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Abstract. Super-resolution imaging aims at improving the resolution of an image by enhancing

it with other images or data that might have been acquired using different imaging techniques or
modalities. In this paper we consider the task of doubling, in each dimension, the resolution of

grayscale images of binary objects by fusion with double-resolution tomographic data that have been

acquired from two viewing angles. We show that this task is polynomial-time solvable if the gray
levels have been reliably determined. The problem becomes NP-hard if the gray levels of some pixels

come with an error of ±1 or larger. The NP-hardness persists for any larger resolution enhancement

factor. This means that noise does not only affect the quality of a reconstructed image but, less
expectedly, also the algorithmic tractability of the inverse problem itself.

1. Introduction

Different imaging techniques in tomography have different characteristics that strongly depend on
the specific data acquisition setup and the imaged tissue/material. Hence it is a major issue (and at
the heart of current research, see, e.g., [10, 14, 27, 34, 36, 39, 43]) to improve the resolution of an image
by combining different imaging techniques. In general it is, however, not clear, how this can actually be
performed efficiently. The present paper addresses this multimodal approach from a basic algorithmic
point of view in two different ways using a discrete model of binary image reconstruction. First, we
show that, indeed, the resolution of binary objects can be efficiently improved if the data are reliable.
We derive a polynomial-time algorithm for double-resolution that works correctly for exact data (and
can be extended to a heuristic for the more general case). On the other hand, we show that noisy data
in the low-resolution image do not simply reduce the quality of the reconstruction but add additional
complexity. Hence, intuitively speaking, and in a sense that will be made mathematically precise
later, it might not be possible to compensate for the faultiness of low-resolution imaging efficiently by
incorporating other additional higher-resolution information (even if the latter is noise-free).

More specifically, the results of the present paper are motivated by the task of enhancing the resolu-
tion of reconstructed tomographic images obtained from binary objects representing, for instance, crys-
talline structures, nanoparticles or two-phase samples [1, 3, 7, 46, 49]. The reconstructed tomographic
image might contain several gray levels, which, depending on the accuracy of the reconstruction, result
from the fact that low-resolution pixels may cover different numbers of black high-resolution pixels.
For turning the grayscale image into a high-resolution binary image we utilize the gray levels and two
additional high-resolution projections, which may have been acquired by different imaging techniques
or modalities (e.g., via scanning transmission electron microscopy [46]). More precisely, we study the
task of reconstructing binary m × n-images from row and column sums and additional constraints,
so-called block constraints, on the number of black pixels to be contained in the k × k-blocks resulting
from a subdivision of each pixel in the m/k × n/k low-resolution image. We remark that we do not
require that the X-ray data are taken from orthogonal directions. In our context it suffices that the
X-ray data have been taken with high-resolution according to the discretization of the low-resolution
image.

Figure 1 illustrates the process. The example given in this figure also shows that the block-constraints
can help to narrow down the solution space. In fact, the solution shown in this figure is uniquely
determined by the input (the row and column sums and block constraints). The row and column sums
alone do not determine the solution uniquely and, of course, neither do the block constraints.

Apart from super-resolution imaging [29, 33, 35, 37, 42, 47], and its particular applications [8, 20,
40, 48] in discrete tomography [1, 17, 22, 25, 26, 28, 30, 32, 45], the problems discussed in this paper
are also relevant in other contexts.
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Figure 1. The super-resolution imaging task DR. (a) Original (unknown) high-
resolution image, (b) the corresponding low-resolution grayscale image, (c) gray levels
converted into block constraints, (d) taken in combination with high-resolution row
and column sum data. The task is to reconstruct from (d) the original binary image
shown in (a).

From a combinatorial point of view, they can be viewed as reconstructing binary matrices from
given row and column sums and some additional constraints. Unexpected complexity jumps based on
the results of the present paper are discussed in [6] and, to some extent, at the end of this section.
Background information on such problems involving different kinds of additional constraints can be
found in [11, Sect. 4].

Other applications belong to the realm of dynamic discrete tomography [5, 6, 7, 49]. For instance,
in plasma particle tracking, some particles are reconstructed at time t. Between t and the next time
step t + 1 the particles may have moved to other positions. The task is to reconstruct their new
positions, again from few projections. One way of incorporating additional prior knowledge about the
movement leads to block constraints of the kind discussed in this paper; see [5].

As the task of reconstructing a binary matrix from its row and column sums can be formulated
as the task of finding a b-matching in a bipartite graph, we remark that our theorems can also be
seen as results on finding b-matchings that are subject to specific additional constraints. Related (but
intrinsically quite different) results on matchings subject to so-called budget constraints can be found,
e.g., in [21].

For super-resolution imaging the two main contributions of this paper are as follows. On the one
hand, we show that reliable bimodal tomographic data can be utilized efficiently, i.e., the resolution, in
each dimension, can be doubled in polynomial time if the gray levels of the low-resolution image have
been determined precisely (Thm. 1). On the other hand, the task becomes already intractable (unless
P = NP) if the gray levels of some pixels come with some small error of ±1 (Thm. 3 and Cor. 2). This
proves that noise does not only affect the quality of the reconstructed image but also the algorithmic
tractability of the inverse problem itself. Hence the possibility of compensating noisy imaging by
including bimodal information may in practice be jeopardized by its algorithmic complexity. While
this is not the focus of the present paper let us point out that, even in the presence of (a reasonably
restricted degree of) noise, the approach leading to Thm. 1 can, in principle, be extended to a fast
heuristic for doubling the resolution of such images in each dimension. At present, however, we do not
know how such an approach would compare with other heuristics on real-world data.

From the perspective of discrete tomography, the contributions of this paper can be interpreted as
follows. It is well known that the problem of reconstructing binary images from X-ray data taken
from two directions can be solved in polynomial time [16, 41]. Typically, this information does not
determine the image uniquely (see, e.g., [23] and the papers quoted there). Hence, one would like to
take and utilize additional measurements. If, however, we add additional constraints that enforce that
the solutions satisfy the X-ray data taken from a third direction, then the problem becomes NP-hard,
and it remains NP-hard if X-ray data from even more directions are given [18] (see also [15] for results
on a polyatomic version).
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As it turns out, the case of block constraints behaves somewhat differently. Thm. 3 and Cor. 2 show
that the problem of reconstructing a binary image from X-ray data taken from two directions is again
NP-hard if we add several (but not all) block constraints (which need to be satisfied with equality).
However, and possibly less expectedly, if we include all block constraints, then the problem becomes
polynomial-time solvable (Thm. 1). If, on the other hand, from all block constraints some of the data
come with noise at most ±1, then the problem becomes again NP-hard (Thm. 3 and Cor. 2). And yet
again, if from all block constraints all of the data are sufficiently noisy, then the problem is in P (as
this is again the problem of reconstructing binary images from X-ray data taken from two directions).
An overview of these complexity jumps is given in Fig. 2.

no constraints

all constraints
reliable data

P

NP-hard

NP-hard

P

P

P

NP-hard

NP-hard

P

P
several constraints
reliable data

all constraints
all data sufficiently noisy

all constraints
some data with noise
at most ±1

Figure 2. Overview of complexity jumps for the problem of reconstructing a binary
image from row and column sums and additional 2× 2-block constraints.

2. Notation and Main Results

Let Z, N, and N0 denote the set of integers, natural numbers, and non-negative integers, respectively.
For k ∈ N set kN0 := {ki : i ∈ N0}, [k] := {1, . . . , k}, and [k]0 := {0, . . . , k}. With 11 we denote the
all-ones vector of the corresponding dimension. The cardinality of a finite set F ⊆ Zd is denoted by |F |.

In this paper we use Cartesian coordinates (rather than matrix notation) to represent pixels in an
image. In particular, the two numbers i and j in a pair (i, j) denote the x- and y-coordinate of a point,
respectively. In the following we consider grids [m] × [n]. The set {i} × [n] and [m] × {j} is called
column i and row j, respectively. Let, in the following, k ∈ N. Any set {(i− 1)k + 1, . . . , ik} × [n] is a
vertical strip (of width k). A horizontal strip (of width k) is a set of the form [m]×{(j−1)k+1, . . . , jk}.

Sets of the form ([a, b]× [c, d])∩Z2, with a, b, c, d ∈ Z and a ≤ b, c ≤ d, are called boxes. For i, j ∈ N
let Bk(i, j) := B(i, j) := (i, j) + [k − 1]20. Defining for any k ∈ N and m,n ∈ kN the set of (lower-left)
corner points C(m,n, k) := ([m]× [n])∩ (kN0 + 1)2, we call any box Bk(i, j) with (i, j) ∈ C(m,n, k) a

block. The blocks form a partition of [m]× [n], i.e.,
⋃̇

(i,j)∈C(m,n,k)Bk(i, j) = [m]× [n].

Let us remark that, as defined, all our images consist of lattice points. However, the figures will
be given in terms of pixels. Accordingly, the block Bk(i, j) will be depicted as (i, j) + [0, k − 1]2; see
Fig. 3. The individual pixels are (p, q) + [0, 1]2, p, q ∈ [2], i.e., are identified with the lattice point at
their lower left corner. Of course, the fact that a point is or is not present in a solution is indicated by
a black or a white pixel, respectively.

Figure 3. Lattice points (left) and pixels (middle); right: pixel associated with its
lattice point.

For ε, k ∈ N0 with k ≥ 2 we define the task of (noisy) super-resolution
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nSR(k, ε)
Instance:m,n ∈ kN,

r1, . . . , rn ∈ N0, (row sum measurements)

c1, . . . , cm ∈ N0, (column sum measurem.)

R ⊆ C(m,n, k), (corner points of reliable
gray value measurem.)

v(i, j) ∈ [k2]0, (i, j) ∈ C(m,n, k), (gray value measurem.)

