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ABSTRACT High-performance microelectromechanical systems (MEMS) are playing a critical role in
modern engineering systems. Due to computationally expensive numerical analysis and stringent design
specifications nowadays, both the optimization efficiency and quality of design solutions become challenges
for available MEMS shape optimization methods. In this paper, a new method, called self-adaptive surrogate
model-assisted differential evolution for MEMS optimization (ASDEMO), is presented to address these
challenges. The main innovation of ASDEMO is a hybrid differential evolution mutation strategy combi-
nation and its self-adaptive adoption mechanism, which are proposed for online surrogate model-assisted
MEMS optimization. The performance of ASDEMO is demonstrated by a high-performance electro-thermo-
elastic micro-actuator, a high-performance corrugated membrane micro-actuator, and a highly multimodal
mathematical benchmark problem. Comparisons with state-of-the-art methods verify the advantages of
ASDEMO in terms of efficiency and optimization ability.

INDEX TERMS MEMS design optimization, high-performance MEMS design, surrogate model assisted
evolutionary algorithm, Gaussian process, differential evolution.

I. INTRODUCTION
Microelectromechanical systems (MEMS) with high perfor-
mance requirements are widely used in modern engineering
systems [1]. For example, the performance requirements of
contemporary micro-actuators/micro-sensors are becoming
increasingly stringent for biomedical devices and wearable
robotics in recent years [2], [3]. Despite that the over-
all performance is also affected by supporting electronics
and software, shape optimization of the MEMS is often
essential.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunith Bandaru .

PresentMEMS shape optimization methods can be divided
into two categories, which are: (1) local optimization
informed by design expertise and (2) evolutionary algorithms
(EAs), which aim to perform global optimization. In the first
category, design expertise is firstly used to simplify the opti-
mization problem by providing an initial design, narrowing
down the search ranges and reducing the number of design
variables based on sensitivity, [4]–[6]. This kind of method
is playing an important role in modern high-performance
MEMS optimization. However, the main drawbacks include
a lack of generality and limited optimization ability. The
design expertise is often case-specific, leading to an ad-
hoc optimization process. The local optimization methods
have limited search ability, and may not be able to meet the
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stringent design specifications when the initial design is not
sufficiently good [7].

Compared with the first category, which is more fitted
for design experts, the second category, EA-driven MEMS
design optimization [8]–[11], has the advantage of being
free of an initial design, generality, and robustness. Partic-
ularly, EAs often have reasonably high global optimization
capability for nonlinear and multimodal problems, which
are suitable for high-performance MEMS optimization. At
present, besides the traditional genetic algorithms, differ-
ential evolution (DE) [12] and particle swarm optimization
(PSO) [13] are arguably the most widely used EAs for
MEMS shape optimization [4], [8], [14]. DE and PSO show
good performance for various high-performance MEMS, but
it is also found that their optimization abilities still need
improvement when handling complex design cases. In the
computational intelligence field, various improved EAs have
been proposed. Only considering DE, there are a few popular
improved versions, e.g., [15]–[17]. Among them, a state-
of-the-art method is Linear Population Size Reduction -
Success-History Based Parameter Adaptation for Differential
Evolution (L-SHADE). However, our experiments (Section
IV) show that even L-SHADE may not be able to achieve the
required optimization quality for the targeted problem.

Another important challenge for EA-driven MEMS
shape optimization is efficiency. Computationally expensive
numerical simulations (e.g., finite element analysis) are often
unavoidable to obtain accurate performance estimation of
MEMS devices [18]. In contrast with local optimization-
based methods, which are often efficient when there exists
a sufficiently good initial design, standard EAs, and their
improved versions often need a large number of simulations
to obtain the optimum. The optimization time, therefore,
becomes very long or even prohibitive in some cases [10],
while nowadays most real-world systems including MEMS
often require a reduced time-to-market [19], [20]. Thus, sub-
stantial optimization efficiency improvement without com-
promising performance is highly desirable.

To address this problem, off-line surrogate model-based
EAs (SAEAs) are introduced into MEMS shape optimization
[21]. An initial random sampling (such as using Design of
Experiment [22] methods) is firstly carried out. Using the
sampled design variables as the input and the performance
via numerical simulations as the output, a black-box surrogate
model is constructed to approximate the performance of the
MEMS device. The surrogate model is often constructed
by statistical learning techniques. For example, Lee et al.
[21] use artificial neural networks (ANN) to construct a
black-box surrogate model for predicting the performance
of new candidate designs. In the optimization process, the
computationally cheap surrogate model is used to replace
the expensive numerical simulation model to improve com-
putational efficiency. Although efficient for various MEMS,
high-performance MEMS requires a very accurate surro-
gate model to meet the stringent constraints and obtain a
highly optimized objective function value. When the number

of design variables is more than a few, obtaining a suffi-
ciently accurate surrogate model may need a tremendous
number of initial samples, canceling out the saved simulation
time [23].

Because the optimal region is unknown beforehand, one-
shot sampling wastes a lot of samples (i.e., computation-
ally expensive simulations) in regions far away from the
optimal region. Infill sampling techniques have been intro-
duced to address this drawback for simulation-driven design
optimization, which show successful results for complex
problems [24]. Rather than using a one-shot initial sam-
pling to obtain the surrogate model, the surrogate model is
updated iteratively in the optimization process. By sampling
the “interested” regions based on analysis of previous sam-
ples, computationally expensive simulations are saved.When
active learning or infill sampling techniques are combined
with EAs, on-line SAEAs are constructed. In online SAEA, a
very rough surrogatemodel is firstly built, and simulations are
used in each iteration to explore the design space and improve
the surrogate model.

Even though efficient state-of-the-art online SAEAs have
been proposed [25]–[27], to the best of our knowledge, these
methods are arguably not purpose-built shape optimization
methods for high-performance MEMS which need to meet
highly stringent specifications. Surrogate model-aware evo-
lutionary search (SMAS) is a typical framework introduced
by the authors, which premises on surrogate-assisted meta-
heuristics using infill sampling techniques and it outperforms
several popular online SAEAs [32]. A MEMS design opti-
mizationmethod based on SMAS is also proposed [23]. How-
ever, our experiments (Section IV) show that although with
high efficiency, the optimization ability is insufficient for
the targeted problem. Many recent successful SAEAs mainly
focus on handling the challenges in higher-dimensional prob-
lems [27] or a very limited computing resources [25], which
are also not suitable for the targeted problem.

A new SAEA is proposed in this paper, called self-adaptive
surrogate model-assisted differential evolution for MEMS
optimization (ASDEMO), which aims to:

• Substantially improve the optimization efficiency of
standard EAs and some modern variants for high-
performance MEMS shape optimization;

• Improve the optimization ability of standard EAs and
some modern variants for high-performance MEMS
shape optimization;

• Be general enough to handle MEMS shape optimization
with about 10 design variables or more without any
initial solutions or ad-hoc process.

