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Abstract—Synchronized phasor and frequency measurements
are key tools for the monitoring and management of modern
power systems. Under dynamic conditions, it is vital to define
algorithms that allow accurately measuring time-varying signals
with short latencies and high reporting rates. A dynamic phasor
model can help the design of these algorithms and, in particular,
of those based on the Kalman filter approach.

This paper proposes a three-phase synchrophasor estimator
based on the Extended Kalman filter; state variables are obtained
from Taylor expansions of amplitudes and phase angles. The
underlying dynamic model takes into account the inherent rela-
tionship among the phases and includes harmonics in a effective
way. The process noise covariance matrix that allows representing
the uncertainty introduced by the dynamic model has been
written by considering that practical ac power systems are nearly
three-phase symmetric during typical operation. This a priori
information allows improving noise rejection and increasing
accuracy in presence of amplitude modulation, as highlighted
by the reported simulation results.

Index Terms—Phasor Measurement Unit, Synchrophasor es-
timation, Frequency, Kalman Filter, Harmonics, Three-phase
systems.

I. INTRODUCTION

Synchronized measurement of electrical signal parameters,
namely amplitude, phase angle, frequency and rate of change
of frequency (ROCOF), represents a very important topic in
power grids since Phasor Measurement Units (PMUs) were
introduced. PMUs rely on a coordinated universal time (UTC)
reference to accurately define the measurement instant and
thus associating a timestamp with each measured quantity
[1] (hence the name synchophasor). The PMUs and their
typical reporting rates were originally designed to deal with the
usual dynamics of transmission networks; however PMUs are
expected to play a major role also in the wide area monitoring
of distribution systems.

Time-varying parameters can be accurately measured only
if specifically designed techniques are implemented. The
combination of rapidly evolving signals and UTC-referenced
timebase have led to the need for PMU algorithms that
are tailored for highly dynamic conditions, thus relying on
dynamic estimation models.
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The relevance of time-varying conditions is highlighted by
the synchrophasor standard IEEE C37.118 and even more by
the most recent revisions IEEE C37.118.1-2011 [2] and IEEE
C37.118.1a-2014 [3] (superseded by the new joint IEC-IEEE
standard 60255-118-1 [4]), which introduced the definition
of dynamic synchrophasor, and prescribed also dynamic tests
(e.g. in the presence of amplitude and phase modulation or
frequency ramp) for compliance testing of commercial PMUs.

For these reasons, the literature on dynamic synchrophasor,
frequency and ROCOF measurements is growing in recent
years and many different techniques have been applied. In [5],
a dynamic phasor model (Taylor-Fourier, TF, model) based
on a Taylor expansion of the phasor around the measurement
instant is proposed; the same approach has been adopted by
[6]. In [7], [8] discrete Fourier transform (DFT) corrections
based on a TF model are considered. IpDFT has also been
successfully applied to follow frequency variations in the
presence of disturbances [9] and it has been extended by using
a Taylor series-based model of the synchrophasor [10]. In
[11] the model in [5] is considered to design a two-channel
PMU algorithm that can simultaneously comply with standard
requirements for protection and measurement applications, by
promptly reacting to fast changes in the input signal. In [12]
the Taylor expansion of magnitude and phase angle of the
Space Vector (SV) signal is used to estimate the positive
sequence synchrophasor and frequency in three-phase systems,
while in [13] the SV transformation is exploited jointly with
the TF model. In [14], the dynamic model is adaptively
updated to include other frequency components and improve
the synchrophasor estimation via compressive sensing.

The Kalman filter is often used to perform DFT-like filtering
[15], but it can be extended to include the TF paradigm [16]
resulting in a Taylor-Kalman filter (TKF) for dynamic syn-
chrophasor tracking. In [17] the TKF is modified to improve
the model of phasor derivatives and phase angle dynamics.
In [18] a smoothed TKF with enhanced frequency estimation
under off-nominal conditions is presented.

