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Abstract
Issues arising from the development of a computer-based information system for engineering 

polymer data have been explored.

The system was designed with the aim of providing a user-independent representation of 

engineering polymers that would organise the data pertaining to them and be amenable to 

extension and evolution to allow for new materials and new properties.

A classification of engineering polymer materials was developed to provide the structure for 

the representation, and an existing computer information system was modified in order to 

accommodate it. The classification was designed to create and order classes of similar 

materials to enable easy access to their information. Criteria for grouping material grades into 

families and families into a hierarchy were assessed. Existing polymer classifications were 

analysed; several alternative approaches to the factoring process are described.

The final taxonomy was implemented within the object-oriented information system POISE, 

written in the language Smalltalk 80?" QJ. [2J. Inherent in the system is a facility to support 

browsing of general class information. Other tools developed during the course of the project 

allow the addition and positioning of new classes, grades, properties and data and searching for 

grades by property value or name.

It was shown that a classification based on criteria of similar chemical structure is a 

prerequisite for extensibility. Also demonstrated was that no such classification will 

consistently group together grades that are similar in respect of all of their physical and 

engineering property data for the uses of engineering designers.

A detailed analysis of the properties used to describe grades of engineering polymer gave an 

insight into the above dichotomy. To accommodate the resulting conflict, the polymer
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information system was enhanced to incorporate an orthogonal factoring at the grade level in 

addition to that already created by the final classification based on chemical families.
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1. Introduction
1.1 Engineering design

Thomas Sheridan of Du Pont [3] identifies engineering design as that part of the design process 

which involves the selection and application of materials for specific functions according to 

established engineering principles. He states that: . .

“The possibilities of engineering design are limited only by (1) the physical property limits of 

the material, (2) the limitations of the manufacturing process in transforming a material into 

particular geometries, and (3) the imagination of the designer in combining form and function."

This illustrates how the design of an object is inextricably linked with the properties of its 

materials. Sheridan espouses the importance of design data: “One way that we, the material 

suppliers, can help design engineers is by providing engineering design data that characterises 

and positions our resins in a meaningful way.”

The research described in this thesis is concerned with the engineering design information used 

to describe those materials termed engineering polymers, and the way in which It is presented 

and disseminated.

Engineering polymer property data are used in many contexts; a generally useful representation 

of this information is one that can interact with representations of other engineering design 

perspectives, such as process or geometry. The type of analysis of the information and its 

organisation offered in this study is essential if a successful interaction with these other 

perspectives is to be possible.

1.2 Polymers

A polymer is a high molecular mass compound built up from the repetition of small, simple 

chemical units known as monomers, usually found in the starting material from which the 

polymer is formed. In some cases the repetition is linear; in other cases the chains are branched
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or interconnected to form a three dimensional network. The chemical nature of the monomer 

and the way in which the monomers are joined to one another (the nature of the bonding) 

together with their spatial orientation all have significant influence on the chemical and 

physical properties of the resulting polymer. Other factors are also important in determining the 

properties of the final polymer substance, such as the nature of bonding within the monomer 

unit, the type of unit occuring at the end of the polymer chain, the degree of polymerisation or 

chain length, and the molecular mass distribution of the polymeric substance.

Polymer science divides polymers into two broad categories: the biological polymers, which 

form the foundation of life and occur naturally, and the non-biological polymers, which are 

produced synthetically. Polymers of the latter type occur in a number of different forms and 

have a variety of uses. A particular subset of those synthetic polymers that are solids at their 

use temperature, the engineering polymers, is the area under consideration for the purposes of 

this research.

1.3 Engineering polymers

The phrase “engineering polymers” refers in this thesis to those synthetic polymeric materials 

used in a solid state within an engineering context, for example a particular Nylon (polyamide) 

as used for the manufacture of car parts or a particular PVC (poly(vinylchloride)) as used in the 

construction of drain pipes and guttering. These materials are commonly referred to as plastics 

or engineering plastics despite the fact that several texts distinguish “plastics” by their 

particular thermal response and form, i.e. as separate from elastomers or films. This study 

concerns all solid, synthetic polymers with relevance to an engineering perspective: plastics 

materials should be assumed to refer to the engineering polymers as thus described.

The domain of engineering polymers stands to gain from a detailed information analysis for 

several reasons. These materials are of increasing relevance to current design activity in a 

number of fields, as plastics succeed metals in a variety of applications (generally because of 

production, cost or weight criteria). Engineering design is making universal use of
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computerised assistance as is evidenced by the large numbers of CAD and CAE software 

packages on the market [4], and materials data are of crucial importance to many of these 

applications.

The use and organisation of such data for design with metals are well established but plastics 

are relatively new products. Although the first commercially viable such material, celluloid, 

came into use in the 1880’s [5], the market for plastics was not properly developed until after 

the second world war when the advent of a highly productive petroleum industry provided the 

raw materials. Even then plastics were not accepted as a class of potentially high performance 

materials until approximately thirty years ago.

Engineering polymers are now becoming increasingly popular for unusual and demanding 

applications and are often tailor-made to fulfil certain functions. They behave in a very 

different manner from metals, resulting in new challenges for the design process. A wide 

variety of behaviours, and methods of measuring them, has resulted in vast quantities of 

published data on engineering polymer materials.

1.4 Engineering polymer data
1.41 The nature o f the data

The polymer domain differs significantly from that of metals due to the emphasis on individual 

material grades (the final commercial product); minor differences in chemistry and molecular, 

structure result in significant differences in observed properties, leading to large numbers of 

grades, each with a trade name and a unique set of behaviours. This is unlike metals, where 

small chemical changes to grades result in comparably small changes in property values.

Engineering polymers can take any of a wide range of forms, from structural foams to flexible 

sheathing for cables. Documenting the behaviour of all of these materials requires a variety of 

approaches and the information describing them may be presented in a number of different 

forms, including, for example, mathematical models of engineering response, numerical data.
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textual descriptions (of appearance or resilience within certain environments, for example) and 

graphs.

Engineering polymer information may be loosely divided into two types: qualitative and 

quantitative. Qualitative information is that which can be described in words but is difficult to 

represent numerically, such as the fact that polystyrenes are easily coloured. Often this 

information describes groups or families of plastics, applying to many grades. The 

representation of qualitative information is an important issue and some examples of how this 

information is currently disseminated are offered in the next section. However the 

incorporation of this information into the proposed system has not come within the bounds of 

this study.

The majority of available quantitative information relating to commercial engineering 

polymers takes the form of properties. A property, most simply, comprises an attribute, such as 

density or melt viscosity, and a value associated with that attribute for each individual polymer 

•grade. These data are prolific and, historically, presented in the simplest format, often neither 

recognising important relationships between different properties nor similarities between their 

values for groups of polymer materials.

Property data may be single value (that is, one datum value for each property quoted for a 

grade), or multi-point, where a number of values of a property are quoted, illustrating its 

variation with respect to another parameter such as temperature (usually, in the literature, in the 

form of graphs or mathematical models). The representation of multi-point data in graphical 

form is not covered in this thesis as it is not considered to introduce additional issues relevant 

to the research. The representation of relevant engineering models within an information 

system does, however, merit consideration and this aspect is introduced in section 2.6.

The large amount of available information relating to engineering polymers [4J can, without 

consistent data organisation, be confusing for the engineering designer to use. An analysis, 

from the polymer domain perspective, of the possibilities for improving on existing methods of
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information organisation has lead to an alternative approach. This has been used to develop a 

computerised polymer information system, which will be introduced in section 2.7 and 

described in depth in chapter 4, the implications and testing of which provide the main theme 

of this research. First, however, existing information formats are discussed in greater depth.

1.42 Examples o f existing methods o f polymer information organisation

Data pertaining to engineering polymers are usually disseminated by means of supplier data 

sheets; printed, commercial information on the products of a certain manufacturer, designed to 

show them in their best light, and distributed on request. The frequency of updates and formats 

of these are determined by the supplier and are often tailored to different types of user. This 

results in a wide variation in the form and level of detail of the information. Usually the grades 

found together on a sheet are of a single “family,” as defined by the supplier; this is likely to be 

a subset of a chemical family, such as polypropylenes, and may comprise grades that are 

similar because they share an application, because they are of the same form, or because of 

other reasons deemed important by the manufacturer.

A simple data sheet may comprise nothing more than a table of the values of a number of 

selected properties for a list of grades. A typical example is the chemical company Hoechst’s 

publication, sheet HFKS 599 E 9060/042: an A4 sized folding leaflet with ten sides of 

information about their “Hostalen PP” range of polypropylenes. This covers seventy nine 

grades of Hostalen PP, each designated by a series of three letters and four numbers after the 

name Hostalen. These grades are linked by little more than their membership of the 

polypropylene group; four methods of processing (extrusion, blow moulding, compression 

moulding and thermo forming) are featured and their applications cover a wide range including 

pipes, films, textiles and tanks.

The values of thirty nine properties are offered for each grade. Each property takes up a row of 

the table; they have been ordered so that general, mechanical, thermal and electrical properties 

are grouped together.
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The grades head the columns. It is noted that some columns are used for more than one grade, 

implying that the quoted property values are shared by some of the grades, even though they 

are named differently. A table on the back of the leaflet describing the processing and 

applications of each grade explains this: either the use, or the process, or both, differ for grades 

with different names but the same property values.

This data sheet offers a relatively limited information format: there are no multi-point data, no 

diagrams, and very little text (which, where it occurs, explains the naming conventions and 

introduces qualitative information relating to the family as a whole, concentrating on beneficial 

aspects such as good chemical resistance and high toughness).

At the other end of the spectrum are found more detailed data sheets, for example document 

ho. 1-40-01 produced by the Dutch fibre company D.S.M. High Performance Fibres B.V., 

pertaining to their “Dyneema” products.

This contrasts strongly with the Hostalen data sheet. The document is more expensively 

produced, being a glossy, colour brochure in A4 booklet format. Again there are approximately 

ten sides of information, but this time only three grades are covered, namely Dyneema SK60, 

Dyneema SK65 and Dyneema SK66, all high performance polyethylene fibres. This narrow 

scope, in terms of both the number of grades and the range of forms and applications, allows a 

large aniount of detail for each grade.

A lengthy introduction to the background and production of the fibres - including product 

photographs and descriptions of the materials’ microstructure with technical diagrams - is 

followed by the properties. These are introduced category by category. A textual description of 

the grades’ performance in respect of each property is offered together with tables of values, 

graphs (of stress versus strain for example) and two dimensional plots, such as specific strength 

versus specific modulus. For each property category, coloured boxes summarise the main 

points. Sections on the processing and various applications of Dyneema are all accompanied by 

lengthy written descriptions, data tables where appropriate and photographs.
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This clearly provides more in-depth information than the Hoechst document but it does assume 

that the user is uniquely interested in. Dyneema: there is no scope for comparison with other ' 

equivalent polyethylene materials or even fibres. The simpler, more economical form of data 

presentation such as the Hoechst leaflet does have advantages: an overview of all 

polypropylene grades supplied and broad property, process and application comparisons are 

easily achieved. * •

The May 1991 publication by Weston Hyde Products Limited, relating to their “Darvic” PVC 

(poly(vinylchloride)) sheet products is different again. It covers seven grades of Darvic, some 

of which may be supplied in different colours, and is a large and professionally produced 

booklet, of some twenty eight pages, offering considerable detailed information in the form of 

data, graphs, and text. Large sections of the booklet are given to design, fabrication and 

shaping descriptions and the grades’ resistance to a number (several hundred) of chemicals.

This illustrates how the format of a data sheet is strongly influenced by the products 

themselves and their eventual applications. The Darvic products are destined for use as 

containers (both for food and chemicals), glazing, protective shields and engravable signs. 

Although all common properties are covered and divided into categories, most property values 

are given for the Darvic range as a whole and not for individual grades. This shows a distinct 

shift of emphasis from the previous two examples.

The wide variation in available information is apparent and makes comparing grades from the 

same manufacturer easier than comparing grades from different manufacturers. This may be 

partly attributed to differences in the style and level of detail in their publications, and partly to 

different degrees of processing to which their grades are subjected, but also important are 

points relating to comparability of the information itself. For example, even for grades of 

similar form, manufacturers will have different priorities for the behaviours they wish to 

illustrate, and will use different property lists. Problems also arise from the use of different 

units for properties, and different test methods for establishing those properties.
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Other variations between manufacturers’ information arise with qualitative data, for example 

the data relating to resistance to chemicals. In Weston Hyde’s Darvic sheet, resistance to each 

chemical, for the family, is denoted by the.codes A, B and C, which denote satisfactory, some 

attack or absorption, and unsatisfactory, respectively. More specific interpretations of these 

descriptions are given in preceding paragraphs and the concentrations of chemical for which 

the code is valid are given in some cases. No exposure time has been given for these tests. By 

comparison, D.S.M.’s Dyneema sheet.quotes resistance to a smaller number of chemicals, at a 

given pH, by means of a star rating: one star means seriously affected, two means slightly 

affected and three means unaffected. No further explanations of these descriptions are given 

but the exposure time is six months in all cases.

So, for a designer seeking information about a number of materials, perhaps in order to make a 

discriminating decision regarding their selection, the task of comparing manufacturers’ printed 

information is a formidable one, exacerbated by the problems of data incomparability, 

considered in more detail in section 2.2. This task is usually accomplished by means of 

preliminary filtering, often based on previous experience of similar products or accepted 

knowledge, followed by consultation with one or two proposed suppliers or a consultant in the 

field, such as RAPRA Technology [^ . Problems can arise when assumptions are made on the 

basis of available data without the expertise necessary to, say, judge the relevance of those 

data, or to infer the correct information from them.

The use of computers to ease the task of materials selection and comparison is now becoming 

widespread; a number of materials suppliers and consultants issue their data in magnetic form 

and a variety of databases and selection software packages have been produced.

These use database formats that provide a model close to the table format of supplier data 

sheets (see section 2.3). Many invoke simple selection routines based on property values to 

propose individual grades as appropriate for the user’s needs. The grades from one or several 

companies may be represented on a system, with the widest selection (and the highest price).
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usually to be found in the packages sold by independent consultants. In some cases more 

sophisticated methods are employed, with the aim of producing knowledge-based systems. In 

addition, there is evidence of the increasing popularity of the object-oriented paradigm to be 

found in some alternative approaches to the materials information representation task. All of 

these approaches are described in current literature and a critique is given in the Literature 

Review, chapter 2.

Outside the commercial world of plastics manufacturers, for example in academic research 

establishments, the emphasis is no longer on property values for individual grades. Equally 

there is no particular need to group together information about grades made by the same 

company, or made for similar end uses. Nevertheless the polymer information that is available 

must still be organised. Some polymer texts and publications introduce various methods of 

classification as a means of organising information about plastics materials. Many use some 

form of loose classification to order their chapters. Much of this work is detailed in section 5.2. 

A number of different classifications, based primarily on the more scientific approach to 

plastics characterisation, and aimed at the needs of different users, have been identified and 

analysed.

