WGS (Walker et al, 2012). Of note, in-

patient asymptomatic carriage rates of C. difficile have been shown to be higher (up to 

21%) than those seen in the community (1.6%) (Rea et al,  2012), and may contribute to 

transmission within the hospital setting (Furuya-Kanamori, 2015). 

 

1.12.1 Changing patterns of epidemiology 

Typing isolates of C. difficile also demonstrates how patterns of C. difficile types have 

changed over time and how they vary between locations; e.g. hospital vs community, or by 

country. Before the world-wide outbreaks of PCR ribotype 027, the predominant strain in 

the UK was PCR ribotype 001, with little variation seen in circulating hospital strains 

(Freeman et al, 2010). Increased infection control and prevention measures in the UK, 

including mandatory reporting of all CDI cases from hospitals, led to a decline of outbreaks, 

including those caused by PCR ribotype 027 (Wilcox et al, 2012). After the decline of 

PCR ribotype 027 in the UK, the heterogeneity of circulating strains within the hospital 

environment increased and, indeed, appears similar to the diversity of strains within the 

community (Fawley et al, 2016). 

CDI case incidence has continued to increase across Europe in the last decade, with a mean 

of 4.1/10,000patient bed days (pbds) across 34 countries in 2008 and a mean of 

7.0/10,000pbds across 20 countries in 2012/2013 (Bauer et al, 2011; Davies et al, 2014); 

albeit with marked variation between countries. In the same period, the testing rate also 

increased from a mean of 52.1tests/10,000pbds to 65.8/10,000pbds, and when 

undiagnosed cases are added to those actually reported, the case rate rises by 2.4-2.9 fold, 

highlighting ascertainment bias (Davies et al, 2014).  Targeted testing of patients may also 

impact on reported CDI incidence; those tested for CDI are significantly older in Italy than in 
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four other countries studied, suggesting that testing in Italy is targeted to those thought to 

be most ‘at risk’ (Davies et al, 2016b; Davies et al, 2017). Comparisons of case incidences 

between centres and countries are therefore compounded by factors such as clinical 

suspicion, testing policies and testing methodologies (Davies et al, 2014; Longtin et al, 

2013; Davies et al, 2016b; Davies et al, 2017). 

A recent systematic review has attempted to determine the global burden of C. difficile 

(Balsells et al, 2019), and estimates a mean of 3.54 hospital-associated cases/10,000pbds 

and 2.24/1,000 admissions across the 41 countries included in the studies in the meta-

analysis.  The incidence was substantially lower in the community with a mean of 

0.55/1000 admissions. It should be noted however, that this may not be the most 

appropriate measure for community infections, as it will only capture those that were sick 

enough to require hospital admission. Interestingly, the authors note that the CDI incidence 

was highest in North America; however, although they mention that diagnostic methods 

may affect incidence data, they fail to mention that laboratories in the US largely use stand-

alone PCR assays for CDI diagnosis, which have been shown to overcall the number of true 

cases of CDI (Davies et al, 2016b; Polage et al, JAMA 2015). This may therefore partly 

explain the high incidence levels reported in the USA. 

The diversity of PCR ribotypes across Europe has increased from a total of 65 different 

PCR ribotypes found in the 2008 study to the 125 found in the 2012/2013 study (Bauer et 

al, 2011; Davies et al, 2016a). Distribution of ribotypes varies markedly across Europe, with 

the greatest proportion of PCR ribotype 027 in Eastern Europe (figure 1.2), a shift from the 

high prevalence seen in the UK in 2008 (Davies et al, 2016a, Davies et al, 2019c, Bauer et al, 

2011). The prevalence of PCR ribotype 027 and 176 (a closely related strain), is inversely 

related to the overall diversity of PCR ribotypes within a country; i.e. outbreaks of one 

strain dominate in these countries, while those countries with fewer outbreaks have 

increased diversity of circulating strains (Davies et al, 2016a). Within-country clustering is 

seen, using WGS, for PCR ribotypes 356, 018, 176, 001/072 and 027, while other 

PCR ribotypes, such as 078, 015, 002, 014 and 020, appear to have a European-wide 

distribution (Eyre et al, 2018). This is suggestive of two different patterns of spread for 

these PCR ribotypes, and that those with European-wide distribution may have a common 

source (Eyre et al, 2018). Some PCR ribotypes are found in animal faecal samples, such as 

078 and 014 (Knetch et al, 2014; Knight et al, 2016), it is therefore postulated that the food 
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chain may be a potential source for those PCR ribotypes distributed across Europe (Eyre et 

al, 2018).  

 

Figure 1.2. Reproduced from Eurosurveillance (with permission).  Geographical 

distribution of Clostridium difficile PCR ribotypes, by participating European 

countrya, in the EUCLID study, 2012–13 and 2013b (n = 1,196). Pie charts show the 

proportion of the most common ribotypes by country and the number in the centre of the 

charts is the number of typed isolates in the country. a Austria, Belgium, Bulgaria, Czech 

Republic, Finland, France, Germany, Greece, Hungary, Ireland, Italy, the Netherlands, 

Poland, Portugal, Romania, Slovakia, Spain, Sweden and United Kingdom. None of the 

faecal samples submitted from Slovenia during the two sampling days were found to be 

positive for C. difficile or its toxins. b The countries submitted inpatient diarrhoeal samples 

on two sampling days (one day in winter, in December 2012 or January 2013, and one day 

in summer, in July or August 2013) 
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1.12.2 PCR ribotype 027 

Further to epidemiological information, typing can also highlight different clinical outcomes 

between strains. Increased severity of infection and greater mortality has been associated 

with PCR ribotype 027 (Loo et al, 2005; Pepin et al, 2005b). In a study of 1,144 CDI cases 

the presence of PCR ribotype 027 was associated with severe CDI (OR 1.73, 0.037), and 

mortality (OR 2.02, p = 0.009) compared with infection caused by an alternative 

PCR ribotype, after multivariate analysis (Rao et al, 2015). One difficultly however, when 

comparing studies describing the relationship of PCR ribotype 027 and severity of infection, 

is the variation in the definition of severity. In the ESCMID guidelines, severity is defined as 

severe colitis and/or the presence of one of several other markers, including raised white 

cell count above 15x109/L, serum albumin <30g/L, rise in serum creatinine >1.5X baseline 

values or >133µM (Debast et al, 2014). Severity can also be described based on ICU 

admission, serious comorbidities or immunodeficiency in patients aged >65 years (Debast 

et al, 2014). IDSA/SHEA guidelines describe severe infection in similar terms to ESCMID, but 

presence of hypotension, shock, ileus or megacolon is defined as fulminant infection 

(McDonald et al, 2018). One study of 236 cases of CDI found no association between 

presence of PCR ribotype 027 and severity; however, severity was based on death within 

30 days (Cloud et al, 2009). In this case then PCR ribotype 027 was not associated with 

mortality, rather than not being associated with severity as the study title suggests; 

however this study may have been underpowered for mortality as an outcome measure. A 

later study also found no association between PCR ribotype and severity, after multivariate 

analysis to control for other confounders, such as age and raised white blood cell count, 

although presence of PCR ribotype 027 was associated with severity  in univariate analysis 

(OR 2.33, p = 0.035) (Walk et al, 2012). Severity in this study was defined as admission to 

ICU, requiring interventional surgery for CDI symptoms, or death within 30 days of 

diagnosis, and the authors acknowledge that they may have missed some cases of severe 

infection using these criteria (Walk et al, 2012). 

One reason for the increased severity of infection with this PCR ribotype may be increased 

production of toxin by this strain (Warny et al, 2005), although this has been disputed by 

both batch and continuous culture system experiments (Merrigan et al, 2010; Freeman et 

al,  2007).  Experiments can also be compounded by the choice of comparator non-027 

strain, as production of toxin in batch culture appears to be strain dependant (Merrigan et 

al, 2010).  In addition, continuous culture systems, rather than batch culture show that 

PCR ribotype 027 produces toxin for longer than does PCR ribotype 001, but not at a higher 
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level (Freeman et al, 2007). The high levels seen in the batch culture model may therefore 

be due to an accumulation of toxin and potentially do not give a true representation of 

toxin production by this strain. An alternative method that overcomes the limitations of 

batch culture experiments uses a continuous culture system to model the interplay 

between C. difficile, normal bowel microbiota and antimicrobials introduced into the 

system (Freeman et al, 2003). This human gut model has been validated against the colonic 

microbiota of sudden death victims (Macfarlane et al, 1998), and has been shown to be 

clinically reflective of in vivo CDI (Freeman et al, 2002). Indeed, the model has successfully 

predicted clinical failure of treatment options in vitro that went on to fail Phase II clinical 

trials, such as tolevamer (Baines et al, 2009; Johnson et al, 2014). 

In addition to robust toxin production, increased sporulation and an increased binding 

capacity of toxin B,  over other PCR ribotypes, has also been observed with PCR ribotype 

027 (Merrigan et al, 2010; Stabler et al, 2008). Patients with PCR ribotype 027 may also 

have higher levels of C-reactive protein (CRP) and faecal calprotectin, a measure of gut 

inflammation, over those with other PCR ribotypes (Goldenberg and French, 2011; Peretz 

et al, 2016). The emergence of fluoroquinolone resistance in PCR ribotype 027 has been 

suggested as a reason for the proliferation of this strain, as historical strains (collected prior 

to 2001) were fully susceptible to gatifloxacin and moxifloxacin (McDonald et al, 2005). In 

contrast 100% of tested strains of PCR ribotype 027 collected after 2001 were resistant to 

gatifloxacin, and 42% were resistant to moxifloxacin (McDonald et al, 2005). Indeed, more 

recent strains of PCR ribotype 027, collected from across Europe, demonstrate multi-drug 

resistance, specifically to moxifloxacin, rifampicin, imipenem and metronidazole (Freeman 

et al, 2018). The emergence of fluoroquinolone resistance has been shown to have been 

acquired from two different lineages; FQR1 and FQR2, with spread throughout Europe 

largely being due to FQR2 (He et al, 2013). 
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1.13 Laboratory diagnosis 

From a clinical point of view, it is important to understand the status of the disease of the 

patient, to ensure they receive the correct treatment and that the appropriate 

infection-control precautions are used (Bignardi et al, 2013). This requires accurate 

diagnostics. Laboratory diagnostics of CDI have been a contentious subject for some time 

with no agreement on the optimal method for detection as numerous comparison studies 

have been published showing conflicting variations in the performance of diagnostic assays 

(Fang et al, 2017; Planche and Wilcox, 2015; Planche et al,  2013). Indeed, at several 

microbiology and infectious disease conferences in recent years, debates have been held 

on the virtues of differing diagnostic algorithms (Fang et al, 2017). It is important to note 

that the prevalence of a disease in the study population affects the positive and negative 

predictive value of a detection assay. The higher the prevalence, the better the assay will 

perform (Planche et al, 2008). It is a weakness of many studies that they use a selected 

population for study with a prevalence level much higher than that seen in routine clinical 

practice, so falsely inflating the predictive value of the assays in question.  The decision as 

to which assay to use is compounded by the issue of what to detect; the organism, its 

toxins or its DNA (Planche et al, 2013). 

 

1.13.1 Assays for detection of toxin 

Detection of toxin B directly from a diluted faecal sample using a cell cytotoxicity assay is 

often quoted as the gold standard method for laboratory diagnosis (Planche et al, 2013), 

however this method is not without its limitations. For example, whilst some positive 

results can be detected within six hours, negative results cannot be confirmed until 48 

hours after inoculation of the tissue culture. Additionally, there is no consensus on 

methodology, including but not limited to which cell line and faecal dilution to use, which 

may account for the different sensitivities reported for this assay. Indeed, human foreskin 

fibroblast (HFS) cells have been shown to be more sensitive for detection of toxin B than 

Chinese hamster ovary (CHO), human lung fibroblasts or Hep-2 cells (Tichota-Lee et al, 

1987). 

Rapid enzyme immunoassays (EIAs) were developed to detect C. difficile toxin A directly 

from a faecal sample and to reduce the time to diagnosis to less than two hours (Lyerly et 

al, 1983). Subsequently these assays were modified to detect both toxins A and B after the 

discovery of toxin A negative/toxin B positive disease-causing strains (Rupnik M et al, 1998; 
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Borriello et al, 1992). Comparison studies of commercially available toxin detection EIAs 

show huge variation in the performance of these assays with some sensitivities <50% in a 

low-prevalence setting (Planche et al,  2008; Eastwood et al, 2009). Alternate views on the 

need for repeat testing using EIAs has led to further confusion about appropriate CDI 

diagnostics (Mohan et al, 2006; Manabe et al, 1995). Department of Health (UK) guidance, 

based upon one large study in 2009, recommended that diagnosis of CDI should not be 

based on the sole use of a toxin EIA (Eastwood et al, 2009; Wilcox and Eastwood,  2009; 

Department of Health, 2009) but did not offer an alternative diagnostic strategy. 

 

1.13.2 Assays for detection of C. difficile 

Due to the long turn-around time and the technical difficulty of using cell lines to detect 

toxin, alternative methods have been developed for CDI diagnosis. As people can carry non-

toxigenic strains of C. difficile in their gut (Shim et al, 1998), culture of C. difficile from a 

faecal sample is not diagnostic for CDI. Cytotoxigenic culture aims to solve this problem by 

identifying patients with pathogenic C. difficile isolates in their faeces. Ensuring that this 

test is only performed on diarrhoeal faecal samples (usually Bristol stool chart types 5-7) 

should ensure that people with asymptomatic carriage, those in whom C. difficile is 

detected but who have no symptoms (Shim et al, 1998), are not falsely diagnosed with CDI. 

Following standard C. difficile culture, the isolates are tested for the ability to produce toxin 

(Bouza et al, 2001); however, this does not indicate the presence of toxin in the original 

faecal sample, only the ability of the isolate to produce toxin in laboratory conditions. 

Importantly, the detection of free-toxin, not the detection of an isolate with toxin 

producing ability has been shown to be associated with mortality (Planche et al, 2013). 

Unfortunately, because of the need for two incubation steps in this method, the turn-

around time can be even longer than that for the cell cytotoxicity assay. 

Commercial assays with alternative targets for detection of C. difficile have been 

developed, such as a test for glutamate dehydrogenase (GDH), an enzyme associated with 

the cell surfaces of many bacteria (Anderson et al, 1993). The variability seen in the 

performance of toxin EIAs does not seem to be present with C. difficile-specific GDH EIAs 

(Shetty et al,  2001), perhaps suggesting that there is less target heterogeneity i.e. GDH has 

less antigen variability than C. difficile toxins. One disadvantage of GDH assays, however, is 

that they cannot distinguish between toxigenic and non-toxigenic strains, meaning that 

they have to be used in conjunction with another, toxin-detecting assay to diagnose CDI. 
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Detection of toxin gene DNA using nucleic acid amplification tests (NAAT) offer an 

alternative, rapid and potentially high-throughput method for screening faecal samples for 

toxigenic C. difficile. It has been suggested that a PCR assay for toxin genes (Cepheid 

GeneXpert® C. diff, US) is more sensitive for certain PCR ribotypes of C. difficile than GDH 

EIAs (Tenover et al, 2010), even though the genes for GDH have been shown to be 

ubiquitous in C. difficile (Carman et al, 2012). It should be noted, however, that the number 

of samples examined in this study was small in total and hence the numbers of each 

PCR ribotype even smaller (Tenover et al, 2010). In addition, NAATs, in similarity with 

cytotoxigenic culture, cannot detect free toxin within a faecal sample, only the presence of 

a potentially toxigenic strain; indeed, it may also be detecting dead bacteria rather than 

living cells or cells in which expression of the gene encoding toxin cannot be expressed. In 

order to determine if the gene is being expressed, a reverse transcriptase assay would be 

required, to convert mRNA to DNA, but there is no such current C. difficile molecular assay 

available.   

The potential for standalone NAATs to overdiagnose CDI has therefore, been highlighted 

(Polage et al, 2015), as patients with samples that are NAAT-positive/toxin-positive were 

significantly associated with higher bacterial load, greater antibiotic exposure, 

inflammation of the gut, presence of diarrhoea (all p <0.001), and longer duration of 

diarrhoea (p = 0.03), compared with patients that had NAAT-positive/toxin-negative 

samples (Polage et al, 2015). In addition, CDI-attributable mortality was significantly higher 

in NAAT-positive/toxin-positive patients compared with NAAT-positive/toxin-negative 

patients (8.4% vs 0.6%, p = 0.001). This was confirmed by a small study in 2018 where 30-

day mortality was significantly higher in the toxin-positive group compared with the NAAT-

positive group (31% vs 18%, p = 0.03) (Avni et al, 2018). In contrast however, a more recent 

study demonstrated that there was not a significant difference between CDI-related 

complications or 30-day mortality between NAAT-positive and toxin-positive patients; 

although toxin-positivity was significantly associated with recurrence (adjusted OR 1.89, 

161-2.23) (Guh et al, 2019). It should be noted however that the first study was a 

prospective study designed and powered to compare NAAT and toxin assay results, while 

the last study was a retrospective data analysis. 

Ensuring accurate diagnosis is important not just for the treatment of patients and for 

infection prevention, but because often CDI rates are used as a performance measure 

within healthcare facilities. A study in the US reporting the number of deaths per annum 
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related to CDI had to add a sensitivity analysis to account for the different diagnostic 

methods used by the hospitals included within the study; such is the effect of diagnostic 

methodology (Lessa et al, 2015). Indeed, within the US, a diagnostic assay factor is applied 

to all centrally reported CDI incidence data to allow for meaningful comparison between 

different healthcare institutions (Lessa et al, 2015) The phenomenon of diagnostic methods 

impacting on reported CDI rates has also been observed within Canada and Europe (Boagty 

et al, 2017; Davies et al, 2016b; Davies et al, 2017). 

To try to reduce the potential for increased detection of false positives when using 

standalone NAATs, some centres have tried to employ diagnostic stewardship (Goret et al, 

2018; Yen et al, 2018). One recent study demonstrated that moving to standalone NAATs 

increased compliance with faecal sample rejection policies (Goret et al, 2018). There have 

also been attempts to enhance current faecal sample rejection policies by asking for 

Infection Prevention review of potential cases before a sample is even sent to the 

laboratory. A study at one US centre demonstrated that diagnostic stewardship and 

education reduced the rate of requests for NAAT testing by 2-fold, and therefore, also 

reduced the reported CDI incidence (Yen et al, 2018). Whilst improved testing criteria may 

seem like a suitable solution, it often relies on clinical suspicion, which has been shown to 

‘miss’ 23% of CDI cases in a large, multi-centre, European study of 482 hospitals (Davies et 

al, 2014). In addition, missed cases were significantly younger than those that were 

diagnosed at the hospital, suggesting that clinical suspicion is higher in older patients; while 

increasing age is a known risk factor for CDI (McDonald et al, 2006; Minino et al, 2011, 

Lessa et al, 2015), it does not mean that younger patients cannot have the infection. 

Another multi-centre European study demonstrated that patients tested in Italy were 

significantly older than in the other four countries that were studied (Davies et al, 2016), 

suggesting targeted testing of patents in Italy, and younger cases will be missed. Diagnostic 

stewardship may therefore exacerbate the situation, by missing potential cases that do not 

fit the traditional risk factors for CDI, leaving greater opportunity for lack of effective 

infection prevention precautions and the possibility of complications in undiagnosed 

patients. 

 

1.13.3 Algorithmic approach 

Combining different types of tests into diagnostic algorithms for CDI has been suggested as 

an alternative to poorly performing stand-alone assays (Crobach et al, 2016, McDonald et 
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al, 2018). Assays detecting GDH are often used as the first assay in many of these two- or 

three-stage algorithms (Crobach et al, 2016, McDonald et al, 2018).  Following a large 

multi-centre UK study, an optimal algorithm was determined: GDH (or NAAT) followed by 

toxin detection (by EIA or cell cytotoxicity) (Planche et al, 2013). This led to updated 

guidance from the Department of Health in England in 2012 which was later followed by 

both Wales and Scotland (Department of Health, 2012). In addition, the ESCMID diagnostic 

guidelines were updated to reflect these recommendations (Crobach et al, 2016), while the 

latest US guidelines from IDSA/SHEA partially recommended the algorithm, but with 

allowance for using standalone NAAT with appropriate diagnostic stewardship (McDonald 

et al, 2018).  The algorithm divides patients into three groups; those with CDI, those 

without CDI and those with C. difficile but no CDI (as they have no demonstrable toxin in 

their stool), also termed potential C. difficile excretors (PCDEs) (Planche et al, 2013). 

Additionally, this study also confirms the findings described above, that the presence of 

toxin in a patient’s faecal sample correlates with mortality and severity of infection, in 

contrast to the presence of toxin genes (DNA) or toxigenic strains (Planche et al, 2013; 

Longtin et al, 2013). 

 

1.13.4 Novel technologies 

The most recent advances in CDI diagnostic methods have been ultrasensitive C. difficile 

toxin assays (Pollock, 2016; Song et al, 2015; Banz et al, 2018).  Although not all of these 

assays are commercially available yet (one was launched at the European Congress for 

Clinical Microbiology and Infectious Disease 2019), they offer the potential to detect C. 

difficile toxin levels below the limit of detection of CCNA (Banz et al, 2018). These assays 

also offer the potential to give greater clarity to samples where current diagnostic methods 

give discrepant results. A recent study using this methodology demonstrated that there 

were significant differences between median toxin concentrations in faecal samples from 

CDI cases and asymptomatic carriers, but only when cases/carriers were defined by 

standard toxin detection and not when defined by NAAT positivity (NAAT cases had 

significant diarrhoea, NAAT carriers had no diarrhoea and no prior antibiotics) (Pollock et 

al, 2019). Further studies are required using this technology to determine the clinical 

significance of low-level toxin-positive results. 
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1.13.5 Additional laboratory assays that could be used to aid CDI diagnosis 

Laboratory tests that can highlight the extent of gut inflammation may offer some further 

ways of stratifying those patients with the most severe disease. Both lactoferrin, and 

calprotectin, released by polymorphonuclear leucocytes in the gastrointestinal tract, have 

been investigated for this purpose (Langhorst and Boone, 2012). A case/control study 

found higher levels of both inflammatory markers in patients with CDI, compared with 

controls (Barbut et al, 2017). In addition, the levels in cases were higher in those patients 

with demonstrable free toxin in their faecal samples (Barbut et al, 2017), highlighting the 

effect of toxin on the gut mucosa. Calprotectin has also been found to be a marker for 

severe infection, with an AUROC of 0.821 for severe infection (Kim et al, 2017). Another 

study however, found that raised faecal lactoferrin levels significantly correlated with 

severity of CDI, while faecal calprotectin levels were raised, but not significantly (Swale et 

al, 2014). Further research into the use of adjunctive tests for CDI diagnosis is required but 

lactoferrin has been suggested as an adjunct to a test algorithm for CDI (Wren et al, 2009). 

 

1.13.6 Clinical context 

Although many studies have highlighted the variability in performance of CDI laboratory 

diagnostic assays, there is a paucity of data on the reasons for these differences. There are 

also few data on the clinical course of CDI and the optimal time for each of the different 

diagnostic assays to be used. For instance, depending on the stage of disease a test may 

‘perform’ badly or well as a marker of CDI. For example, if a patient is in recovery phase 

when tested, is toxin still detectable? What does a GDH-positive/toxin-negative or 

GDH-positive/culture-negative result mean; i.e. the presence of disease or the presence of 

a non-viable organism with detectable GDH?  These potential confounding issues have not 

been considered when patient samples are tested in evaluations of CDI tests, even though 

they may have a bearing on performance. Only in large, multicentre studies can these 

possible effects be minimised and true differences between assays of the same type be 

highlighted.  Indeed, within one large multicentre study variability in assay performance 

was seen across four different hospital sites (Planche et al, 2013). These geographical 

differences would not be seen in a single-centre study and could possibly skew assay 

performance data.  
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1.14 Aims 

This study aims to determine if sample, patient and/or bacterium factors could affect the 

performance of CDI diagnostic assays and to determine the optimal time for each of these 

assays to be used during the clinical course of CDI, or highlight alternative uses for current 

diagnostic assays. 

 

1.14.1 Primary objectives 

To determine if the PCR ribotype of C. difficile strains affects the performance of C. difficile 

diagnostic assays; 

to study the proliferation of C. difficile within a human gut model in order to elucidate how 

the different detection targets increase and decrease over the course of the infection; 

to study the clinical course of C. difficile infection within patients to determine if the results 

seen in vitro can be extrapolated to patients; 

to determine the optimal times to use each of the diagnostic assays during the clinical 

course of C. difficile infection. 
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2. Materials and methods 

This section gives details of methods that were commonly used throughout the study. 

Specific methods, especially where they deviate from the methods listed below, are 

detailed within each chapter. In addition, methods only used within one chapter are 

described within the relevant chapter. Please note that wherever faecal samples are tested, 

they are mixed using a vortex generator (Fisons Scientific Equipment, UK) for 30 seconds to 

ensure a homogenised sample, before removal of part of that sample for testing.  

 

2.1 Reference methods 

2.1.1 Cell-cytotoxicity neutralisation assay 

Monolayers of Vero cells (European collection of animal cell cultures), UK) were grown in 

96-well flat bottomed microtitre trays (VWR, UK) in 160µl of Dulbecco medium (Invitrogen, 

UK). Cell monolayers were prepared by the research technicians within the Healthcare 

Associated Infections (HCAI) research group, and then passed to the researcher. To test the 

faecal samples for the presence of C. difficile toxin(s) they were diluted 1:5 in 

phosphate-buffered saline, pH 7.5, and mixed with a vortex (Fisons Scientific Equipment, 

Loughborough, UK) for 30 seconds before being spun in a centrifuge at 16000g for 

10 minutes. Twenty microliters of diluted sample were added to one well of the microtitre 

tray, mixed and then 20µl was removed and added to the next well. This pattern was 

repeated for the two wells on the row below on the microtitre tray, which had been 

protected by the prior addition of 20µl of C. sordelli antitoxin (Prolab Diagnostics, UK). The 

microtitre trays were incubated for 48 hours in an incubator with 10% CO2 (Panasonic 

MCO-5AC-PE, Japan) at 37°C. The cells were examined for rounding after 24 and 48 hours 

using x40 magnification (Leica DMIL, UK ); >50% rounding in only the unprotected cells 

indicated the presence of C. difficile toxin.  Where samples appeared contaminated after 

incubation in the cell-monolayer, the original diluted sample was pushed through a 0.45µm 

syringe filter (Nalgene CA membrane filter, VWR, UK) using a two mL syringe (Fisher 

Scientific, UK), and the resultant filtrate was retested using the procedure outlined above. 

If the cell-cytotoxicity result was still unclear after a second re-test it was recorded as such.  
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2.1.2 Isolation of C. difficile from faecal samples 

One millilitre (or equivalent volume) of faecal samples was added to one millilitre 50:50 v/v 

ethanol and water to kill vegetative organisms before inoculation onto Brazier’s agar (Oxoid, 

UK) supplemented with 250mg/L  cycloserine and 8mg/L cefoxitin (Oxoid, UK) and 2% lysed 

horse blood (Oxoid, UK). Plates were incubated anaerobically for 48 hours at 37°C in an A95 

anaerobic workstation (Don Whitley, UK) then examined for growth typical of C. difficile 

(grey-brown colonies with an irregular edge and horse manure odour). Suspect isolates 

were checked for green/yellow fluorescence under longwave (365 nm) UV light and latex 

agglutination for somatic antigen (Microgen Bioproducts Ltd, UK). Confirmation of ID of the 

organism was based on the criteria in table 2.1.  

 

 C. difficile C. bifermentans 

C. sordellii 

C. glycolicum 

C. innocuum 

Fluorescence under 

UV at 365 nm 

+ - + 

Latex agglutination + + - 

Table 2.1 Criteria used to determine the identity of isolates demonstrating typical 

colony morphology for C. difficile on CCEY 

 

2.1.3 Cytotoxigenic culture assay 

Isolates confirmed as C. difficile were sub-cultured into four ml pre-reduced brain heart 

infusion (BHI) broth (Oxoid, UK). After anaerobic incubation at 37°C for 48h, one ml of 

broth supernatant was removed and spun at 16,000g in a centrifuge for 10 minutes. 

Twenty microliters of this BHI broth supernatant was then tested for the presence of toxin 

using the cell-cytotoxicity assay as described above. 

 



79 
 

2.1.4 Total viable counts and spore counts 

Total viable counts were determined by a variation of the method of Miles and Misra 

(Miles et al, 1938, Levett 1991); samples were diluted 10-fold in pre-reduced peptone 

water to 10-6 with 20µL inoculated onto pre-reduced Brazier’s agar supplemented as 

described in section 2.1.2., in triplicate for each dilution. The agar plates were incubated 

anaerobically for 48 hours in an A95 anaerobic workstation (Don Whitley, UK) before 

colonies were counted.  

Spore counts were determined after alcohol shock; one ml of the batch culture broth was 

added to one ml ethanol (50% w/v) and left at room temperature for 1 hour. Ten-fold 

dilutions were prepared from the alcohol shock fluid and plated out using the Miles and 

Misra technique as described above.   

 

2.1.5 Storage of isolates at -20°C 

For each sample positive for C. difficile, a C. difficile colony isolated on Brazier’s agar,  

supplemented as described in section 2.1.2., was harvested using a sterile loop and used to 

inoculate a Columbia blood agar plate (Oxoid, UK), streaking out for single colonies. Plates 

were incubated  at 37oC in an A95 anaerobic workstation (Don Whitley, UK) for seven days 

to encourage germination and out-growth of spores. All growth (if pure) was harvested 

from the plate using a sterile cotton tip swab and inoculated into a cryogenic microtube 

(Sarstedt Inc, UK) containing one ml nutrient broth with 10% glycerol. Microtubes were 

stored in Nalgene cryoboxes (Sarstedt Inc, UK) in a -80oC freezer (New Brunswick, Austria).  

 

2.1.6 PCR ribotyping 

All the C. difficile isolates identified from the study were typed by the C. difficile Ribotyping 

Network of England and Northern Ireland (CDRN) laboratory using PCR ribotyping as 

described by the CDRN protocol (Stubbs et al, 1999). Briefly, DNA was extracted from 

isolate suspensions in water using the DX kit on the Qiagen Xtractor (Qiagen Ltd, UK) 

automated DNA extraction platform. DNA was amplified using primers targeted to the 16s-

23s rRNA intergenic spacer region designed by Bidet et al (1999) on the Verti thermocycler 

(Life Technologies, UK). Amplified products were either visualised on agarose gels following 

electrophoresis on the Midi I 128mmx110mm (Thermofisher Scientific Ltd) (used for 

isolates from the Department of Health study) or fragment lengths were measured on the 
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3130XL Gene Analyser (Thermofisher Scientific Ltd, UK) sequencer (used for isolates from 

the PlaciD study). Band patterns from both methods were compared to library reference 

strains of C. difficile using bioNumerics (Applied maths, Belgium) to determine PCR ribotype. 

 

2.2 Commercially available methods 

2.2.1 C. diff chek-60™ (Techlab Ltd, USA); a commercial enzyme 

immunoassay for the detection of C. difficile glutamate dehydrogenase 

(GDH).  

One hundred microliters of faecal samples were diluted in 400µL of kit sample diluent; to 

ensure there was enough sample volume (including dead volume) these were double the 

recommended volumes. Samples were mixed using a vortex mixer then spun in a 

centrifuge at 10,000g for 10 minutes. Sample tubes were loaded onto the DS2 instrument 

(Dynex Technologies, USA) along with all of the kit consumables; wash buffer (phosphate-

buffered saline containing detergent and 0.2% thimerosal), conjugate (a highly specific 

mouse monoclonal antibody to GDH conjugated to horseradish peroxidase), substrate 

(tetramethylbenzidine and peroxide), stop solution (0.6 N sulphuric acid), and the required 

number of pre-coated wells from the microplate kit. The wells were pre-coated with an 

immobilised polyclonal antibody to glutamate dehydrogenase. The DS2 was 

pre-programmed to carry out the following steps; 50µL of conjugate and 100µL of diluted 

sample were added to individual wells, plates were shaken to mix the contents thoroughly 

whilst they are incubated at 37°C for 20 minutes (this is shorter than the 50 minutes stated 

in the kit instructions, as the shaking reduces the incubation time; this is recommended by 

the manufacture), each well was washed with 350µL wash buffer for a total of three times 

before the addition of 100µL of substrate. After a further 10 minutes of shaking incubation 

at room temperature, 50µL of stop solution was added to each well. The resultant colour 

change was read using a dual wavelength (450/620nm) spectrophotometer built into the 

DS2. On each plate run, a positive and negative control well was added. The test procedure 

for the controls was as described, with the exception that 100µL of either positive or 

negative control (included in the kit) were added to the control wells instead of diluted 

sample. For the results of a microplate run to be accepted, the positive and negative 

control OD values had to fall within quality control limits; positive control >0.500 and 

negative control <0.080. If the QC failed, the testing for that sample batch was repeated on 

the same day. As the kit is designed for diagnosis from patient specimens, there are set 
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cut-off values stated in the kit insert; an OD ≥0.080 indicates a positive result, with <0.080 

indicting a negative result.  

 

2.2.2 Tox AB II™ (Techlab Ltd, USA); a commercial enzyme immunoassay for 

the detection of C. difficile toxins A and B 

The sample buffer for the TOX AB II™ assay and the C. diff Chek-60™ assay are the same, as 

they are made by the same manufacturer (Techlab Ltd, USA). The initial sample preparation 

steps are therefore the same and only need to be carried out once, in order to perform 

both assays. Additionally, the same reagents and test procedure can be used for both 

assays, with the exception of the microplate wells, the positive control and the conjugate, 

which are specific to each assay. The microplate wells in the TOX AB II™ assay are coated 

with a goat polyclonal antibody against both toxins (A and B) which has been affinity 

purified and immobilised onto the wells. The conjugate contains a mixture of a monoclonal 

mouse toxin A antibody and a polyclonal goat toxin B antibody, both conjugated to 

horseradish peroxidase.  The cut-off values and QC values for the TOX AB II™ kit are the 

same as for the GDH kit, described above.   

 

2.2.3 Premier Toxins A & B™ (Meridian Bioscience, Inc. Europe, UK); a 

commercial enzyme immunoassay for the detection of C. difficile toxins A 

and B  

Two hundred microliters of faecal sample were added to 800µL of kit sample diluent; these 

were double the recommended volumes, to ensure there was enough residual volume, 

included dead volume, to run the assay on the DS2. These volumes were recommended by 

the manufacturer (verbal communication). Samples were mixed using a vortex mixer 

(Fisons Scientific Equipment, UK) then spun in a centrifuge at 2,750g for 5 minutes. Sample 

tubes were loaded onto the DS2 instrument along with all of the kit consumables; wash 

buffer (phosphate-buffered saline containing detergent and 0.2% thimerosal), conjugate 

(polyclonal goat anti-toxin A and anti-toxin B antibodies conjugated to horseradish 

peroxidase), substrate (tetramethylbenzidine and peroxide), stop solution (1M phosphoric 

acid), and the required number of pre-coated wells from the microplate kit. The wells were 

pre-coated with an immobilised mouse monoclonal anti-toxin A antibody and a polyclonal 

goat anti-toxin B antibody.  The DS2 was pre-programmed to carry out the following steps; 
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50µL of conjugate and 100µL of diluted sample were added to individual wells, plates were 

shaken to mix the contents thoroughly whilst they were incubated at 37°C for 20 minutes 

(as with the Techlab assays, this is shorter than the 50 minutes stated in the insert, as the 

shaking reduces the incubation time, but is also recommended by the manufacturer of this 

assay). Each well was washed with 350µL wash buffer for a total of three times before the 

addition of 100µL of substrate. After a further 10 minutes of shaking incubation at room 

temperature, 50µL of stop solution was added to each well. The resultant colour change 

was read using a dual wavelength (450/630nm) spectrophotometer built into the DS2. On 

each plate run, a positive and negative control well was added. The test procedure for the 

controls was as described, with the exception that 100µL of either positive or negative 

control (included in the kit) were added to the control wells instead of diluted sample. For 

the results of a microplate run to be accepted, the positive and negative control OD values 

had to fall within quality control limits; positive control >0.100 and negative control <0.100. 

If the QC failed, the testing for that sample batch was repeated on the same day. As the kit 

is designed for diagnosis from patient specimens, there are set cut-off values stated in the 

kit insert; an OD ≥0.100 indicates a positive result, with <0.100 indicting a negative result.  

 

2.2.4 GeneXpert®, C.diff (Cepheid UK Ltd., UK); a commercial multi-plex PCR 

assay for the detection of the tcdB gene, the truncated form of the tcdC gene, 

and the binary toxin gene from faecal samples 

A Copan dual swab (Copan Diagnostics, USA) was used to remove a small amount of faecal 

material from the sample; this was the only validated swab for use with this assay at the 

time. The swab was dipped into the faecal sample until half of the swab tip was covered by 

faecal material (as per manufacturer’s instructions); only one swab of the pair within the 

dual swab was used (as per manufacturer’s verbal instructions).  The swab was snapped off 

into the kit sample buffer before the buffer was mixed using a vortex (Fisons Scientific 

Equipment, UK) for 30 seconds. A plastic pipette was used to transfer the entire volume of 

the sample buffer into the sample well within the GeneXpert® cartridge.  All other test 

reagents are already pre-prepared within the cartridge. The cartridge lid was snapped shut 

and the cartridge placed into the GeneXpert® XVI machine (for samples in the Department 

of Health study) or the GeneXpert® IV machine (for all other analyses) (both Cepheid, USA). 

The assay has a run time of 47 minutes, and inbuilt internal controls to check both the 

extraction and amplification stages. Pre-specified algorithms within the machine software 
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determine if the test is valid (if the internal control has been detected within the correct 

cycle threshold [CT] value parameters). The algorithm also produces results for detection of 

tcdB, the truncated form of tcdC, and the binary toxin gene, based upon both the CT value 

and the end-point threshold value. Results were recorded as positive or negative, as 

determined by the algorithm, for each of these genes; the software algorithm can also 

produce a ‘presumptive 027’ result, if all three of the targets are detected within the 

correct parameters. The actual CT values and end point values were also recorded. If a 

sample result was invalid, the sample was tested once more. The result of the second test 

was recorded in the study database (even if it was invalid again).  

 

2.2.5 BD Max™ C.diff (Becton Dickinson and Company, Sparks, MD, USA); a 

commercial multiplex assay for the detection of the tcdB gene from faecal 

samples 

A plastic 10µL loop (Starstedt Inc, UK) was used to remove a 10µL portion of a faecal 

material from the sample before adding to the sample buffer tube supplied with the kit. A 

septum cap (included in the kit) was added to the tube before the contents were mixed 

using a vortex (Fisons Scientific Equipment, UK).  One test strip from the kit was used per 

sample; strips contained lysis tube, extraction tube (magnetic DNA affinity beads, 

Achromopeptidase and sample processing control in a freeze dried pellet), C. difficile 

master mix (tcdB specific primers and probe, sample processing control specific probe in a 

freeze dried pellet), wash buffer, elution buffer, neutralisation buffer, a waste reservoir and 

pipette tips. The sample tube and test strip were added to the BD MAX™ system. The assay 

has a run time of 56 minutes, and has inbuilt controls to check both the extraction and 

amplification stages. The software within the BD Max™ system contains a pre-specified 

algorithm to determine in a test is valid, and what the result of a test is; positive (tcdB 

detected), negative (no tcdB detected), unresolved (no amplification of internal control, 

possibly due to sample inhibition), indeterminate (no results due to system failure) or 

incomplete (run did not complete). If a sample result was unresolved, indeterminate or 

incomplete, the sample was tested once more. The result of the second test was recorded 

in the study database (even if it was unresolved again).  
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2.3 Gut model 

The gut model is a temperature-controlled, triple chemostat system linked by weir cascade, 

representing the pH and nutrient availability of the proximal to distal colon (figure 2.1), 

using bespoke glassware (Soham Scientific, UK). The system was sparged with oxygen-free 

nitrogen from a nitrogen generator (Parker Balston, UK) to keep the system anaerobic. The 

pH of each vessel was monitored using MLO pH meters (Brighton Systems Ltd, UK) and 

either acid or alkali was added automatically to ensure that each vessel was kept at the 

correct pH; vessel one pH 5.5 (+/-0.2), vessel two pH 6.2 (+/-0.2), vessel three pH 6.8 (+/-0.2). 

A 10% w/v pooled faecal slurry was prepared using saline and donated healthy stools 

(collected under ethical approval from University of Leeds HSLTLM/12/061 and MREC15-

070) that were mixed using a 400 paddle blender stomacher (Seward Ltd, UK ), before 

300mL of the pooled faecal slurry was added to the system to introduce gut microbiota to 

the vessels.  A defined growth medium, as previously described (Freeman et al, JAC 2003), 

was added to the system at a continuous flow rate of 0.015h-1 via a masterflex digital (HV-

77921-60) peristaltic pump (Cole Palmer Ltd, UK), to mimic bowel transit time. Each vessel 

was kept at 37°C as it is jacketed by a water filled layer, circulating through a Grant P5 

heated waterbath (Grant Instruments Ltd, UK).  

The levels of faecal bacteria were monitored by culturing gut model fluid on selective agars 

(Freeman et al, 2003); once populations of bacteria had stabilised the model was classed as 

reaching ‘steady state’.   C. difficile spores (~107 cfu/mL) were added twice, each dose one 

week apart, and again the bacterial populations in the models were left to stabilise. 

Clindamycin was instilled into the gut model (33.9 mg/L four times per day, for 7 days) to 

induce simulated CDI.  C. difficile total viable counts, spore counts and toxin levels were 

enumerated daily. A CDI treatment antibiotic was then added to the system, C. difficile 

total viable counts, spore counts and toxin levels were monitored for further defined 

periods; the specifics of each gut model experiment are given in Chapter 2. The gut models 

were set-up, maintained and sampled by the technicians and research assistants within the 

HCAI research group, under the guidance of the PI for that set of models; Kerrie Davies 

tested gut model fluid from each model using the commercial assays. Permission was 

granted for the use of excess gut model fluid to be used by Kerrie Davies for this PhD 

project from the funder of each set of gut models. 



85 
 

 

Figure 2.1. Image of the triple-stage chemostat gut model  
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3. Organism factors affecting detection by commercial assays 

 

3.1 Introduction 

Rapid enzyme immunoassays (EIAs) were developed to detect C. difficile toxins A and B 

directly from a faecal sample and to reduce the time to diagnosis to less than two hours 

(Lyerly et al, 1983). Comparison studies of commercially available toxin detection EIAs 

show huge variation in the performance of these assays with some sensitivities <50% in a 

low-prevalence setting (Eastwood et al, 2009). In addition, commercial assays with 

alternative targets for detection of C. difficile have been developed, such as a test for 

glutamate dehydrogenase (GDH), an enzyme associated with the cell surfaces of many 

bacteria (Anderson et al, 1993). The variability seen in the performance of toxin EIAs does 

not seem to be present with C. difficile-specific GDH EIAs (Shetty et al, 2011), perhaps 

suggesting that there is less target heterogeneity i.e. GDH has less antigen variability than 

C. difficile toxins. One disadvantage of GDH assays, however, is that they cannot distinguish 

between toxigenic and non-toxigenic strains, meaning that they have to be used in 

conjunction with another, toxin-detecting assay to diagnose CDI.  

Detection of toxin gene DNA using nucleic acid amplification tests (NAAT) offer an 

alternative, rapid and potentially high-throughput method for screening faecal samples for 

toxigenic C. difficile. It has been suggested that a PCR assay for toxin genes (Cepheid 

geneXpert® C. diff, US) is more sensitive for certain PCR ribotypes of C. difficile than GDH 

EIAs (Tenover et al, 2010), even though the genes for GDH have been shown to be 

ubiquitous in C. difficile (Carman et al, 2012). It should be noted, however, that the number 

of samples examined in this study was small in total and the number of each PCR ribotype 

even smaller (Tenover et al, 2010).  

Here a previously collected data set, comparing commercial C. difficile detection assays, 

was interrogated to determine if the PCR ribotype of the organism affected detection by 

these assays. In addition, the production of GDH by the organism was explored using 

growth curves. Key findings in this chapter are; 

 Performance of commercial toxin detection assays varied for different PCR 

ribotypes, specifically non-027 ribotypes 

 Performance of commercial GDH detection assays did not vary for different PCR 

ribotypes 
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 GDH appeared to be produced during the exponential phase of growth of the 

organism 

 

3.2 Methods 

3.2.1 Effect of PCR ribotype on EIA performance (GDH and toxins) 

3.2.1.1 Analysis of existing data set for evidence of decreased sensitivity for 

detection of certain PCR ribotypes by commercial enzyme immunoassays from 

faecal samples 

Hypothesis 

The commercial enzyme immunoassays for both GDH and toxin detection have decreased 

sensitivity for certain ribotypes of C. difficile. 

