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Abstract  

Background: A substantial proportion of cancer driver genes (CDGs) are also cancer 

predisposition genes. However, the associations between genetic variants in lung 

CDGs and the susceptibility to lung cancer have rarely been investigated.  

Methods: We selected expression-related single nucleotide polymorphisms (eSNPs) 

and nonsynonymous variants of lung CDGs, and tested their associations with lung 

cancer risk in two large-scale genome-wide association studies (20,871 cases and 

15,971 controls of European descent). Conditional and joint association analysis was 

performed to identify independent risk variants. The associations of independent risk 

variants with somatic alterations in lung CDGs or recurrently altered pathways were 

investigated using data from The Cancer Genome Atlas (TCGA) project. 

Results: We identified seven independent SNPs in five lung CDGs that were 

consistently associated with lung cancer risk in discovery (P < 0.001) and validation 

(P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung 

cancer susceptibility locus (OR = 0.86, P = 1.65×10
-6

). Subgroup analysis by 

histological types further identified nine lung CDGs. Analysis of somatic alterations 

found that, in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was 

associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In 

lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation 

mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 

1.76×10
-3

). 

Conclusions: Genetic variants can regulate functions of lung CDGs and influence 

lung cancer susceptibility. 

Impact: Our findings might help unravel biological mechanisms underlying lung 

cancer susceptibility. 
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Introduction 

Lung cancer has been one of the most commonly diagnosed malignancies and the 

leading cause of cancer death worldwide (1). The development of lung cancer is a 

multi-step process that involves both genetic and environmental factors (2-4). 

Genome wide association studies (GWASs) have been proven to be a powerful 

approach to dissect genetic architectures of complex diseases. To date, GWASs have 

identified 51 lung cancer susceptibility loci in various populations (5,6). However, the 

information provided by GWAS remains inadequate. The heritability of lung cancer 

was estimated to be 20.6% in European populations (7), while only a small proportion 

of lung cancer heritability could be explained by risk loci that were identified in 

previous lung cancer GWASs (8). Therefore, more risk loci for lung cancer are needed 

to be identified.  

Several waves of technology have facilitated the identification of lung cancer 

driver genes (lung CDGs), which are improving our understanding of oncogenic 

process for lung cancer. Based on The Cancer Genome Atlas (TCGA) research on 

lung cancer, the most commonly mutated oncogenes in lung adenocarcinoma (lung 

ADC) included KRAS, EGFR, BRAF, PIK3CA, and MET; mutations in tumor 

suppressors such as TP53, STK11, KEAP1, NF1, RB1, and CDKN2A were also 

frequently detected in lung ADC (9-11). Although TP53, RB1, ARID1A, CDKN2A, 

PIK3CA, and NF1 were significantly mutated in both lung ADC and lung squamous 

cell carcinoma (lung SqCC), significantly mutated genes like NOTCH1 and HRAS 

were only identified in lung SqCC (10-12). In addition to somatic mutations, somatic 

copy number alterations (SCNAs) and rearrangements also play important roles in 

lung cancer development. Amplification of TERT and EGFR, as well as fusions 

involving ALK and ROS1 were commonly identified in lung ADC. Deletions of 
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CDKN2A have been identified in both lung ADC and SqCC (9,10,12).  

Emerging evidence has shown that a substantial proportion of cancer driver genes 

are also cancer predisposition genes (13). The TCGA PanCanAtlas Germline Working 

Group identified 44 genes that showed co-clustering or co-localization of pathogenic 

germline variants with recurrent somatic mutations, implying shared oncogenic 

processes in germline and somatic genomes (14). In addition, susceptibility variants 

could regulate the functions of nearby cancer driver genes. For example, rs2736100, a 

risk variant of lung cancer, is located in the first intron of driver gene TERT, and was 

associated with increased expression of TERT in lung tumors (15). However, the 

associations between common genetic variants in lung CDGs and lung cancer risk 

have rarely been explored. Therefore, we integrated lung CDGs, genetics of gene 

expression, and functional annotation databases with large-scale lung cancer GWAS 

datasets to systematically investigate the associations between lung CDG-related 

genetic variants and lung cancer risk. 