1.5 The objectives of this study
1.51 The overall task

It was proposed that some of the advantages offered by each of the information dissemination 

methods described in section 1.42 could be combined if a general, user- and supplier- 

independent, extensible classification of engineering polymer materials was implemented in a 

computerised information system existing independently of a database of polymer data. The 

object-oriented paradigm has a number of advantages to offer in this context, discussed in 

sections 2.6 and 3.4. It was therefore chosen as the basis for the polymer data modelling 

software, POISE [2], written in the language Smalltalk SO™ [J_], which was partly developed 

when this study began.
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The aims have been firstly, to research a principled classification system for engineering 

polymers, designed to create useful and practical groupings of the grades to ease the task of 

seeking information about them, and, secondly, to build appropriately on the design of POISE, 

so that the classification structure may be implemented within this system.

For the purpose of testing POISE the CAMPUS™ database [7] has been used to provide 

information on grades of engineering polymers. CAMPUS™ has been developed, populated 

and maintained by five large polymer suppliers. It therefore contains a large number of 

commercial grades (over a thousand), is regularly updated, and although it does not provide a 

complete data set, is fairly representative of the commercial polymer data domain. CAMPUS™ 

is described in greater detail in section 2.51.

1.52 Dealing with a particular challenge to data representation: property  
proliferation

The issue of data incomparability has already been raised. Attempts to confront this issue are 

described in the standardisation literature referenced in the following chapter. Important though 

this work is, it fails to deal with the fact that there are cases where a specific, unusual or 

additional property is needed to identify the fitness of a grade for a certain use, when the 

commonly accepted standard properties - although good for general comparisons. - are not 

helpful.

Convenient and efficient access to those properties excluded from standard formats, in a 

manner that does not result in useless property specifications for grades not described by them, 

is an important issue. This is discussed later in the context of the design of the information 

structure. Highlighted by insights gained from an analysis of property types, the issue has 

exerted some influence on the final architecture.
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2. Literature review
2.1 Perspectives

The context within which any representation of engineering plastics information resides is that 

of engineering design. Materials information is simply one perspective amongst others in the 

design environment.

The importance of using multiple perspectives to model design in a way that preserves the 

particular character of each is discussed elsewhere [^ , and contrasted with the dangers inherent 

in creating systems of mixed perspectives driven by specific user requirements, such as that 

created by the Alcoa Technical Centre [9]. There it was decided to address the issues associated 

with having a number of diverse information systems and data formats, which had arisen 

within the establishment over several years. In order to unify their data sources, standardise the 

formats and make the data accessible from a number of viewpoints, Alcoa created a conceptual 

.data model, based on hierarchical and network relationships using the software tool “CODE,” 

written in Smalltalk 80™. The backbone of the model was a single hierarchy with five “root 

concepts” from which all others inherited. These were Application, Data Source, Entity, 

Material & Surface Property and Process Parameter. Clearly this model is at odds with the 

policy of separate perspectives employed for this research, for five distinctly different 

perspectives are merged into a single hierarchy.

In contrast, this study concentrates on the single perspective of engineering polymer materials. 

Other perspectives relevant to the domain (such as manufacturing process information and 

product description information) would, if required, be modelled separately (using different 

class hierarchies) and the design information would be distributed across these different 

perspectives. If general domain information or calculations are required, properties from 

different perspectives may have to be combined: a means of achieving this within the object-
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oriented framework by object-to-object message exchange, known as message delegation, has 

been developed by Zucker et al [^ .

2.2 Polymer data standardisation

It is well known that a major stumbling block encountered during the process of comparing 

engineering polymer materials is the fact that the data used to describe them are not in 

comparable forms. This may be because of a trivial reason such as the fact that different units 

have been quoted, for example dynes/cm- for Young’s modulus as compared with MPa; it may 

be that different test conditions have been used to determine the value of a property, such as a 

different temperature range for the measurement of a coefficient of linear expansion; or it may 

be that an entirely different property is being used to illustrate some general behaviour, for 

example the Vicat softening temperature as compared with the crystalline melting temperature.

In an attempt to alleviate this problem a number of organisations have been set up to introduce 

some uniformity into the type of data that are used to describe a polymeric material, i.e. the 

properties and the test methods devised to determine values for those properties. The 

CAMPUS™ database uses a standard list of general engineering properties drawn up by the 

standards committee for plastics in the German DIN standard no. FNK-UA 102.1. These are 

the properties most commonly specified for engineering polymers and are listed in Appendix I. 

Standard test methods have been drawn up by various national bodies such as ASTM 

(American Society for Testing and Materials). BSI (British Standards Institution), DIN, (the 

German standards authority), and also by the international body ISO (International 

Standardisation Organisation). ISO also runs STEP (Standard for Electronic exchange of data 

on manufactured Products) which is concerned with standardising aspects of CAD/CAM data 

exchange 1101.

However these efforts have not always resulted in comparable data. Lockett QIJ suggests that 

the reasons for this are that standard tests drawn up by different organisations for the same 

property may be significantly different, and that each standard permits a significant degree of
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user choice in the selection of test parameters. He outlines ongoing work by the British Plastics 

Federation in conjunction with French and German organisations and ISO to “standardise the 

standards.”

It will be years, however, before much of this work comes to fruition, and for the purposes of 

this research it is proposed that those properties used within the CAMPUS™ database are the 

nearest to an internationally standard list to be found at present. It is partly for this reason that 

the CAMPUS™ database has been employed as the provider of real world polymer grades and 

data within this project.

2.3 Data and databases in general

Frost 1121 defines data formally as “the symbolic representation of simple aspects of some 

named universe of discourse.” The emphasis here is on the word simple: data are pieces of 

knowledge that cannot be reduced further into smaller components. Knowledge is regarded by 

Frost as being a “model of some named universe of discourse.” It is therefore more complex 

than data.

Much progress has been made in the development of a number of data formats suitable for the 

electronic storage and retrieval of data, aimed at simplifying and speeding up the task of sifting 

through large quantities of information.

Frost defines a database as a large collection of regularly formatted data accessed by more than 

one person and/or used for more than one purpose, and a database system as a set of resources 

designed to store the database, maintain database security and provide the necessary access 

facilities. A database system must also have an underlying data structure, that is, a method of 

arranging the data that is appropriate to the needs of the users or uses of the database and the 

nature of the data itself. Frost states that there are seven commonly used and accepted data 

structures, also known as data models, of which three, the entity relationship attribute model, 

the relational data model, and the hierarchical data model merit discussion here.
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The entity relationship attribute model consists of three concepts: entities, values, and 

relationships. Where an entity has associated with it a value, that value is known as an attribute 

of the entity, and different entities are linked by relationships. This model is based on the 

notion that relationships between entities are considered distinct from relationships between 

entities and values. While this is valid for a number of cases, there are times when it is unclear 

whether a concept should be termed an entity or an attribute: the definition often depends on 

the relationship it has with another concept.

The hierarchical model bears considerable resemblance to the above in that it also regards the 

universe as consisting of entities, attributes and relationships. However there is a clearly 

delineated architecture for structuring these concepts with respect to one another, with 

consequences of both greater organisational capability and increased restraints. Entities are 

related to other entities in inverted tree structures, where the nodes of the tree are the entities 

and the branches that link them are the relationships between entities. Entities at the "top” of 

.the structure are called roots and may be related to any number of lower-level dependent 

entities, each of which may be related to any number of lower-level dependents, and so on. If  

an entity X is a dependent of entity Y, then Y is called the parent of X, and X the child of Y.

An attribute is regarded as a property of an entity and may be related to many entities (an entity 

may also be related to many attributes).

An application of the hierarchical data model to a polymer database might result in something 

like figure I:
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Figure 1: A simple application of the hierarchical model for polymers

Although this would appear to model the polymer world well, there are a number of shortfalls. 

The main one is that the data structure would be permanently slotted into the prescribed 

hierarchy and adding to or altering the structure to accommodate new data would be 

cumbersome, since the attributes and attribute values of each entity would also be fixed. For 

example, an attribute “average tensile strength” belonging to the entity “thermosets” would 

remain the same regardless of additional thermosets being added lower in the hierarchy.

The major constraint of the hierarchical view outside the world of polymers, however, is 

considered to be that entities may not be related to more than one parent entity. Other fallbacks 

of this model are that the structure implies that relationships between entities have direction, 

and that things must be classified as either entities or attributes (often an impossible task). The 

hierarchical model is considered by Frost to be of use only when the situation to be modelled is 

truly hierarchical and when the required access to and manipulation of the database is also 

hierarchical, i.e. access to data is most efficient if it involves traversal down through the tree 

and from the entities to their attributes. Despite this, and the fact that the hierarchical model is 

not accompanied by a mathematical formalism, it has none the less achieved some popularity 

for use in appropriate situations.
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The most commonly used model today is the relational model, introduced by Codd in 1970 • 

Q3]. In this view the universe is regarded as consisting of entities, entity sets and relations. 

According to Frost [ibid\ a relation is a set of n-place tuples, each of the form <el, e2,

e3, en> where entity el belongs to entity set E l, entity e2 to entity set E2, and so on. In

other words, each entity in a tuple is of a certain predefined type, and their presence in the tuple 

indicates a relationship between them. A relation may be represented by a table as illustrated 

below in the context of polymer material information.
GRADE NAME

(E ntity s e t E1)

Density 

(Entity  set  E2)

modulus  

(Entity seT E3)
KESISTIVITY

(Entity  set E4)
<5>UPERPLAS 3.2 1Ü.ÜÜÜ D>
<WONDERPLAS 1.5 15.000 6>
< D u r o p o l 0.8 9.000 7>

Table 1: An application of the relational model to three hypothetical polymer grades.

Here each tuple represents a plastics material grade.

A notable feature of this structure is that each entry in a relation is “flat” : every tuple has an 

entry for every entity type. This can result in large amounts of redundancy where the same 

relationship occurs in a number o f places. This problem can be overcome by a process of 

normalisation, which factors out the important dependencies and creates multiple relations (i.e. 

multiple tables) for a single data set, which are related to each other. This process can be 

performed by the systematic application of a set of well defined normalisation rules. The 

resulting structure is relatively symmetrical, compared to the hierarchical model, and 

acknowledged to be a powerful model capable of accommodating a wide variety of situations.

The relational model has gained considerable popuianty due to the similarity between “Codd 

relations” and mathematical relations, which means that well-defined operations from 

relational theory can be used to manipulate relational databases. The presence of a 

mathematical formalism has lead to the construction of query languages that perform valuable 

selection and joining operations.
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Relational databases are therefore employed widely as the basis for the storage and 

dissemination of polymer materials data, but are considered inappropriate for this application 

for a number of reasons, discussed in section 3.1.

Both relational and hierarchical models are both essentially rigid structures, where an initial 

data analysis will permanently decide the arrangement and volume of data. In reality, database 

systems are often hybrids of the two, containing relational and hierarchical features. Their 

structure is still fixed, and they possess no algorithmic capabilities.

2.4 Knowledge-based systems

The difference between a knowledge-based system (a KBS) and a database is that a KBS 

contains knowledge, in the form of rules, in addition to data. This knowledge is used to 

enhance the information content of the data. KBS research has been described [_1̂  as having 

the aim of making computers more useful by providing them with some of the attributes of 

human intelligence. An expert system is one type of KBS, being a computer program that 

performs a task that represents some limited area of human expertise, and that makes use of 

stored representations of knowledge as a means of providing solutions and explanations. In the 

context of materials data KBS systems, described in the following section, knowledge is used 

to interpret and compare the data, usually with a view to providing some insight into the 

comparative merits of different materials for certain purposes.

2.5 Polymer data systems
2.51 CAMPUS'^^

The CAMPUST^* (Computer Aided Material Preselection by Uniform Standards) database [7J 

has been developed jointly by a number of large companies in the plastics industry, namely 

BASF, Bayer, Hoechst, G.E.Plastics, and Du Pont. It is designed for use on personal (IBM- 

compatible) computers and delivered free of charge to prospective customers in magnetic disk 

format. Data are maintained and updated by the contributing companies who send out the latest 

versions of their own data independently of one other, although there is some effort to keep
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versions synchronised across the database. Each company’s disk may be viewed independently 

or with the other companies’ data that it complements.

The CAMPUS™ handbook states that the advantages of CAMPUS™ are:

A uniform interface and data structure for different plastics manufacturers;

Comparable data, resulting from uniform selection of properties, specimen

preparation and test conditions; Constant

updating of the families, extension of the test methods and adaptation to standards 

developments.

Thus CAMPUS™ aims at data and interface standardisation and up-to-date information 

provision. Unfortunately, however, there are areas where CAMPUS™ fails in this endeavour.

In particular, the units of measurement it employs are often obsolete and do not follow SI 

(Système Internationale) protocols. For example, minutes and millilitres are frequently (but not 

consistently) used instead of seconds and litres; the property melt volume rate is measured in 

ml/IOmin and viscosity coefficient is in ml/g. This makes comparison with data from other, 

sources cumbersome and relationships between property values difficult to ascertain.

Most of the data on CAMPUS™ are single point data, but there are some multi-point data that 

may be viewed graphically, and also the option of plotting two-dimensional scatter diagrams of 

one property against another to see where chosen grades fall on both scales. CAMPUS™, 

however, relies on a flat-file database structure and when the data are viewed by normal means 

this is quite apparent: the display takes the form of long, unmanageable lists of grade names 

and data. These arc viewed by selecting a panicular manufacturer or chemical family (the 

family name appears as a value of one of the fields in each entry) and the properties whose 

values are to be displayed for each grade in the list. Individual grades may be viewed by 

marking those of interest in the list and selecting a function to display every property and its 

value.
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This is obviously an inefficient process and the database contributors have arranged the 

incorporation of facilities to allow searching of the database and selection of grades by means 

of a querying process. Grades with values of specified properties outside a designated range 

will be eliminated, leaving those of interest. This is an acceptable, if slow method of viewing 

the data if, and only if, selection on the basis of physical property values is the primary need of 

the user.

CAMPUS™ is also limited in terms of the properties specified. All are general properties 

measured on a standard test sample, with a strong bias towards thermoplastic materials.

Despite these limitations, CAMPUS™ was used as the source of data for the polymer 

information system under development because of the size and availability of the dataset. 

Version 2.3 ©1991 was iised throughout, supplied to us in ASCII format by each individual 

manufacturer. Normally users of CAMPUS™ would not have access to the raw data in this 

manner as the system is offered in compiled format. The data were extracted from the 

CAMPUS™ disks and exported to an object-oriented database more appropriate to the needs of 

the system. Only the single point data were used.

In addition to properties and their values, each grade has a comment in text format: these too 

were extracted and transferred for display on a suitable interface. These comments are very 

supplier-dependent and vary widely in the detail and quality of their information. Many grades 

have no comment at all. Some examples of comments are given below.

Two examples from Bayer follow, the first being little more than an extension of the grade 

name and the second offering considerably more, categorised information.

1. DURETHAN AKV 35 conditioned 

DURETHAN AKV 35 as moulded 
PA6.6.
35 % glass fibres.
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2. POCANKUl-7315 

CHARACTERISTICS
PBT, V-0 type, thermoplast modified; reinforced,

5% glass fibres
PROCESSING & DELIVERY FORIvI 
Injection moulding, pellets 

ADDITIVES
Release agent, flame retarding agent 
SPECIAL CHARACTERISTICS
flame retardant. UL 94 V-0 in 1.6 mm. heat stabilised, excellent surface quality 

Applications: housing components e.g.