Task: Find ξp,q ∈ {0, 1}, (p, q) ∈ [m]× [n], with∑
p∈[m]

ξp,q = rq, q ∈ [n], (row sums)

∑
q∈[n]

ξp,q = cp, p ∈ [m], (column sums)

∑
(p,q)∈Bk(i,j)

ξp,q = v(i, j), (i, j) ∈ R, (block constraints)

∑
(p,q)∈Bk(i,j)

ξp,q ∈ v(i, j) + [−ε, ε], (i, j) ∈ C(m,n, k) \R, (noisy block constraints)

or decide that no such solution exists.

The numbers r1, . . . , rn and c1, . . . , cm are the row and column sum measurements of the high-
resolution binary m × n image, v(i, j) ∈ [k2]0 corresponds to the gray value of the low-resolution
k× k-pixel at (i, j) of the low-resolution m/k×n/k grayscale image, and R is the set of low-resolution
pixel locations for which we assume that the gray values have been determined reliably, i.e., without
error. The number ε is an error bound for the remaining blocks. (While it may seem unusual to denote
a non-negative integer by ε we chose this notation to indicate the specific role of ε of quantifying
an error.) The task is to find a binary high-resolution image satisfying the row and column sums
such that the number of black pixels in each block is the gray value for the corresponding k × k-pixel
low-resolution image. Clearly, a necessary (and easily verified) condition for feasibility is that∑

q∈[n]

rq =
∑
p∈[m]

cp.

In the following we will assume without loss of generality that this is always the case.
Our special focus is on double-resolution imaging, i.e., on the case k = 2. For ε > 0 we define

nDR(ε) :=nSR(2, ε). In the reliable situation, i.e., for ε = 0, we simply speak of double-resolution and
set DR:=nSR(2, 0). (Then, of course, the set R can be omitted from the input.)

In the present paper, we show that the resolution of any reliable grayscale image can in fact be
doubled in each dimension in polynomial-time if X-ray data are provided from two viewing angles at
double-resolution. In other words, we show

Theorem 1. DR ∈ P.

Figures 4 and 5 illustrate the performance of the algorithm for DR applied to two phantoms. The
results have been obtained within a fraction of a second on a standard PC.

In Fig. 4, the original phantom is a binary 200 × 200 image of a crystalline sample taken from [2].
It is assumed that the low-resolution grayscale image shown in Fig. 4(a) has been obtained by some
imaging method and that double-resolution X-ray information in the two standard directions is also
available. Application of the algorithm (see Algorithm 1) yields the binary image shown in Fig. 4(c).

In Fig. 5, the original phantom is a binary 100× 100 image, for which the low-resolution grayscale
image shown in Fig. 5(a) is available. From this image and the row and column sums (counting the
black pixels) of the original phantom the algorithm returns the binary image shown in Fig. 5(b).

The results shown in Figs. 4 and 5 satisfy, of course, the row and column sums and block constraints.
However, in both cases the solutions are still not unique. This can also be detected in polynomial time.

Theorem 2. For every instance of DR it can be decided in polynomial time whether the instance
admits a unique solution.
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(a) (b) (c)

Figure 4. Algorithm 1 applied to a phantom. (a) Low-resolution 100×100 grayscale
image, (b) magnification of the part contained in the red rectangle, (c) magnification
of the corresponding part of the 200 × 200 high-resolution binary image obtained by
the algorithm.

(a) (b) (c)

Figure 5. Algorithm 1 applied to a phantom. (a) Low-resolution 50 × 50 grayscale
image, (b) high-resolution 100×100 binary image obtained by the algorithm, (c) high-
resolution 100× 100 binary image minimizing the total variation.

While the additional X-ray information (at double-resolution) does in general reduce the ambiguity,
typically it will still not lead to uniqueness. Of course, a standard way of dealing with non-uniqueness
in practice is regularization [8, 9, 24, 38]. To illustrate the possibility of adapting a regularization
scheme to our context, we show in Fig. 5(c) a binary solution minimizing the total variation (TV). In
fact, the solution is obtained from Fig. 5(a) by applying 15 so-called local switches, each of which is
strictly decreasing the value of the total variation functional

J(x) :=
∑
p∈[m]

∑
q∈[n]

||(∇x(1)p,q,∇x(2)p,q)T ||2,

where

(∇x)(1)p,q :=

{
ξp+1,q − ξp,q : p < m,
0 : otherwise,

(∇x)(2)p,q :=

{
ξp,q+1 − ξp,q : q < n,
0 : otherwise,

and || · ||2 denotes the Euclidean norm. See, e.g., [12] for some background information. Of course, we
obtain the same results for other p-norms (including the 1-norm), because our images are binary.

We now turn to the task nDR(ε) where small “occasional” uncertainties in the gray levels are allowed.
First observe that a constant number of uncertainties does not increase the complexity. However, if
we allow a (as we will see, comparably small but) non-constant number of uncertainties the problem
becomes hard.
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Theorem 3. nDR(ε) is NP-hard for any ε > 0.

(For background material on complexity theory, see, e.g., [19].)
Further, the NP-hardness extends to the task of checking uniqueness.

Corollary 1. The problem of deciding whether a given solution of an instance of nDR(ε) with ε > 0
has a non-unique solution is NP-complete.

As it turns out, the problem nDR(ε) with ε > 0 remains NP-hard for larger block sizes.

Corollary 2. nSR(k, ε) is NP-hard for any k ≥ 2 and ε > 0.

In other words, noise does not only affect the reconstruction quality. It also affects the algorithmic
tractability of the inverse problem.

The present paper is organized as follows. We deal with the case of reliable data in section 3. Results
on nDR(ε) and nSR(k, ε) involving noisy data are contained in section 4. Section 5 concludes with
some additional remarks on certain extensions and an open problem.

3. Reliable Data

In this section we discuss the task DR, i.e., k = 2 and ε = 0. We remark that, in the following, our
emphasis is on providing brief and concise arguments for polynomial-time solvability rather than to
focus on computationally or practically most efficient algorithms. Recall, however, our comments on
the computational performance of our algorithms and the effect of the additional information for the
example images depicted in Figs. 4 and 5.

The main result of this section is Thm. 1. In its proof we show that DR decomposes into five
problems that can be solved independently. The five problems are restricted single-graylevel versions
of DR where each block is required to contain the same number ν ∈ [4]0 of ones. In fact, we allow for
restricted problem instances (and in particular row and column sums) to be defined only on subsets

G(I) :=
⋃

(i,j)∈I

B(i, j) ⊆ [m]× [n] (3.1)

of the grid [m]× [n] given by means of some I ⊆ C(m,n, 2). Let

Πx(I) := {i ∈ [m] : ∃j ∈ [n] : (i, j) ∈ I}
and

Πy(I) := {j ∈ [n] : ∃i ∈ [m] : (i, j) ∈ I}
denote the projection of I onto the first and second coordinate, respectively.

Then, we define for ν ∈ [4]0 :

DR(ν)

Instance: m,n ∈ 2N,
I ⊆ C(m,n, 2), (a set of corner points)

rj+l ∈ N0, j ∈ Πy(I), l ∈ {0, 1} (row sum measurem.)

ci+l ∈ N0, i ∈ Πx(I), l ∈ {0, 1} (column sum measurem.)

Task: Find ξp,q ∈ {0, 1}, (p, q) ∈ G(I) with∑
p:(p,j)∈G(I)

ξp,j+l = rj+l, j ∈ Πy(I), l ∈ {0, 1} (row sums)

∑
q:(i,q)∈G(I)

ξi+l,q = ci+l, i ∈ Πx(I), l ∈ {0, 1} (column sums)

∑
(p,q)∈B(i,j)

ξp,q = ν, (i, j) ∈ I, (block constraints)

or decide that no such solution exists.

Of course, the tasks DR(ν), ν ∈ {0, 4}, are trivial. In fact, the only potential solution x∗ satisfying
the block constraints is given by ξ∗p,q = ν/4, (p, q) ∈ G(I), and it is checked easily and in polynomial
time whether this satisfies the row and column sums.
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The next lemma and corollary deal with DR(ν), ν ∈ {1, 3}. Their statements and proofs use the
notation σi(j) and ρj(i) for the number of blocks in the same vertical strip as but below B(i, j) or in
the same horizontal strip as but left of B(i, j), respectively. More precisely, let

σi(j) := |({i} × [j]) ∩ I| and ρj(i) := |([i]× {j}) ∩ I|
for (i, j) ∈ I ⊆ C(m,n, 2).

Lemma 1.

(i) An instance I of DR(1) is feasible if, and only if, for every (i, j) ∈ I we have

rj + rj+1 = ρj(m) and ci + ci+1 = σi(n).

(ii) The solution of a feasible instance of DR(1) is unique if, and only if, for every (i, j) ∈ I we have

rj · rj+1 = 0 and ci · ci+1 = 0.

(iii) DR(1) ∈ P.

Proof. Clearly, for the feasibility of a given instance of DR(1) the conditions

rj + rj+1 = ρj(m) and ci + ci+1 = σi(n),

are necessary.
Now, suppose that the conditions are satisfied. For every (i, j) ∈ I and (p, q) ∈ B(i, j) we set

ai,j := i+ min{l ∈ {0, 1} : σi(j) ≤
l∑

h=0

ci+h},

bi,j := j + min{l ∈ {0, 1} : ρj(i) ≤
l∑

h=0

rj+h},

ξ∗p,q :=

{
1 : (p, q) = (ai,j , bi,j),
0 : otherwise.

(3.2)

Figure 6 gives an illustration.

0

2

1

1

1 0 0 1 2 0

Figure 6. Illustration of DR(1). (Left) Row and column sums and blocks B(i, j)
with (i, j) ∈ I in gray color. (Right) Solution defined by (3.2).

