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1 INTRODUCTION & BACKGROUND
One of the key challenges of current state-of-the-art robotic de-
ployments in public spaces, where the robot is supposed to interact
with humans, is the generation of behaviors that are engaging for
the users. Eliciting engagement during an interaction, and main-
taining it after the initial phase of the interaction, is still an issue
to be overcome. There is evidence that engagement in learning
activities is higher in the presence of a robot, particularly if novel
[1], but after the initial engagement state, long and non-interactive
behaviors are detrimental to the continued engagement of the users
[5, 16]. Overcoming this limitation requires to design robots with
enhanced social abilities that go past monolithic behaviours and
introduces in-situ learning and adaptation to the specific users and
situations. To do so, the robot must have the ability to perceive the
state of the humans participating in the interaction and use this
feedback for the selection of its own actions over time [27].

The research project that informs the work presented here is a
collaboration between the University of Lincoln and The Collection
Museum1 with the objective of deploying an autonomous robot
to engage with the museum’s visitors and inform them about the
local archaeology. The robot started operating on-site in October
2018, in an ongoing deployment of more than 1 year to date.

Being themuseum a public space openly accessible to anyone, the
interactions between the robot and the visitors are unstructured, in
1https://www.thecollectionmuseum.com/
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the sense that users are not instructed how to interact with the robot.
It is the latter that has to obtain and maintain the human attention
in order to complete its tasks. This particular setting requires for
an automatic method of assessing the robot behavior during the
interactions, without the need of resorting to user interviews or
questionnaires, and provides us with the opportunity of exploiting
the real-world interactions for the task of improving the robot’s
social abilities over the long-term deployment.

Our research aim is, therefore, to embed the robot planning into
a reinforcement learning (RL) framework, where the robot tries to
improve its behavior to maximize the engagement of the humans
it is interacting with. To do so, we propose the use of a model of
user engagement, which provides an indirect assessment of the
robot’s social capabilities, that provides the RL reward and drives
the learning process.

1.1 Characterization of Engagement
The definition of engagement during human-robot interactions has
not been clearly specified yet [9], although, it can be described as
a process composed of four parts: point of engagement, sustained
engagement, disengagement, and re-engagement [17]. For the task
of engagement detection in social interactions, approaches in the lit-
erature can typically be clustered in two groups: works that rely on
specific behavioral cues, like gaze [2, 13, 20], context [4, 12, 22, 23]
and other human perceptual features (e.g. people pose and sound)
[7, 10, 15, 24], to define a rule-base scheme or to learn data-driven
models and the more recent works that, taking a more holistic
approach, learn models directly from engagement estimation or
through proxy metrics [21, 28].

Assuming that humans are naturally able to accurately assess
engagement in interactions, we propose to leverage their intuitive
evaluation of it from videos of interactions, rather than relying on
one particular definition of engagement. With the human coded
engagement values we will build our own dataset and use it to learn
an engagement prediction model from raw video data, framing
the problem as a more general recognition task. In doing so, we
answer the research question: “can we learn a model to accurately
measure users engagement during real-world interactions leveraging
the human coded estimations of engagement?”

1.2 Generating Social Behaviours
Previous work has shown that it is possible to influence the human
engagement level during a human-robot interaction by employing
different robot behaviors. Sidner et al. [25] explored how the use
of gazing and gestures affects positively the user perception of the
robot, increasing their engagement. Similarly, Holroyd [10] defines
policies with the goal of increasing user engagement and shows
that the robot equipped with these policies is perceived to be more
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human-like, to behave more fluently and that users reciprocate
more robot cues.

Recent works aimed at learning these social behaviors typically
use (Deep) RL techniques to exploit the real-world interaction ex-
periences a robot can collect. Qureshi et al. [18, 19] proposed end-
to-end models to teach a robot the most appropriate action for
approaching humans and starting an interaction. The reward signal
was triggered by successful/unsuccessful handshakes. Lathuilière
et al. [11] uses Deep RL to learn a gaze policy from an intrinsic
reward function based on the audiovisual position of people with
respect to the robot camera field of view. Gao et al. [8] learns a
robot policy for approaching groups of people by maximizing a
group formation score and minimizing the displacement of other
participants in the group when the robot approaches.

In this project, we use state-of-the-art Deep RL approaches in
order to improve our robot’s social behavior. We employ the human
engagement level as a robot internal reward to maximize. Here
we attempt to address the research question: “is the engagement
value estimated during the interactions a sufficient feedback signal
for driving the in-situ learning of the robot social behaviors?”