Methods 

Diarrhoeal faecal samples, collected as part of a large, multicentre evaluation of CDI 

laboratory diagnostics were tested with two reference methods; cell cytotoxicity and 

cytotoxigenic culture, and by three enzyme immunoassays (EIAs); one for detection of 

glutamate dehydrogenase (C. diff CHEK-60™, Techlab, USA) and two for the detection of 

toxins A and B (Toxin AB II™, Techlab, USA and Premier Toxins A & B™, Meridian, USA) 

(Planche et al, 2013). Assays and reference methods were performed on the same day by 

the same evaluator at three sites (one in Leeds and two in London) or two evaluators in 

one site (Oxford). In total, one evaluator worked at each of the two London sites, two at 

Leeds, and three at Oxford. Kerrie Davies was one of the evaluators at the Leeds site and 

scientific coordinator for the entire study. All analysis from these data within this thesis was 

completed by Kerrie Davies. Ethical approval for the extended use of the study data for this 

thesis was granted by the NHS REC, approval number 12/EE/0495. The initial study ethical 

approval number was 10/H0715/34. 

Commercial enzyme immunoassays 

All of the commercial EIAs were performed on an automated platform (DS2, Dynex 

Magellan Biosciences, USA) to reduce operator error, following manufacturer’s protocols 

given in the kit insert, with minor changes listed within materials and methods section 2.2. 

The optical density (OD) of each test was recorded as well as the result defined by the 

assay (using manufacturer’s set cut-offs). 
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Reference methods 

The cell-cytotoxicity neutralisation assay, culture and the cytotoxigenic culture assay were 

performed as described in materials and methods section 2.1.  

PCR ribotyping 

The C. difficile isolates identified from the study were typed using PCR ribotyping by the 

C. difficile Ribotyping Network of England and Northern Ireland (CDRN) as previously 

described (Stubbs et al, 1999) and as expounded in the methods section 2.1.6. 

Analysis 

Median optical densities (OD) for different PCR ribotypes of C. difficile were compared 

using Mann-Whitney tests to determine if certain PCR ribotypes produced higher optical 

density readings than others. The detection rates of the EIAs for different PCR ribotypes 

were compared using Chi-squared (χ2) tests, thereby highlighting if particular PCR ribotypes 

were more likely to be missed (give a negative result) by an assay than other PCR ribotypes. 

Only the results of toxigenic strains of C. difficile were analysed for the two-toxin detection 

EIAs, whereas all strains were included for the GDH assay analysis as this assay can detect 

both toxigenic and non-toxigenic strains of C. difficile. 

  

3.2.1.2 Investigation of batch cultures for evidence of decreased sensitivity for 

detection of certain PCR ribotypes by commercial enzyme immunoassays 

Hypothesis 

The commercial enzyme immunoassays for both GDH and toxin detection have decreased 

sensitivity for detecting certain ribotypes because different ribotypes produce different 

amounts of the assay target molecule. 

Methods 

Different strains of C. difficile were inoculated into 200LBHI to give monocultures of each 

strain. Broths were incubated anaerobically (A95 workstation, Don Whitley, UK) for 48 

hours, to obtain peak levels of GDH and toxin production. After incubation, the broths were 

serially diluted 10-fold in sterile phosphate-buffered saline (PBS). Each dilution was tested 

with the commercial assays (as per manufactures’ instruction and described in materials 

and methods section 2.2) substituting the patient specimen with the dilution of broth to be 

tested. Total viable counts for each broth were determined by serial plating of 20µL 



89 
 

volumes onto CCEY (materials and methods section 2.1.4) and incubating anaerobically for 

48 hours before counting colonies. All assays were performed in triplicate.  

Isolates tested included representatives of PCR ribotypes 001, 002, 005, 014, 015, 020, 027, 

106 (CDRN library strains). These isolates were selected as they were either the most 

common strains in previous studies (001, 027, 015 and 014) (Davies et al, 2014), the most 

commonly ‘missed’ strains during the Department of Health study (005, 0202 and 014) 

(Planche et al, 2013), or have been highlighted as strains where there are discrepancies 

between methods (002, 027 and 106) (Tenover et al, 2010).  

 

3.2.1.3 Dilutions after 24 hours growth 

Hypothesis 

The commercial enzyme immunoassays for both GDH and toxin detection have decreased 

sensitivity for detecting certain ribotypes because different ribotypes produce different 

amounts of the assay target molecule at 24 hours  

Methods 

The previous experiment was repeated for three strains (002, 014, 027), but with only an 

initial incubation period of 24 hours and using 2-fold dilutions of the final broths instead of 

10-fold dilutions.   

 

3.2.1.4 Investigation of the growth curve of C. difficile to determine where in the 

growth cycle GDH detection peaks 

Hypothesis 

That GDH is produced as the C. difficile cells proliferate, allowing detection of GDH early in 

the growth cycle of the bacterium. 

Methods 

Growth curve 1 

A 0.5 Macfarland suspension of C. difficile growth harvested from overnight culture of 

C. difficile on CCEY was made in PBS. The strain used was a clinical strain from a case of CDI 

in Maine Medical centre, Portland, USA in 2005, kept in research group archive; it is PCR- 

ribotype 027 and is susceptible to clindamycin (MIC of 0.5mg/L). This strain is used 
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throughout this thesis for growth curves and gut model experiments. A 200µl volume of 

the 0.5 McFarland suspension was added to 200mL of pre-reduced BHI broth before 

anaerobic incubation on a rotary shaker (Compact orbital shaker, Cole Palmer, UK). 

The broth was sampled for total viable counts/spore counts/GDH EIA OD/Toxin EIA OD and 

toxin titre (cell-cytotoxicity neutralisation assay) (materials and methods sections 2.1 and 

2.2) at the following time points; 0, 3, 6, 24, 27, 30, 48, 51, 54, 72, 75 and 78 hours post 

inoculation.  

For the GDH and toxin EIAs, 100µL of the batch culture broth was added to 400µL EIA 

buffer (to simulate a patient sample).  Samples were then tested as per manufacturer’s 

instructions for patient samples on the DS2 instrument (materials and methods section 2.2). 

Where samples tested using the enzyme immunoassays reached the maximum OD value, 

they were diluted (1/10 dilution series) and tested again. The OD value was then calculated 

from the dilution. See sections 4.2.1.3 and 4.3.1.3 in Chapter 2 for an explanation of the 

maximum OD threshold of the enzyme immunoassays.  

Cytotoxin titres were determined using the cell-cytotoxicity neutralisation assay (CCNA) 

using the method described previously (materials and methods section 2.1.1) with the 

exception that 20µL of the batch culture fluid was diluted across the toxin tray by doubling 

dilutions up to a maximum of six times.  

Growth curve 2. 

The second growth curve was set up as per the first growth curve with the following 

exceptions;  

1) The initial inoculum was 200µL of a spore preparation of known concentration, to give a 

final spore concentration of 1.6x104cfu/mL in the 200mL BHI. There will be an initial lag 

phase before growth begins but this may give some interesting information about whether 

GDH can be detected at that time or not, as in the gut model there was some ‘turnover’ of 

the organism before germination was seen to occur. This was in the gut model, however, 

and conditions will therefore be different from those seen in batch culture.   

2) The batch culture fluid was tested for total viable counts/spore counts/GDH EIA 

OD/Toxin EIA OD and cytotoxin titre (cell-cytotoxicity) at the following time points; 0, 2, 4, 

6, 8, 24, 26, 28, 30, 32, 48, 50, 52, 54, 56, 72, 74, 76, 78 and 80 hours post inoculation. 
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3.2.2 Effect of the presence of spores and vegetative cells on the diagnosis 

of CDI when using PCR to detect C. difficile toxin genes 

3.2.2.1 Can the commercial C. difficile toxin gene PCR assay detect DNA from 

C. difficile spores as well as DNA from vegetative cells? 

Hypothesis 

That the commercial C. difficile toxin gene PCR assay Xpert® C.diff cannot detect DNA from 

C. difficile spores.  

Methods 

Cleaning spore preparations to remove residual DNA 

Five microliters of commercial DNAse I suspension (Sigma Aldrich, UK) and 5µl of DNAse 

buffer (Sigma Aldrich, UK) were added to 50µL of a spore preparation before it was 

incubated at room temperature for 15 minutes, as per manufacturer’s instructions. After 

15 minutes, 5µl of STOP solution (Sigma Aldrich, UK) were added and the spore preparation 

was incubated at 70°C for a further 10 minutes. The spore preparation was allowed to cool 

before 50µL was tested with the Cepheid GeneXpert® C. diff PCR assay. 

As the PCR assay gave a positive result for the spore preparation after it had been treated 

appropriately with DNAse, the spore preparation was then diluted using 10-fold serial 

dilutions and each dilution was treated with DNAse as before. Each dilution was then 

tested using the Cepheid  GeneXpert® C. diff PCR assay.  

In addition, to determine if spores are lysed by sonication (the method of DNA extraction 

used by the Cepheid  GeneXpert® C. diff PCR assay), the spore preparation that had been 

diluted to 1/1000 was sonicated for 10 minutes in a sonicating waterbath (45 kHz, USC100T, 

VWR Scientific, UK). This preparation was not treated with DNAse before it was tested with 

the Cepheid GeneXpert® C. diff PCR assay.  
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3.3 Results 

3.3.1 Effect of PCR ribotype on EIA performance (GDH and toxins) 

3.3.1.1 Analysis of existing data set for evidence of decreased sensitivity for 

detection of certain ribotypes by commercial enzyme immunoassays from faecal 

samples 

There were 1295 samples from which C. difficile was isolated; 1291 (99.6%) of which had an 

OD available for C. DIFF Tox AB II™, and C. DIFF CHEK-60™assays, whilst there were only 

961 (74.2%) with an OD result for the Premier™ Tox A/B assay. The three most common 

PCR ribotypes isolated were 014 (n = 128), 015 (133) & 027 (104). The median OD values 

for both toxin EIAs were significantly higher for PCR ribotype 027 than for other PCR 

ribotypes (table 3.1). In addition, the median OD value for PCR ribotype 015 was higher 

than for other PCR ribotypes when using the C. diff Tox AB II™ assay, but not for the other 

toxin EIA (table 3.1). The higher OD values for PCR ribotype 027 may account for the 

increased sensitivity of the test for this strain, as both toxin EIAs were significantly less 

likely to ‘miss’ PCR ribotype 027 than any other PCR ribotype (p = <0.0001). There were 

significant differences between the OD values for the two toxin assays for PCR ribotypes 

027 and 015, with the median ODs being significantly higher with the C. DIFF Tox AB II™ 

assay than the Premier™ Tox A/B assay (027, p = 0.007; 015, p = 0.03) (figure 3.1). It is 

interesting to note, however, that although there were differences in the median ODs for 

these PCR ribotypes between the two assays, they failed to detect C. difficile toxins in 

similar numbers of samples containing these isolates. The Premier™ Tox A/B missed 16% of 

samples containing PCR ribotype 027 and 37% of samples containing PCR ribotype 015 

compared with 15% (027) and 38% (015) using the C. DIFF Tox AB II™ assay.  

The two toxin EIAs most commonly failed to detect toxin in samples containing the same 

three PCR ribotypes of C. difficile, 005, 014 and 020, although they were not statistically 

more likely to ‘miss’ these PCR ribotypes than other PCR ribotypes (table 3.2.). 

Cytotoxigenic culture confirmed that 95% of these isolates were capable of producing toxin, 

however direct cell-cytotoxicity was only positive in 30% of the isolates tested.  

The variation of median OD values across PCR ribotypes seen with toxin EIAs was not 

present for the C. DIFF CHEK-60™ (GDH) assay (table 3.1). Additionally, this assay was not 

statistically more likely to miss any one PCR ribotype over others. In fact, even the three 

most commonly missed PCR ribotypes were in very low numbers; 002 (9.9% missed), 015 

(6.8% missed) and 027 (6.7% missed).  
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Assay 

Median OD for C. difficile PCR ribotype (RBT) 

RBT 
014 

Non-
014 
RBT 

Mann 
Whitney  

(p value) 

RBT 
015 

Non-
015 
RBT 

Mann 
Whitney  

(p value) 

RBT 
027 

Non-027 
RBT  

Mann 
Whitney  

(p value) 

Premier™ Tox 
A/B 

0.03 0.02 0.4 0.04 0.02 0.1 1.93 0.02 <0.0001 

C. DIFF TOX 
AB II™ 

0.11 0.05 0.12 0.38 0.04 <0.0001 3 0.03 <0.0001 

C. DIFF CHEK-
60™ 

3 3 0.07 3 3 0.5 3 3 0.06 

Table 3.1 The median OD of the three most common PCR ribotypes in the DoH 

study for each EIA, with comparisons to the median OD for PCR ribotypes other 

than the one selected 

 

 

Figure 3.1 Comparison between the OD values of the two toxin EIAs for PCR 

ribotype 027 and 015  

P = 0.007 P =0.03 
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Percentage 
of PCR 
ribotype 
005 missed 

(%) 

Significance 
of missing 
PCR 
ribotype 
005 over 
other PCR 
ribotypes  

(χ2 p value) 

Percentage 
of PCR 
ribotype 
014 missed  

(%) 

Significance 
of missing 
PCR 
ribotype 
014 over 
other PCR 
ribotypes  

(χ2 p value) 

Percentage 
of PCR 
ribotype 
020 missed  

(%) 

Significance 
of missing 
PCR 
ribotype 
020 over 
other PCR 
ribotypes  

 (χ2 p value) 

 

Premier™ 
Tox A/B  64.7 0.107 58.3 0.346 55.9 0.806 

C. DIFF Tox 
AB II™ 54.4 0.073 46.1 0.571 46.8 0.667 

Table 3.2. The three PCR ribotypes most commonly ‘missed’ by the two toxin EIAs 

and the significance of the ‘missed’ result 

 

3.3.1.2 Investigation of batch cultures for evidence of decreased sensitivity for 

detection of certain PCR ribotypes by commercial enzyme immunoassays 

There is little variation in the quantity of GDH detected by the EIA for the different PCR 

ribotypes, as shown by both the OD values and the titre at which the test first becomes 

negative (figure 3.2).  PCR ribotype 002 does, however, appear to have less GDH detected 

than the other PCR ribotypes; the dilution at which the test first becomes negative is 10-

fold lower than any other PCR ribotype (figure 3.2) and the median OD values are 

substantially lower than any other PCR ribotype (Figure 3.3). PCR ribotype 014 also appears 

to have lower median OD values than other PCR ribotypes, although they are not as low as 

002.  

The same pattern of results is observed with the toxin EIA OD values, where PCR ribotypes 

002 and 014 have the lowest median OD values and 002 becomes negative at a dilution 

100-folder lower than the other PCR ribotypes (figures 3.2 and 3.4). The dilutions at which 

014 becomes negative were inconsistent; there was a 100-fold difference between the 

three replicates. It should be noted that the cell-cytotoxin titre was also lower for 

PCR ribotype 002 than other PCR ribotypes.  
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The drop-off between dilutions is very stark, which may be a product of the 10-fold 

dilutions used. The experiment was therefore repeated for PCR ribotypes 002, 014 and 027 

in the next experiment using 2-fold dilutions to try to close the gap on the steep drop-off.  

 

Figure 3.2. Graph showing the first titre for each C. difficile PCR ribotype that gave 

a negative result on the GDH and toxin EIAs, along with the Log10 total viable 

count and cytotoxin titre for the starting broth 
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Figure 3.3. The decreasing median OD values of the broths for each of the 

different C. difficile PCR ribotypes, when tested using the GDH EIA (C. DIFF CHEK-

60™). Red line indicates the diagnostic cut-off value for a positive sample (as 

defined by the kit insert) 

 

 

Figure 3.4. The decreasing median OD values of the broths for each of the 

different C. difficile PCR ribotypes, when tested using the toxin EIA (C. DIFF Tox 

AB II™). Red line indicates the diagnostic cut-off value for a positive sample (as 

defined by the kit insert) 
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3.3.1.3 Dilutions after 24 hours incubation. 

There was less variation between the PCR ribotypes for the level of GDH and toxin detected 

by the enzyme immunoassays than seen in the previous experiment (figure 3.5). Previously, 

the amount of GDH detected for ribotypes 002 and 014 was much lower than that detected 

for ribotype 027. In this experiment, however, there is little difference (figure 3.6). The 

same pattern is true for the level of toxin detected; previously there were higher levels for 

isolates of ribotype 027 (figure 3.7). Interestingly, although the level of toxin detected by 

the EIA appears to be similar between the three ribotypes, there is a large difference 

between the toxin titres when measured using the CCNA, with isolates of ribotype 027 

having a titre of 12 compared with 7 or 9 for isolates of ribotypes 002 and 014 respectively. 

The logTVCs were lower (by about one log10) than the previous experiment, they were 

however, reasonably consistent across the ribotypes with a standard deviation of log10 TVC 

= 0.236. Interestingly, there were no spores detected for isolates of ribotype 002. It should 

be noted that the cultures were only grown for 24 hours this time, compared with 48 hours 

in the previous experiment.  

 

Figure 3.5 Graph showing the first titre for each C. difficile PCR ribotype that gave 

a negative result on the GDH and toxin EIAs, along with the log10 total viable 

count and cytotoxin titre for the starting broth 
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Figure 3.6. Graph showing the decreasing median OD values on the GDH EIA assay 

(C. DIFF CHEK-60™) for each of the different C. difficile PCR ribotypes. Red line 

indicates the cut-off value for a positive sample 

 

 

Figure 3.7. Graph showing the decreasing median OD values on the Toxin AB II EIA 

assay (C. DIFF Tox AB II™) for each of the different C. difficile PCR ribotypes. Red 

line indicates the cut-off value for a positive sample 
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3.3.1.4 Investigation of the growth curve of C. difficile to determine where in the 

growth cycle GDH detection peaks 

First growth curve 

The growth curve (figure 3.8) shows the initial logarithmic phase of growth within the first 

24 hours. After this point, growth plateaus as the organism enters stationary phase. The 

GDH curve mirrors that of the total viable counts, with the biggest increase in GDH 

detection between 6 and 24 hours, although it does appear to lag slightly behind the 

growth curve (as measured by TVCs).  

 

 

Figure 3.8. Growth curve showing growth of C. difficile as measured by total 

viable counts, spore counts, GDH production and toxin titre; starting inoculum 

was viable cells 

 

Second growth curve 

The growth curve of PCR ribotype 027 with a starting inoculum of spores shows a lag period 

before the exponential growth phase (figure 3.9). The vessel was not sampled between 8 

and 24 hours so the line between these points is extrapolated. GDH was detected before 

germination was detected using TVCs.  
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It should be noted that the amount of toxin produced in this experiment, as measured by 

both toxin titres (CCNA) and toxin EIA, is almost twice as high as the previous growth curve.  

Nevertheless, the log10 viable counts are about the same for both experiments.  

 

 

Figure 3.9 Extrapolated growth curve showing growth of C. difficile as measured 

by total viable counts, spore counts, GDH production and toxin titre; starting 

inoculum was spore preparation 

 

3.3.2 Effect of spores and vegetative cells on the diagnosis of CDI by PCR for 

C. difficile toxin genes 

3.3.2.1 Can the commercial C. difficile toxin gene PCR assay detect DNA from 

C. difficile spores as well as DNA from vegetative cells? 

Cleaning spore preparations to remove residual DNA 

The Cepheid geneXpert® C. diff PCR assay gave a positive result for the spore preparation 

after treatment with DNAse.  The CT values for all three targets in the assay were 

comparable between the two samples (table 3.3).  
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CT value at which the assay became 
positive for each target 

  tcdB  cdt  tcdC  

DNAse 19.9 19.1 20.7 

no 
DNAse 18.8 18.1 19.4 

Table 3.3 The CT values at which the Cepheid assay became positive for different 

dilutions of a C. difficile spore preparation after treatment with DNAse. The label 

tcdB indicates detection of toxin B gene, tcdC indicates detection of the deletion 

in the tcdC gene associated with PCR ribotype 027, cdt indicates detection of 

binary toxin gene.  

 

To allow for the possibility that there was too much starting material for the DNAse to work 

appropriately, the spore preparation was diluted and then each diluted sample was treated 

with DNAse, as per the kit instructions. Diluting the spore preparation before treatment 

with DNAse does not, however, appear to have affected the detection of DNA within the 

sample, as all four dilutions were still positive by the assay (figure 3.10), with roughly a four 

CT increase between dilutions (table 3.4 and figure 3.10).   
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Figure 3.10 Graph showing the CT values at which the Cepheid assay became 

positive for different dilutions of a C. difficile spore preparation after treatment 

with DNAse 

 

 
CT value at which the assay became 
positive for each target 

Dilution tcdB cdt tcdC 

Neat 18.3 17.4 18.8 

1/10 21.8 21.1 22.4 

1/100 26.3 25.4 26.7 

1/1000 30.1 29.2 30.5 

Table 3.4. The CT values at which the Cepheid assay became positive for different 

dilutions of a C. difficile spore preparation after treatment with DNAse. The label 

tcdB indicates detection of toxin B gene, tcdC indicates detection of the deletion 

in the tcdC gene associated with PCR ribotype 027, cdt indicates detection of 

binary toxin gene.  

 

After the spore preparation was sonicated, the CT value increased for all three targets, 

suggesting that the amount of target was lower in these samples (table 3.5).  
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CT value at which the assay became 
positive for each target 

Dilution tcdB cdt tcdC 

1/1000 DNAse 
with no 
sonication 30.1 29.2 30.5 

1/1000 DNAse 
with 
sonication 34.1 33.4 34.6 

Table 3.5. The CT values at which the Cepheid assay became positive for different 

dilutions of a C. difficile spore preparation after treatment with DNAse, with and 

without sonication. The label tcdB indicates detection of toxin B gene, tcdC 

indicates detection of the deletion in the tcdC gene associated with PCR ribotype 

027, cdt indicates detection of binary toxin gene.  

 

3.4 Discussion 

The issue of sub-optimal performance of CDI laboratory diagnostics is complex. In contrast 

to a previous study (Tenover et al, 2010), the toxin and GDH EIAs were not found to be less 

sensitive for specific PCR ribotypes. Indeed, they were not statistically more likely to ‘miss’ 

any one PCR ribotype over another, indicating that there are additional factors affecting 

the performance of EIAs other than which PCR ribotype is in the sample. The two toxin EIAs 

were, however, statistically less likely to give a negative result for a sample containing 

PCR ribotype 027 and both assays had statistically higher median OD values (table 3.1.) for 

samples containing this PCR ribotype than PCR ribotypes other than 027 (figure 3.1.). The 

reported increase in toxin yield for this strain (Warney et al, Lancet 2005; Freeman et al, 

2007) may partially explain this result, as it is perhaps of note that the assays were 

developed in the USA against a background of high incidence of PCR ribotype 027. It is 

possible, therefore, that the assay cut-off values were optimised to detect toxin in samples 

containing this PCR ribotype. In addition, lack of sensitivity for strains other than 027 could 

also be related to the specificity (avidity/affinity) of the antibodies used in the assays.  

Whilst both assays use polyclonal antibodies for toxin B, the antibody for toxin A is 

monoclonal, which potentially may reduce the detection of the numerous toxinotypes (n = 

31) so far discovered (Toxinotype website database, 2019) 
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The variability in performance of the two toxin EIAs previously reported is supported by 

this study (Eastwood et al, 2009; Planche et al, 2008, Planche et al 2013) as they had 

significantly different median ODs for PCR ribotypes 027 and 015, two of the three most 

common PCR ribotypes found in this study (table 3.2). Although these assays are not truly 

quantitative, theoretically, increasing ODs correlate with increasing levels of antigen (in this 

case toxin) detected. It would seem, therefore, that one of the assays, the Premier™ Tox 

A/B, is not able to detect as much toxin as the other assay, as shown by the lower OD 

values for these PCR ribotypes.  This hypothesis does, however, rely on the assumption that 

the scale of ODs between the two assays is comparable, which is yet to be demonstrated.  

The fact that 30% of the samples containing a toxigenic isolate of C. difficile that were 

negative by the toxin EIAs were positive by the cell-cytotoxicity assay supports the 

assumption that the EIAs are ‘missing’ true toxin positive samples. Cell cytotoxicity has 

been shown to be more sensitive than both the toxin detection EIAs (Eastwood et al, 2009), 

and so could be detecting low levels of toxin in the other 30% of samples. An alternative 

explanation for the ‘missed’ detection of positives by the toxin EIAs is that these patients 

could be colonised by toxigenic strains of C. difficile, but that these are not currently 

producing toxin; designated potential C. difficile excretors (PCDE) in the UK Department of 

Health guidelines (Planche et al, 2013; Department of Health, 2012). 

The contrast between previous results (Tenover et al, 2010) and those seen in this study 

could be explained by the increased number of samples in this study. There were four 

times as many as those studied previously; giving this study greater power to elucidate 

differences between assays and PCR ribotypes (Tenover et al, 2010). The previous study 

was not able to show differences between the two toxin EIAs as, due to low numbers of 

samples, the results of samples tested on either assay were pooled. Indeed, no one sample 

was tested using both assays in that study (Tenover et al, 2010).  

In contrast to the toxin EIAs, the performance of the GDH EIA does not seem to be 

adversely affected by PCR ribotype, as there were no significant differences between OD 

values for any one PCR ribotype over another. This result conflicts with the work from a 

previous study that showed that the GDH EIA was less sensitive for PCR ribotypes other 

than 027 (Tenover et al, 2010), although as already discussed that was on a much smaller 

sample size than the current study. To elucidate fully what a GDH positive/toxin negative 

(PCDE) result means, it is necessary to understand the course of C. difficile infection, which 
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can be achieved by collecting sequential samples either from patients or an in vitro CDI 

model.  

To investigate this phenomenon further the amount of both GDH and toxin, as detected by 

the commercial EIAs was investigated for different PCR ribotypes of C. difficile using batch 

culture. Although there was little difference between the median GDH values for most 

PCR ribotypes there was both a lower median GDH and toxin OD value for PCR ribotype 002 

(figures 3.3 and 3.4). In addition, the cytotoxin titre was lower for PCR ribotype 002, which 

suggests that there was a smaller amount of toxin produced by this PCR ribotype, rather 

than that the toxin assay has less affinity for this PCR ribotype.  Differences between 

PCR ribotype 002 and other PCR ribotypes have been demonstrated previously, although in 

those studies PCR ribotype 002 had increased sporulation (Cheng et al, 2011) and 

comparable toxin titre to those of hypervirulent strains (Baines et al, 2015). The total viable 

counts for all the strains were fairly consistent (standard deviation of log10 TVC = 0.359), 

and, most notably, the TVCs for the strains with the lowest GDH and toxin ODs were the 

highest of all the strains. This suggests that the lower OD values are not because there was 

less growth of these strains, but that they produced less toxin and less GDH than other 

strains. When only incubated for 24 hours, these differences were not as clear, perhaps as 

peak levels are only reached after 48 hours (as shown in the growth curve experiments). 

GDH appears to be produced by C. difficile during the exponential growth phase of the 

organism (figures 3.8 and 3.9), which has not previously been demonstrated in the 

literature. Once the organism begins to slow vegetative growth and produce spores, the 

level of GDH begins to decline (figure 3.8). From one experiment it would appear that GDH 

might be detected before germination is detected using TVCs, however, this could be an 

artefact from the way the graph has been constructed (figure 3.9). The amount of toxin 

produced in the growth curve experiment that was started with a spore preparation, was 

almost twice as high, as measured by both toxin titres (CCNA) and toxin EIA, as the previous 

growth curve. It is possible that this could be due to the way the growth was started; the 

first was started from viable growth rather than from spores. The reason for this is unclear; 

although perhaps if the growth starts from spores it induces greater toxin production in the 

cells? It should be noted that the log10 viable counts are about the same for both 

experiments, suggesting that the increased toxin production was not due to the amount of 

growth but some other factor.  Batch culture is not the ideal method to investigate the 

growth of C. difficile, as nutrient and pH limitations do not truly reflect the growth 
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conditions of the organism in vivo.  In addition, the metabolites produced are neither 

washed out of the system nor denatured, and so their concentrations could therefore be 

artificially increased. The in vitro gut model system provides the ability to model the growth 

of C. difficile in a more clinically reflective manner (Freeman et al, 2003), and experiments 

in chapter 2 will use this methodology. 

Finally, as it proved difficult to get a totally ‘clean’ spore prep, with no residual DNA from 

broken down vegetative cells, it is hard to be certain that the Cepheid GeneXpert® C. diff 

PCR assay cannot detect DNA from spores as well as from vegetative cells. The addition of 

DNAse to the samples did not affect the CT values for neat spore preparations or diluted 

preparations (table 3.3, figure 3.10). For diluted samples the CT values produced a straight 

line (figure 3.10), as would be expected for a 10-fold dilution series, with ~3.3 CT increase 

per 10-fold dilution (Thermofisher, 2019) (table 3.4), so, again, there was no impact of the 

DNAse.  After the spore preparation was sonicated, the CT value increased for all three 

targets of the PCR assay, suggesting that the amount of starting material had gone down, 

perhaps as DNA was destroyed by shear forces (table 3.5). If sonication (the method used 

by the Cepheid assay to release DNA from faecal samples) released DNA from spores that 

could then be detected by the assay, the CT values should have decreased; they did not 

change.  An alternative method would be to determine if the CT values for the PCR assay 

decrease (become positive earlier) as spores germinate (Chilton et al, PLOS One 2016); it 

would be possible to follow spore germination using phase contrast microscopy. If the PCR 

assay is not detecting the spores themselves, the CT value of the assay should decrease 

(become positive earlier) as spores germinate. There was not scope within this study to 

pursue this further but this is an important point to consider, as detection of spores by the 

PCR assay would further cloud the interpretation of this assay when used for the diagnosis 

of CDI.  
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4. Detection of GDH in an in vitro gut model of CDI using a 

commercial assay 

4.1 Introduction   

Continuous culture systems, rather than batch culture, show that PCR ribotype 027 

produces toxin for longer than does PCR ribotype 001 but not at a higher level (Freeman et 

al, 2007). The high levels seen in the batch culture model may therefore be due to an 

accumulation of toxin and potentially do not give a true representation of toxin production 

by this strain. To overcome the limitations of batch culture experiments, a validated 

continuous culture system was used as a human gut model in this project.  This model 

allows investigation of the interplay between C. difficile, normal bowel microbiota and 

antimicrobials (Freeman et al, 2003). From a clinical point of view, it is important to 

understand the status of the disease of the patient, to ensure they receive the correct 

treatment and that the appropriate infection control precautions are used (Bigardi et al, I 

2013). This requires accurate diagnostics. Although many studies have highlighted the 

variability in performance of CDI laboratory diagnostic assays (see section 1.13 of 

introduction), there is a paucity of data on the reasons for these differences. There are also 

few data on the clinical course of CDI and the optimal time for each of the different 

diagnostic assays to be used. For instance, depending on the stage of disease a test may 

perform ‘badly’ or ‘well’ as an assay for CDI. For example, if a patient is in the recovery 

phase when tested, is toxin still detectable? What does a GDH positive/toxin negative or 

GDH positive/culture negative result mean; i.e. the presence of disease or the presence of a 

non-viable organism with detectable GDH?   

Here, the in vitro gut model was used to examine the rise and fall in GDH production, 

compared with total viable and spore counts of C. difficile, against a background of colonic 

microbiota. The key findings from this chapter are; 

 GDH was produced during the exponential phase of growth and the amount 

detected increased and decreased in phase with total viable counts of the organism  

 GDH could be detected from the system when total viable counts had either begun 

to be detected, or, had gone below the limit of detection 

 The amount of GDH produced was partly due to the bioload of C. difficile within the 

system 
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4.2 Methods 

4.2.1 Methods for measuring C. difficile glutamate dehydrogenase in an 

in vitro gut model 

4.2.1.1    Measuring C. difficile glutamate dehydrogenase in an in vitro gut model 

by both enzyme immune assay and polymerase chain reaction assay. 

Hypothesis 

The amount of GDH produced by C. difficile over the course of a simulated C. difficile 

infection will vary in line with the proliferation of C. difficile as measured by culture. 

Methods 

Gut model 

C. difficile GDH was measured from fluid collected daily from an in vitro gut model of CDI, 

set up as previously described (Freeman et al, 2003) and as described in methods section 

2.3. Briefly, the model consists of a three-stage continuous weir cascade culture system, 

pre-loaded with a human faecal emulsion. The faecal bacteria were allowed to proliferate 

and population levels were stabilised over a period of about two weeks. C. difficile spores 

(~107 cfu/mL) were added twice, each dose one week apart, and again the models were left 

to equilibrate. Clindamycin was instilled into the gut model (33.9 mg/L QDS for seven days) 

to induce simulated CDI. C. difficile total viable count, spore count and toxin level in each 

vessel were enumerated daily. A CDI treatment antibiotic was then added to the system, 

C. difficile total viable count, spore count and toxin level was monitored daily for a further 

three weeks. Two models were run in parallel; denoted ‘A’ and ‘B’. The gut models were set 

up, maintained and sampled by the technicians within the HCAI Research group, under the 

guidance of the PI for that set of models. Kerrie Davies tested daily samples using the 

commercial assays and performed the analysis discussed in this thesis. Permission was 

granted for the use of excess gut model fluid to be used for this PhD project from the 

funder of the set of gut models. 

Glutamate dehydrogenase enzyme immunoassay 

A commercial automated GDH EIA, C. DIFF CHEK-60™, was used to measure the level of 

GDH within the model daily. Once samples had been collected from the model, they were 

frozen at -20°C immediately; they were then defrosted once before testing with the 
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enzyme immunoassays with the remainder stored at 4°C until all testing had been 

completed. The samples from this set of gut models were tested after four months in 

storage, due to maternity leave. The assay was performed according to manufacturer’s 

modified instructions for use on the automated DS2 platform (Dynex Magellan Biosciences, 

USA) (see materials and methods section 2.2). One hundred microliters of gut model 

samples were diluted in 400µL of kit sample diluent; to ensure there was enough sample 

volume (including dead volume) this was double the recommended volumes, and was 

recommended by the manufacturer, as described in the materials and methods section.  

Glutamate dehydrogenase gene (gluD) PCR assay 

A polymerase chain reaction (PCR) assay for the GDH gene gluD was also performed on the 

gut model fluid samples. DNA was extracted from samples that were diluted 1/10 in STAR 

buffer (Roche, Germany) containing 1/10 chloroform (v/v), on the QiaXtractor using the DX 

kit (Qiagen Ltd, UK) after the addition of an internal control (Yersinia ruckerii). Primers and 

probes for gluD and yersi (internal control) (table 4.1.) (Berry et al, 2017; Davies et al, 2015) 

were added to Brilliant QPCR multiplex master mix (Agilent, UK) along with template DNA. 

Amplification was performed on a Stratagene MX3000P (Agilent, UK) using the following 

thermocycling conditions; strand separation at 95°C for 10 minutes, followed by 45 cycles 

comprising strand separation at 95°C for 30 seconds, primer annealing at 60°C for 

30 seconds and replication at 72°C for 30 seconds, with no final extension step.  Samples 

without a positive internal control result were re-extracted and PCR repeated using the 

new template DNA.  
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Oligo Name Sequence 5’ modification 3’ modification 

Yersi F1 GGAGGAAGGGTTAAGTGTTA   

Yersi R1 GAGTTAGCCGGTGCTTCTT   

Yersi P1 GCGAGTAACGTCAATGTTCAGTGC Cy5 BHQ2 

GluD F3 GTCTTGGATGGTTGATGAGTAC   

GluD R2 TTCCTAATTTAGCAGCAGCTTC   

GluD P1 AAGCCAGTTGAATTTGGTGG FAM BHQ1 

Table 4.1  Sequence of primers and probes used in the gluD PCR assay (Berry et al, 

2017; Davies et al, 2015) 

 

4.2.1.2    Measuring C. difficile glutamate dehydrogenase in in vitro gut models A 

and B using a commercial enzyme immunoassay 

Hypothesis 

The amount of GDH produced by C. difficile over the course of a simulated CDI infection will 

vary in line with the proliferation of C. difficile as measured by culture. 

Methods 

Gut model 

C. difficile GDH was measured from fluid collected daily from an in vitro gut model of CDI, 

set up as previously described (Freeman et al, 2003). Briefly, the models were used to 

compare standard and extended vancomycin treatment for CDI. The faecal bacteria were 

allowed to proliferate and population levels to stabilise over a period of about two weeks. 

C. difficile spores (~107 cfu/mL) were added and again the model is left to equilibrate. 

Clindamycin was instilled into the gut model (33.9 mg/L QDS) to induce simulated CDI.  C. 

difficile total viable count, spore count and toxin level were enumerated daily. A CDI 

treatment antibiotic was then added to the system, C. difficile total viable count, spore 

count and toxin levels were monitored for a further three weeks. Two models were run in 

parallel; denoted ‘A’ and ‘B’. The gut models were set up, maintained and sampled by the 

technicians within the HCAI Research group, under the guidance of the PI for that set of 

models. Kerrie Davies tested daily samples using the commercial assays and performed the 
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analysis discussed in this thesis. Permission was granted for the use of excess gut model 

fluid to be used for this PhD project from the funder of the set of gut models. 

GDH enzyme immunoassay 

A commercial automated GDH EIA, C. DIFF CHEK-60™, was used to measure the level of 

GDH within the model daily. Once samples had been collected from the model they were 

frozen at -20ºC immediately; they were then defrosted once before testing with the 

enzyme immunoassays with the remainder stored at 4°C until all testing had been 

completed. The samples from this set of gut models were tested after two years in storage, 

due to the maternity leave and other work commitments of Kerrie Davies. The assay was 

performed as described above. Assay positivity (as defined by the kit) and optical density 

(OD) values were compared with the pattern of C. difficile proliferation and toxin 

production.   

 

4.2.1.3    Investigating the quantitative potential of the commercial glutamate 

dehydrogenase enzyme immunoassay 

Hypothesis 

The commercial glutamate dehydrogenase enzyme immunoassay is quantitative and can be 

diluted to give a result over the current maximum threshold optical density value. 

Methods  

A colony of C. difficile was inoculated into 20mL Brain Heart Infusion (BHI) broth and 

incubated overnight at 37°C in an A95 anaerobic workstation (Don Whitley, UK). After 

incubation, quadruplicate 10-fold dilutions of BHI were made in phosphate-buffered saline 

(PBS).  Each dilution was added to the Chek-60 kit diluent (100µL in 400uL diluent) before 

the GDH assay was performed using the DS2 platform as described above. The OD value for 

each dilution was recorded and log10 transformed.  

Twenty microliters of each dilution were spread plated, in triplicate, onto cefoxitin, 

cycloserine, egg yolk agar (CCEY) and incubated at 37°C in an A95 anaerobic workstation 

(Don Whitley, UK) for 24 hours.  The number of colonies was counted on the dilution that 

gave the most easily readable colony count. The number of colonies was multiplied by the 

dilution factor to determine the colony count per mL and log10 transformed.  
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Log10 cfu/mL and log10 OD values were plotted for the OD values that fell below the 

maximum threshold of the assay (>3.0) and the equation of the line derived. The equation 

was resolved to give the ‘true’ log10 OD value for those OD values that were above the 

maximum threshold. The inverse log10 OD values were then calculated to find the ‘true’ OD 

value.  

To confirm the results of this experiment, it was repeated in triplicate. The intra-assay 

variation of the OD values of the diluted samples was also compared.  

 

4.2.1.4    Measuring C. difficile glutamate dehydrogenase and toxins A & B in 

in vitro gut models O and M using commercial enzyme immunoassays  

Hypothesis 

The amount of glutamate dehydrogenase varies over the time of a simulated course of CDI 

in the in vitro gut model, with periods where GDH is the only detectable marker of the 

presence of C. difficile.  

Methods  

Gut model 

C. difficile GDH and Toxins A and B were measured from fluid collected daily from an 

in vitro gut model of CDI, set up as previously described (Freeman et al, 2003). Briefly, the 

model consists of a three-stage continuous weir cascade culture system, pre-loaded with a 

human faecal emulsion. The faecal bacteria were allowed to proliferate and population 

levels to stabilise over a period of about two weeks. C. difficile spores (~107 cfu/mL) from a 

PCR ribotype 027 strain were added on two occasions, one week apart, and again the 

model was left to equilibrate. As this pair of models (denoted ‘O’ and ‘M’) were being used 

to compare two antibiotics for their potential to induce CDI, one had omadacycline (O) 

added (430mg/L) and the other moxifloxacin (M) (43mg/L) once daily for seven days. C. 

difficile total viable count, spore count and toxin level were enumerated daily. C. difficile 

total viable count, spore count and toxin level were monitored for a further three weeks. 

The gut models were set up, maintained and sampled by the technicians within the HCAI 

Research group, under the guidance of the PI for that set of models. Kerrie Davies oversaw 

the testing of the daily samples using the commercial assays and performed the analysis 

discussed in this thesis. Permission was granted for the use of excess gut model fluid to be 

used for this PhD project from the funder of the set of gut models. 
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GDH and C. difficile toxin enzyme immunoassays 

A commercial automated GDH EIA, C. DIFF CHEK-60™, was used to measure the level of 

GDH and the TOX AB II™ assay was used to measure the level of toxins within the model 

daily. Once samples had been collected from the model they were frozen at -20ºC 

immediately; they were then defrosted once before testing with the enzyme 

immunoassays with the remainder stored at 4°C until all testing had been completed. The 

samples from this gut model were tested after one year in storage, due to the maternity 

leave and other work commitments of Kerrie Davies. The GDH assay was performed as 

described above. The procedure for the toxin assay mirrors that of the GDH assay and the 

same reagents can be used for both assays, except for the microplate wells, the positive 

control and the conjugate, which are specific to each assay (see materials and methods 

section 2.2). Assay positivity (as defined by the kits) and optical density (OD) values were 

compared with the pattern of C. difficile proliferation and toxin production.  In addition, 

where samples produced a maximum OD value of >3.0, they were serially diluted and 

tested again. The resultant OD value was multiplied by the dilution factor to produce a final 

OD value. The enzyme immunoassay testing on the DS2 was performed by a summer intern 

within the HCAI Research Group, Miss Flor Saporta, under the supervision of Kerrie Davies.  

 

4.2.1.5    Measuring C. difficile glutamate dehydrogenase and toxins A & B in 

in vitro gut model X using commercial enzyme immunoassays  

Hypothesis 

The amount of glutamate dehydrogenase varies over the time of a simulated course of CDI 

in the in vitro gut model, including for an episode of CDI recurrence, with periods where 

GDH is the only detectable marker of the presence of C. difficile.  

Methods  

Gut model 

C. difficile GDH and Toxins A and B were measured from fluid collected daily from an 

in vitro gut model of CDI, set up as previously described (Freeman et al, 2003). Briefly, the 

model for this experiment was used to examine CDI recurrence.  For this model the faecal 

slurry had been pre-prepared and then snap frozen using liquid nitrogen before being 

stored at -80°C.  The slurry was defrosted at room temperature before inoculation into the 

model. The faecal bacteria were allowed to proliferate and population levels to stabilise 
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over a period of about four weeks. C. difficile spores (~107 cfu/mL) of strain 210 were 

added on two occasions, one week apart, and again the models were left to equilibrate. 

Clindamycin was instilled into the gut model (33.9 mg/L QDS for seven days) to induce 

simulated CDI, followed by treatment with clinically reflective doses of vancomycin 

(125mg/L QDS for seven days) once a peak toxin level had been reached (as measured by 

cell-cytotoxicity assay). C. difficile total viable count, spore count and toxin level were 

enumerated daily for a further four weeks. One model was run in for this experiment; 

denoted ‘X’. The gut model was set up, maintained and sampled by the technicians within 

the HCAI Research group, under the guidance of the PI for this set of models. Kerrie Davies 

oversaw the testing of the daily samples using the commercial assays and performed the 

analysis discussed in this thesis. Permission was granted for the use of excess gut model 

fluid to be used for this PhD project from the funder of the set of gut models. 