By this definition we have satisfied all block constraints. A simple counting argument shows that
the row and columns sums are also as required. In fact, for j ∈ Πy(I) and i ∈ Πx(I) we have∑

p:(p,j)∈G(I)

ξ∗p,j = |{p : ((p, j) ∈ I) ∧ (ρj(p) ≤ rj)}| = rj ,

∑
p:(p,j)∈G(I)

ξ∗p,j+1 = |{p : ((p, j) ∈ I) ∧ (ρj(p) > rj)}| = ρj(m)− rj = rj+1,

∑
q:(i,q)∈G(I)

ξ∗i,q = |{q : ((i, q) ∈ I) ∧ (σi(q) ≤ ci)}| = ci,

∑
q:(i,q)∈G(I)

ξ∗i+1,q = |{q : ((i, q) ∈ I) ∧ (σi(q) > ci)}| = σi(n)− ci = ci+1.

This concludes the proof of (i).
To show (ii), we consider a solution x∗ to DR(1). Suppose that rj > 0 and rj+1 > 0 for some

j ∈ Πy(I). Then, there exist i, l ∈ [m] with ξ∗i,j = ξ∗l,j+1 = 1. By the block constraints we have

ξ∗i,j+1 = ξ∗l,j = 0. Applying a switch to ξ∗i,j , ξ
∗
l,j+1, ξ

∗
i,j+1, and ξ∗l,j , i.e., setting ξ′i,j := ξ′l,j+1 := 0,

ξ′i,j+1 := ξ′l,j := 1, and ξ′p,q := ξ∗p,q otherwise, yields thus another solution. As the same argument
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holds also for the column sums we have shown that the condition in (ii) is necessary. The condition
is, on the other hand, also sufficient since the 0-values of the row and column sums leave only a single
position (p, q) in each block B(i, j), (i, j) ∈ I, for which ξp,q can take on a non-zero value (in fact, the
value needs to be 1 to satisfy the block constraints).

We now turn to (iii). The algorithm checks the condition (i). If it is violated, it reports infeasibility;
otherwise, a solution is constructed through (3.2). Clearly, all steps can be performed in polynomial
time. �

Corollary 3.

(i) An instance I of DR(3) is feasible if, and only if, for every (i, j) ∈ I we have

rj + rj+1 = 3ρj(m) and ci + ci+1 = 3σi(n).

(ii) The solution of a feasible instance of DR(3) is unique if, and only if, for every (i, j) ∈ I we have

(2ρj(m)− rj) · (2ρj(m)− rj+1) = 0 and (2σi(n)− ci) · (2σi(n)− ci+1) = 0.

(iii) DR(3) ∈ P.

Proof. The results follow directly from the results for DR(1) in Lem. 1 as the former are obtained from
the latter by inversion and vice versa, i.e., by replacing rj+l by 2ρj(m)− rj+l and ci+l by 2σi(n)− ci+l,
(i, j) ∈ I, l ∈ {0, 1}, and, in the solutions, all 1’s by 0’s and 0’s by 1’s. �

Next we prove polynomial-time solvability of DR(2). To this end we need two lemmas. The first
can be viewed as dealing with a certain “two-color version” of discrete tomography. The second deals
with specific switches or interchanges (in the sense of [41]).

Lemma 2. The problem, given m,n ∈ 2N, I ⊆ C(m,n, 2), and r′j , c
′
i ∈ N0, (i, j) ∈ I, decide whether

there exist non-negative integers ζi,j , ηi,j , (i, j) ∈ I, such that∑
p:(p,j)∈I

ζp,j = r′j , j ∈ Πy(I),

∑
q:(i,q)∈I

ηi,q = c′i, i ∈ Πx(I),

ζi,j + ηi,j ≤ 1, (i, j) ∈ I,
and, if so, determine a solution, can be solved in polynomial time.

Proof. We show that the problem can be formulated as a linear program involving a totally unimodular
coefficient matrix (for background material, see [44]).

We assemble the variables ζi,j , ηi,j for (i, j) ∈ I into a 2 · |I|-dimensional vector and rephrase the
constraints in matrix form Ax = r′, A′x = c′, and (E E)x ≤ 11, where r′ contains the r′j ’s, c

′ contains
the c′i’s, and E denotes the |I| × |I|-identity matrix. The problem is then to determine an integer
solution of {x : Mx ≤ b, x ≥ 0}, where

M :=


A 0
−A 0
0 A′

0 −A′
E E

 and b :=


r′

−r′
c′

−c′
11

 .

The submatrix

M ′ :=

 A 0
0 A′

E E


is totally unimodular as it is the node-edge incidence matrix of a bipartite graph (one of the two parts
of the partition is the set of the last |I| rows of M ′). But then M is also totally unimodular as it
results from appending a subset of rows of −M ′ to the totally unimodular matrix M ′. In other words,
{x : Mx ≤ b, x ≥ 0} is an integral polyhedron, i.e., it coincides with the convex hull of its integral
vectors. Hence, a vertex of this polyhedron can be found in polynomial time by linear programming. �
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Next we study the structure of solutions in terms of the patterns of the blocks. This will allow
us to focus on special classes of solutions, which we will later call reduced solutions. The problem of
finding reduced solutions to a given instance of DR will decompose into the five independent subtasks
of solving instances of DR(ν), ν ∈ {0, . . . , 4}. The concept of reduced solutions will also play a role in
our proof of Lem. 4 showing that DR(2) ∈ P.

Blocks in solutions are filled with zeros and ones. There are 16 such combinations. By grouping the
combinations that have the same row sums, we distinguish the nine block types A1, A2,B1,B2,B3, C1,
C2, D1, D2 shown in Fig. 7. Some of the types consist of several subtypes/combinations: type Ai and
Ci consist of the two subtypes Ai,i′ and ,Ci,i′ i, i

′ ∈ [2], respectively, while B3 consists of the subtypes
B3,1, . . . ,B3,4. For any given solution, we will later count the number of occurrences of the different
block types in each horizontal and vertical strip. The corresponding variables for the horizontal strip
[m] × {j, j + 1} are indicated in Fig. 7. For instance, αj counts the number of occurrences of block
type A1, while αj+1 counts the number of occurrences of block type A2.

Type A1

Var. αj+1

Var. αj

Type A2

A2,1 A2,2 B3,3 B3,4

A1,1 A1,2

(a)

Type B1

Var. βj

Type B2

Var. βj+1

Type B3

Var. β′j

B3,1 B3,2 B3,3 B3,4

B2,1

(b)

Type C1
Var. γj

Type C2
Var. γj+1

C2,1 C2,2 B3,3 B3,4

C1,1 C1,2

(c)

Type D1

Type D2

C2,1

C2,1

(d)

Figure 7. Block types A1, A2, B1, B2, B3, C1, C2, D1, D2. The indicated variables
αj , αj+1, βj , βj+1, β

′
j , γj , γj+1 count the number of occurrences of the respective

block type in the horizontal strip [m] × {j, j + 1}. The block types in (d) are not
further considered as they can be eliminated in a preprocessing step. For referencing
purposes, the figure also introduces the subtypes Ai1,i2 of Ai1 , B3,i3 of B3, and Ci1,i2
of Ci1 , i1, i2 ∈ [2], i3 ∈ [3].

We introduce now the concept of local switches. It is based on the following observation. If, for
instance, a horizontal strip contains a block of type A1,i, i ∈ [2], and another one of type B2 we may
replace them by a block of type A2,i and a block of type B3,3, respectively, without changing the row
and column constraints. Such a change will be called a horizontal local switch of class 〈1〉. In a similar
way we define horizontal local switches of class 〈t〉, t = 2, . . . , 7, according to Table 1. Horizontal local
switches of class 〈7〉 affect only single blocks (blocks of type B3,4 are turned into blocks of type B3,3).

The (similar) switches in the vertical strips, called vertical local switches, are listed in Table 2.
A switch is called local if it is a horizontal or vertical local switch of some class 〈t〉, t ∈ [7]. A solution

is called reduced if no local switch of any class 〈t〉, t ∈ [7], can be applied. Note that local switches are
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Class Turns Into Illustration

〈1〉 (A1,i,B2) → (A2,i,B3,3)

〈2〉 (A2,i,B1) → (A1,i,B3,3)

〈3〉 (B1,B2) → (B3,3,B3,3)

〈4〉 (C2,i,B2) → (C1,i,B3,3)

〈5〉 (C1,i,B1) → (C2,i,B3,3)

〈6〉 (A1,i,C1,i′)→ (A2,i,C2,i′)

〈7〉 (B3,4) → (B3,3)

Table 1. Horizontal local switches. The parameters i and i′ are elements of [2].

directed in the sense that they turn the types of blocks listed in the second column of Tables 1 and 2
into the types given in the respective third column of the tables. Oppositely directed switches, called
reversed local switches, will be used later when we discuss questions of uniqueness.

Lemma 3.

(i) Application of a local switch to a solution of a given instance of DR yields again a solution of
the same instance.

(ii) An instance of DR has a solution if, and only if, there is a reduced solution.

Proof. To prove (i) just observe that the local switches do neither change the row and column sums
nor the number of ones contained in each block.

Let us now turn to (ii). Suppose the given instance has a solution x∗. The local switches of class 〈t〉,
t ∈ [7] \ {6}, increase the number of blocks B(i, j) of type B3,3, i.e.,

ξ∗i,j = ξ∗i+1,j+1 = 1 and ξ∗i+1,j = ξ∗i,j+1 = 0.