The remainder of the paper is organized as follows.
Section II introduces the basic techniques. Section III intro-
duces the ASDEMO algorithm, including the main innova-
tions and the parameter settings. Section IV tests ASDEMO
using two practical high-performance MEMS and a highly
multimodal mathematical benchmark problem. The conclud-
ing remarks are presented in Section V.
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II. BASIC TECHNIQUES
A. GAUSSIAN PROCESS MACHINE LEARNING
AND PRESCREENING
The selected surrogate modeling method in ASDEMO is
Gaussian process (GP). GP modeling is a theoretically sound
and principled method for determining a much smaller num-
ber of free model parameters when compared to many other
surrogatemodeling approaches such as ANN [28], [29]. It can
also provide an estimate of the model uncertainty for each
predicted point, which is shown to have a large advantage
in SAEAs [30]–[33]. GP has been widely used for surrogate
modeling in the electromagnetic machine design optimiza-
tion field [34], including MEMS. GP works as follows:

To model an unknown function y = f (x), x ∈ Rd , GP
modeling assumes that f (x) at any point x is a Gaussian
random variable N (µ, σ 2), where µ and σ are two constants
independent of x. For any x, f (x) is a sample of µ + ε(x),
where ε(x) ∼ N (0, σ 2). For any x, x ′ ∈ Rd , c(x, x ′), the
correlation between ε(x) and ε(x ′), depends on x − x ′. More
precisely,

c(x, x ′) = exp(−
d∑
i=1

θi|xi − x ′i |
pi ), (1)

where parameter 1 ≤ pi ≤ 2 is related to the smoothness of
f (x) with respect to xi, and parameter θi > 0 indicates the
importance of xi on f (x). More details about GP modeling
can be found in [35].

Given K points x1, . . . , xK ∈ Rd and their f -function val-
ues y1, . . . , yK , then the hyper parameters µ, σ , θ1, . . . , θd ,
and p1, . . . , pd can be estimated by maximizing the likeli-
hood that f (x) = yi at x = x i (i = 1, . . . ,K ) [36]:

1

(2πσ 2)K/2
√
det(C)

exp
[
−
(y− µ1)TC−1(y− µ1)

2σ 2

]
(2)

where C is a K × K matrix whose (i, j)-element is c(x i, x j),
y = (y1, . . . , yK )T and 1 is a K -dimensional column vector
of ones.

To maximize (2), the values of µ and σ 2 must be:

µ̂ =
1TC−1y
1TC−11

(3)

and

σ̂ 2
=

(y− 1µ̂)TC−1(y− 1µ̂)
K

. (4)

Substituting (3) and (4) into (2) eliminates the unknown
parameters µ and σ from (2). As a result, the likelihood func-
tion depends only on θi and pi for i = 1, . . . , d . (2) can then
be maximized to obtain estimates of θ̂i and p̂i. In this work,
the maximization of (2) is carried out by sequential quadratic
programming [37]. Although the computational complexity
grows cubically with the number of training data points, the
computing overhead of GP modeling is often low. The reason
is that mostMEMS shape optimization problems have around
or less than 10 design variables. A large number of training
data points is therefore not needed to build a reliable surrogate

model. With optimized θ̂i and p̂i, the estimates µ̂ and σ̂ 2 can
then be readily obtained from (3) and (4).

Given the hyper parameter estimates θ̂i, p̂i, µ̂ and σ̂ 2, one
can predict y = f (x) at any untested point x based on the
f -function values yi at x i for i = 1, . . . ,K . The best linear
unbiased predictor of f (x) is [36], [38]:

f̂ (x) = µ̂+ rTC−1(y− 1µ̂) (5)

and its mean squared error is:

s2(x) = σ̂ 2[1− rTC−1r +
(1− 1TC−1r)2

1TC−1r
] (6)

where r = (c(x, x1), . . . , c(x, xK ))T . N (f̂ (x), s2(x)) can be
regarded as a predictive distribution for f (x) given the func-
tion values yi at x i for i = 1, . . . ,K .
Considering the predicted value f̂ (x) and the prediction

uncertainty s2(x), several prescreening methods are proposed
to predict the quality of a candidate design [31]. Lower con-
fidence bound (LCB) is used in this paper and we consider
the minimization of f (x). Given the predictive distribution
N (f̂ (x), s2(x)) for f (x), a LCB prescreening of f (x) can be
defined as [30]:

flcb(x) = f̂ (x)− ωs(x) (7)

where ω ∈ [0, 3] is a constant. The use of LCB prescreening
can conduct explorative global search when using a largeω or
conduct fast local search when using a small ω. Since f̂ (x) is
Gaussian distributed, according to the 3σ rule, when ω = 2,
the confidence level of flcb(x) to be the LCB of f̂ (x) is about
97%. The comparisons of using different ω to define LCB are
detailed in [30], [31]. ω = 2 is used in this paper as suggested
in [31].

B. DIFFERENTIAL EVOLUTION
DE algorithm is used as the search engine in the proposed
ASDEMO algorithm. DE is an effective and popular global
optimization algorithm. It uses a differential operator to cre-
ate new candidate solutions [12].

Suppose that P is a population. Let x = (x1, . . . , xd ) ∈ Rd

be an individual solution in P. To generate a child solution
u = (u1, . . . , ud ) for x, a donor vector is first produced by
mutation:

v = xr1 + F · (xr2 − xr3 ) (8)

where xr1 , xr2 and xr3 are three different solutions randomly
selected fromP.F ∈ (0, 2] is a control parameter, often called
the scaling factor [12]. The above mutation strategy is called
DE/rand/1, which is one of the most widely used strategies.
Besides, there are quite a few different mutation strategies,
trading off exploration ability and convergence speed.

Then the following crossover operator is applied to pro-
duce the child u:

1 Randomly select a variable index jrand ∈ {1, . . . , d},
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2 For each j = 1 to d , generate a uniformly distributed
random number rand from (0, 1) and set:

uj =

{
vj, if (rand ≤ CR)|j = jrand
xj, otherwise

(9)

where CR ∈ [0, 1] is a constant called the crossover
rate.

In ASDEMO, three other DE mutation strategies are also
adopted. The first one is DE/rand-to-best/2 [39], which is
shown in (10).

vi=x i+F · (xbest−x i)+F · (xr1−xr2 )+F · (xr3 − xr4 )

(10)

where x i is the ith candidate solution in P and xbest is the best
candidate solution in P. xr1 , xr2 , xr3 and xr4 are mutually
exclusive candidate solutions randomly selected from the
current population and are different from x i and xbest .
Another strategy is the DE/rand/2/dir mutation strategy

[38], which is shown in (11).

vi = xr1 +
F
2
· (xr1 − xr2 − xr3 ) (11)

where xr1 , xr2 and xr3 are three different solutions selected
from P and xr1 has the smallest objective function value
(considering a minimization problem).
Another mutation strategy used in ASDEMO is DE/hybrid

trigonometric mutation [40]: in 95% rate, the DE/rand/1 strat-
egy is used; while in 5% rate, (12) is used.

ps = |f (xr1 )| + |f (xr2 )| + |f (xr3 )|

p1 = |f (xr1 )|/ps

p2 = |f (xr2 )|/ps

p3 = |f (xr3 )|/ps

vi = (xr1 + xr2 + xr3 )/3+ (p2 − p1) · (xr1 − xr2 )

+ (p3 − p2) · (xr2−xr3 )+(p1−p3) · (xr3−xr1 ) (12)