Materials and methods 

GWAS datasets 

The present study utilized data from two existing GWASs of European descent: 

the OncoArray dataset (16) and Division of Cancer Epidemiology and Genetics 

(DCEG) Lung Cancer Study (17). The OncoArray dataset was derived from the 

Transdisciplinary Research of Cancer in Lung of the International Lung Cancer 

Consortium (TRICL-ILCCO) and the Lung Cancer Cohort Consortium (LC3). 

Quality control and imputation processes were described previously (16), resulting in 

18,444 cases and 14,027 controls remained. The DCEG Lung Cancer GWAS data 

were obtained from dbGap phs000336.v1.p1 (17). Detailed quality control and 

imputation processes have been described previously (18). We further excluded 
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individuals in the DCEG Lung Cancer Study that overlapped with or were related to 

individuals from the OncoArray dataset based on identity by descent (IBD) analysis 

(IBD > 0.45). As a result, a total of 2,427 cases and 1,944 controls from the DCEG 

Lung Cancer Study remained. All participants signed informed consents and study 

protocols were approved by the ethical review boards of each institution. 

Selection of lung CDG-related genetic variants  

Genes were annotated as lung CDGs if they fulfilled any of the following criteria: 

(1) lung cancer related genes in the COSMIC Cancer Gene Census (v78) (19); (2) 

mutational-drivers, somatic copy number alteration (SCNA)-drivers, and 

fusion-drivers detected by the IntOGen pipeline in lung tumors (20); (3) significantly 

mutated genes (SMGs) and candidate cancer driver genes with significant SCNAs that 

were identified in lung ADC and/or lung SqCC by the TCGA projects (10). 

To investigate functional variants in lung CDGs, we included single nucleotide 

polymorphisms (SNPs) if they satisfied either of the following criteria: (1) SNPs that 

were associated with expressions of lung CDGs (expression-related SNPs, or eSNPs) 

in normal lung tissues based on the Genotype-Tissue Expression Project (GTEx, v6p 

release) (P < 0.05) (21); (2) nonsynonymous variants of lung CDGs identified using 

Variant Effect Predictor (22). The selected eSNPs and nonsynonymous variants were 

extracted from the two GWAS datasets. SNP with imputation INFO < 0.8, minor 

allele frequency (MAF) in controls <0.005, Hardy-Weinberg equilibrium test P in 

controls < 1×10
-7

, or HWE test P in cases < 1×10
-12

 was excluded from the analysis. 

Statistical analyses 

Association analysis 

 We performed logistic regression to generate odds ratios and confidence intervals 

(CIs) for each SNP. The OncoArray dataset was used in the discovery stage with age, 
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gender, and the first three principal components (PCs) adjusted (16). Variations with 

association P < 0.001 were further tested in the DCEG Lung Cancer Study (the 

validation stage), and we adjusted age, gender, and the first PC in logistic regression 

model (23). SNPTEST v2.5 was used for the association analysis, taking dosage 

format of imputed genotypes. For variations with P < 0.05 in the validation stage, 

meta-analysis that combined effect estimates from the two datasets was performed 

using GWAMA v2.0.2 (24). The index of heterogeneity (I
2
) and P value based on 

Cochran’s Q test were calculated to assess the heterogeneity between studies. 

Fixed-effect model was used for absent of heterogeneity between studies (P value for 

heterogeneity > 0.05); otherwise random-effect model was adopted. Variations with 

the same direction of effect in both GWAS datasets and P < 1×10
-5

 in the 

meta-analysis were considered as suggestive risk SNPs (Supplementary Fig. S1).  

 In addition to the overall lung cancer, we also investigated the associations of 

lung CDG-related SNPs with risk of lung ADC and lung SqCC. As the DCEG Lung 

Cancer Study lacked information of histological types, we performed association 

analysis using logistic regression model in the OncoArray dataset. To control the false 

discovery rate (FDR), we used Benjamini-Hochberg step-down method to calculate 

FDR for each variation. Variations with FDR < 0.01 were considered as suggestive 

risk SNPs.  