Two examples from BASF show that their commenting ranges from a discursive annotation to 

a minimal extension of the grade name:

1. LUPOLEN 1810 E PE-LD. Used preferably for extrusion of hollow mouldings, 
sections and blown films. Can be injection moulded to produce articles having good impact 
resistance. Good resistance to environmental stress cracking.

2. ULTRAMID A3WGM35, Dry NYLON 66-GF15-M25

This is a clear reflection of the variation in information style and quality that is found in the 

supplier data sheets, and illustrates a need for some standardisation and improvement in the 

representation of textual information as well as numerical information; however that has not 

been an objective of this thesis.

2.52 Other polym er da ta sys tems

There are many other commercial databases catering for plastics materials data, for example 

EPOS™ Q5], M/Vision™ [16] and Plascams-220‘''̂ ‘ [^ . The data within these databases are, 

as with CAMPUS™, organised using database format, and as such would be presented to the 

user in the form of long lists of numbers with little ordering or guidance, were it not for the 

searching facilities that are included in each, whereby the selection and sorting of materials that
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most closely satisfy the property requirements of a chosen purpose are facilitated by means of 

an algorithmic search process imposed over the entire data set [2]. The selection is often 

performed by elimination of those grades with values of certain properties outside numerical 

ranges followed by a matching of the material characteristics of the remaining grades with the 

user’s product requirements. A weighting function is sometimes included so that properties 

may be ranked according to their importance, Hopgood f 171. Such databases work on the basis 

of a fixed-size data structure for each grade (i.e. limit the number of data types available for 

consultation).

Plascams-220™ (produced by the Rubber and Plastics Research Association, RAPRA) is an 

example of a large, comprehensive database dedicated to plastics materials that uses chiefly 

numerical, single value representations of properties. In this system the user volunteers an 

estimate, on the decile scale, of the relative importance of relevant properties for use within an 

optimisation procedure, once elimination of inappropriate candidates has been performed. The 

products of these weighting estimates with the property scores of the shortlisted grades are 

summed to give an overall rank position for each grade. Hopgood, incidentally, suggests that 

this method is inadequate for the selection of plastics materials and proposes an alternative 

inference mechanism (“A IM ”) for selection 1171.

RAPRA recommends that the final selection is confirmed by reference to additional 

information on their database, in the form of text descriptions and full data sheet type entries 

for each grade, followed by consultation with suppliers.

M/Vision™, a product of PDA Engineering, a U.S. based company, is a materials information 

system with a much wider scope, drawing on extensive material databanks for plastics, metals, 

ceramics and composites. It also offers standards information, the possibility of user-defined 

databanks and the opportunity for integrating with CAD and CAE software. An additional 

facility enables information management within a company, so that duplication of data can be 

avoided and uniformity may be introduced into the test methods and units used. The main
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function of this system, however, is materials information manipulation. Selection is performed 

using a standard query language over a database, although there are many sophisticated tools to 

enhance this process, such as the ability to use spreadsheet software, to plot graphs, to select 

sections of graphs in order to focus on a reduced number of grades, to predict property values 

using models and/or linear regression, and to select grades on the basis of keywords in their 

textual description. M/Vision™ probably offers one of the most ambitious and comprehensive 

materials information systems on the market but nonetheless does not offer abstraction of 

general information, nor browsing options, nor functionality specific to a material, class of 

material, or context.

The representation of expert knowledge in the form of rules imposed over low-level data to 

facilitate materials selection is also well documented. Ahari et al [18] describe the application 

of an intelligent knowledge-based system to the task of materials selection which improves 

upon existing search techniques by incorporating a degree of classification, so that, for 

example, only plastics in a chosen class such as polypropylene are considered. It also allows 

flexible prioritising of properties together with the ability to select On qualitative or vague 

information (by creating property values such as high, medium or low). An additional feature 

still under development at the time of writing was the inclusion of geometry factors so that, for 

example, a designer may be guided towards thickening a specific section of his design to allow 

the use of a low cost material.

Bullingeret al [19] describe a knowledge-based system for materials selection specifically for 

application to design with fibre-reinforced composite materials. It combines a typical CAD 

functionality with direct access to a materials database and incorporates rules to take account of 

complicating features such as production technology and cost characteristics. Its fundamental 

difference when compared with a standard database is the incorporation of geometrical factors 

into the selection process together with a more sophisticated set of selection criteria.
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A different approach is taken by Surkan et al [20] in their expert system for materials selection, 

in which geometry is not considered, but the emphasis is placed on facilities that offer a 

reduced representation of the database, to save time, and to partition this reduced form into 

categories, obviously in recognition of the worth of some degree of classification.

Ashby [2JJ concerns himself more with appropriate ways of interpreting the data relating to 

materials to determine their suitability for certain functions, and identifies “performance 

indices” as a means of narrowing down the choice to those materials that will perform as 

required given certain generalised geometrical and loading constraints. Performance indices 

take the form of arithmetic functions of properties; those materials satisfying the required 

criteria can be easily identified by graphical means, using two dimensional plots of one 

property against another, as facilitated within the “Cambridge Materials Selector” software.

Much of the work in materials information representation appreciates the need for improved 

guidance in the materials selection process and occasionally incorporates a degree of 

classification of materials. However the direction of development is generally towards 

increasingly sophisticated selection methods combined with geometry considerations. 

Browsing and abstraction, key aspects of this thesis, are not supported by the foregoing 

models.

2.6 Object-Orientation

Object-orientation gained popularity as a computing technique in the 1980’s, pioneered by the 

creators of Smalltalk™, the Learning Research Group at Xerox Palo Alto Research Center QJ. 

There are now many programming languages based on the idea of fundamental computational 

entities, known as objects; for example CLOS, C++ and Simula [ 131. In all of them the 

fundamental concepts are data abstraction, behaviour sharing and evolution.

These concepts are implemented within Smalltalk 80™, the language with particular relevance 

to this research, using a hierarchical code structure that organises the objects by providing a
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classification system with inheritance. Objects can represent any real world entity and may 

include a descriptive part, relevant væiables, data, and/or functionality in the form of 

algorithmic expressions.* Because objects are encapsulated, i.e. may only be altered in any 

sense by means of carefully controlled access routes, it is possible to make changés to one 

object in the system without causing disruption to the others. Thus evolution of the system is 

supported. Behaviour sharing is enabled by virtue of the inheritance facility: since the 

subclasses of a class will inherit its behaviour, this behaviour need only be encoded once. As a 

corollary to inheritance, data within subclasses may be abstracted, or summarised, in a 

superclass, enabling generalities to be modelled.

The object-oriented framework has been extended to object-oriented databases. Like other 

database models, these allow the storage, manipulation and retrieval of data. This is done either 

by incorporating persistence into a language (so that the data structure is preserved over a 

number of program runs), the approach taken by POISE, or by adding language capabilities to 

a database management system. Object-oriented databases have different application areas 

from conventional databases and use a different data model from those already described; this 

is currently poorly formalised but uses typing to organise the data, as outlined by Goldberg QJ.

For applications requiring the straightforward processing of large amounts of static data, for 

example pay-roll programs, conventional database models provide adequate support and 

management, for once the initial data analysis has been performed, the structure of the database 

tends not to change significantly. For situations where the structure of the data and programs is 

subject to frequent alteration, however, conventional databases do not cope easily with the 

required evolution of the system. Object-oriented databases are much better suited to these

* This ability to include functionality as pan o f individual objects, i.e. together with their private data space, is a panicularly 

important aspect of the object-oriented structure, with useful implications for this research, discussed further in sections 3.4 

and 4.2.
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demands. Blair [JoJ suggests that an example of such an application would be an engineering 

design environment. The design process is an evolutionary one requiring a data facility 

amenable to mutation and extension. In a design environment, objects are likely to be complex 

(i.e. built up from other objects) and it will be necessary to view these objects from every level 

of detail, or resolution. Clearly an object-oriented approach is suited to a number of aspects of 

the design environment, including the materials perspective.

It is for these reasons that the existing polymer information system, POISE, introduced in the 

following section, is written in an object-oriented language, namely Smalltalk SO™. A number 

of other systems for representing materials data using the object-oriented paradigm have also 

been developed.

2.7 Existing object-oriented work relating to materials data

McCarthy [22] discusses the need to organise material properties data in a more rigorous way 

than is achieved by current database management technology, and suggests that the standard 

relational model may not be suitable for implementing some of his solutions.

He reports a prototype materials properties data system that allows the networking of multiple 

databases, the implementation of a thesaurus facility and the representation of tables and 

graphs and different levels of data abstraction. He also proposes, the use of class hierarchies, for 

both materials and properties, arguing that users need abstraction and summarising 

mechanisms to aid navigation of the information space. He suggests a modular architecture for 

this compliex and ambitious system, and uses an object-oriented representation for the data due 

to its evolutionary capacity, ability to accommodate functionality and hierarchical structure as 

previously outlined. Nonetheless the fundamental objective of this system is still data retrieval.

Hansen et al [23] describe their investigation into new data models and database architectures 

that will allow flexible, extensible and transparent interfaces between application programs and 

applicable sources of data in the context of scientific domains. They use the object-oriented
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paradigm for its rich data definition and manipulation facilities and the ability to construct 

complex data types and store methods together with data. Their data model for materials 

science (specifically crystallography) is a hierarchical structure whereby a material is split into 

its component parts. There is also a hierarchy representing the physical states of the material. 

The data model and database management system are designed specifically to bring together 

materials data from heterogeneous, non-object-oriented data sources, the primary objective ' 

being easy access to multiple external data sources for global information retrieval.

An object-oriented approach to database management is also adopted by Hughes et al [2^ for 

the purpose of creating a knowledge base for materials. They benefit from the ability to define 

abstract data types, i.e. complex objects over which arbitrarily complex operations may be 

defined, in a mechanism for the definition and storage of objects that are expressible as 

mathematical formulae or physical laws. The ability to include functionality within an object is 

therefore the key aspect here, leading to what they describe as “programmer-defined domains,” 

in. which the user can, to some extent, define the rules that make up the expert system.

In the foregoing examples many of the acknowledged benefits of object-orientation are used to 

improve on existing data models or database architectures. The approach taken by this study 

shares the views of those cited above, i.e. that objects are useful ways of representing entities, 

in particular material entities; that the ability to associate specific methods with these objects 

and their data is a useful feature; and that classification is a helpful means of information 

organisation. However it also contrasts with them, in that the key aim here is the derivation of a 

model for engineering polymer data that should be based on polymer domain considerations 

rather than computing considerations. The result is a hierarchical structure with the sole aim of 

representing the world of polymer materials, rather than a complex system with the aim of, say, 

linking relational databases, or extracting the data from them via object-oriented interfaces 

(often containing complicating factors - such as hierarchies of state - which would be better 

modelled within a different perspective).
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The design of the object-oriented polymer information system, POISE, used and developed 

further throughout this research, incorporates features to fulfil this aim, such as a polymer 

materials hierarchy with inheritance, abstraction of general information, and an absence of 

complicating factors such as geometry, as discussed in detail by Zucker et al [2]. The POISE 

software architecture, written in the class-based, object-oriented language Smalltalk 80™ [JJ, 

is intended to organise plastics materials information to make it more accessible to the 

engineering designer. POISE incorporates an object-oriented database management system that 

receives data from an external database. POISE provides a skeleton structure, which organises 

representations of the entities providing the data (i.e. the polymer grades and classes). It also 

acts as a screen through which the data may be viewed and manipulated in literal or abstracted 

form within the constraints of a hierarchical model. Mutation and evolution of the data 

structure are allowed and functionality may be added at any appropriate point within it.
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3. The research direction
3.1 Summary of aims

• To explore the issues arising from the process of developing and testing a computerised 

polymer information system using the object-oriented paradigm. The system employs a 

classification of engineering polymers in parallel with a database of polymer data as the basis 

for its data structure.

This required:

• The development of a principled classification system for engineering polymers, which must 

create and order hierarchically groups of similar plastics grades; be extensible; and be user 

independent.

• The development and improvement of the design of the existing object-oriented polymer 

information system, POISE, to enable it to accommodate, display and manipulate the resulting 

data structures.

• The population of the resulting system with CAMPUS™ grades and other grades with 

different data representation requirements, and the testing of the system in action.

3.2 Why the relational model was not used

Previous chapters have suggested that commercial databases dedicated to plastics materials 

have not confronted all of the difficulties associated with obtaining and handling polymer 

materials information. Many of the drawbacks arise from the fact that the relational model is 

not the most appropriate model for polymer data, for the following reasons.

i)The low level information format results in large and unwieldy lists of data, with little 

ordering or guidance. The process of normalisation, commonly used to alleviate this problem, 

is not helpful in the context of an engineering polymer database, as there is rarely enough data 

repetition for a useful factoring to be applied.
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ii)Property descripüons are over-simplified, taking the form of no more than a name for each 

data set, and leave the end-user poorly equipped to interpret the significance of each property 

for the design task.

iii)A fixed, pre-determined data structure is assumed, which does not allow for extension or 

elaboration.

iv)Relationships between entities (properties or material types) are restricted to the Codd 

relations between and within records of grades.

v)Attempts at overcoming the difficulties associated with low level information format, to be 

found mainly in those cases where a service is being sold together with the data, for example in 

RAPRA’s Plascams-220 or PDA Engineering’s P3/Materials Selector (which complements 

its M/Vision Databanks) [_1 ,̂ take the form of algorithmic materials selection based on 

property values. This has certain drawbacks: structured querying must be performed over the 

entire data set, and the selected grades are taken out of context. It can be difficult to judge the 

merits of a single, isolated grade, with no supporting information about the nature of its 

chemical history, process or additives, for example. Thus these systems require substantial 

prior user expertise, such as knowledge of criteria for the elimination of grades and the 

appropriateness of the final list.

This problem is often more pronounced for those databases produced by materials suppliers (of 

which CAMPUS™ and EPOS™, cited earlier, are examples) whose primary purpose is to 

publicise information pertaining to their own grades. These organisations will assume that their 

own expertise will be called upon at some stage and seldom offer sophisticated tools to support 

the selection procedure. In their favour, however, commercial driving forces mean that such 

databases often have the advantage of regular updates, with the potential of being available on­

line.

Pa?e 38



To overcome the issues outlined in (i) and (v), this study proposes that by grouping together 

the data relating to similar grades of plastic and arranging those groups into a family-tree like 

structure, the user will benefit from browsing through the abstracted information, i.e. the 

knowledge conveyed in the generalisations about each group, with guidance from the 

classification structure.

A final, informed decision may made by the user himself and the pitfalls of algorithmic 

selection methods, such as the “odd fish effect” suggested by Zucker and described in 

Sargent’s book [2U. are thus avoided. The “odd fish effect” refers to the observation that an 

algorithmic selection method, using summed property weightings to “filter and sort” materials 

grades, fails to band together grades that are related by chemical structure. Instead of appearing 

in (or disappearing from) the short-list together, a small change in a single property weighting 

results in a group of chemically similar grades dispersing: individual grades “pop in and out” 

of the materials shortlist irrespective of any familial connections they have with others in the 

list.