III. THE ASDEMO ALGORITHM
A. CHALLENGES AND MAIN IDEAS OF ASDEMO
ASDEMO is an on-line SAEA, for which, the surrogate
model keeps improving in the optimization process. Hence,
the predicted good designs may be wrong especially at the
beginning of the optimization when there are insufficient
training data points, which may cause wrong convergence.
To address this problem, some available SAEAs begin with
a standard EA for a certain number of iterations (expen-
sive simulations are used for the whole population). After
a surrogate model with sufficient quality is obtained, the
solution quality and the surrogate model quality are then
iteratively improved in the consecutive search [41], [42].
This kind of method often has reasonably good solution
quality, but the efficiency is sacrificed. In contrast, some
other available SAEAs perform expensive simulations to
the “optimal” solutions predicted by the existing surrogate

model, despite that its quality may not be good enough [31].
The number of expensive simulations is therefore highly
reduced, but the solution quality remains a weakness. Hence,
neither of them is suitable for high-performance MEMS
shape optimization, requiring both high solution quality and
high efficiency. As said in Section I, SMAS framework [32]
is a new kind of SAEA and advantages are shown com-
pared to the above two kinds of SAEAs [32]. However, it
is found that when the expected performance of the MEMS
device is high, both the solution quality and efficiency need
improvement.
It is worth understanding the landscape characteristics of

the targeted problem. Compared to normal MEMS shape
optimization, high-performance MEMS optimization intro-
duces stringent constraints and higher expectations of the
optimal objective function value. To cope with that, both
(very) high exploration and exploitation abilities are essen-
tial for the optimization algorithm. The reasons include: (1)
Stringent constraints and highly optimal objective function
value make the optimal region become (very) narrow and the
optimization algorithm must be able to search elaborately in
that narrow region (i.e., a high exploitation ability). (2) To get
access to the optimal region, high exploration ability must
be available to jump out of the local optima in the design
landscape. More particularly, when several constraints are
imposed on, their extent of difficulty to be satisfied varies and
the population may be dominated by relatively easier ones
among them in an early stage and the diversity may be lost
to satisfy the more stringent constraints (e.g., Example 1 in
Section IV). Hence, a high exploration ability is essential to
maintain population diversity.
In addition, there is a critical balance between the explo-

ration ability, the convergence speed [43] and the surro-
gate model quality. The higher the exploration ability (i.e.,
population diversity), the lower the probability of finding
the correct search direction (i.e., convergence speed), and
more necessary training data points are required to construct
a reliable surrogate model (i.e., computationally expensive
simulations). Hence, the central questions become: (1) How
to build an SAEA framework (Section III B), and (2) How to
design the optimization kernel (Section III C) to call for an
appropriate balance among these factors?

B. THE NEW SAEA FRAMEWORK
The flow diagram of ASDEMO is shown in Figure 1. The
algorithm consists of the following steps.

Step 1: Sample α (often a small number) designs from the
design space using the Latin Hypercube sampling
method [22], perform numerical simulations to all
of them and let them form the initial database.

Step 2: If a preset stopping criterion (e.g., a maximum
number of simulations) is met, output the best
design from the database; otherwise go to Step 3.

Step 3: Select the λ best designs from the database to form
a population P.
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FIGURE 1. The flow diagram of ASDEMO.

Step 4: Apply the proposed self-adaptive DE search
(Section III C) on P to generate n child populations
and each population has λ child solutions.

Step 5: For each candidate design in each population, take
the τ nearest designs (based on Euclidean distance)
from the database and their performance values as
the training data points to construct a local GP
surrogate model. (There are n × λ GP models in
total.)

Step 6: Prescreen the n × λ child solutions generated
in Step 4 using the GP models in Step 5 and the
lower confidence bound method (7). Select the top n
child solutions based on the lower confidence bound
values.

Step 7: Simulate the estimated top n child solutions from
Step 6. Add them and their performance (via numer-
ical simulation) to the database. Go back to Step 2.

It can be seen that some ideas are borrowed from our
SMAS framework [23], [32], [33]. The standard EA process
is not used. Instead, only the predicted top candidate designs
are simulated and the current best λ candidate designs are
used as the new population in each iteration. The goal is
to improve the locations of the training data points. Often,
the number of training data points is considered as the main
factor affecting the quality of a surrogate model, but their
locations are overlooked. Intuitively, using the same number
of training data points located near to the points waiting
to be predicted (child populations in Step 4) can obtain a
better surrogate model than using those far away from them.
Because the training data points are selected from candidate
designs generated by the search operators, the search should
generate candidate designs in expected locations (i.e., near to
the child population).

To meet this requirement, in each iteration, the λ current
best candidate designs construct the parent population (it is
reasonable to assume that the search focuses on the promising
region) and the top n candidate designs based on prescreening
in the child population are selected to replace the few worst

ones in the parent population. Hence, only a few candidates
at most are changed in the parent population in each iteration,
so the top quality candidates in the child solutions among
several consecutive iterations may be quite near to each other
(they will then be simulated and are used as training data
points). Therefore, the training data points describing the
current promising region are much denser compared to those
generated by a standard EA population updating mechanism,
which may spread in different regions (many of them are far
from optimal) of the design space, while there may not be
sufficient training data points around the candidate solutions
to be prescreened.

New candidate design generation and prediction are two
other critical issues of the SAEA framework. Generating
new candidate designs through a self-adaptive DE mutation
method is described in the next subsection. However, cor-
rect predictions of the new candidate designs become a new
challenge. SMAS builds a single surrogate model using the
solutions near the child population to be predicted, while the
new candidate designs for the targeted problem are expected
to have diversity for exploration or serving as a local improve-
ment for exploitation. A single global surrogate model is
therefore inaccurate for the prediction. In ASDEMO, a local
GP model is built for each child solution waiting to be
predicted using the method in Step 5. Experiments show a
sufficient prediction capability.

C. THE OPTIMIZATION KERNEL
To achieve the goals described in Section III A, the optimiza-
tion kernel is designed as follows:

For each child population i = 1, 2, . . . , n:

Step 1: If the algorithm is within the learning period (the
current number of iterations is smaller than a thresh-
old L), the rate of using DE/rand-to-best/2, (10),
DE/rand/1/dir, (11) and DE/hybrid trigonometric
mutation strategies, (12) is 1

3 . Otherwise; use the
rates in Step 5.

Step 2: Perform a roulette wheel selection [44] based on
the rates to determine a DE mutation strategy and
generate a child population Ci (λ child solutions).

Step 3: Use the local GP surrogate models in Step 5 of the
SAEA framework (Section III B) to predict all the
candidate designs in Ci.

Step 4: Compare the predicted value of each solution in
Ci and the current best design (simulated value).
Add the number of solutions that are better than the
current best design to Ns (the number of successes
of (10), (11) or (12) and add λ to Nu (the number of
uses of (10), (11) or (12)).
Until all the n groups of child solutions are
generated.

Step 5: Update the rates of using DE/rand-to-best/2, (10),
DE/rand/1/dir, (11) and DE/hybrid trigonometric
mutation, (12) by Ns/Nu. Update the number of
iterations.
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Selecting appropriate DE mutation strategies is critical for
the success of the optimization kernel. Some considerations
are stated as follows:

(1) The selected mutation strategies must have high explo-
ration ability. Besides the reasons regarding stringent
constraints and high expectations of the optimal objec-
tive function value (Section III-A), the SAEA frame-
work (Section III-B) is another reason. The search
focuses on the promising subregion and only the top
n candidates are simulated and are used to update the
surrogatemodel, laying emphasismore on exploitation.
Thus, the exploration ability mainly comes from the
mutation strategy themselves.