In the above formulations, only the fundamental frequency
component is considered. However, harmonics can be harmful
for dynamic phasor estimation and they directly affect TKF-
based measurements. For these reasons, [19] proposes to
include harmonics in the state-space and in [20] the modified
TKF is extended and improved to estimate both fundamental
and harmonic synchrophasors under dynamic conditions.

All of these algorithms use a linear formulation of the TKF
based on the Taylor expansion of the phasors, thus introducing
complex derivatives that blend together both amplitude and
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phase angle dynamics. In [21], a Taylor Extended Kalman
filter (TEKF) is introduced, separating the Taylor expansions
of amplitude and phase angle. Different expansion orders
can thus be applied to amplitude and phase, while harmonic
frequencies can be tied to the fundamental.

The three-phase symmetry of typical power systems wave-
forms has been exploited in the literature to improve syn-
chrophasor estimation (see [12] and [22] for a SV-based
approach). In [23] the TEKF is generalized and applied to
three-phase quantities. A unique model is used to include the
three-phase parameters of the fundamental and harmonic com-
ponents, while keeping into account the mutual relationships
between phase angle evolutions. In particular, the frequency
and its derivatives are unique, thus reflecting the physical
properties of three-phase systems.

In this paper, which represents the extension of the research
activity presented in [23], the definition of the process noise
covariance matrix in the three-phase TEKF (3ph-TEKF) is
deeply discussed. The description of the uncertainty associated
with the equations describing the state evolution is crucial for
the performance that the estimator can achieve under realistic
conditions. A new approach is proposed in this paper: the
uncertainty of the state transition is computed starting from
a representation in the symmetrical components. This allows
taking into account the a priori assumption that the measured
three-phase quantity is almost symmetrical, as typically hap-
pens in a real-world scenario.

The paper shows, in particular, the advantages of such a
solution for the estimation of the three-phases synchrophasors.
Performance is assessed by simulations of complex conditions
that combine different test signals from [2], [4], [24] also in-
cluding three-phase unbalance [25] in order to stress dynamic
tracking and disturbance rejection capabilities of the algorithm.

II. THREE-PHASE TAYLOR EXTENDED KALMAN FILTER
SYNCHROPHASOR ESTIMATOR

The implementation of a Kalman filter-based algorithm
allowing synchrophasor and frequency estimation from mea-
surement data basically requires that three relationships are
available:

1) a dynamical system describing the time evolution of the
state variables;

2) an algebraic equation that allows obtaining synchropha-
sor and frequency from the state variables;

3) an algebraic equation mapping the states to the measur-
ment data.

Let us consider a three-phase system characterized by the rated
frequency f0 (corresponding to the angular frequency ω0).
We start by choosing an expression for the measurement data
(measured signal); considering the pth phase (p ∈ {a, b, c}) it
is:

sp(t) = <

{
ap,1(t)e

j[ω0t+ϕp,1(t)]

+

M∑
h=2

ap,h(t)e
j[hω0t+ϕp,h(t)]

}
(1)

where ap,1(t) and ϕp,1(t) represent the amplitude and phase
angle of the phase p fundamental synchrophasor, while ap,h(t)
and ϕp,h(t) (h ∈ {2, . . . ,M}) denote the amplitude and phase
angle of the hth order harmonic synchrophasor for phase p.
These quantities are assumed to be slowly varying with respect
to the f0.

Now, an expression modeling the time evolution of the
synchrophasors appearing in the output equation (1) has to
be introduced. For this purpose, let us consider the following
quantities as state variables (time dependency is not explicitly
shown for the sake of brevity):

1) the fundamental angular frequency derivatives ω(k),
which are supposed to be also the phase-angle deriva-
tives of order k + 1 for the fundamental component of
each system phase, up to the order Nω , defining the
vector xω (symbol ′>′ indicates the transpose operator):

xω =
[
ω(0) ω(1) · · · ω(Nω)

]>
(2)

2) the phase p fundamental component amplitude deriva-
tives a(k)p,1 up to the order N1 and its phase angle ϕp,1,
which are the elements of xp,1:

xp,1 =
[
a
(0)
p,1 a

(1)
p,1 · · · a

(N1)
p,1 ϕp,1

]>
(3)