 We mapped suggestive risk SNPs to lung CDGs based on the GTEx v6p release, 

and performed functional prediction for significant nonsynonymous variants using 

SIFT (25) and PolyPhen2 (26), which were implemented in ANNOVAR (27). For 

lung CDGs with multiple risk SNPs, conditional and joint association analysis were 

performed to identify independent signals using genome-wide complex trait analysis 

(GCTA) (28). During the model selection process, the testing SNP was not selected if 
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its regression R
2
 on the selected SNPs was greater than 0.1. The threshold P-value of 

0.0001 was adopted to identify significant independent hits. SNPs that were 

significant after the multiple testing correction and that were not in linkage 

disequilibrium (LD, r
2
 < 0.1) with and were located at least 500 kilobases apart from 

known risk variants were considered as novel susceptibility SNPs. 

Co-expression and pathway enrichment analysis 

Expression data on 56,238 genes for 320 normal lung tissues were downloaded 

from the GTEx website (21). Genome-wide expression correlation analysis was 

performed using a linear regression model to identify genes co-expressed with 

significant lung CDGs. Significant co-expressed genes that satisfied the Bonferroni 

correction (0.05/(56318 × 17 significant genes)) were used for pathway enrichment 

analysis. We downloaded pathways in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database from MSigDB (29-31), and performed pathway 

enrichment analysis using “PHYPER” function as implemented in R software 

(version 3.4.1), which computes a p-value for each pathway based on hypergeometric 

distribution.  

Associations between independent SNPs and somatic alterations 

TCGA datasets of lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) were used to model the association between independent SNPs 

and somatic alterations in lung CDGs (9,12). Germline genotype data generated using 

Affymetrix Genome-Wide Human SNP Array 6.0 were applied for and approved in 

Feb, 2015. Standard quality control and genotype imputation process have been 

described previously (32). 

We downloaded Mutation Annotation Format derived from whole-exome 

sequencing, as well as somatic copy numbers calculated using GISTIC2 from the 
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Broad Institute Genome Data Analysis Center (GDAC) Firehose portal (stamp 

analyses_2016_01_28) (33). For each patient, a lung CDG was considered mutated if 

one or more somatic mutations mapped to this gene. We also assessed truncation 

mutations (frame shift insertion/deletion, nonsense, nonstop, and splice site mutations) 

(34) in pathways that are recurrently altered in lung cancer, including cell cycle, 

spliceosome, Notch signaling pathway, transcriptional misregulation in cancer, Ras 

signaling pathway, and PI3K-Akt signaling pathway (11). A pathway was considered 

as mutated if one or more truncation mutations were observed in this pathway. We 

used logistic regression models to evaluate the association between independent SNPs 

and mutational status of lung CDGs or pathways. In the analysis of SCNAs, somatic 

copy number of lung CDG was used as outcome, and we used linear regression to 

model the association between independent SNPs and SCNAs. Age, gender, smoking 

status, clinical stage, and the first ten PCs were adjusted as covariates. The association 

analysis between independent SNPs and somatic alterations were performed in lung 

ADC and lung SqCC, separately. Benjamini-Hochberg step-down method was used to 

calculate FDR for each SNP-lung CDG (or SNP-pathway) pair in order to control the 

false discovery rate. Association analysis was conducted using the R software 

(version 3.4.1). 

Results 

The OncoArray dataset included 18,444 cases and 14,027 controls. The mean (± 

standard error) age of the subjects was 63.79 ± 10.44 for cases and 61.77 ± 10.29 for 

controls. For the DCEG Lung Cancer Study, a total of 2,427 cases and 1,944 controls 

were included. Among participants across both studies with known histological types, 

there were 6,819 lung ADCs and 4,490 lung SqCCs. Detailed characteristics and 

clinical features of participants in each data set were shown in Supplementary Table 
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S1.  

Genetic variants associated with lung cancer risk 

A total of 348 protein-coding lung CDGs were included from published data 

(Supplementary Table S2). We identified 139,666 eSNPs and 2,041 nonsynonymous 

variants of lung CDGs. Among SNPs that passed the quality control process, a total of 

234 SNPs were identified in the OncoArray dataset (P < 0.001) and validated in the 

DCEG Lung Cancer Study (P < 0.05), which were mapped to five lung CDGs 

(Supplementary Table S3). After conditional analysis, seven independent signals 

were identified. Among these loci, rs78062588, which was mapped to TPM3 in 

chromosome 1q21.3, was a new lung cancer susceptibility locus (OR = 0.87, 95%CI: 