(2) Given the required exploration ability, the convergence
speed should be as high as possible. The reference used
is DE/rand/1mutation, which is popular and successful.
The goal of the ASDEMO optimization kernel is to
improve the convergence speed and keep the explo-
ration ability of the DE/rand/1 mutation strategy.

(3) Different DEmutation strategies have a different trade-
off between the exploration ability and the conver-
gence speed. This trade-off is expected to be similar
for the selected strategies; Otherwise, because the self-
adaptive mutation strategy selection method is greedy
(Step 5), the strategywith the fastest convergence speed
may dominate the selection in an early stage, which
is harmful to preserving the diversity in the whole
search process. Considering multiple constraints with
various extent of difficulty to be satisfied, the above
consideration is even more important.

(4) MEMS shape optimization problems can be separable
or non-separable, and ASDEMO aims to be a general
method, so both conditions should be considered.

(5) Memetic algorithms, which include local search into
global search, show largely improved exploitation abil-
ity than standard EAs [45]. Different from our previ-
ous works using different stages for local and global
optimization [46], [47], local search will be embed-
ded in DE mutation operators to help satisfy stringent
constraints as well as locally improve the objective
function value.

Based on the above considerations, three more efficient
DE mutation strategies [38]–[40] compared to DE/rand/1
are employed. A method to improve the convergence speed
is to use xbest to guide the search. DE mutation strategies
employing xbest show strong competitiveness for not highly
multimodal and separable problems [39]. To keep the explo-
ration ability, two pairs of individuals are used. That is why
DE/rand-to-best/2, (10) is selected.

Another convergence speed improvement method is to
utilize the objective function value. A typical example is
the DE/rand/dir category. One pair of individuals is selected
because using two pairs of individuals results in too high
diversity compared to the other two selected strategies. It
is shown that DE/rand/1/dir (11) can maintain the diversity

of DE/rand/1, and shows good performance for multimodal
and non-separable problems [38]. This is a complement to
DE/rand-to-best/2, (10).

To promote local exploitation, we include local search
in DE mutation at a low rate. A typical method is
DE/trigonometric mutation, (12) [40]. Using (12), the pertur-
bations are biased towards the candidate designs providing
the smallest objective function values, to perform a local
search. When hybridizing with DE/rand/1 (Section 2.2), the
exploration ability is kept and the exploitation ability is
enhanced.

Considering different MEMS design problem landscapes,
the most fitted mutation strategy is used with the largest
probability based on previous experience of the targeted
problem. Our experiments show two observations: (1) For
different MEMS optimization problems, the rate of using a
certain mutation strategy can be very different, verifying the
effectiveness of the self-adaptive method. (2) The optimal
design obtained by the self-adaptive method is better than
using each selected mutation strategy alone in all of our test
cases, which shows the complement of the selected strategies.

D. PARAMETER SETTINGS
In ASDEMO, the algorithm parameters include (1) the DE
parameters: λ, F and CR, (2) surrogate modeling parameters:
the number of training data points (τ ) for each child solution
waiting to be prescreened, the initial sample size (α), and (3)
self-adaptive search parameters: the threshold of the learning
period (L) and the number of child populations (n).
ASDEMO is a SMAS-based algorithm. Because the pop-

ulation updating scheme in SMAS emphasizes exploitation,
large F and CR should be used to maintain the diversity.
Empirical studies are in [48]. We suggest F = 0.8,CR = 0.8,
λ ∈ [5× d, 10× d]. For surrogate modeling parameters, we
suggest α = 5×d and τ = 8×d when the size of the database
is larger than 8 × d ; otherwise, the whole database is used.
This is based on the empirical rules in [32], [36] for on-line
surrogate modeling. Clearly, L is not sensitive and we suggest
it to be within [30, 50]. For simplicity, we use L = 30 in all
test cases. For n, n = 3 is used according to empirical study.

IV. EXPERIMENTAL RESULTS AND COMPARISONS
In this section, two real-world high-performance MEMS
examples (a 4 variable electro-thermo-elastic micro-actuator
and a 10 variable corrugated membrane micro-actuator) and
a mathematical benchmark problem (the 15−d Ackley func-
tion [49]) are used to demonstrate the ASDEMOmethod. The
reason why the Ackley function is selected among various
benchmark problems is that it has a narrow optimal region
and a highly multimodal landscape, which has common char-
acteristics with the targeted problem, but it is arguably more
complex considering the number of local optima. The for-
ward problems of both MEMS examples are based on finite
element analysis. The reference methods are PSO [13], DE
[12], SMAS [23], [32], IWO [51], [52], L-SHADE [50] as
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well as ASDEMO only with a single mutation strategy (i.e.,
the strategies in (10), (11) and (12), respectively).

The reasons to select the comparison references are as
follows: DE and PSO are selected because they are the domi-
nant methods in the MEMS shape optimization area. IWO is
selected because it is a relatively new method and it is attract-
ing much attention in shape design optimization [51]–[53].
L-SHADE is selected because it is a state-of-the-art method
in the evolutionary computation domain with applications
in engineering design optimization [16], [17]. Although
ASDEMO is particularly proposed for high-performance
MEMS shape optimization, it is interesting to investigate
its optimization ability compared with L-SHADE. Standard
SMAS is selected because it is a typical surrogate model-
assisted EA, and it has shown considerably higher perfor-
mance compared to several popular surrogate model-assisted
single objective optimization techniques [32]. ASDEMO
with a single mutation strategy (i.e., the strategies in (10),
(11) and (12), respectively) is considered to verify the perfor-
mance improvement of the proposed hybrid mutation strategy
and the self-adaptive adoption mechanism.

The population/swarm/plant size and the maximum num-
ber of evaluations are problem dependent and are described
in each subsection. The same population size is used for
all the methods for a fair comparison. For other algorithm
parameters, F = 0.8 and CR = 0.8 are used for DE for
a fair comparison. For PSO, MATLAB PSO optimizer is
used with MATLAB’s default algorithm parameters: 1.49 for
both cognitive and social parameters, adaptive inertia weight
with the boundary of [0.1, 1.1] and a minimum adaptive
neighborhood size of 0.25. Based on the recommendations
in [51], a nonlinear modulation index of 3 and the number
of seeds increasing linearly from 0 to 5 are used for IWO.
For L-SHADE, the control parameters (i.e., scaling factor and
crossover rate) are adaptive in each generation and historical
memory with 5 memory cells and an archive rate of 1.4
are used following [50], [54]. The parameters for SMAS,
ASDEMO with a single strategy are the same as those used
in ASDEMO. Other parameter settings of ASDEMO are
discussed in section III. All the tests are run on a workstation
with Intel 4-core i7 (4770K) 3.50 GHz CPU and 24GB RAM
and the time consumptions reported are wall clock time.

A. EXAMPLE 1
The first example is a silicon electro-thermo-elastic micro-
actuator (Fig. 2) with a Young’s modulus of 210 GPa and a
Poisson’s ratio of 0.22. The coupled equations in (13) to (15)
are solved subject to the boundary conditions in (16) to (21).