The process of applying local switches of class 〈t〉, t ∈ [7]\{6}, thus needs to terminate since the number
of blocks in each problem instance is finite. Further, note that local switches of class 〈6〉 applied in
horizontal strips increase the number of blocks of type A2. The vertical switches of that class do not
decrease the number of such blocks, but increase the number of blocks which are of type A1,2 or A2,2.
Hence, after finitely many switches, a given solution is converted into a reduced one. �

Lemma 4. DR(2) ∈ P.

Proof. Our general strategy is as follows. First we show that a given instance is feasible if, and
only if, there exists a specific reduced solution that contains only three block types. Then we give a
polynomial-time algorithm that finds such a solution or determines infeasibility.

By rearranging the rows and columns, if necessary, we may assume that

rj ≥ rj+1 and ci ≥ ci+1, (i, j) ∈ I.
Now, first suppose that the given instance has a solution. Then, by Lem. 3 there exists a reduced

one. In the following, we consider such a reduced solution.
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Class Turns Into Illustration

〈1〉 (B3,2,Ai,1) → (B3,3,Ai,2)

〈2〉 (B3,1,Ai,2) → (B3,3,Ai,1)

〈3〉 (B3,2,B3,1) → (B3,3,B3,3)

〈4〉 (B3,2,Ci,2) → (B3,3,Ci,1)

〈5〉 (B3,1,Ci,1) → (B3,3,Ci,2)

〈6〉 (Ci′,1,Ai,1) → (Ci′,2,Ai,2)

〈7〉 (B3,4) → (B3,3)

Table 2. Vertical local switches. The parameters i and i′ are elements of [2].

The potential block types, and corresponding variables βj , βj+1, and β′j counting the number of
occurrences of the respective block types in the horizontal strip [m]× {j, j + 1} of a reduced solution,
are shown in Fig. 7(b). Block types counted by the same variable have equal row sums.

Consider now for fixed (i, j) ∈ I the blocks in G(I) ∩ ([m] × {j, j + 1}). Counting the block types,
any solution needs to satisfy

2βj + β′j = rj ,
2βj+1 + β′j = rj+1,

which implies

βj − βj+1 = (rj − rj+1)/2. (3.3)
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As the solution is reduced no horizontal local switch of class 〈3〉 can be applied, hence it is impossible
that both βj > 0 and βj+1 > 0. This, together with rj ≥ rj+1 and (3.3), implies

βj+1 = 0, βj = (rj − rj+1)/2, and β′j = rj+1.

(Note that by βj+1 = 0 there is no block of type B2. As no horizontal local switch of class 〈7〉 can be
applied, there is neither a block of type B3,4.)

The same argument applies to the other horizontal strips, and a similar argument holds for the
vertical strips (which, in particular, rules out blocks of type B3,2). Hence, we conclude that, due to
reduction, DR(2) amounts to the task of assigning one of the three block types B1,B3,1,B3,3 shown
in Fig. 8 to each of the blocks B(i, j), (i, j) ∈ I, such that, in particular, the number of type B1 and
type B3,1 blocks in each horizontal and vertical strip, respectively, equals some prescribed cardinality.

Type B1 Type B3,3Type B3,1

Figure 8. The three potential block types in solutions of DR(2) instances considered
in the proof of Lem. 4. Value 1 and 0 are indicated in black and white, respectively.

Now, we introduce 0/1-variables ζi,j , ηi,j , λi,j , (i, j) ∈ I, that are one if, and only if, B(i, j) is of
type B1, B3,1, B3,3, respectively. Then we ask for 0/1-solutions that satisfy∑

p:(p,j)∈I
ζp,j = (rj − rj+1)/2, j ∈ Πy(I),∑

p:(p,j)∈I
(ηp,j + λp,j) = ρj(m)− (rj − rj+1)/2, j ∈ Πy(I),∑

q:(i,q)∈I
ηi,q = (ci − ci+1)/2, i ∈ Πx(I),∑

q:(i,q)∈I
(ζi,q + λi,q) = σi(n)− (ci − ci+1)/2, i ∈ Πx(I),

ζi,j + ηi,j + λi,j = 1, (i, j) ∈ I.
Eliminating λi,j = 1−ζi,j−ηi,j , (i, j) ∈ I, we see that the 0/1-solutions of this system are in one-to-one
correspondence with the 0/1 solution of∑

p:(p,j)∈I
ζp,j = (rj − rj+1)/2, j ∈ Πy(I),∑

q:(i,q)∈I
ηi,q = (ci − ci+1)/2, i ∈ Πx(I),

ζi,j + ηi,j ≤ 1, (i, j) ∈ I.

(3.4)

As we assume that our DR(2) instance is feasible (hence containing two ones in each block), we have
rj + rj+1 = 2ρj(m) and ci + ci+1 = 2σi(n) for every j ∈ Πy(I) and i ∈ Πx(I). Hence, if a solution
to (3.4) is expanded, replacing the ζ∗i,j , η

∗
i,j , 1−ζ∗i,j−η∗i,j , (i, j) ∈ I, by the respective block types, then,

indeed ∑
p:(p,j)∈G(I)

ξ∗p,j = 2 · (rj − rj+1)/2 + ρj(m)− (rj − rj+1)/2 = rj ,∑
p:(p,j)∈G(I)

ξ∗p,j+1 = ρj(m)− (rj − rj+1)/2 = rj+1,∑
q:(i,q)∈G(I)

ξ∗i,q = 2 · (ci − ci+1)/2 + σi(n)− (ci − ci+1)/2 = ci,∑
q:(i,q)∈G(I)

ξ∗i+1,q = σi(n)− (ci − ci+1)/2 = ci+1,

for every j ∈ Πy(I) and i ∈ Πx(I). Any 0/1-solution to (3.4) provides thus a solution to the given
DR(2) instance. Since 0/1-solutions to (3.4) can be found in polynomial time (see Lem. 2), we have
hence determined a solution to our instance in polynomial time. Note that this solution is reduced as
it does not contain blocks of type B2, B3,2, and B3,4.
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It remains to consider the case that the given DR(2) instance is infeasible. Then one of the previous
steps must fail: either (3.4) admits no 0/1-solution or the expanded “solution” does not satisfy all row
and column sums. Both can be detected in polynomial time (see also Lem. 2). �

Let us now turn to the task of solving DR. Suppose, we are given a feasible instance of DR that
does not contain any block constraints of the form v(i, j) = ν, ν ∈ {0, 4}, and whose row and column
sums satisfy

rj ≥ rj+1 and ci ≥ ci+1, (i, j) ∈ C(m,n, 2). (3.5)

We call such an instance a proper instance.
In the following, we consider for fixed j ∈ [n]∩ (2N0 + 1) the horizontal strip [m]×{j, j+ 1}. We set

v
(1)
j := |{i ∈ [m] ∩ (2N0 + 1) : v(i, j) = 1}|,
v
(2)
j := |{i ∈ [m] ∩ (2N0 + 1) : v(i, j) = 2}|,
v
(3)
j := |{i ∈ [m] ∩ (2N0 + 1) : v(i, j) = 3}|.

Let us now consider a solution of the proper instance. A count of the block types of the solution in
that strip (the variables for the block types are indicated in Fig. 7), yields

αj + 2βj + β′j + γj + 2γj+1 = rj ,

αj+1 + 2βj+1 + β′j + 2γj + γj+1 = rj+1,

αj + αj+1 = v
(1)
j , (3.6)

βj + βj+1 + β′j = v
(2)
j , (3.7)

γj + γj+1 = v
(3)
j . (3.8)

From the system we obtain

αj + βj − βj+1 + γj+1 = rj − v(2)j − v
(3)
j , (3.9)

−αj − βj + βj+1 + γj = rj+1 − v(1)j − v
(2)
j − v

(3)
j . (3.10)

We will show that for reduced solutions, the variable values of αj , αj+1, βj , β
′
j , βj+1, γj , γj+1 are

uniquely determined and can, actually, be computed from the data (i.e., from rj , rj+1, v
(1)
j , v

(2)
j , and

v
(3)
j ). This will then allow us to split the task into instances of DR(ν), ν ∈ [3].

We begin with a simple observation.

Lemma 5. Any reduced solution to a proper instance of DR satisfies βj+1 = 0.

Proof. Suppose there is a reduced solution with βj+1 > 0. As we cannot apply any further horizontal
local switch of class 〈t〉, t ∈ {1, 3, 4}, we need to have αj = βj = γj+1 = 0, hence by (3.6) and (3.8)

αj+1 = v
(1)
j , and γj = v

(3)
j . Using (3.9) and (3.10) we obtain

rj = v
(2)
j + v

(3)
j − βj+1,

rj+1 = v
(1)
j + v

(2)
j + 2v

(3)
j + βj+1,

which imply rj < v
(2)
j + v

(3)
j ≤ rj+1, a contradiction to (3.5). �

Given a proper instance, we distinguish three cases.

• Case 1: Every reduced solution satisfies βj > 0.

• Case 2: There is a reduced solution satisfying βj = 0, and in any such solution we have αj > 0.

• Case 3: There is a reduced solution satisfying βj = αj = 0.

Lemma 6. Given a proper instance of DR. Then,

Case 1 ⇔ v
(3)
j ≤ rj+1 < v

(2)
j + v

(3)
j ,

Case 2 ⇔ v
(2)
j + v

(3)
j ≤ rj+1 < v

(1)
j + v

(2)
j + v

(3)
j ,

Case 3 ⇔ v
(1)
j + v

(2)
j + v

(3)
j ≤ rj+1 ≤ v

(1)
j + v

(2)
j + 2v

(3)
j .
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and in all cases the variable values of αj , αj+1, βj , β
′
j , βj+1, γj , γj+1 are uniquely determined by the

data.

Proof. By Lem. 3, a proper instance has a reduced solution. Hence, one of the disjoint Cases 1 − 3
occurs. Once we have established the implications “⇒” the reverse implications follow, because the
stated intervals for the rj are disjoint (thereby uniquely specifying the case).