Vector x1 is constructed by considering all the three
phases as follows:

x1 =
[
x>a,1 x>b,1 x>c,1

]>
(4)

3) for each generic hth order harmonic, the phase p am-
plitude ap,h and phase angle ϕp,h, representing the
components of the vector xp,h.

xp,h =
[
ap,h ϕp,h

]>
(5)

Vector xh containing harmonic amplitudes and phase
angles of all the phases is introduced:

xh =
[
x>a,h x>b,h x>c,h

]>
(6)

It is worth highlighting that a unique frequency (and its
derivatives) has been defined in the model. This means that
the evolutions of both fundamental and harmonic phase angles
for all the three phases are assumed to be tied together.
Furthermore, harmonic amplitude derivatives have not been
included as state variables: since harmonics have typically
much smaller magnitudes with respect to the fundamental, it is
not needed to have a detailed representation of their dynamics.
A noticeable reduction of model complexity is achieved under
these assumptions.

Having defined the state variables, the state vector x is
obtained by concatenating the previously defined vectors:

x =
[
x>ω x>1 x>2 · · · x>M

]>
(7)

It turns out that its overall length is N = Nω +1+3(N1+
2M).

Now, the dynamical system ruling the time evolution of the
state variables has to be defined. The state-space representation
of the adopted model is linear and autonomous, thus:

dx

dt
= Acx (8)
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Its behavior depends on the matrix Ac, which can be parti-
tioned as follows:

d

dt


xω

x1

x2

...
xM

 =


Aω 0 0 · · · 0
A1,ω A1 0 · · · 0
A2,ω 0 A2 · · · 0

...
...

...
. . . 0

AM,ω 0 0 · · · AM




xω

x1

x2

...
xM

 (9)

Let us define the submatrices appearing in (9); it is straight-
forward to obtain that Aω is a (Nω + 1) × (Nω + 1) upper
shift matrix. Reminding that the evolutions of the fundamental
phase angles are assumed to be identical for the three system
phases (because of the shared frequency), thus A1,ω is a
3(N1 + 2)× (Nω + 1) matrix defined as follows:

A1,ω =


0(N1+1)×1 0(N1+1)×Nω

1 01×Nω
0(N1+1)×1 0(N1+1)×Nω

1 01×Nω
0(N1+1)×1 0(N1+1)×Nω

1 01×Nω

 (10)

Matrices Ah,ω having size 6×(Nω+1) are characterized by
a similar structure, since the derivatives of the harmonic phase
angles are supposed to be identical to that of the fundamental,
but multiplied by the harmonic order h:

Ah,ω =


0 01×Nω
h 01×Nω
0 01×Nω
h 01×Nω
0 01×Nω
h 01×Nω

 (11)

Matrix A1 can be conveniently partitioned as:

A1 =


Aa 0 0 0 0 0
0 0 0 0 0 0
0 0 Aa 0 0 0
0 0 0 0 0 0
0 0 0 0 Aa 0
0 0 0 0 0 0

 (12)

Aa is a (N1 + 1) × (N1 + 1) upper shift matrix, while Ah,
with h > 1, is a 2× 2 null matrix.

It is useful to adopt the matrix notation also to express
the three single-phase output equations (1). The vector of the
three-phase measurement input s(t) is introduced, as well as
the nonlinear time-varying vector of output functions c(x, t):

s(t) =

sa(t)sb(t)
sc(t)

 = c(x, t) (13)

The previous equations are defined in the continuous time
domain; therefore, they cannot be straightforwardly employed,
since measurement data is obtained by sampling and execution
is performed considering a time step Ts, supposed to be equal
to the sampling time. The discrete time domain representation
of (13) can be easily obtained by evaluating it in discrete

time steps t = kTs. Conversely, the continuous time state-
space system (8) can be discretized obtaining the following
representation:

x(k + 1) = Ax(k) (14)

The discretized state-space matrix A can be obtained from
Ac by using the expression:

A = eAcTs (15)

At t = kTs, (14) allows obtaining a prediction of the state
xF (k+1) in the next time instant (k+1)Ts. Matrix A includes
blocks related to magnitudes and phase angles of both funda-
mental and harmonic components. Focusing, for example, on
the diagonal blocks associated with the fundamental, they are
upper triangular and the kth diagonal is composed by elements
equal to T k

s /k! thus linking the state forecast to a truncated
Taylor expansion involving the derivatives included in the
state; its order depends on the numbers of derivatives which
have been considered in the continuous time representation.