J = γE = −γ∇V ; γ = 5× 104Sm−1 (13)

Q = J · E = −∇ · (k∇T ); k = 34Wm−1K−1 (14)

αT (T − Tref ) = εThs; αT = 2.6× 10−6 (15)

where J is the current density, γ is the electrical conductivity,
E is the electric field, Q is the heat due to Joule-effect, T
is the temperature, k is the thermal conductivity, Tref is the

FIGURE 2. Layout of the electro-thermo-elastic micro-actuator.

reference temperature, hs is the convection coefficient which
is different in the upper and in the lower surface of the micro-
actuator (Figure 2), αT is the thermal expansion coefficient
and εThs is the thermal part of the total strain.

The conduction current problem is:

VA = const; VB = 0 (16)

nv · J = 0 (17)

elsewhere; where VA and VB are the terminal voltages at A
and B respectively in (Figure 2) and nv is the normal vector.

The thermal problem is:

T = Text = Tref = 293.15K (18)

at the simple supports and at the hinges.

−nv · (k∇T ) = hs(Text − T ) (19)

elsewhere; where Text is the external temperature.
The mechanical problem is:

U · nv = 0 (20)

at the simple supports.

U = 0 (21)

at the hinges; where U is the displacement.
The three problems are coupled via the thermal heat Q

(electric and thermal problems) and via the temperature T
(thermal and elastic problems). Because non-linearities of
material parameters are not taken into account, it is possible to
solve the three problems subsequently. Therefore, a weakly-
coupled analysis problem is dealt with; to solve it, a cas-
cade algorithm such as the successive substitution algorithm
can be applied. The micro-actuator is modeled in COMSOL
Multiphysics [55]. Its parametric finite-element model has a
typical mesh composed of about 8,000 3-D elements and each
simulation costs 25 minutes on average.

The design optimization problem is as follows. The design
objective is to minimize the controllable area consumption
of the micro-actuator (represented by l × (dw + 2d)) sub-
ject to specifications on maximum temperature, stress and
total displacement as shown in (22). It can be seen that the
design specifications are very stringent, as the first and third
specifications are narrow bound constraints despite that the
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TABLE 1. Ranges of the design variables (all sizes in µm) (example 1).

constraint on stress is moderate. The ranges of the design vari-
ables are shown in Table 1. A geometric constraint defined by
dw ≤ 2× d is used to ensure consistency in the model. This
constraint is handled by repairing geometric infeasible can-
didate designs to the nearest feasible ones before simulation
(i.e., setting dw = 2× d when dw > 2× d).
Considering the number of design variables, the popula-

tion/swarm/plant size is set to 30 for all the methods. The
external penalty functionmethod is used to handle constraints
and the penalty factor for each constraint is 50. To make all
the methods converge, the computing budget is as follows:
200 simulations for ASDEMO, SMAS, ASDEMO with a
single mutation strategy (i.e., the strategies in (10), (11) and
(12), respectively), 1500 simulations for DE, PSO, IWO, and
L-SHADE. A total of 10 independent runs are carried out
for surrogate model-assisted methods, and two independent
runs are carried out for DE, PSO, IWO, and L-SHADE,
respectively, because more runs are not affordable.

minimize l × (dw+ 2d)

s.t. 697.5K ≤ ([Tmax]V=Vmin + [Tmax]V=Vmax ) ≤ 702.5K

S ≤ 1.44GPa

2.05µm ≤ ([U ]V=Vmin + [U ]V=Vmax ) ≤ 2.10µm (22)

where Vmin = 1 V , Vmax = 2 V , Tmax is the maximum
temperature, S is the stress and U is the displacement.

The performances and convergence trends are shown in
Table 2 and Figure 3, respectively. ASDEMO and DE satisfy
all the design constraints in each run, while other methods fail
to satisfy the design constraints in each run. In one PSO run,
Tmax = 702.90K and U = 2.05µm and the constraint on
S is satisfied. In the other run, the constraints on Tmax and
S are satisfied, but U = 2.03µm. Because the constraint
violation for PSO is reasonably small, it is still included in
the efficiency comparison.

TABLE 2. Statistics of the objective function values (in nm2) for different
methods (example 1).

In both runs of IWO, the constraints on Tmax and U are
not satisfied with violations of around 165 K and 0.1µm,
respectively. In both runs of L-SHADE, the constraint on U
is not satisfied with violations of around 0.04µm. Note that
in contrast to PSO where only one of the two runs violates
the constraint on U with a violation of 0.04µm, L-SHADE
failed in both runs with worse results. In terms of our SMAS-
based MEMS shape optimization method [23] (i.e., SMAS),
and ASDEMO with a single mutation strategy, in the 10
independent runs, none of them satisfy the constraint on U
with a violation of around 0.06µm and they seldom satisfy
the constraint on Tmax with a typical violation of around 1 K .
Based on the required performances in (22), it can be seen
that the optimization abilities of SMAS, ASDEMO with a
single mutation strategy, IWO and L-SHADE are insufficient
for this high-performance MEMS shape optimization (i.e.,
stringent constraints). Hence, they are all excluded from the
efficiency comparison.

As revealed in Figure 3, ASDEMO obtains the average
objective value of 9.69 nm2 using 199 simulations (about 4
days). A typical result of ASDEMO is 9.69 nm2 for the objec-
tive function, Tmax=702.48 K , S=0.62 GPa and U=2.05 µm.
The convergence criterion that we defined is that the design
specifications are satisfied and the improvement of the objec-
tive function is less than 1 nm2 after 30 simulations. Using

FIGURE 3. Convergence trends of ASDEMO (10 runs), PSO (2 runs) and DE (2 runs). Other methods are not included
because all fail in all runs.
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FIGURE 4. Layout of the corrugated membrane actuator.

this criterion, ASDEMO converges using an average of 163
simulations, with a standard deviation of 20.3 simulations.
PSO and DE obtain average objective function values of
9.72 nm2 and 9.71 nm2, respectively, using 1186 simulations
(about 3 weeks) and 1468 simulations (about 4 weeks) each.
It can be seen that ASDEMO obtains better results in terms of
optimality compared to DE and PSO. According to Figure 3,
to obtain the average objective function value of PSO and
DE, ASDEMO needs 85 and 193 simulations, respectively.
Hence, ASDEMO offers 14 times speed improvement over
PSO and 7.6 times speed improvement over DE for this
example.

B. EXAMPLE 2
The second example is a silicon corrugated membrane micro-
actuator (Figure 4) with a Young’s modulus of 135GPa and a
Poisson’s ratio of 0.33. The micro-actuator is analyzed using
Hooke’s law and the subsequent equilibrium and geometric
equations in (23) to (25).

σij,j + ρfi = 0 (23)

where σij,j is the stress tensor components, ρ is the density
and f is the loading vector component.

εij,j =
1
2
(Ui,j + Uj,i +6lUl,iUl,j) (24)

where εij,j is the deformation tensor components, U is the
displacement vector configuration.

σij,j = 6klCijklεij,j (25)

where C is the tensor components of the elastic constants.
The micro-actuator is modeled in ANSYS [56]. To make

15 runs for each method affordable for comparison, the
micro-actuator is configured to have a typicalmesh composed
of about 500 2-D elements and each simulation costs 1minute
on average.