GDH and C. difficile toxin enzyme immunoassays 

A commercial automated GDH EIA, C. DIFF CHEK-60™, was used to measure the level of 

GDH and the TOX AB II™ assay was used to measure the level of toxins within the model 

daily. Once samples had been collected from the model they were frozen at -20ºC 

immediately; they were then defrosted once before testing with the enzyme 

immunoassays with the remainder of the samples stored at 4°C until all testing had been 

completed. The samples from this set of gut models were tested after four months in 

storage, due to the maternity leave and other work commitments of Kerrie Davies. The 

assays were performed as described above. Assay positivity (as defined by the kits) and 

optical density (OD) values were compared with the pattern of C. difficile proliferation and 

toxin production.  In addition, where samples produced a maximum OD value of >3.0, they 

were serially diluted and tested again. The resultant OD value was multiplied by the 

dilution factor to produce a final OD value. The enzyme immunoassay testing on the DS2 

was performed by a summer intern within the HCAI Research Group, Miss Flor Saporta, 

under the supervision of Kerrie Davies. 

 

4.2.1.6    Measuring C. difficile glutamate dehydrogenase and toxins A & B in 

in vitro gut models E, F and G using commercial enzyme immunoassays  

Hypothesis 

The amount of glutamate dehydrogenase varies over the time of a simulated course of CDI 

in the in vitro gut model, with periods where GDH is the only detectable marker of the 
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presence of C. difficile, and that the amount of GDH within the model increases with each 

CDI episode 

Methods 

Gut model 

 C. difficile GDH and Toxins A and B were measured from fluid collected daily from an 

in vitro gut model of CDI, set up as previously described (Freeman et al, 2003). Briefly, the 

models for this experiment were used to compare CDI recurrence in a faecal microbiota 

transplant (FMT) model and two models treated with a manufactured ‘microbiota’.  For 

these models, the faecal slurry used was the same snap frozen, pre-prepared slurry used 

during Model X above.  The slurry was defrosted at room temperature before inoculation 

into the model. The faecal bacteria were allowed to proliferate and population levels 

stabilise over a period of about four weeks. After the stabilisation period, C. difficile spores 

(~107 cfu/mL) of strain 210 were added on two occasions, one week apart, and again the 

models were left to equilibrate. Clindamycin was instilled into the gut model (33.9 mg/L 

QDS for seven days) to induce simulated CDI, followed by treatment with clinically 

reflective doses of vancomycin (125mg/L QDS for seven days) once the peak toxin level had 

been reached (as measured by cell-cytotoxicity assay). Following the vancomycin treatment, 

a simulated faecal microbiota transplant (FMT) (pooled faecal slurry) was added to one of 

the models, and the proprietary ‘microbiota’ was added to the other two models; one 

receiving a single dose, and one receiving three doses.  C. difficile total viable count, spore 

count and toxin level were enumerated daily for a further four weeks.  Three models were 

run in parallel; denoted ‘E’ (three doses of proprietary agent), ‘F’ (one dose of proprietary 

agent) and ‘G’ (FMT with pooled faecal slurry). The gut models were set up, maintained and 

sampled by the technicians within the HCAI group, under the guidance of the PI for that set 

of models. Kerrie Davies oversaw the testing of the daily samples using the commercial 

assays and performed the analysis discussed in this thesis. Permission was granted for the 

use of excess gut model fluid to be used for this PhD project from the funder of the set of 

gut models. 

GDH and C. difficile toxin enzyme immunoassays 

A commercial automated GDH EIA, C. DIFF CHEK-60™, was used to measure the level of 

GDH and the TOX AB II™ assay was used to measure the level of toxins within the model 

daily. Once samples had been collected from the model they were frozen at -20ºC 

immediately; they were then defrosted once before testing with the enzyme 
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immunoassays with the remainder stored at 4°C until all testing had been completed. The 

samples from this set of gut models were tested in one batch after completion of the 

model experiments, after a maximum of two months in storage, with the majority tested 

within two weeks of being placed in storage. The assays were performed as described 

above. Assay positivity (as defined by the kits) and optical density (OD) values were 

compared with the pattern of C. difficile proliferation and toxin production.  In addition, 

where samples produced a maximum OD value of >3.0, they were serially diluted and 

tested again. The resultant OD value was multiplied by the dilution factor to produce a final 

OD value. The enzyme immunoassay testing on the DS2 platform was performed by a 

summer intern within the HCAI Research Group, Miss Flor Saporta, under the supervision 

of Kerrie Davies. 
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4.3 Results 

4.3.1 Results of measuring glutamate dehydrogenase in an in vitro gut model 

4.3.1.1 Measuring C. difficile glutamate dehydrogenase in an in vitro gut model by 

both enzyme immunoassay and polymerase chain reaction assay. 

 

In both models (A and B) the GDH protein was detected by the EIA in Vessels Two and 

Three of the triple stage system (figures 4.1a-c and 4.2a-c). There was a rise in GDH during 

the period where the model was left to achieve steady state after the addition of spores. In 

Model A this occurred about nine days after the introduction of spores, whilst in Model B it 

was after only two days for Vessel Two, and three days for Vessel Three. The GDH 

increased to the maximum measured by the assay within six days in Model B and remained 

at this level for four days in Vessel Two and five days for Vessel Three, before falling back to 

zero over the next eight days. At the same time, there was a small amount of toxin 

production detected in Vessel Three only; this is low level (1 Relative Unit) and lasted for 

two days. 

Once germination had been induced, the GDH level increased in phase with the total viable 

count of the organism and the production of toxin. It is interesting to note, however, that 

although the initial increase of GDH matched that of both the total viable count and toxin 

production; it remained elevated within the system for longer than both of these after the 

introduction of the treatment antibiotic. Once the GDH began to be washed out of the 

system, it did so at the same rate as the toxin, but lagged behind the toxin wash-out by at 

least two days. The overall pattern of GDH rise and fall was mirrored in Vessels Two and 

Three, although Vessel Two was about two days ahead of Vessel Three for both models. 

There was no germination or GDH detected in Vessel One of either system, apart from one 

raised GDH level on one day in Model B. 

Although gluD was detected in the model by the PCR assay, the results were inconclusive 

(figures 4.3 a-b). DNA extraction from the model may not be optimal using this method as 

the CT values for the PCR assay do not fit the pattern of peaks and troughs shown by the 

total viable count, spore and GDH enzyme level. It is outside the scope of this PhD project 

to determine the optimal method for extracting DNA from the complex fluid extracted 

from the gut model. This method was therefore not used in any further gut models within 

this project.  
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Figure 4.1.a Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model A 

 

 

Figure 4.1.b Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model A 
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Figure 4.1.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model A 

 

 

Figure 4.2.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model B 
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Figure 4.2.b Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model B 

 

 

Figure 4.2.c Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model B 
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Figure 4.3.a. GDH EIA OD values and GDH PCR CT values from faecal slurry from 

gut Model A  

 

 

Figure 4.3.b. GDH EIA OD values and GDH PCR CT values from faecal slurry from 

gut Model B 
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4.3.1.2 Measuring C. difficile glutamate dehydrogenase in in vitro gut models A 

and B by enzyme immunoassay  

Model A 

In Vessel One there was a low level of GDH detected between Days 43-46, although this did 

not coincide with any increase in total viable count or germination (figure 4.4a). 

Germination occurred at Day 55, with total viable count and spore count diverging, with a 

concurrent increase in GDH from Days 54 to 61.  The total viable count fell to an 

undetectable level by Day 58, however GDH was still detectable for a further three days. 

There was no toxin detected in Vessel One by the cell-cytotoxicity neutralisation assay. 

In Vessel Two there was an increase in GDH OD value, as measured by the enzyme 

immunoassay, on Day 37, which coincided with germination (figure 4.4b). The OD value 

rose to a peak five days later, again coinciding with a peak in the total viable count. GDH 

remained detectable by the enzyme immunoassay until Day 67, while the total viable count 

began to fall on Day 59 and was below the limit of detection by Day 62. There were, 

therefore, five days where GDH was the only marker of C. difficile that could be detected in 

the model.  Toxin was detected on Day 42, coinciding with the peak in the total viable 

count and peak GDH OD value. The highest peak of toxin was on Day 55. 

Germination, and the concurrent increase in GDH, occurred on Day 37 in Vessel Three; the 

same day as Vessel Two (figures 4.4b and 4.4c). Both GDH OD value and total viable count 

rose to a peak by Day 42, with the GDH OD value remaining at a peak level until Day 63. 

The fluid from Vessel Three was still positive for GDH, using the enzyme immunoassay, at 

the end of the experiment on Day 67. In contrast, total viable count began to fall on Day 59 

and was below the limit of detection by Day 62. Toxin was detected earlier in Vessel Three 

than Vessel Two, at Day 37, although the peak toxin concentration coincided in both 

vessels, at Day 56.  

In both Vessel Two and Vessel Three, the GDH OD value reached the maximum threshold 

OD within a few days, producing a plateau on the graph. The assay in its current form was 

unable to show if the GDH level continued to rise past this level or if it did, indeed, plateau. 

The graphs also appear to show that the GDH OD value did not begin to decline at the same 

time as the total viable count; however this could be an artefact of the assay threshold, 

masking the true picture of GDH rise and fall.  
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Model B 

In Vessel One, there is a small amount of GDH detected at Day 20, in the absence of any 

increase in the total viable count (figure 4.5a). Germination started at Day 51, with an 

increase in the total viable count and a divergence from the spore count. A coincident rise 

in the GDH level was detected from Days 51-56 and Days 57-71, indicated by two small 

peaks on the graph. The total viable count began to decline at Day 56 and was below the 

level of detection by Day 58. From the total viable count values, there appeared to be only 

one episode of germination, however, there were two peaks of GDH detection within this 

period; the reason for the decline and subsequent rise again to give these two peaks is 

unclear. Unlike the right-hand-side model there was a small amount of toxin detected in 

Vessel One between Days 52-54; during the proliferation of the organism after germination 

at Day 51.    

Once again, there was  a small amount of GDH detected from Vessel Two (Days 18-20), in 

the absence of any apparent C. difficile proliferation; as there was no concurrent rise in the 

total viable count (figure 4.5b). Germination started at Day 44; earlier than seen in Vessel 

One (Day 51). There was a lag of four days before the level of GDH began to rise, peaking at 

Days 50-60, before falling to an undetectable level by Day 64. The peak total viable count 

was seen at Day 50, with the count falling from Day 58 to below the level of detection 

within two days. C. difficile toxin was detected from Days 50-56; following the peak of 

C. difficile proliferation.  There were, therefore, four days when GDH is the only marker of 

C. difficile that could be detected in the model.  

A very similar pattern was seen in Vessel Three, with the same small amount of GDH 

detected early after introduction of spores within the model, but without signs of 

germination (figure 4.5c). Again, increasing GDH and toxin levels were detected during 

germination and proliferation. As with Vessel Two, there was a period of ~four days when 

GDH was the only marker of C. difficile that could be detected in Vessel Three of the model, 

following the decline of the total viable count below the level of detection. Again, in both 

Vessel Two and Vessel Three, the GDH OD value reached the maximum threshold OD 

within a few days, producing a plateau on the graph. As discussed above, this could be an 

artefact of the assay threshold, masking the true picture of GDH rise and fall.  
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Figure 4.4.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model A 

 

 

Figure 4.4.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model A 
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Figure 4.4.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model A 

 

 

Figure 4.5.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model B 
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Figure 4.5.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model B 

 

 

Figure 4.5.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model B 

 

4.3.1.3    Investigating the quantitative potential of the commercial glutamate 

dehydrogenase enzyme immunoassay 

For experiment one, the OD of each dilution was measured on the DS2 and the mean 

cfu/mL for each dilution was calculated, after counting colonies on the 1/1000 dilution 

plates (table 4.2). The mean colony count for each dilution was then log10 transformed and 
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plotted against the log10 OD value for each dilution with the exception of dilutions that 

gave an OD value of >3.0, as this was the maximum threshold of the assay and would skew 

the results (figure 4.6a). The equation for the line was calculated and extrapolated to 

calculate the log10 OD value for the neat and 1/10 dilutions (table 4.2). The inverse log10 OD 

value was then calculated for each dilution to give the actual OD value (had the threshold 

limit not been reached).  To check the accuracy of the method, the equation of the line was 

also used to reverse calculate the cfu/ml and compare to the actual cfu/ml.   

The calculated OD values and calculated cfu/ml was very close to the actual OD values and 

cfu/ml for the bottom three dilutions (1/100-1/10,000) (table 4.2.). However, the 

calculated cfu/ml for the neat and 1/10 dilutions underestimates the true bioload within 

the sample; therefore, any calculated OD values using this method would also 

underestimate the true OD value. These results therefore show that the GDH EIA is 

quantitative as long as the OD is below the threshold of >3.0. Therefore, samples could be 

diluted before they are tested on the GDH assay on the DS2 then multiplied by the dilution 

factor to find the actual OD. To confirm these results, the experiment was repeated. The 

second experiment confirmed the result of the first (table 4.3.), with the GDH assay 

demonstrating that it is quantitative, as long as the OD value is below that of the threshold 

(>3.0). The intra-assay variation between diluted samples is low, showing good 

reproducibility within the assay (table 4.4).   

The OD value in the neat sample was calculated by multiplying the OD value in the diluted 

sample by the dilution factor (table 4.3). When compared with the calculated OD value 

(using the equation of the line (figure 4.6b), the two OD values for the neat solution were 

within the same order of magnitude. Whilst not an exact representative of the ‘true’ OD 

value, the order of magnitude of GDH can be calculated, and the pattern of rise and fall of 

GDH within the model can be followed.  In future experiments, where the OD is the 

maximum value of >3.0, the sample will be diluted 1/100 and 1/1000, and the resultant OD 

will be multiplied by the dilution factor to give the ‘true’ OD value in the neat sample.
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Dilution factor 

of the sample 
Mean cfu/mL 

Log10 

cfu/mL 

Mean OD 

value 

Log 10 of 

OD value 

Calculated 

log10 OD value 

Calculated OD 

value 

Calculated 

log10 cfu/mL 

Calculated 

cfu/mL 

Neat 410000 5.61 3.001 0.477 2.630 426.646 3.81 6423.95 

10-1 41000 4.61 3.001 0.477 1.437 27.376 3.81 6423.95 

10-2 4100 3.61 1.641 0.215 0.245 1.757 3.59 3872.58 

10-3 410 2.61 0.109 -0.963 -0.948 0.113 2.60 398.65 

10-4 41 1.61 0.004 -2.398 -2.141 0.007 1.40 24.95 

Neat 375000 5.57 3.001 0.477 2.584 383.572 3.81 6423.95 

10-1 37500 4.57 3.001 0.477 1.391 24.612 3.81 6423.95 

10-2 3750 3.57 1.741 0.241 0.198 1.579 3.61 4069.49 

10-3 375 2.57 0.195 -0.710 -0.994 0.101 2.81 649.21 

10-4 37.5 1.57 0.006 -2.222 -2.187 0.007 1.54 35.06 

Neat 425000 5.63 3.001 0.477 2.649 445.327 3.81 6423.95 

10-1 42500 4.63 3.001 0.477 1.456 28.575 3.81 6423.95 

10-2 4250 3.63 0.93 -0.032 0.263 1.833 3.38 2405.59 

10-3 425 2.63 0.165 -0.783 -0.929 0.118 2.75 564.36 

10-4 42.5 1.63 0.005 -2.301 -2.122 0.008 1.48 30.09 

Neat 277500 5.44 3.001 0.477 2.428 267.843 3.81 6423.95 

10-1 27750 4.44 3.001 0.477 1.235 17.186 3.81 6423.95 
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10-2 2775 3.44 0.93 -0.032 0.042 1.103 3.38 2405.59 

10-3 277.5 2.44 0.165 -0.783 -1.150 0.071 2.75 564.36 

10-4 27.75 1.44 0.005 -2.301 -2.343 0.005 1.48 30.09 

Table 4.2. The measured and calculated OD values for each dilution of C. difficile culture. The cfu/ml and OD were log10 transformed 

before plotting on a graph (Figure 4.6a). Because the top two dilution skewed the data (as the OD values were the maximum 

threshold of the kit [>3.0]) they were removed from the graph. Using the equation of the graph the ‘real’ OD of the top two 

dilutions could be calculated. The inverse log10 OD values then need to be calculated in order to find the ‘true’ OD. 
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Figure 4.6.a. Graph showing the log10 OD values for the different dilutions of 

C. difficile (plotted as log10 cfu/ml) for experiment one. The neat and 1/10 dilution 

OD results were not plotted, as they gave the maximum threshold OD value, and 

skewed the results. The equation of the line was calculated and used to calculate 

the log10 OD value of the neat and 1/10 dilutions (see table 4.2).   
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Figure 4.6.b. Graph showing the log10 OD values for the different dilutions of 

C. difficile (plotted as log10 cfu/ml for experiment two. The neat and 1/10 dilution 

OD results were not plotted, as they gave the maximum threshold OD value, and 

skewed the results. The equation of the line was calculated and used to calculate 

the log10 OD value of the neat and 1/10 dilutions (see table 4.3).  
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Dilution 
factor of 

the 
sample 

Mean 
cfu/ml 

Log10 mean 
cfu/ml 

Mean OD value 
 

Log10 mean OD Calculated 
log10 

OD value 

Calculated OD 
value 

in the relevant 
diluted sample 
(inverse log10) 

Calculated OD 
in the neat 

sample 

Neat 24500 4.39 3.001 0.477 2.700 501.725 n/a 

10-1 2450 3.39 3.001 0.477 1.442 27.667 n/a 

10-2 245 2.39 1.754 0.244 0.183 1.526 175.370 

10-3 24.5 1.39 0.156 -0.808 -1.075 0.084 155.670 

10-4 4.5 0.65 0.021 -1.678 -2.001 0.010 210.000 

Neat 33750 4.53 3.001 0.477 2.876 750.814 n/a 

10-1 3375 3.53 3.001 0.477 1.617 41.403 n/a 

10-2 337.5 2.53 2.042 0.310 0.359 2.283 241.670 

10-3 33.75 1.53 0.186 -0.731 -0.900 0.126 185.670 

10-4 11.5 1.06 0.009 -2.062 -1.488 0.032 86.670 

Neat 44250 4.65 3.001 0.477 3.024 1055.800 n/a 

10-1 4425 3.65 3.001 0.477 1.765 58.221 n/a 

10-2 442.5 2.65 2.023 0.306 0.507 3.211 202.300 

10-3 44.25 1.65 0.184 -0.736 -0.752 0.177 183.670 
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10-4 8.75 0.94 0.008 -2.097 -1.638 0.023 80.000 

Neat 21000 4.32 3.001 0.477 2.616 413.250 n/a 

10-1 2100 3.32 3.001 0.477 1.358 22.788 n/a 

10-2 210 2.32 1.563 0.194 0.099 1.257 156.300 

10-3 21 1.32 0.154 -0.812 -1.159 0.069 154.340 

10-4 4.25 0.63 0.009 -2.030 -2.032 0.009 93.340 

Table 4.3. The measured and calculated OD values of the dilution series of C. difficile, based on the graph in Figure 4.6b. Calculated 

log10 OD is based on resolving the equation of the line, the inverse log was calculated to produce the calculated OD. The calculated 

OD values for the neat solution if the actual OD of the dilution is multiplied by the dilution factor is very close to that for the higher 

dilutions (1/100-1/1000). In future experiments, where the OD is the maximum value of >3.0, the sample will be diluted 1/100 and 

1/1000, and the resultant OD will be multiplied by the dilution factor to give the actual OD in the neat sample. 
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Dilution 

factor of 

the sample 

Standard 

deviation 

Run 1 

Standard 

deviation 

Run 2 

Standard 

deviation 

Run 3 

Standard 

deviation 

Run 4 

Neat 0 0 0 0 

1/10 0 0 0 0 

1/100 0.0448 0.0493 0.0056 0.0615 

1/1000 0.0084 0.0032 0.0032 0.0045 

1/10000 0.0025 0.0025 0.001 0.0006 

Table 4.4. The intra-assay variation in OD values for each set of sample dilutions. 

All OD values for the neat and 1/10 dilutions were >3.0 (the maximum threshold), 

hence a standard deviation of 0.  

 

4.3.1.5    Measuring C. difficile glutamate dehydrogenase and toxins A & B in 

in vitro gut models O and M using commercial enzyme immunoassays  

Model O 

The antimicrobial agent added to this model did not induce CDI, and therefore there was 

no increase in total viable count or GDH level and no germination (figures 4.7a-c). There 

was also no increase in GDH after the instillation of spores in Vessel One, although there 

was a very slight rise in GDH after the first and second doses of spores in Vessel Two, and 

for one sample in Vessel Three following the second dose of spores.  

Model M 

In Vessel One, both the total viable count and GDH level began to rise concurrently as 

germination occurred at Day 29, with toxin being produced during the proliferation phase 

(as detected by cell-cytotoxicity assay) (Figures 4.8a-c). The total viable count peaked on 

the following day but the level of GDH continued to rise until Day 32. Previously this has 

not been observed, due to the maximum threshold of the GDH OD value. The total viable 

count then started to fall, along with the level of GDH, after a short lag period, before both 

rose again to a second peak. Interestingly, the second peak of the total viable count was 

higher than the first, whilst the second peak of GDH was lower than the first. The total 

viable count, spore count, toxin and GDH levels began to decline at a similar time, but there 

are two days where GDH could still be detected after both total viable and spore counts 

had gone below the limit of detection.  
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In Vessel Two the GDH level started to rise after the installation of the first dose of C. 

difficile spores, increasing after the second dose. It continued to increase after germination 

and proliferation of the organism in the model, as it began to produce toxin. Both the total 

viable count and level of GDH peaked at the same time and then began to fall in phase with 

each other, and indeed toxin production. There was a small second peak in both total 

viable count and level of GDH, again in phase with each other. Once again GDH could be 

detected for a further two days after total viable and spore counts had gone below the 

limit of detection. A very similar pattern of in-phase rise and fall of total viable count and 

GDH level were seen in Vessel Three, including the two days at the end of the experiment 

where GDH was the only marker of C. difficile that could be detected from the gut model 

fluid. The occurrence of the peak total viable count and peak GDH OD value were very 

similar for both Vessel Two and Three. 

Although toxin production could clearly be seen within Vessels One and Two when using 

the cell-cytotoxicity assay, there was no concurrent rise in the OD value of the toxin 

enzyme immunoassay. In Vessel Three there was a very small rise OD value for the toxin 

assay in one sample, around the time of peak toxin production.  The reasons for the low OD 

values with the toxin enzyme immunoassay are unclear; it is possible that something within 

the complex gut model fluid is inhibiting the assay.  

 

 

Figure 4.7.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model O 
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Figure 4.7.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model O 

 

 

Figure 4.7.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model O 
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Figure 4.8.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model M 

 

 

Figure 4.8.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model M 
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Figure 4.8.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model M  

 

4.3.1.6    Measuring C. difficile glutamate dehydrogenase and toxins A & B in 

in vitro gut model X using commercial enzyme immunoassays 

Model X 

In Vessel One, there was an increase in GDH after the instillation of the first dose of spores, 

as seen with previous models (figures 4.9a-c). The level of GDH then  starts to increase, in-

line with the increase in the total viable count that signals the start of germination, with 

both reaching peak levels at the same time.  As shown previously in the other models, the 

GDH level declined in line with the total viable count, however GDH could still be detected 

for a period of ~two days after total viable count was below the limit of detection. 

Recurrence occurred approximately 25 days after the end of the previous episode, with an 

increase in total viable and spore counts. There was no increase in the OD value 

representing GDH, however, and no toxin was produced.  

The peak in GDH level after instillation of the spores was markedly higher in Vessel Two, 

than that seen in Vessel One, or indeed, any other model to date (~OD = 10, compared with 

0.165 in Vessel One). GDH then declined back to zero. Once germination began, the total 

viable count and level of GDH increased in-phase and reached peak levels at the same time. 

It is interesting to note, however, that the peak GDH level was higher than seen in previous 
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models (OD~16 compared with ~eight in the previous model) despite the total viable 

counts being similar in both models, with a peak of ~six log10cfu/mL.   The peak in toxin 

production coincided with the peak in growth and declined as the total viable count and 

GDH level declined. As with previous models, GDH could be detected from the gut model 

fluid after the total viable count had gone below the limit of detection, however, this time 

this was for a period of ~seven days compared with ~two days in previous models. Again, 

recurrence occurred approximately 25 days after the end of the previous episode, with an 

increase in total viable and spore counts. Unlike Vessel One, however, there was an 

increase in GDH and toxin levels in Vessel Two during this recurrence episode. There was a 

strange ‘dip’ in total viable and spore counts and the level of GDH on one day, with no 

concurrent drop in toxin level.  For GDH, this drop was back to zero, which seems unlikely, 

given that normally GDH can be detected for many days after the total viable count.  

Whilst there was a large peak in GDH after instillation of spores in Vessel Three, it was not 

as high as is seen in Vessel Two (OD~5 vs ~10 in Vessel Two). Germination occurred on the 

same day in Vessel Three as Vessel Two (Day 59), reaching a similar maximum OD value as 

Vessel Two (peak OD in Vessel Three ~17 vs ~16 in Vessel Two). Again, the peak total viable 

count and GDH level coincided with the peak toxin level, and all started to decline at the 

same time. As with Vessel Two, GDH could still be detected for a further seven days after 

the total viable count was below the level of detection.  In accord with Vessels One and 

Two, recurrence occurred approximately 25 days after the end of the first episode. Whilst 

the pattern of increasing total viable count and GDH OD value seen in Vessel Two was 

repeated In Vessel Three, the sample taken on the final day has a markedly high GDH OD 

value of ~25.  

There was no detection of C. difficile toxin by the enzyme immunoassay in any of the 

vessels, despite detection of toxin by the cell-cytotoxicity assay in both Vessels Two and 

Three, similar to the previous models. As with the previous gut model experiment, the 

reason for this is not clear.   
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Figure 4.9.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model X 

 

 

Figure 4.9.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model X 
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Figure 4.9.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model X 

 

 

4.3.1.7    Measuring C. difficile glutamate dehydrogenase and toxins A & B in 

in vitro gut models E. F and G using commercial enzyme immunoassays 

Model E 

Unlike previous models there was no peak in GDH level seen in any of the three vessels 

after the instillation of spores (figures 4.10a-c). Germination occurred at Day 53 in all three 

vessels, with a rise in the total viable count. There appeared to be a lag of three days 

before the GDH level subsequently starts to rise, although the peak total viable count and 

GDH level do coincide, along with peak toxin level in Vessels Two and Three. The highest 

OD level of GDH was seen in Vessel Two (~34) followed by Vessel Three (~24) and then 

Vessel One (~1.5). It is interesting to note however that there was not a significant 

difference in the total viable count between the vessels however. The GDH level started to 

decline after the total viable count was already falling, and in all three vessels GDH could 

still be detected from the model fluid for ~10 days after the total viable count had fallen 

below the limit of detection. Whilst this detection of GDH after total viable count has 

declined had been seen in previous models, this was the longest period for which this lag 

has occurred. It is important to note that not only could the GDH be detected, i.e. it had an 
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OD raised from baseline, but the OD was also above the cut-off the assay that indicates a 

‘positive’ result (had this been a clinical sample).  

There was an episode of recurrence within this model, with the total viable count rising 

again at Day 100. There was a lag of ~two day in all three vessels before the level of GDH 

begin to rise, although the peak OD value was much lower than that seen for the first 

episode.  

There was no toxin detected in any of the vessels within this model by either the cell-

cytotoxicity assay or the enzyme immunoassay.   

 

Model F 

Unlike Model E, but in agreement with earlier models, there was a peak in the level of GDH 

after the instillation of spores; this peak was higher than previously seen however and GDH 

could be detected from the gut model fluid in every sample, from all three vessels, from 

this point on until the end of the simulated CDI episode (figures 4.11a-c). It should be noted 

however that although the OD was raised in these samples for four days the OD was below 

that which wold indicate a ‘positive’ result if the test were used clinically.  

Germination occurred around Day 44, with increasing total viable count and GDH level. The 

peak value for GDH in this episode was the highest seen in any model and coincided with a 

very high level of toxin (as measured by the cell-cytotoxicity assay). The highest GDH level 

was seen in Vessel Two (OD = ~250), followed by Vessel Three (~200) and then Vessel One 

(~10). The total viable count was also slightly higher than previously seen with 6 

log10cfu/mL compared with 5 log10cfu/mL seen previously.  Unlike Model E, the GDH level 

fell very quickly, and went below the limit of detection just before the total viable count 

and toxin also reached an undetectable level.  

Recurrence occurred at Day 81; as with Model E, there was an increase in the total viable 

count followed by an increase in GDH OD value ~three days later. The peak GDH level 

coincided with the peak of toxin production; toxin levels were very high, with 5RU, 

compared with 3RU seen in most previous models. The total viable count was also higher 

than usually seen. Although the toxin level was higher in the recurrent episode the GDH 

level was lower than the first simulated CDI episode in this model. For example, the peak 

GDH OD in Episode One in Vessel Two was ~250, but it was ~100 in the recurrent episode. 

The same pattern of GDH production seen during the first episode was also seen during 
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recurrence; the highest level was in Vessel Two (~100) followed by Vessel Three (~30) and 

then Vessel One (0.3). This contrasts with the toxin level and total viable count, however, 

which were similar across Vessels Two and Three.  

Interestingly, unlike previous models, the toxin enzyme immunoassay did detect toxin, and 

the OD values for the assay followed the rise and fall of toxin production as detected by the 

cell-cytotoxicity assay.   

 

Model G 

There was no rise in the GDH level in any of the vessels after the instillation of spores in 

Model G (figures 4.12a-c); this was in contrast to most of the models but was also observed 

in Model E (figures 4.10a-c). Germination was not seen in Vessel One, however there was a 

small peak in GDH in Vessel One around the time of peak proliferation in the other vessels 

(figures 4.12a-c). As previously observed, the GDH level rose during germination and 

peaked with the total viable count and peak toxin production in Vessels Two and Three. 

The level of GDH was high, although not as high as for Model F, and was higher for Vessel 

Two (OD= ~ 84) than for Vessel Three (~74). Once again, the GDH level dropped quickly and 

the OD value went below the limit of detection about two days before the total viable 

count. In this model, toxin could still be detected from Vessel Two and Three after the total 

viable count and GDH level were below the limit of detection.  

Two days after the toxin was washed out of the system there was a small rise in GDH OD in 

both Vessels Two and Three, which lasted for two days before dropping again. There was a 

subsequent rise in total viable and spore counts after two days, but the total viable count 

did not diverge from the spore count and no toxin was detected; indicating that although 

the organism is growing in the model, this was not a recurrent episode.  

Once again, the toxin enzyme immunoassay detected toxin, and the OD values followed the 

rise and fall of toxin as detected by the cell-cytotoxicity assay. The level of toxin in this 

model was similar to those seen in earlier models (3RU), but not as high as seen in Model F 

(figures 4.11a-c).  
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Figure 4.10.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model E 

 

 

Figure 4.10.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model E 
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Figure 4.10.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model E 

 

 

Figure 4.11.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model F 
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Figure 4.11.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model F 

 

 

Figure 4.11.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model F 
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Figure 4.12.a. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel One of gut Model G 

 

 

Figure 4.12.b. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Two of gut Model G 
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Figure 4.12.c. Spore counts, total viable counts, toxin production and GDH 

measured by EIA in Vessel Three of gut Model G 

 

4.4 Discussion  

The enzyme immunoassay was able to detect GDH from the gut model fluid and showed 

rise and fall in line with the proliferation of the organism in the model.  The gluD PCR assay 

however, produced consistently high CT values, and unfortunately does not appear to be 

optimised for use in the gut model and so could not help to explain the pattern of rise and 

fall of GDH. It would be expected that as total viable count increases, the level of gluD 

within the system would also increase but that was not seen with the current gluD assay. 

Further optimisation of this assay is required before it can provide useful information on 

the proliferation of C. difficile within the model (figures 4.3 a-b). Additionally, further work 

is needed to clarify whether the PCR assay is detecting DNA in spores as well as in 

vegetative cells and/or free gluD in the system (figures 4.3 a-b). In addition, detection of 

mRNA may also provide insight into the proliferation of C. difficile. It is unfortunately 

outside of the scope of this project to develop the gluD assay further, and so this assay was 

not used for any further gut model experiments.  

The bacterial populations within the human gut model have been shown to be very similar 

to those seen at autopsy in the colon of patients who suffer sudden death, making this 
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model extremely useful for examining enteric pathogens (Macfarlane et al, 1998). The 

human gut model has been used to observe the effects of antibiotics on the growth and 

toxin production of C. difficile (Freeman et al, 2003; Baines et al, 2006; Freeman et al, 2007; 

Baines et al, 2009; Saxton et al 2009; Chilton et al, 2014b; Baines et al, 2015); the total 

viable count of C. difficile and toxin level rise and consequently fall in phase with each other 

during simulated CDI. This pattern was repeated for the gut model experiments described 

here, where the values for the total viable count and toxin production remained in phase 

(figures 4.1, 4.2, 4.4, 4.5, 4.7-4.12).  In contrast, for the first two sets of models, whilst the 

level of GDH did increase in phase with the total viable count and toxin level, it remained at 

peak levels in the model for longer. Once the level of GDH began falling, however, it was 

cleared from the model within the same number of days as the cells and toxin of C difficile. 

This may indicate that GDH is a very stable protein that is not broken down within the 

system, or possibly that it is sequestered in the model, perhaps in biofilm, and therefore 

takes longer to be cleared from the system. Alternatively, stores of GDH may be released 

by dying C. difficile cells, ‘flooding’ the model with GDH and increasing the period during 

which it can be detected. The gut model is clinically reflective (Freeman et al, 2003), 

suggesting that there could be periods where patient faecal samples could be positive for 

GDH when there are no viable organisms proliferating within their gut.   

Monitoring the level of GDH level in these models was impaired by the maximum threshold 

OD value for the GDH enzyme immunoassay. Using the assay in its current format does not 

show the ‘true’ peak levels of GDH within the model and could therefore be masking any 

subsequent rise and fall of GDH during this ‘plateau’ period. Dilution series demonstrated 

that below the maximum threshold OD of the assay, the results were quantitative, and 

diluted samples could be multiplied by the dilution factor to overcome the maximum 

threshold (tables 4.2-4.4, figures 4.6 a-b).  

Subsequent gut model experiments showed that the GDH level did indeed continue to 

increase over the previous maximum threshold OD value, during organism proliferation 

(figures 4.7-4.12).  The peak GDH OD varied between models, and between vessels. The 

highest GDH level seen in any experiment was those within gut Model F, which had a 

higher peak total viable count than any other gut model (7log10cfu/mL vs 5-6log10cfu/mL, 

figures 4.11a-c).  Interestingly, this model also had a higher peak toxin level (6 RU vs 3-5 

RU). This suggests, that the level of GDH is related to organism bioload within the model, 

with a higher bioload resulting in a higher level of GDH in the gut model fluid. When 
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comparing within models, the highest level of GDH was seen in Vessel Two, followed by 

Vessel Three, and then Vessel One. Given that the total viable counts did not vary 

significantly between Vessels Two and Three for these models, the GDH level does not 

appear to be solely related to organism bioload. 

When comparing the GDH levels seen in the initial simulated CDI episode and those when 

there is a recurrent episode (Models E and F), the levels in the recurrent episodes are lower. 

In Model F, for example, the peak GDH OD in the first episode in Vessel Two was ~250, but 

was ~100 in the recurrent episode. The peak total viable count and toxin level were actually 

higher than the first episode in this model, again suggesting that the level of GDH is not 

solely related to the bioload within the model.  In addition, there was a lag from the time 

the total viable counts began to increase and the GDH subsequently began to increase.  

This lag period was not as clear for the first episodes in any model compared with the 

recurrent episodes in Models E and F (figures 4.10a-c and 4.11a-c).  

There was often a rise in the level of GDH detected in the models when the spores were 

added to the system. This rise in GDH was not accompanied by a divergence between the 

total viable count and the spore count. This suggests that while there may be ‘turn over’ of 

the organism within the model, there was not exponential growth and proliferation. This 

rise in the level of GDH could, therefore, be a result of the organism reaching equilibrium 

within the model. If so, does this also occur when a human first encounters C. difficile 

spores? Is there a similar period of equilibrium, and could GDH be detected from their 

faeces at this point? It is possible that the spike in GDH is only seen once after the 

introduction of C. difficile spores to the model, or that if the period of steady state was 

extended, serial increases and decreases in GDH may be seen, as there is continual 

‘turnover’ of the organism. Unfortunately, the opportunity to sample a gut model with an 

extended steady state did not present itself within the timescale of this project.  

As well as detecting GDH at the beginning of the model, in the absence of proliferation, 

GDH was also been detected in the absence of any organisms in the model at all; after the 

total viable count had gone below the limit of detection. In four of the sets of models GDH 

was the only marker of C. difficile that could be detected in the gut model fluid for a 

median of 7.5 days (range of 2-10 days). However, in two of the models (F and G) the GDH 

levels fell very quickly and were below the limit of detection before all viable cells are 

washed out from the model (figures 4.11a-c and 4.12a-c). Interestingly, Model F had the 

highest level of GDH of any of the models, suggesting that the decline and wash out time of 
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GDH is not related to the load within the system. Further studies are necessary to clarify 

release and degradation of GDH in both simple and complex systems. It is possible that 

GDH is being sequestered in biofilm; such sequestration may account for the delayed 

clearance of GDH from the system compared with toxin titres and total viable counts. If this 

is the case, there may therefore have been less biofilm formation in Model F, creating 

higher loads of GDH in the planktonic system and making it easier to wash the GDH out of 

the system, after production had ceased.  

The toxin enzyme immunoassay did not function very well in detecting toxin within the gut 

model fluid, in contrast to the cell-cytotoxicity assay. The enzyme immunoassay did detect 

toxin in the last two models to be tested. As samples had been taken from the models and 

then frozen before testing, it is possible that freezing the fluid influenced the integrity of 

the toxin. It is known that toxin can be degraded by repeated freezer/thaw episodes 

(Freeman and Wilcox, 2003); however, all samples were only thawed once before testing to 

attempt to alleviate this fact. It is possible therefore that the storage time in the freezer 

had an effect; those samples with the shortest length of storage were those models tested 

last, and in which toxin was detected by the enzyme immunoassay.   
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5. Detection of GDH and toxin from longitudinal patient samples 

using commercial assays 

5.1 Introduction  

Many studies have highlighted the variability in performance of CDI laboratory diagnostic 

assays; however, there is a paucity of data on the reasons for these differences as 

discussed in section 1.13 of the introduction. In addition, there are also few data on the 

clinical course of CDI and the optimal time for each of the different diagnostic assays to be 

used. For instance, depending on the stage of disease a test may ‘perform’ badly or well as 

a marker of CDI. The data from gut model experiments of CDI showed marked differences 

in when the diagnostics targets of C. difficile or CDI can be detected (Chapter two). It is not 

clear however if the performance of the diagnostics assays in these in vitro experiments 

can be translated into their performance during clinical CDI.   For example, what does a 

GDH positive/toxin negative or GDH positive/culture negative result mean for a patient? 

Does this indicate the presence of disease or the presence of a non-viable organism in the 

presence of detectable levels of GDH?  These potential confounding issues have not been 

considered when patient samples are tested in laboratory evaluations of CDI tests, even 

though they may have a bearing on performance. 

Here a sequential faecal sampling protocol was used to examine the detection of C. difficile 

targets at different points in the patient's clinical course of infection, and during any 

potential recurrence. The key findings in this chapter are;  

 GDH could be detected from sequential faecal samples collected earlier than faecal 

samples that were positive for C. difficile toxin  

 Of the participants recruited as GDH-positive/toxin-negative, 28% went on to have 

a toxin positive faecal sample, a median of eight days later 

 GDH could be detected from sequential samples after other markers of C. difficile 

were no longer detected 

 GDH EIA appeared more sensitive than PCR for toxin genes 
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5.2 Methods 

5.2.1 Is the sensitivity of C. difficile diagnostic assays affected by the day on 

which a patient is tested? 

5.2.1.1 Analysis of PlaciD dataset to determine the difference between cases and 

controls when tested for C. difficile, its toxins and its DNA 

Hypothesis 

There are significant differences between cases of CDI and controls when using different 

C. difficile detection assays over time 

Methods 

CDI cases (diagnosed toxin positive by the routine microbiology laboratory GDH/CCNA), 

potential C. difficile excretors (PCDE’s, diagnosed GDH positive/toxin negative by the 

routine microbiology laboratory) and controls (≥50 year olds from the same hospital but 

who had no diarrhoeal symptoms) were recruited and followed during their hospital 

admission; faecal samples were collected daily where possible with routine clinical data. 

Samples were tested using culture for C. difficile, cell-cytotoxicity assay (CCNA), 

cytotoxigenic culture (CTC), enzyme immunoassays (EIAs) for glutamate dehydrogenase 

(GDH) and toxins (Chek-60 and ToxABII, Techlab, USA) and PCR for toxin genes (BD Max™, 

BD). Kerrie Davies was the study chief investigator for the PlaciD study and devised the 

study, wrote the study protocol and gained ethical approval, designed the data collection 

and study databases and analysed all the data. Patients were recruited by research nurses, 

who also collected patient samples and data. All samples were tested by Kerrie Davies, 

except for a four month period of maternity leave, when samples were tested by Claire 

Berry, Clinical Scientist within the Healthcare Associated Infections research group.  

Commercial enzyme immunoassays 

All of the commercial EIAs were performed on an automated platform (DS2, Dynex 

Magellan Biosciences, USA) to reduce operator error, following manufacturer’s protocols 

given in the kit insert, with minor changes listed within materials and methods chapter 

section 2.2, and as discussed with the manufacturer.  The optical density (OD) of each test 

was recorded as well as the result defined by the assay (using manufacturer set cut-offs). 

Reference methods 

The cell-cytotoxicity neutralisation assay, culture and cytotoxigenic culture assay were 

performed as described in materials and methods chapter, section 2.1. 
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Commercial molecular test 

The commercial molecular test was performed on a BD Max™ instrument following the 

protocol in the manufacturer’s kit insert, as described in material and methods chapter 

section 2.2.5. 

PCR ribotyping 

The C. difficile isolates identified from the study were typed using PCR ribotyping by the 

C. difficile Ribotyping Network of England and Northern Ireland (CDRN) as previously 

described (Stubbs et al, 1999) and as expounded in materials and methods chapter section 

2.1.6. 

Analyses: 

Positive results for each C. difficile assay, white cell counts, serum albumin and serum 

creatinine values were compared between cases, PCDE’s and controls. Patient 

demographics, antibiotic use and proton pump inhibitor (PPI) use were compared between 

cases, PCDE’s and controls. For cases and PCDE’s, day 0 was defined as the day of the 

routine sample that allowed entry into the study. For controls, day 0 was defined as the day 

of entry into the study. 

Means are displayed for continuous variables, medians where data is not normalised. 

Continuous variables were compared by t test for independent samples or Mann-Whitney 

(non-parametric data); categorical variables were compared by χ2 or Fisher’s exact.   

Sensitivity, specificity, positive and negative predictive values were calculated for each 

assay compared with the case definition (diagnostic sample result), CCNA, culture and CTC.  

 

5.3 Results 

5.3.1 Patient recruitment 

There were 342 patients recruited to the study; 167 GDH positive (both toxin negative and 

positive) and 175 controls. However, faecal samples were received from only 147 GDH 

positive patients (both toxin negative and positive) and 81 controls, totalling 1173 sampling 

days. Of the 147 GDH positive patients, 65 had no detectable toxin in their initial routine 

diagnostic specimen; they were therefore designated PCDE’s.   No controls became CDI 

positive during their stay. 
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5.3.2 Patient demographics 

Controls recruited to the study were significantly older than those recruited as GDH 

positive (80 Vs 71 years respectively, p <0.0001) (table 5.1). This was still true once the 

participants without samples in the study had been removed, with median ages for those 

with at least one sample included in the study of 80 years  and 70 years for controls and 

GDH positive participants respectively (p <0.0001). CDI cases were significantly older than 

PCDEs (median age 75 vs 62 years respectively, P <0.0001). There were no significant 

differences in the gender of participants either recruited or with at least one sample in the 

study.  However, there was a significantly higher proportion of females in the PCDEs than in 

the CDI cases (60% vs 40.2% respectively, P = 0.03).  

A significantly higher proportion of participants recruited as GDH positive had at least one 

antibiotic in the previous eight weeks when compared to participants recruited as controls 

(90.7% vs 47.7%, P <0.0001). This was also true for all participants with at least one sample 

in the study (controls = 50.6% vs GDH positive 91.9%, p <0.0001). CDI cases were 

significantly more likely to have had an antibiotic in the previous eight weeks than PCDEs, 

although the proportions in both groups were high (96.3% Vs 84.6% respectively, p = 0.03). 