Let us suppose that approximated dynamic modeling of the
state variables results in an equivalent zero-mean process noise
having covariance matrix Q, thus reflecting the uncertainty in
the state transition model. Under this assumption, the uncer-
tainty of the state forecast is characterized by a covariance
matrix PF (k + 1) given by:

PF (k + 1) = AP(k)A> +Q (16)

with P(k) the previous estimation covariance matrix.
Assuming that the measurement vector s is corrupted by

zero mean noise characterized by a known covariance matrix
R, linearizing the output equation (13) with respect to the
state vector x allows computing the minimum mean square
error estimate of the state variables, which is provided by the
following equation:

x(k + 1) = xF (k + 1)+

+K(k + 1)[s− c(xF (k + 1), (k + 1)Ts)] (17)

Kalman matrix gain K(k + 1) is obtained by computing:

K(k + 1) = PF (k + 1)C>(k + 1) (18)
[C(k + 1)PF (k + 1)C>(k + 1) +R]−1

Where C(k+1) is the Jacobian of the vector function c(x, t
evaluated in the point (xF (k + 1), (k + 1)Ts), namely:

C(k + 1) =
dc(x, t)

dx>

∣∣∣∣x=xF (k+1)
t=(k+1)Ts

(19)

The covariance matrix of the new estimated state is obtained
as follows:

P(k + 1) = (I−K(k + 1)C(k + 1))PF (k + 1) (20)

III. OBTAINING MEASUREMENT AND PROCESS NOISE
COVARIANCE MATRICES

The behavior of the Kalman filter implementation strictly
depends on the choice of the previously defined covariance
matrices Q and R that define process and measurement noise,
respectively. In particular, they appear in the expression (18)
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that allows computing the Kalman gain. Obtained estimates are
as close to the optimal ones as much as these noises are able
to represent the actual measurement and model uncertainties.

Let us start with measurements, which are assumed to be
affected by the intrinsic errors occurring in the measurement
process, other than noise and disturbances. These effects on
the three phases are supposed to be modeled by independent
and identically distributed random variables. Therefore, matrix
R can be written as:

R = σ2
R

1 0 0
0 1 0
0 0 1

 (21)

Under this assumption, only the standard deviation σR has
to be selected according to a priori knowledge.

Things become considerably trickier when the process noise
covariance matrix Q has to be chosen. For the purpose, it can
be partitioned as:

Q =

 Qω Q>1,ω Q>h,ω
Q1,ω Q1 Q>h,1
Qh,ω Qh,1 Qh

 (22)

where Qω is the covariance matrix of the angular frequency
and its derivatives, Q1 is that of the fundamental amplitude
derivatives and phase angles, Qh takes into account harmonic
amplitudes and phase angles. Q1,ω allows considering corre-
lation between the fundamental component phase angles and
amplitude derivatives and angular frequency derivatives. Qh,ω

takes into account correlation between harmonics and angular
frequency derivatives while Qh,1 includes the covariances
between harmonics and fundamental. The major uncertainty
source of the state forecast is represented by the finite number
of magnitudes and phase angle derivatives that have been
included in the state-space of the dynamical model. As pre-
viously stated, this results in truncated Taylor expansions
of magnitudes and phase angles in the sampling instant as
far as the discrete-time representation is concerned. A first
possibility is to directly reason in terms of state variables,
namely performing assumptions about the neglected per phase
magnitudes and phase angles derivatives such as in [23].