The ranges of the design variables are shown in Table 3.
The design exploration goal is to satisfy specifications on
critical pressure (Pc) and deflection at critical pressure
(Df (@Pc)) as shown in (26). Again, the design specifications
are strict. Since this is a constraint satisfaction problem, the
weighted sum of the violations of the two constraints of
(26) serves as the objective function. To make the level of
constraint violations at the same level, the penalty coefficients
are 0.1 for Pc and 10 forDf@Pc. According to the number of

TABLE 3. Ranges of the design variables (all sizes in µm) (example 2).

TABLE 4. Number of simulations required to meet specifications using
different methods (example 2) (over 15 runs).

design variables, the population/swarm/plant size is set to 50
for all methods. To make all the methods converge, the com-
puting budget is as follows: 250 simulations for ASDEMO,
ASDEMOwith a single mutation strategy, SMAS, 1500 sim-
ulations for PSO, DE, IWO, and L-SHADE. 15 independent
runs are carried out for all the methods.

847.5kPa ≤ Pc ≤ 852.5 kPa

170µm ≤ Df (@Pc) ≤ 175µm (26)

As shown in Table 4, in all the 15 runs, ASDEMO, SMAS,
ASDEMO with a single mutation strategy (i.e., the strategies
in (10), (11) and (12), respectively), PSO, DE, and L-SHADE
obtain designs satisfying the design specifications in (26).
IWO obtain designs satisfying the design specifications in
(26) in only 2 runs within the computing budget of 1500
simulations. These two successful runs use 46 and 28 sim-
ulations, respectively, which are comparable to the best cases
for other methods. Although IWO satisfies the specifications
efficiently in two successful runs, its stability is insufficient.
Hence, IWO is not included in the efficiency comparison.
A typical result for ASDEMO is Pc = 847.89 kPa and
Df (@Pc) = 171.53 µm.
According to Table 4, SAEAmethods (ASDEMO, SMAS,

ASDEMO with a single mutation strategy) are more effi-
cient than EA methods (DE, PSO, L-SHADE) given both
kinds of methods satisfy the design specifications. Among
SAEAs, considering the average number of necessary sim-
ulations, ASDEMO’s efficiency is slightly better than SMAS
and ASDEMO with a single mutation strategy. It can also
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be observed that the worst case of ASDEMO is 207 sim-
ulations. This is similar to SMAS and about 1.2-1.5 times
better than ASDEMOwith a single mutation strategy (i.e., the
strategies in (10), (11) and (12), respectively). This verifies
the stability of ASDEMO; in particular, the effect of the
three selected DE mutation strategies and the self-adaptive
adoption mechanism.

C. BENCHMARK PROBLEM Tests
To show the performance of ASDEMO for problems hav-
ing similar landscape characteristics with high-performance
MEMS optimization, but may have more local optima, a
mathematical benchmark problem, the 15 − d Ackley func-
tion (27) [49] is used. Often, MEMS shape design optimiza-
tion problems have fewer than 10 design variables. The use of
15 dimensions shows possible co-design with other devices.
The Ackley function has a global minimum at x = 0d with a
function value of 0. It has a narrow peak and numerous local
optima. Considering the number of design variables in (27),
the population/swarm/plant size is set to 50 for all methods.
To make all methods converge, the computing budget is as
follows: 650 evaluations for surrogate model-assisted opti-
mization methods, and 7500 evaluations for PSO, DE, IWO,
and L-SHADE, respectively. 30 independent runs are carried
out for each method.

min f (x) = −20e−0.2
√

1
d
∑d

i=1 x
2
i − e

1
d
∑d

i=1 cos(2πxi) . . .

+ 20+ e

x ∈ [−30, 30], i = 1, . . . , 15

minimum : f (x∗) = 0 (27)

The performances and convergence trends are shown in
Table 5 and Figure 5, respectively. As revealed in Figure 5,
ASDEMO obtains an average function value of 0.0895 using
the assigned budget of 650 function evaluations. The con-
vergence criterion that we defined is that the improvement
of the objective function is less than 1e-4 after 30 function
evaluations. Using this criterion, ASDEMO converges using
an average of 558 function evaluations. All other reference
surrogate model-assisted optimization methods fail to obtain
this average value after 650 function evaluations. PSO, DE,
IWO, and in particular the famous L-SHADE also fail to
obtain this average value after 7500 function evaluations,

TABLE 5. Statistics of the best objective function values using different
methods (example 3) (over 30 runs).

respectively. To obtain the average function values of SMAS,
ASDEMO with strategy in (10)), (11)) and (12)), PSO, DE,
IWO and L-SHADE, ASDEMO needs 563, 320, 561, 626,
518, 440, 422 and 617 function evaluations, respectively
as shown in Figure 5. Hence, ASDEMO offers 1.16, 2.03,
1.16, 1.04, 14.5, 17.1, 17.8 and 11.8 times speed improve-
ment respectively, while obtaining better average result for
this complex problem. In terms of the best result in the 30
runs, although the winner is IWO, the best result obtained
by ASDEMO, PSO and L-SHADE are of comparable high
quality. In terms of the worst result in the 30 runs, the winner
is ASDEMO, showing its stable performance.

D. DISCUSSIONS
The three selected test cases involve various complexity of
design landscapes, various number of design variables and
various kinds of optimization problems (goal optimization,
constraint satisfaction and constrained optimization). Based
on the results, the following conclusions can be drawn:
(1) ASDEMO can address high-performance MEMS design
problems with stringent design specifications efficiently,
while other reference methods, including dominant methods
in MEMS shape optimization (DE and PSO), a novel heuris-
tic method (IWO) and a state-of-the-art EA (L-SHADE),
find these problems difficult to address. (2) ASDEMO is
scalable to 15 design variables, which is often enough for
MEMS design optimization problems. (3) Besides signifi-
cantly improved efficiency, ASDEMO even shows improved

FIGURE 5. Convergence trends of ASDEMO, SMAS, ASDEMO (Only DE/rand/2/dir), ASDEMO (Only DE/hyrbid trig.), ASDEMO (Only
DE/rand-to-best/2), PSO, DE, IWO and L-SHADE (Average over 30 runs).
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solution quality compared to DE, PSO, IWO and L-SHADE
for the targeted problem. Often, surrogate model-assisted
optimization methods are worse than pure EAs in terms of
optimization quality due to the no-free-lunch theorem. (4)
Compared to a popular surrogate model-assisted EA, SMAS,
ASDEMO also shows both improved optimization quality
and efficiency.

V. CONCLUSION
In this paper, the ASDEMO algorithm has been proposed for
efficient high-performance MEMS design optimization. As
demonstrated by two real-world MEMS design problems and
a complex mathematical benchmark problem, ASDEMO can
provide optimal designs that are better than DE, PSO, IWO
and L-SHADE at a far lower computational cost. Therefore,
ASDEMO achieves the goals in Section 1. These advan-
tages are achieved by the core ideas of the new on-line
SAEA framework, the three DE mutation strategies specially
selected and combined for the targeted problem and the self-
adaptive adoption of them. The ASDEMO algorithm can also
serve as a reference for design optimization with stringent
specifications in other engineering domains. Note that the
robustness of the generated designs has not been considered
in ASDEMO. Future works will focus on addressing robust
high-performance MEMS design optimization and develop-
ing ASDEMO-based software tools.

ACKNOWLEDGMENT
The authors would like to thank Mrs. Anna Nikolaeva,
Skolkovo Institute of Science and Technology, Russia, for
valuable discussions.