3.3 Why the hierarchical model was not chosen

The hierarchical data model seems to offer the appropriate architecture for accommodating a 

system with a family-tree like structure. However, the hierarchical model is based on a fixed- 

size data structure for each grade. Any system that models design data needs to be extensible 

and mutatable, so that the addition of new data, in the form of entities or attributes, and the 

reorganisation of the structure within certain limits, may be supported.

The hierarchical model will not accommodate such flexibility. Properties not initially present 

in such a database will never be available for consideration, and, should the structure of the 

chosen hierarchy come under revision at any point, it will not be possible to account for this 

without complete restructuring.
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Thus point (iii) is not satisfied by the hierarchical model, and in fact neither are points (ii) and 

(iv) since data descriptions and relations within this model are as simple and inflexible as in the 

relational model.

3.4 Benefits of object-orientation: abstraction and methods

The object-oriented model, in the form of the POISE software architecture written in Smalltalk 

80™, was employed for the data modelling task, since it offers the following benefits, all of 

which are within the language capability of Smalltalk 80™.

It naturally supports a hierarchical structure, with inheritance of properties.

It allows browsing of the abstracted information within the hierarchy.

It offers an extensible database (and is therefore able to extend property lists 

indefinitely).

It supports evolution, so the hierarchy may be revised with ease and efficiency.

The option of adding functionality, in the form of object-specific methods, at any point 

in the structure means that a complex real-world entity such as a polymer grade, a class 

of such grades, oir a property can be modelled (as an object within its hierarchy) with 

greater flexibility and detail. (These methods are also naturally inherited and so the 

behaviour of a class at the top of the hierarchy is automatically present for its 

subclasses).

Message passing between objects means that complex relations between them may be 

modelled, such as the.relation between the property objects for stress and strain.

Annotations, graphs, formulae, and so on can be incorporated at any level of the 

hierarchy.

POISE allows externally supplied engineering polymer data, currently from the CAMPUS™ 

database, to be organised and viewed via a class-based hierarchical representation. The benefits
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of a principled navigation facility are therefore combined with the ability to refer to up-to-date 

information, since the system can link up to and gather information from the most recent 

supplier databases. POISE and its development are described in chapter 4, which includes 

discussion of more sophisticated use of the behavioural aspects of object-oriented systems, in 

particular their appropriateness for interaction with other perspectives.

3.5 The need for a principled classification

Having opted for a hierarchical data structure, it was necessary to create a suitable 

classification of engineering polymers for implementation within it that satisfied the criteria 

outlined in section 3.1. The development of this classification and the accompanying analysis 

provide the primary thread in this thesis. This is described in chapter 5, paying attention to the 

issue of different categories of properties and the requirements for a useful factorisation of the 

grades for which they are specified. It is shown how conflicts arising from these considerations 

reflect more fundamental issues behind the principles of classification itself. The resulting 

structure was explored and discussed.
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4. Developing the object-oriented system, POISE
4.1 POISE
4.11 The existing system

At the start of research, POISE had already been written in its basic form on Apple Macintosh 

II computers, from work on an overlapping DTI sponsored project [2^. It was developed 

further throughout the course of the project.

The basis of the information structure, the polymer materials object hierarchy, had been 

implemented with a temporary classification, in place. Interactive facilities to enable viewing of 

the hierarchy and manoeuvring of the polymer classes within the structure as deemed 

appropriate (while ensuring that they carry with them all their subclasses, grades and data) 

were also in place. This functionality allows the end-user of POISE to change the class 

ordering within the hierarchy, thereby supporting evolution.

Plate. 1 shows a snapshot of the Hierarchy Editor window. The final hierarchy (discussed in 

chapter 5), implemented within POISE, is in the top half of the window. Here it is being altered 

by the user to relocate the class PAtsp (signifying transparent polyamide grades) from a 

position outside the Partly Crystalline class to a new position as a subclass of the class PA 

(polyamides), which lies within the Partly Crystalline class. Such changes are easily performed 

using “drag and drop” techniques with the computer mouse.

The object-oriented database was in operation and was developed further throughout the course 

of the research. Means of importing properties, data and comments from CAMPUS™ into this 

database had been implemented. Information is dynamically analysed during the translation 

process into initial positions in the class hierarchy, based on the materials family names given 

by the supplier companies. Further structure changes introduced incrementally to the model 

using the Hierarchy Editor are seen by fresh releases of the CAMPUS™ data. The system was
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designed so that it enables persistence of data and the data model from one session (or one 

user) to another, and from one platform to another [271.

Access to a visual display of the class and grade information within POISE is facilitated by a 

feature of POISE (already in existence but further developed throughout this research) termed 

the Property Comparison tool [2J. This may be employed to explore the nature and consistency 

of the data within the classes and to compare data between classes, by displaying one or more 

labelled histograms, with axes, in a resizable window. A histogram shows the data distribution 

for a class in the hierarchy, for any property specified for the class. Data and distribution 

information is stored in the class object, rather than retrieved at the time of querying. Browsing 

of the abstracted, or class information is thus facilitated.

Plate 2, for example, shows the nature of the display: it is apparent that the user can. without 

any form of numerical interpretation, see the property ranges for any class, compare them with 

other classes at the same or a different level in the hierarchy, and pinpoint immediately 

anomalies, or the best and worst performers in the range.

A mouse click on one or more histogram bars enables access to a list of the grades in the 

property range represented by those bars. Selection of one of the grades from the list results in 

a Grade View window, with the name of the grade and all of its property values, to be 

displayed.

At the point of data capture, all properties are introduced at the top of the hierarchy, i.e. the 

property objects are located within the most general class. Polymer, and inherited down 

thruugh the hierarchy to the subclasses and finally to every grade, where the individual data 

values are held. Property objects take the form of Partial Template Objects, or PTOs, so called 

because they define part of the data structure of an object onto which they are “installed,” or 

attached [2^. A PTC for, say, density, installed onto the materials class object Polymer, 

provides a datum location for the density value of each of the members of that class and its 

subclasses. PTOs for other properties will complete the data structure for the Polymer class.
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Methods (or functions) may be added to property and materials class objects via the interface 

within the Smalltalk™ programming environment.

Three main components of the POISE architecture may be identified as particularly relevant,

namely the persistence environment, concerned with the automatic storage and maintenance of

object transactions; the raw data acquisition environment, providing the gateway to third party

data; and the high level classification environment, offering a means of experimental

information structuring. These components enable POISE to provide a hierarchical model of

the domain, with inheritance, that has an extensible database and may be allowed to evolve

according to user requirements. It also offers abstraction, the ability to model complex entities

(such as materials classes and properties) and the relationships between them, and the ability to

replace existing data with more current data (without disturbing the model).

4.12 Further developments

To allow a user to exploit the extensibility feature, it was necessary to modify the interface and 

incorporate mechanisms to enable new classes, new grades, new properties and new data to be 

added. This was achieved by means of menu options at the appropriate point in the interface.

The menu for adding new classes and grades, for example, may be found by clicking on the 

narrow bar above the hierarchy in the Hierarchy Editor window, Plate 1. These options, when 

selected, trigger the creation and initialisation of new objects (or access to existing ones for 

modification); self-explanatory windows on the objects concerned allow entry or alteration of 

the specifications in a very straightforward manner. For example, definition and redefinition of 

properties are achieved as illustrated in Plate 3, which shows a window on the property object 

for density. Its units and datatype may be altered at any time, together with information on the 

display of density data and general comments about the property itself as required. Whether it 

is a general or a special property (i.e. whether it has general applicability to families in the 

hierarchy or relevance to polymer categories not specified in the hierarchy) is also noted here: 

this matter is discussed in depth later on.
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A tool to move properties within the hierarchy structure was developed. Clicking on a class in 

the hierarchy - see the upper part of the Hierarchy Editor window, Plate I - causes a list of the 

properties specified for that class to be displayed on the lower half of the screen. Simple 

promotion and demotion facilities enable any property, once selected, to be relocated up or 

down the hierarchy as appropriate. This control is particularly important whenever a superclass 

has been repositioned. In this case selection of the class PA has resulted in the property water 

absorption, which is defined by this class, to be displayed.

An important task at this stage was to refine the hierarchy so that suppliers' classes fell in line 

with the chosen structure and to manoeuvre the properties to appropriate positions within it. It 

was found that most properties apply to all polymer grades, and so should be defined at the top 

level, but that some are redundant for certain classes of polymer. For example, melting point is 

of no use in describing thermosets, and so is more usefully defined within the Thermoplastic 

class, which is where it was placed. This is a good example of the sort of optimisation that is 

difficult within a flat-file database.

Also incorporated into the system was a facility for searching through the database so that 

shortlists of grades could be produced on the basis of certain criteria. For example, those grades 

with a particular property defined, those with values of a property within a certain range, or 

those with specified keywords in the text of their comments can now be shortlisted.

Searching is not a primary aim of this system but it proved a useful system development aid 

when it came to checking the data, comments and grades that were in the system. Searching by 

name allowed known grades to be accessed. Once the shortlisting facility was established it 

was a natural step to extend it to the Property Comparison function; it is now possible to create 

shortlists on the basis of selected bars in the histogram and then view those shortlists on a 

different Property Comparison window for a different property. This allows a process of 

incremental “zooming in” on a group of grades, which is performed under the complete control 

of the user. Plate 5 shows this in action.
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These were the initial improvements on the POISE system: ail were based on the perceived • 

requirements for a generic polymer materials information system.

Further analysis of the representational problem revealed inadequacies in the classification 

structure implemented within POISE, which failed to group together grades similar by virtue of 

certain engineering properties and their shape or form. Further modifications were required to 

deal with this, involving the incorporation of an additional classification structure. This is 

discussed in section 6.4.

4.2 The use of methods - a costing algorithm

An important feature of object-oriented systems is their ability to accommodate functionality 

(numerical models or algorithms) at appropriate points in the structure. In the context of 

Smalltalk 80™ and, specifically, POISE, this aspect can enable complex modelling of the 

polymer domain entities in the hierarchy. Thus an object may comprise, in addition to data, 

“methods” that employ those data and describe some behavioural aspect of the entity 

represented by the object: the polymer grade or class.

As a simple example, a property object for density may incorporate methods enabling the 

translation of its units from g/ml to kg/m .̂ Not only would these methods cause all.displays of 

the density units to change, they would also calculate the new values of the property for those 

grades with density defined. Clearly this algorithm would have no relevance for other property 

objects nor for any other sort of object and would be redundant and confusing if specified 

across the system: realistic modelling of the domain and its entities is therefore made possible 

by this feature,

A more sophisticated use of object methods has been proposed [27]. This involves adding 

functionality to estimate the cost of an injection moulded plastic component. A number of 

formulae relating to this calculation have been sourced. Barrie [29] suggests that the production 

cost per part (P) can be found from the following:
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P= {(l.l).w.p. lO^} + {mhr/3600 . cycle time} +

{[mhr/units per month]. 1000. [0.013 . (w.N)*'^+0.34]}............................ ( I)

where

w = mass of one component (grams);

p = raw material cost per tonne;

mhr = machine hourly rate;

N = number of impressions per mould;

cycle time is in seconds, and units per month is in thousands.

The first term is the materials cost experienced by the moulder (the factor of 1.1 is to allow for 

waste); the second term is the production cost associated with making one part; and the third 

term is an estimate of general machine costs, combining the intensity of use with overall costs 

based on machine quality.

Cycle time can be calculated from material properties as follows [30]:

Cycle time = Filling time + Cooling time + Demoulding time.......................... (2)

where:

Filling and Demoulding time are machine dependent, and

Cooling time = (Material constant).t^....................................................... (3)

Here

t = wall thickness (mm), and

Material constant = l/[l6a] .{(Melt temp. - mould temp.)/(Freeze off 

temp. - mould temp.)}-............................................(4)

where
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a = thermal diffusivity (10^m-s-‘);

Freeze off temperature may be taken as the crystallisation temperature for partly Crystalline ' 

polymers and the glass transition temperature for amorphous polymers.

A number of the values of these parameters can be found by consulting tables, for example of 

wall thickness and machine time with respect to machine size, in appropriate texts [31], or rhay 

be obtained from in-house information if the user is a manufacturing company.

This algorithm transcends the boundaries of the materials perspective, but the calculation draws 

on a number of materials properties: for example, thermal diffusivity, freeze-off temperature, 

and density (in the context of component mass). Thus methods for accessing data within 

polymer material objects will be useful for providing the correct information about the relevant 

material, with the appropriate units, for insertion into the algorithm.

It is helpful to consider how such an algorithm - an example of data manipulation across more 

than one perspective - may be implemented. The other perspectives required to model the non- 

material data are:

A manufacturing perspective, which will have class definitions for:

Production Schedule (holding such information as units/month and number of impressions per 

mould);

Processing Machine (the machine in question will be an instance of the Injection Moulding 

Machine subclass and will have information on the machine hourly rate and machine time), and

A product perspective, which will have a class definition for.

Product Description (giving a class of components and their exact geometries, the wall 

thickness, etc.).

A prototype such implementation has been created by Ogden and Demaid [26], using basic 

models for manufacturing and product perspectives with hypothetical machine and artefact
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examples. The algorithm itself was split up so that its parts could be calculated in the relevant 

perspectives and classes.

The final calculation was performed in the Production Schedule class of the manufacturing 

perspective, which responded to the message “cost” using a process called delegation to 

share out various tasks between other classes and perspectives and bring together the returned 

data to calculate the cost per artefact.

For example, the mass of the artefact was calculated within the Product Description class of the 

product perspective, using the value of its volume and taking its density value from the 

material grade within the class PA in the materials perspective. Cycle time was calculated in 

the Processing Machine class of the manufacturing perspective, which had to delegate to the 

Product Description class of the product perspective for the wall thickness value and to the 

materials perspective for the material constant (calculated by methods installed on the PA 

class).
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5. Developing a principled classification for 
engineering polymer materials

5.1 Classification

According to Simpson [32], classification is “the ordering of organisms into groups (or sets) on 

the basis of their relationships, that is, of their associations by contiguity, similarity, or both.” 

Taxonomy is “the theoretical study of classification, including its bases, principles, procedures 

and rules.” Taxonomy has also come into accepted use to designate the end product of the 

taxonomic process. Carl Linnaeus (1708 - 78) is widely credited with having created the first 

classification of living organisms, although Adanson, his contemporary, is thought to have 

formalised the structure of the biological taxonomy. Since then there have been few rigorous 

applications of formal taxonomy outside the field of biology. There is [33] “remarkable 

agreement among various authors in the field that the present system of taxonomy attempts to 

fulfil too many functions and as a consequence does none of them well. It attempts (1) to 

classify. (2) to name, (3) to indicate degree of resemblance...,(4) to show relationship by 

descent - all at the same time.” Nevertheless biological taxonomists have developed an 

organised body of knowledge that is both useful and consistent to a high degree. It is the 

intention of this study to apply some of their theory to the domain of plastics materials.