A powerful alternative is decomposing the fundamental into
its symmetrical components that allow favorably exploiting the
characteristics of three-phase systems. The positive sequence
component is typically the largest one by far, while negative
and zero sequence terms have significantly smaller amplitudes.
For this purpose, let us introduce a+,1(t) and ϕ+,1(t) as
the magnitude and phase angle of the positive sequence
dynamic phasor, a−,1(t) and ϕ−,1(t) those corresponding
to the negative sequence dynamic phasor while a0,1(t) and
ϕ0,1(t) are the amplitude and phase of the zero sequence
dynamic component. Angular frequency and its derivatives are
assumed to be shared by all the symmetrical components, just
as in per phase quantities. Using the unitary formulation of the
Fortescue transformation1, the relationship between phase a,
b and c fundamental dynamic phasors and the corresponding
dynamic symmetrical components can be written; it results:

1the inverse of the transformation matrix is equal to its conjugate transpose.

ap,1(t)e
jϕp,1(t) = 1√

3

[
a+,1(t)e

j(ϕ+,1(t)−r 2π
3 ) (23)

+ a−,1(t)e
j(ϕ−,1(t)+r 2π

3 )

+ a0,1(t)e
jϕ0,1(t)

]
where r = 0, 1, 2 for phase a, b and c, respectively. By
performing some computations on the previous expression,
it is possible to obtain the state variables characterizing the
fundamental component (namely the amplitude derivatives of
the three phases a(k)p,1 up to the order k = N1 and the three
phase angles ϕp,1) as functions of the amplitude derivatives
of the symmetrical components (namely a

(k)
+,1, a(k)−,1, a(k)0,1 up

to the order k = N1) and of the phase angles (ϕ+,1, ϕ−,1
and ϕ0,1). It is clear that the prevailing positive sequence
term generates strong correlation between phase quantities.
Furthermore, the dynamic behavior can be assumed to be
mostly driven by the positive sequence component; instead, the
amplitude derivatives of the negative and zero sequence terms
can be neglected. Under this assumption, it is possible to write
the covariance matrix Qs,1 of the fundamental in terms of
symmetrical components and then obtaining submatrix Q1 by
using the Jacobian J of the relationship between state variables
and their symmetrical components.

The first step is introducing some hypotheses that allow
writing the covariance matrix Qs,1. For this purpose, it is
reasonable to consider the positive sequence amplitude and
phase modulated test signals defined by the synchrophasor
standard [4] as representative of the typical dynamics that may
occur in power systems. The expressions of the corresponding
positive sequence synchrophasor magnitude and phase angle
are:

a+(t) =
√
6S[1 + kx cos(ωmt)] (24)

ϕ+(t) = ka cos(ωmt− π)

where S is the RMS amplitude of the unmodulated single-
phase signal, while ωm and kx are, respectively, the angular
frequency and the relative amplitude of the modulating signal.

It should be noticed that the maximum value of the kth
order magnitude derivative results:

a
(k)
+,1,max =

√
6Skxω

k
m (25)

The model allows considering the derivatives of the pos-
itive sequence component up to order N1. Since 1/fm =
2π/ωm >> Ts, the magnitude derivatives due to modulation
can be assumed as constant during Ts. Therefore, supposing
that the model starts from error-free state variables, the maxi-
mum forecast error of the kth order derivative can be obtained
by a (N1+1−k)-fold time integration of the maximum value
of the (N1 + 1)-th derivative over the sampling interval:

e
a
(k)
+,1

=
√
6Skxω

N1+1
m

TN1+1−k
s

(N1 + 1− k)!
(26)

Assuming a shape for the probability density function, the
standard deviation σ

a
(k)
+,1

can be obtained from the correspond-
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ing maximum error:

σ
a
(k)
+,1

=
e
a
(k)
+,1

kc
(27)

where kc is a factor which is selected by assigning a confi-
dence level to the maximum error. Covariances between am-
plitude derivatives are obtained by assuming full correlation.