There was no significant difference between the proportion of recruited controls that had a 

previous drug (other than an antibiotic) in the previous eight weeks compared with 

recruited GDH positive patients; there was also no significance difference when only those 

with at least one sample in the study were compared, although the proportion in GDH 

positive patients was higher in both cases.  PCDEs had a higher proportion of patients that 

had been taking a drug other than an antibiotic in the previous eight weeks compared to 

CDI cases, but this was not significant (72.3% Vs 64.6%, p = 0.19).  

Most patients did not want to have a rectal swab taken (90.9%), and the proportion of 

those refusing was not significantly different between those recruited as controls or those 

recruited as GDH positive. Interestingly of those patients that had at least one sample in 

the study, a significantly higher proportion of GDH positive patients refused the rectal swab 

than control patients (91.2% Vs 79.0%, p = 0.03). Although there was a higher rate of 

refusal in the CDI cases than PCDEs this was not significant (96.3% Vs 84.6%, p = 0.19). 
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  Recruited to the study Had at least one sample in the study 

Had at least one sample in the study and 
initial diagnostic specimen was GDH 

positive 

  
Control 

(n = 175) 

GDH 
positive 
(n = 167) 

Significance 
(p) 

Control 
(n = 81) 

GDH 
positive 
(n = 147) 

Significance 
(p) 

PCDE  
(n = 65) 

CDI case 
 (n = 82) 

Significance 
(p) 

Age                   

median 80 71 <0.0001 80 70 <0.0001 62 75 <0.0001 

mean 79 69 <0.0001 78 68 <0.0001 62 74 0.016 

min 41 18   55 18   18 27 
 max 100 101   100 101   101 101 
 Gender             

   Female 92 80 
0.41 

44 72 
0.53 

39 33 
0.03 

Male 77 82 37 75 26 49 

unknown 6 5         
   Had a rectal 

swab taken     
        

   No   150 151 
0.24 

64 133 
0.03 

56 77 

0.19 Yes 25 16 17 14 9 5 

Had an 
antibiotic in the 
previous 8 
weeks     

        

   Yes 80 147 
<0.0001 

41 134 
<0.0001 

55 79 
0.03 

No 89 15 40 13 10 3 

unknown 6 5         
   Had a drug 

(other than an 
antibiotic in the 
previous 8 
weeks)     
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Yes 104 112 
0.08 

48 100 
0.15 

47 53 
0.19 

No 64 44 32 42 14 28 

unknown 7 9   1 5   4 1 
 

Table 5.1. Patient demographics of all cases and controls, regardless of if they had samples in the study and if they had at least one 

sample included in the study. Those patients that had at least one GDH positive sample are divided into potential C. difficile 

excretors (PCDEs) and CDI cases based on the presence or absence of C. difficile toxins in the original routine sample. 
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For all recruited participants, those in the control arm were significantly more likely to have 

been admitted following a fall than those recruited into the GDH positive arm (p <0.0001) 

(table 5.2). In addition, participants in the control arm were significantly more likely than 

GDH positive participants to be admitted with a fractured neck of femur, fracture of the 

knee, fracture of the shaft of the femur and septic arthritis (table 5.2). Participants 

recruited into the GDH positive arm were significantly more likely than control participants 

to have been admitted with diarrhoea, diarrhoea and vomiting, and abdominal pain (table 

5.3).  

For all participants that had at least one sample included in the study those in the control 

arm were significantly more likely to have been admitted following a fall than those 

recruited into the GDH positive arm (p <0.0001) (table 5.2). In addition, participants in the 

control arm were significantly more likely than GDH positive participants to be admitted 

with a fractured neck of femur, fracture of the knee, fracture of the shaft of the femur and 

septic arthritis (table 5.2).  Participants recruited into the GDH positive arm were 

significantly more likely than control participants to have been admitted with diarrhoea, 

diarrhoea and vomiting, abdominal pain, with pyrexia, and for being ‘unwell’ (table 5.3). 

GDH positive participants with CDI were significantly more likely to be admitted for being 

‘unwell’ than PCDE participants.  

Control participants recruited into the study were significantly more likely than GDH 

positive participants to have a past medical history of cancer, dementia and hypertension 

(table 5.4). However, participants recruited as GDH positive were significantly more likely 

than control participants to have a past medical history of alcoholism, asthma, pancreatitis 

and renal failure (table 5.5). Once only participants that had at least one sample in the 

study were compared, only a past medical history of dementia remained significantly more 

likely in control participants than GDH participants (table 5.4).  Alcoholism and asthma 

remained as the only conditions listed in past medical histories that were significantly 

associated with GDH participants compared with control participants (table 5.5).  CDI 

participants were significantly more likely to have had angina, heart failure and epilepsy 

than PCDE’s (table 5.5).  
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Recruited to the study Had at least one sample in the study Had at least one sample in the 
study and initial diagnostic 
specimen was GDH positive 

  
  

Control 
n (%) 

GDH 
positive 

n (%) 
Total 

n 
Significance 

(p) 
Control 

n (%) 

GDH 
positive 

n (%) 
Total 

n 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Total 
n 

Significance 
(p) 

Fall 
87 

(49.7) 
13 

(7.7) 100 <0.0001 
36 

(44.4) 
11 

(7.5) 47 <0.0001 
3 

(4.6) 
8 

(9.7) 11 0.20* 

Fractured neck 
of femur 

58 
(33.0) 

2 
(1.2) 60 <0.0001 

17 
(21.9) 

2 
(1.4) 19 <0.0001 

0 
(0.0) 

2 
(2.4) 2 0.31* 

Planned surgery 
9 

(5.1) 
19 

(11.4) 28 0.06 
7 

(8.6) 
18 

(22.2) 25 0.54 
11 

(16.9) 
7 

(8.5) 18 0.20 

Fracture of the 
Knee 

7 
(4.0) 

0 
(0.0) 7 0.009* 

5 
(6.1) 

0 
(0) 5 0.005* 

0 
(0) 

0 
(0.0) 0 N/A 

Fracture of the 
shaft of the 
femur 

7 
(4.0) 

0 
(0.0) 7 0.009* 

5 
(6.1) 

0 
(0) 5 0.005* 

0 
(0.0) 

0 
(0.0) 0 

N/A 

Not known 
7 

(4.0) 
0 

(0.0) 7 0.009* 
1 

(1.2) 
0 

(0.0) 1 0.36* 
0 

(0.0) 
0 

(0.0) 0 

N/A 

Septic arthritis 
6 

(3.4) 
0 

(0.0) 6 0.017* 
4 

(4.9) 
0 

(0) 4 0.015* 
0 

(0.0) 
0 

(0.0) 0 

N/A 

Total  175 167   81 147   65 82   

 Table 5.2. The top five reasons for admission (by n size) for control patients that were recruited to the study, regardless of if they 

had samples in the study and if they had at least one sample included in the study. Those patients that had at least one GDH 

positive sample are divided into potential C. difficile excretors (PCDEs) and CDI cases based on the presence or absence of C. difficile 

toxins in the original routine sample. Full table of admission for all participants are shown in appendix table A3.1. Each participant 

could have more than one reason for admission recorded. *indicates where Fishers exact tests was used instead of χ2 
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Recruited to the study Had at least one sample in the study 
 

Had at least one sample in the 
study and initial diagnostic 
specimen was GDH positive 

  
  

Control 
n (%) 

GDH positive 
n (%) 

Total 
n 

Significance 
(p) 

Control 
n (%) 

GDH positive 
n (%) 

Total 
n 

Significance 
(p) 

PCDE 
n (%) 

CDI 
n (%) 

Total 
n 

Significance 
(p) 

Diarrhoeaabc 
1  

(0.6) 
21  

(12.6) 22 <0.0001 
1  

(1.2) 
19  

(12.9) 20 0.006 
6  

(9.2) 
13  

(15.9) 19 0.34 

Planned surgeryabc 
9  

(5.1) 
19  

(11.4) 28 0.06 
7  

(8.6) 
18  

(12.2) 25 0.54 
11  

(16.9) 
7  

(8.5) 18 0.20 

Diarrhoea and 
vomitingabc 

0  
(0.0) 

14  
(8.4) 14 0.0003 

0  
(0) 

14  
(9.5) 14 0.002* 

7  
(10.8) 

7  
(8.5) 14 0.43 

Fallac 
87  

(49.7) 
13  

(7.8) 100 <0.0001 
36  

(44.4) 
11  

(7.5) 47 <0.0001 
3  

(4.6) 
8  

(9.8) 11 0.20* 

Abdominal painabc 
1  

(0.6) 
10  

(5.0) 11 0.011* 
1  

(1.2) 
9  

(6.1) 10 0.07* 
4  

(6.1) 
5  

(6.1) 9 0.62* 

Shortness of breathb N/A N/A 
  

3  
(0.4) 

7  
(4.8) 10 0.49* 

5  
(7.6) 

2  
(2.4) 7 0.13* 

Pyrexiac N/A N/A 
  

0  
(0) 

7  
(4.8) 7 0.04* 

2  
(3.0) 

5  
(6.1) 7 0.32* 

Unwellc N/A N/A 
  

0  
(0) 

6  
(4.1) 6 0.07* 

0  
(0.0) 

6  
(7.3) 6 0.03* 

Total  175 167   81 147   65 82   

 Table 5.3. The top five reasons for admission (by n size) for aGDH positive patients  that were recruited to the study , bPCDEs or cCDI 

patients, regardless of if they had samples in the study and if they had at least one sample included in the study. Those patients 

that had at least one GDH positive sample are divided into potential C. difficile excretors (PCDEs) and CDI cases based on the 

presence or absence of C. difficile toxins in the original routine sample. Full table of admission for all participants are shown in 

appendix table A3.1. Each participant could have more than one reason for admission recorded. *indicates where Fishers exact 

tests was used instead of χ2  
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Recruited to the study Had at least one sample in the study Had at least one sample in the study 
and initial diagnostic specimen was 

GDH positive 

  
Control 

n (%) 

GDH 
positive 

n (%) 
Total 

n 
Significance 

(p) 
Control 

n (%) 

GDH 
positive 

n (%) 
Total 

n 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Total 
n 

Significance 
(p) 

Atrial 
fibrillationab 

15  
(8.6) 

13  
(7.8) 28 1.0 

10  
(12.3) 

13  
(8.8) 23 0.54 

3  
(4.6) 

10 
(12.2) 13 0.19 

Cancerab 
28  

(16.0) 
41  

(24.6) 69 0.07 
14  

(17.3) 
39 

(27.5) 53 0.16 
22  

(33.8) 
17 

(20.7) 38 0.11 

CABGab 
10  

(5.7) 
5  

(3.0) 15 0.33 
5  

(6.2) 
3  

(2.0) 8 0.10* 
1  

(1.5) 
2 

(2.4) 3 0.67* 

CKDab 
10  

(5.7) 
3  

(1.8) 13 0.11 
5  

(6.2) 
3  

(2.0) 8 0.10* 
0  

(0.0) 
3  

(3.7) 3 0.33* 

COPDab 
12  

(6.9) 
10  

(6.0) 22 0.92 
4  

(4.9) 
10  

(6.8) 14 0.40* 
6  

(9.2) 
4  

(4.9) 10 0.24* 

Dementiaab 
15  

(8.6) 
3  

(1.8) 18 0.01 
6  

(7.4) 
3  

(2.0) 9 0.05* 
0  

(0.0) 
3  

(3.7) 3 0.33* 

Diabetesab 
33  

(18.9) 
30  

(18.0) 63 0.92 
19  

(23.5) 
26 

(17.7) 45 0.38 
9  

(13.8) 
19 

(23.2) 28 0.22 

Heart 
diseaseab 

14  
(8.0) 

8  
(4.8) 22 0.32 

7  
(8.6) 6 (4.8) 13 0.19* 

1  
(1.5) 

6  
(7.3) 7 0.10* 

Hypertentionab 
55 

(31.4) 
34  

(20.4) 89 0.02 
22  

(27.2) 
30 

(20.4) 52 0.32 
13  

(20.0) 
18 

(22.0) 31 0.92 

Hypothyroidab 
10  

(5.7) 
5  

(3.0) 15 0.33 
3  

(3.7) 
4  

(2.7) 7 0.48* 
1  

(1.5) 
3  

(3.7) 4 0.63* 

MIab 
15  

(8.6) 
8  

(4.3) 23 0.24 
8  

(9.9) 
8  

(5.4) 16 0.32 
5  

(7.7) 
3  

(3.7) 8 0.24* 

Ostearthritisab 
15  

(8.6) 
13  

(7.8) 28 1.0 
6  

(7.4) 
12  

(8.2) 18 1.0 
5  

(7.7) 
7  

(8.5) 12 0.82 

Osteoporosisab 
11 

(6.2) 
4  

(2.4) 15 0.13 
4  

(4.9) 
4  

(2.7) 8 0.30* 
0  

(0.0) 
4  

(4.9) 4 0.22* 
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Rheumatoidab 
9  

(5.1) 
8  

(4.8) 17 0.92 
6  

(7.4) 
8  

(5.4) 14 0.37* 
4  

(6.2) 
4  

(4.9) 8 0.51* 

Strokeab 
17  

(9.7) 
15  

(9.0) 32 1.0 
6  

(7.4) 
11  

(7.5) 17 0.80 
3  

(4.6) 
8  

(9.8) 11 0.54* 

Anginab N/A N/A N/A 
 

3  
(3.7) 

3  
(2.0) 6 0.36* 

4  
(6.2) 

2  
(2.4) 6 0.07* 

Epilepsyb N/A N/A N/A 
 

4  
(5.0) 

7  
(4.8) 11 0.59* 

5  
(7.7) 

2 
(2.4) 7 0.03* 

nab N/A N/A N/A 
 

3  
(3.7) 

2  
(1.4) 5 0.24* 

0  
(0.0) 

2 
(2.4) 2 0.48* 

PVDb N/A N/A N/A 
 

3  
(3.7) 

3  
(2.0) 6 0.36* 

2  
(3.1) 

1 
(1.2) 3 0.22* 

Total  175 167 
  

81 147 
  

65 82 
  

Table 5.4. The top ten conditions listed within past medical history (by n size) for acontrol patients that were recruited to the study 

regardless of if they had samples in the study and bif they had at least one sample included in the study. Those patients that had at 

least one GDH positive sample are divided into potential C. difficile excretors (PCDEs) and CDI cases based on the presence or 

absence of C. difficile toxins in the original routine sample. Full table of past medical history for all participants are shown in 

appendix table A3.2. Each participant could have more than one reason for admission recorded. *indicates where Fishers exact 

tests was used instead of χ2  
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Recruited to the study Had at least one sample in the study Had at least one sample in the study 
and initial diagnostic specimen was 

GDH positive 

  
  

Control 
n (%) 

GDH 
positive 

n (%) 
Total 

n 
Significance 

(p) 
Control 

n (%) 

GDH 
positive 

n (%) 
Total 

n 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Total 
n 

Significance 
(p) 

Alcoholicabc 
4  

(2.3) 
14  

(8.4) 18 0.02 
1  

(1.2) 
12  

(8.2) 13 0.02* 
5  

(7.7) 
6  

(7.3) 11 0.59* 

Asthmaabcd 
5  

(2.9) 
20  

(12.0) 25 0.002 
2  

(2.5) 
18  

(12.2) 20 0.02 
9  

(13.3) 
9  

(11.0) 18 0.78 

Atrial 
fibrillationabd 

15  
(8.6) 

13  
(7.8) 28 1.0 

10 
(12.3) 

13  
(8.8) 23 0.54 

3  
(4.6) 

10  
(12.2) 13 0.19 

Cancerabcd 
28 

(16.0) 
41  

(24.6) 69 0.07 
14 

(17.3) 
39  

(27.5) 53 0.16 
22 

(33.8) 
17 

(20.7) 38 0.11 

COPDabc 
12  

(6.9) 
10  

(6.0) 22 0.92 
4  

(4.9) 
10  

(6.8) 14 0.40* 
6  

(9.2) 
4  

(4.9) 10 0.24* 

Diabetesabcd 
33 

(18.9) 
30  

(18.0) 63 0.92 
19 

(23.5) 
26  

(17.7) 45 0.38 
9  

(13.8) 
19 

(23.2) 28 0.22 

Epilepsyabc 
5  

(2.9) 
7  

(4.2) 12 0.71 
4  

(4.9) 
7  

(4.8) 11 0.59* 
5  

(7.7) 
2  

(2.4) 7 0.14* 

Heart diseasea 
14  

(8.0) 
8  

(4.8) 22 0.32 
7  

(8.6) 
7  

(4.8) 14 0.19* 
1  

(1.5) 
6  

(7.3) 7 0.10* 

Hypertentionabc

d 
55 

(31.4) 
34  

(20.4) 89 0.02 
22 

(27.2) 
30  

(20.4) 52 0.32 
13  

(20.0) 
18 

(22.0) 31 0.92 

MIabc 
15  

(8.6) 
8  

(4.3) 23 0.24 
8  

(9.9) 
8  

(5.4) 14 0.32 
5  

(7.7) 
3  

(3.7) 8 0.24 

Ostearthritisabc 
15  

(8.6) 
13  

(7.8) 28 1.0 
6  

(7.4) 
12  

(8.2) 18 1.0 
5  

(7.7) 
7  

(8.5) 12 0.92 

Pancreatitisa 
1  

(0.6) 
7  

(4.2) 8 0.02* 
0  

(0.0) 
5  

(3.4) 5 0.11* 
3  

(4.6) 
2  

(2.4) 5 0.39* 

Renal failureab 
2  

(1.1) 
8  

(4.8) 10 0.04* 
1  

(1.2) 
8  

(5.4) 16 0.11* 
4  

(6.2) 
4  

(4.9) 8 0.51* 
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Rheumatiodab 
9  

(5.1) 
8  

(4.8) 17 0.92 
6  

(7.4) 
8  

(5.4) 9 0.37* 
4  

(6.2) 
4  

(4.9) 8 0.51* 

Strokeab 17 (9.7) 
15  

(9.0) 32 1.0 
6  

(7.4) 
11  

(7.5) 17 0.81 
3  

(4.6) 
8  

(9.8) 11 0.20* 

 
Heart failureb N/A N/A 

  

1  
(1.2) 

8  
(5.4) 9 0.11* 

0  
(0.0) 

5  
(6.1) 5 0.02* 

Ulcerative 
colitisc N/A N/A 

  
N/A N/A 

  

5  
(7.7) 

1  
(1.2) 6 0.08* 

Total  175 167 
  

81 147 
  

65 82 
  

Table 5.5. The top ten conditions listed within past medical history (by n size) for aGDH positive patients  that were recruited to the 

study , bthat had at least one sample in the study, cPCDEs or dCDI patients, regardless of if they had samples in the study and if they 

had at least one sample included in the study. Those patients that had at least one GDH positive sample are divided into potential 

C. difficile excretors (PCDEs) and CDI cases based on the presence or absence of C. difficile toxins in the original routine sample. Full 

table of past medical history for all participants are shown in appendix table A3.2. Each participant could have more than one 

reason for admission recorded. *indicates where Fishers exact tests was used instead of χ2  
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5.3.3 Participants with at least one sample in the study 

The study data was only complete for participants that submitted at least one sample into 

the study, as these are the only participants who could have samples tested with the 

diagnostic assays.  The following tables therefore only include these participants.  

The proportion of participants that received at least one dose of antibiotics was 

significantly higher for GDH positive samples compared with control participants (table 5.6). 

There was also a significant difference between control participants and GDH positive 

participants for each number of doses of antibiotic received and for the total number of 

doses of antibiotic received (table 5.6).  The proportion of CDI cases that had at least one 

antibiotic was significantly higher compared with PCDE’s, and the total number of doses 

received was significantly higher for CDI cases compared with PCDEs.  There was however 

no significant difference between the proportions of participants that received larger 

numbers of doses (table 5.6). The most commonly prescribed antibiotics for control and 

GDH positive participants are shown in tables 5.7 and 5.8. Control participants were 

significantly more likely to have been prescribed gentamicin compared with GDH positive 

participants.  In contrast, GDH positive participants were significantly more likely to have 

the following antibiotics prescribed in the previous three months compared with control 

participants; ciprofloxacin, co-trimoxazole, fidaxomicin, meropenem, metronidazole, 

pipercillin-tazobactam, trimethoprim, vancomycin and the antifungal fluconazole (table 

5.7).  CDI cases were significantly more likely to have the following antibiotics prescribed in 

the previous three months compared with PCDEs; fidaxomicin, metronidazole and 

vancomycin (table 5.8). PCDEs were significantly more likely to have been prescribed the 

antifungal fluconazole in the previous three months compared with CDI cases.   
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Had at least one sample in the 
study 

Had at least one sample in the study 
and initial diagnostic specimen was 

GDH positive 

Number 
of 
antibiotic 
doses 

Control 
n (%) 

GDH 
positive 

n (%) 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Significance 
(p) 

One 41 (50.6) 
134 

(91.2) <0.0001 
55  

(84.6) 
79  

(96.3) 0.03 

Two 22 (27.2) 
106 

(72.1) <0.0001 
43  

(66.2) 
63  

(76.8) 

0.2 

Three 11 (13.6) 
64 

(43.5) <0.0001 
25  

(38.5) 
39  

(47.6) 0.4 

Four 
6  

(7.4) 
44 

(29.9) 0.0002 
21  

(32.3) 
23  

(28.0) 0.7 

Five 
0  

(0.0) 
27 

(18.4) <0.0001 
12  

(18.5) 
15  

(18.3) 0.8 

Six 
0  

(0.0) 
16 

(10.9) 0.005 
7  

(10.8) 
9  

(11.0) 0.8 

Seven 
0  

(0.0) 
7  

(4.8) 0.04* 
2  

(3.1) 
5  

(6.1) 0.33* 

Eight 
0  

(0.0) 
1  

(0.7) 0.6* 
0  

(0.0) 
1  

(1.2) 0.56* 

Nine 
0  

(0.0) 
1  

(0.7) 0.6* 
0  

(0.0) 
1  

(1.2) 0.56* 

Ten 
0  

(0.0) 
1  

(0.7) 0.6* 
0  

(0.0) 
1  

(1.2) 0.56* 

Eleven 
0  

(0.0) 
1  

(0.7) 0.6* 
0  

(0.0) 
1  

(1.2) 0.56* 

Twelve 
0  

(0.0) 
1  

(0.7) 0.6* 
0  

(0.0) 
1  

(1.2) 0.56* 

Total 
number 
of doses 

80 403 <0.0001 165 238 <0.0001 

Table 5.6. Number of antibiotic doses each participant received in the three 

months prior to recruitment into the study   
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 Had at least one sample in the 
study 

Had at least one sample in the 
study and initial diagnostic 
specimen was GDH positive 

  
  

Control 
n (%) 

GDH 
positive 

n (%) 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Significance 
(p) 

Aztreonam 
3  

(3.7) 
11  

(7.5) 0.20* 
7  

(10.8) 
4  

(4.9) 0.15* 

Amoxicillin 
4  

(4.9) 
12  

(8.2) 0.52 
5  

(7.7) 
7  

(8.5) 0.92 

Clarithromycin 
3  

(3.7) 
7  

(4.8) 0.50* 
2  

(3.1) 
5  

(6.1) 0.33* 

Co- amoxiclav 
12  

(14.8) 
27  

(18.4) 0.62 
11  

(16.9) 
16  

(19.5) 0.84 

Flucloxacillin 
13  

(16.0) 
15  

(10.2) 0.28 
6  

(9.2) 
9  

(11.0) 0.92 

Gentamicin 
5  

(6.2) 
0  

(0.0) 0.005* 
0  

(0.0) 
0  

(0.0) - 

Linezolid 
3  

(3.7) 
2  

(1.4) 0.24 
1  

(1.5) 
1  

(1.2) 0.69 

Metronidazole 
3  

(3.7) 
82  

(55.8) <0.0001 
26  

(40.0) 
56  

(68.3) 0.001 

Nitrofurantoin 
4  

(4.9) 
8  

(5.4) 0.57* 
0  

(0.0) 
4  

(4.9) 0.09* 

Pipercillin 
tazobactam 

5  
(6.2) 

46  
(31.3) <0.0001 

22  
(33.8) 

24  
(29.3) 0.68 

Tazocin 
5  

(6.2) 
18  

(12.2) 0.22 
8  

(12.3) 
10  

(12.2) 0.86 

Teicoplanin 
5  

(6.2) 
3  

(2.0) 0.11* 
2  

(3.1) 
1  

(1.2) 0.41* 

Vancomycin 
3  

(3.7) 
40  

(27.2) <0.0001 
10  

(15.4) 
30  

(36.6) 0.007 

Table 5.7.  Top ten (by n size) antibiotics taken by the control participants in the 

three months prior to the study, for all recruited participants that had at least one 

sample taken in the study. *indicates where Fishers exact tests was used instead 

of χ2. Full table of antibiotic history for all participants is shown in appendix table 

A3.3  
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Had at least one sample in the 
study 

Had at least one sample in 
the study and initial 

diagnostic specimen was 
GDH positive 

  
  

Control 
n (%) 

GDH 
positive 

n (%) 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Significance 
(p) 

Aztreonama 
3  

(3.7) 
11  

(7.5) 0.20* 
7 

(10.8) 
4  

(4.9) 0.15* 

Co- amoxiclavab 
12  

(14.8) 
27  

(18.4) 0.62 
11 

(16.9) 
16 

(19.5) 0.84 

Co-trimoxazoleab 
1  

(1.2) 
11  

(7.5) 0.04* 6 (9.2) 
5  

(6.1) 0.34* 

Flucloxacillinab 
13 

(16.0) 
15  

(10.2) 0.28 6 (9.2) 
9 

(11.0) 0.92 

Fluconazolea 
0  

(0.0) 
10  

(6.8) 0.01* 
9 

(13.8) 
1  

(1.2) 0.003* 

Meropenemab 
1  

(1.2) 
16  

(10.9) 0.0004 
9 

(13.8) 
7  

(8.5) 0.45 

Metronidazoleab 
3  

(3.7) 
82  

(55.8) <0.0001 
26 

(40.0) 
56 

(68.3) 0.001 

Pipercillin 
tazobactamab 

5  
(6.2) 

46  
(31.3) <0.0001 

22 
(33.8) 

24 
(29.3) 0.68 

Tazocinab 
5  

(6.2) 
18  

(12.2) 0.22 
8 

(12.3) 
10 

(12.2) 0.86 

Trimethoprima 
1  

(1.2) 
10  

(6.8) 0.05* 
6  

(9.2) 
4  

(4.9) 0.24* 

Vancomycinab 
3  

(3.7) 
40  

(27.2) <0.0001 
10 

(15.4) 
30 

(36.6) 0.007 

Amoxicillinb 
4  

(4.9) 
12  

(8.2) 0.52 5 (7.7) 
7  

(8.5) 0.92 

Ciprofloxacinb 
1  

(1.2) 
9  

(6.1) 0.009* 4 (6.2) 
5  

(6.1) 0.62* 

Clarithromycinb 
3  

(3.7) 
7  

(4.8) 0.50* 2 (3.1) 
5  

(6.1) 0.33* 

Fidaxomicinb 
0  

(0.0) 
28  

(19.0) <0.0001 5 (7.7) 
23 

(28.0) 0.004 

Table 5.8 Top ten (by n size) antibiotics taken by aPCDEs and bCDI participants in 

the three months prior to the study, for all recruited patients that had at least one 

sample taken in the study. *indicates where Fishers exact tests was used instead 

of χ2. Full table of antibiotic history for all participants is shown in appendix table 

A3.3 

 

Control participants were significantly more likely than GDH positive participants to have 

taken laxatives in the three months prior to recruitment in the study (p <0.0001) (table 5.9). 
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Of these laxatives, Docusate and Senna were significantly more likely to have been 

prescribed for control participants than for GDH positive participants (table 5.10). GDH 

positive participants were not significantly more likely than controls to be prescribed any 

particular class of drugs, however they were more likely to have been prescribed 

Omeprazole and Ranitidine than control participants (tables 5.9 And 5.10). There were no 

significant differences in the class or specific drugs prescribed for PCDEs and CDI 

participants in the three months prior to recruitment in the study (tables 5.9 And 5.10).  

 

  

Had at least one sample in the 
study 

Had at least one sample in the study 
and initial diagnostic specimen was 

GDH positive 

  
  

Control 
n (%) 

GDH 
positive 

n (%) 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Significance 
(p) 

Analgesia 
2  

(2.5) 
4  

(2.7) 0.63* 
3  

(4.6) 
1  

(1.2) 0.23* 

Anti-
diarrhoeal 

0  
(0.0) 

2  
(1.4) 0.41* 

0  
(0.0) 

2  
(2.4) 0.31* 

Anti-emetic 
1  

(1.2) 
4  

(2.7) 0.42* 
2  

(3.1) 
2  

(2.4) 0.60* 

Anti-
motility 

1  
(1.2) 

4  
(2.7) 0.42* 

3  
(4.6) 

1  
(1.2) 0.22* 

Bowel prep 
0  

(0.0) 
2  

(1.4) 0.41* 
0  

(0.0) 
2  

(2.4) 0.31* 

Enema 
0  

(0.0) 
1  

(0.7) 0.65* 
1  

(1.5) 
0  

(0.0) 0.44* 

H2 
receptor 
antagonist 

0  
(0.0) 

3  
(2.0) 0.27* 

1  
(1.5) 

2  
(2.4) 0.59* 

Laxative 
43 

(53.1) 
17  

(11.6) <0.0001 
9  

(13.8) 
8  

(9.8) 0.61 

pH 
antagonist 

3  
(3.7) 

17  
(11.6) 0.08 

6  
(9.2) 

11  
(13.4) 0.60 

PPI 
33 

(40.7) 
70  

(47.6) 0.39 
33  

(50.8) 
37  

(45.1) 0.61 

Total 81 147 
 

65 82 
 

Table 5.9 Class of drugs other than antibiotics, taken in the three months prior to 

the study, for all patients recruited to the study that had at least one sample 

taken. *indicates where Fishers exact tests was used instead of χ2 
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Had at least one sample in the 

study 

Had at least one sample in the 
study and initial diagnostic 
specimen was GDH positive 

  
  

Control 
n (%) 

GDH 
positive 

n (%) 
Significance 

(p) 
PCDE 
n (%) 

CDI 
n (%) 

Significance 
(p) 

Codeine 
2  

(2.5) 
4  

(2.7) 0.63* 
3  

(4.6) 
1  

(1.2) 0.23* 

Docusate 
4  

(4.9) 
0  

(0.0) 0.01* 
0  

(0.0) 
0  

(0.0) 1 

Esomeprazole 
1  

(1.2) 
1  

(0.7) 0.58 
1  

(1.5) 
0  

(0.0) 0.44* 

Klean prep 
0  

(0.0) 
1  

(0.7) 0.65* 
0  

(0.0) 
1  

(1.2) 0.69* 

Lactulose 
4  

(4.9) 
2  

(1.4) 0.12* 
0  

(0.0) 
2  

(2.4) 0.31* 

Lansoprazole 
24 

(29.6) 
34  

(23.1) 0.36 
16  

(24.6) 
18  

(22.0) 0.89 

Loperamide 
1  

(1.2) 
8  

(5.4) 0.11* 
5  

(7.7) 
3  

(3.7) 0.25* 

Metaclopramide 
1  

(1.2) 
4  

(2.7) 0.42* 
2  

(3.1) 
2  

(2.4) 0.60* 

Microlax 
0  

(0.0) 
1  

(0.7) 0.65* 
1  

(1.5) 
0  

(0.0) 0.44* 

Movicol 
14 

(17.3) 
12  

(8.2) 0.06 
6 

(9.2) 
6  

(7.3) 0.92 

Omeprazole 
9  

(11.1) 
42  

(28.6) 0.004 
18  

(27.7) 
24  

(29.3) 0.92 

Pantoprazole 
0  

(0.0) 
1  

(0.7) 0.65* 
0  

(0.0) 
1  

(1.2) 0.56* 

Phosphate 
enema 

2  
(2.5) 

0  
(0.0) 0.13* 

0  
(0.0) 

0  
(0.0) 1 

Picolax 
0  

(0.0) 
1  

(0.7) 0.65* 
0  

(0.0) 
1  

(1.2) 0.56* 

PO4 enema 
1  

(1.2) 
0  

(0.0) 0.35* 
0  

(0.0) 
0  

(0.0) 1 

Rabeprazole 
0  

(0.0) 
1  

(0.7) 0.65* 
1  

(1.5) 
0  

(0.0) 0.44* 

Ranitidine 
3  

(3.7) 
26  

(17.7) 0.005 
10  

(15.4) 
16  

(19.5) 0.66 

Senna 
16 

(19.8) 
7  

(4.8) 0.0005 
4  

(6.2) 
3  

(3.7) 0.37* 

Total 81 147 
 

65 82 
 

Table 5.10. Name of drugs other than antibiotics, taken in the three months prior 

to the study, for all participants recruited to the study that had at least one 

sample taken. *indicates where Fishers exact tests was used instead of χ2 
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5.3.4 Diagnostic assay results 

Although there were 1173 sampling days results for each of the assays are not available for 

every sample; CCNA n = 1086, Culture N = 1129, CTC N = 1104, GDH EIA N = 1138, Toxin EIA 

N = 1135, Toxin gene B (PCR) N = 1086 (table 5.12).  Reasons for discrepancies in the N sizes 

included lack of sample volume for processing by all assays, removal of any CCNA results 

that were ‘indeterminate’ and removal of Toxin gene PCR results that were ‘invalid’.  

There were three samples from control participants that were positive for C. difficile toxins 

by CCNA; two of which were also positive by the Toxin EIA (table 5.12). These three 

samples came from three different individuals; the sample for one of the individuals 

(participant 178) was positive by all assays and PCR ribotype 018 was isolated from the 

sample. The samples for the other two individuals were negative for all other assays. 

Participant 178 was withdrawn from the study as a control participant after this result.  

There were fourteen samples from control participants that had C. difficile isolated from 

their sample; these were from seven individuals. Six of these seven participants had only 

one PCR ribotype isolated form their samples, one had two PCR ribotypes isolated 

(table 5.11).  With the exception of participant 178 (discussed above) none of these 

participants had samples positive for C. difficile toxins. Of the 14 samples, 13 were positive 

by the GDH EIA assay, five were positive by CTC, and three positive by toxin B gene PCR. In 

addition to these 14 culture positive participants there were a further five samples positive 

for GDH  



172 
 

Study 
number 

Number of culture 
positive samples  

(n) 

Number of 
GDH EIA 
positive 
samples  

(n) 

Number of 
toxin B gene 
PCR positive 

samples 
 (n) 

PCR ribotype 
isolated from 
the samples 

1 0 1 1 N/A 

2 0 0 1 N/A 

9 5 5 0 067 

27 1 1 0 015 

63 0 1 0 N/A 

76 2 2 0 026 and 716 

82 1 0 0 073 

99 0 0 1 N/A 

117 3 6 3 020 

157 1 1 0 039 

178 1 1 1 018 

Total 14 18 7 N/A 

Table 5.11. Control participants that had C. difficile isolated from samples within 

the study and the PCR ribotype of that isolate.  

 

Participants with CDI had a higher proportion of CCNA positive samples than PCDE’s (24.7 

vs 15.3% respectively) (table 5.12); however the majority of samples were CCNA negative. 

The proportion of samples positive for toxin by EIA was lower than those positive by CCNA 

for both participants with CDI and PCDE’s (table 5.12). There were a similar number of 

samples that were culture positive and GDH EIA positive from CDI cases and PCDE’s (48.5 vs 

47.1% culture positive and 52.6 vs 51.8% GDH positive respectively), although there was a 

higher proportion of CTC positive samples and Toxin B gene PCR positive samples for CDI 

cases than for PCDE’s (44.4% vs 29.2% CTC positive and 42.1 vs 30.4% PCR positive 

respectively).   

For all samples that were CCNA positive 89.3% were also culture positive, 86.4% were CTC 

positive, 95.7% were GDH EIA positive, 64.5% were Toxin EIA positive and 90.1% were toxin 

B gene PCR positive. For all samples that were culture positive 39.9% were also CCNA 

positive, 83.0% were CTC positive, 89.3% were GDH EIA positive, 1.6% were toxin EIA 

positive and 65.4% were toxin B gene PCR positive. For all samples that were CTC positive 

46.2% were also CCNA positive, 100% were culture positive (a pre-requisite for being CTC 

positive),  88.7% were GDH EIA positive, 35.4% were Toxin EIA positive and 74.4% were 

toxin B gene PCR positive.  
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When all submitted samples were included in the analysis, the most sensitive assay for 

detecting a CDI case was the GDH EIA assay (52.6% table 5.13).  The majority of samples 

from CDI cases that were tested were not positive for toxin, as reflected in the sensitivity of 

24.7% and 17.8% for CCNA and Toxin EIA respectively. The most sensitive assay for 

detecting a PCDE was also the GDH EIA (51.8%). There were fewer toxin positive samples in 

the PCDE group than in CDI cases leading to a lower sensitivity in the PCDE’s compared to 

CDI cases for both CCNA and toxin EIA (15.3% vs 24.7% for CCNA, 13.0% vs 17.8% for toxin 

EIA respectively). When compared to reference methods the GDH EIA had the highest 

sensitivity when compared with CCNA (95.7%) followed by toxin gene PCR (90.1%) and 

culture (89.3%); GDH had the highest sensitivity when compared with culture (89.3%) 

followed by CTC (83.0%); Culture has the highest sensitivity when compared with CTC 

(100%), followed by GDH EIA (88.7%).  
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Defined by routine diagnostic test result (used 

for recruitment into the study) CCNA Culture CTC 

Assay   

Control 

n (%) 

GDH 

positive/toxin 

either positive 

or negative 

n (%) 

PCDE 

n (%) 

CDI 

n (%) 

Positive 

n (%) 

Negative 

n (%) 

Positive 

n (%) 

Negative 

n (%) 

Positive 

n (%) 

Negative 

n (%) 

CCNA 

Positive 

3 

(1.3) 

184 

(21.6) 

42 

(15.3) 

142 

(24.7) 
n/a n/a 

167 

(39.9) 

20 

(0.3) 

152 

(46.2) 

24 

(3.3) 

Negative 

232 

(98.7) 

667 

(78.4) 

233 

(84.7) 

434 

(75.3) 
n/a n/a 

252 

(60.1) 

642 

(96.7) 

177 

(53.8) 

704 

(96.7) 

N size 235 851 275 576 n/a n/a 419 662 329 728 

Culture 

Positive 

14 

(5.7) 

424 

(48.1) 

132 

(47.1) 

292 

(48.5) 

167 

(89.3) 

252 

(28.2) 
n/a n/a 

341 

(99.1) 

70 

(9.2) 

Negative 

233 

(94.3) 

458 

(51.9) 

148 

(52.9) 

310 

(51.5) 

20 

(10.7) 

642 

(71.8) 
n/a n/a 

0 

(0) 

691 

(90.8) 

N size 247 882 280 602 187 894 n/a n/a 344 76 

CTC 

Positive 

5 

(2.0) 

341 

(39.8) 

79 

(29.2) 

260 

(44.4) 

152 

(86.4) 

177 

(20.1) 

341 

(83.0) 

0 

(0) 
n/a n/a 

Negative 

242 

(98.0) 

516 

(60.2) 

192 

(70.8) 

326 

(55.6) 

24 

(13.6) 

704 

(79.9) 

70 

(17.0) 

691 

(100) 
n/a n/a 

N size 247 857 271 586 176 881 411 691 n/a n/a 



175 
 

GDH EIA 

Positive 

18 

(7.2) 

465 

(52.3) 

147 

(51.8) 

318 

(52.6) 

179 

(95.7) 

613 

(68.3) 

391 

(89.3) 

86 

(12.5) 

306 

(88.7) 

148 

(19.6) 

Negative 

231 

(93.8) 

424 

(47.7) 

137 

(48.2) 

287 

(47.4) 

8 

(4.3) 

285 

(31.7) 

47 

(10.7) 

603 

(87.5) 

39 

(11.3) 

608 

(80.4) 

N size 249 889 284 605 187 898 438 689 345 756 

Toxin EIA 

Positive 

2 

(0.8) 

144 

(16.2) 

37 

(13.0) 

107 

(17.8) 

120 

(64.5) 

20 

(2.2) 

11 

(1.6) 

135 

(30.8) 

122 

(35.4) 

14 

(1.9) 

Negative 

246 

(99.2) 

743 

(83.8) 

248 

(87.0) 

495 

(82.2) 

66 

(35.5) 

876 

(97.8) 

675 

(98.4) 

303 

(69.2) 

223 

(64.6) 

739 

(98.1) 

N size 248 887 285 602 186 896 686 438 345 753 

Toxin gene tcdB 

(PCR) 

Positive 

7 

(3.0) 

326 

(38.2) 

85 

(30.4) 

241 

(42.1) 

163 

(90.1) 

161 

(18.7) 

274 

(65.4) 

55 

(8.4) 

247 

(74.4) 

64 

(8.9) 

Negative 

224 

(97.0) 

527 

(61.8) 

195 

(69.6) 

332 

(57.9) 

18 

(9.9) 

699 

(91.3) 

145 

(34.6) 

601 

(91.6) 

85 

(25.6) 

655 

(91.1) 

N size 233 853 280 573 181 860 419 656 332 719 

Table 5.12. The results of each diagnostic assay for different categories of participants; controls, GDH positive (regardless of toxin 

status), PCDE or CDI case, and compared with each reference method, for all samples included in the study 
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  Case definition Reference method 

    

GDH positive/toxin 
either positive or 

negative  
(% (95% CI)) 

PCDE 
(% (95% CI)) 

CDI 
(% (95% CI)) 

CCNA 
(% (95% CI)) 

Culture 
(% (95% CI)) 

CTC 
(% (95% CI)) 

CCNA 

Sensitivity 
21.6 

(18.9-24.6) 
15.3 

(11.3-20.2) 
24.7 

(21.2-28.4) n/a 
39.9 

(35.1-44.7) 
46.2 

(40.7-51.8) 

Specificity 
98.7 

(96.0-99.7) 
98.7 

(96.0-99.7) 
98.7 

(96.0-99.7) n/a 
97.0 

(95.3-98.1) 
96.7 

(95.1-97.8) 

PPV 
98.4 

(95.0-99.6) 
93.3 

(80.7-98.2) 
97.9 

(93.6-99.5) n/a 
89.3 

(93.7-93.2) 
86.4 

(80.2-90.9) 

NPV 
25.8 

(23.0-28.8) 
49.9 

(45.3-54.5) 
34.8 

(31.2-38.6) n/a 
71.8 

(68.7-74.7) 
79.9 

(77.1-82.5) 

Culture 

Sensitivity 
48.1 

(44.7-51.4) 
47.1 

(41.2-53.2) 
48.5 

(44.5-52.6) 
89.3 

(83.8-93.2) n/a 
100.0 

(98.6-100) 

Specificity 
94.3 

(90.5-96.7) 
94.3 

(90.5-96.7) 
94.3 

(90.5-96.7) 
71.8 

(68.7-74.7) n/a 
90.8 

(88.5-92.7) 

PPV 
96.8 

(94.6-98.2) 
90.4 

(84.1-94.5) 
95.4 

(92.3-97.4) 
39.9 

(35.2-44.7) n/a 
83.0 

(78.9-86.4) 

NPV 
33.7 

(30.2-37.4) 
61.2 

(56.0-66.0) 
42.9 

(38.7-47.2) 
97.0 

(95.3-98.1) n/a 
100.0 

(99.3-100) 

CTC 

Sensitivity 
39.8 

(36.5-43.2) 
29.2 

(23.9-35.0) 
44.4 

(40.3-48.5) 
86.4 

(80.2-90.9) 
83.0 

(78.9-86.4) n/a 

Specificity 
98.0 

(95.1-99.3) 
98.0 

(95.1-99.3) 
98.0 

(95.1-99.3) 
79.9 

(77.0-82.5) 
100.0 

(99.3-100) n/a 

PPV 
98.6 

(96.5-99.5) 
94.0 

(86.0-97.8) 
98.1 

(95.4-99.3) 
46.2 

(40.7-51.7) 
100.0 

(98.6-100) n/a 

NPV 
31.9 

(28.6-35.4) 
55.8 

(50.9-60.5) 
42.6 

(38.5-46.8) 
96.7 

(95.1-97.8) 
90.8 

(88.5-92.7) n/a 
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GDH EIA 

Sensitivity 
52.3 

(50.0-55.6) 
51.8 

(45.8-57.7) 
52.6 

(48.5-56.6) 
95.7 

(91.4-98.0) 
89.3 

(85.9-91.9) 
88.7 

(84.8-91.7) 

Specificity 
92.8 

(88.6-95.5) 
92.8 

(88.6-95.5) 
92.8 

(88.6-95.5) 
31.7 

(28.7-34.9) 
87.5 

(84.8-89.8) 
80.4 

(77.4-83.2) 

PPV 
96.3 

(94.1-97.7) 
89.1 

(83.1-93.2) 
94.6 

(91.5-96.7) 
22.6 

(19.8-25.7) 
82.0 

(78.2-85.3) 
67.4 

(62.8-71.7) 

NPV 
35.3 

(31.6-39.1) 
62.8 

(57.6-67.7) 
44.6 

(40.3-49.0) 
97.3 

(90.4-94.6) 
92.8 

(90.4-94.6) 
94.0 

(91.8-95.6) 

Toxin EIA 

Sensitivity 
16.2 

(13.9-39.1) 
13.0 

(9.4-17.6) 
17.8 

(14.9-21.1) 
64.5 

(57.1-71.3) 
1.6 

(0.8-2.9) 
35.4 

(30.3-40.7) 

Specificity 
99.2 

(96.8-99.9) 
99.2 

(96.8-99.9) 
99.2 

(96.8-99.9) 
97.8 

(96.5-98.6) 
69.2 

(64.6-73.4) 
98.1 

(96.8-98.9) 

PPV 
98.6 

(94.6-99.8) 
94.9 

(81.4-99.1) 
98.2 

(92.9-99.7) 
85.7 

(78.6-90.9) 
7.5 

(4.0-13.4) 
89.7 

(83.0-94.0) 

NPV 
24.9 

(22.2-27.7) 
49.8 

(45.3-54.3) 
33.2 

(29.8-36.7) 
93.0 

(91.1-94.5) 
31.0 

(28.1-34.0) 
76.8 

(74.0-79.4) 

Toxin gene tcdB (PCR) 

Sensitivity 
38.2 

(35.0-41.6) 
30.4 

(25.1-36.2) 
42.1 

(38.0-46.2) 
90.1 

(84.5-93.8) 
65.4 

(60.6-69.9) 
74.4 

(69.3-78.9) 

Specificity 
96.1 

(93.6-98.7) 
97.0 

(93.6-98.7) 
96.1 

(93.6-98.7) 
81.3 

(78.5-93.8) 
91.6 

(89.1-93.6) 
91.1 

(88.7-93.0) 

PPV 
97.9 

(95.5-99.1) 
92.4 

(84.4-96.6) 
97.2 

(94.0-98.8) 
50.3  

(44.7-55.9) 
83.3 

(78.7-87.1) 
79.4 

(74.4-83.7) 

NPV 
29.8 

(26.6-33.3) 
53.5 

(48.6-58.3) 
40.3 

(36.2-44.5) 
97.5 

(96.0-98.4) 
80.6 

(77.5-83.3) 
88.5 

(85.9-90.7) 

Table 5.13. Sensitivity, specificity, PPV and NPV for each assay compared with the case definition, CCNA, Culture and CTC, for all 

samples included in the study 
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The number of positive samples, sensitivity and specificity of each assay were also 

compared using only samples collected within the first 72 hours after recruitment into the 

study (table 5.14 and 5.15). CDI cases had a higher proportion of CCNA positive samples 

than PCDE’s (24.4 vs 10.6% respectively) (table 5.14); however the majority of samples 

were CCNA negative.  Although the proportion of CCNA positive samples in CDI cases 

within the first 72 hours was similar to the proportion of CCNA positive samples in CDI 

cases for all samples (24.4 vs 24.7% respectively), there were more CCNA positive samples 

in the PCDE group when all samples were included than when just those taken within the 

first 72 hours were analysed (15.3 vs 10.6% respectively) (table 5.14).  The proportion of 

samples within the first 72 hours that were positive for toxin by EIA was lower than those 

positive by CCNA for both CDI cases and PCDE’s (table 5.14). There were more samples 

within 72 hours that were culture positive and GDH EIA positive from PCDE’s than CDI cases 

(53.1 vs 40.4% culture positive and 60.4 vs 56.5% GDH positive respectively), although 

there was a higher proportion of CTC positive samples and Toxin B gene PCR positive 

samples for CDI cases than for PCDE’s (37.8% vs 25.0% CTC positive and 39.1 vs 23.4% PCR 

positive respectively).   