Hence it suffices to prove the implications “⇒.” Let us begin with Case 1. As we cannot apply
any further horizontal local switch of class 〈t〉, t ∈ {2, 5}, we must have αj+1 = γj = 0, hence

αj = v
(1)
j , and γj+1 = v

(3)
j . Eq. (3.10) implies βj = v

(2)
j + v

(3)
j − rj+1. As 0 < βj ≤ v

(2)
j , we thus have

v
(3)
j ≤ rj+1 < v

(2)
j + v

(3)
j . Further, (3.7) yields β′j = rj+1 − v(3)j . Hence, all values of the variables are

uniquely determined.

In Case 2, as βj+1 = βj = 0, we have β′j = v
(2)
j , and as we cannot apply any further horizontal local

switch of class 〈6〉, we need to have γj = 0, hence γj+1 = v
(3)
j . Eq. (3.10) implies αj = v

(1)
j + v

(2)
j +

v
(3)
j − rj+1. As 0 < αj ≤ v(1)j , we thus have v

(2)
j + v

(3)
j ≤ rj+1 < v

(1)
j + v

(2)
j + v

(3)
j . Further, (3.6) yields

αj+1 = rj+1 − v(2)j − v
(3)
j . Hence, again, all variables are determined.

In Case 3, as βj+1 = βj = αj = 0, we have β′j = v
(2)
j and αj+1 = v

(1)
j . Eq. (3.10) implies γj =

rj+1 − v(1)j − v
(2)
j − v

(3)
j . As 0 ≤ γj ≤ v

(3)
j we thus have v

(1)
j + v

(2)
j + v

(3)
j ≤ rj+1 ≤ v

(1)
j + v

(2)
j + 2v

(3)
j .

Further, (3.8) yields γj+1 = v
(1)
j + v

(2)
j + 2v

(3)
j − rj+1, and all variable values are determined. �

We are now prepared to give a proof of Thm. 1.

Proof of Thm. 1. We show that the task of finding a solution to a given problem instance can be
decomposed into five independent subtasks of solving instances of DR(ν), ν ∈ {0, . . . , 4}. The subtasks
are then polynomial time solvable by Lem. 1, Cor. 3 and 4 (and trivially for DR(0) and DR(4)). The
key step in our proof is to deduce from the data the row and column sums for the particular subtasks.
This deduction is possible for reduced solutions.

We start with some preprocessing if necessary. First, if the problem instance contains block con-
straints of the form v(i, j) = ν, ν ∈ {0, 4}, we need to have ξi,j = ξi+1,j = ξi,j+1 = ξi+1,j+1 = ν/4. In
this case, we fix the values of these variables, reduce the row and column sums accordingly, and consider
only the remaining blocks. For notational convenience, we assume from now on that our instance does
not contain such block constraints.

Second, by possibly rearranging the rows and columns, we assume that (3.5) holds.
Suppose, the problem instance is feasible, hence proper. (We return to the infeasible case later.)

The instance has a solution and, hence by Lem. 3, a reduced one. Thus, considering a horizontal strip
[m]× {j, j + 1} with j ∈ [n] ∩ (2N0 + 1), one of the Cases 1, 2 or 3 needs to occur. Which of the cases
occurs is, by Lem. 6, determined by the data, simply by testing whether we have

v
(3)
j ≤ rj+1 < v

(2)
j + v

(3)
j , or

v
(2)
j + v

(3)
j ≤ rj+1 < v

(1)
j + v

(2)
j + v

(3)
j , or

v
(1)
j + v

(2)
j + v

(3)
j ≤ rj+1 ≤ v

(1)
j + v

(2)
j + 2v

(3)
j .

(3.11)

In all three cases we know the unique values of the αj , αj+1, βj , βj+1, β
′
j , γj , and γj+1. Therefore

we know for each ν ∈ [3] the row sums∑
p:(p,j)∈G(I(ν))

ξp,j and
∑

p:(p,j)∈G(I(ν))

ξp,j+1,

with

I(ν) := {(i, j) ∈ C(m,n, 2) : v(i, j) = ν}
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for G(I(ν)) according to (3.1). In particular, we have∑
p:(p,j)∈G(I(1))

ξp,j = αj ,
∑

p:(p,j)∈G(I(1))

ξp,j+1 = αj+1,∑
p:(p,j)∈G(I(2))

ξp,j = 2βj + β′j ,
∑

p:(p,j)∈G(I(2))

ξp,j+1 = β′j ,∑
p:(p,j)∈G(I(3))

ξp,j = γj + 2γj+1,
∑

p:(p,j)∈G(I(3))

ξp,j+1 = 2γj + γj+1.

(3.12)

Similarly, we obtain the individual vertical constraints. We can therefore decompose the reconstruc-
tion problem into the three independent subproblems DR(ν), ν ∈ [3], which, by Lem. 1, Cor. 3, and
Lem. 4, are solvable in polynomial time.

It remains to consider the case that the given instance of DR is infeasible. In this case, the decom-
position into the subproblems needs to yield either an infeasible subproblem or the returned “solution”
needs to violate one of the constraints. As both are detected in polynomial time, we have concluded
the proof of this theorem. �

Note that the above proof is constructive. A corresponding polynomial-time algorithm for solv-
ing DR is summarized in Algorithm 1.

Algorithm 1 Compute a solution to DR

1: I(ν) := {(i, j) ∈ C(m,n, 2) : v(i, j) = ν}, ν ∈ [4]0.
2: Solve DR(0) with I := I(0) by filling the B2(i, j), (i, j) ∈ I, with zeros.
3: Solve DR(4) with I := I(4) by filling the B2(i, j), (i, j) ∈ I, with ones.
4: Reduce the row and column sums accordingly.
5: Determine the row and column sums for the DR(ν) instances, ν ∈ [3]

(row sums according to (3.11), (3.12); column sums analogously).
6: Solve DR(1) with I := I(1) according to (3.2).
7: Solve DR(2) with I := I(2) according to Lem. 4.
8: Solve DR(3) with I := I(3) according to Cor. 3.
9: if the returned ξ∗p,q, (p, q) ∈ [m]× [n], satisfy all constraints then

10: return ξ∗p,q, (p, q) ∈ [m]× [n].
11: else
12: return “Instance is infeasible.”
13: end if

We also remark that the solutions returned by the proposed algorithm are always reduced. This
is easily seen by (i) verifying that the values αj , αj+1, βj , βj+1, β

′
j , γj , and γj+1, j ∈ [n], in each of

the three cases in (3.11) (and correspondingly for the variables in the vertical strips) do not allow an
application of any of the local switches of class 〈t〉, t ∈ [6], because for each of the local switches there
is always a corresponding variable of value zero; and (ii) by noting that the proposed algorithm for
DR(2) returns, by definition, only solutions where no local switch of class 〈7〉 can be applied.

Now we turn to uniqueness.

Proof of Thm. 2. By Thm. 1, either infeasibility is detected or a reduced solution of an instance is
determined in polynomial time. We can thus assume that the problem instance has a solution.

Clearly, a solution is unique if, and only if (Condition 1:) there is only one reduced solution, and
(Condition 2:) every solution is a reduced solution.

The solution returned by the algorithm is reduced. Any two reduced solutions define the same
instances of the subproblems DR(ν), ν ∈ [3], because the problem instances are defined by means
of (3.11), i.e., the definition depends only on the particular values of the r1, . . . , rn, and c1, . . . , cm
(note that v

(1)
j , v

(2)
j , v

(3)
j can be directly determined from the input). Hence, there is only one reduced

solution if, and only if, the solution to each of the subproblems DR(ν), ν ∈ [3], is unique.
The conditions in Lem. 1(ii) and Cor. 3(ii), and hence uniqueness for the instances of DR(1) and

DR(3), can be checked in polynomial time. For DR(2) we have by the linear program considered in
Lem. 2, a basic feasible solution v∗ of the linear program, i.e., a vertex of the feasible region, at our
disposal. Now we minimize the linear objective function f(x) = xT v∗ over the same feasible region,
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which again can be done in polynomial time. The solution v∗ is unique if, and only if, f(x∗) = v∗T v∗.
(Note that multiple solutions contain the same number of ones as this is given by the sum of the
row and column sums, respectively.) Hence uniqueness for DR(2), and therefore Condition 1, can be
checked in polynomial time.

Suppose now that the reduced solution x∗ returned by the algorithm is unique among all reduced
solutions, i.e., Condition 1 is satisfied. We have shown in Lem. 3 that every solution can be reduced
by applying a sequence of local switches. Reversing the sequence and the local switches, we thus see
that Condition 2 holds if, and only if, there is no reversed local switch that can be applied to x∗. There
are O(m2n2) possible pairs of blocks that need to be checked to form a reversed local switch, hence
Condition 2 can also be checked in polynomial time. �

4. Data Uncertainty

In the proof of Thm. 3 we use a transformation from the following NP-complete problem (see [13])

1-In-3-SAT

Instance: Positive integers S, T, and a set C of S clauses over T variables τ1, . . . , τT , where
each clause consists of three literals involving three different variables.

Task: Decide whether there exists a satisfying truth assignment for C that sets exactly
one literal true in each clause.

For a given instance of 1-In-3-SAT we will construct a circuit board that contains an initializer,
several connectors, and clause chips. A truth assignment is transmitted through the circuit board, the
clause chips ensure that the clauses are satisfied.

The structure of our proof is in some ways similar to the proof from [18] that establishes the
NP-hardness of the task of reconstructing lattice sets from X-rays taken in three or more directions.
However, we need to deviate from [18] in several key aspects, because the block constraints do not give
a direct way of controlling points over large distances, and the elimination of “unwanted solutions”
inside individual blocks seems also problematic. A fundamental difference to [18] is, for instance,
that we encode the Boolean values for the variables by specific types of blocks, and the satisfiability
of the clauses is verified via row and column sums. At first glance it seems that part of the variable
assignment information is lost after verification, but it turns out that we can recover it from “redundant”
information in our encoding.