REFERENCES
[1] M. G.-E. Hak, The MEMS Handbook. Boca Raton, FL, USA: CRC Press,

2001.
[2] J. L. Pons,Wearable Robots: Biomechatronic Exoskeletons. Hoboken, NJ,

USA: Wiley, 2008.
[3] I. Biswas, P. Roy (Kundu), M. Majumder, S. Sau, and A. K. Chakraborty,

‘‘Low-temperature synthesis of strain sensor based on flexible ZnO
nanowire-cellulose paper composite,’’ Micro Nano Lett., vol. 12, no. 7,
pp. 474–477, Jul. 2017.

[4] D. Shin, A. Tanaka, N. Kim, and O. Khatib, ‘‘A centrifugal force-
based configuration-independent High-Torque-Density passive brake for
human-friendly robots,’’ IEEE/ASME Trans. Mechatronics, vol. 21, no. 6,
pp. 2827–2835, Dec. 2016.

[5] D. Xiao, X. Zhou, Q. Li, Z. Hou, X. Xi, Y. Wu, and X. Wu, ‘‘Design of a
disk resonator gyroscope with high mechanical sensitivity by optimizing
the ring thickness distribution,’’ J. Microelectromech. Syst., vol. 25, no. 4,
pp. 606–616, Aug. 2016.

[6] T. Perrier, R. Levy, B. Bourgeteau-Verlhac, P. Kayser, J. Moulin, and
S. Paquay, ‘‘Optimization of an MEMS magnetic thin film vibrating mag-
netometer,’’ IEEE Trans. Magn., vol. 53, no. 4, pp. 1–5, Apr. 2017.

[7] M. M. Shalaby, M. A. Abdelmoneum, and K. Saitou, ‘‘Design of spring
coupling for high-Q high-frequency MEMS filters for wireless appli-
cations,’’ IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1022–1030,
Apr. 2009.

[8] P. D. Barba and S. Wiak, ‘‘Evolutionary computing and optimal design of
MEMS,’’ IEEE/ASME Trans. Mechatronics, vol. 20, no. 4, pp. 1660–1667,
Aug. 2015.

[9] J. K. Coultate, C. H. J. Fox, S. McWilliam, and A. R. Malvern, ‘‘Appli-
cation of optimal and robust design methods to a MEMS accelerometer,’’
Sens. Actuators A, Phys., vol. 142, no. 1, pp. 88–96, Mar. 2008.

[10] Z. Fan, J. Liu, T. Sorensen, and P. Wang, ‘‘Improved differential evolution
based on stochastic ranking for robust layout synthesis of MEMS compo-
nents,’’ IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 937–948, Apr. 2009.

[11] S. Nabavi and L. Zhang, ‘‘Design and optimization of piezoelectricMEMS
vibration energy harvesters based on genetic algorithm,’’ IEEE Sensors J.,
vol. 17, no. 22, pp. 7372–7382, Nov. 2017.

[12] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization. New York, NY, USA: Springer-Verlag,
2005.

[13] J. Kennedy, ‘‘Particle swarm optimization,’’ in Encyclopedia of Machine
Learning. New York, NY, USA: Springer, 2011, pp. 760–766.

[14] H. Ghoddus and Z. Kordrostami, ‘‘Harvesting the ultimate electrical power
from MEMS piezoelectric vibration energy harvesters: An optimization
approach,’’ IEEE Sensors J., vol. 18, no. 21, pp. 8667–8675, Nov. 2018.

[15] J. Zhang and A. C. Sanderson, ‘‘JADE: Adaptive differential evolution
with optional external archive,’’ IEEE Trans. Evol. Comput., vol. 13, no. 5,
pp. 945–958, Oct. 2009.

[16] Q. Hao, Z. Zhou, Z. Wei, and G. Chen, ‘‘Parameters identification of pho-
tovoltaic models using a multi-strategy Success-History-Based adaptive
differential evolution,’’ IEEE Access, vol. 8, pp. 35979–35994, 2020.

[17] X. Li, G. Dai, M. Wang, Z. Liao, and K. Ma, ‘‘A two-stage ensemble of
differential evolution variants for numerical optimization,’’ IEEE Access,
vol. 7, pp. 56504–56519, 2019.

[18] T. Tan, S. Roy, N. Thuy, andH. Huynh, ‘‘Streamlining the design ofMEMS
devices: An acceleration sensor,’’ IEEE Circuits Syst. Mag., vol. 8, no. 1,
pp. 18–27, 1st Quart., 2008.

[19] L. Cui, J. Deng, F. Liu, Y. Zhang, and M. Xu, ‘‘Investigation of RFID
investment in a single retailer two-supplier supply chain with random
demand to decrease inventory inaccuracy,’’ J. Cleaner Prod., vol. 142,
pp. 2028–2044, Jan. 2017.

[20] L. Cui, J. Deng, L. Wang, M. Xu, and Y. Zhang, ‘‘A novel locust swarm
algorithm for the joint replenishment problem considering multiple dis-
counts simultaneously,’’ Knowl.-Based Syst., vol. 111, pp. 51–62, 2016.

[21] Y. Lee, Y. Park, F. Niu, and D. Filipovic, ‘‘Design and optimisation of one-
port RFMEMS resonators and related integrated circuits usingANN-based
macromodelling approach,’’ IEE Proc. Circuits, Devices Syst., vol. 153,
no. 5, p. 480, Oct. 2006.

[22] M. Stein, ‘‘Large sample properties of simulations using latin hypercube
sampling,’’ Technometrics, vol. 29, no. 2, pp. 143–151, May 1987.

[23] B. Liua and A. Nikolaeva, ‘‘Efficient global optimization of MEMS based
on surrogate model assisted evolutionary algorithm,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), 2016, pp. 555–558.

[24] Q. Zhou, Y. Wang, P. Jiang, X. Shao, S.-K. Choi, J. Hu, L. Cao, and
X.Meng, ‘‘An active learning radial basis function modeling method based
on self-organization maps for simulation-based design problems,’’Knowl.-
Based Syst., vol. 131, pp. 10–27, Sep. 2017.

[25] H. Wang, Y. Jin, and J. Doherty, ‘‘Committee-based active learning for
surrogate-assisted particle swarm optimization of expensive problems,’’
IEEE Trans. Cybern., vol. 47, no. 9, pp. 2664–2677, Sep. 2017.

[26] M. Sadoughi, C. Hu, B. Moghadassian, A. Sharma, J. Beck, and
D. Mathiesen, ‘‘Sequential online dispatch in design of experiments for
Single- and multiple-response surrogate modeling,’’ IEEE Trans. Autom.
Sci. Eng., early access, Feb. 20, 2020, doi: 10.1109/TASE.2020.2969884.

[27] X. Cai, L. Gao, and X. Li, ‘‘Efficient generalized surrogate-assisted evolu-
tionary algorithm for high-dimensional expensive problems,’’ IEEE Trans.
Evol. Comput., vol. 24, no. 2, pp. 365–379, Apr. 2020.

[28] E. R. Ackermann, J. P. de Villiers, and P. J. Cilliers, ‘‘Nonlinear dynamic
systems modeling using Gaussian processes: Predicting ionospheric total
electron content over south africa,’’ J. Geophys. Res., Space Phys., vol. 116,
no. A10, Oct. 2011, Art. no. A10303.