The variances and covariances characterizing the zero and
negative sequence component can be obtained in a simi-
lar fashion. Since a zeroth order expansion is used in this
case, it is necessary to assume a maximum value for their
derivatives. The corresponding maximum errors during the
sampling interval can be computed by integration, while the
standard deviations are obtained by guessing the shape of the
probability density functions. Their dynamics are assumed to
be independent, so covariances are supposed to be zero.

In order to define the standard deviations for the phase
angles ϕ+,1, ϕ−,1 and ϕ0,1 and their derivatives (shared by
all of them and including the angular frequency) it is possible
to adopt a similar approach. The dynamics of the angular
frequency which occur during the phase modulation tests
prescribed by [4] have to be considered in this case. Full
correlation between phase angle derivatives is supposed.

Now all the elements that allow writing Qω have been
obtained. Q1,ω is completely defined since angular frequency
and its derivatives are the same in the symmetrical components
and in the phase quantities; zero correlation between angular
frequency derivatives and magnitude derivatives is considered.
Furthermore the (6+N1)×(6+N1) covariance matrix Qs,1 of
the fundamental term in the symmetrical components can be
obtained while, as aforementioned, Q1 is computed by using
a proper Jacobian matrix J. Furhter details are reported in
Appendix A.

Qh contains the variances and covariances of the harmonic
amplitudes and phase angles. Variances of harmonic ampli-
tudes can be obtained with the usual approach starting from
a maximum value for their derivatives. Amplitudes of the
different harmonics and phases are supposed to be uncor-
related. Zero correlation between amplitudes and harmonic
phases is also assumed. Since angular frequency is unique,
standard deviations of the harmonic phases are equal to that
previously computed for the fundamental, but multiplied by
the harmonic order h. This results in unitary correlations
between phase angles of different harmonics and phases.
Under the aforementioned assumptions, Qh,ω and Qh,1 are
completely defined.

IV. TESTS AND RESULTS

A. Test Assumptions
The proposed 3ph-TEKF estimation algorithm has been im-

plemented in Matlab using 1 kHz sampling rate. The following
assumptions have been introduced in order to compute the
covariance matrices Q and R:
• Second order expansion for the fundamental amplitude

(N1 = 2) and first order expansion for the angular
frequency (Nω = 1) have been employed.

• Measurement noise standard deviation σR = 3 ·10−3 p.u.
has been considered.

• Modulation angular frequency ωm = 2π5 rad/s and mod-
ulation depths kx = 0.1 and ka = 0.1 rad for computing
the maximum errors have been chosen as the most severe
values reported in the synchrophasor standard.

• Maximum variation of the harmonic magnitudes within
a sampling interval is assumed to be 10−4 p.u..

• Standard deviations have been obtained from the maxi-
mum errors by using kc =

√
3.

• Negative and zero sequence components are assumed to
be 1% of the positive one when computing the Jacobian.

• Harmonics up to order M = 9 have been included into
the model.

The performance of the estimation algorithm has been
assessed under different conditions, defined by combined tests
that include different excitation signals chosen among those
suggested in the standard [4] and in the guide IEEE C37.242
[24]. For some of the test signals, an additive white uniform
noise, at a signal-to-noise ratio (SNR) of 70 dB, has been
superimposed to stress the algorithms.

While in [23] positive sequence synchrophasor estimations
were considered, in the following synchrophasor measure-
ments for all the system phases are considered alongwith
frequency measurements.

The performance indices are the usual Total Vector Error
(TVE), which indicates the relative value of the vector error
magnitude, absolute frequency error (|FE|), along with abso-
lute amplitude error (|AE|) and phase angle error (|PE|).

All the test scenarios which are considered in the following
except for the last one (Section IV-E) and for the noise
contribution employ a symmetrical signal.

In the following, a comparison between the algorithm in
[23], where the amplitude dynamics of the system phases
were considered as uncorrelated in the definition of Q, and
the TEKF algorithm proposed in this paper, which uses a
process noise covariance matrix defined starting from the
symmetrical components, is carried out. The aim is to show
the advantages obtained with more realistic assumptions about
model uncertainty.

All the tests are performed with a duration of 10 seconds
and a new measurement set is computed in each sampling
interval.