For all samples that were CCNA positive 76.9% were also culture positive, 76.9% were CTC 

positive, 84.6% were GDH EIA positive, 50.0% were Toxin EIA positive and 92.3% were toxin 

B gene PCR positive. For all samples that were culture positive 24.4% were also CCNA 

positive, 67.0% were CTC positive, 88.1% were GDH EIA positive, 16.7% were toxin EIA 

positive and 52.4% were toxin B gene PCR positive. For all samples that were CTC positive 

38.5% were also CCNA positive, 100% were culture positive (a pre-requisite for being CTC 

positive),  88.5% were GDH EIA positive, 2.7% were Toxin EIA positive and 80.8% were toxin 

B gene PCR positive.  

A large number of CDI cases were negative by the time their first sample was tested in the 

study. The 16 CCNA positive samples that were tested within 72 hours of diagnosis were 

from 13 patients, however only 10 of these were CDI when recruited, rather than just GDH 

positive. This means that only 10/82 (12.2%) of patients that were recruited as CDI had 

another toxin positive sample during the 72 hours after initial diagnosis. This is reflected by 

the low sensitivity for CCNA of 24.4% and for Toxin EIA of 9.3% for detecting a CDI case 

with samples taken up to 72 hours after diagnosis (table 5.15). The GDH EIA had the 

highest sensitivity for detecting a CDI case within 72 hours of diagnosis (56.5%), followed 

by the culture (40.4%), PCR (39.1%) and CTC (37.8%). The assay with the highest sensitivity 
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for detecting a PCDE within 72 hours was the GDH assay (60.4%), followed by culture 

(53.1%), CTC (25.0)% and PCR (23.4%).   
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Defined by routine diagnostic test result 

(used for recruitment into the study) CCNA Culture CTC 

Assay   
Control 
n (%) 

GDH 
positive/toxin 
either positive 

or negative 
n (%) 

PCDE 
n (%) 

CDI 
n (%) 

Positive 
n (%) 

Negative 
n (%) 

Positive 
n (%) 

Negative 
n (%) 

Positive 
n (%) 

Negative 
n (%) 

CCNA 

Positive 

1 

(1.6) 

16 

(17.4) 

5 

(10.6) 

11 

(24.4) n/a n/a 

10 

(24.4) 

3 

(2.6) 

10 

(38.5) 

3 

(2.3) 

Negative 

62 

(98.4) 

76 

(82.6) 

42 

(89.4) 

34 

(75.6) n/a n/a 

31 

(75.6) 

114 

(97.4) 

16 

(61.5) 

126 

(97.7) 

N size 
63 92 47 45 n/a n/a 41 117 26 129 

Culture 

Positive 

2 

(3.0) 

45 

(46.9) 

26 

(53.1) 

19 

(40.4) 

10 

(76.9) 

31 

(21.4) n/a n/a 

26 

(100) 

13 

(9.2) 

Negative 

63 

(97.0) 

51 

(53.1) 

23 

(46.9) 

28 

(59.6) 

3 

(23.1) 

114 

(78.6) n/a n/a 

0 

(0.0) 

128 

(90.8) 

N size 
65 96 49 47 13 145 n/a n/a 26 141 

CTC 
Positive 

1 

(1.5) 

29 

(31.2) 

12 

(25.0) 

17 

(37.8) 

10 

(76.9) 

16 

(11.3) 

26 

(67.0) 

0 

(0.0) n/a n/a 

Negative 

64 

(98.5) 

64 

(68.8) 

36 

(75.0) 

28 

(62.2) 

3 

(23.1) 

126 

(88.7) 

13 

(33.0) 

128 

(100) n/a n/a 
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N size 
65 93 48 45 13 142 39 128 n/a n/a 

GDH EIA 

Positive 

2 

(3.0) 

55 

(58.5) 

29 

(60.4) 

26 

(56.5) 

11 

(84.6) 

39 

(27.1) 

37 

(88.1) 

14 

(11.1) 

23 

(88.5) 

26 

(18.7) 

Negative 

63 

(97.0) 

39 

(41.5) 

19 

(39.6) 

20 

(43.5) 

2 

(15.4) 

105 

(72.9) 

5 

(11.9) 

112 

(88.9) 

3 

(11.5) 

113 

(81.3) 

N size 
65 94 48 46 13 144 42 126 26 139 

Toxin EIA 

Positive 

1 

(1.5) 

9 

(9.8) 

5 

(10.2) 

4 

(9.3) 

6 

(50.0) 

1 

(0.7) 

7 

(16.7) 

0 

(0.0) 

7 

(2.7) 

0 

(0.0) 

Negative 

64 

(98.0) 

83 

(88.0) 

44 

(89.8) 

39 

(90.7) 

6 

(50.0) 

142 

(99.3) 

35 

(83.3) 

124 

(100.0) 

19 

(73.1) 

137 

(100.0) 

N size 
65 92 49 43 12 143 42 124 26 137 

Toxin gene tcdB 
(PCR) 

Positive 

3 

(3.0) 

29 

(31.2) 

11 

(23.4) 

18 

(39.1) 

12 

(92.3) 

16 

(11.6) 

22 

(52.4) 

6 

(5.1) 

21 

(80.8) 

6 

(4.6) 

Negative 

62 

(97.0) 

64 

(68.8) 

36 

(76.6) 

28 

(60.9) 

1 

(7.7) 

122 

(88.4) 

20 

(47.6) 

111 

(94.9) 

5 

(19.2) 

124 

(95.4) 

N size 
65 93 47 46 13 138 42 117 26 130 

Table 5.14. The results of each diagnostic assay for different categories of participants; controls, GDH positive (regardless of toxin 

status), PCDE or CDI case, and compared with each reference method, for all samples collected within 72 hours of the initial routine 

diagnostic sample (cases) or entry to the study (controls) 
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  Case definition Reference method 

  
 

GDH positive/toxin 
either positive or 

negative 
(% (95% CI)) 

PCDE 
(% (95% CI)) 

CDI 
(% (95% CI)) 

CCNA 
(% (95% CI)) 

Culture 
(% (95% CI)) 

CTC 
(% (95% CI)) 

CCNA 

Sensitivity 
17.4 

(10.5-27.0) 
10.6 

(4.0-23.9) 
24.4 

(13.4-39.8) 
n/a 

24.4 
(12.9-40.6) 

38.5 
920.9-59.20 

Specificity 
98.4 

(90.3-99.9) 
98.4 

(90.3-99.9) 
98.4 

(90.3-99.9) 
n/a 

97.4 
(92.1-99.3) 

97.7 
992.8-99.4) 

PPV 
94.1 

(69.2-99.7) 
83.3 

(36.5-99.1) 
91.7 

(59.8-99.6) 
n/a 

76.9 
950.0-93.8) 

76.9 
(50.0-93.80 

NPV 
44.9 

(36.5-53.6) 
59.6 

(49.5-69.0) 
64.6 

(54.1-73.9) 
n/a 

78.6 
(70.9-84.8) 

88.7 
982.1-93.2) 

Culture 

Sensitivity 
46.9 

(36.7-57.3) 
53.1 

(38.4-37.2) 
40.4 

(26.7-55.7) 
76.9 

(46.0-93.9) 
n/a 

100.0 
(84.0-100) 

Specificity 
96.9 

(88.4-99.5) 
97.0 

(88.4-99.5) 
97.0 

(88.4-99.5) 
78.1 

(70.9-84.8) 
n/a 

90.8 
(84.4-94.8) 

PPV 
95.7 

(84.3-99.3) 
92.9 

(75.0-98.8) 
90.5 

(68.2-98.3) 
24.4 

(12.9-40.6) 
n/a 

66.7 
(49.7-80.4) 

NPV 
55.3 

(45.7-64.5) 
73.3 

(62.4-82.0) 
69.2 

(58.6-78.3) 
97.4 

(92.1-99.3) 
n/a 

100.0 
(96.4-100) 

CTC 

Sensitivity 
31.2 

(22.2-41.7) 
25.0 

(14.1-40.0) 
37.8 

(24.2-53.5) 
76.9 

(50.0-93.8) 
66.7 

(49.7-80.4) 
n/a 

Specificity 
98.5 

(90.6-99.9) 
98.5 

(90.6-99.9) 
98.5 

(90.6-99.9) 
88.7 

(82.1-93.2) 
100 

(96.4-100) 
n/a 

PPV 
96.7 

(80.9-99.8) 
92.3 

(62.1-99.6) 
94.4 

(70.6-99.7) 
38.5 

(20.9-59.3) 
100 

(84.0-100) 
n/a 

NPV 
50.0 

(41.1-58.9) 
64.0 

(53.7-73.2) 
69.6 

(59.0-78.5) 
97.7 

(92.8-99.4) 
90.8 

(84.4-94.8) 
n/a 
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GDH EIA 

Sensitivity 
58.5 

(47.9-68.4) 
60.4 

(45.3-73.2) 
56.5 

(41.2-70.8) 
84.6 

(53.7-97.3) 
88.1 

(73.6-95.5) 
88.5 

(68.7-97.0) 

Specificity 
96.9 

(88.4-99.5) 
96.9 

(88.4-99.5) 
96.9 

(88.4-99.5) 
72.9 

(64.8-79.8) 
88.9 

(81.7-93.6) 
81.3 

(73.6-87.2) 

PPV 
96.5 

(86.6-99.4) 
93.5 

(77.2-98.9) 
92.9 

(75.0-98.9) 
22.0 

(12.0-36.3) 
72.5 

(58.0-83.7) 
46.9 

(32.8-61.6) 

NPV 
61.8 

(51.6-71.1) 
76.8 

(66.0-85.1) 
75.9 

(65.0-84.3) 
98.1 

(92.8-99.7) 
95.7 

(89.8-98.4) 
97.4 

(92.1-99.3) 

Toxin EIA 

Sensitivity 
9.8 

(4.8-18.2) 
10.2 

(3.8-23.0) 
9.3 

(3.0-23.1) 
50.0 

(22.3-77.7) 
16.7 

(7.5-32.0) 
26.9 

(12.3-48.1) 

Specificity 
98.5 

(90.5-99.9) 
98.4 

(90.6-99.9) 
98.4 

(90.6-99.9) 
99.3 

(95.6-99.9) 
100.0 

(96.3-100) 
100.0 

(96.6-100) 

PPV 
90.0 

(54.1-99.5) 
83.3 

(36.5-99.1) 
80.0 

(29.9-98.9) 
85.7 

(42.0-99.2) 
100.0 

(56.1-100 
100.0 

(56.1-100) 

NPV 
43.5 

(35.4-52.0) 
59.3 

(49.4-68.5) 
62.1 

(52.0-71.4) 
95.9 

(91.0-98.3) 
78.0 

(71.0-84.0) 
87.8 

(81.4-92.3) 

Toxin gene tcdB 
(PCR) 

Sensitivity 
31.2 

(22.2-41.7) 
23.4 

(12.8-38.4) 
39.1 

(25.5-54.6) 
92.3 

(62.1-99.6) 
52.4 

(26.6-67.7) 
80.8 

(60.0-92.7) 

Specificity 
95.4 

(86.2-98.8) 
97.1 

(86.2-98.8) 
97.1 

(86.2-98.8) 
88.4 

(81.6-93.0) 
94.9 

(88.7-97.9) 
95.4 

(89.8-98.1) 

PPV 
90.6 

(78.8-97.5) 
78.6 

(48.8-94.3) 
85.7 

(48.8-94.3) 
42.9 

(25.0-62.6) 
78.6 

(58.5-91.0) 
77.8 

(57.3-90.6) 

NPV 
49.2 

(40.2-58.2) 
63.3 

(52.9-72.6) 
68.9 

(52.9-72.6) 
99.2 

(94.9-99.9) 
84.7 

(77.2-90.2) 
96.1 

(90.7-98.6) 

Table 5.15. Sensitivity, specificity, PPV and NPV for each assay compared with the case definition, CCNA, Culture and CTC, for all 

samples collected within 72 hours of the initial routine diagnostic sample (cases) or entry to the study (controls) 
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5.3.5 Potential C. difficile excretors 

There were 65 participants whose initial routine diagnostic samples tested positive for GDH 

only; these were recruited as PCDE’s.  Of these 65, 18 (27.7%) went on to have at least one 

sample that tested positive by CCNA; median number of days to CCNA positive sample was 

8 days (range 0-28) (table 5.16). 

 

 Participant 
number 

Number of days 
until toxin 

positive result 
PCR ribotype isolated 

from the sample 

513 20 020 

525 13 015 

537 4 341 

550 13 015 

589 14 014 

592 19 015 

593 4 050 

607 20 078 

609 0 078 

617 7 020 

621 0 014 

628 8 Culture negativea 

634 8 Culture negativea 

641 28 023 

643 3 011 

650 10 207 

655 4 012 

657 4 005 

Table 5.16. The number of days from initial GDH positive sample until another 

sample was CCNA positive, and the PCR ribotype of C. difficile isolated from that 

sample. a Had treatment with fidaxomicin from day 0, all other participants were 

not on a concurrent antibiotic with activity against C. difficile  

 

Both the mean white cell count and the mean serum creatinine level were higher in those 

PCDE that went on to have a toxin positive sample, compared to those PCDE that remained 

toxin negative; however only the serum creatinine was significantly higher (p = 0.009) 

(table 5.17).  
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Table 5.17 The mean white cell count, serum albumin and serum creatinine levels 

in PCDE participants that were either toxin positive or negative in later samples. a 

t test (two tailed)  

 

 

 

Figure 5.1 The number of samples that were positive for each assay on each day 

following the diagnostic specimen for PCDE’s that go on to have at least one CCNA 

positive sample 

 

 

PCDE that 
become 

toxin positive 

PCDE that 
stay toxin 
negative 

p valuea 
 

White cell 
count 9.2 6.4 0.209 

Serum 
albumin 32.8 33.0 0.900 

Serum 
creatinine 160.1 94.1 0.009 
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Figure 5.2 The percentage of samples that were positive for each assay on each 

day following the diagnostic specimen for PCDE’s that go on to have at least one 

CCNA positive sample 

 

 

Figure 5.3 The number of samples that were positive for each assay on each day 

following the diagnostic specimen for PCDE’s that do not go on to have at least 

one CCNA positive sample 
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Figure 5.4 The percentage of samples that were positive for each assay on each 

day following the diagnostic specimen for PCDE’s that do not go on to have at 

least one CCNA positive sample 

 

For the PCDE that become toxin positive, the proportion of positive C. difficile diagnostic 

assays are all very similar, as are the proportion of positive C. difficile toxin diagnostic 

assays (figures 5.1 and 5.2). The proportion of positive GDH EIA and culture results in 

PCDE’s that do not go on to have any CCNA positive samples, are similar, but are both 

higher than the proportion of positive CTC and PCR results (figures 5.3 and 5.4). Of those 

that were culture positive, 5/25 had a known non-toxigenic PCR ribotype isolated from the 

sample (table 5.18)  
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Participant 
number 

PCR ribotype Known non-
toxigenic PCR 

ribotypea 

Inferred 
toxinotypeb 

Inferred toxin 
status from 
toxinotypec 

508 014/129/334 
 

XVIII A+B+CDT- 

517 051 
 

  

520 010 Yes   

542 081 
 

  

548 005 
 

  

552 Not available 
 

  

559 046 
 

  

563 018 
 

  

566 023 
 

IV A+B+CDT+ 

573 010 Yes   

577 009 
 

  

588 078 
 

V A+B+CDT+ 

595 009 
 

  

602 031 
 

  

603 327 
 

  

606 020 
 

  

608 012 
 

I A+B+CDT- 

611 031 
 

  

631 054 Yes   

645 026 
 

  

647 Not available 
 

  

652 027 
 

III A+B+CDT+ 

656 039 Yes   

663 026 
 

  

666 039 Yes   

Table 5.18 The PCR ribotype of C. difficile isolated from PCDE’s that did not have 

any CCNA positive samples, and known non-toxigenic status a from published 

literature (Fawley et al, 2016). b from toxinotype correlation website  and 

c toxinotype characteristics website 
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5.3.6 Results of diagnostic tests on each day following the diagnostic sample 

for all recruited participants that were GDH positive (regardless of toxin 

status)  

 

Figure 5.5. The number of samples with a positive result by each assay on each 

day for all participants with an initial GDH positive diagnostic sample  

 

 

Figure 5.6. The number of samples with a positive result by each assay on each 

day of the first 20 days, for all participants with an initial GDH positive diagnostic 

sample  
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The number of samples collected was highest within the first 20 days after diagnosis, 

peaking at day seven (figure 5.5). To enable better visualisation of the patterns in the 

number of positive samples, the graphs were replotted for the first 20 days only, as not 

only were the highest number of samples collected during this time, this is also the period 

most likely to represent primary infection, not recurrence (figure 5.6). The GDH EIA 

consistently has the highest number of positive samples, followed by culture, then CTC. The 

pattern of the number of CTC positive samples is closely mirrored by the number of 

positive PCR samples. The CCNA and Toxin EIA tests have the lowest numbers of positive 

samples throughout the study period, with CCNA generally having more positive samples 

than the Toxin EIA. Peak white cell counts can be seen around day 2 after diagnosis (figure 

5.6).  

 

 

Figure 5.7. The percentage of samples with a positive result by each assay on each 

day for all participants with an initial GDH positive diagnostic sample 
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Figure 5.8. The percentage of samples with a positive result by each assay on each 

day of the first 20 days, for all participants with an initial GDH positive diagnostic 

sample 

When converted to percentage of samples tested that had a positive result by each assay 

the same patterns as described above are observed. The GDH EIA had a consistently higher 

percentage of positive samples throughout the study period, up to around day 42, when 

the number of samples drops dramatically, so skewing the percentage data (figure 5.7). 

There is an increase in the positivity rate of all the tests between days 20 to 40 (figure 5.7). 

When only viewing up to day 20 the patterns can be more easily seen (figure 5.8). The 

pattern of GDH positivity is mirrored by culture with a positivity rate about 5-10% lower 

than that of GDH. The pattern of culture positivity is then in turn mirrored by the CTC assay, 

again at a positivity rate about 10% lower than the culture positivity rate.  The PCR assay 

closely follows the pattern and positivity rate of the CTC assay, occasionally showing a 

higher percentage of positive samples than CTC, and occasionally showing a lower positivity 

rate.  
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5.3.7 Results of diagnostic tests on each day following the diagnostic sample 

from either PCDE or CDI cases at recruitment 

 

 

Figure 5.9. The number of samples with a positive result by each assay on each 

day for all PCDE participants 

 

 

Figure 5.10. The number of samples with a positive result by each assay on each 

day for all CDI cases 



193 
 

 

Figure 5.11. The number of samples with a positive result by each assay on each 

day, for the first 20 days only, for all PCDE participants 

 

 

Figure 5.12. The number of samples with a positive result by each assay on each 

day, for the first 20 days, for all CDI cases 

After splitting all GDH-positive participants into those recruited with GDH positive test only 

(potential C. difficile excretors (PCDE)) and those recruited with GDH/toxin positive (CDI 

cases), a similar pattern can be seen in the number of samples collected, with most of the 
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samples collected within the first 20 days and the highest peaks being on day five and day 

seven respectively (figures 5.9 and 5.10).  The GDH EIA consistently has the highest number 

of positive samples in both groups, although this is closely mirrored by the number of 

culture positives in the PCDE group (figure 5.11). In the PCDE group there is a large 

difference in the number of samples positive by CTC compared to culture, whereas in the 

CDI case group culture and CTC are almost identical (figure 5.11 and 5.12). The pattern of 

the number of CTC positive samples is closely mirrored by the number of positive PCR 

samples, although in the PCDE group the number of PCR positive samples appears to be 

shifted by one-two days after CTC (figure 5.11). The CCNA and toxin EIA tests have the 

lowest numbers of positive samples throughout the study period, with CCNA generally 

having more positive samples than the toxin EIA (figure 5.12. There were more sample 

collection days in the CDI case group, although the latter samples were almost exclusively 

from one patient (figure 5.12). Peak white cell counts for the CDI cases are at day 0 (day of 

diagnosis) with a mean WCC of 10.7 cells/L. The PCDE group mean WCC at day 0 was 5.54 

cells/L, with a peak of 10.13 cells/L on day nine after diagnosis.  

 

 

Figure 5.13. The percentage of samples with a positive result by each assay on 

each day for all PCDE participants 
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Figure 5.14. The percentage of samples with a positive result by each assay on 

each day, for the first 20 days only, for all PCDE participants 

When converted to the proportion of samples tested that are positive by each assay, the 

GDH assay has a consistently  higher positivity rate than any other assay for the PCDE group, 

although this is very closely matched by the culture positive rate (figures 5.13 and 5.14). 

There is a marked difference in the positive rate of CTC compared with culture, being some 

5-40% lower at most time points. The PCR assay positivity rate is of a similar level to, and 

follows the pattern of, the CTC positivity rate However, at several time points the PCR rate 

appears to be shifted later than the CTC rate by one-two days.  Interestingly this is in line 

with the pattern of the positivity of the CCNA test, which is also shifted approximately 

one-two days later than the CTC rate.  The biggest peak in PCR positivity (day 16) coincides 

with the biggest peak of CCNA positivity; this occurs approximately two days after a large 

peak in GDH and culture positivity (figure 5.14). The toxin EIA assay follows the general 

pattern of CCNA positivity rate but often with a reduced positivity rate of 0-15% (figure 

5.14). 
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Figure 5.15 The percentage of samples with a positive result by each assay on 

each day, for all CDI cases 

 

 

Figure 5.16 The percentage of samples with a positive result by each assay on 

each day, for the first 20 days only, for all CDI cases 
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The GDH assay positivity rate is lower for CDI cases than for the PCDE group, with 50% in 

the CDI cases and 60% in the PCDE group (figures 5.13 and 5.15). As with the PCDE group, 

the GDH assay positivity rate is consistently the highest of all the assays for the CDI cases; 

however the culture positive rate does not exactly mirror the GDH positive rate and can be 

from 0-20% lower on some days (figure 5.16). Unlike the PCDE group, the CTC positive rate 

more closely follows the culture positive rate for CDI cases than for PCDE’s, and is only 0-10% 

lower, compared with 5-40% lower for PCDE’s. Similar to the PCDE group the PCR positive 

rate is shifted behind that of the CTC positive rate by approximately two days at certain 

time points (figures 5.14 and 5.16). The CCNA and toxin EIA positive rates more closely 

follow each other in this dataset, but with a similar overall positivity rate to the PCDE group 

over the first 20 days of 16.8% and 17.4% for PCDE and CDI cases respectively (p = 0.52) 

(figures 3.14 and 3.16). 

 

5.3.8 Ribotyping 

There were 415/438 isolates from 102 participants available to be PCR ribotyped (seven 

controls and 95 GDH positive participants); 12 participants had two different ribotypes and 

one participant had three.  The most common PCR ribotype isolated from samples was 002 

(20.2% of all isolates), followed by 026 (8.7%), 014 (8.2% and 015 (8.2%) (figure 5.17). 

There were very few isolates of PCR ribotype 027 (n = 3, however), these three isolates 

came from three different participants.  

The PCR ribotypes of isolates from controls, PCDEs and CDI cases are shown in figures 5.18, 

5.19 and 5.20 respectively. There were some known non-toxigenic strain isolates, notably 

010 (3.1% of the total isolates, two cases), 039 (1.0% of total isolates, one control and two 

PCDE’s) and 054 (0.7% of total isolates, one PCDE and one CDI case).  For the two 

participants with 010 isolates, both had only this PCR ribotype isolated from their samples; 

all of their samples were CCNA and CTC negative. For the three participants with 039 

isolated from their samples, two (one control and one PCDE) had only one sample in the 

study, and were negative when tested by both CCNA and CTC. The third participant (PCDE) 

with 039 had three samples in the study, with 039 isolated from two of these; only one of 

the three was positive by CTC, none were positive by CCNA. Of the two GDH positive 

participants with 054 isolated from their samples, one (PCDE) had 054 isolated from 1/6 

samples, which was positive by CTC but negative by CCNA. The second (CDI) with 054 had 

nine samples in the study, five of which were positive by CCNA and four of which were 
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positive by CTC; 054 was isolated from two samples and 002 was isolated from two other 

samples, suggesting a mixed infection. 
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Figure 5.17. The PCR ribotypes of isolates from all participants and the number of isolates of each PCR ribotype.  
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Figure 5.18. The PCR ribotypes of isolates from all control participants and the number of times each PCR ribotype was isolated 

from that participant.  
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Figure 5.19. The PCR ribotypes of isolates from all PCDE participants and the number of times each PCR ribotype was isolated from 

that participant.  
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Figure 5.20. The PCR ribotypes of isolates from all CDI participants and the number number of times each PCR ribotype was isolated 

from that participant. 
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5.4 Discussion 

The data from prospectively collected faecal samples from both control participants and 

those who were initially GDH positive has shown that the course of C. difficile infection in 

patients has similar patterns of proliferation and growth of the organism, as measured by 

diagnostic assays, as those seen in the gut model (Chapter 2).  The GDH EIA consistently 

had the highest proportion of positive samples/day for all participants recruited as GDH 

positive, or for all participants when split into PCDE’s and CDI cases,  although in PCDE’s 

this is closely mirrored by the proportion of culture positive samples. It would appear that 

there were more non-toxigenic strains in the PCDE vs CDI group, as there was a large 

difference in the number of samples positive by CTC compared with culture; by contrast, in 

the CDI cases, the proportion of samples positive by culture and CTC was almost identical. 

It should be noted however, that only 5/25 of PCDE’s that did not go on to have a C. difficile 

toxin positive sample, had a known non-toxigenic PCR ribotype isolated from their samples 

(table 5.18). This suggests therefore that the difference in CTC and culture positive rates is 

due to factors other than just the presence of non-toxigenic PCR ribotypes. For all of the 

assays, there is an increase in the proportion of positive samples between days 20 to 40 

(figure 5.7). This may represent recurrence, which will be investigated further in Chapter 4.  

The proportion of PCR assay positives follows the pattern of, and is at a similar level to, the 

CTC positivity rate; however, at several time points the PCR rate appears to be shifted later 

than the CTC rate by one-two days (figures 5.11 and 5.12).  Interestingly this shift is also 

seen in the pattern of the positivity of CCNA. Certainly, for CCNA, this mirrors the patterns 

seen in the gut model, where toxin production follows proliferation by a shift of a few days 

(Chapter 2).  It is unclear why the PCR assay is shifted to follow the pattern of CCNA rather 

than CTC, as the PCR assay detects the toxin B gene and it could therefore, be hypothesised 

that the gene should increase at the same rate as proliferation. It may be explained by the 

fact that toxin production is not constitutive, but influenced by external factors.  This is 

easily demonstrated within the laboratory, as C. difficile growing in BHI will produce toxin, 

whereas C. difficile growing in media with additional biotin will not (Yamakawa et al, 1998). 

In addition, the PCR assay used in this study did not perform as well as the GDH assay, with 

a sensitivity of 74.4% vs 88.7% respectively when compared to cytotoxigenic culture (table 

5.13). This is in contrast to the data from the Department of Health study, where PCR and 

GDH assays had comparable sensitivities compared to CTC of 93.2 and 93.6%, respectively 

(Planche et al,  2013). It should be noted however, that a different PCR assay was used in 

the present study to that used previously, which may have lower sensitivity. Unfortunately, 
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this PCR assay also does not allow the user to collect cycle threshold (CT) values, which may 

have provided more information than the binary ‘positive’ and ‘negative’ result. CT values 

are discussed further in Chapter 4.    

There was a similar daily CCNA positivity rate for PCDE and CDI cases (16.8%and 17.4% 

respectively, p = 0.52) over the first 20 days (figures 5.14 and 5.16). Interestingly, of the 65 

PCDE, 18 (27.7%) went on to have at least one sample that tested positive by CCNA; 

median number of days to CCNA positive sample was eight days (range 0-28) (table 5.16). 

Peak white cell counts for the PCDE group were on day nine (10.13 cells/L), compared with 

day 0 (day of diagnosis) for CDI cases (10.7 cells/L). In addition both the mean white cell 

count and the mean serum creatinine level were higher in those PCDE that went on to have 

a toxin positive sample, compared to those PCDE that remained toxin negative; however 

only the serum creatinine was significantly higher (p = 0.009). Concomitant antibiotics with 

activity against C. difficile may have supressed growth of the organism and therefore toxin 

production in these PCDEs, however, only two of these participants were on an antibiotic 

with activity against C. difficile at the time of their initial sample.   Does this perhaps 

suggest that the organism had not yet reached a level of growth where a) it had started to 

produce toxin, or b) had produced toxin but at a level below the limit of detection of CCNA?  

Testing these samples with the newly developed ultra-sensitive C. difficile toxin detection 

assays may have resolved this question; however such assays were not available at the 

time of this study (Pollock, 2016, Banz et al, 2018). The detection of these PCDEs that go on 

to have a toxin positive sample does not provide evidence that repeat testing of GDH 

positive/toxin negative samples is warranted. Repeat testing is currently not recommended 

in the C. difficile diagnostic guidelines, due to the issues of increasing the likelihood of false 

positive results (Crobach et al, 2016; McDonald et al 2018). Further data would be required 

to fully understand this group before any such change to the guidelines could be suggested. 

Indeed, this is a single centre study, and could be biased by the patient population studied; 

multicentre studies would be needed to confirm that this is not only a local phenomenon. 

Lactoferrin, a marker of gut inflammation, has been suggested as an adjunctive test for CDI 

(Wren et al, 2009). Recent work (Davies et al, 2019b) has demonstrated a correlation 

between lactoferrin level and level of toxin (as measured semi-quantitatively). Future 

studies are required to determine if raised lactoferrin in these GDH positive/toxin negative 

samples may provide an indication of gut inflammation, and potentially therefore, 

presence of toxin. 
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Overall, for all samples, participants with CDI had a significantly higher proportion of CCNA 

positive samples than PCDE’s (24.7 vs 15.3% respectively, p = 0.003) (table 5.12); however 

the majority of samples were CCNA negative. A large number of CDI cases were negative by 

the time their first sample was tested in the study, and only 10/82 (12.2%) had another 

toxin positive sample within 72 hours of their initial diagnosis (table 5.14). This is reflected 

by the low sensitivity for CCNA of 24.4% and for toxin EIA of 9.3% for detecting toxin in 

samples taken up to 72 hours after diagnosis (table 5.15). The GDH EIA had the highest 

sensitivity in samples from both PCDEs and CDI cases within 72 hours of diagnosis (60.4% 

and 56.5% respectively), followed by culture (53.1 % and 40.4% respectively). In addition, 

the sensitivities of the GDH EIA and culture were higher in samples from PCDEs than CDI 

cases, while CTC and PCR were more sensitive in samples from CDI cases than PCDEs (CTC 

37.8% vs 25.0%, and 39.1% vs 23.4%, respectively) (table 5.15).  These data suggest that 

GDH remains detectable within patient faecal samples for much longer than other 

C. difficile markers, mirroring the patterns of detection seen in the gut model (Chapter 4). 

In patients that have been toxin positive, detection of GDH could therefore, indicate that 

the organism is no longer proliferating, but also that it has also not been cleared from the 

gut; potentially making that patient vulnerable to recurrence, especially if exposed to 

further antibiotic therapy.  

The most common PCR ribotype isolated from samples was 002 (20.2% of all isolates), 

followed by 026 (8.7%), 014 (8.2% and 015 (8.2%)) (figure 5.17). There were very few 

isolates of PCR ribotype 027 (only n=3); however, these three isolates came from three 

different participants. This is not unexpected as there has been a shift in proportion of 

cases caused by PCR ribotype 027 in the UK, with 027 rate declining since 2007 (Dingle et al, 

2017). There was some evidence of mixed infections (12.7% of all culture positive 

participants), with 12 participants having two different PCR ribotypes and one participant 

having three different PCR ribotypes isolated from their samples. One recent study found 

that patients with more than one PCR ribotype of C. difficile were more likely to go on to 

have a recurrent episode (Seekatz et al, 2018). The proportion of patients who had mixed 

infections in that study were higher than those seen in the PlaciD study (12.7%); 78.6% in 

the group who went on to have recurrence vs 18.1% in the group who did not develop 

recurrence. The reasons behind the lower mixed infection rate in the PlaciD study are 

unclear, although it is plausible that it may be linked to different infection control practices 

between the study sites.  
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CDI cases were significantly older than PCDEs (median age 75 vs 62 years respectively, P 

<0.0001), and there was a significantly higher proportion of females in the PCDEs than in 

the CDI cases (60% vs 40.2% respectively, P = 0.03, table 5.1). Increasing age is a well-

known risk factor for CDI (McDonald et al, 2006, Miniño et al 2011), but this is the first time 

that the age of GDH-positive/toxin-negative and GDH-positive/toxin-positive patients has 

been compared. Participants in the control group were significantly older than GDH 

positive patients (median age = 80 years and 70 years respectively, p <0.0001, table 5.1). As 

CDI is more likely in those >65 years old (McDonald et al, 2006, Miniño et al, 2011), the 

control groups were selected from potential participants >50 years old; however, those 

that were recruited were actually significantly older.  The rate of asymptomatic carriage of 

C. difficile in hospitalised patients in the literature is 0.6-15% (Furuya-Kanamori et al, 2015); 

however, it was at the lower end of this range in this study at 8.6% (table 5.12). The 

reasons for this are unclear but may have been due to the way the cohort was selected.  

Another well characterised risk factor for CDI is prior antibiotic therapy (Bartlett and 

Gerding, 2008). In this study we were able to compare GDH positive participants (rather 

than just CDI)  with controls, and a significantly higher proportion of patients recruited as 

GDH positive had at least one antibiotic in the previous eight weeks when compared to 

patients recruited as controls (90.7% vs 47.7%, P <0.0001, table 5.1). This was also true for 

all participants with at least one sample in the study (controls = 50.6% vs GDH positive 

91.9%, p <0.0001, table 5.1). There was also a significant difference between control 

participants and GDH positive participants for each number of doses of antibiotic received 

and for the total number of doses of antibiotic received (table 5.6).  GDH positive 

participants were significantly more likely to have the following antibiotics prescribed in 

the previous three months compared with control participants; ciprofloxacin, co-

trimoxazole, fidaxomicin, meropenem, metronidazole, pipercillin-tazobactam, 

trimethoprim, vancomycin and the antifungal fluconazole (table 3.7). Exposure to 

ciprofloxacin and pipercillin-tazobactam has previously been shown to be a risk factor for 

CDI (Bartlett and Gerding, 2008).  A previous prescription for fidaxomicin, must indicate 

previous CDI treatment, as this antibiotic has no other indication for use, while vancomycin 

and metronidazole may represent previous CDI treatment in this group.  

Of the GDH positive participants, those with CDI were significantly more likely to have had 

an antibiotic in the previous eight weeks than PCDEs, although the proportions in both 

groups were high (96.3% Vs 84.6% respectively, p = 0.03, table 3.1). This demonstrates that 
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prior antibiotic therapy is a risk factor for acquisition of C. difficile, not just the 

development of CDI, in similarity to a previous study where prior use of antibiotics was 

significantly associated with carriage of C. difficile (Bignardi, 1998).  However, the 

proportion of CDI cases that had at least one antibiotic and the total number of doses 

received by CDI cases were significantly higher compared with PCDEs, suggesting that 

increased antibiotic exposure changes the risk from just acquisition of C. difficile  to 

development of CDI (p = 0.03 and <0.0001, respectively, table 5.6). Importantly, increasing 

risk of CDI from increasing does of antibiotic has been demonstrated previously (Stevens et 

al, 2011; Davies et al, 2016c) while the shift from risk of acquisition to risk of CDI with 

increasing antibiotic doses is a novel finding.   However, only CDI treatment antibiotics 

were significantly more likely to have been prescribed to CDI cases than PCDEs in the 

previous three months; presumably to treat a previous case of CDI (table 5.8). A single type 

of antibiotic could not therefore be linked to the shift from acquisition to risk of CDI; 

indeed this study was not designed for such analysis and may be under powered to answer 

this question.  

GDH positive participants were not significantly more likely than controls to be prescribed 

any particular class of drugs, such as PPIs; however, they were more likely to have been 

prescribed omeprazole and ranitidine than control participants (tables 5.9 and 5.10).The 

risk of developing CDI while on PPIs is disputed in the literature, and indeed maybe derived 

from the selection of the cohort studied (Dial et al, 2004; Davies et al, 2016c). It should be 

noted that there was no significant difference in the number of participants taking PPIs in 

the prior three months between PCDEs and CDI cases (table 5.9).  

We wanted to investigate the possibility of using rectal swabs in future studies, as often 

faecal samples can be difficult to obtain. To this end, we asked participants in the study to 

also have a rectal swab taken when they were recruited into the study. This was declined 

by 90.9% of participants, and interestingly, a significantly higher proportion of GDH positive 

patients refused the rectal swab than control patients (91.2% Vs 79.0%, p = 0.03, table 5.1). 

Although there was a higher rate of refusal in the CDI cases than PCDEs this was not 

significant (96.3% Vs 84.6%, p = 0.19, table 5.1). This may suggest that those who are more 

sick, or those with diarrhoea, are more likely to refuse to have a rectal swab taken. If this is 

true, using rectal swabs for diagnosis may not be a viable option, as these are the very 

patients you would want to sample. There is obviously a difference in opting out of a 

voluntary rectal swab and having to have one for diagnosis however, but this does indicate 
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patient preference; they were willing to donate faecal samples to the study but not have a 

rectal swab taken. 

There were significant differences between the control group and GDH positive group, with 

control participants significantly more likely to have been admitted following a fall, or with  

a fractured neck of femur, fracture of the knee, fracture of the shaft of the femur and 

septic arthritis ( all p <0.01) (table 5.2). Control participants were also significantly more 

likely to have dementia than GDH positive participants (p = 0.01), while GDH positive 

participants were significantly more likely to have a history of alcoholism or asthma (p = 

0.02 and 0.002 respectively, table 5.4). Participants recruited into the GDH positive arm 

were significantly more likely than control participants to have been admitted with 

gastrointestinal symptoms (diarrhoea, diarrhoea and vomiting, abdominal pain) or with 

pyrexia, or for being ‘unwell’ (table 5.3). GDH positive participants with CDI were 

significantly more likely to be admitted for being ‘unwell’ than PCDE participants (p = 0.03, 

table 5.3).   
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6. Prediction of poor outcome or recurrence using commercial 

assays 

6.1 Introduction  

Although the use of direct PCR detection of C. difficile toxin gene detection for CDI 

diagnosis is still contested within the literature (Fang et al, 2017) it is possible that the cycle 

threshold value of such assays may provide additional information for the clinician. The 

point at which a PCR assay becomes positive, the cycle threshold value (CT value), is 

determined by the amount of starting material. The more starting material (target) there is, 

the faster the assay will become positive, and therefore the lower the CT value will be.  A 

low CT value has been associated with poorer patient outcomes since the pathogen load 

will be high.  However, previous studies are limited by the use of composite outcomes, lack 

of reference methods, small samples size and single centre design (Kamboj et al, 2018; 

Reigadas et al, 2016b)  

Recurrence of infection occurs in ~20% of CDI cases (Cornely et al, 2012; Kelly et al, 2008), 

however predicting such occurrences is extremely difficult. Prediction models have 

attempted, to overcome this issue (Escobar et al, 2017; Reveles et al,  2018), but a 

diagnostic assay that could predict recurrence would enable clinicians to use antibiotic 

therapies that are known to provide greater protection to the gut microbiome, such as 

fidaxomicin or immunological adjunctive therapies such as bezlotoxumab (Cornely et al, 

2012, Wilcox et al, 2018). The high cost of such treatments often precludes their use, 

however: cost-effectiveness studies demonstrate that fidaxomicin may be the most cost-

effective option, due to the reduction in recurrence cases, and on-going care costs 

(Lapointe-Shaw et al, 2016). A predictive diagnostic assay would therefore strengthen the 

justification for use.  