1.3 Contributions to the Field of HRI
In terms of contributions, the main objectives of this research are:

(a) the proposal of a robotic framework for long-term deploy-
ment of robots in public spaces to promote and facilitate
studies in-the-wild;

(b) an analysis of user engagement with our robot over long-
term deployment data;

(c) a ready-to-use regression model for real-time estimation of
users engagement during in-the-wild deployments;

(d) the validation of the use of the predicted scalar engagement
values to automatically assess the robot behavior, allowing
in-situ adaptation and learning.

In our past and current work we have contributed to the com-
munity with the points (a), (b) and (c) as outlined in Sec. 2 and 3.
Contribution (d) is left for future works and analyzed in Section 4.

2 LONG-TERM DEPLOYMENT AND THE
NEED FOR ADAPTATION

The initial work of this project consisted in deploying our au-
tonomous robot in a public museum. At this stage, we developed
the tools necessary for the correct autonomous operations, such
as: navigation stack, task scheduling, behavior specification, man-
agement and users interface. In our previous work [5] we describe
the tools implemented, in particular we want to highlight here
the integration of the Petri Net Plans (PNP) formalism [29] into
our framework for the goal of specifying the robot behaviors and
allowing their adaptation (see Sec. 4).

The robot can initiate 3 different interactive tasks with the visi-
tors: (1) give a short verbal description of an exhibit; (2) guide the
visitors to an exhibit and then describe it; (3) perform a guided tour
centred around a theme, initially describing the theme of the tour
and then guiding the visitors to each stop sequentially providing a
description. Each task consists in a scripted behaviour in which the
robot would always execute the same actions in the same manner.
Only in tasks (2) and (3) there is a branching point in the behavior

where, during the description action, the robot gives initially little
information about the exhibit and successively asks the users if
they want to know more. Furthermore, at any moment during the
interaction the users can stop the tasks before its natural termina-
tion. The tasks have an average duration of 20 seconds, 2 minutes
and 10 minutes respectively, if not stopped by the user before their
end. In our study [5], we have analysed the duration of a total of
5232 tasks, started over a period of 103 days of operation. The data
suggests that:
• there is high initial engagement with the robot;
• the engagement is more and more difficult to maintain as
the interaction proceeds further in time.

3 CONTINUOUS ENGAGEMENT ASSESSMENT
In our work [6], we asked independent human coders to annotate
a dataset with a continuous per-frame engagement value, using an
approach similar to Tanaka et al. [26]. We collected a total of more
than 9 hours of video annotations and report a moderate to strong
average inter-rater agreement over different smoothing factors (0.56
to 0.72 Spearman correlation). The dataset, which we named TOur
GUide RObot (TOGURO), is composed of videos collected from
the robot’s own camera during the interactions with users in our
long-term deployment. It features a diverse range of interactions
both in terms of audience demographics (e.g. number of people,
age and gender) and in terms of its dynamics.

We successively trained an end-to-end engagement regression
model, on the TOGURO dataset, to predict a value of engagement
y ∈ [0, 1] for each second of the video feed from the robot camera.
The model reports a Mean Squared Error (MSE) of 0.126 on test data,
validating the usefulness of the method in providing a continuous
assessment of the users’ engagement in our experimental scenario.
Moreover, an assessment of the trained model in predicting the
loss of engagement over the publicly available UE-HRI dataset [3]
reports an area under the ROC of 0.88, evidencing its generalization
capability over completely different HRI scenarios.

4 LEARNING FROM ENGAGEMENT
ESTIMATIONS

In the future, we plan to close the loop between the user engagement
detection and the learning of social robot behaviors.

Having established that our engagement model can accurately
predict engagement values during real-world interactions, we plan
to use this model to generate online assessments of the robot be-
havior. The output of the engagement regression model will form
the robot reward function which guides the learning. Therefore,
the robot will learn to select the actions that generate higher user
engagement at each moment during the interaction. We expect that,
as the learning continues, the robot will be more and more able to
sustain longer interactions with the museum’s visitors.

The robot behaviors, specified as PNPs, can be translated into
stochastic policies, similarly to [14]. Therefore, we will bootstrap
the learning process from the behaviors already defined by us al-
lowing to start doing exploration from our ongoing deployment.
We plan to learn both task-specific behaviors, like planning the
sequence of exhibits in the tour, and more contingent behaviors,
like gazing policies.
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