Aristotelian logic 1341 emphasised the need to discover and define the “essence" of a 

taxonomic group, which should give rise to properties that are inevitable consequences. This 

brings to attention the distinction between “natural” and “arbitrary” classifications. Gilmour 

[351 emphasises that the nature of a taxonomy depends on its purpose: if the purpose is 

restricted, then the resulting classification is a special classification (“arbitrary”), and will 

convey less information than a general or “natural” one. It has been the aim of this research to 

find the most natural classification for plastics materials and to define classes that best convey 

the “essence” of the grades of engineering polymer they subsume. Such a classification should 

then approach the ideal of being a user-independent representation of engineering polymers.
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Using the elements in place of polymers, as an analogy, the periodic table is a system that gives 

rise to “natural” classes, by virtue of the fundamental principles on which it is based (the 

arrangement and numbers of subatomic prides). The groups (e.g. the halogens) contain 

elements that exhibit consistent behaviour regardless of the context in which they are viewed.

A useful taxonomy for plastics materials, then, should group together similar grades of 

engineering polymer and abstract important information, which summarises the behaviour 

shared by the grades, into classes in a principled fashion. In a computer information system it 

will be populated with property names and their values as provided by polymer grades. Classes 

must be carefully chosen so that they form, in this case, a hierarchy that covers the domain 

completely and will not be invalidated by the addition of unforeseen new materials or 

properties, thus ensuring extensibility. It is through the ability of the taxonomy to accept and 

group together plastics, as described by their properties, in a well-conditioned and extensible 

form, that the underlying precepts are shown to be useful.

Fundamental decisions regarding the principles that control the definition and naming of 

classes and their position within the classification structure to create a taxonomy are needed.

The above requirements mean that classes should be:

Distinctly bounded

Exclusive (no overlap between classes)

• Fully complementary (no “gaps” - all sub-classes should be subsumed by the super-classes 

and should not violate their ancestry).

i.e. obeying the semantics of strict inheritance as described by Blair 1131. In the attempts to 

devise viable taxonomies it has been recognised that there is a need to cater for a minimal 

number of exceptions while avoiding such complicating features as multiple inheritance (where 

a class may have more than one parent) [36], [37], [_[].
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5.2 An analysis of existing polymer classifications

In order to obtain an understanding of the fundamental principles generally considered to give 

rise to the character of a polymer, which therefore determine which polymeric materials may 

be considered as similar, an analysis of existing classifications was performed. This revealed an 

apparent tension between classification for science and classification for use. which accords 

with a conflict found during the investigation of the principles behind the creation of a plastics 

materials taxonomy (detailed later) and inspection of the nature of plastics materials properties. 

This conflict arises from the fact that two requirements, namely the need to base classes on 

fundamental polymer domain principles to ensure extensibility and high level abstraction, and 

the need to reflect similarities relevant in an engineering context, appear to be mutually 

exclusive.

Books with a strong reference theme are represented well by Brydson [5] who assumes a 

fundamental division within plastics materials between:

Thermoset and Thermoplastic

Amorphous, Partly Crystalline and Rubber-like

The first classification reflects differences in degree of bonding: the long-chain molecules of 

thermoset plastics are extensively cross-linked during processing, resulting in a material that 

cannot be made to melt or flow. There are no primary bonds between molecules in 

thermoplastics and the materials can be made to soften and take on new shapes by the 

application of heat and pressure.

The second classification is based on microstructure for the distinction between amorphous and 

partly crystalline, while degree and type of bonding and molecular forces are more important 

for the rubber-like categoiy. Thus inconsistencies are introduced into classification criteria at 

an early stage. All of the factors considered, however, are influential, i.e. affect a wide range of
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properties that describe the physical behaviour of plastics under certain conditions, and have 

implications for the appropriate use and processing of plastics.

Brydson divides these classes one stage further into families based largely on the primary 

monomers in the polymer chain, e.g., PVC, polystyrenes, etc.

The Rubber and Plastics Research Association 1381 includes an elastomer class on the same 

level as thermoplastic and thermoset in order to separate out and provide a grouping for 

materials with rubbery characteristics at a high level.

Books written from a teaching perspective, e.g., Billmeyer [39], emphasise differences in 

molecular structure by classifying heterochain thermoplastics (i.e. those polymers whose 

backbone contains atoms other than carbon) as separate from those which have a continuous 

carbon backbone (“homochain” thermoplastics), in addition to the aforementioned partly 

crystalline, amorphous, thermoset and thermoplastic distinctions.

Plate and Papisov [401. take Billmeyer’s approach a stage further. They divide Heterochain and 

Homochain thermoplastics into subclasses depending on which main chain atoms and 

functional groups are present. However only polymers of a relatively simple structure are 

considered and the classification of those with combinations of different main chain atoms and 

functional groups is not attenipted.
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Boenig [411 describes a classification based on molecular mass using terminology coined by

Staudinger in the I920’s:
NAME HEMICOLLOIOS (LOW

Polymers)
MESOCGLLOIOS (MESO- 
POLYMERS)

bUCOLLOIOS (HIGH
Po l y m e r s )

MOLECULAR MASS. 

No. OF SEGMENTS 

Chain length (A) 
Comments

T.5üü̂ 523Dü 
20 -1 0 0  

50 - 500

If linear, DISSOLVE 
WITHOUT NOTICEABLE 
SWELLING. Low VISCOSITY 
SOLUTIONS.

5:000 - 10,000  

100 -1 ,0 0 0  

500 - 2,500  

Soluble if linear and
EXHIBIT SWELLING 
DEPENDING ON CHAIN 
LENGTH:

> lU.OOO ■
> 1 ,0 0 0

> 2,500

D issolve with intense
SWELUNG IF LINEAR.
D ilute solutions are
VERY VISCOUS.

Table 2: Staudinger’s polymer classification

This classification is based on a very important feature Of polymers and results in clear 

divisions between polymers in terms of those properties affected by molecular mass, 

particularly solubility related properties. However engineering polymers fall almost entirely 

within the eucolloids class and their solubility characteristics are rarely their most important 

feature.

In sorhe cases polyrners are distinguished by the technique used to produce them. These 

techniques fall into three main categories: addition polymerization, condensation 

polymerization and rearrangement polymerization, with addition polymerization being divided 

further into free radical, cationic and anionic polymerization [5J. The reaction environment 

may also produce a further factoring in some cases, depending on whether polymerization is 

performed in bulk, in suspension or in emulsion form. Billmeyer [ibid\ prefers to distinguish 

polymers by the mechanism of their polymerization reaction and divides them into step- 

reaction and chain-reaction polymers. Although some of these factors result in a factoring 

according to chemical features of the polymer, this approach fails to give insight into possible 

groupings of plastics with similar engineering properties.

An unusual classification based primarily on a combination of microstructural properties 

(crystallinity and degree of cross-linking) and temperature (T is use temperature. Ta is glass
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transition temperature and Tm is crystalline melting point) is given by Van Krevelen using 

Leuch’s nomenclature [421:

POLYMER CLASS GENERAL
P r o p e r t ie s

Ra n g e  o f  u s e
TEMPERATURES

DEGREE OF 
CRYSTALLINITY

d e g r e e  OF CROSS 
LINKING

MOaiPLASTS ELASTO-VISCOUS
UOUIOS

1 > ig U U

M ollielasts
(ELASTOMERS)

SOFT & FLEXIBLE 
RUBBERY SOUOS

T > Tg 0 • Low

F ibro plasts TOUGH LEATHERY- 
HORNLIKE SOUOS

Tm> T(> Tg) 20-50 0

F ibro elasts TOUGH AND FLEXIBLE 
LEATHERY SOUOS

Tg<(T <Tm) 0 INTERMEDIATE

D u r o pla sts HARO & STIFF SOLIDS T<Tg 0 0
HARO AND TOUGH 
STIFF SOUOS

T<Tm INTERMEDIATE TO 
HIGH

0

D uro ela sts HARO SOUOS T<Tg 0 INTERMEDIATE TO 
HIGH

Table 3: van Krevelen's classification

This is based on fundamental polymer features but takes into consideration only those aspects 

and properties that cause plastics to be divided into classes with similar mechanical behaviours 

and so, despite its formal approach, still results in a classification with a specific, end-use bias. 

(For example, those with a primary interest in the electrical properties of plastics would not ' 

benefit from such a classification). It highlights the fact that a biased classification cannot 

remain constant under all conditions: use temperature, T, is a crucial variable on which the 

entire classification depends. It is conceivable that a grade that is a molliplast at one, high 

temperature above its glass transition point, may also be classified as a duroplast if it is used at 

a lower temperature, below its glass transition point.

National and international standards give good examples of classification methods considered 

useful to industry, e.g., ASTM D4000 [431. which does not abstract information from groups of 

materials but classifies with emphasis on nomenclature, identifying key features on an 

individual grade level and acknowledging a strong performance imperative. For example.
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ASTM D4000, PÀ120G33A53380 refers to a grade with features indicated by the following 

keys:

PA120: Nylon 6.6 heat stabilised

G33: Glass reinforced with 30% glass, nominal

A: Table A (D 4066) for property requirements

5: Tensile strength, 175 MPa min

3: Flexural modulus, 7500 MPa min

8: Deflection temperature, 235®C min

0: Unspecified

Another such example is found in the ISO standard for the classification of vulcanized rubber 

[441. To each material is assigned a designation from each of three categories simultaneously, 

referred to respectively as “Type,” based on resistance to heat ageing, “Class,” based on 

resistance to swelling in oil, and “Group,” based on low temperature resistance. Thus a material 

can have a designation BCD implying it is of Type B (referring to the range of temperatures to 

which it is resistant, in this case up to 100°C), Class C (referring to a volume swelling not 

exceeding 120% in oil) and Group D (indicating that it is non-brittle down to -10“C). A further 

two stages of categorisation may be attained by considering another two groups of basic 

physical properties. There is no hierarchical structure to this classification and again the 

description is solely in terms of measured physical properties.

It is important not to mistake trends in behaviour for distinctions between septate classes; 

Billmeyer, for example, says that increasing intermolecular forces result in a tendency to go 

from amorphous to partly crystalline to fibrous. This is not a statement of clear boundaries 

between these three states: intermolecular forces are not the only factor and material types 

defined by microstructure are being confused here with material forms defined by process (a
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fibre being a partly crystalline thermoplastic that has been extruded under the conditions 

necessary to impart the required alignment of molecules and shape of the final product).

In a different approach Boenig [ lU  reiterates this classification but bases it on the values of the 

initial elastic modulus:
TYPE RUBBERS PLASTICS HBRES

hLASTlC MODULUS 
(dynes/cm 2)

1 0 * . IQ / 1 0 * .1 0 %  . 1 0 ' ' * -  I Q l l

Table 4: Boenig’s classification

Confusion arises here because a classification based on the value of a single property results in 

classes of material that are commonly discriminated because of their likeliness to take a certain 

physical form, where the usefulness of that form depends on the property in question. It is 

therefore a circular description and would be more accurately expressed simply by referring to 

the property itself.

It is seen that existing classifications are often shallow and seldom principled; many that arise 

from conventional terminology comprise classes that overlap, often because of the need to 

address both molecular structure and use and because th e s e  t w o  fa c to r s  d o  n o t  always run in 

parallel.

The main points illustrated by this analysis are as follows:

• The recurrence of thermoset and thermoplastic classes supports a decision to incorporate 

them at a high level in the hierarchy. However, further factoring into chemical families 

defined by their functional groups introduces problems as such families will often subsume 

both thermoplastic and thermoset grades (for example, the polyurethanes).

The inclusion of an elastomeric/non-elastomeric distinction is common but the position of 

the elastomer class varies from classification to classification. It is placed on the same level 

as the thermoplastic and thermoset classes where use is important but subsumed within 

thermoplastics, on the level of amorphous and partly crystalline, by Brydson. However,
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elastomers can be either thermoset or thermoplastic and furthermore some chemical 

families may contain elastomer grades without being entirely comprised of elastomers.

Including an elastomer class introduces inconsistency into its level wherever it is placed in 

a classification defined by molecular or microstructural features, since, although many 

elastomers share certain molecular features, elastomericity is caused by a complex 

combination of factors including temperature, and an elastomer class has to be defined , 

according to observed physical behaviour rather than molecular character.

From a scientific viewpoint the class is clearly difficult to define and place, yet for practical 

purposes it is convenient to consider elastomers in a class of their own, as they have well 

defined properties and uses.

• The division between partly crystalline thermoplastics and amorphous thermoplastics can 

be considered principled from a chemical point of view since a partly crystalline polymer is 

strictly defined (it undergoes a* phase change to a regular microstructural form on cooling). 

Thus the classes are distinctly bounded. However there are still chemical families whose 

grades may be divided between amorphous and partly crystalline, especially where 

crystallinity is process dependent, e.g., the strain-induced crystallinity of PET, and there 

can be a problem deciding at what point the degree of crystallinity becomes important 

regarding its effects on the physical properties. (PVC, for example, has approximately 5% 

crystallinity but is generally considered an amorphous polymer). However, if degree of 

crystallinity were to be included as a property of a polymer, classes that would have been 

• subsumed by the partly crystalline thermoplastics would no longer benefit from the 

important abstracted information associated with, for example, the absence or presence of a 

melting point, distinct only for partly crystalline thermoplastics.

It seems easier to form a classification if a bias towards a particular end-use is acceptable. 

To cover all conceivable perspectives would, however, result in multiple hierarchies, which
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would be contrary to the aim of producing a single structure independent of any user 

perspective.

• The repeated use of the common chemical family classification supports the view that 

chemical family names provide a useful reference for meaningful general information to be 

inferred about the properties of a plastic.

5.3 Engineering polymer materials properties

Inspection of the nature of the numerical information pertaining to engineering polymers 

provided an insight into the structural requirements of a model that is to represent these data in 

an easily accessible manner. It also highlighted some important issues to be considered when 

formulating the principles behind a classification structure.

It was observed that an individual grade of plastic can be described by a potentially infinite list 

of properties, as new tests and properties are constantly being devised to illustrate material 

behaviours. A property, most simply, takes the form of an attribute, such as density or melt 

viscosity, and a value associated with that attribute.

Classes within a hierarchy of plastics materials will specify the properties required to describe 

the instances (grades) they subsume. The properties will be inherited by those instances via any 

intermediate subclasses. It must be possible to define properties at any point (class) in the 

hierarchy without violating the class description. Allowing selective specification of properties. 

as appropriate means that properties are not wastefully specified where they are redundant 

(which would lead to empty data locations for all grade members of such a class) and therefore 

enables efficient data structuring. A good example is the property melting point, which would 

have no place within a class of thermosets nor all of its subclasses.

For materials destined for production into bulk plastic forms a grade is usually supplied in the 

form of granules for injection moulding. The values of most of its properties will be obtained 

from tests on a further processed sample, usually one formed from injection moulding into a
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shape that complies with standard test specifications. Many of these properties are standard, i.e. 

quoted by most suppliers for their own products and measured using widely accepted test 

methods and conditions, on a specimen with universally accepted processing conditions and 

geometry. For grades destined for use in other forms, such as films or fibres, specific tests are ' 

performed on differently processed samples. These properties and their values can be 

considered to be more dependent on process and geometry. The performance properties of a • 

complex, final product will be yet further affected by shape and process considerations.