0.81-0.92, P = 1.55×10
-5

 in the OncoArray dataset; OR = 0.82, 95%CI: 0.68-0.98, P = 

3.11×10
-2

 in the DCEG Lung Cancer Study; and OR = 0.86, 95%CI: 0.81-0.91, P = 

1.65×10
-6

 in the meta-analysis) (Table 1, Table 2, Supplementary Table S3). In 

addition, rs71658797 in FUBP1 (1p31.1), rs1655931 and rs2517586 in HLA-A 

(6p22.1), rs2887532 in KDM5A (12p13.33), rs7359276 and rs7161774 in IREB2 

(15q25.1) had been reported by previous GWASs as lung cancer susceptibility loci 

(Table 1, Table 2, Supplementary Table S3) (5,6).  

 Stratified analyses in lung ADC and lung SqCC found another nine susceptibility 

genes, including seven genes that were identified in lung ADC and two genes that 

were identified only in lung SqCC (Fig. 1A and 1B, Supplementary Table S4). 

Independent variants derived from conditional analysis are shown in Supplementary 

Table S5. Of these loci, rs2700389 in KALRN (3q21.1), rs79518818 in MGA 

(15q15.1), and rs62054832 in EFTUD2 (17q21.31) were first identified as risk loci 

for lung ADC, while rs148797791 in IRF6 (1q32.2) was found as a novel risk locus 

for lung SqCC. SNPs rs7823498 in NRG1 (8p12), rs10757256 and rs1011970 in 
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CDKN2A (9p21.3), rs79040073 in COPS2 (15q21.1), rs2281925 in ARFGAP1 

(20q13.33), and rs17879961 in CHEK2 (22q12.1) had been reported by previous 

GWASs as lung cancer susceptibility loci (5,6).  

Functional evaluation for significant SNPs 

Among 234 significant SNPs in overall lung cancer, three were nonsynonymous 

variants. Two additional nonsynonymous variants (rs1136688 in HLA-A and 

rs17879961 in CHEK2) were identified in lung SqCC (Supplementary Table S6). 

We predicted functional consequence of nonsynonymous variants using SIFT and 

Polyphen-2 (25,26). Notably, risk variant rs707910 in HLA-A (NM_001242758, 

c.G203A) was predicted as deleterious by SIFT and possibly damaging by Polyphen-2. 

SNP rs17879961 in CHEK2 (NM_007194, c.T470C) was predicted as tolerated by 

SIFT and possibly damaging by Polyphen-2.  

To explore biological processes underlying significant lung CDGs, we performed 

genome-wide co-expression and KEGG pathway enrichment analysis. We identified 

essential pathways in lung carcinogenesis such as apoptosis, MAPK signaling 

pathway, spliceosome, cell cycle, and nucleotide excision repair (Supplementary 

Table S7) (11). 

Associations between independent risk SNPs and somatic alterations 

We investigated the associations between independent SNPs and somatic 

alterations in lung CDGs. The protective rs78062588[C] allele (TPM3 in 1q21.3) was 

associated with increased expression of TPM3 in normal lung tissues (OR = 1.14, P = 

0.04) and elevated somatic copy number of TPM3 in TCGA lung adenocarcinomas 

(OR = 1.16, P = 0.02) (Supplementary Fig. S2). However, the analysis of somatic 

mutations in lung CDGs did not identify any association with P < 0.05. As the 

mutational frequencies of lung CDGs are relatively low, we further analyzed the 
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associations between independent risk SNPs and truncation mutations at the pathway 

level. Among patients with lung ADC, we found that rs1611182 (HLA-A in 6p22.1), a 

risk SNP for lung ADCs, was associated with decreased frequency of truncation 

mutations in the transcriptional misregulation in cancer pathway (OR = 0.66, 95%CI: 

0.50-0.85, P = 1.76×10
-3

, FDR < 0.25) (Table 3, Supplementary Table S8, 

Supplementary Fig. S3).  

Discussion 

The present study comprehensively incorporated lung cancer GWASs, lung 

CDGs, genetics of gene expression, somatic alterations in lung tumors, and functional 

annotation databases to investigate the associations of cancer driver gene-related 

genetic variants with lung cancer risk. We identified five lung CDGs in overall lung 

cancer. Subgroup analysis by histological types further identified seven and two genes 

in lung ADC and lung SqCC, respectively. Genes co-expressed with the identified 

lung CDGs were involved in essential pathways including cell cycle, MAPK signaling, 

and nucleotide excision repair pathways. Incorporation of somatic alterations 

identified lung cancer risk variants that were associated with somatic alterations in 

lung CDGs or recurrently mutated pathways.  