[29] D. Buche, N. N. Schraudolph, and P. Koumoutsakos, ‘‘Accelerating evolu-
tionary algorithms with Gaussian process fitness function models,’’ IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 35, no. 2, pp. 183–194,
May 2005.

[30] J. Dennis and V. Torczon, ‘‘Managing approximation models in opti-
mization,’’ in Multidisciplinary Design Optimization: State-of-the-Art.
Philadelphia, PA, USA: SIAM, 1997, pp. 330–347.

[31] M. T. M. Emmerich, K. C. Giannakoglou, and B. Naujoks, ‘‘Single-
and multiobjective evolutionary optimization assisted by Gaussian ran-
dom field metamodels,’’ IEEE Trans. Evol. Comput., vol. 10, no. 4,
pp. 421–439, Aug. 2006.

[32] B. Liu, Q. Zhang, and G. G. E. Gielen, ‘‘A Gaussian process surro-
gate model assisted evolutionary algorithm for medium scale expensive
optimization problems,’’ IEEE Trans. Evol. Comput., vol. 18, no. 2,
pp. 180–192, Apr. 2014.

80266 VOLUME 8, 2020

http://dx.doi.org/10.1109/TASE.2020.2969884


M. O. Akinsolu et al.: Efficient Design Optimization of High-Performance MEMS

[33] G. I. Hawe and J. K. Sykulski, ‘‘A scalarizing one-stage algorithm for
efficient multi-objective optimization,’’ IEEE Trans. Magn., vol. 44, no. 6,
pp. 1094–1097, Jun. 2008.

[34] B. Liu, D. Zhao, P. Reynaert, and G. G. E. Gielen, ‘‘GASPAD: A general
and efficient mm-wave integrated circuit synthesis method based on surro-
gate model assisted evolutionary algorithm,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 33, no. 2, pp. 169–182, Feb. 2014.

[35] C. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in Summer
School on Machine Learning. Heidelberg, Germany, 2004, pp. 63–71.

[36] D. R. Jones, M. Schonlau, and W. J. Welch, ‘‘Efficient global optimiza-
tion of expensive black-box functions,’’ J. Global Optim., vol. 13, no. 4,
pp. 455–492, 1998.

[37] P. T. Boggs and J. W. Tolle, ‘‘Sequential quadratic programming,’’ Acta
Numer., vol. 4, pp. 1–51, Jan. 1995.

[38] V. Feoktistov and S. Janaqi, ‘‘Generalization of the strategies in differential
evolution,’’ in Proc. 18th Int. Parallel Distrib. Process. Symp., Apr. 2004,
pp. 165–170.

[39] A. K. Qin, V. L. Huang, and P. N. Suganthan, ‘‘Differential evolution
algorithm with strategy adaptation for global numerical optimization,’’
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[40] H.-Y. Fan and J. Lampinen, ‘‘A trigonometric mutation operation to differ-
ential evolution,’’ J. Global Optim., vol. 27, no. 1, pp. 105–129, 2003.

[41] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, ‘‘Generalizing surrogate-
assisted evolutionary computation,’’ IEEE Trans. Evol. Comput., vol. 14,
no. 3, pp. 329–355, Jun. 2010.

[42] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, ‘‘Combining
global and local surrogatemodels to accelerate evolutionary optimization,’’
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 1, pp. 66–76,
Jan. 2007.

[43] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, ‘‘A
comparative study of differential evolution variants for global optimiza-
tion,’’ in Proc. 8th Annu. Conf. Genetic Evol. Comput. GECCO, 2006,
pp. 485–492.

[44] D. E. Goldberg and K. Deb, ‘‘A comparative analysis of selection schemes
used in genetic algorithms,’’ Found. Genetic Algorithms, vol. 1, pp. 69–93,
Jan. 1991.

[45] P. Moscato, C. Cotta, and A. Mendes, ‘‘Memetic algorithms,’’ in New
Optimization Techniques in Engineering. Heidelberg, Germany: Springer,
2004, pp. 53–85.

[46] B. Liu, V. Grout, and A. Nikolaeva, ‘‘Efficient global optimization of
actuator based on a surrogate model assisted hybrid algorithm,’’ IEEE
Trans. Ind. Electron., vol. 65, no. 7, pp. 5712–5721, Jul. 2018.

[47] B. Liu, H. Yang, and M. J. Lancaster, ‘‘Global optimization of microwave
filters based on a surrogate model-assisted evolutionary algorithm,’’ IEEE
Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1976–1985, Jun. 2017.

[48] B. Liu, H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and
P. Excell, ‘‘An efficient method for antenna design optimization based on
evolutionary computation and machine learning techniques,’’ IEEE Trans.
Antennas Propag., vol. 62, no. 1, pp. 7–18, Jan. 2014.

[49] M. Jamil and X. S. Yang, ‘‘A literature survey of benchmark functions for
global optimisation problems,’’ Int. J. Math. Model. Numer. Optim., vol. 4,
no. 2, p. 150, 2013.

[50] R. Tanabe and A. S. Fukunaga, ‘‘Improving the search performance of
SHADE using linear population size reduction,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2014, pp. 1658–1665.

[51] S. Karimkashi and A. A. Kishk, ‘‘Invasive weed optimization and its
features in electromagnetics,’’ IEEE Trans. Antennas Propag., vol. 58,
no. 4, pp. 1269–1278, Apr. 2010.

[52] A. R. Mehrabian and C. Lucas, ‘‘A novel numerical optimization algo-
rithm inspired from weed colonization,’’ Ecol. Informat., vol. 1, no. 4,
pp. 355–366, Dec. 2006.

[53] M.M. Roshanaei, C. Lucas, and A. R.Mehrabian, ‘‘Adaptive beamforming
using a novel numerical optimisation algorithm,’’ IET Microw., Antennas
Propag., vol. 3, no. 5, p. 765, Aug. 2009.

[54] M. Geitle and R. Olsson, ‘‘A new baseline for automated hyper-parameter
optimization,’’ in Machine Learning, Optimization, and Data Science
(Lecture Notes in Computer Science), vol. 11943. Cham, Switzerland:
Springer, 2019, pp. 521–530.

[55] P. Di Barba, B. Liu, M. E. Mognaschi, P. Venini, and S. Wiak, ‘‘Multi-
physics field analysis and evolutionary optimization: Design of an electro-
thermo-elastic microactuator,’’ Int. J. Appl. Electromagn. Mech., vol. 54,
no. 3, pp. 433–448, Jul. 2017.

[56] J. Han and D. P. Neikirk, ‘‘Deflection behavior of Fabry–Pérot pressure
sensors having planar and corrugated membrane,’’ Proc. SPIE, vol. 2882,
pp. 79–90, Sep. 1996.

MOBAYODE O. AKINSOLU (Member, IEEE)
received the M.Sc. degree (Hons.) in electrical
and electronic engineering from the University
of Bradford, U.K., in 2014, after undertaking his
undergraduate studies and compulsory national
service in Nigeria. He has been a Research Fellow
(industrial attaché) and a Visiting Researcher with
the National Space Research and Development
Agency, Nigeria, and also been with the RFID
Research Centre, African University of Science

and Technology, Nigeria, since 2016. From 2016 to 2019, he was a Ph.D.
Scholarship Awardee in recognition of a Joint Project between Wrexham
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