Key ideas of the proof of Thm. 3. Before we start with the detailed proof, we illustrate the general
ideas by means of an example. Suppose, the instance I of 1-In-3-SAT is given by I := (S, T, C) :=
(1, 4, {τ1 ∨ ¬τ2 ∨ τ3}). We will define an instance I ′ of nDR(ε) such that there is a solution for I ′ if,
and only if, there is one for I. To this end, we construct a circuit board contained in the box [34]× [34].
With each (p, q) ∈ [34] × [34] we associate a variable ξp,q. Again, the figures will show the associated
pixels (p, q) + [0, 1]2; see Fig. 3.

The circuit board consists of three major types of components: An initializer, connectors, and clause
chips. The initializer and the connectors are rather similar. The initializer contains for every variable
τt, t ∈ [T ], a so-called τt-chip, the connectors contain for every variable a ¬τt-chip. The clause chips
are more complex as they consist of two collectors, two verifiers, and a transmitter.

Figure 9(a) shows the circuit board for our instance.
The gray areas indicate blocks that are set to zero via block constraints. By setting to zero suitable

row and column sums we make sure that non-zero components ξ∗p,q are only possible in the white
bold-framed boxes. The non-zero row and column sums are shown on the top and on the right of the
figure.

The bold-framed 2× 2 boxes are Boolean chips, which are, according to their position on the circuit
board, further classified into τt and ¬τt-chips, t ∈ [T ]. In these chips we will encode the respective
Boolean values for the variables τt and ¬τt, t ∈ [T ]. All blocks, except for those set to zero, are allowed
to contain at most two ones. The blocks containing the ¬τt-chips are required to contain precisely two
ones.

In each clause chip there are two strips playing a special role. One is a horizontal strip containing
a so-called horizontal verifier, the other is a vertical strip containing a so-called vertical verifier (see
rows 25 and 26, and columns 9 and 10 in Fig. 9(a)). A key property of our construction is that the truth
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Figure 9. Transformation from 1-In-3-SAT for the instance I := (S, T, C) :=
(1, 4, {τ1∨¬τ2∨τ3}). (a) The circuit board. By setting to zero suitable blocks and row
and column sums we make sure that the non-zero components ξ∗p,q of a solution are only
possible in the bold-framed boxes within the white blocks in the clause chip, connec-
tors, and the initializer. (b) A solution x∗ (non-zero components ξ∗p,q are depicted as
black pixels), representing the solution (τ∗1 , τ

∗
2 , τ
∗
3 , τ
∗
4 ) = (True,True,False,False)

of I.

assignments will be in 1-to-1 correspondence with the solutions of the constructed nDR(ε) instance if
the row and column sum constraints related to the verifiers are left unspecified. The row and column
sum constraints related to the verifiers will then ensure that the truth assignments are in fact satisfying
truth assignments.

We can already begin to see how a truth assignment for our particular instance I will provide a
solution for I ′. Utilizing the type 1 and type 2 blocks shown in Fig. 10, we set each τt-chip, t ∈ [T ], of
the initializer to type 1 if τ∗t = True, otherwise we set it to type 2.

Type 2Type 1 Type 3 Type 4

Figure 10. The four possible types of blocks for τt- and ¬τt-chips, t ∈ [T ]. In τt-chips,
the types 1 and 2 represent the Boolean values True and False, respectively. (Note
that the block types 1-4 correspond to the previously introduced types B1, B3,1, B3,3,
and B3,4, respectively. The new labeling is more concise in the present context as no
grouping of different blocks into a single type is required anymore.)

Let us, as an example, consider t = 1 and the sequence of Boolean chips marked A, B, C, D, and
E in Fig. 9(a); see also Fig. 11. The chips A and B lie in the same vertical strip, and since A is of
type 1, B needs to be of type 2 in order to satisfy the column sums in the vertical strip. Chip C must
be of type 1 to satisfy the row sums in the horizontal strip. Then, the remaining points in the two
vertical strips intersecting chip C are uniquely determined by the column sums. In particular, the point
of the transmitter in a row intersecting D must be 0. Now, chip D needs to contain two ones since
the vertical strip containing chip D contains four ones, two of which need to be contained in chip E
via block constraints. Hence, we conclude from the row sums that D is of type 1. Considering now
the vertical strip intersecting D we see that chip E is of type 2, and therefore, together with chip A,
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satisfies the row sums in the horizontal strip. Thus, the τ1-chips are consistently of type 1, and the
¬τ1-chips are of type 2. Note that we have satisfied all row and column sums for the strips intersecting
one of the chips A,B,C,D, and E. Moreover, the block constraints in these chips are also satisfied.
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Figure 11. The chain of reasoning (vertical transmission) for deducing the types of
the Boolean chips marked A, B, C, D, and E from Fig. 9.

Turning to the Boolean chips for t = 2, we conclude with a similar reasoning that the τ2- and ¬τ2-
chips are consistently of type 1 and type 2, respectively. We have now satisfied the block constraints
for the τ2- and ¬τ2-chips, Additionally, we satisfied the row and column sums for the strips intersecting
one of these chips. Clearly, we have not violated any of the previously satisfied constraints as there is
no row or column that intersects both a Boolean chip for t = 1 and t = 2.

We say that we have deduced the types of the Boolean chips for t ∈ {1, 2} by vertical transmission,
because in our previous chain of arguments we started by considering the vertical strip containing the
respective Boolean chip of the initializer (see also Fig. 11).

Note that such a vertical transmission does not directly work for the assignment False of the
variables τ3, τ4 since the column sums do not allow us to deduce a unique solution for the respective
¬τt-chip. Hence for the Boolean chips for t ∈ {3, 4} we resort to horizontal transmission to deduce
the types of the respective τt- and ¬τt-chips. In this way we conclude that the τt- and ¬τt-chips are
consistently type 2 and type 1, respectively.

Figure 9(b) shows the solution that we obtain by the previous arguments. All constraints, in
particular also the row and column sums in the verifiers, are satisfied. We will later see in general that
there is a single one in each of the two verifiers of the s-clause chip, s ∈ S, if, and only if, exactly one
of the three literals appearing in the s-th clause is True.

Now, consider the reverse direction for the proof, i.e., suppose a solution x∗ to our instance I ′ of
Fig. 9(a) is given. Note that if we can ensure that the types of the Boolean chips in the initializer are
either 1 or 2 then by the previous arguments we have a satisfying truth assignment for I by setting
τ∗t := True, t ∈ [T ], if, and only if, the corresponding τt-chip of the initializer is of type 1.

The respective block, row and column sum constraints allow only the four possible types of blocks for
the Boolean chips of the initializer shown in Fig. 10. The types 3 and 4, however, are ruled out by the
following “global” argument: Suppose, for some t ∈ [T ], the τt-chip of the initializer is of type ` ∈ {3, 4}.
By horizontal transmission, we then conclude that the ¬τt-chips need to be of type 1 (by transmitting,
as before in a unique way, through each clause chip). By vertical transmission, however, we conclude
that the ¬τt-chips are of type 2, which is a contradiction.

We remark that effectively we utilize the noisy block constraints at three different places in our
construction. They are needed, because we can neither prescribe the exact number of ones in the
τt-chips of the horizontal or the vertical collectors, nor in the (s, t)-configurations that are introduced
later and which involve the transmitters (see also Figs. 13, 15, and 14).
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Having illustrated the key ideas behind the construction, we now turn to the formal proof.

Proof of Thm. 3. Let in the following I := (S, T, C) denote an instance of 1-In-3-SAT. We will define
an instance I ′ of nDR(ε) such that there is a solution for I ′ if, and only if, there is one for I. The
circuit board will be contained in the box

[m]× [n] := [S(6T + 2) + 2T ]2.

With each (p, q) ∈ [m]× [n] we associate a variable ξp,q. Figure 12 illustrates the general layout of the
construction.

Third clause chip

Second clause chip

First clause chip

Con-
nector

Con-
nector

Con-
nector

Con-
nector

Initial-
izer

Figure 12. The general layout of the circuit board (here for S = 3). Non-zero
components ξ∗p,q of a solution will be possible at most for (p, q) contained in the white
area.

We define the instance I ′ of nDR(ε) by specifying the row sums r1, . . . , rn, the column sums
c1, . . . , cm, and the block constraints. For notational convenience we define the block constraints via a
function f : C(m,n, 2) → {(=, 0), (=, 2), (≈, 1)}. In this notation, f(i, j) = (=, ν), ν ∈ {0, 2}, denotes
the block constraint ∑

(p,q)∈B(i,j)

ξp,q = ν,

while f(i, j) = (≈, 1) signifies the block constraint∑
(p,q)∈B(i,j)

ξp,q ∈ 1 + ([−ε, ε] ∩ Z).

The set R of reliable block constraints for I ′ is then

R := {(i, j) ∈ C(m,n, 2) : f(i, j) 6= (≈, 1)} .
The different components of the circuit board are placed at specific positions. For a more compact

definition of these positions we set

as := (6T + 2)(s− 1) + 1, s ∈ [S + 1].

Turning to the definition of the initializer, we remark that the initializer is contained inside the box
(aS+1, 1) + [2T − 1]20. We will specify the row and column sums when the corresponding connectors are
introduced. In terms of the block constraints we define for every (u, v) ∈ [T − 1]20 :

f(aS+1 + 2u, 1 + 2v) :=

{
(≈, 1) : u+ v = T − 1,
(=, 0) : otherwise.