The divisions between grades in terms of their property characteristics are fundamental to the 

problem of ordering and classifying plastics materials. Five different types of polymer 

properties have been recognised:

Intrinsic properties, such as density, modulus and transparency, which reflect 

fundamental atomic and molecular arrangements. Such properties are largely 

independent of whether they are tested on a granule supplied for injection moulding, 

simple test pieces or fully finished artefacts (subject to some exceptions, such as the 

modulus of highly aligned polymers).

Engineering properties, such as tensile strength measured using a specific specimen 

geometry, which, although they are strictly artefact properties, i.e. subject to 

geometrical influence and loading type, are taken to be generic properties for the 

purpose of materials comparison. In general such properties are those of the bulk (3D) 

material.

Specific engineering properties, such as the piopcrtics used to describe a film or thin 

sheet, which requires tests especially designed to be applied in 2D, or the properties that 

describe fibres, and are therefore usually applicable only in ID. Such properties 

approximate more closely the geometries and/or loadings of an engineered product.
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Artefact properties, produced by testing final products in a manner similar to the • 

conditions experienced in use (although usually accelerated), for example impact tests 

designed by a car manufacturer interested in the performance of a plastic car bumper. Or 

tests designed by a kettle manufacturer concerned with a plastic's performance under 

cyclic boiling.

Specific process related properties such as the reduction of strength at the weld-line of 

an injection moulded part.

In general, it is observed that only the first of these five categories encompasses properties that 

are quoted for a grade regardless of its intended end use, and that may be included by way of 

any inheritance hierarchy designed to represent generic knowledge. The second category is so 

broadly quoted (even for those grades that are recommended for extrusion, since these grades 

can often also be injection moulded) that it may also be considered to be a generic category.

The last three encompass properties that are only quoted when the grade is destined for specific 

applications. In a hierarchy containing only chemically defined classes, therefore, these need to 

be specified via a route other thm inheritance, for example introduced at grade level, as they 

may not necessarily be relevant to all grades of any class.

This division of properties between generic (for general comparison) and use-oriented (to 

support selection for a particular use) leads to one manifestation of a fundamental problem 

encountered during the development of a classification of plastics materials. This is discussed 

in section 5.8 in greater depth, but, in summary, is the inability of any simple taxonomy to 

accommodate both the fundamental scientific tenets and a more practical, engineering 

imperative. The illustration of this provided by the property type analysis highlights the 

implications for the representation of numerical data. A single hierarchy based on the scientific 

approach will be implicitly extensible and will accommodate the generic properties but it fails 

to satisfactorily represent use-oriented properties.
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This is an important issue because the number of special tests is very large and materials 

supplier companies expend much effort conducting tests to industrial customers’ specifications. 

Any plastics information system needs to recognise the presence of these very specific 

additional property lists and allow access to them.

First the development of an engineering polymer taxonomy of single hierarchical structure that 

complies with the criteria of extensibility and independence from user bias is detailed.

5.4 Criteria for classifying engineering polymers

To clarify the issues involved in the creation of a generic plastics taxonomy, the definition of 

“similar” needs to be carefully considered. In extremis, grades of plastic could be considered 

similar in terms of:

Physical properties, or:

Chemical structure.

If physical properties alone are considered, only the observable physical behaviour of a grade is 

taken into account when deciding the other grades to which it is most similar, ie., to which 

class it belongs. This approach requires a formal statistical methodology. The resulting 

classification, based entirely on properties and property values, may or may not reflect trends 

in chemical composition.

The most simple such analysis would be a univariate one, i.e. based on the values of just one 

property (or one set of correlated properties). This may produce, for example, a division of 

grades between those with high, medium and low impact strength.

The diversity in the behavioural aspects of plastics means that any “class” so produced will not 

demonstrate consistent behaviour overall. In practical terms, plastics that are similar with ' 

respect to one set of related properties are quite different when a different set is considered.
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Further factoring according to other properties would extend the classification but the resulting 

structure would be biased according to the order of prioritisation of the chosen properties. The 

boundary between one class and another (i.e. the difference between “high” and “low”) would 

be, in some cases, arbitrary. Figure 2 illustrates four possible alternative factorings based on 

physical property sets which result in different hierarchies according to whether structural, 

thermal or electrical properties are considered to be important.

Mjrmeffolymer

Figure 2: Taxonomies based on physical properties

The ISO standard for the classification of vulcanised rubber [MJ is an example of this 

approach. The system provides a means of nomenclature, by assigning type codes, rather than a 

classification. The bias towards assumed user interests is apparent: the standard has allocated 

resistance to three phenomena (heat ageing, swelling in oil and temperature) as the most 

relevant properties of this class of material; this may not be the case for all users of this 

classification.

To take all properties into consideration simultaneously would require a multivariate statistical 

analysis of the available data. The resulting classification would draw together those grades of 

similar form, process, etc., by virtue of their shared property profiles.

Tatsüoka [^ ]  describes methods of ascertaining profile similarity between individuals for the 

purpose of psychological research, where the profile is based on a number of attributes. He 

identifies two problems: the “classification problem” in which the purpose is to ascertain which 

of several group profiles an individual’s profile most closely resembles, so that the individual 

may be “classified” as a member of that group; and the “taxonomical problem,” where the
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purpose is to form groups of individuals who have similar profiles, in which case there are no 

pre-defined groups and the task is to generate the groups empirically. At this stage we are 

concerned with the taxonomical problem for plastics materials.

In his description of the “Generalised Distance” method developed by Mahalanobis (1936), 

Tatsuoka brings to attention two important issues that are relevant to any statistical approach.

Firstly, in deciding the similarity between any two entities based on their numerical attributes, 

the comparative importance of a given numerical difference between the entities’ scores for 

each variable must be taken into consideration. (For example, when comparing two people, a 

difference of three inches in height could be considered more important than a difference of 

three points on the IQ scale). This may be dealt with by means of standard deviation for 

populations that obey statistical distribution laws, but such a method would not apply to a 

sample of engineering polymers because of the non-random distribution of their property 

values (influenced deliberately by the addition of fillers, reinforcements, etc).

Secondly, all statistical methods must take into account any correlation between variables. For 

many plastics properties this will be significant (for example the correlation between glass 

transition temperature and heat deflection temperature or between tensile strength and impact 

strength) but not quantifiable in general, and would therefore render a statistical analysis 

inaccurate at best. Manly 1461 criticises Cluster Analysis in general, of which the distance 

method is but one approach, as being of use only when the groups are very distinct. An overlap 

between groups tends to result in structures that are not reproducible from repeated analyses. 

The assessment of results from any method tends to incorporate a rather large subjective 

component.

In addition to the foregoing disadvantages, statistical methods fail to take account of properties 

that may only be described qualitatively.
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But the most important point about a statistical, property-based approach is that any taxonomy 

it creates would not support an extensible data structure: the introduction of new properties 

would present a new taxonomic problem requiring fresh analysis. This would place the initial 

taxonomy at risk of distortion or even destruction. Although not immediately obvious, the 

introduction of new grades could also present a new taxonomic problem (it may appear that 

this only introduces a classification problem; but new-grades could require additional classes 

high in the hierarchy). Thus the addition of new properties or new grades may call for a new 

taxonomic structure, meaning that the original was not extensible.

À taxonomic analysis based on similarities in terms of physical properties alone was therefore 

considered an inappropriate approach.

By contrast, a chemical structure approach should result in an extensible structure because it 

reflects the fundamental elements that make up a polymer molecule. Taking no account of 

property values or observed physical behaviours, the resulting classification will be based 

solely on criteria of similar molecular structure and features. The idea is that this will produce a 

“natural” classification and that grades with similar physical behaviours will be grouped 

together automatically; though in practice this is likely to be valid only for properties closely 

dependent on molecular structure, and not for those with dependencies on external factors such 

as geometry, or fillers. These proposals were explored in detail, as follows.

5.5 Some chemical hierarchies

Detailed attempts at creating a hierarchy based on molecular aspects alone are illustrated 

below. It is important at this stage to differentiate between two types of hierarchical structures: 

a) compositional hierarchies of nested entities, which take account of scale, so that a 

subsuming entity is larger than those part entities it subsumes, and b) control hierarchies, where 

the entities higher up the hierarchy exercise broader influence than those below it. Control 

hierarchies may or may not be nested.
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Salthe [£7J proposes that the world is ordered in both of these ways simultaneously. The 

following illustrations may appear on first viewing to depict nested hierarchies of polymer 

components (bond types, main chain atoms, functional groups, etc). However they are all 

control hierarchies, wherein fundamental features of molecular structure are the primary 

criteria for factoring, assuming they will exercise influence over the properties of the materials 

subsumed. Descending through the hierarchies, divisions are based on smaller and smaller 

differences in molecular structure, but the entities subsumed are not those molecule parts 

specified, but rather molecules containing those parts.

Figure 3 shows a hierarchy based solely on chemical considerations, that is, the atoms and 

groups of atoms (functional groups) present within the engineering polymer molecule.
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Figure 3: A purely chemical hierarchy

This leads to a very complex structure with an almost endless list of possibilities of atom/group 

combinations. No consideration is given to whether the combinations exist, or are likely to 

exist, in real materials: such considerations would undermine the potential for new and 

currently unpredictable molecules and would therefore preclude extensibility. The approach is 

too general to offer real organisation and does not group together materials in an insightful way 

with reg^d to their observable physical properties. It also ignores many important spatial 

considerations which are brought into the picture in the next attempt.
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Figure 4 shows a hierarchy based on chenücal features considered to be important within the 

domain of polymer chemistry, including multiple bonds as well as atoms and functional 

groups. It is designed to consider sufficient factors to cover the domain completely without 

introducing unnecessary complexity, and to order the important chemical features within a 

hierarchy that takes account of the approximate shape of the molecule, the position of the 

features, the monomer order and the degree of bonding- within the polymer molecule. This is a 

good illustration of the number of factors that need to be considered, and the difficulty of 

including them in a tree-like structure, even when the issue of the elements/groups present has 

been simplified considerably.

Inspection of the resulting groups confirms some useful generalisations.

The class of heterochain polymers whose back-bone contains oxygen, nitrogen or sulphur falls 

neatly out of this classification and, as expected, contains materials with properties that are 

usually more temperature stable and that display, for the most part, high strength, toughness, 

stiffness and abrasion resistance. Thermosets and thermoplastics are just discernible as separate 

groups; the thermosets as the first branch of the “Complex, branched structures” class and the 

thermoplastics as the rest, although the division is perhaps not given the emphasis it deserves 

in this classification.

The presence of double bonds in the molecular structure often implies the potential for 

elastomeric behaviour, but does not delimit any elastomer class (illustrated, for example, by 

ethylene-propylene elastomers, which are formed from the copolymerization of propylene with 

ethylene and would not be picked up by the double bond criterion). Fluorine containing 

polymers often show good resistance to hostile environments (such as acid, organic solvent, 

etc).

However individual effects can easily be off-set or even negated by other factors and 

unfortunately it cannot be said that property values generally accord with the resulting classes. 

Property types are certainly not accounted for by such an arrangement.
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In addition, finer details, which have observed effects on the properties of polymers, such as 

the stereochemistry of those with asymmetric carbon atoms, which has important implications 

for the crystal structure and related properties, or the configuration around a double bond, (a 

good example being isoprene in the c/5-1,4 configuration which has well known rubbery 

characteristics as compared with other configurations of the same molecule) are difficult to 

integrate into such a structure without creating excessive complexity. Figure 5 depicts a 

hierarchy based solely on considerations of molecular structure. The additional level of 

confusion that would arise if these were included within a hierarchy based on the polymer 

chemistry, such as that in Figure 4, may be easily inferred.
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The true extent and complexity of the full hierarchy based on just these molecular aspects is 

perhaps better illustrated by the following illustration of the complete structure, outlined in a 

different format.
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It is clear that accounting comprehensively for structural factors would be ah impractical 

task: there are many of them and no clear reasons for their prioritisation within a 

hierarchy. In addition such considerations cannot easily be applied to a set of engineering 

polymer grades as often the structure is not known to this level of detail.

Yet these finer details of molecular structure can sometimes be the most significant 

contributors to the properties and uses of a material. Even if they are ignored, the number 

of combinations of chemical functional groups and bond types is very large, implying the 

need for an equally large number of classes, since every new combination may result in a 

new set of characteristics due to the combined, unpredictable effects of several interacting 

groups. This approach to classification is therefore both unwieldy and produces 

unsatisfactory results.
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Figure 6: A simplified molecular hierarchy

Figure 6 depicts an attempt at a less detailed classification based on molecular features. 

The features with important property implications that were brought to attention in Figure 

4 have been stated explicitly to simplify the structure. Although this hierarchy appears of 

more practical use, it is seriously flawed. For example, there is no obvious place for 

heterochain thermoplastics that also contain fluorine, nor does it give any indication of 

the presence of crystallinity. There will be other features with important ramifications 

(for example the presence of highly electronegative groups, which introduce polarity into 

the molecule) that cannot be included as their classes would overlap with existing ones. 

All other hierarchies based on this approach were discarded for similar reasons.
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5.6 The optimum structure

It is proposed that a taxonomy based on the initial factoring of all plastics into the 

superclasses Thermoplastic and Thermoset followed by the factoring of Thermoplastic 

into Amorphous and Partly Crystalline provides the starting point for a classification 

system that will group together plastics with broadly similar properties, since these are 

important distinctions which reflect fundamental and far reaching differences between the 

classes they subsume.

The subclasses of these major classes must be chemical classes, and are chosen so as to 

describe their members in a broad and straightforward way, i.e. according to the major 

chemical groups on and in the polymer chain. Such classes, often made distinctive by 

their behaviour with respect to certain properties only, are already familiar. For example, 

polyamides (Nylons) share a sensitivity to moisture which acts as a plasticiser. Whilst it 

is possible for a property of one grade of Nylon to be radically different from that of 

another because of some reason such as a subtle detail of molecular structure, or process 

or geometry (highly aligned polymer chains designed to promote stiffness of a thread for 

example), it is argued that their grades will exhibit broadly similar characteristics for the 

purpose of materials comparison.

Decisions made early on in the design process use the nomenclature of these accepted 

plastics classes together with other broad generalisations. Materials selection for a new 

front panel assembly of a British Rail train is reported by Narraway 1481 who describes 

how design requirements included adequate strength and rigidity combined with ease and 

economy of manufacture, transparency and the ability to accept, paint. This high-level, 

verbal specification excluded all glass-reinforced plastics; acrylics were considered 

unsuitable for the impact requirements, and PVCs were eliminated because of their low 

temperature structural properties.
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These chemical family classes have many advantages. They enable the convenience of 

using an accepted nomenclature .and capture the general information considered useful by 

designers. They convey the essence of a material with a distinctive, recognisable 

character; something which, for example, the phrases “All plastics with an impact 

strength over x and Young’s modulus greater than y,’’ or “All plastics containing a double 

bond in an ethyl group side chain" do not achieve. *

Grouping the chemical family classes and abstracting their information into designated 

superclasses requires the ascription of a physical or microstructural type to an entire 

family. This is not always possible, but a compromise may be reached. Where chemical 

classes are split between superclasses the problem may be dealt with by appropriate 

nomenclature: for example two polyurethane classes can be included: 

Thermoplastic_Polyurethanes and Thermoset_Polyurethanes, the first as a sub-class of 

Thermoplastic and the second as a sub-class of Thermoset. The resulting structure is 

extensible because of the implicit knowledge contained in its chemical and physical 

factoring.