Here, the data gathered from the Department of Health (DoH) study to optimise laboratory 

diagnosis of CDI, and data from the PlaciD study (Chapter 5) have been interrogated to 

investigate both the utility of CT values to predict patient outcomes, and alternative assays 

that could predict CDI recurrence.  The key findings from this chapter are; 

 The CT value of a PCR test for detection of toxin gene was significantly associated 

with a toxin-positive result, presence of PCR ribotype 027 and mortality 

 The positive predictive value of low CT (≤25) for toxin detection was 84% 
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 The relative risk of mortality for patients with low CT (≤25) was 1.45, and increased 

to 2.18 if patients also had infection caused by PCR ribotype 027 

 GDH OD value was related to the bacterial load of C. difficile within the sample  

 A cohort of patients were discovered that were constantly positive for GDH in their 

sequential faecal samples, despite resolution of symptoms. All of these patients 

went on to have a recurrent episode of CDI following additional antibiotic therapy 

 

6.2 Methods 

6.2.1 Can the cycle threshold value of commercial molecular assays for 

C. difficile toxin genes provide additional information to the diagnosis of a 

toxigenic C. difficile strain? 

6.2.1.1 Analysis of existing data set to determine if the cycle threshold value of 

commercial molecular assays for C. difficile toxin genes can provide additional 

information to the diagnosis of a toxigenic C. difficile strain 

Hypothesis 

A lower cycle threshold (CT) value from a molecular assay for the detection of a toxigenic 

strain of C. difficile will correlate with mortality, toxin status and recurrence. This work has 

been published; Davies K, Planche T and Wilcox M. The predictive value of quantitative 

nucleic acid amplification detection of Clostridium difficile toxin gene for faecal sample 

toxin status and patient outcome. PLoS One 13(12): e0205941 2018. The concept of the 

work was devised by Kerrie Davies, the analysis and initial draft of the manuscript was 

completed by Kerrie Davies with review by Dr Tim Planche and Prof Mark Wilcox.  

Methods 

Diarrhoeal faecal samples, collected as part of the Department of Health, multicentre 

evaluation of CDI laboratory diagnostics, as described in Chapter 3, were tested with two 

reference methods; cell cytotoxicity and cytotoxigenic culture, and by three enzyme 

immunoassays (EIAs); one for detection of glutamate dehydrogenase (C. diff CHEK-60™, 

Techlab, USA) and two for the detection of toxins A and B (Toxin AB II™, Techlab, USA and 

Premier Toxins A & B™, Meridian, USA) (Planche et al, 2013). In addition, samples were also 

tested using the commercial molecular assay Cepheid geneXpert® C. diff (Cepheid, 

Sunnyvale, CA, US), for the detection of C. difficile toxin genes (tcdB, binary toxin and a 
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truncated form of tcdC); as described in methods section 2.2.4. All isolates of C. difficile 

were typed by CDRN using PCR-ribotyping, as described in methods section 2.1.6.   

The samples were collected between October 2010 and September 2011 from Leeds 

Teaching Hospitals, Leeds; St George’s University of London, London; University College 

Hospital NHS Foundation Trust, London and Oxford University Hospitals NHS Trust, Oxford. 

Assays and reference methods were performed on the same day by the same evaluator at 

three sites (Leeds and both London sites) or two evaluators in one site (Oxford). In total, 

one evaluator worked at each of the two London sites, two at Leeds, and three at Oxford. 

Kerrie Davies was one of the evaluators at the Leeds site and scientific coordinator for the 

entire study. Ethical approval for the extended analysis of the study data was given by the 

NHS REC, approval number 12/EE/0495. The initial study ethical approval number was 

10/H0715/34. 

Commercial enzyme immunoassays 

All of the commercial EIAs were performed on an automated platform (DS2, Dynex 

Magellan Biosciences, USA) to reduce operator error, following manufacturer’s protocols 

given in the kit insert, with minor changes listed within the Materials and Methods chapter 

section 2.2, and as discussed with the manufacturer. The optical density (OD) of each test 

was recorded as well as the result defined by the assay (using manufacturer’s set cut-offs). 

Reference methods 

The cell-cytotoxicity neutralisation assay, culture and cytotoxigenic culture assay were 

performed as described in the Materials and methods chapter section 2.1.  

Commercial molecular test 

The commercial molecular test was performed on a Cepheid geneXpert® instrument 

following the protocol in the manufacturer’s kit insert, as described in the Material and 

Methods chapter section 2.2.4. 

PCR ribotyping 

The C. difficile isolates identified from the study were typed using PCR ribotyping by the 

C. difficile Ribotyping Network of England and Northern Ireland (CDRN) as previously 

described (Stubbs et al, 1999) and as expounded in the Materials and Methods chapter 

section 2.1.6. 
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Analysis 

Only those patients who had at least one PCR-positive sample were included in the analysis. 

The Area Under Receiver Operator Curve (AUROC) was calculated for those samples that 

were positive by the PCR assay (as defined by the algorithm within the assay software of 

the Cepheid Xpert® platform) to determine if there was an association between low cycle 

threshold (CT) and patient mortality, recurrence and the presence of a toxin-positive faecal 

sample.  Recurrence was defined as a sample that tested positive for toxin (by CCNA) at 

least 14 days after the initial CCNA-positive sample for that same patient was tested.  

Recurrence could only be assessed in those patients who had repeat samples submitted 

within the study period. Once low CT was defined, associations between low CT (≤25) and 

markers of CDI severity and outcome were investigated by univariate analysis; t test was 

used to compare means, Mann-Whitney for Medians (LOS) and 2 test for categorical 

variables. 

 

6.2.2 Can diagnostic assays be used to predict recurrence? 

6.2.2.1 Analysis of existing data set to determine if there is an association 

between a positive primary C. difficile diagnostic assay and recurrent infection 

Hypothesis 

There is an association between laboratory assays used to diagnose the presence of 

C. difficile or C. difficile infection on a primary sample, and the likelihood of that patient 

suffering from a recurrent infection. 

Methods 

Diarrhoeal faecal samples, collected as part of the Department of Health, multicentre 

evaluation of CDI laboratory diagnostics, as described in Chapter 3, were tested with two 

reference methods; cell cytotoxicity and cytotoxigenic culture, and by three enzyme 

immunoassays (EIAs); one for detection of glutamate dehydrogenase (C. diff CHEK-60™, 

Techlab, USA) and two for the detection of toxins A and B (Toxin AB II™, Techlab, USA and 

Premier Toxins A & B™, Meridian, USA) (Planche et al, 2013). In addition, samples were also 

tested using the commercial molecular assay Cepheid geneXpert® C. diff (Cepheid, 

Sunnyvale, CA, US), for the detection of C. difficile toxin genes (tcdB, binary toxin and a 
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truncated form of tcdC); as described in methods section 2.2.4. All isolates of C. difficile 

were typed by CDRN using PCR-ribotyping, as described in methods section 2.1.6.   

The samples were collected between October 2010 and September 2011 from Leeds 

Teaching Hospitals, Leeds; St George’s University of London, London; University College 

Hospital NHS Foundation Trust, London and Oxford University Hospitals NHS Trust, Oxford. 

Assays and reference methods were performed on the same day by the same evaluator at 

three sites (Leeds and both London sites) or two evaluators in one site (Oxford). In total, 

one evaluator worked at each of the two London sites, two at Leeds, and three at Oxford. 

Kerrie Davies was one of the evaluators at the Leeds site and scientific coordinator for the 

entire study. Ethical approval for the extended analysis of the study data was given by the 

NHS REC, approval number 12/EE/0495. The initial study ethical approval number was 

10/H0715/34.  

Commercial enzyme immunoassays 

All of the commercial EIAs were performed on an automated platform (DS2, Dynex 

Magellan Biosciences, USA) to reduce operator error, following manufacturer’s protocols 

given in the kit insert, with minor changes listed within the Materials and Methods chapter 

section 2.2 and as discussed with the manufacturer. The optical density (OD) of each test 

was recorded as well as the result defined by the assay (using manufacturer’s set cut-offs). 

Reference methods 

The cell-cytotoxicity neutralisation assay, culture and cytotoxigenic culture assay were 

performed as described in the Materials and Methods chapter section 2.1. 

Commercial molecular test 

The commercial molecular test was performed on a Cepheid geneXpert® instrument 

following the protocol in the manufacturer’s kit insert, as described in the Material and 

Methods chapter section 2.2.5. 

PCR ribotyping 

The C. difficile isolates identified from the study were typed using PCR ribotyping by the 

C. difficile Ribotyping Network of England and Northern Ireland (CDRN) as previously 

described (Stubbs et al, 1999) and as expounded in the Materials and Methods chapter 

section 2.1.6. 
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Analysis 

Recurrence was assessed in those patients that had repeat samples submitted within the 

study period and was defined as a sample that tested positive for toxin (by CCNA) at least 

14 days after the initial CCNA positive sample for that same patient was tested (Group 1). 

Odds ratios (OR) for recurrence were calculated for each assay type. Due to the association 

of CCNA with recurrence, CCNA positives were removed from the sample pool for the other 

assay types to leave CTC positive/CCNA negative (Group 2), PCR positive/CCNA negative 

(Group 3) and CT<25/CCNA negative (Group 4). A binary logistic regression model was 

constructed for recurrence, with all data, and with group data as defined above, with a cut 

off of 0.5.  

 

6.2.2.2 Analysis of data from the PlaciD dataset to determine if there is an 

association between the bacterial bioload during primary infection and 

recurrence 

Hypothesis 

There is an association between bacterial bioload (as measured by EIAs) during the primary 

infection and recurrence? 

Methods 

Patients with GDH positive faecal samples  (diagnosed by the routine microbiology 

laboratory) and controls (≥50 year olds from the same hospital but who had no diarrhoeal 

symptoms) were recruited and followed during their hospital admission; faecal samples 

were collected daily where possible with routine clinical data. Samples were tested using 

culture for C. difficile, cell-cytotoxicity assay (CCNA), cytotoxigenic culture (CTC), enzyme 

immunoassays (EIAs) for glutamate dehydrogenase (GDH) and toxins (Chek-60 and ToxABII, 

Techlab, USA) and PCR for toxin genes (BD Max™, BD). All samples were tested by Kerrie 

Davies, except for a four month period of maternity leave, when samples were tested by 

Claire Berry, Clinical Scientist within the Healthcare Associated Infections research group. A 

full description of the PlaciD study is given in Chapter 5. Ethical approval for PlaciD was 

given by NHS REC, approval number 13/NE/0255.  

Commercial enzyme immunoassays 

All of the commercial EIAs were performed on an automated platform (DS2, Dynex 

Magellan Biosciences, USA) to reduce operator error, following manufacturer’s protocols 
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given in the kit insert, with minor changes listed within the Materials and Methods chapter 

section 2.2, and as discussed with the manufacturer. The optical density (OD) of each test 

was recorded as well as the result defined by the assay (using manufacturer set cut-offs). 

Reference methods 

The cell-cytotoxicity neutralisation assay, culture and cytotoxigenic culture assay were 

performed as described in the Materials and Methods chapter section 2.1.  

Commercial molecular test 

The commercial molecular test was performed on a BD Max™ instrument following the 

protocol in the manufacturer’s kit insert, as described in the Material and Methods chapter 

section 2.2.6. 

PCR ribotyping 

The C. difficile isolates identified from the study were typed using PCR ribotyping by the 

C. difficile Ribotyping Network of England and Northern Ireland (CDRN) as previously 

described (Stubbs et al, 1999) and expounded in the Materials and Methods chapter 

section 2.1.6. 

Analyses 

Of 228 patients recruited (with samples collected), 82 were cases and 81 were controls 

(totally contributing 1173 sampling days). Cases were categorised into single cases (n=62) 

and recurrent cases. Recurrence was defined as more than one CCNA-positive sample in a 

case >14 days after they had a CCNA-negative sample (n=20).  

Optical density (OD) values for EIAs, white cell counts, serum albumin and serum creatinine 

values were compared between cases and controls, and between cases with a single 

episode and those with recurrent episodes. Antibiotic and proton pump inhibitor (PPI) use 

in those patients with recurrent episodes were also examined.   
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6.3 Results 

6.3.1 Can the cycle threshold value of commercial molecular assays for 

C. difficile toxin genes provide additional information to the diagnosis of a 

toxigenic C. difficile strain? 

6.3.1.1 Analysis of existing data set to determine if the cycle threshold value of 

commercial molecular assays for C. difficile toxin genes can provide additional 

information to the diagnosis of a toxigenic C. difficile strain 

The study collected 8853 samples from 7335 patients across the four sites; 1281 of these 

samples tested positive using the PCR assay and were therefore included in the analysis.  Of 

the 1281, 713 were CCNA positive and 917 were CTC positive, with a positive agreement 

between the two reference assays of 51.2% (figure 4.1).  The median CT value for tcdB gene 

detection by the PCR assay for samples from patients who died was 25.5 vs 27.5 for those 

who survived (p = 0.021), 24.9 vs 31.6 for CCNA positive samples vs CCNA negative faecal 

samples respectively (p <0.001) and 25.6 vs 27.3 for samples from patients who went on 

the have a recurrent episode vs those who had a single episode of CDI (p = 0.111).  The 

AUROC was plotted for CT value against death, CCNA-positive result and recurrence (figure 

4.2). The highest AUROC was for toxin positivity (0.831, 95% CI 0.808-0.853, P<0.001) 

(figure 4.2b) followed by mortality (0.572, 95% CI 0.519-0.624, p = 0.009) (Figure 4.2a) and 

recurrence (0.557, 95% CI 0.490-0.624 p = 0.11) (figure 4.2c). In addition, box plots of 

CT value for mortality/survival, CCNA positive/negative and recurrence/single infection 

were plotted to show the differences between the median CT values for each group (Figure 

4.3).   

CT values of ≤24 (to optimise for CCNA positivity) and ≤25 (to optimise for mortality) were 

both investigated as possible cut-off values for the PCR assay.  The agreement between the 

reference assays using each of these CT value cut-offs was investigated.  Using a cut-off of 

≤25, there were 436 samples, 366 of which were CCNA positive and 399 of which were CTC 

positive, with a positive agreement of 78.4%. Using a cut-off of ≤24 there were 145 samples, 

120 of which were CCNA positive and 131 of which were CTC positive, with a positive 

agreement of 76.6% (figure 4.1).The positive predictive value for recurrence with both cut-

off values were 49.3% and 18.3% for CT≤25 and CT≤24 respectively.    
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Low CT 

Univariate analysis demonstrated that a CT cut-off of ≤25 was significantly associated with 

a toxin-positive sample result, the presence of PCR ribotype 027 in the sample, and patient 

mortality with a positive predictive value of 83.9% for the detection of toxin from the 

sample by CCNA (table 6.1). A  CT cut-off of ≤24 was also found to be significantly 

associated with a toxin positive sample result and the presence of PCR ribotype 027 in the 

sample, with a positive predictive value of 86.1% for the detection of toxin from the sample 

by CCNA (table 6.1).  The cut-off of CT ≤24 was not, however, significantly associated with 

patient mortality, in contrast to the cut-off of CT ≤25.  Due to the slight advantage of using 

CT ≤25 rather than ≤24 as the cut-off, further analyses defined ‘low CT’ as ≤25.  

Patients with a low CT (≤25) had higher mean white cell count, a higher mean baseline 

serum creatinine, lower mean serum albumin and longer length of hospital stay, however 

none of these differences were significant, with the exception of serum creatinine (p = 0.04, 

table 6.1).  

As both low CT and the presence of PCR ribotype 027 were associated with mortality and 

length of stay, the combined effect of these two variables was examined. Mortality and 

increased length of stay were both significantly associated with samples that had both a 

low CT and the presence of PCR ribotype 027 combined (table 6.1.). The positive predictive 

value of low CT for mortality in this population was 17.4% (95% CI 13.5-22.2%) with a 

negative predictive value of 88.0% (95% CI 85.0-90.5%).  The relative risk of mortality in 

patients with low CT was 1.45 (95% CI 1.0-2.0, p = 0.04), however this increased to 2.18 (95% 

CI 1.2-4.0 p = 0.03) in those cases that were due to PCR ribotype 027 (in addition to the low 

CT result). The relative risk of mortality in those patients with a sample with a low CT result 

and a positive binary toxin gene test was 1.72 (95% CI 1.1-2.8, p = 0.05). In addition, there 

was a significant difference in the mortality rates between those patients with versus 

without binary toxin gene detection from their samples (25.3 vs 14.7%, p = 0.049, table 6.1). 

Importantly, however, there was no difference in the rate of toxin positive (CCNA) samples 

between those with or without detection of the binary toxin gene from their samples 

(table 6.1). Patients with a low CT and whose samples tested positive for binary toxin had 

higher mean WCC, a higher mean serum creatinine, lower mean serum albumin and had a 

shorter length of stay in hospital. Again, the only significant difference was between the 

serum creatinine levels of the two groups (p = 0.006) (table 6.1). Unsurprisingly, a positive 

binary toxin gene result was significantly associated with samples containing PCR ribotype 

027 (p<0.001) (table 6.1.).  
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Variable 

CT≤25 

(n/N (%)) 

 

CT>25 

(n/N (%)) 

 

p value* CT≤24 

(n/N (%)) 

 

CT>24 

(n/N (%)) 

 

p value* CT≤25 and 
Binary toxin 
PCR positive 

(n/N [%]) 

CT≤25 and 
Binary toxin 

PCR 
negative 

(n/N [%]) 

p value* 

All PCR-positive patients         

CCNA positive 

366/436  

(83.9) 

347/838  

(41.4) 

<0.001 278/323 
(86.1) 

435/523 
(45.4) 

<0.001 100/112 
(89.3) 

266/324 
(82.1) 

0.10 

Died 
54/310  

(17.4) 

69/575  

(12.0) 

0.032 41/233 
(17.6) 

82/652 
(12.6) 

0.52 20/79  

(25.3) 

34/231  

(14.7) 

0.049 

Recurrence 
36/189  

(19.0) 

42/307  

(13.7) 

0.111 27/145 
(18.6) 

51/351 
(14.5) 

0.70    

Had 
PCR ribotype 
027 

46/272  

(16.9) 

41/387  

(10.6) 

0.025 35/323 
(10.8) 

52/958 
(5.4) 

0.003 42/79  

(53.2) 

1/189  

(0.5) 

<0.001 

Median length 
of stay (days) 

28 23 0.77 n/ac n/ac n/ac 20 29 0.11 

Mean white cell 
count (x109/L) 

12.1 10.9 0.3 n/ac n/ac n/ac 13.2 11.8 0.13 

Mean serum 
creatinine 

120.0 110.7 0.04 n/ac n/ac n/ac 112.9 111.8 0.006 
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(mg/dL) 

Mean serum 
albumin (g/L) 

31.3 32.4 0.34 n/ac n/ac n/ac 31.0 31.3 0.46 

          

All PCR positive patients with 
PCR ribotype 027 

        

Median length 
of stay (days) 

32.5 28 0.018 n/ac n/ac n/ac N/A N/A  

Died 11/33 (33.3) 26/170 (15.3) 0.024b n/ac n/ac n/ac 11/32 (34.4) 0/1 (0) 0.66b 

* t test for comparisons of means, Mann Whitney for comparisons of medians, 2 for categorical comparisons. b Fisher’s exact probability. c CT ≤ 24 
not investigated further as low CT defined as ≤5 for further analyses.  

Table 6.1 Outcomes and severity markers for patients with CT values ≤ 25 or > 25. Reproduced from PLOS One with permission  
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Figure 6.1 Results of C. difficile reference methods A) all PCR positive samples (n = 1281) positive agreement 51.2%; (B) those with 

only CT < 25 (n = 436) positive agreement 78.4%; (C) those with only CT ≤ 24 (n = 145) positive agreement 76.6%. Reproduced from 

PLOS One with permission 
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Figure 6.2 ROCs for PCR tcdB CT value against a) mortality (AUROC 0.569) and b) CCNA (0.83) and c) recurrence (0.557). Reproduced 

from PLOS One with permission 

 

  

a) b) c) 
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Figure 6.3 Boxplot of PCR tcdB CT value against a) mortality b) CCNA result and c) recurrence. Values clustered around the top bar 

indicate outlier values.  Reproduced from PLOS One with permission

a) b) c) 
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6.3.2 Can diagnostic assays be used to predict recurrence? 

6.3.2.1 Analysis of existing data set to determine if there is an association 

between a positive primary C. difficile diagnostic assay and recurrent infection 

 

There were 1578 patients that had with more than one sample submitted during the period 

of the study, equating to a total of 3808 samples that could be used for the analysis of 

recurrence. The highest risk of recurrence occurred in those patients who had a previous 

sample that was CCNA positive (recurrence rate 20.3%, OR 8.04, 95% CI 5.69-8.18, p <0.001, 

table 6.2.). However, having a sample that had been previously positive by any of the 

assays was significantly associated with recurrence (all p <0.011, table 6.2.). Although the 

OR for recurrence if the previous sample was positive by PCR was 6.84, this analysis also 

contained samples that were also CCNA positive. The data were therefore adjusted to 

contain only those that were PCR positive (Group 3) and the OR decreased to 2.52 (95% CI 

1.56-4.07, p <0.001, table 6.2.). The same pattern was seen for recurrence risk in those 

patients whose previous sample had been CTC positive; the OR decreased from 5.86 (95% 

CI 4.21-8.18, p <0.001) to 2.13 (95% CI 1.18-3.84, p = 0.011, Table 6.2.) once CCNA-positive 

samples were removed from this group (Group 2). Whilst the ORs were similar between all 

those with an initial positive PCR test vs those with a PCR test with tcdB CT≤25 (6.84 vs 6.31 

[95% CI 4.96-9.43 and 4.21-9.44, respectively]), it should be noted that the rate of 

recurrence in the tcdB PCR CT≤25 group was higher than that in the whole group that was 

positive by PCR, although this was not significant (19% vs 15.7%, p = 0.35) (table 6.2.). 

There was however a significant difference between group 3 (PCR positive/CCNA negative) 

and Group 4 (PCR positive with CT≤25/CCNA negative) (9.6% vs 19.0%, p = 0.009, table 6.2.). 

There was also a higher rate of recurrence in those patients with tcdB PCR-positive samples 

that were also positive for binary toxin gene, compared with those without binary toxin 

gene (24.2% vs 13.6%, OR 2.03 95% CI 1.18-3.49, p = 0.009, table 6.2.1). However, the 

difference in recurrence rates between those with and without binary toxin gene in those 

samples with tcdB PCR CT≤25 (23.7 vs 17.9%, OR 1.43 95% CI 0.61-3.35, p = 0.42, table 6.2.1) 

was not significant.  

The relationship between initial samples that were baseline positive by any assay, followed 

by a CCNA-positive sample within 14 days was also analysed (table 6.2.)  Interestingly, the 

CCNA positive rate in subsequent samples within 14 days when the initial positive result 

was by CCNA (Group 1), CTC only (Group 2) or PCR with low CT only (Group 4) was 



224 
 

approximately half that of the positive number after 14 days. However, the positive rate for 

those in Group 3 (initial sample positive by PCR only) was the same (9.6 vs 9.9%) within 

both periods.  

In a binary logistic regression model for recurrence (n = 3804 samples), with the variables; 

initial test positive by CTC, CCNA, GDH, PCR or tcdB PCR CT ≤25, having an initial sample 

that was positive by CCNA or PCR was significantly associated with recurrence (p <0.001, 

table 6.2.). However, as the PCR group also contained samples that were positive by CCNA, 

the binary logistic regression analysis was also repeated for the variables CCNA (Group 1, 

Group 2, Group 3 and Group 4, n=496 samples).  Following this analysis, recurrence was 

only significantly associated with having an initial sample that was positive by CCNA 

(p = 0.046, table 6.2.).  



225 
 

    
Patient had another CCNA 

positive sample after 14 days         
 

Initial test 

Initial 
test 

result No Yes Total 
Recurrence 

% OR 95% CI for OR 
p value 

(χ2) 

Binary logistic 
regression 

p value 

Cytotoxigenic 
culture 

negative 3298 103 3401 3.0  
5.86 

 
4.21-8.18 

 
<0.001 

 
0.55 positive 344 63 407 15.5 

Cell cytotoxicity 
neutralisation 
assay (Group 1) 

negative 3414 108 3522 3.1 
 

8.04 
 

5.69-8.18 
 

<0.001 

0.001 (0.046 in 
second model) 

positive 228 58 286 20.3 

Group 2 
negative 3502 153 3655 4.2  

2.13 
 

1.18-3.84 
 

0.011 

 
 

0.840 positive 140 13 153 8.5 

GDH negative 3113 90 3203 2.8  
4.96 

 
3.61-6.82 

 
<0.001 

 
0.56 positive 530 76 606 12.5 

PCR negative 3225 88 3313 2.7  
6.84 

 
4.96-9.43 

 
<0.001 

 
<0.001 positive 418 78 496 15.7 

Group 3 negative 3445 145 3590 4.0 
  

 
<0.001 

Dropped from 
model positive 198 21 219 9.6 2.52 1.56-4.07 

CT<25 CT>25 3486 130 3616 3.6 
  

 
<0.001 

 
0.73 CT<25 153 36 189 19.0 6.31 4.21-9.44 

Group 4 CT>25 265 42 307 13.7 

1.49 0.91-2.4 0.111 

 
0.76 CT<25 153 36 189 19.0 

PCR and Binary 
toxin PCR 

Positive 24 75 99 24.2 

2.03 1.18-3.49 0.009 

 
N/A Negative 54 343 397 13.6 

CT<25 and Binary 
toxin PCR 

Positive 9 29 38 23.7 

1.43 0.61-3.35 0.42 
N/A 

Negative 27 124 151 17.9 

   

Patient had another CTA 
positive sample within 14 

days      

 

Initial test 
Initial 
test No Yes Total 

CCNA 
positive OR 95% CI for OR 

p value 
(χ2) 
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result % 

Cell cytotoxicity 
neutralisation 
assay (group 1) 

Negative 3431 17 3522 0.5 

24.5 13.8-43.2 <0.001 N/A positive 363 44 407 10.8 

Group 2 
Negative 3600 55 3655 1.5 

2.67 1.13-6.3 0.045 N/A Positive 147 6 153 3.9 

Group 3 
Negative 3225 88 3313 2.8 

4.1 2.9-5.9 <0.001 N/A Positive 437 49 496 9.9 

Group 4 
Negative 237 70 307 22.8 

0.47 0.28-0.78 0.005 N/A Positive 166 23 189 12.6 

Odds ratios and χ2 results for categorical comparisons. Initial binary logistic regression included the variables CTC, CCNA, GDH, PCR or PCR tcdB 

CT<25, second model included the variables CCNA (Group 1), CTC positive/CCNA negative (Group 2), PCR positive/CCNA negative (Group 3) and 

CT<25/CTA negative (Group 4). 

Table 6.2 The risk of recurrent CDI according to prior C. difficile test results in patients who had more than one sample 
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6.3.2.2 Analysis of data from the PlaciD dataset to determine if there is an 

association between the bacterial bioload during primary infection and 

recurrence 

 

GDH OD values correlated with bacterial load in the sample, as measured by semi-

quantitative culture (figure 6.4a-c) with a significant Spearman’s correlation of 0.74 

(p <0.001) suggesting that GDH OD values could be used to measure the faecal bacterial 

burden. There were significant differences between the GDH OD values for cases and 

controls (median GDH OD for cases = 0.182 vs 0.005 for controls; Mann Whitney p <0.001), 

and between cases with a single episode and those with recurrent episodes (median GDH 

OD for recurrent cases = 0.778 vs 0.058 for controls; Mann Whitney p <0.001), with those 

with recurrence having the highest median GDH OD values of all.  

There were 20 patients (mean age 70) with CDI who had a recurrent infection with a total 

of 25 recurrent episodes. In 16 of these 25 recurrent episodes (64%), which occurred in 14 

of the 20 patients with CDI, GDH was detected before the CCNA positive sample that 

signalled the recurrent CDI episode (median 8.5 days before). In five of the 14 patients 

(equating to six out of the 16 episodes where GDH was detected first) individuals (median 

age 77) had consistent GDH-positive results, despite having a resolution of their diarrhoea 

symptoms. In total, these five patients had 70 samples tested; 69/70 samples were positive 

for GDH, 55/70 were positive by cytotoxigenic culture and 59/70 were positive for toxin 

genes by PCR assay (figures 6.5a-e). Interestingly, the toxin gene PCR assay was not positive 

on as many occasions as the GDH assay, suggesting that the GDH assay potentially has a 

lower limit of detection. We were unable to recover C. difficile by culture from any samples 

from one of the patients; the patient had, however, been treated with fidaxomicin, which 

has been shown to reduce bacterial recovery from clinical samples (Chilton, PLOS one 

2016). 

Six of the six recurrence episodes in these five patients were precipitated by antibiotic 

therapy, for four of the six antibiotic therapies these were not given to treat CDI (figures 

6.5a-e). In addition, four of the five patients were using concomitant PPIs. These five 

patients appear to have been more ill than those who cleared the bacteria below the limit 

of detection for the GDH assay between CDI episodes, with higher WCC’s, higher serum 

albumin levels and lower serum creatinine levels (table 6.3). 
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Figure 6.4 a) GDH OD values for different bacterial loads, as measured by semi-quantitative culture. Spearman’s = 0.74, p <0.001); b) 

GDH OD values for cases and controls. Median GDH OD for cases = 0.182 vs 0.005 for controls (U p <0.001); c) GDH OD values for 

recurrent cases and single CDI cases.  Median GDH OD for recurrent cases = 0.778 vs 0.058 for controls (U p <0.001) 
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Figures 6.5a-e. The days on which the five recurrent cases had samples taken and tested, and the results of each of those tests  
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WCC 
(10.8 x 109 

cells per 
litre) 

Serum 
albumin 

(g/ʟ) 

Serum 
creatinine 
(µmol/ʟ) 

Controls 

mean 7.34 32.77 93.51 

min 0.13 23 26 

max 16.81 42 552 

Cases 

mean 10.92 31.12 105.67 

min 0.01 5.8 23 

max 1135 45 752 

p value   
(case/ control) 

 
0.47 0.1 0.44 

Single 

mean 11.14 32.07 110.79 

min 0.01 18 31 

max 1135 45 752 

Recurrent 

mean 10.34 28.66 93.38 

min 3.45 5.8 23 

max 45.35 44 747 

p value       
(single/ recurrent) 

 
0.28 <0.001 0.21 

Recurrence without 
constant GDH 

mean 10.18 28.36 99.9 

min 3.45 5.8 27 

max 45.35 44 747 

Recurrence with 
constant GDH 

mean 10.97 30.07 69.12 

min 6.99 21 23 

max 15.03 38 181 

p value  
(inconstant/constant) 

 
0.05 0.2 0.04 

Table 6.3 The white cell count, serum albumin and serum creatinine results for 

different groups of patients within the study. Comparison between groups were 

made using t tests 
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6.4 Discussion 

Utilising the largest dataset collected on CDI diagnostic assays and patient outcomes 

enabled analysis to examine the potential of CT value to inform on the diagnosis and 

outcomes of CDI, and. Importantly, this dataset comes from the only study which tested all 

samples with both of the CCNA and CTC reference assays.  A low CT value for a C. difficile 

tcdB PCR assay was significantly associated with a toxin-positive result, presence of 

PCR ribotype 027, and mortality (table 6.1). In addition, recurrence was also associated 

with low CT, although this was not a significant finding, possibly due to the low number of 

recurrent cases within the dataset. There was a significant AUROC for tcdB PCR CT value 

against sample toxin positivity, as measured by CCNA of 0.83 (p <0.001) with a median tcdB 

PCR CT for toxin positive samples of 24.9 vs 31.6 for toxin negative samples (p <0.001). In 

addition, the median tcdB PCR CT value for patients who died was significantly lower than 

for those who survived (25.5 vs 27.5 p = 0.021) with a significant AUROCC for tcdB PCR CT 

positives against mortality; 0.572 p =0.009. In order to optimise the CT cut-off both ≤24 and 

≤25 cycles were further investigated, but there was little difference between the two cut-

off values (table 6.1); a slighter higher PPV for toxin positivity using CT ≤24 was offset by a 

lack of significant association with mortality seen with CT≤25 .  A ‘low CT’ was therefore 

defined as tcdB PCR CT of ≤25. This cut-off was slightly higher than cut-offs used in two 

smaller studies which reported CT values. Indeed, one of these studies reported an AUROC 

of 0.857 when using a cut-off of <23.5 cycles; however, this was for a composite end-point 

of ‘poor outcome’ which included recurrent infection, treatment failure or progressing to 

severe complicated CDI (Reigadas et al, 2016b). The large dataset in this study, 7.5 times 

larger than that of the previous study, has highlighted the association of low CT with single 

outcome measures, rather than a composite end-point.  Indeed, with a positive predictive 

value of low CT (≤25) for toxin detection of 83.9% it is possible that a low tcdB PCR CT value 

could be used as a proxy for toxin detection as suggested from a recent small study 

(Kamboj et al, 2018).  

The risk of mortality was higher in patients with a low CT (≤25) compared with those with a 

PCR CT value >25 (relative risk [RR] 1.45) (table 6.2). The risk of mortality was further 

increased in those patients who had a low CT and had an infection caused by C. difficile 

PCR ribotype 027 (RR 2.18). Indeed, in those patients with a low CT (≤25), mortality and 

longer length of stay were also significantly associated with the presence of C. difficile 

PCR ribotype 027 in their sample, compared to other PCR ribotypes, highlighting a possible 

‘at risk’ group. There is conflicting evidence regarding the role of the presence of the binary 
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toxin gene in CDI outcomes (Reigadas et al, 2016a, Berry et al, 2017), however in this 

dataset the relative risk for mortality for those patients with low CT increased from 1.45 to 

1.72 when the presence of binary toxin gene was taken into account.  

Patients with a low CT appeared to be sicker than those with a tcdB PCR CT value >25, as 

they had a higher mean WCC, higher mean serum creatinine, lower mean serum albumin 

and longer length of stay, but only the difference in serum albumin levels was significant 

(table 6.2). This was possibly due to the small sample size in these subgroups, as data could 

only be collected when patients had routine blood tests, they were not tested 

systematically. The same pattern of differences in CDI severity markers was seen in patients 

who had a low CT and whose samples tested positive for binary toxin gene detection, with 

the exception that these patients had a shorter length of stay than binary toxin negative 

patients. The predictive value of tcdB PCR low CT to determine those patients who are 

more sick warrants further investigation. Any future study would need to be larger, and use 

prospective, systematic sampling of patients.  

Prevention of recurrence is a key goal of patient management in cases of CDI, indeed the 

antibiotic fidaxomicin is recommend in first recurrent cases to prevent further episodes 

(Debast et al, 2014, McDonald et al, 2018) due to the reduction in recurrence risk with this 

antibiotic, compared with vancomycin.  The high cost of this treatment does, however, 

impact on a hospital’s decision to fund this drug. A diagnostic tool that could indicate those 

patients in which it would be most cost-effective to use, i.e. those at biggest risk of 

recurrence, such as in those patients with low CT, may help to guide antibiotic 

management. Although recurrence was associated with a low CT in this dataset, this was 

not a significant finding, possibly due to the low number of recurrent cases within the 

PCR-positive samples that were used for the CT value analysis (table 6.1 and figures 6.2 and 

6.3). Risk of recurrence has also previously been shown to be higher in PCR ribotype 027 

(Marsh et al, 2012). In order for this to be a timely measure however, clinicians cannot rely 

on traditional PCR-ribotyping methods; in this regard a rapid assay with a ‘presumptive 027’ 

result would be of importance.  The Cepheid geneXpert® C. diff assay has a high NPV for 

‘presumptive RT027’ but does overcall the number of samples that truly contain a strain of 

PCR ribotype 027, as demonstrated by the low PPV (69.9%). The presence of the gene 

target used to identify PCR ribotype 027 by the Cepheid geneXpert® C. diff assay in other 

ribotypes related to PCR ribotype 027 can confound the results produced by this assay 

(Spigaglia and Mastrantonio, 2002, Rupnik et al, 1998). 
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In order to investigate recurrence further, all patients who had more than one sample 

taken during the study were included, regardless of PCR positivity. Using this larger dataset 

recurrence was significantly associated with a sample that had tested positive by any of the 

diagnostic assays used; however, the highest risk was in those with a previous 

CCNA-positive sample (OR 8.04), PCR-positive sample (as defined by the software algorithm 

within the Cepheid geneXpert®)  (OR 6.84) or low tcdB PCR CT value (OR 6.31) (table 6.2). 

Importantly, however, the OR for both PCR and low CT decrease when samples within 

these groups that were also CCNA positive were removed from the analysis; CCNA was the 

only significant variable associated with recurrence after binary logistic regression (Table 

6.2).  In addition, the rate of subsequent CCNA-positive samples within 14 days of the initial 

sample is the same for those that are PCR positive only (9.9% vs 9.6% for those >14 days), 

whilst for CCNA, CTC only (Group 2) and low CT only (Group 4) the incidence is 

approximately half within that 14-day period (table 6.2). This suggests that CCNA and low 

CT are better predictors of a true recurrence, as they are diagnosing the first sample with a 

‘true’ case of CDI, whereas a positive toxigenic C. difficile PCR result (with any CT) could be 

detecting a patient without toxin and therefore without ‘true’ disease.  Without a ‘true’ 

initial CDI episode, can there be a ‘true’ recurrence, or are these patients developing a 

toxin positive disease for the first time?   

There are some limitations associated with this retrospective data analysis of a pre-existing 

dataset, such as the lack of a validation dataset. It should be noted, however, that this 

dataset was from the largest ever study of C. difficile diagnostic assays, and was therefore a 

valuable resource, in terms of sheer numbers, for this analysis. In order to analyse the data 

for recurrence, only those patients who had more than one sample submitted could be 

included in the analysis. Unfortunately, in the original study some recurrent samples may 

have been missed as there was a break in sample collection of a few months, as the study 

changed from a derivation to a validation testing set (Planche et al, LID 2012), and indeed 

the study was not designed to prospectively capture recurrence data. Therefore, a 

prospective study to investigate the impact of CT value information provided to clinicians 

on the rate of recurrence and any potential changes in patient management is warranted.  

In addition, these data only relate to one NAAT assay (Cepheid geneXpert® C. diff); it 

cannot be assumed that all assays will perform in the same way; however, there is some 

evidence emerging from other groups using different NAATs about the potential value of 

the CT value (Crobach et al, 2018). 
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If the theory that recurrence is more likely in those patients who have a higher bacterial 

burden of disease during their primary infection, are there assays, other than PCR CT values, 

that could be used to predict recurrence? A study in 2017 found that a higher bacterial 

burden, as measured by cfu of toxigenic C. difficile/g of stool, was associated with a poor 

outcome (composed of recurrence, or treatment failure or severe complicated CDI) 

(Reigadas et al, 2017). The GDH OD values from the PlaciD dataset  correlated with the 

bacterial load in the sample, as measured by semi-quantitative culture of C. difficile, 

suggesting that GDH OD values could be used to measure the bacterial burden with faecal 

samples (figure 6.4). As discussed in Chapter 1, the GDH EIA is a quantitative assay, and 

increasing OD values correlate with increasing bacterial burden within the gut model.  The 

highest median GDH OD values were seen in those patients with recurrent infection, with 

significant differences seen between cases and controls and those patients with single 

verses recurrent CDI (figure 6.4). This appears to confirm that a higher bacterial burden, as 

measured by either GDH OD could be used to predict recurrence. In addition, GDH could be 

detected from samples a median of 8.5 days before samples were produced that were 

toxin positive (as measured by CCNA).  

In addition to examining the GDH OD values of all patients, five patients were identified 

who had consistent GDH-positive samples throughout their hospital stay, despite 

resolution of their diarrhoeal symptoms.  This would appear to indicate that this group of 

patients were unable to clear the organism from their gut, but were colonised until they 

had another clinical recurrence. In all six of the recurrent infections that occurred in this 

group of five patients, their recurrent episode was precipitated by antibiotic therapy 

(figures 6.5a-e). In addition, four of these five patients were also using concomitant PPIs, 

although the potential role of PPIs as a risk factor for CDI is contentious (Faleck et al, 2016, 

Dial et al, 2004, Vesteinsdottir et al, 2012).   

Interestingly, for these five patients, culture and the toxin gene PCR assay were not positive 

on as many occasions as the GDH assay, perhaps suggesting that the GDH assay has a lower 

limit of detection than both culture and the PCR assay. This appears to contradict the data 

from the Department of Health (DoH) study, where PCR was as sensitive as the GDH assay, 

however the PCR assay used in the DoH study was the Cepheid geneXpert® C. diff, whereas 

the PCR assay used here was the BD Max™ C.diff assay  (Planche et al, 2012). This could 

therefore highlight differences between molecular platforms, as shown by Gilbreath et al, 

where the BD Max™ assay had the lowest sensitivity of the platforms tested (2014). 
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C. difficile could not be cultured from any of the samples from one patient; this patient had, 

however, been treated with fidaxomicin, which has been shown to reduce bacterial 

recovery from clinical samples (Biswas et al,  2015).  

The reasons behind the persistent carriage of C. difficile in these five patients are unclear. 

They appear to be more ill than those patients who cleared the bacteria below the limit of 

detection for the GDH assay between CDI episodes, as they had higher WCCs, higher serum 

albumin levels and lower serum creatinine levels (Table 6.3). However, whether these 

deranged values are due to the presence of the bacteria, or are a demonstration of the 

frailty of the patient, and therefore, perhaps a compromised immune system that cannot 

clear the infection, is unclear.   
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7. Final Discussion 

CDI laboratory diagnostic methods have been shown to have variable performance 

(introduction section 1.13), but what are the reasons for this? The PCR ribotype has been 

cited as a factor in reduced sensitivity for both the GDH and toxin EIAs (Tenover et al,   

2010), while in this study, none of the EIAs tested were significantly more likely to miss any 

one PCR ribotype over another. Importantly, however, there were significant differences 

between the median OD values of PCR ribotypes 027 and 015 for both of the toxin EIAs 

tested (figure 3.1). Given that the GDH EIA has been shown to be quantitative (Chapter 4), 

it could be theorised that the same is true for the toxin assays, and that the different 

median values reflect differences in the level of toxin produced by different PCR ribotypes.  

This is supported by the data from batch culture experiments, where the cytotoxin titre for 

PCR ribotype 002 was lower than the titre for other PCR ribotypes tested, even though 

total viable counts remained consistent between the strains (figures 3.2 and 3.5). There 

were also significant differences between median OD values of the two toxin EIA for the 

same PCR ribotypes (table 3.2), further highlighting the variability between toxin EIAs.  

The GDH EIA does not appear have the same variation in performance with different 

PCR ribotypes (table 3.1, figures 3.2 and 3.5). Indeed, the GDH assay appeared to be the 

most sensitive method for detection of C. difficile from sequential faecal samples, 

compared with culture, CTC and PCR (BD Max™) (tables 5.13 and 5.15). In contrast, the PCR 

assay (Cepheid GeneXpert®) had comparable sensitivity to the GDH assay in an earlier 

study (Planche et al, 2012), suggesting that different PCR platforms have different 

sensitivity for detecting C. difficile from faecal samples (Gilbreath et al, 2014).  It should 

also be noted that the earlier study was testing faecal samples from patients in whom a 

diagnosis of CDI was suspected, while in the present study the samples were tested on 

sequential days after an initial GDH positive sample had been identified. Testing sequential 

samples, however, gives an indication of how long markers of C. difficile or CDI remain 

detectable within patient samples, and therefore also provides an indication about the limit 

of detection of these assays. In addition, GDH was detectable from samples from the gut-

model experiments when no organisms could be cultured from the samples (figures 4.1, 4.2, 

4.4, 4.5, and 4.7-4.12), demonstrating that GDH remained within the system after the 

organism had washed out. The reasons for the extended detection of GDH both in vitro and 

in vivo are unclear; it may be related to the large amounts of GDH produced, sequestration 

within biofilm, and/or release from dead cells.  There is not, however, an additional peak in 

GDH after cell death within the gut models, just a continual decline, in-line with the 
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reduction in cell numbers, suggesting that GDH is not released after cell death. This is 

supported by the data from growth curve experiments, which show that GDH was 

produced during the exponential phase of growth, then declined as vegetative growth 

slowed and there was conversion from vegetative cells to spores (figures 3.8 and 3.9). 

Dilution of gut model samples allowed visualisation of peak GDH levels produced during 

the gut model experiments, which in later experiments reached very high levels (Model F 

figures 4.11a-c).  It is possible therefore that the high sensitivity of the GDH EIA could be 

related to the large amounts of the protein produced by the organism. Further studies are 

required to investigate the copy number of the gluD gene within C. difficile, expression of 

the gene and perhaps what promoter genes are associated with gluD, in order to fully 

understand the production of GDH by the organism.   