The block B(aS+1+2(T−t), 2t−1), t ∈ [T ], will be called τt-chip (of the initializer). For an illustration
of an initializer, see the bottom right [8]× [8]-box in Fig. 9(a).
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We define S + 1 connectors. Each connector is contained inside a box (as, as) + [2T − 1]20 with
s ∈ [S + 1]. In terms of block constrains we define for every s ∈ [S + 1] and (u, v) ∈ [T − 1]20 :

f(as + 2u, as + 2v) :=

{
(=, 2) : u+ v = T − 1,
(=, 0) : otherwise.

For the row and column sums we define for every s ∈ [S + 1] and l ∈ [2T − 1]0 :

ras+l := cas+l :=

{
3 : l ∈ 2N0,
1 : otherwise.

The block B(as + 2(T − t), as + 2(t − 1)), s ∈ [S + 1], t ∈ [T ], will be called ¬τt-chip (of the s-th
connector). For an illustration of a connector, see the bottom left [8]× [8]-box in Fig. 9(a).

Next we define the S clause chips. Each clause chip is contained in a box (as, as + 2T ) + [6T + 1]20
with s ∈ [S]. The box (as, as + 2T ) + [2T − 1]0 × [4T − 1]0 is a (vertical) collector, the box (as +
2T, as + 2T ) + [1]0 × [4T − 1]0 is a (vertical) verifier, the box (as + 2T + 2, as + 2T ) + [4T − 1]20 is a
transmitter, the box (as + 2T + 2, as + 6T ) + [4T − 1]0 × [1]0 is a (horizontal) verifier, and the box
(as + 2T + 2, as + 6T + 2) + [4T − 1]0 × [2T − 1]0 is a (horizontal) collector. For an illustration of a
clause chip, see the top left [26]× [26]-box in Fig. 9(a) depicted in dark gray.

For s ∈ [S] we define the row sums of the horizontal and the column sums of the vertical verifiers
(we will call these row and column sums verifier sums) by

ras+6T := cas+2T+1 := 1,

ras+6T+1 := cas+2T := 0.

The remaining row and columns sums for the transmitters (meeting also certain verifiers and collectors)
are for s ∈ [S] and l ∈ [T − 1]0 defined by

ras+2T+4l := cas+2T+4l+2 := 0,

ras+2T+4l+1 := cas+2T+4l+3 := 2,

ras+2T+4l+2 := cas+2T+4l+4 := 1,

ras+2T+4l+3 := cas+2T+4l+5 := 0.

Note that sums for the rows and columns meeting the collectors are already defined as there is a
transmitter or connector for each row and column meeting a collector (see also Fig. 12). We have
thus completed our definition of the row and column sums of our instance and continue now with the
remaining block constraints.

For the vertical collector, we define for every s ∈ [S] and t ∈ [T ], vt ∈ (2Z + 1) ∩ {3 − 4t, 3 − 4t +
1, . . . , 4(T − t) + 1} :

f(as + 2(T − t), as + 2T + 4t− 3 + vt) :=

{
(≈, 1) : vt ∈ {−1, 1},
(=, 0) : otherwise.

The box (as + 2(T − t), as + 2T + 4t− 3) + [1]0× [1]0, t ∈ [T ], will be called τt-chip (of the s-th vertical
collector).

Similarly, for the horizontal collector we define for every s ∈ [S], t ∈ [T ], ut ∈ (2Z+ 1)∩ {3− 4t, 3−
4t+ 1, . . . , 4(T − t) + 1} :

f(as + 2T + 4t− 1 + ut, as + 6T + 2t) :=

{
(≈, 1) : ut ∈ {−1, 1},
(=, 0) : otherwise.

The box (as+2T +4t−1, as+6T +2t)+[1]0× [1]0, t ∈ [T ], will be called τt-chip (of the s-th horizontal
collector).

Note that the τt-chips, t ∈ [T ], of the collectors are not contained in blocks. In fact, each such
τt-chip intersects two blocks (which, in turn, are allowed to contain at most two ones). For any t ∈ [T ]
we will also refer to the τt- and ¬τt-chips on the circuit board as Boolean chips.

For the empty space above the vertical collector, i.e., for s ∈ [S] and (u, v) ∈ [T − 1]20, we define

f(as + 2u, as + 6T + 2v) := (=, 0).

Now we turn to the block constraints for the clause-dependent part of chip, i.e., the verifiers and
the transmitters.
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With Us and Ns, s ∈ [S], we denote the indices of the variables that appear unnegated and, respec-
tively, negated in the s-th clause. For instance, for τ1 ∨ ¬τ2 ∨ τ3 (regarded as the first clause) we have
U1 = {1, 3} and N1 = {2}.

Depending on whether a given variable τt appears negated, unnegated or not at all in the s-th
clause, we will distinguish three different types of verifier and transmission parts forming a so-called
(s, t)-configuration. Formally, for s ∈ [S] and t ∈ [T ] we refer to the sets of points

(as + 2T, as + 2T ) +

 {(1, 4t− 2), (4t, 4t− 3), (4t− 1, 4T )} : t ∈ Us,
{(1, 4t− 3), (4t− 1, 4t− 2), (4t, 4T )} : t ∈ Ns,
{(4t− 1, 4t− 2), (4t, 4t− 3)} : otherwise,

as (s, t)-configuration. Figure 13 gives an illustration.
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Figure 13. The 3 possible (s, t)-configurations (depicted as bold-framed 1×1 boxes)
for (a) t ∈ Us, (b) t ∈ Ns, and (c) t ∈ [T ] \ (Us ∪Ns).

For the three different types of (s, t)-configurations, we need to set different blocks to zero. The
formal definition is as follows.

For the vertical verifiers we define for every s ∈ [S], t ∈ [T ], and v ∈ [2] :

f(as + 2T, as + 2T + 4t− 2v) :=

{
(≈, 1) : ((t ∈ Us) ∧ (v = 1)) ∨ ((t ∈ Ns) ∧ (v = 2)),
(=, 0) : otherwise.

Similarly, for the horizontal verifiers we define for every s ∈ [S], t ∈ [T ], and u ∈ [2] :

f(as + 2T + 2 + 4t− 2u, as + 6T ) :=

{
(≈, 1) : ((t ∈ Us) ∧ (u = 2)) ∨ ((t ∈ Ns) ∧ (u = 1)),
(=, 0) : otherwise.

For the transmitters we define for every s ∈ [S] and u ∈ [2T − 1] :

f(as + 2T + 2 + 2u, as + 2T + 2(u− 1)) :=

{
(≈, 1) : (u ∈ 2N0 + 1) ∧ ((u+ 1)/2 ∈ Us),
(=, 0) : otherwise,

f(as + 2T + 2 + 2(u− 1), as + 2T + 2u) :=

{
(≈, 1) : (u ∈ 2N0 + 1) ∧ ((u+ 1)/2 ∈ Ns),
(=, 0) : otherwise.

The remaining block constraints in the transmitter are set to zero, i.e., for every s ∈ [S], (u, v) ∈
[2T − 1]20 with u− v 6∈ {−1, 1} we set

f(as + 2T + 2 + 2u, as + 2T + 2v) := (=, 0).

Outside the initializer, connectors, and clause chips we set everything to zero, i.e., for every (i, j) ∈
([m]× [n]) ∩ C(m,n, 2) with

(i, j) 6∈ ((aS+1, 1) + [2(T − 1)]20) ∪ ((aS+1, aS+1) + [2(T − 1)]20)

∪
⋃
s∈[S]

(
((as, as) + [2(T − 1)]20) ∪ ((as, as + 2T ) + [6T + 1]20))

)
(4.1)

we set f(i, j) := (=, 0).
This concludes the formal definition of the instance I ′. We shall now show that I ′ admits a solution

if, and only if, the 1-In-3-SAT instance I admits a solution.
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Let G ⊆ [m] × [n] denote the set of points of the Boolean chips and (s, t)-configurations, (s, t) ∈
[S]× [T ].

Claim 1: In any solution x∗ of I ′ we have ξ∗p,q = 0 for every (p, q) ∈ ([m]× [n]) \ G.
To see this, we first remark that the claim holds for all points outside each clause chip since the

only blocks there that are not set to zero are the Boolean chips of the initializer and connectors. For
the points inside a clause chip, we need to distinguish three cases since there are three differently
structured (s, t)-configurations, in which different blocks are set to zero. They are shown in Fig. 13.
In all three cases the points outside the corresponding Boolean chips in the two collectors and the
(s, t)-configuration are either set to zero by block constraints or by zeros of suitable row or column
sums. This shows the claim.

Claim 2: In any solution x∗ of I ′ every τt- and ¬τt-chip, t ∈ [T ], is of one of the types from {1, 2, 3, 4}
shown in Fig. 10.

For this, consider a fixed index t ∈ [T ]. Each τt-chip is contained in a horizontal or vertical strip
that, except for a ¬τt-chip, contains no other points of G. Since by the block constraints each ¬τt-chip
contains two ones, and since the respective row or column sums in the strip sum up to four there need
to be exactly two ones also in each τt-chip. The row and column sums enforce that no two ones are
in the rightmost column and upper row of the box of each τt-chip. Hence, there are at most the four
possibilities shown in Fig. 10.

Claim 3: In any solution x∗ of I ′ all the τt-chips (for a given t ∈ [T ]) are either of type 1 or type 2.
To show this, consider again a fixed index t ∈ [T ]. Let V0, . . . , V4S+2 ⊆ G denote the sequence with

(i) V0 = V4S+2 is the τt-chip of the initializer, (ii) V1 is the ¬τt-chip of the (S + 1)-th connector,
(iii) V4s+1 is the ¬τt-chip of the (S − s+ 1)-th connector, (iv) V4s−2 is the τt-chip of the (S − s+ 1)-th
horizontal collector, (v) V4s−1 is the set of points in the transmitter of the (s, t)-configuration of the
(S − s + 1)-th clause, and (vi) V4s is the τt-chip of the (S − s + 1)-th vertical collector, s ∈ [S]; see
Fig. 11 for the case S = 1 and Fig. 12 again for the general layout.