Deeper factoring is possible where broad chemical families clearly subsume other 

chemical families; polyolefins cover polyethylenes and polypropylenes, for example. A 

more detailed factoring than this is prevented by the complexity and the number of 

exceptions it would introduce.

Although an elastomer class would appear to be of practical benefit, justification for its 

inclusion and positioning is not adequate.

Elastomeric behaviour occurs as a direct result of certain molecular features, such as the 

presence of double bonds leading to a glass transition temperature below room 

temperature, or the presence of cross-linking to prevent flow: this suggests its 

applicability within a primarily chcmical/microstructural classification.
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But the definition of a material as elastomeric is decided purely by its physical behaviour 

(e.g. the value of the elastic modulus). This is because there is no single chemical or 

microstructural feature, or clearly definable combination of such features, that enables a 

natural factoring of elastomers to be created. To include an elastomer class would 

therefore be to introduce an approach similar to the physical properties method described 

earlier, and would introduce a bias in favour of a certain physical behaviour at some point 

in the hierarchy. The result of these considerations is that no special class has been set 

aside for elastomers.

Figure 7 shows an outline of the hierarchy that is judged to be the most useful 

representation of engineering polymers. It also illustrates the specification and inheritance 

of properties. The full hierarchy in a different format follows.
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Figure 7; The optirnuni hierarchy, based on microsiruciure and chemical class.
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A working hierarchy of polymer classes
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5.7 Testing the structure
5.71 Implementing the hierarchy into POISE

The implementation of the final hierarchy within POISE is illustrated by a snapshot of the 

hierarchy screen in Plate I. The tools available for the restructuring of this hierarchy, the 

movement of properties and viewing the abstracted data have already been discussed in 

section 4.1. These were used extensively for organising the classes to correspond to the 

final hierarchy and for placing certain properties (such as refractive index) selectively.

5.72 Properties, and the available data set

The data used within the POISE system originate from the CAMPUS"''^* database. 

Although relatively large, specifying approximately fifty properties and containing over 

one thousand commercial grades, CAMPUS™ is typically an incomplete and imperfect 

data set. Its particular weaknesses have been revealed through exploration of the data 

with the Property Comparison tool, and these weaknesses prevented a complete testing of 

the hierarchy.

Specifically, it was found that a large number of properties are universally unpopular: 

invariably, grades do not have values specified for these properties. This has limited 

useful exploration to a few commonly measured properties that give good distributions 

for most classes. These properties are:

Creep modulus at lOOOh 

Density

Heat Deflection Temperature A 

Izod Impact Strength at 23 °C 

Relative Permittivity at I MHz 

Specific Volume Resistivity 

Strain at Break (50 mm/min)

Strain at Break (5 mm/min)
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Strain at yield 

Stress at yield 

Tensile Strength 

Young’s Modulus

Short though this list may seem, it gives a good broad idea of the behaviour of a polymer 

material, covering mechanical, thermal and electrical properties.

Other weaknesses in the CAMPUS™ database arise because of the particular 

manufacturing biases of its contributors. Most are primarily in the business of 

th c n n o p la s t ic s , w ith  th e  re su lt th a t thermoseis are under-represented. Within the 

thermoplastic genre, only a few classes are well populated (polyamides being the largest 

class). Investigations were restricted to those classes with a substantial amount of data. In 

addition to the abstract classes Polymer, Thermoplastic, Thermoset, Partly Crystalline 

Thermoplastic and Amorphous Thermoplastic, three subclasses each of both the Partly 

Crystalline Thermoplastic and the Amorphous Thermoplastic classes have been 

considered in depth. A lengthy inspection of all other classes revealed insufficient data to 

test the structure. However the wealth of polyamide data enabled a thorough inspection of 

this particular class and its subclasses. In addition a small exploration of the copolymers 

present in the database has been performed.

5.73 The abstract classes

For each of the above properties, two Comparators were employed to illustrate the nature 

of the abstract classes. One showed the distributions for the all-subsuming class Polymer 

against its subclasses Thermoset and Thermoplastic, and the other showed Thermoplastic 

in juxtaposition with its subclasses Partly Crystalline and Amorphous.

This investigation revealed so little data for the class Thermoset that it was not 

discernible on the large scale necessary for the display of the Thermoplastic data. The two 

cases where data were discernible were for the common properties density and tensile
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strength; these distributions are illustrated in Plate 3. They show that thermosets have 

densities approximately in the middle of the range for all polymers, but their tensile 

strengths tend to fall below the average for polymers in general.

For each of the selected properties, a comparison of the classes Thermoplastic with its 

subclasses Amorphous and Partly Crystalline (indicated on the Comparator screens as 

simply “Crystalline” for convenience) proved more worthwhile.

For the properties creep modulus at 1000 hours, density, and heat deflection temperature 

A, it was found that the range of values covered by the Partly Crystalline and Amorphous 

classes was approximately the same, but slightly wider for the Partly Crystalline class in 

all cases: see Plate 4.

A similar situation applies for the property Izod impact strength at 23°C, but one 

particularly high value for the Partly Crystallines was evident. This was inspected by 

selecting the bar and calling up the grade view window, which showed the two grades in 

question to be of the family PESU; see Plate 5. These have obviously been classified in 

CAMPUS™ as polyethylenes, probably wrongly as the acronym is more likely to stand 

for unplasticised polyethersulphone, although it has been difficult to verify this. Even if 

they are Amorphous grades, they are still clearly of unusually high performance; there 

was no comment provided that might explain this observation. However the exercise did 

show both the importance of accurate classification mechanisms in an automated system 

such as this, and also the worth of informative commenting.

The property relative permittivity showed nothing of note for the selected classes (again 

the range for the Panly Crystalline class was slightly wider), and the same applied to the 

properties strain at break (50 mm/min), strain at break (5mm/min), stress at yield, Vicat A 

and Young’s modulus. However for strain at yield the Partly Crystalline class showed 

some significantly higher values: these turned out to be polypropylenes but again there
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was no supporting commentary to suggest why their performance should be so 

noteworthy; see Plate 6.

Tensile strength showed some high values for the Amorphous class which turned out to 

be of the PAPPE family (again probably wrongly classified as this is a copolymer of 

polyamide and a polyolefin elastomer which could have exhibited a degree of 

crystallinity).

Finally specific volume resistivity showed a large split between the thermoplastics, 

reflected across both the Amorphous and Partly Crystalline classes, see Plate 6. 

Inspection of all parts o f tlicsc distributions showed, however, that the same polymer 

families were present in both the high and the low bars, implying that the division was 

not family based, and in addition there was no description for the grades that explained 

their electrical behaviour (although the high resistivity partly crystalline ones did have 

electrical applications, see Plate 7 for an example). It is considered that the shape of this 

particular distribution could be as a result of the very large values of the property itself 

and the way in which it is expressed: different units or a logarithmic scale would perhaps 

be more appropriate.

The overall conclusions drawn from this survey of the abstract classes, for those 

properties with significant data associated with them, are that partly crystalline polymers 

are likely to exhibit slightly higher values of modulus and tensile strength properties than 

amorphous polymers. However the ranges are broadly similar and the lower values are 

also taken by partly crystalline polymers. This could be due to the directional dependence 

of their strength properties (because of molecular orientation) and the effect of the 

method of measurement on the result (despite.standardisation attempts). Partly crystalline 

polymers also seem to perform better under impact tests and tests of tensile stability to 

heat, but are not distinguished by their electrical behaviour and are perhaps not as
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significantly different from amorphous polymers in terms of their measured behaviour as 

might have been expected.

5.74 A selection o f amorphous thermoplastic classes

The amorphous thermoplastics are not well represented on the CAMPUS™ database and 

so classes have been selected by virtue of the presence of their grades and data, for the 

exercise of exploring the potential of the hierarctvy. In this case the classes PS, PVC, 

PMMA and MABS have been investigated for the selected property list, although only 

the three most populated classes of these four were inspected for any one property.

For the properties creep modulus at 1000 hours, density, heat deflection temperature A, 

relative permittivity, strain at break and stress at yield, the different behaviours of the 

selected classes were illustrated clearly, with polystyrene, PS, generally offering lower 

values than the other classes, in accord with its commonly low performance rating and 

cost, PVC performed well for heat deflection, temperature A and relative permittivity but 

was inferior to PMMA for strain at break, and showed a generally wider spread than all 

others for stress at yield, the one property for which PS performed well. These trends are 

illustrated in Plates 8 and 9.

The properties density and Young’s modulus yielded more interesting results. For 

density, (also shown on Plate 8) a wide spread was shown for PVC. Inspection of a high 

value revealed that it was from a grade with lead stabilisation. A high density value for 

PS showed that it came from a grade noted for its dimensional stability and rigidity, 

suggesting that the high density was designed in to facilitate this. See Plates 10 and 11 for 

the selected grades from each of these classes.

The property comparison for Young’s modulus revealed similar distributions for PMMA. 

PS and PVC (see Plate 12) except for one very high value for a grade of PS. On 

inspection this turned out to be the same grade that gave a high density value, confirming
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that the rigidity requirements had been attained. This may suggest some loose correlation 

between density and modulus in certain cases.

Other properties cither had insufficient data forjudging their distributions or revealed no 

noteworthy aspects. However it is noted that an absence of data for the properties strain at 

yield and strain at break can be because some grades actually don’t yield or break under 

those particular test conditions: a high performance phenomenon with important 

implications for system design: it is essential that a data display system does not neglect 

values simply because they are not numeric, and an alternative to the Comparison Tool is 

desirable in these cases.

The main conclusions drawn from this particular investigation, however, are that different

amorphous polymer family classes behave differently for many properties. For a simple

(i.e. unmodified) material, a family will display an easily identifiable range of likely

property values that is noticeably different (even if only shifted somewhat) from that for

other families. However there are cases where the ranges overlap considerably, making it

difficult, on the basis of just a few properties, to characterise that family as distinct from

another. In addition, modification, by means of fillers, reinforcements, chemical fine-

tuning, etc., (discussed in more detail in the following section), is common, and distorts

property values significantly, as illustrated by preceding examples.

5.75 A selection o f partly crystalline thermoplastic classes

For the Partly Crystalline class investigation, the polymer families PA, PBT and POM

were, chosen on the basis of data availability.

Creep modulus at 1000 hours gave a very similar range for all three classes with the 

exception of an outlier in the PBT class with a very high value. Inspection of the source 

of this datum revealed a grade with glass fibre modification, designed especially to have a 

reduced tendency to warpage, see Plate 13.
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Izod impact strength and relative permittivity produced overlapping distributions for 

these classes; variations in the range resulted simply from the difference in the quantities 

of data present, as with many other of the properties. Strain at break and stress at yield ' 

both showed a few high values for the PA class but inspection of the grades in question ' 

gave no insight as to the reasons, since there were no comments available. It. was noted 

that grades that lack commentary are invariably BASF grades, showing the supplier 

dependence of useful information.

Young’s modulus gave a more interesting result: although the distributions were rimilar 

for all three classes, a few very high values were apparent for PA and PBT. Inspection of 

the grades revealed nothing for the PA (as they were not commented) but showed the 

PBT grades to have 45% glass fibre reinforcement; see Plate 14.

Heat deflection temperature A also showed a distinctive distribution, shown on Plate 15. 

For the classes PA and PBT the distributions are bimodal with null points at 

approximately the same value (about 150°C). This pattern is possibly also reflected for 

POM but there are insufficient data to be sure of this.

Further investigation revealed that all of the grades in the top halves of the distributions 

for PA and PBT have some degree of glass fibre reinforcement: 12 - 45% for PA and 15 - 

40% for PBT. The POM grades were not commented. This provides clear evidence of the 

potent effects of reinforcement.

The property density, also on Plate 15, showed a wide range of values for all three classes 

(bearing in mind that POM has less data) and illustrates little more than the variety that is 

possible within these classes (an important observation nonetheless, as density will affect 

other properties) and the overlap between them.
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Overall the conclusions are the same as for the Amorphous families, except that the 

differences between property ranges for these particular Partly Crystalline classes are not 

as distinct.

5.76 A closer look at the PA class

The class PA and its subclasses merited further inspection due to the number of 

polyamide grades and data available in CAMPUS™: A comparison of PA with its 

subclasses PA6 and PA6,6 was performed for a number of properties.

No significant difference was found between these subclasses: PA6 and PA6,6 cover very 

similar property ranges and the commonly accepted differences (such as the fact that 

PA6,6 generally has a higher modulus than PA6) are not apparent from these data. This 

could be because the crystallinity and the molecular mass distribution - which have far- 

reaching effects on other properties - of both polymer types may be easily and widely 

varied during process. Property ranges for both subclasses will therefore be wide, 

resulting in overlap between them. Selective production of popular grades may skew the 

distribution to hide the true subtleties of difference betweeen these polymer families, see 

Plate 16.

5.77 An Investigation of a few copolymers

Copolymers result from the simultaneous polymerization of two or more monomers and 

comprise a sequence of these monomer units along the polymer backbone. The units may 

be alternating, random, or arising in blocks. Copolymers have been given little attention 

so far in this study, primarily because they are considered to exhibit overall behaviours 

distinct from those of their related polymer families, despite inheriting certain 

characteristics from each contributing monomer. The issue of whether they should be 

subclasses of one of those “parent” polymers is therefore an awkward one: they cannot be 

subclasses of both simultaneously and justification for inheritance from either “parent” 

would be difficult to find. For the purpose of the classification they have therefore been 

treated as individual polymer families in the same way as the above-mentioned families.
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However it was thought that a limited exploration of the properties of copolymers as • 

compared with those of the polymers produced from their constituent monomers may be 

of some interest. See Plates 17 and 18, which show histograms for the classes ASA, PC, 

and ASAPC.

These comparisons accord well with the idea that each monomer contributes some of its 

own character to the resulting copolymer, since the property values of the copolymers are 

approximately mid-way between those of their related polymers. However this concept 

does not extend to the property notched impact strength, where the copolymers in each 

case show a potential for much higher values than their equivalent monomer polymers.

5.78 A search for evidence o f an accepted ‘‘rule o f thumb**

The Property Comparison Tool may be used to confirm some generalised behaviours of 

polymers. It had been hoped that some algorithms or “rules of thumb” could be found 

that related only to certain classes of engineering polymer, enabling exploitation of the 

object-based functionality of Smalltalk™. However, although some trends of physical 

behaviour are unique to certain polymer families, they are not easily amenable to 

mathematical modelling (they usually employ scientific parameters describing, for 

example, the change in the enthalpy of dissolution with respect to the number of carbon 

atoms on the polymer backbone: quantities not typically quoted by polymer suppliers). 

The engineering rules of thumb that were sourced generally apply to metals and, again, 

use properties not found on a polymer database.