TPM3 is included in the COSMIC Cancer Gene Census. Translocation of TPM3 

could form oncogenic fusion proteins, such as TPM3-ROS1 observed in advanced 

lung adenocarcinoma (35). Previously conducted functional assessment in NIH3T3 

cells showed that TPM3-ALK fusion protein can interact with endogenous 

tropomyosin, which may induce changes in cell morphology and cytoskeleton 

organization and further bestowed higher metastatic capacities (36). Our results found 

that the protective allele of rs78062588 was associated with increased TPM3 

expression as well as increased somatic copy number alterations of TPM3 in lung 
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adenocarcinomas. However, reaching a better understanding of the functional impact 

of TPM3 on lung cancer development warrants further investigation. 

 CDKN2A in 9p21.3 encodes several alternatively spliced transcripts, among 

which are p16 and ARF. p16 is a tumor suppressor that functions as an inhibitor of 

CDK4 and CDK6 (37). Another tumor suppressor protein, ARF, functions as a 

stabilizer of the tumor suppressor protein p53. Both p16 and ARF have functionality 

in cell cycle G1 control. CDKN2A is recognized as an important tumor suppressor 

gene. Deletion of CDKN2A was frequently identified in lung tumors (10). In addition, 

CDKN2A has been identified as susceptibility gene for lung adenocarcinoma (16). We 

validated this locus and identified a second signal within CDKN2A. Consistently, the 

risk alleles of independent SNPs were associated with decreased expression of 

CDKN2A in normal lung tissues. 

The transcription factor interferon regulatory factor 6 (IRF6) was identified as 

significantly mutated gene in TCGA lung squamous cell carcinomas (10). IRF6 has 

essential role in epidermal development. It is induced in differentiation through a 

Notch-dependent mechanism. Down-regulation of IRF6 in epithelial squamous cell 

carcinomas promotes ras-induced tumor formation and reintroduction of IRF6 

strongly inhibits cell growth (38,39). The tumor suppressor role of IRF6 has also been 

demonstrated in vulvar squamous cell carcinoma (40). In addition, elevated IRF6 

expression in nasopharyngeal carcinomas suppressed cell proliferation and growth 

(41). We identified IRF6 as a susceptibility gene for lung squamous cell carcinoma. 

Consistent with the tumor suppressor role of IRF6, the risk allele of rs148797791 was 

associated with decreased expression of IRF6 in normal lung tissues. These results 

indicate that germline variant might contribute to lung cancer risk by down-regulation 

of IRF6. 
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Genes co-expressed with the identified lung CDGs were enriched in essential 

pathways such as apoptosis, MAPK signaling pathway, spliceosome, cell cycle, and 

nucleotide excision repair. A comprehensive molecular profiling of lung ADC 

demonstrated recurrent somatic alterations in cell cycle and MAPK signaling pathway 

(9,42). In addition, deregulated RNA Splicing is involved in lung ADC, and cell cycle 

pathway is involved in both lung ADC and lung SqCC (11,42). 

 We comprehensively collected 348 lung CDGs from three databases, and tested 

associations between functional SNPs of lung CDGs and risk of lung cancer in 

large-scale lung cancer GWASs of Europeans. We identified five novel susceptibility 

loci of lung cancer, and validated nine loci that had been reported by previous lung 

cancer GWASs. These results showed that genetic variants in lung CDGs contribute to 

lung cancer susceptibility. Our findings might help to unravel biological functions of 

lung cancer susceptibility loci. 
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Tables 

Table 1. The associations between independent variants representing each lung cancer locus and overall lung cancer risk in the OncoArray 

dataset. 