By horizontal transmission (see Fig. 14) and Claim 2, we have the following implication: If a τt-chip
of V2l, l ∈ [2S]0, is of type 2, 3 or 4, then the τt-chip of V2l+2 is of type 2, and the points of V2l+1 are
also uniquely determined.

By vertical transmission (see Fig. 15) and Claim 2, we have the following implication: If a τt-chip
of V2l, l ∈ [2S + 1], is of type 1, 3 or 4, then the τt-chip of V2l−2 is of type 1, and the points of V2l−1
are also uniquely determined.
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Figure 14. Horizontal transmission of a type 2 block. (a,b,c) Transmission through
the three differently structured (s, t)-configurations. (d,e) Transmission through a
connector. Type 3 and 4 blocks are transmitted in the same way (only the initial
block, indicated by the arrow tail, is replace by the respective type 3 or 4 block).

Hence, if we start at an arbitrary τt-chip and perform vertical and horizontal transmissions that
meet at some Boolean chip we obtain a contradiction unless the τt-chip was of type 1 or 2.

The types 1 and 2 can be associated with Boolean values. In τt-chips, and in particular those of the
initializer, we associate with type 1 the value True and with type 2 the value False.

Claim 4: There is a 1-to-1 correspondence between the (not-necessarily satisfying) truth-assignments
for I and the solutions x∗ to the I ′′-variant of I ′ that allows violation of the verifier sums, i.e., of the
column sum constraints ci = 1 for the vertical verifiers or the row sum constraints ri = 1 for the
horizontal verifiers.
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Figure 15. Vertical transmission of a type 1 block. (a,b,c) Transmission through
the three differently structured (s, t)-configurations. (d,e) Transmission through a
connector. Type 3 and 4 blocks are transmitted in the same way (only the initial
block, indicated by the arrow tail, is replace by the respective type 3 or 4 block).

By construction, there is neither a horizontal nor a vertical strip that intersects the Boolean chips
for two variables τi1 , τi2 , with i1 6= i2. The arguments from Claim 3 are thus independently valid for
each t ∈ [T ]. We can hence consider an arbitrary (not-necessarily satisfying) truth-assignment for I,
fill in the corresponding types in the initializer and extend them to yield a solution to the I ′′-variant of
I ′ with unspecified verifier sums. Vice versa, the chip types in the initializer of a solution to I ′′ yield
a truth-assignment for I. We have already seen in the proof of Claim 3 that the type of each τt-chip,
t ∈ [T ], in the initializer determines all ones in the corresponding ¬τt-chips and (s, t)-configurations,
s ∈ [S]. Hence, the correspondence is indeed 1-to-1.

Claim 5: The satisfying truth-assignments of I are in 1-to-1 correspondence with the solutions
of I ′.

This can now be seen by observing that the τt-chip, t ∈ [T ], of the s-th horizontal and vertical
collector, s ∈ [S], contributes a one to the horizontal and also to the vertical verifier in the s-th clause
chip if, and only if, the τt-chip is True (is of type 1) with t ∈ Us or the τt-chip is False (is of type 2)
with t ∈ Ns; see Figs. 13, 15(a,b,c), and 14(a,b,c). The verifier sums thus ensure that exactly one
literal in the s-th clause is True. This, together with Claim 4, proves the claim.

By Claim 5, I ′ admits a solution if, and only if, I admits a solution.
Finally, we note that the transformation runs in polynomial time. �

In section 2 we remarked that nDR(ε) can be viewed as version of DR where small “occasional”
uncertainties in the gray levels are allowed. Reviewing the proof of Thm. 3, the term “occasional” can
be quantified as meaning “of the order of the square root of the number of blocks.” More precisely, of
(S(3T + 1) + T )2 blocks on the circuit board, there are S(6T + 3) + T with uncertainty.

Let us further remark that the arguments in the above proof do not rely on the particular value
of ε > 0 in the noisy block constraints. These constraints can be replaced by any other types of
block constraints, certainly as long as they allow for 0, 1, and 2 ones to be contained in each of the
corresponding blocks. By this observation it is possible to adapt our proof to several other contexts
where the reconstruction task involves other types or combinations of block constraints; see [6].

Finally, note that the transformation in the proof of Thm. 3 is parsimonious (see Claim 5 in the
above proof). Hence the problem of deciding whether a given solution of an instance of nDR(ε) with
ε > 0 has a non-unique solution is NP-complete (which proves Cor. 1); for an NP-hardness proof of
Unique-1-in-3-SAT see [18, Lem. 4.2].

Proof of Cor. 2. We use a transformation from nDR(ε). Let

I := (m,n, r1, . . . , rn, c1, . . . , cm, R, v(1, 1), . . . , v(m− 1, n− 1))

denote an instance of nDR(ε). Note that n and m are even.
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We set m′ := mk/2 and n′ := nk/2. For (i, j) ∈ ([m]× [n]) ∩ C(m,n, 2) and l ∈ [k] we define

r′k
2 (j−1)+l

:=

{
rj+l : l ∈ [2],
0 : otherwise,

c′k
2 (i−1)+l

:=

{
ci+l : l ∈ [2],
0 : otherwise,

v′(k(i− 1)/2 + 1, k(j − 1)/2 + 1)) := v(i, j),

and

R′ := {(k(i− 1)/2 + 1, k(j − 1)/2 + 1) : (i, j) ∈ R}.
This gives the instance

I ′ := (m′, n′, r′1, . . . , r
′
n′ , c′1, . . . , c

′
m′ , R′, v′(1, 1), . . . , v′(m′ − k + 1, n′ − k + 1))

of nSR(k, ε). Clearly, the instance I of nDR(ε) admits a solution if, and only if, the instance I ′ of
nSR(k, ε) admits a solution (by filling/extracting the 2 × 2-blocks of I into/from the k × k-blocks of
I ′). This is a polynomial-time transformation, proving the corollary. �

5. Final Remarks

Recall that in the proof of Thm. 1 we have made extensive use of the concept of local switches.
Each such switch involves four points. Figure 16 shows, on the other hand, two solutions of a DR
instance that differ by 20 1×1-pixels. It is easily checked that these are the only solutions for the given
instance (Note that we used such a structure in the proof of Thm. 3). Hence, there is no sequence
of small switches transforming one solution into the other. The existence of such large irreducible
switches is well-known for the NP-hard reconstruction problem from more than two directions [31]
(and would follow independently from P 6= NP). The problem DR, however, admits large switches
albeit is polynomial-time solvable.

(a) (b)

Figure 16. An example of a large switching component (in the sense of [31]) for an
instance of DR. The solutions shown in (a) and (b) are the only two solutions for that
instance. Both solutions are reduced.

In addition to the block constraints our computational tasks rely only on row and column sums,
i.e., projection data from two viewing angles. For more than two viewing directions we obtain the
NP-hardness of nSR(k, ε) for any k ≥ 2 and ε > 0 directly from the construction in [18]. The NP-
hardness of the corresponding variants of nSR(k, 0) for k ≥ 2, can also be derived from [18]. First the
construction is thinned out so as to make sure that each block contains at most one element of the grid
of candidate points. Then, a second copy with inverted colors is interwoven by applying a translation
by (1, 1)T or (1,−1)T . This ensures that each non-empty block contains exactly one one.

The complexity status of nSR(k, 0) remains open for k 6∈ {1, 2}. We conjecture that the problem is
NP-hard for larger k.

Also, it would be interesting to analyze the effect of the results of the present paper on the “degree
of ill-posedness” of the underlying problem (see [4]).
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[15] C. Dürr, F. Guiñez, and M. Matamala. Reconstructing 3-colored grids from horizontal and vertical projections is

NP-hard: A solution to the 2-atom problem in discrete tomography. SIAM J. Discrete Math, 26(1):330–352, 2012.
[16] D. Gale. A theorem on flows in networks. Pacific J. Math., 7:1073–1082, 1957.

[17] R. J. Gardner and P. Gritzmann. Discrete tomography: Determination of finite sets by x-rays. Trans. Amer. Math.

Soc., 349(6):2271–2295, 1997.
[18] R. J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of reconstructing lattice sets

from their X-rays. Discrete Math., 202(1-3):45–71, 1999.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Co., San Francisco, USA, 1979.
[20] G. Van Gompel, K. J. Batenburg, E. Van de Casteele, W. van Aarle, and J. Sijbers. A discrete tomography approach

for superresolution micro-CT images: application to bone. In 2010 IEEE Intern. Symp. Biomedical Imaging: From

Nano to Macro, pages 816–819, 2010.
[21] F. Grandoni, R. Ravi, M. Singh, and R. Zenklusen. New approaches to multi-objective optimization. Math. Program.,

146(1):525–554, 2014.

[22] P. Gritzmann. On the reconstruction of finite lattice sets from their x-rays. In Discrete Geometry for Computer
Imagery (Eds.: E. Ahronovitz and C. Fiorio), DCGI’97, Lecture Notes on Computer Science 1347, Springer, pages
19–32, 1997.

[23] P. Gritzmann, B. Langfeld, and M. Wiegelmann. Uniqueness in discrete tomography: Three remarks and a corollary.
SIAM J. Discrete Math., 25(4):1589–1599, 2011.

[24] P. C. Hansen. Discrete Inverse Problems: Insights and Algorithms. SIAM, Philadelphia, 2010.
[25] G. T. Herman and A. Kuba (eds.). Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser,
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