B. Off-Nominal Frequency Tests

As a first test scenario, a purely sinusoidal 50Hz signal
of 1 p.u. amplitude is considered, with and without additive
noise. Errors are negligible in the first case and thus the
results reported in the following are only those achieved in
the presence of superimposed noise; they mainly reflect the
noise bandwidth of the two 3ph-TEKF implementations for
the monitored quantities. Figs. 1 and 2 show phase a percent
TVE and frequency estimation, respectively, for a 1-s portion
of the considered signals (the time window shows steady-
state conditions after initial transients have settled). Similar
results can be found for the TVE of the other phases and
thus they are not reported. Frequency measurements show
only a slight difference between the methods (the root mean
square of FEs is 5mHz for both algorithms) while TVE is
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Fig. 1. Phase a TVE % under nominal frequency conditions, 70 dB SNR.
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Fig. 2. FE under nominal frequency conditions, 70 dB SNR.

clearly lower when the new process noise covariance matrix
is considered. In fact, the RMS TVE drops from 0.018% to
0.014% corresponding to an error reduction of about 26%.
This difference is mainly due to the smaller AE and it reflects
the importance of properly considering the link among the
uncertainties of the phasor amplitudes of the different phases.
This choice allows considerably reducing the infiltration of
unwanted noise in the corresponding state variables.

Off-nominal frequency conditions have been simulated. Dif-
ferent tests have been performed considering the fundamental
frequency range limits in [4]. In particular, the tests with
f = 45Hz and f = 55Hz confirm the good frequency tracking
capability of the filter. Errors are almost the same as those
obtained under nominal frequency for the two methods, thus
confirming that the main contribution comes from noise and
that redefining Q in order to include correlation among phase
quantities allows reducing TVE errors.
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Fig. 3. Phase a Amplitude error under AM conditions.

C. Harmonic Disturbance Tests
A second set of tests has been performed by superimposing

three harmonics to the fundamental component. In particular,
harmonic orders 3, 5, and 7 have been considered (which
are among the most relevant ones in real-world scenarios).
Magnitude is 5% of the fundamental for all the harmonic
orders (random initial phase angles are considered); tests at
nominal and off-nominal frequencies (49 and 51Hz) have been
performed.

Only slight differences in the dynamics of the two methods
with different Q matrices can be noticed, but the 3ph-TEKF
shows remarkable harmonic rejection. Without additive noise
TVEs are below TVE = 0.03%, while including noise the
results are very similar to those under off-nominal frequency
reported in Section IV-B. The presence of the harmonics in the
model proves to be thus very helpful in reducing their impact
on the measurements for the fundamental components.

D. Modulation Tests
Since the focus of the proposed method is on dynamic

conditions, modulation tests have been considered as represen-
tative of the variations that electrical signals may undergo. In
particular, sinusoidal amplitude and phase-angle modulations
are adopted (referred to as AM and PM in the following),
using the signals defined by [4]. Frequency modulation fm ∈
(0, 5]Hz with modulation indices kx = 0.1 and ka = 0.1 rad,
respectively for AM and PM, are used. In the following, results
for fm = 5Hz under AM are discussed.

Both methods track the modulated amplitude of the signals,
but Fig. 3 shows in detail the synchrophasor amplitude es-
timation error for phase a. It is clear that the new solution
for defining Q clearly improves the accuracy, by significantly
reducing the ripple in the estimates. The TVE is mainly
affected by these AEs, since PE values are below 0.002 crad,
and thus the TVE is reduced from 0.98% to 0.77%.

It is interesting to notice that also frequency measurements
benefit from the improved covariance matrix. FE values are
reduced of about 43% (from 19mHz to 11mHz).
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Synchrophasor estimates for each phase under PM (fm =
5Hz) show a TVE reduction (see Fig. 4) of more than 6% with
the improved uncertainty description. This is due to a small
reduction (about 4%) of the PEs, which is the most relevant
in this scenario, and to a very strong reduction of AE, which
becomes almost negligible.