In addition to increased GDH levels within Model F, the highest peak total viable count and 

toxin titre was also observed within this model (Model F figures 4.11a-c), suggesting that 

levels of both GDH and toxin are related to the bioload during infection. This correlates 

with a recent study where poor outcome was associated with higher bacterial burden, as 

measured by cfu of toxigenic C. difficile/g of stool (Reigadas et al, 2017). Within faecal 

samples in the current study, GDH EIA OD values also correlated with culture, as measured 

semi-quantitatively (figure 6.4a), further supporting the theory that GDH EIA OD values can 

be used as a measure of bioload within the sample. In addition, the median OD value of 

cases was significantly higher than control participants, and the median OD value of 

recurrent cases was significantly higher than those participants who only had one episode 

of CDI (figures 6.4b-c). The GDH OD value may therefore, potentially offer the opportunity 

to predict recurrence. Similarly, the CT value of PCR assays, specifically the Cepheid 

geneXpert®, may also provide information to help predict those participants who are toxin-

positive, have an infection caused by PCR ribotype 027, and are at greater risk of mortality 

(table 6.1). Although low CT (<25) was associated with recurrence, this was not a significant 

finding; the only assay significantly associated with recurrence after binary logistic 

regression was CCNA (table 6.2). It should be noted, however, that not all commercial PCR 

systems provide CT values to the user, meaning that this ‘extra’ analysis could not take 

place. In addition, not all PCR systems may be comparable; the BD Max™ C. diff assay used 

in the sequential faecal sample testing for the present study appeared to have decreased 

sensitivity compared with the Cepheid geneXpert® C. diff assay used in our earlier study 

(Planche et al, 2012), although this was not a true head-to-head comparison. This potential 

variability was highlighted in a recent comparison of four molecular assays, with sensitivity 
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ranging from 90-100%, but with 95% CI ranging from 82-100% (Caulfield et al, 2018), 

although this comparison was not against a recognised reference method. A second smaller 

study found sensitivities of 92-99%% with 95% CI ranging from 84.6-100.0, compared with 

toxigenic culture for six different molecular assays (Paitan et al, 2017).  

The current C. difficile diagnostic guidelines in the UK and Europe (Crobach et al, 2016) 

state that a two-stage algorithm should be used for the diagnosis of CDI, to counter the 

lack of sensitivity of stand-alone toxin EIAs. The most commonly used option in the UK 

(Davies et al, 2016b) is GDH/toxin. This does, however, highlight a ‘new’ patient group, 

denoted potential C. difficile excretors (PCDEs), i.e. those patients who have a sample that 

tests positive for GDH but negative for toxin (Planche et al, 2012). It could be argued that 

some of these PCDE’s are ‘missed’ infections, due to the use of a toxin EIA (with reduced 

sensitivity) as the second test. However, using CCNA to test sequential samples 

demonstrates that toxin cannot be detected, even by this more sensitive method.  Samples 

could be further investigated by the use of novel ultra-sensitive toxin detection assays 

(Pollock, 2016; Banz et al, 2018). It is possible that failure to detect toxin from a C. difficile 

positive sample is because the patient is carrying a non-toxigenic strain, which is therefore 

incapable of producing toxin. However, of the 25 PCDEs that had no samples with 

detectable toxin, 20/25 had a toxigenic PCR ribotype of C. difficile isolated from their 

sample. This is an important point, as CDI is a toxin mediated disease (Bartlett et al, 1978). 

Interestingly, 27% of PCDEs went on to have a toxin positive sample, after a median of 8 

days. Does this indicate that the initial samples were taken before the organism had started 

to proliferate and produce toxin, or that the level of toxin was not yet detectable by CCNA, 

so yielding a GDH-positive/toxin-negative result? Indeed, the converse could be true; only 

12.2% of CDI cases went on to have another toxin positive sample within 72 hours of the 

initial sample (table 5.14). 

The data from gut models demonstrate the fast decline of toxin following treatment with 

an appropriate antibiotic (figures 4.1, 4.2, 4.4, 4.5, and 4.7-4.12). The gut model cannot, 

however, simulate the effect of the immune system on the levels of toxin within the gut 

and how fast levels decline in vivo. It is therefore possible that a 

GDH-positive/toxin-negative result could be obtained for a sample collected at either end 

of the episode of infection. Current guidance does not support repeated testing of patients, 

due to the potential for increased false-positives, and the data from this study are currently 

not strong enough to contradict that advice. Further studies are required to determine if 
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ultra-sensitive toxin detection methods could detect low levels of toxin, below those 

currently detected by CCNA, in these GDH-positive/toxin-negative (by CCNA) patient 

samples, and indeed to determine the clinical importance of these results. In addition, as 

there has been a correlation demonstrated between lactoferrin (Davies et al, 2019b), and 

toxin level in a faecal samples, tests for gut inflammation, such as lactoferrin or calprotectin 

could be used to provide an indication of toxin damage to the gut mucosa in patients with 

GDH-positive/toxin-negative results.  Further studies are also needed to determine the 

utility of lactoferrin and calprotectin when used as an adjunct to ultra-sensitive toxin 

detection assays.  

Antibiotic stewardship is important to reduce the risk of emergence and spread of 

antibiotic resistance, and so increase the chance that the current portfolio of antibiotics 

remains effective. Within the context of CDI, antibiotic stewardship is additionally 

important, as a method of protecting the vital gut microbiome. Almost all classes of 

antibiotic have been shown to damage the microbiome, allowing a niche for C. difficile to 

proliferate (Bartlett and Gerding, 2008), including some used to treat CDI itself, such as 

vancomycin. A subset of patients has been highlighted in this study, which was consistently 

GDH positive in almost every sample (69/70, 98.5%) despite resolution of symptoms. The 

reasons that they were unable to clear the infection are unclear; however, all of these 

patients went on to have a recurrent CDI following antibiotic treatment for another 

suspected or proven (non-CDI) infection (figures 6.5 a-e). Risk prediction models are not 

currently reproducible (Escobar et al, 2017), and so, if the patients had been tested before 

the new antibiotic prescription had been written, and found to be GDH positive, would this 

have changed the decision of the prescriber to use a more gut-protective agent? These 

data, taken with those discussed above mean that diagnostic assays may therefore, be able 

to provide more information than a binary positive/negative result, and thereby, augment 

existing testing methodology, by providing guidance for opportunities for antibiotic 

stewardship or the use of therapies such as bezlotoxumab to help prevent recurrence. 

Alternatively, there are investigational drugs that are designed to reduce the negative 

impact of antibiotics on gut microbiota (and so reduce the risk of CDI) i.e. SYN-004 

(ribaxamase) (Kokai-Kun et al, 2017b) and DAV-132 (de Gunzberg et al, 2015).  The novel 

GDH results from the present study offer a potential way to target the use of such 

preventative therapies to those patients most likely to benefit.  
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Appendix 3. Supplementary tables for Chapter 3 

 

  

Recruited to the study 
 
 

Had at least one sample 
in the study 

Had at least one 
sample in the study 
and initial diagnostic 
specimen was GDH 

positive 

  Control 
GDH 

positive 
Total Control 

GDH 
positive 

Total PCDE CDI Total 

  
n  

(%) 
n  

(%) 
n 

n  
(%) 

n  
(%) 

n 
n  

(%) 
N 

 (%) 
n 

Abdominal pain 
1  

(9.1) 
10 

(90.9) 
11 

1  
(9.1) 

9  
(90.0) 

10 
4  

(44.4) 
5  

(66.6) 
9 

Abdominal aortic 
aneurysm 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

0  
(0) 

0  
(0) 

0 

Acute kidney 
injury 

1  
(20.0) 

4  
(80.0) 

5 
1  

(20.0) 
4  

(80.0) 
5 

1  
(25.0) 

3  
(75.0) 

4 

Alcohol 
withdrawal 

0  
(0) 

2  
(100) 

2 
0  

(0) 
2  

(100) 
2 

1  
(50.0) 

1  
(50.0) 

2 

Appendix 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Bacteraemia 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Biliary sepsis 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Bladder cancer 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Community 
acquired 
pneumonia 

0  
(0) 

2  
(100) 

2 
0  

(0) 
2  

(100) 
2 

1  
(50.0) 

1  
(50.0) 

2 

CDI 
0  

(0) 
3  

(100) 
3 

0  
(0) 

3  
(100) 

3 
1  

(33.3) 
2  

(66.7) 
3 

Cellulitis 
1  

(33.3) 
2  

(66.7) 
3 

1  
(33.3) 

2  
(66.7) 

3 
1  

(50.0) 
1  

(50.0) 
2 

Chest infection 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Chest pain 
1  

(100) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Cholangitis 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Chronic 
osteomyelitis 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

1  
(100) 

0  
(0) 

1 

Chronic kidney 
disease 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

0  
(0) 

0  
(0) 

0 

Collapse 
0  

(0) 
1  

(100) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Confusion 
2  

(25.0) 
6  

(75.0) 
8 

0  
(0) 

4  
(100) 

4 
2  

(50.0) 
2  

(50.0) 
4 

Constipation 1  1  2 1  1  2 0  1  1 
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(50.0) (50.0) (50.0) (50.0) (0) (100) 

COPD 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Crohn’s 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Diarrhoea and 
vomiting 

0  
(0) 

14  
(100) 

14 
0  

(0) 
14  

(100) 
14 

7  
(50.0) 

7  
(50.0) 

14 

Decreased 
mobility 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

0  
(0) 

0  
(0) 

0 

Dementia 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Dental abscess 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Diabetic foot 
3  

(60.0) 
2  

(40.0) 
5 

2  
(50.0) 

2  
(50.0) 

4 
1  

(50.0) 
1  

(50.0) 
2 

Diarrhoea 
1  

(4.5) 
21  

(95.5) 
22 

1  
(5.0) 

19  
(95.0) 

20 
6  

(31.6) 
13  

(68.4) 
19 

Discitis 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Dislocated ankle 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Dislocated hip 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Dizziness 
0  

(0) 
2  

(100) 
2 

0  
(0) 

2  
(100) 

2 
1  

(50.0) 
1  

(50.0) 
2 

Dysphagia 
1  

(100) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

DVT 
1  

(50.0) 
1  

(50.0) 
2 

1  
(50.0) 

1  
(50.0) 

2 
1  

(100) 
0  

(0) 
1 

Elective 
chemotherapy 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 

Elective Stem cell 
Transplant 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

0  
(0) 

0  
(0) 

1 

Emergency 
surgery 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

1  
(100) 

0  
(0) 

1 

Encephalopathy 
0  

(0) 
2  

(100) 
2 

0  
(0) 

2  
(100) 

2 
1  

(50.0) 
1  

(50.0) 
2 

Endocarditis 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Epigastric pain 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Fracture of the 
ankle 

3  
(100) 

0  
(0) 

3 
2  

(100) 
0  

(0) 
2 

0  
(0) 

0  
(0) 

0 

Fracture of the 
elbow 

1 (50.0) 
1  

(50.0) 
2 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Fracture of the 
fibula 

1 (100) 
0  

(0) 
1 

0 
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Fracture of the 
foot 

0 (0) 
1  

(100) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Fracture of the 4  0  4 2  0  2 0  0  0 
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humorous (100) (0) (100) (0) (0) (0) 

Fracture of the 
knee 

7  
(100) 

0  
(0) 

7 
5  

(100) 
0  

(0) 
5 

0  
(0) 

0  
(0) 

0 

Fracture of the 
shaft of the femur 

7  
(100) 

0  
(0) 

7 
5  

(100) 
0  

(0) 
5 

0  
(0) 

0  
(0) 

0 

Fracture of the 
tibia 

4  
(100) 

0  
(0) 

4 
2  

(100) 
0  

(0) 
2 

0  
(0) 

0  
(0) 

0 

Fracture of the 
wrist 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

0  
(0) 

0  
(0) 

0 

Fall 
87  

(87.0) 
13  

(13.0) 
100 

36  
(76.6) 

11  
(23.4) 

47 
3  

(27.3) 
8  

(72.7) 
11 

Fatigue 
0  

(0) 
2  

(100) 
2 

0  
(0) 

2  
(100) 

2 
0  

(0) 
2  

(100) 
2 

Fits 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Flu 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Fractured neck of 
femur 

58  
(96.7) 

2  
(3.3) 

60 
17  

(89.5) 
2  

(10.5) 
19 

0  
(0) 

2  
(100) 

2 

Foot ulcer 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Gallstones 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Haematuria 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Hepatic 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Hip pain 
5  

(83.3) 
1  

(16.7) 
6 

3  
(75.0) 

1  
(25.0) 

4 
0  

(0) 
0  

(0) 
0 

Hypercalcaemia 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Hyperkalaemia 
0  

(0) 
2  

(100) 
2 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Inflammatory 
bowel disease 

0  
(0) 

1  
(100) 

1 
0  

(0) 
0  

(0) 
0 

0  
(0) 

0  
(0) 

0 

Ischaemia 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Leg pain 
3  

(75.0) 
1  

(25.0) 
4 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Leg swelling 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Leg ulcers 
1  

(100) 
0  

(0) 
1 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Lower respiratory 
tract infection 

3  
(37.5) 

5  
(62.5) 

8 
1  

(20.0) 
5  

(80.0) 
6 

3  
(42.9) 

4  
(57.1) 

6 

Multi organ 
failure 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

1  
(100) 

0  
(0) 

1 

Necrotising 
fasciitis 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 

Neutropenic 2  0  2 2  0  2 0  0  0 



295 
 

(100) (0) (100) (0) (0) (0) 

Neutropenic 
sepsis 

0  
(0) 

4  
(100) 

4 
0  

(0) 
2  

(100) 
2 

1  
(50.0) 

1  
(50.0) 

2 

Not known 
7  

(100) 
0  

(0) 
7 

1  
(100) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Pain in ankle 
1  

(100) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Pancreatitis 
0  

(0) 
3  

(100) 
3 

0  
(0) 

3  
(100) 

3 
2  

(66.7) 
1  

(33.3) 
3 

Planned surgery 
9  

(32.1) 
19  

(67.9) 
28 

7  
(28.0) 

18  
(72.0) 

25 
11  

(61.1) 
7  

(38.9) 
18 

Planned 
Treatment 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

1  
(100) 

0  
(0) 

1 

Pyrexia 
0  

(0) 
8  

(100) 
8 

0  
(0) 

7  
(100) 

7 
2  

(28.6) 
5  

(71.4) 
7 

Recurrent CDI 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Reduced Glasgow 
coma scale 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 

Sepsis 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Septic arthritis 
6  

(100) 
0  

(0) 
6 

4  
(100) 

0  
(0) 

4 
0  

(0) 
0  

(0) 
0 

Shortness of 
breath 

5  
(41.7) 

7  
(58.3) 

12 
3  

(30.0) 
7  

(70.0) 
10 

5  
(71.4) 

2  
(28.6) 

7 

Stem cell 
transplant 

0  
(0) 

2  
(100) 

2 
0  

(0) 
2  

(100) 
2 

2  
(100) 

0  
(0) 

2 

Stoma leak 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
1  

(100) 
0  

(0) 
1 

Stroke 
2  

(40.0) 
3  

(60.0) 
5 

1  
(25.0) 

3  
(75.0) 

4 
0  

(0) 
3  

(100) 
3 

Subdural 
haematoma 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 

Tachycardia 
0  

(0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Transfusion 
1  

(100) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Ulcerative colitis 0 (0) 
3  

(100) 
3 

0  
(0) 

3  
(100) 

3 
3  

(100) 
0  

(0) 
3 

Unsteady 0 (0) 
1  

(100) 
1 

0  
(0) 

1  
(100) 

1 
0  

(0) 
1  

(100) 
1 

Unwell 0 (0) 
7  

(100) 
7 

0  
(0) 

6  
(100) 

6 
0  

(0) 
6  

(100) 
6 

Upper GI bleed 0 (0) 
1  

(100) 
1 

0  
(0) 

0  
(0) 

0 
0  

(0) 
0  

(0) 
0 

Urinary sepsis 0 (0) 
4  

(100) 
4 

0  
(0) 

4  
(100) 

4 
3  

(75.0) 
1  

(25.0) 
4 

Upper respiratory 
tract infection 

1  
(50.0) 

1  
(50.0) 

2 
1  

(50.0) 
1  

(50.0) 
2 

0  
(0) 

1  
(100) 

1 

Urinary tract 5  4  9 1  4  5 1  3  4 
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infection (55.6) (44.4) (20.0) (80.0) (25.0) (75.0) 

Vertigo 
0  

(0) 
1  

(100) 
1 

0 
(0) 

0 
(0) 

0 
 

0  
(0) 

0  
(0) 

0 

Vomiting 
4  

(44.4) 
5  

(55.6) 
9 

2  
(33.3) 

4  
(66.7) 

6 
1  

(25.0) 
3  

(75.0) 
4 

Whipple’s 
0  

(0) 
2  

(100) 
2 

0  
(0) 

2  
(100) 

2 
0  

(0) 
2  

(100) 
2 

Total 252 206 458 112 187 299 78 109 187 

Table A3.1 The reasons for admission for control patients that were recruited to 

the study, regardless of if they had samples in the study and if they had at least 

one sample included in the study. Those patents that had at least one GDH 

positive sample are divided into potential C. difficile excretors (PCDEs) and CDI 

cases based on the presence or absence of C. difficile toxins in the original routine 

sample. Each participant could have more than one reason for admission 

recorded. Summary table of the top ten conditions listed in admission for all 

participants are shown in tables 5.2 and 5.3 
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Recruited to the study Had at least one sample in 
the study 

Had at least one 
sample in the study 
and initial diagnostic 
specimen was GDH 

positive 

  Control 
GDH 

positive 
Total Control 

GDH 
positive 

Total PCDE CDI Total 

  
n  

(%) 
N 

 (%) 
n 

n  
(%) 

n  
(%) 

n 
n  

(%) 
n  

(%) 
n 

Abdominal 
sepsis 

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Abdominal 
aortic aneurysm 

1  
(33.3) 

2  
(66.7) 

3 
1  

(33.3) 
2  

(66.7) 
2 

1  
(50.0) 

1  
(50.0) 

2 

Acute kidney 
injury 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 
2  

(100.0) 
2 

1  
(50.0) 

1 
(50.0) 

2 

Alcoholic 
4  

(22.2) 
14  

(77.8) 
18 

1  
(7.7) 

12  
(92.3) 

13 
5  

(45.5) 
6  

(54.5) 
11 

Alcoholic liver 
disease 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0

) 

0  
(0) 

1 

Alzheimer’s 
3  

(75.0) 
1  

(25.0) 
4 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Acute myeloid 
leukaemia 

2  
(28.6) 

5  
(71.4) 

7 
2  

(28.6) 
5  

(71.4) 
7 

2  
(40.0) 

3  
(60.0) 

5 

Anaemia 
5  

(62.5) 
3  

(37.5) 
8 

2  
(40.0) 

3  
(60.0) 

5 
1  

(33.3) 
2  

(66.7) 
3 

Angina 
8  

(57.1) 
6  

(42.9) 
14 

3  
(50.0) 

3  
(50.0) 

6 
4  

(66.7) 
2  

(33.3) 
6 

Ankylosing 
spondylitis 

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Arthritis 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Asthma 
5  

(20.0) 
20  

(80.0) 
25 

2  
(10.0) 

18  
(90.0) 

20 
9  

(50.0) 
9  

(50.0) 
18 

Atrial 
fibrillation 

15  
(53.6) 

13  
(46.4) 

28 
10  

(43.5) 
13  

(56.5) 
23 

3  
(23.1) 

10 
(76.9) 

13 

Autism 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Atrial 
ventricular 
fibrillation  

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

B12 deficiency 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Biliary sepsis 
1  

(33.3) 
2  

(66.7) 
3 

1  
(33.3) 

2  
(66.7) 

3 
2  

(100.0
) 

0  
(0) 

2 
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Bone marrow 
transplant 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 
2  

(100.0) 
2 

2  
(100.0

) 

0  
(0) 

2 

Bronchiectasis 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Bronchitis 
1  

(33.3) 
2  

(66.7) 
3 

0  
(0) 

2  
(100) 

2 
0  

(0) 

2  
(100.

0) 
2 

Cancer 
28  

(40.6) 
41  

(59.4) 
69 

14  
(26.4) 

39  
(73.6) 

53 
1  

(33.3) 
2  

(66.7) 
3 

CABG 
10  

(66.7) 
5  

(33.3) 
15 

5  
(62.5) 

3  
(37.5) 

8 
22  

(56.4) 
17  

(43.6) 
39 

Cardiac failure 
2  

(100.0) 
0  

(0) 
2 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

CDI 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Cellulitis 
1  

(50.0) 
1  

(50.0) 
2 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Cerebral palsy 
0  

(0) 
2  

(100.0) 
2 

0  
(0) 

2  
(100.0) 

2 
2  

(100.0
) 

0  
(0) 

2 

Child C 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Cirrhosis 
1  

(50.0) 
1  

(50.0) 
2 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Cholecystectom
y 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 
2  

(100.0) 
2 

0  
(0) 

2  
(100.

0) 
2 

Chronic kidney 
injury 

10  
(76.9) 

3  
(23.1) 

13 
5  

(62.5) 
3  

(37.5) 
8 

0  
(0) 

3  
(100) 

3 

Cystic fibrosis 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Chronic 
lymphocytic 
leukaemia 

1  
(50.0) 

1  
(50.0) 

2 
1  

(50.0) 
1  

(50.0) 
2 

0  
(0) 

1  
(100.

0) 
1 

Coeliac 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1 
(100.

0) 
1 

Colostomy 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Confusion 
2  

(100.0) 
0  

(0) 
2 

2  
(100.0) 

0  
(0) 

2 
0  

(0) 
0  

(0) 
0 

Constipation 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

COPD 
12  

(54.5) 
10  

(45.5) 
22 

4  
(28.6) 

10  
(71.4) 

14 
6  

(60.0) 
4  

(40.0) 
10 
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Crohn’s 
1  

(25.0) 
3  

(75.0) 
4 

1  
(33.3) 

2  
(66.7) 

3 
1  

(50.0) 
1  

(50.0) 
2 

Cystectomy 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Dementia 
15  

(83.3) 
3  

(16.7) 
18 

6  
(66.7) 

3  
(33.3) 

9 
0  

(0) 
3  

(100) 
3 

Diabetes 
33  

(52.4) 
30  

(47.6) 
63 

19  
(42.2) 

26  
(57.8) 

45 
9  

(32.1) 
19  

(67.9) 
28 

Diverticulitis 
1  

(14.3) 
6  

(85.7) 
7 

1  
(14.2) 

6  
(85.7) 

7 
2  

(33.3) 
4  

(66.7) 
6 

Deep vein 
thrombosis 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 
2  

(100.0) 
2 

1  
(50.0) 

1  
(50.0) 

2 

Dyspepsia 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Emphysema 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Enteritis 
1  

(50.0) 
1  

(50.0) 
2 

1  
(50.0) 

1  
(50.0) 

2 
1  

(100.0
) 

0  
(0) 

1 

Epilepsy 
5  

(41.7) 
7  

(58.3) 
12 

4  
(36.4) 

7  
(63.6) 

11 
5  

(71.4) 
2  

(28.6) 
7 

Fibromyalgia 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100) 
0  

(0) 
1 

Gall stones 
1  

(33.3) 
2  

(66.7) 
3 

1  
(33.3) 

2  
(66.7) 

3 
1  

(50.0) 
1  

(50.0) 
2 

Gastritis 
0  

(0) 
4  

(100.0) 
4 

0 ( 
0) 

3  
(100) 

3 
1  

(33.3) 
2  

(66.7) 
3 

Gastro-
oesophageal 
reflux disease 

3  
(100.0) 

0  
(0) 

3 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Gout 
2  

(50.0) 
2  

(50.0) 
4 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 

2  
(100.

0) 
2 

Heart disease 
14   

(63.6) 
8  

(36.4) 
22 

7  
(50.0) 

7  
(50.0) 

14 
1  

(14.3) 
6  

(85.7) 
7 

Heart failure 
3  

(37.5) 
5  

(62.5) 
8 

1  
(11.1) 

8  
(88.9) 

9 
0  

(0) 
5  

(100) 
5 

Heart 
Transplant 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100) 

1 

Heart valve 
0  

(0) 
2  

(100.0) 
2 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 

2  
(100.

0) 
2 

Hepatitis C 
0  

(0) 
2  

(100.0) 
2 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 

1  
(100.

0) 
1 

Hepatitis 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Heart failure 1  0  1 1  0  1 0  0  0 
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(100.0) (0) (100.0) (0) (0) (0) 

HIV 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Hodgkin’s 
lymphoma 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.

0) 
1 

Home 
parenteral 
nutrition 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0)  
0  

(0) 
0  

(0) 
0 

Hypercholester
olemia 

2  
(66.7) 

1  
(33.3) 

3 
1  

(50.0) 
1  

(50.0) 
2 

1  
(100.0

) 

0  
(0) 

1 

Hypertension 
55  

(61.8) 
34  

(38.2) 
89 

22  
(42.3) 

30  
(57.7) 

52 
13  

(41.9) 
18  

(58.1) 
31 

Hyponatraemia 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100) 
1 

Hypothyroid 
10  

(66.7) 
5  

(33.3) 
15 

3  
(42.9) 

4  
(57.1) 

7 
1  

(25.0) 
3  

(75.0) 
4 

Inflammatory 
bowel disease 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0

) 

0  
(0) 

1 

Irritable bowel 
syndrome 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.

0) 
1 

Incontinence 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Intravenous 
drug user 

1  
(50.0) 

1  
(50.0) 

2 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

0  
(0) 

0 

Knee 
replacements 

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Laryngectomy 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Leg amputation 
1  

(100.0) 
0  

(0) 
1 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0)  

Leg ulcers 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Leukaemia 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100) 
0  

(0) 
1 

Liver disease 
0  

(0) 
6  

(100.0) 
6 

0  
(0) 

5  
(100) 

5 
4  

(80.0) 
1  

(20.0) 
5 

Liver Transplant 
0  

(0) 
2 

(100.0) 
2 

0  
(0) 

2  
(100.0) 

2 
2  

(100.0
) 

0  
(0) 

2 

Lobectomy 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Left ventricular 2  0  2 2  0  2 0  0  0 
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failure (100.0) (0) (100) (0) (0) (0) 

Lymphoma 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Memory loss 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Myocardial 
infarction 

15  
(65.2) 

8  
(34.8) 

23 
8  

(50.0) 
8  

(50.0) 
16 

5  
(62.5) 

3  
(37.5) 

8 

Motor neurone 
1  

(100.0) 
0  

(0) 
1 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Multiple 
sclerosis 

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Myeloma 
0  

(0) 
3  

(100.0) 
3 

0  
(0) 

2  
(100.0) 

2 
0  

(0) 

2  
(100.

0) 
2 

None 
7  

(77.8) 
2  

(22.2) 
9 

3  
(60.0) 

2  
(40.0) 

5 
0  

(0) 

2  
(100.

0) 
2 

Nausea and 
vomiting 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0

) 

0  
(0) 

1 

Neurogenic 
bladder 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0

) 

0  
(0) 

1 

Neurofibromat
osis 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0)  
0  

(0) 
0  

(0) 
0 

Not known 
3  

(100.0) 
0  

(0) 
3 

2  
(100.0) 

0  
(0) 

2 
0  

(0) 
0  

(0) 
0 

Obesity 
3  

(75.0) 
1  

(25.0) 
4 

1  
(50.0) 

1  
(50.0) 

2 
0  

(0) 

1  
(100.

0) 
1 

Osteoarthritis 
15  

(53.6) 
13  

(46.4) 
28 

6  
(33.3) 

12  
(66.7) 

18 
5  

(41.7) 
7  

(58.3) 
12 

Osteomyelitis 
0  

(0) 
2  

(100.0) 
2 

0  
(0) 

2  
(100) 

2 
0  

(0) 

2  
(100. 

0) 
2 

Osteoporosis 
11  

(73.3) 
4  

(26.7) 
15 

4  
(50.0) 

4  
(50.0) 

8 
0  

(0) 
4  

(100) 
4 

Pacemaker 
1  

(33.3) 
2  

(66.7) 
3 

1  
(50.0) 

1  
(50.0) 

2 
0  

(0) 

2  
(100.

0) 
2 

Pancreatectom
y and 
splenectomy 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.

0) 
1 

Pancreatitis 
1  

(100.0) 
7  

(87.5) 
8 

0  
(0) 

5  
(100) 

5 
3  

(60.0) 
2  

(40.0) 
5 

Pancytopenia 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Paralysis 
1  

(100.0) 
0  

(0) 
1 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 
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Parkinson’s 
2  

(40.0) 
3  

(60.0) 
5 

1  
(25.0) 

3  
(75.0) 

4 
1  

(33.3) 
2  

(66.7) 
3 

Pneumocystis 
pneumonia 

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

Pulmonary 
embolism 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.0 

) 
1 

1  
(100.0

) 

0  
(0) 

1 

Pericardial 
effusion 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0

) 

0  
(0) 

1 

Pneumonia 
0  

(0) 
2  

(100.0) 
2 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Prostate 
1  

(100.0) 
0  

(0) 
1 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0) 
0 

Pulmonary 
embolism 

1  
(100.0) 

0  
(0) 

1 
1 

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Pulmonary 
fibrosis 

2  
(100.0) 

0  
(0) 

2 
2  

(100.0) 
0  

(0) 
2 

0  
(0) 

0  
(0) 

0 

Peripheral 
ventricular 
disease 

3  
(50.0) 

3  
(50.0) 

6 
3  

(50.0) 
3  

(50.0) 
6 

2  
(66.7) 

1  
(33.3) 

3 

Renal disease 
1  

(16.7) 
5  

(83.3) 
6 

0  
(0) 

4  
(100) 

4 
2  

(50.0) 
2  

(50.0) 
4 

Renal failure 
2  

(20.0) 
8  

(80.0) 
10 

1  
(11.1) 

8  
(88.9) 

9 
4  

(50.0) 
4  

(50.0) 
8 

Renal 
Transplant 

0  
(0) 

5  
(100.0) 

5 
0  

(0) 
5  

(100) 
5 

4  
(100) 

0  
(0) 

4 

Rheumatoid 
9  

(52.9) 
8  

(47.1) 
17 

6  
(42.9) 

8  
(57.1) 

14 
4  

(50.0) 
4  

(50.0) 
8 

Scoliosis 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Sepsis 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Sleep apnoea 
1  

(100.0) 
0  

(0) 
1 

1  
(100.0) 

0  
(0) 

1 
0  

(0) 
0  

(0)  

Splenectomy 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
 

(100.0) 
1 

1  
(100.0

) 

0  
(0) 

1 

Spondylitis 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Stent for CBD 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

0  
(0)  

0  
(0) 

0  
(0) 

0 

Stroke 
17  

(53.1) 
15  

(46.9) 
32 

6  
(35.3) 

11  
(64.7) 

17 
3  

(27.3) 
8   

(72.7) 
11 

Trauma 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Ulcerative 
colitis 

0  
(0) 

6  
(100.0) 

6 
0  

(0) 
6  

(100) 
6 

5  
(83.3) 

1  
(16.7) 

6 



303 
 

Urinary sepsis 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Urinary stent 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Ventricular 
fibrillation 

1  
(100.0) 

0  
(0) 

1 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

VP shunt 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
1  

(100.0
) 

0  
(0) 

1 

Vancomycin 
resistant 
Enterobacteriac
ae 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.

0) 
1 

Whipple’s 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 
0  

(0) 

1  
(100.

0) 
1 

Total 377 402 779 181 366 547 160 206 366 

Table A3.2 Past medical history for control patients that were recruited to the 

study regardless of if they had samples in the study and if they had at least one 

sample included in the study. Those patents that had at least one GDH positive 

sample are divided into potential C. difficile excretors (PCDEs) and CDI cases 

based on the presence or absence of C. difficile toxins in the original routine 

sample. Each participant could have more than one reason for admission 

recorded. Summary table of the top ten conditions listed in past medical history 

for all participants are shown in tables 5.4 and 5.5  

  



304 
 

 

  

Had at least one sample in the study Had at least one sample in the 
study and initial diagnostic 
specimen was GDH positive 

Control  
n (%) 

GDH 
positive  

n (%) 

total  
n 

PCDE  
n (%) 

CDI  
n (%) 

tota
l n 

Amikacin 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 

Amoxicillin 
4  

(25.0) 
12  

(75.0) 
16 

5  
(41.7) 

7  
(58.3) 

12 

Anidulafungin 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 

Aztreonam 
3  

(21.4) 
11  

(78.6) 
14 

7  
(63.6) 

4  
(36.4) 

11 

Benzyl/Penicillin 
0  

(0) 
3  

(100.0) 
3 

2  
(66.7) 

1  
(33.3) 

3 

Caspofungin 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0) 

0  
(0) 

1 

Cefotaxime 
0  

(0) 
2  

(100.0) 
2 

1  
(50.0) 

1  
(50.0) 

2 

Cefuroxime 
0  

(0) 
6  

(100.0) 
6 

4  
(66.7) 

2  
(33.3) 

6 

Cephalexin 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 

Ciprofloxacin 
1  

(10.0) 
9  

(90.0) 
10 

4  
(44.4) 

5  
(55.6) 

9 

Clarithromycin 
3  

(30.0) 
7  

(70.0) 
10 

2  
(28.6) 

5  
(71.4) 

7 

Clindamycin 
0  

(0) 
2  

(100.0) 
2 

1  
(50.0) 

1  
(50.0) 

2 

Co- amoxiclav 
12  

(30.8) 
27  

(69.2) 
39 

11  
(40.7) 

16  
59.3) 

27 

Co-Fluampicil 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0) 

0  
(0) 

1 

Cotrimazole 
1  

(100) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Co-trimoxazole 
1  

(8.3) 
11  

(91.7) 
12 

6  
(54.5) 

5  
(45.4) 

11 

Daptomycin 
0  

(0) 
1  

(100.0) 
1 

1  
(100.0) 

0  
(0) 

1 

Doxycycline 
0  

(0) 
4  

(100.0) 
4 

0  
(0) 

4  
(100.0) 

4 

Ertapenem 
1  

(50.0) 
1  

(50.0) 
2 

0  
(0) 

0  
(0) 

0 

Erythromycin 
0  

(0) 
2  

(100.0) 
2 

2  
(100.0) 

0  
(0) 

2 

Fidaxomicin 
0  

(0) 
28  

(100.0) 
28 

5  
(17.9) 

23  
(82.1) 

28 

Flucloxacillin 13  15  28 6  9  15 
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(46.4) (53.6) (40.0) (60.0) 

Fluconazole 
0  

(0) 
10  

(100.0) 
10 

9  
(90.0) 

1  
(10.0) 

10 

Fucidin 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Gentamicin 
5  

(100.0) 
0  

(0) 
5 

0  
(0) 

0  
(0) 

0 

Itraconazole 
0  

(0) 
5  

(100.0) 
5 

3  
(60.0) 

2  
(40.0) 

5 

Levofloxacin 
1  

(10.0) 
9  

(90.0) 
10 

5  
(55.6) 

4  
(44.4) 

9 

Linezolid 
3  

(60.0) 
2  

(40.0) 
5 

1  
(50.0) 

1  
(50.0) 

2 

Meropenem 
1  

(5.9) 
16  

(94.1) 
17 

9  
(56.3) 

7  
(43.7) 

16 

Metronidazole 
3  

(3.5) 
82  

(96.5) 
85 

26  
(31.7) 

56  
(38.3) 

82 

Nitrofurantoin 
4  

(33.3) 
8  

(66.7) 
12 

0  
(0) 

4  
(100.0) 

4 

Nystatin 
0  

(0) 
3  

(100.0) 
3 

2  
(66.7) 

1  
(33.3) 

3 

Pipercillin 
tazobactam 

5  
(9.8) 

46  
(90.2) 

51 
22  

(47.8) 
24  

(52.2) 
46 

Pivmecillinam 
1  

(12.5) 
7  

(87.5) 
8 

3  
(42.8) 

4  
(57.1) 

7 

Posaconazole 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1 ( 
100.0) 

1 

Tazocin 
5  

(21.7) 
18  

(78.3) 
23 

8  
(44.4) 

10  
(55.6) 

18 

Teicoplanin 
5  

(62.5) 
3  

(37.5) 
8 

2  
(66.7) 

1  
(33.3) 

3 

Temicillin 
0  

(0) 
1  

(100.0) 
1 

0  
(0) 

1  
(100.0) 

1 

Tigecycline 
1  

(100.0) 
0  

(0) 
1 

0  
(0) 

0  
(0) 

0 

Trimethoprim 
1  

(9.1) 
10  

(90.9) 
11 

6  
(60.0) 

4  
(40.0) 

10 

Vancomycin 
3  

(7.0) 
40  

(93.0) 
43 

10  
(25.0) 

30  
(75.0) 

40 

Number of  
participants  in 
each group 

81 147 228 65 82 147 

Table A3.3 Antibiotics taken by controls, GDH positive, PCDEs and CDI participants 

in the three months prior to the study, for all recruited patients that had at least 

one sample taken in the study. Summary tables of antibiotic history for all 

participants are shown in tables 5.7 and 5.8  
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Appendix 4. Ethical approval for extended use of Department of 

Health study data 
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Appendix 6. Protocol for PlaciD study 
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Background: 

 

Clostridium difficile is still the major cause of nosocomial diarrhoea in the developed world and 
rapid and accurate diagnosis is paramount for patient care and infection prevention1. 
Furthermore, infection reduction targets have been imposed on healthcare facilities in England. 
Patients with C. difficile Infection (CDI) often have protracted periods of hospital stay, usually in 
isolation facilities with specialist nursing care, resulting in a huge financial burden on the NHS. 
One UK study attributed costs of approximately £6986 per case of CDI (2010 prices)2. There has 
been an increase in the measured incidence of CDI in countries with active surveillance 
programmes, and a marked shift in epidemiology over the last decade3. Outbreaks caused by a 
strain of C. difficile known as PCR-ribotype 027 have been reported worldwide since 2002-03. 
This fluoroquinolone resistant strain has been associated with increased morbidity and 
mortality4. Recurrent infection is a known sequela of CDI; a recent study showed that the risk of 
re-infection, as distinct from relapse, increased by >58% every time the interval between 
positive samples doubled; mixed infections (>1 genotype) were found in 7% of CDI cases5. 
Although the ‘classical’ picture of C. difficile transmission has been that it is spread from other 
patients and or the environment within hospitals, recent data have shown that only 20-25% of 
inpatient cases can be linked to another in-patient case, leaving the ‘source’ of infection 
unknown in the majority of cases6-7. It is known however that the rate of asymptomatic carriage 
in hospitalised patients (21%) is higher than in the community (1.6%)20.  

 

The anaerobic, spore-forming bacterium Clostridium difficile is a well-recognised nosocomial 
pathogen, which produces two toxins; an enterotoxin, A, and a cytotoxin, B. Clostridium difficile 
is the aetiological agent of pseudomembranous colitis and is implicated in most cases of 
antibiotic associated diarrhoea1. Symptoms can range from mild to severe diarrhoea and may 
even be fatal; either from CDI alone, or due to exacerbation of co-morbidities1. Elderly 
hospitalised patients and patients previously treated with antibiotics (especially 3rd generation 
cephalosporins, and protracted courses) are at an increased risk for CDI. The investigation of CDI 
in the elderly, including risk factors, such as waning immunity, comorbidities, frequent 
hospitalisations and exposure to antibiotics, is a growing field. Indeed, a recent review of CDI in 
the elderly noted that the number of published articles per year on the subject doubled 
between 2006 and 20088. In the USA in 2006 patients >65 years old were disproportionately 
affected by CDI compared with other age groups, and in 2008 93% of CDI deaths were aged >65 
years old9-10. Advanced age has also been linked to the risk of recurrent C. difficile disease. A 
recent study looking at the effect of age on treatment outcomes in CDI developed a 
mathematical model that predicted lower clinical cure (17%), greater recurrence (17%) and 
lower sustained clinical response (13%) for each increased decade of life11. Accurate, rapid 
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diagnosis of CDI is therefore imperative to ensure early recognition and treatment of this 
disease.  

 

Sub-optimal laboratory diagnostics have impacted on both patient care and epidemiological 
data, meaning that the true burden of CDI remains unclear12-15. Laboratory diagnosis has largely 
relied on the detection of C. difficile toxins within a faecal sample by direct cytotoxin assay or 
immunoassays (EIA). A large study in 2009 highlighted the poor performance of these 
immunoassays, and Department of Health (DH) guidance published subsequently suggested that 
no toxin immunoassay should be used in isolation for the diagnosis of CDI15-16. Alternative 
methods of detection have now been introduced, including detection of C. difficile specific 
Glutamate dehydrogenase (GDH) a cell surface enzyme and Polymerase Chain Reaction (PCR) 
assay for the detection of the ToxB gene, or the TcdC deletion suggestive of PCR-ribotype 027 
(table 1, appendix 1). Guidance from the DH has now been updated following a large 
multicentre study, recommending GDH EIA/toxin EIA or cytotoxin as the optimal method for 
diagnosis of CDI15, 17. Using this algorithm patients can be divided into those with CDI, those 
likely with C. difficile and those without CDI/C. difficile15, 17. Patients identified as potential C. 
difficile excretors (GDH positive/toxin negative) may pose a possible infection control risk, 
requiring source isolation. Crucially, whilst the variability in performance of diagnostics assays is 
now well documented15, 17, there are few data on the effect of sample, patient and organism 
factors on the performance of these assays. Recent studies have shown that the presence of 
toxin in the faecal sample is closely correlated with mortality and severity of infection, whilst the 
presence of a toxigenic strain of C. difficile or its DNA in the sample is not18-19. Initial data from a 
Human Gut model shows that C. difficile GDH remains detectable in the system for longer than 
toxin after treatment of CDI (data unpublished), highlighting the fact that each of the targets 
may reflect a different point in the disease. 

 

There is a significant knowledge gap regarding the clinical course of CDI as determined by the 
different diagnostic markers of C. difficile; organism, toxin or DNA. The aim of this study is to 
elucidate the clinical course of C. difficile infection detected by these different diagnostic assays 
and match this with severity markers. In order to determine this we will need to follow known 
CDI positive patients to examine what happens to these tests during disease; similarly, in order 
to understand the natural history of how these tests perform, we will need to follow all patients 
from selected wards from admission. Elderly medical wards have been selected for this purpose 
as these patients are the group most at risk from CDI and its sequelae.  

The serial samples collected on symptomatic and asymptomatic patients as part of this study 
will also prove invaluable for investigating asymptomatic carriage and potential C. difficile 
excretors and the relatedness of isolates from these different patient groups. The role of 
diagnostic assays in detecting these two potential disease states, along with their use as 
admission surveillance tools is as yet unclear.  

 

Hypothesis:  
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Current commercial CDI diagnostic tests detect different targets: the bacterium, DNA or toxin. 
We hypothesise that each test and target are optimal at different points in the course of CDI 
infection.  

 

Objectives: 

 

Primary objective: 
To determine the time course of C. difficile test results during C. difficile infection in relation to 
severity markers.  
 
Secondary objectives: 
To determine the accuracy of laboratory diagnostic assays in detecting asymptomatic 
colonisation/carriage on admission to hospital, different testing methodologies will be 
compared.  
 
To compare the PCR-ribotype of isolates from patients with CDI, asymptomatic carriage of C. 
difficile, recurrent CDI and new infections with CDI. 
 
To determine the utility of rectal swabs compared with faecal samples for detecting 
asymptomatic colonisation/carriage at time of admission.  
 
To examine the utility of determining CD colonisation status on admission as a predictor of CDI 
risk in this patient cohort.  
 

 

Methodology for objectives: 

Primary objective: 

The clinical course of infection will be examined for each patient (diarrhoea status, temperature, 
white cell count, serum albumin, serum creatinine, antibiotic therapy) and analysed with results 
of each of the C. difficile test results to demonstrate if different assays are more likely to be 
positive at different time points during episodes of C. difficile infection (CDI).  

 

Secondary objectives: 

Asymptomatic carriage will be defined as a positive test for C. difficile in a patient without 
symptoms of diarrhoea. 

Molecular typing analysis will be used to elucidate any relationship between the isolates of C. 
difficile from patients and whether they had asymptomatic carriage, recurrent CDI or a new 
infection with CDI. 
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In addition to collecting a faecal sample on admission from a patient, the patient will be asked if 
they can be sampled using a rectal swab (for the first sample only). The results from the rectal 
swab by different testing methodologies would be compared to those from the faecal sample. 
There are a paucity of data on the use of rectal swabs for detection of C. difficile, as most assays 
are not CE marked for this sample type.  