Cytoband a Location (bp) b SNP Gene 
Effect 

allele 

Reference 

allele 
INFO 

EAF in 

case 

EAF in 

control 
OR (95%CI) P 

1p31.1 77967507  rs71658797 FUBP1 A T 1.00  0.11  0.10  1.14 (1.08-1.20) 1.04E-06 

1q21.3 154566225  rs78062588* TPM3 C T 0.95  0.06  0.07  0.87 (0.81-0.92) 1.55E-05 

6p22.1 29897438  rs1655931 HLA-A A G 0.96  0.17  0.15  1.15 (1.10-1.20) 3.79E-10 

6p22.1 30205174  rs2517586 HLA-A T C 0.99  0.33  0.35  0.92 (0.89-0.95) 8.84E-07 

12p13.33 1051495  rs2887532 KDM5A T C 1.00  0.17  0.18  0.93 (0.89-0.97) 3.90E-04 

15q25.1 78892661  rs7359276 IREB2 T C 1.00  0.80  0.76  1.27 (1.22-1.32) 9.74E-35 

15q25.1 79069734  rs7161774 IREB2 T G 0.96  0.57  0.60  0.85 (0.82-0.88) 9.39E-23 

Abbreviations: EAF: effect allele frequency; OR: odds ratio; 95%CI: 95% confidence interval. 
a
 Cytogenetic band; 

b
 SNP position, build 37; 

* SNPs (or loci) that were first identified as potential lung cancer susceptibility loci in the present study. 
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Table 2. The associations between independent variants representing each lung cancer locus and overall lung cancer risk in the DCEG Lung 

Cancer Study. 

Cytoband a Location (bp) b SNP Gene 
Effect 

allele 

Reference 

allele 
INFO 

EAF in 

case 

EAF in 

control 
OR (95%CI) P 

1p31.1 77967507  rs71658797 FUBP1 A T 0.98  0.13  0.11  1.18 (1.04-1.35) 1.22E-02 

1q21.3 154566225  rs78062588* TPM3 C T 0.97  0.05  0.07  0.82 (0.68-0.98) 3.11E-02 

6p22.1 29897438  rs1655931 HLA-A A G 0.97  0.14  0.13  1.15 (1.01-1.30) 3.37E-02 

6p22.1 30205174  rs2517586 HLA-A T C 0.98  0.35  0.37  0.89 (0.82-0.98) 1.34E-02 

12p13.33 1051495  rs2887532 KDM5A T C 1.00  0.20  0.21  0.88 (0.79-0.98) 2.10E-02 

15q25.1 78892661  rs7359276 IREB2 T C 1.00  0.78  0.74  1.31 (1.18-1.45) 1.57E-07 

15q25.1 79069734  rs7161774 IREB2 T G 0.96  0.63  0.66  0.87 (0.79-0.95) 2.71E-03 

Abbreviations: EAF: effect allele frequency; OR: odds ratio; 95%CI: 95% confidence interval. 
a
 Cytogenetic band; 

b
 SNP position, build 37; 

* SNPs (or loci) that were first identified as potential lung cancer susceptibility loci in the present study. 
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Table 3. Associations between rs1611182 and truncation mutations in the transcriptional misregulation in cancer pathway. 

SNP Allele a 
Histological 

types 
Cases b Controls b 

EAF 
OR (95%CI) c P c 

Cases Controls 

rs1611182 G / T 
Lung ADC 30/93/81 71/144/86 0.38 0.48 0.66 (0.50-0.85) 1.76E-03 

Lung SqCC 50/105/74 56/131/66 0.45 0.48 0.91 (0.70-1.18) 4.66E-01 

Abbreviations: Lung ADC, lung adenocarcinoma; Lung SqCC, lung squamous cell carcinoma; EAF, effect allele frequency; OR, odds ratio; 95%CI, 95% 

confidence interval. 
a Reference / effect allele; 
b Variant homozygote/heterozygote/wild-type homozygote. Patients with one or more truncation mutations in corresponding pathway were cases. Otherwise 

the patients were defined as controls.  
c
 Adjusted by age, gender, smoking status, clinical stage, and the first ten principals. 
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Figure legends 

Figure 1. Manhattan plot showing −log10(P values) for SNP associations with risk of 

lung adenocarcinoma and squamous cell carcinoma. (A) Lung adenocarcinoma (6,819 

cases and 14,027 controls); (B) Lung squamous cell carcinoma (4,490 cases and 

14,027 controls). Each locus is annotated by its cytoband location and corresponding 

lung cancer driver genes. The x axis represents chromosomal location, and the y axis 

represents −log10 (P value). The horizontal line denotes false discovery rate (FDR) < 

0.01. 
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