The results of |FE| values are reported in Fig. 5 and they
are below 97mHz. The oscillatory behaviour of the error is
strictly related to the approximated modeling of phase-angle
dynamics, which is not able to consider all the derivatives.

E. Unbalance Tests

Three-phase systems and, in particular, distribution sys-
tems may suffer from a certain level of asymmetry between
phases. For this reason, [24], for example, suggests to test
instrumentation in the presence of unbalance. Therefore tests
have been performed with both amplitude and phase-angle
unbalance that are compatible with the assumptions reported

above when Q has been computed. In particular, unbalance
levels of ±5% and ±10 ◦ have been considered by changing
either the amplitude or the phase angle of phase a at both
f = 50 and 49Hz. Tests have been also performed with or
without additive noise. In all the performed tests, the effect
of unbalance on the accuracy is negligible (TVE < 10−2 %
and |FE| < 0.1mHz) with respect to the contribution due
to additive noise because all the three-phases are included in
the state vector (7). In the presence of noise, the advantages
in terms of error reduction are similar to those observed in
Section IV-B (−26% for TVE with phase unbalance equal to
+10 ◦).

V. CONCLUSIONS

Synchrophasor and frequency measurement algorithms
based on Kalman filtering have become popular in the last
years. The main advantage is achieving very low latency,
which represents an important feature for time-critical ap-
plications. In this work, a full three-phase Taylor Extended
Kalman Filter synchrophasor estimator has been proposed. The
introduced simplifications allow reducing the computational
cost while obtaining remarkable dynamic behavior. Overall
performance, in particular under amplitude modulation and
in the presence of wideband noise, can be further improved
by introducing a process noise covariance matrix which takes
into account that in a real-world scenario, electrical quantities
exhibit nearly three-phase symmetry. This can be performed
by describing the model uncertainty in terms of symmetrical
components; the method is particularly effective in improving
the synchrophasor measurements of each phase. In addition,
the proposed implementation also permits estimating harmonic
components, which represents an important feature when it is
employed in distribution grids.
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APPENDIX A
OBTAINING THE JACOBIAN MATRIX J

The Jacobian matrix J relating amplitude derivatives and
phase angles of per phase synchrophasors and their symmet-
rical components counterparts can be obtained by properly
manipulating (23). For this purpose, let us consider N1 = 2.
In this case, the expressions of phase a, b and c synchrophasor
magnitude time derivatives up to the second order and of
those of the phase angles have to be computed. After that, the
partial derivatives with respect to the magnitude time deriva-
tives (from zeroth to second order) and to the phase angles
of the symmetrical components have to be obtained; they
represent the elements of the Jacobian. However, since the time
derivatives of the zero and negative sequence term amplitudes
are supposed to be negligible, J becomes a 12 × 8 matrix.
Several terms contain trigonometric functions of differences
between phase angles of different symmetrical components,
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or the magnitudes of the symmetrical components a+,1, a−,1
and a0,1. This means that the Jacobian may change in each
time step, and therefore it should be comtinuously updated
and applied to Qs,1 in order to obtain Q1; however, this
would result in a considerable computational burden. In order
to reduce complexity, the expected value of the Jacobian is
employed, having assumed that phase angles are independent
and uniformly distributed in the interval [−π, π] and having
guessed values for the relative amplitudes of the negative
and zero sequence components with respect to the positive
sequence term. Further simplifications can be introduced by
considering that negative and zero sequence terms are typically
very small with respect to the positive sequence phasor.
Finally, the nonzero terms of the Jacobian result:

∂a
(0)
p,1

∂a
(0)
+,1

' 1√
3

∂a
(0)
p,1

∂a
(0)
−,1
' 1√

3

a−,1
a+,1

∂a
(0)
p,1

∂a
(0)
0,1

' 1√
3

a0,1

a+,1

∂a
(1)
p,1

∂a
(1)
+,1

' 1√
3

∂a
(2)
p,1

∂a
(2)
+,1

' 1√
3

∂ϕp,1
∂ϕ+,1

' 1
(28)
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