.If patients with asymptomatic carriage on admission are treated with antibiotics do they go on 
to develop CDI? Our null hypothesis is that the rate of CDI is equal between patients screened 
positive and negative for CDI on admission. If we have a 4:1 ratio of negatives:carriers then we 
would need 101 positives and 404 negatives to detect a difference between 2% CDI (negatives) 
and 10% CDI (positives) with 90% power and a 5% threshold of significance.  

Study design: 

Proposed study duration: 01/08/2013 -31/07/2014 

Proposed duration of patient recruitment: 6 months (01/10/2013-31/03/2014) 

 

Following patients from admission:  

To take place on two elderly medicine wards (ward 17/7 at SJUH) at LTHT.  

Potential eligible patients will be identified by the clinical care staff to the research nurse. 
Patients will be enrolled in the study on admission, once informed consent is obtained. Baseline 
data (age, gender, previous exposure of antibiotics, co-morbidities) will be collected using a data 
capture form. A stool chart will be kept for the patient daily. A faecal sample and/or an optional 
rectal swab will be collected on enrolment. Further faecal samples will be collected as often as 
produced (max 1 per day) and sent to the R&D laboratory for testing. Samples can be self-
collected or by the medical staff, as a large proportion of these patients will be using a bed pan 
or commode. The research nurse will visit the ward every day to ensure that there are adequate 
supplies of samples containers and to remind staff to save samples where possible.  

 

Samples received in the R&D lab will be stored at 5°C and tested within 5 days using GDH EIA, 
GDH PCR, Toxin EIA, Toxin PCR, cell-cytotoxicity assay and cytotoxigenic culture. Isolates will be 
stored (spore preparation in 10% glycerol broth) at -80°C before typing using PCR-ribotyping. If 
the patient has had routine blood samples taken these will be collected, once requested 
laboratory diagnostics have been completed, and stored at -20°C before testing for antibodies 
to C. difficile and C. difficile toxin. No additional blood samples will be taken. Once patients have 
been discharged their medical records will be reviewed and further clinical data collected using 
a second data capture form. Patients from each ward will be recruited during a 6 month period, 
and followed until discharged or until 30 days after the end of the recruitment period. 

 

Following known positive patients:  

To take place at LTHT.  
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Potential eligible patient will be identified by the laboratory staff to the research nurse. In-
patients (>16 years old) that have had a routine faecal sample with a positive GDH EIA result will 
be enrolled on the study, once informed consent is obtained. Baseline data (age, gender, 
previous exposure of antibiotics, co-morbidities) will be collected using a data capture form. A 
stool chart will be kept for the patient daily. Faecal samples and/or an optional rectal swab will 
be collected on enrolment. Further faecal samples will be collected as often as produced (max 1 
per day) and sent to the R&D laboratory for testing. Samples can be self-collected or by the 
medical staff, especially if the patient is using a bed pan or commode. The research nurse will 
visit the ward every day to ensure that there are adequate supplies of samples containers and to 
remind staff to save samples where possible.  

 

Samples received in the R&D lab will be stored at 5°C and tested within 5 days using GDH EIA, 
GDH PCR, Toxin EIA, Toxin PCR, cell-cytotoxicity assay and cytotoxigenic culture. Isolates will be 
stored (spore preparation in 10% glycerol broth) at -80°C before typing using PCR-ribotyping. If 
the patient has had routine blood samples taken these will be collected, once requested 
laboratory diagnostics have been completed, and stored at -20°C before testing for antibodies 
to C. difficile and C. difficile toxin. No additional blood samples will be taken. Once patients have 
been discharged their medical records will be reviewed and further clinical data collected using 
a second data capture form. Patients from LTHT will be recruited during a 6 month period, and 
followed until discharged or until 30 days after the end of the recruitment period. 

 

Inclusion criteria for patient enrolment: 

 

Following from admission: 

Any patient admitted to ward 17 (female elderly care) or 7 (male elderly care) at SJUH during 
the study period  

 

Following known positive patients: 

Any in-patient(>16 years old) with a positive GDH result on a routine faecal sample not already 
enrolled on the study, during the study period 

Exclusion criteria for patient enrolment: 

Patients aged <16 years.  

Unable/unwilling to give informed consent and unable to gain consultee approval.  

 

Patient recruitment and consent 
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All patients will be assessed by the research nurse, who has training in mental capacity, in 
combination with the clinical care team to ensure they have mental capacity to give informed 
consent. In line with the Mental Capacity Act all patients will be assumed to have capacity unless 
judged by the research nurse and clinical care team to lack capacity to understand and consent 
to the study. As capacity is decision specific the patient involvement in the study has been made 
as simple as possible to maximise the chance that the patient will have capacity to consent. 
Where patients are judged to be unable to give informed consent the next of kin will be 
approached to give consultee approval. Where possible, if consent can be taken we will still ask 
for a consultee to be present to support the participant through the process. There are 
insufficient funds to provide an interpreter for non-English speaking patients in this study. An 
interpreter would need to be present every day for the research nurse visit to ask about bowel 
habits since the last visit. Exclusion of non-English speakers due to cost is in line with the 
exclusion guidelines on the NRES website, especially in the context of student led research.  

 

This study does not involve any invasive interventions or risk to the patient, simply the collection 
of faecal samples. In many cases these frail patients will be bed-bound and use bed pans or 
commodes, which makes collection of a sample by the clinical care team simpler and with little 
burden upon the patient. Where patients have mental capacity and are mobile, they will be 
supplied with commode bowls to fit over the toilet bowl to aid collection of their sample. They 
will be able to do this themselves in privacy in the toilet. Sample pots will also be available in the 
toilets for the participant to use. Previous donors have found using larger samples pots and 
tongue depressors makes saving samples easier than when using standard sample pots, so these 
will be supplied. Again, the burden on the patient and the invasion of their privacy would be 
minimal.  

 

Potential participants will be visited by the study research nurse and presented with a patient 
information leaflet either upon admission to one of the study wards or after the identification of 
C. difficile GDH from their routine faecal sample by the study research nurse. The research nurse 
will explain the study and 24 hours after the initial contact informed consent will be sought by 
the research nurse, who has training in mental capacity. The nurse will consent, recruit, perform 
initial data gather, re-data gather after discharge, and collect samples (daily or when 
produced).Full ethical approval will be sought, and adoption by the NIHR portfolio. 

 

A copy of the consent form/consultee approval and the patient information sheet will be filed in 
the patient’s notes and the original copy held by the research team. The patient/consultee will 
also have a copy of the patient information sheet and consent form/consultee approval to keep 
which includes contact details for the research team.  

 

Loss to follow up/patient withdrawal 

If a patient wishes to withdraw from the study then they are free to do so. This may be because 
they have changed their mind or because they have gained the mental capacity to make 
informed decisions and wish to overturn the consultee consent. The research nurse will ask 
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them to complete a withdrawal form, a copy of which will be added to the patient’s notes, a 
copy given to the participant and the original held by the research team. The original consent 
process will make it clear that any samples already collected before withdrawal will still be 
included in the study, along with any clinical data already collected.  

Sample storage: 

Anonymised faecal samples will initially be stored at 5°C for up to 5 days before testing with the 
commercial assays is completed. For longer term storage samples will be stored at -20°C to 
enable further investigation. Isolates will also be stored at -20°C in 10% glyercol broths before 
typing using PCR-ribotyping. Blood samples will also be stored anonymously at -20°C.  

Clinical data: 

Clinical data will be collected on enrolment and at the end of the study period on patient 
demographics (age, gender, ethnicity), patient length of stay, patient movement (between 
wards/clinics), antibiotic treatment, co-morbidities, white cell count, albumin, creatinine, 
presence/absence of diarrhoea, evidence of colitis and clinical team diagnosis. All data will be 
recorded on specific study clinical report forms (CRFs) for both initial data capture and follow 
up, which will then be input onto an electronic secure password protected database. 

Data storage 

Patients will be assigned a unique study number; which along with the patient’s hospital 
number will be used to identify that patient in the study, to allow searching of electronic clinical 
records. The informed consent/consultee approval form will be held separately. All data will be 
held on security protected encrypted servers at Leeds Teaching Hospitals NHS Trust. All CRFs will 
be held in a secure lockable cabinet in the research office of the Microbiology Department in the 
Old Medical School. Only those involved with the project will have access to both the written 
and electronic data collected for the study. Patient confidentially will be preserved throughout. 
Data will be stored for 10 years in accordance with local policy.  

Reporting: 

This is an observational study. Results will not be reported back to clinicians. Patients will 
continue only to be treated for CDI when symptomatic. Furthermore, results obtained on those 
samples obtained for the study will not be available in a timescale that is conducive to patient 
intervention. Patients will continue to get routine samples sent if CDI is suspected in-line with 
LTHT policy.  

Statistical considerations: 

 

Following patients from admission: 

Based on testing everyone as soon as they are admitted to the selected wards and testing daily 
until they leave: 
 
Admissions for study wards last year: 
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Ward17 (SJH), 16 beds in bays plus 6 side rooms, female elderly medicine; bed turnover ~530 
patients/year 
Ward 7 (SJH), 16 beds in bays, 0 side rooms, male elderly medicine: bed turnover ~550 
patients/year 
 
In LTHT current cytotoxin +ve rate = 4-6% 
Current GDH +ve rate = 13.6% 
 
520 patients/6 months (wards 17 and 7)) 
520 x 4.6% = 20.8 toxin positive patients in 6 months 
520 x 13.6% = 70.72 GDH positive patients in 6 months 
 
If each patient roughly stays for one week then there will be 3640 samples to test in total 
Expected enrollment of 50% = 1820 samples 

 

It is noted that there will be a lot of ‘negative’ test results in this cohort but it is important to 
be able to follow the course of infection from the very early stages and this will only be 
possible by following people from admission. It will also allow the detection of asymptomatic 
carriers and potential C. difficile excretors.  

 

Following known positive patients: 

Based on testing all GDH positive patients for follow up (each patient stays for roughly one 
week). The figures are based upon the trust as a whole initially, as there may be issues with 
getting enough people to consent. If numbers appear unwieldy the study will centre of specific 
locations, e.g. elderly medicine.  

 

No of GDH/toxin positive patients last year 185 (2011-2012),  

In 6 months there were 300 GDH positive samples 

300 GDH positive patients’ daily samples = 2100 samples to test in total  

Expected enrollment of 50% = 1050 samples 

 

Statistical analysis 

Statistical analyses will be carried out on STATA 12; using descriptive statistics to monitor the 
experience of patients as they are admitted to the target wards, such as Gantt Charts, 
percentages and histograms (for carriage, CDI incidence and for ribotype distributions). 
Diagnostic assays will be assessed by sensitivity, specificity, negative and positive predictive 
value and Area Under Receiver Operator Curve (AUROCs). Hypotheses tests will be done via 
standard methods such as Fisher's exact tests (for comparing percentages); for AUROCs we will 
use the Boostrap method for 95% confidence intervals and for testing the significance of 
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differences between tests as described elsewhere19. Multivariate unconditional logistic 
regression analysis will be used to address some of the secondary objectives, so as to control for 
confounders 

 

Project management 

This project will be managed by the Chief Investigator (Kerrie Davies), who has previously 
managed the Department of Health study ‘The optimum algorithm for laboratory diagnosis of C. 
difficile’, and is the European coordinator for the EUropean, multi-centre, prospective bi-annual 
point prevalence study of CLostridium difficile Infection in hospitalised patients with Diarrhoea 
(EUCLID). The research study team will consist of the Chief Investigator, a research nurse (Claire 
Brown), and a data entry clerk (Frank Lee). Additional supervision will be provided by Prof. Mark 
Wilcox.  

 

This study will comply with the principals of Good Clinical Practice, the Mental Capacity Act, the 
Data Protection Act and NHS research Governance.  

Publication 

Analyses will be submitted for publication as poster or oral presentations at international 
microbiology conferences and in a peer reviewed journal. All patient data will be fully 
anonymised. A summary sheet will be available for study participants if requested. This study 
will also be included in a PhD thesis (Kerrie Davies).  

Finances: 

This study is fully funded by Public Health England. 

Staff: 

 
Clinical Scientist (80% full time) 12 months £38,473.60 
 
Research Nurse (100% full time) 6 months £22,976.52 
 
Total: £61,450.12 
 

Non staff: 

 
Consumables (Kits including collection/sample pots) 
 
GDH EIA 
Toxin EIA 
Cytotoxin & Cytotoxigenic Culture 
GDH PCR (in-house) 
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Toxin PCR (commercial) 
 
£18.50 per sample  
3195 estimated samples 
 
Sub total: £59,672.00 
 
PCR-Ribotyping 
 
£6.36 per sample 
1400 estimated samples (positives only) 
 
Sub total: £8,904 
 
Total: £68,576.00 
 
 
TOTAL FUNDING:  £130,026.12 
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Appendix 1 

 

Table 1. Current C. difficile assays and their differences 

Assay Target Pros Cons 

C. difficile culture C. difficile in the 
faeces 

Good sensitivity Cannot distinguish 
between toxigenic 
and non-toxigenic 
strains 

Cell-cytotoxicity C. difficile toxin in the 
faeces 

Good sensitivity and 
specificity 
Detects toxin direct 
from the sample 

Negative result can 
take up to 48 hours 

Cytotoxigenic culture C. difficile in the Good sensitivity Cannot detect toxin in 
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faeces capable of 
producing toxin 

the sample, only that 
the C. difficile in the 
sample has the 
potential to produce 
toxin 

C. difficile GDH EIA C. difficile in the 
faeces 

Good sensitivity Cannot distinguish 
between toxigenic 
and non-toxigenic 
strains 

C. difficile toxins EIA C. difficile toxin in the 
faeces 

Good specificity 
Detects toxin directly 
from the sample 

Poor sensitivity 

C. difficile toxin genes 
PCR 

C. difficile DNA in the 
faeces 

Good sensitivity Cannot detect toxin 
or organism in the 
sample, only the toxin 
gene DNA; lacks 
specificity 
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Appendix 7. Ethical approval for gut model studies up to April 2016 
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Appendix 8. Ethical approval for gut model studies after April 2016 
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1. Sample processing 
 

1.1 Performing assays for evaluation 

Every sample submitted to the routine hospital laboratory for investigation for C. difficile 

is to be included in this study.  Each sample is allocated a study number; supplied in the 

study pack. The numbers run consecutively and start with the code for the study site at 

which the testing is taking place.  

 

Each sample will be tested by each assay: 

 

Cytotoxin assay     Reference assays 

Cytotoxigenic culture 

 

Premier Toxin A+B EIA assay   Commercial assays 

TechLab Toxin A/B II EIA assay 

TechLab C. diff Chek 60 EIA assay 

Cepheid C. difficile GeneXpert PCR assay 

 

 

The routine assay of the testing hospital site will be performed first. The samples will 

then be collected from the routine lab and the other assays performed. If there is 

insufficient sample to complete all of the assays they will be performed in the following 

order until the sample runs out: 

 

Cytotoxin assay 

Cytotoxigenic culture assay 

GDH EIA  

Toxin EIA 

  

1.2 Storage of specimens 

 

The routine laboratory will routinely store any sample positive by the standard method 

used at that hospital site. For the study, each site will also need to save any samples that 

are positive by either of the two reference methods or by the two toxin detection EIA’s. 

Samples should be stored at 4°C for one week after testing, then at -20°C. Negatives need 

not be stored beyond one week post testing, or longer if dictated by routine laboratory 

practice.  
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1.3 Safety considerations 

 

All work should be carried out in containment level two (or higher) facilities.  Any 

process that may give rise to infectious aerosols must be performed in a microbiological 

safety cabinet.  

 

Safety goggles are required when using UV fluorescent lamps.  

 

COSHH and risk assessments should be performed locally.  

 

 

2. Cytotoxin testing 

 

2.1 Materials 

Tissue culture flasks 

Tissue culture trays 

Automatic pipettes 

Microcentrifuge tubes 

Universals 

Bijoux bottles 

Syringes and filters (if needed) 

Inverted microscope 

Microcentrifuge 

CO2 Incubator 

 

2.2 Reagents 

 Trypsin + EDTA.  20 ml bottle is distributed into 0.5ml amounts in sterile plastic 

bijou, then stored at -20°C. 

 

 Hanks Balanced Salt Solution (HBSS). 100 ml bottle stored at room temperature. 

 

 Calf serum. 100 ml bottle arrives frozen. Thaw and distribute into 25 ml amounts 

in sterile universals. Label the universals including the date made & freeze at -

20°C. Thaw for use when required. 

 

 G.A.G. Contains: 
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– L-Glutamine. Arrives in 20 ml amounts (100x strength). Stored at -20°C. 

Thaw out & pipette 5 ml into each of 4 sterile universals. 

 

– Antimycotic/antibiotic mix. Arrives in 20 ml amounts (100x strength). 

Stored at -20° C. Thaw out and pipette 5 ml into each of the universals 

containing L-glutamine. 

 

– Gentamicin. Arrives as 10 ml bottle at a concentration of 50 mg/ml. Place 

2 mls into a sterile universal and make up to 25 mls with sterile distilled 

water. This gives a final concentration of 4 mg/ml. Pipette 5 ml of this 

solution into each of the universals containing L-

glutamine/antimycotic/antibiotic.  

 

– Label the universals including the date made and store at -20
o
C. Thaw for 

use when required. 

 

 Phosphate buffered saline (PBS).  Store at 4
o
C. 

 

 Dulbecco Medium (DMEM). Arrives as 500 ml bottles. Store in the fridge. 

IT IS ONLY USED WITH THE ADDITIVES. 

– Add one thawed universal containing calf serum and one thawed universal 

containing GAG to each 500 ml bottle of Dulbecco prior to use. Date and 

label the bottle to which additives have been added. 

 

Ensure Lot numbers and expiry dates of new reagents are recorded on the reagent log in 

the laboratory data folder (Appendix 11.2). 

 

2.3 Method 

 

2.3.1 Tissue culture 

 

Receiving cell lines 

 

Follow instructions received with cell lines from ECACC on how to process received 

growing cells lines 

 

Cell harvesting 
 

1. Examine flasks using the inverted microscope to confirm satisfactory growth of 

cells. Flasks are usually used after 4 days growth (i.e. make Monday, use Friday).  

 

2. Remove one bijou (per flask) containing 0.5 ml trypsin + EDTA from the -20°C 

freezer, allow to thaw, and then aseptically add 4.5 ml Hanks BS solution. 
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3. Open the flask and pour off the culture medium aseptically into a waste container. 

 

4.  Aseptically add half of the Trypsin/Hanks solution from a bijou to the flask. 

 

5. Recap flask and wash the solution over the cell sheet. Decant aseptically into a 

yellow waste sharps container. 

 

6.  Aseptically add the remaining half of the Trypsin/Hanks solution to the flask. 

 

7. Recap the flask and lay it flat on the bench so that the cell sheet is covered with 

the solution. Leave for one minute. 

 

8. Decant aseptically into a waste container. 

 

9. Lay the flask flat in a 37°C CO2 incubator for approximately 5 minutes, after 

which time the cells will have detached from the bottom of the flask.  

 

Note. Before the cell sheet has detached from the bottom of the flask it will appear 

opaque/hazy. A gentle tap on the flask may be sufficient to detach the cells. 

 

10. Aseptically add 10 ml of Dulbecco Medium to the flask and use a 1 ml automatic 

pipette to gently mix the cell suspension until smooth.  

 

 

Preparing flasks and trays 
 

1. Add 750 µl of cell suspension to each of 3 flasks and make up to 10 ml with 

Dulbecco medium. Record date and passage number (goes up by 1 each time) on 

the side of the flask and incubate flat side down at 37
o
C in a plastic box in the 

CO2  incubator. 

 

2. Label bottom of each tray with the day, order of use, passage number and date 

made. (E.g. Monday 1, 2, 3 – pass 211 – 3.6).  Label lid with day and order of 

use. 

 

3. Each tray requires 17 ml of diluted cell suspension (1 ml of cells diluted in 17 ml 

Dulbecco). 

 

Therefore for a set of 

3 trays - dilute 3 ml of cells with 2 universals (approx. 50 ml) of Dulbecco in a sterile 

Petri dish. 

4 trays – dilute 4 ml of cells with 3 universals (approx 65 ml) of Dulbecco in a sterile 

Petri dish. 

 

4. Using a 8 channel multi pipette and sterile tips, mix the diluted cells well. Add 

160 µl of suspension to each well of the tray. Repeat for each tray.  
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5. Use a clean universal and Petri dish for each set of trays. 

 

6. Incubate the trays at 37
o
C in a plastic box in a CO2 incubator. 

 

 

 

Antitoxin  

Clostridium sordelli antitoxin is purchased commercially. The 5 ml stock bottle is stored 

at 4
o
C. The antitoxin is diluted before use; 0.1 ml antitoxin in 4.9 ml sterile distilled 

water in a sterile plastic bijou. The lot number, expiry date and date made up is written on 

each bottle of diluted antitoxin. 

 

Positive control 
Pool the supernatant from several recent known positive samples. Filter as described in 

sample processing 2.3.2. Test the filtrate alongside the current control and dilute to give 

+/- result in well 3 or 4 (filtrate may need diluting with PBS). Label bijou with lot letter 

(A-Z) and date made. 

 

 

2.3.2 Sample processing 

 

Label microcentrifuge tubes with sample number. 

 

Add 1 ml of PBS to each tube. 

 

Add sufficient faeces to make a 1 in 5 dilution and mix thoroughly. 

 

Centrifuge at maximum rpm (10,000 rpm or greater) for 10 minutes in a microcentrifuge. 

 

If the supernatant is turbid transfer it to a 1 ml syringe. Fix a syringe filter onto the 

syringe and apply gentle pressure to pass the supernatant through the filter into a new 

(labelled) microcentrifuge tube. 

 

If microcentrifuge preparations are not to be tested immediately store in the fridge at 4
o
C. 

 

Select a tray and using the inverted microscope check that there is a reasonable 

monolayer of cells with a low proportion of dead (rounded) cells and no microbial 

contamination. 

 

Add 20 µl of C. sordelli antitoxin to each well of rows B, D, F & H. 

 

Take a blank template (Appendix 11.6) and fill in the tray ID and date, the positive 

control batch number used, the antitoxin batch number used and the rows in which the 
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antitoxin has been added.  Then label the worksheet with the study numbers of the test 

samples to be added to the tray. Store template in laboratory data folder, use later to 

record result. 

 

Add 20 µl of the positive control to well A1, mix and transfer 20 µl to well A2, mix again 

and transfer 20 µl to well A3, mix again and transfer 20 ul to well A4. Repeat this 

process with the positive control in wells B1 to B4. 

 

For the test samples start with well A5 – adding 20 µl of supernatant, mix well and 

transfer 20 µl to well A6. Repeat the process in wells B5 to B6. Continue with the test 

supernatants using two pairs of wells for each test, following template. 

 

Incubate the tray at 37
o
C in a plastic box in the CO2 incubator. 

 

Store microcentrifuge tube at 4
 o
C until after result is recorded, in case the supernatant 

needs to be filtered and retested.  

 

2.3.3 Results  

 

Read using an inverted microscope at both 24 and 48 hours.  

 

Cells can be read after 72 hours (when set up over a weekend). Negatives should be 

recorded as negative. Positives can be recorded as positive as long as the cells in the 

protected wells look healthy. A negative control should be set up on the plate along with 

the positive control to ensure healthy cells after 72 hours. If cells are poor, positives 

should be repeated.  

 

Toxin detected (positive) – indicated by the rounding up of 50% of the cells in the upper 

row of the set of wells for that sample, this effect has to be neutralised by the antitoxin. 

(If only first well positive, record as weak positive) 

 

Toxin not detected – no rounding up of the cells in the upper row of the set. 

 

If bacterial contamination is noted in the wells then the supernatant is passed through a 

syringe filter and the test set up again as above. 

 

If the cells in the wells all show signs of rounding up (i.e. both rows in the set) the 

supernatant is passed through a syringe filter and the test set up again diluting it over 4 

wells. 

 

Where the rounding up occurs after filtering and diluting the test is reported as 

inconclusive. 

 

- - 
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- -  Negative 

 

+ + 

-  -  Positive 

 

+ - 

- -  Weak Positive  

 

+ + 

+  -  Positive (plus non-specific cpe in first wells) 

 

+ - 

+ -  Toxic, filter and retest 

 

+ + 

+  +  Toxic, filter and retest 

 

 

3. C. difficile culture 
 

3.1 Materials 

 

Industrial alcohol (Absolute ethanol 95%) 

Sterile distilled water 

Plastic universal 

Cotton tip swab 

Plastic inoculation loop 

Braziers agar plate (Oxoid) 

 

3.2 Method 

 

3.2.1 Alcohol shock 

Label one universal for each sample 

 

Dispense 500 μl industrial ethanol into a sterile plastic universal container. Add 500 μl 

sterile distilled water. Mix well. 

 

Remove a pea-sized amount of faecal sample with a swab and immerse in ethanol/water 

in the universal container.  

 

Vortex each universal and leave at room temperature for a minimum of 1 hr. 



336 
 

KE v1.3 Page 336 6th December 2010 

 

3.2.2 Culture 

After 1 hr, take a swab and immerse in the alcohol shock sample. Use this swab to 

inoculate a Braziers agar plate and streak out for single colonies.  

 

Incubate plates at 37
o
C in an anaerobic cabinet for 48 hours. 

 

3.2.3 Identification 

Examine plates for growth after 48 hours. 

 

Suspect isolates (with classic C. difficile appearance of grey-brown, irregular edge, horse 

manure odour) should be checked for green/yellow fluorescence under longwave (365 

nm) UV light and latex agglutination for somatic antigen. ID organism based on the 

following table.  

 

 

 C. difficile C. bifermentans 

C. sordellii 

C. glycolicum 

C. innocuum 

Fluorescence under 

UV at 365 nm 

+ - + 

Latex agglutination + + - 

 

Record the ID on the laboratory data worksheet. All isolates identified as C. difficile must 

be saved (see section 5. saving isolates). ID only needs to be to C. difficile or non- 

C.difficile level.  

 

4. Cytotoxigenic culture 
 

 

4.1 Materials 

 

Brain Heart Infusion broth 

Cotton tip swab 

Microcentrifuge tube 

Automatic pipette 

Syringe and syringe filter (if needed) 
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4.2 Method 

 

Cytotoxigenic culture is to be carried out when C. difficile is isolated by culture from a 

sample.  

 

4.2.1 Broth culture 

 

Pre-reduce BHI broths (one per C. difficile culture positive sample to be tested) by 

incubating in an anaerobic cabinet for at least 48 hours before use. 

 

Inoculate one BHI broth per sample from the Brazier’s agar plate using a cotton tip swab.  

 

Incubate broths for 48 hours in an anaerobic cabinet at 37
o
C.  

 

 

4.2.2 Cytotoxin testing 

 

Label one microcentrifuge tube per sample 

 

Remove 1 ml supernatant from the BHI broth and place into a sterile microcentrifuge 

tube.  

 

Test for cytotoxin following method given in section 2 of this manual (cytotoxin testing). 

 

 

5. Saving isolates 
 

5.1 Materials 

Columbia blood agar plate 

Inoculation loop 

Cotton tip swab 

Cryogenic microtube 

Cryogenic freezer box 

 

5.2 Method 

 

Label a Columbia blood agar plate for each C. difficile culture positive sample (toxigenic 

and non-toxigenic strains) with specimen study number and date.  
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Using a sterile loop, transfer a colony from the Braziers agar plate onto the Columbia 

blood agar plate and streak out for single colonies.  

 

Incubate plates at 37
o
C in an anaerobic cabinet for 7 days to encourage growth of spores.  

 

Label a cryogenic microtube for each plate and add 1 ml nutrient broth with 10% 

glycerol. 

 

Harvest all growth (if pure) from the Columbia blood agar plate using a cotton tip swab 

and inoculate the broth.  

 

Store in nalgene cryobox in -70
o
C freezer. Record freezer box number and position of the 

isolate on the laboratory data worksheet (appendix 11.3). 

 

Note:  If nutrient broth with glycerol unavailable please store using local protocols.  

 

 

6. Inter-laboratory Quality control – Sending laboratory  
 

6.1 Materials 

 

6 study samples (1 or 2 positives, 4 or 5 negatives) with at least 4 ml remaining after 

normal study testing 

 

Bijou bottle 

Cotton tip swab 

Hayes DX plastic container and box 

 

6.2 Method 

Label 3 bijoux bottles per sample with QC number (next in numerical sequence) and 

transfer 1ml of the sample to each bottle.  

 

Record original sample study number, and QC number on the QC worksheet. 

 

For each set of 6 samples: 

 Wrap parafilm around the lid of each bottle 

 Wrap bottles in paper towel 

Place in specimen bag, seal and place inside Hayes DX plastic container with a list of the 

samples included 

Place in Hayes DX box 

 

Send a set of 6 samples to each of the other 3 study sites. Hayes DX codes for each site 

are included in this study manual (appendix 11.7.) 
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7. Inter-laboratory Quality control – Receiving laboratory  
 

Process each QC sample in the same way as a study sample but record the results on the 

Quality control Excel spreadsheet. This spreadsheet must be emailed at the beginning of 

each month to kerrie.eastwood@leedsth.nhs.uk.  

 

 

8. Commercial assays 
 

8.1 Materials 

Premier Toxin A+B EIA assay 

TechLab Toxin A/B II EIA assay 

TechLab C. diff Chek 60 EIA assay 

Cepheid C. difficile GeneXpert PCR assay 

 

8.2 Equipment 

DS2 for automated performance of EIA’s 

Cepheid GeneXpert for performance of PCR 

 

8.3 Method 

 

8.3.1 DS2  

All assays are carried out according to manufacturers’ instructions in the product insert, 

with the following exceptions;  

 

1. The Premier Toxin A + B assay is run with a larger volume (800µL diluent with 

200µL sample) to enable processing on the DS2; supporting information will be 

given at training.   

 

2. The same sample diluent is used for the two Techlab assays. The sample can 

therefore be diluted once, in 2x diluent (i.e. 100µL of sample in 400µL of 

diluent) and used for both assays, to reduce sample processing time. This is 

supported by the manufacturer.  

 

For plate ID on the DS2’s please use the following notation: 

 

Premier toxin  A +B  Ptab date initials of operator           e.g. Ptab20/10/10KE 

Techlab Toxin A B II  ToxAB date initials of operator       e.g. ToxAB20/10/10KE 

mailto:Kerrie.eastwood@leedsth.nhs.uk
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Teclab GDH   GDH date initials of operator          e.g. GDH20/10/10KE 

 

 

All operators must receive training before using the DS2’s. Daily washes must be 

completed on both machines.  

 

8.3.2 GeneXpert 

Training will be provided for the Cepheid GeneXpert. All users must receive training 

before using the Instrument.  

 

If sample result is ‘invalid’ repeat the test once. The result of the second test should be 

recorded in the study database (even if it is invalid again).  

 

Only use the Copan swabs supplied for performing the GeneXpert assay as these are the 

only swabs to have been validated for the assay.  

 

Please archive all data daily, and place into another folder in the C:drive of the laptop 

attached to the machine. Down load this data onto your office pc daily (using memory 

stick) and save in secure folder. Data can then either be transcribed in to the study 

database by hand 

 

 

For any problems with instruments or training requirements please contact 

kerrie.eastwood@leedsth.nhs.uk.  

 

 

9. Data Collection  
 

9.1 Laboratory data 

 

A laboratory folder containing laboratory data sheets and templates should be kept at 

each site.  

 

All printouts from the DS2 and the Cepheid GeneXpert are to be kept in the correct 

section in the laboratory folder. Each sheet should be signed by the operator; date is 

added by the computer.  

 

All backing sheets for the cytotoxin assay, culture plates and cytotoxigenic culture are to 

be kept in the correct section in the laboratory folder.  Each sheet should be signed and 

dated by the operator.  

 

At the end of each day the laboratory results are entered onto the laboratory data Excel 

spreadsheet (see Appendix 11.3-11.5 for laboratory data sheets).  

mailto:Kerrie.eastwood@leedsth.nhs.uk
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Paper records should be kept for 5 years after the completion of the study. 

9.2 Clinical data  

 

Please collect the data listed in table 9.2.1 on every sample and enter onto the clinical 

data Excel spreadsheet, in the ‘all’ section;  

Table 9.2.1 Data to be collected for EVERY specimen 

Variable Definition units 

Patient study number Number allocated to each 

patient on the study (The 

patient number can only be 

allocated once but a 

patient can have more than 

one sample included in the 

study) 

e.g. PLT0001 

Study specimen number Number allocated to each 

specimen (The number can 

only be allocated once and 

each specimen can only be 

included in the study once) 

e.g. LTH0001 

Patient Name Name of patient  

Date of sample  Date sample taken dd/mm/yy 

Processing hospital 

laboratory number 

  

Gender  Gender of patient M= male 

F=female 

Age  Age of patient at time of 

sample 

Years (whole number) 

Ward name/number or GP  

 

Ward name or if GP give 

name 

N/A 

Recurrent or new 

diagnosis (R/N) 

Whether the patient has 

had a previous diagnosis 

within the previous 12 

months 

R=recurrent 

N=new 

N/A=not applicable 

White cell count  Peripheral white cell count 

on the day of stool sample 

(or the nearest one within 

3 days) – If equal time 

then take sample AFTER 

stool sample 

x10
9
/L 

Serum creatinine  Serum creatinine 

concentration on the day 

of stool sample (or the 

nearest one within 3 days) 

µmol/L 
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– If equal time then take 

sample AFTER stool 

sample 

baseline creatinine  Lowest Serum creatinine 

concentration taken within 

the 6 months before the 

stool sample 

µmol/L 

Serum albumin  Serum albumin 

concentration on the day 

of stool sample (or the 

nearest one within 3 days) 

– If equal time then take 

sample AFTER stool 

sample 

g/L 

Date of hospital admission Date of this admission to 

hospital 

dd/mm/yy 

Date of hospital 

discharge/death 

Date patient discharged 

from hospital or died  

dd/mm/yy 

Survival at 30 days or 

discharged  

Survival to day 30 as an 

inpatient or discharge 

home before day 30 

Survived 

Died 

Discharged 

N.B. please answer N/A – not available/not applicable if there is no value available for 

any field 

 

N.B. – the day of the stool sample is defined as day 1 

 

 

Please collect the extra data listed in table 9.2.2. on samples positive for C. difficile by at 

least one of the gold standard methods or by PCR (GeneXpert).  Enter this data onto the 

clinical data Excel spreadsheet in the ‘Pos extended clinical data’ section; 

Table 9.2.2. Extra data to be collected on all positive samples (Gold 
standard or PCR) 

Variable Definition units 

Highest serum lactate 

within 3 days of the sample  

Highest serum lactate 

concentration within 3 

days of the first positive 

stool sample – If equal 

time then take sample 

AFTER stool sample 

mmol/L 

NA – not available 

Admission onto ITU  Admission to intensive 

care unit for any reason 

within 3 days before the 

first positive stool 

specimen or 10 days after 

the first positive stool 

Y - Yes 

N = No 
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specimen 

Is there evidence of colitis 

as reported on CT scan  

Evidence of the colitis 

noted on any 

Computerised tomography 

scan (CT scan) 

Y = Yes 

N = No 

N/A – not applicable 

Is C. difficile mentioned on 

either part 1 or part 2 of the 

death certificate  

The mention of C. 

difficile, or a synonym on 

the death certificate, if the 

person has died 

Y = Yes 

N = No 

N/A – not applicable 

N.B. please answer N/A – not available/not applicable if there is no value available for 

any field 

 

N.B. – the day of the stool sample is defined as day 1 

 

 

Please collect the extra data listed in table 9.2.3 on samples that are positive by ONE, 

but NOT BOTH, of the Gold standard methods, and enter onto the clinical data Excel 

spreadsheet in the ‘discrepant sample clinical data’ section; 

Table 9.2.3 Extra data to be collected for discrepant samples 

Variable Definition units 

Treating team clinical 

diagnosis 

Diagnosis for the cause of 

diarrhoea recorded by the 

attending clinical team 

 

Is treatment given for C. 

difficile infection (CDI) 

Was treatment for C. 

difficile started within 3 

days before the first positive 

stool specimen or 10 days 

after the first positive stool 

specimen 

Y = Yes 

N = No 

 

What agent is given to treat 

CDI 

Name of C. difficile 

antibacterial chemotherapy 

Vancomycin 

Metronidazole 

Did the patient have 

diarrhoea documented 

Documented diarrhoea  

(>3 loose (Bristol stool ≥5) 

stools in a 24 hour period) 

in the medical or nursing 

notes 

Y = Yes 

N = No 

 

How many days did the 

patient have diarrhoea for  

Number of days of recorded 

diarrhoea from start of 

symptoms until stool 

sample 

days 

How many stools did the 

patient pass on the day of 

sample 

How many stools did the 

patient pass on the day of 

sample – as recorded in the 

nursing or medical notes 

 

What was the Bristol stool (if not documented please 1-7 
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chart rating for that sample  record for nearest stool 

sample in same episode of 

diarrhoea) 

 

N.B. please answer N/A – not available/not applicable if there is no value available for 

any field 

 

N.B. – the day of the stool sample is defined as day 1 

 

 

Quick guide:  

Negative samples will therefore have all the data from table 9.2.1 collected. 

 

 

Samples positive by gold standard or by PCR will have the data from tables 9.2.1 

AND 9.2.2 collected. 

 

 

Samples positive by ONLY ONE of the gold standards will have the data from 

tables 9.2.1, 9.2.2 AND 9.2.3 collected.  

 

 

10. Data management 

 

10.1 Storage of data 

 

All electronic data must be kept on a secure password protected (N3 compliant) server 

and should only be accessible to those personnel involved in the study. All paper copies 

with patient identifiable details should be kept in a secure office.  

 

10.2 Movement of data 

 

At the beginning of each month the Quality control spreadsheet should be emailed to 

kerrie.eastwood@leedsth.nhs.uk 

 

At the end of the training set (first 4 months) the laboratory data set should be checked 

for accuracy, locked and emailed to kerrie.eastwood@leedsth.nhs.uk 

 

At the end of the training set (first four months) the clinical data set should be checked 

for accuracy and the patient name and processing hospital laboratory number 

removed and the spreadsheet resaved under the name clinical data Sitev1, e.g. clinical 

mailto:kerrie.eastwood@leedsth.nhs.uk
mailto:kerrie.eastwood@leedsth.nhs.uk
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data Leedsv1. The spreadsheet can then be locked and emailed to 

kerrie.eastwood@leedsth.nhs.uk. The original spreadsheet with patient details on must 

remain on the local secure server.  

  

New databases will be supplied for the testing set (second 4 months). The same policies 

for the storage and management of data will apply to these new databases.

mailto:kerrie.eastwood@leedsth.nhs.uk
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11. Appendix 
 

11.1 Order sheet for Gold standard reagents 

 

To be ordered by processing laboratory (budget supplied). All other kits/media/cell lines will be ordered centrally and delivered to you.  
 
Consummables order sheet        

        

      Number to order 

 Unit volume/number List price Supplier Item code Leeds/Oxford SGH/UCH 

Reference assays        

Industrial alcohol Bottle 2.5l 23.24 SLS CHE1938 1 1 

Brain Heart Infusion broth 10ml Bottle 50 31.00 E&O BM0070 4 3 

                

Tissue culture               

Antibiotic/Antimycotic 100X bottle 20ml 10.05 Invitrogen 15240-096 2 1 

L-Glutamine (100x 20.2mg/ml) bottle 20ml 3.71 Invitrogen 25030-032 2 1 

Newborn Calf serum  bottle 100ml 5.67 Invitrogen 16010-167 2 1 

Hanks balanced salt solution bottle 100ml 3.61 Invitrogen 14170-070 1 1 

Dulbecco Modified Eagles medium bottle 500ml 8.23 Invitrogen 10938-025 6 3 

Gentamicin (50mg/mll) bottle 10ml 51.10 Sigma G1397-10ml 1 1 

C. sordellii antitoxin bottle 5ml 60.60 Prolab PL6507 1 1 

Trypsin-EDTA 0.5% (10x) bottle 100ml 25.80 Invitrogen 15400-054 1 1 

Flasks nunclon, filter cap pk 300 190.52 Sarstedt 83.1810.002 1 1 

TC microwell 96F sterile pk 50 102.00 VWR 402032808 4 2 

Bijoux  pk 700 161.00 Sterilin VWR 215-0328 1 1 

Microcentrifuge tubes 1.5ml pk 1000 30.90 Alpha  LW2075 4 2 

Syringe filter Nalgene (CA 
membrane) pk 50 111.00 VWR  513-1911 2 1 

Syringes 2ml pk 100 13.67 Fisher Scientific SZR-160- 1 1 
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019L 

phosphate buffered saline pk  1L 16.00 sigma D8662 4 2 

                

Consumables               

Universals Pk 500 71.55 Sarstedt 63.9922.252 7 4 

10 uL Culture loops Pk 1920 78.68 Sarstedt 86.1562.050 2 1 

Cryogenic tubes 1.2 ml case 500 95 Sarstedt 72.377 1 1 

Microtube 2.0ml skirted with cap case 5000 491.9 Sarstedt 72.694 3 2 

Storage boxes (cryo) 9x9 each (min 5) 1 39.45 Sarstedt 93.873.481 1 set of 5 1 set of 5 

Blue tips with filter Racked1000uL case 
1000 (10 boxes of 
100) 76.38 Sarstedt 70.762.211 4 2 

cotton tipped swabs pk  5000 88.00 Fisher Scientific TS10 2 1 

latex agglutination kit box 50 tests 203.74 
Microgen 
bioproducts M41CE 1 1 
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11.2 Tissue culture reagent log 

 

Please record the Lot number, expiry date and date of all reagents used. 

DATE   DMEM TRYPSIN HBSS CALF L-GLUTAMINE ANTIBIOTIC   

        SERUM  MYCOTIC GENTAMYCIN 

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               

  LOT No               

  Expiry date               
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11.3 Gold Standards Laboratory data sheet      

       

Specimen study 
number Date of sample 

Cytotoxin assay 
(Pos/Neg) Culture (Pos/Neg) 

Cytotoxigenic 
culture (Pos/Neg) QC number  

Isolate storage 
(Freezer 
box/position) 

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

       

Operator………………………………………….  Date……………………………………………….  
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11.4 Commercial EIA Laboratory data sheet  
 

Specimen study 
number Date of sample 

Premier Toxin A+B 
result  

Premier Toxin A 
+ B OD value 

TechLab Tox A/B II 
OD value  

TechLab Quik Chek 60 
OD value  

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

      

Operator………………………………………….  Date………………………………............... 
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11.5 GeneXpert Laboratory data sheet     

      

Specimen study 
number Date of sample 

Cepheid 
GeneXpert result 

Cepheid geneXpert 
Tox B cycle No. 

Cepheid GeneXpert 
Binary Toxin cycle No. 

Cepheid GeneXpert Tcd 
C cycle No.  

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

      

Operator………………………………………….  Date……………………………………………….  
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11.6 Cytotoxin assay template  

Tray/Date ………………………..Positive control batch no. …………… 24hr tray read by 

………… 

Antitoxin batch no. ……………… Antitoxin in rows …………………… 48hr tray read by  

Tray/Date …………………………Positive control batch no. …………… 24hr tray read by … 

Antitoxin batch no. ………………...Antitoxin in rows …………………… 48hr tray read by 

 1 2 3 4 5 6 7 8 9 10 11 12  

A .          .          .         . . . . . . . . . A 

B     .          .          .         . . . . . . . . . B 

C . . . . . .  . . . . . . C 

D . . . . . . . . . . . . D 

E . . . . . . . . . . . . E 

F . . . . . . . . . . . . F 

G . . . . . . . . . . . . G 

H . . . . . . . . . . . . H 

 1 2 3 4 5 6 7 8 9 10 11 12  

 

POSITIVE CONTROL 

 1 2 3 4 5 6 7 8 9 10 11 12  

A .          .          .         . . . . . . . . . A 

B . . . . . . . . . . . . B 

C . . . . . .  . . . . . . C 

D . . . . . . . . . . . . D 

E . . . . . . . . . . . . E 

F . . . . . . . . . . . . F 

G . . . . . . . . . . . . G 

H . . . . . . . . . . . . H 

 1 2 3 4 5 6 7 8 9 10 11 12  

 

POSITIVE CONTROL 