However, Pugh’s Rule [49], usually applied to hexagonal close-packed metals, offered a 

chance to test the system since it showed remarkable similarity to another rule of thumb 

employed by Barrie [291 in his plastics consultancy work. Pugh’s Rule predicts the 

deformation behaviour of crystals and states that a knowledge of their ductility as well as, 

their fracture strength is required for this. Pugh proposed that the extent of the plastic
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range of a pure metal could be deduced from the ratio of the elastic bulk modulus, K. to 

the shear modulus, G. This gives, the following:

High K/G implies ductility

Low K/G implies brittleness.

Barrie suggests, without physical explanation, that for engineering polymers a high value 

of Young’s modulus (over 3500 MPa) implies ductility and a low value of Young’s  ̂

modulus (below 2500 MPa) implies brittleness. Since Young’s modulus is an elastic 

modulus this is identical to Pugh’s Rule where the shear modulus is constant.

Barrie’s hypothesis was tested by inspection of the Comparators for Young’s modulus 

and notched impact strength for the classes PC, PS and PMMA. In fact only PC had 

enough data in both of these properties to offer a useful insight.

When high values of Young’s modulus and notched impact strength were selected for PC, 

it was discovered that there were five grades (one a PCHT grade and the others PC) that 

occurred In both of the shortlists of these selections, out of a total of about ten grades in 

the high range of each. See Plates 19 and 20. When the lower values of each property 

were inspected, all twenty three grades from the low end of the notched impact strength 

distribution were to be found in the low end of the Young’s modulus distribution. See 

Plates 21 and 22.

There is no documented physical connection between elastic properties and fracture 

behaviour, but these results do suggest that Pugh’s Law can have some value when 

applied as a rule of thumb to this particular class of engineering polymers, and that the 

Property Comparison Tool can be used to provide confirmation or otherwise of general or 

specific rules of thumb for the available polymer data.
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5.79 Summary o f the exploration o f POISE

The above exercise has illustrated the benefits of forming abstract representations of 

engineering polymers. The Property Comparison tool provides a useful means of 

displaying the data relating to an abstract polymer class in a visually accessible manner, 

presenting a picture of the physical nature of that class and how it compares with other 

classes. • •

Property value distributions can be seen to vary from class to class and show a generally 

tight spread for any class except where fillers and reinforcements affect the property 

values. The use of such additives is, however, a widespread phenomenon, and may be 

considered a distracting influence on the ability of the system to reflect the fundamental 

character of a material type. Their effects on property values are significant and it is 

important that the designer is aware of the factors influencing these values, whether the 

effect is beneficial or otherwise.

Some common examples of additives and their property effects follow.

(a) Impact modifiers, usually other polymers or copolymers, which Increase 

values of impact strength properties, as illustrated below for polystyrene.
PROPERTIES STANDARD PS SEMI IMPACT 

RESISTANT PS
Impact re s is ta n t  
PS

High impact 
res is tan t PS

Density (g/cm^) l.Ub 1.04 1.U4 1.04

Impact strength

@ 20'C (kJ/m2) 1 0 -  16 4 0 - 6 0 6 0 - 8 0 No break

Impact strength

@-40"C(kJ/m2) - 3 5 - 5 0 5 0 - 7 0 70 - NO BREAK

Notched impact
strength @  20"C APPROX 2 5 - 6 5 - 8 8 - 1 4
(kJ/m2)
Notched impact
STRENGTH @  -40*C 3 - 5 4 - 6 6 - 1 2
(kJ/m2)

Table 5: Effect of impact modifiers on polystyrene [50]
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(b) Plasticisers, which lower the elastic modulus and second order transition 

temperature of polymers, without altering the chemical nature of the 

macromolecules;

(c) Extender fillers, which increase the density, elastic modulus, heat deflection 

temperature and hardness of a material, while lowering shrinkage and reducing 

cost;

(d) Reinforcing fillers, such as glass and carbon fibres, which generally increase 

the tensile strength and stress at break, the elastic modulus, the flexural modulus 

and the stiffness, and cause an improvement in creep behaviour and bend-creep 

modulus, though the effects are usually anisotropic;

(e) Many other types of additive such as anti-static agents, colourants, flame 

retardants, whitening agents, cross-linking agents, antioxidants, processing aids 

and stabilisers, all of which may have significant effects on the values of some 

properties.

The amount and type of additive are usually known or can be ascertained. It would be 

feasible to incorporate functionality into the system to take account of its effects by 

separating out those grades with comparable reinforcement to enable a fairer comparison, 

for example. Alternatively an algorithm could be devised to predict the effect of an 

additive on property values to enable “fair” comparison by calculating the theoretical 

value of the property for the unmodified material. Such methods are not currently in place 

but could be added with relative simplicity due to the object-oriented nature of the 

system.

There are, of course, cases where the factors influencing the spread of data arc too subtle 

to quantify or model, a good example being stereochemistry, whose effects would be
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difficult to predict numerically. Such effects are illustrated below for density and 

crystalline melting point using polypropylene and poly 1-butene.

POLYPROPY-
LENE PO LYl- bUTENE

PROPERTY 

Density- 

MP CO

ATACTIC

0.85
- (SOFTENS AT -80)

ISOTACTIC

0.92
165

ATACTIC

0.87
- (SOFTENS AT -62)

ISOTACTIC

0.91
128

Table 6; Density and melting points of atactic and isotactic polyolefins [411.

In cases such as this, it seems reasonable to consider these effects as characteristic of the 

polymer material class itself. For example, if stereochemistry results in a wide spread of 

density data for polypropylenes, polypropylenes are simply characterised by this fact.

The problems associated with accommodating different property types, i.e. generic (for 

general comparison) and use-oriented (to support selection for a particular use), into a 

polymer data system are considered in more depth, since these are particularly relevant to 

the design of a useful data structure, and represent a concrete example of the same 

conflict as that illustrated by the phenomenon of data distortion due to additives: that is, 

the inability of any simple taxonomy to adequately represent and abstract information 

that is relevant in both scientific and engineering contexts.

5.8 The property dialectic

An inheritance hierarchy based on principles of chemistry and microstructure is 

extensible and effective at abstracting the general, essential information about types of 

engineering polymer. It is nonetheless poor at gathering together and abstracting 

information from those grades that arc similar from an engineering perspective but 

dissimilar from a scientific perspective.

Where additives affect the data, this means that, for example, a reinforced grade of Nylon 

may be more similar in a certain engineering context to a reinforced grade of polyester 

than to another grade of Nylon. So the chemical family grouping does not reflect all
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engineering similarities in this case. But such examples do not call for changes in the data 

structure, as the same properties sltq quoted throughout and comparison is still possible 

given methods of filtering out the additive effects.

Other examples of this phenomenon do have implications for the data structure of the 

system, however. For grades with special geometries, processing methods or artefact 

design factors, additional properties are required to those specified by their chemical 

family class in order to describe them.

The existing structure does not accommodate these additional properties and does not 

group together those grades specifically described by such properties, exemplified well 

by sheet and fibre grades where the surface to volume ratio is high and the effects of 

processing are extreme. In contrast it will accommodate scientific and generic 

engineering (3D) properties into the data structure well, because they are most resistant to 

variation due to geometry, processing and application specific effects.

Some examples of such specific engineering properties, in this case used to describe the 

behaviour o f film and fibre grades, are to be found in Appendix 2.

In order to deal with this conflict without sacrificing the primary criteria of extensibility 

and independence from user bias, a way of enhancing the generic structure of Figure 7 is 

suggested. This enables it to accommodate and organise a population of grades that have 

been subjected to specific processes and tests and that are described by specific, use- 

oriented properties such as the above, without compromising the inherited, generic 

information arising by virtue of chemical characterisations.
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6. Enhancing the structure: a property combining 
strategy

6.1 A formal outline of the problem

It has been established that a hierarchy based on chemical principles will be extensible 

but will not reflect similarities between grades from the point of view of specific, 

additional engineering properties. Thus, due to geometrical factors in particular, there will 

be properties appropriate for some grades of a chosen class but not for others, and yet the 

property representation of all of the grades in the class, as decided within the class 

definition in the hierarchy, will be the same if a hierarchical representation alone is used.

It is argued that this need to represent generality and at the same time to distinguish 

between some specifics of engineering significance is a generic informational analysis 

problem, leading directly to mixed hierarchies [9], criticised previously as being contrary 

to the principles of information representation.

There is therefore a need to provide a technique for organising grades that have 

associated with them the potential of more than one property type (the inherited generic 

properties and additional specific properties). For example, Dyneema’s SK60 

polyethylene fibre is described by the fibre property tenacity, which is never used for 

bulk materials: it represents strength per unit size where size is measured in denier and 

denier is the mass in grams of 9km of fibre."

Here fibre-form plastics are used to illustrate the problem in general:

• There may be many fibre-form intances of one particular materials class and of 

scientifically dissimilar materials classes.

* .Alihough slill w ide ly  used in ihe icx iilcs  industry, tenacity has become obsolete in other fields o f  

engineering and has been replaced by specific stress, measured in N /tcx  where tex is the mass in g o f  1km 

o f fibre.
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• Any one materials class that has fibre-form members may also have members that are 

not of a special form.

6.2 A possible solution: multiple inheritance

One approach to this problem is illustrated in Figure 8 which presents a multiple 

inheritance classification strategy to deal with the need for a dual factorisation. The Fibre 

definition adds the properties associated with being “fibrous” through the mechanism of 

inheriting both from the materials class and from the abstract class Fibre, so enabling the 

construction of instances of multiple property type definitions.

Density.
Tensile Strength 
defined here

Different property 
lists defined here

Tg. Tm  defined in 
interm ediate classes .

Fibre Properties 
defined here 
e.g.. Tenacity

C h e m ic a l  f a m i ly  class

Ahscracc propercy
definition class

In s tance (g rad e )
Direction of inheritance

Polymer
Class

Poly ester 
Class

Propercy Lise 
De'einicion 

Class

F i b r e
Class

Fibre-Form- 
Polyester 

Class

Density
Ten St le Stren gth

Po lyester A

D en s i ty
Tens i le  Stren gth

T e n a c i t y

P o lyes te r  S

-----------------  Link between class and subclass

----------------------- Link between class and instance (polym er grade)

-------------------Link between class and subclass via intermediate classes

Figure 8: Multiple Inheritance
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The effect on the classification structure of allowing the dual definition of classes of 

grades is to replace the single-inheritance class hierarchy, corresponding to the foregoing 

domain analysis, with a class network.

The key problem with the class network of Figure 8 is the proliferation of subclasses such 

as Fibre-form-Polyester, etc. Each such class will be a subclass of both the particular -

form class and of any one of numerous materials classes. So for a full hierarchy there will 

be a vast number of these classes: Fibre-form-Nylon, Fibre-form-Polyethylene, Fibre- 

form-Polystyrene, Film-form-Polyester, Film-form-Polyethylene, Film-form-Nylon,and 

so on. What results is barely an organised grouping: the chemical families will be split 

into numerous form sub-classes; the form families will be split into numerous chemical 

sub-classes. All sub-classes will have a mixture of the properties they have inherited.

The applications that have been implemented in the POISE system make use of materials 

classes as entry points to collected data about materials families, through the previously 

described tools to help analyse their comparative characteristics. Abstracting use/form 

classes away from materials classes is at odds with the philosophy on which the generic 

structure is based and does not easily support the use of these comparison tools.

The difficulties introduced by multiple inheritance, therefore, are that:

• multiple inheritance demands that use/form classes are abstracted away, as subclasses, 

from the more general purpose class definition.

the use/form grades that it constructs do not include a structural separation between 

their general-purpose properties and their use/form properties.

6.3 The proposed solution: orthogonal classification

These considerations have led to an implementation that preserves a single-inheritance 

class hierarchy that groups together grades and classes similar by virtue of chemistry and 

microstructure.
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The materials classes, in POISE, are allowed to be partial, incomplete, extensible 

definitions of the data structures relating to their instances (the grades). The special-form 

grades include extensible property definitions that are independent of and supplementary 

to the inherited property definitions of all the grades that are occurrences of that materials 

class.

The terminal classes of the materials factoring will now be (partitionable) classes 

comprising both tailored and untailored grades of that materials family, where the tailored 

grades have associated with them their supplementary property definitions. Users of a 

plastics materials information system would expect grades to be defined firstly as 

occurrences of the materials family that offers their primary description 121.

The method of organisation for grades of the materials class Polyester, is shown in Figure 

9. Polyester grades are partitioned between:

1. Instances of Polyester that connote general-purpose grades, as PolyesterA. This 

instance (i.e. its “property space”) is fully defined by its class. Properties accessible 

through it such as density, tensile strength, Tg, Tm, arc either expressed in the definition

of Polyester or in a superclass of Polyester in the class hierarchy.

2. Instances, as PolyesterB, that exhibit not only the behaviours common to all Polyester 

grades, but also have associated with them additional use/form information. PolyesterB is 

constructed from a merger of two instances: an incompletely defined instance of 

Polyester containing the information conveyed by the Polyester class, and an instance of a 

fibre properties definition class which holds the additional information in the form of 

extra properties, in this cast tenacity. These merged instances may be considered a single 

grade, whose property space is partitioned between the property set inherited through the 

materials hierarchy and one or more supplementary property sets.
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PolyesterB serves as one illustration of how a grade may be generated both from a class 

definition and from a definition of behaviours that are extraneous to the general 

classification principle. Similarly, sheet form or foam form polymers could be 

constructed. In each case they will be linked conceptually to their materials class by 

membership, and linked officially to their use/form definition object by virtue of its 

supplementary behaviour contribution. • •

Specific grades of Polyester such as those used for the production of fibres are identified 

by the fact that they have additional, separate property.lists to those of untailored grades. 

Thus the Polyester class is itself partitioned between its general purpose members and 

those specified additionally by the definition object used to supply the use-specific 

properties. What therefore results from this strategy is an additional classification of 

plastics grades, one entirely independent of the generic hierarchy and based on different 

criteria: a classification that provides an orthogonal factoring of plastics materials at the 

grade level of the existing taxonomy.
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Density,
Tensile Strength 
defined here

Different property 
lists defined here

Tg, Tm defined in 
intermediate classes

Fibre Properties 
defined here 
e.g.. Tenacity

etc

C h e m ic a l  f a m i ly  class

Abstract property 
definition class

Direction of inheritance

Link betw een class and subclass
Ins tance  (g rad e )

r

Poly ester 
Class

Fibre
Class

Property Lise 
Definition 

Class
Poly m er 

Class

D e n s i ty
Te n s i le  S treng th

T e n a c i t y

D en s i ty
T e n s i le  S t reng th

_________ Link betw een class and instance (polym er grade) •

________ _ Link betw een class and subclass via interm ediate classes

F ig u re  9 : A d d in g  p ro p e rtie s  se le c tiv e ly , th e re b y  in tro d u c in g  an  e x tra  fa c to rin g  o f  g rad es

T h is  n e w  m e c h a n ism  fa c ilita te s  fu rth e r  fu n c tio n a lity  fo r  p ro p e rty  c o m p a r is o n  u s in g  th e  

P ro p e rty  C o m p a r iso n  to o l. F o r  e x a m p le , i f  a  g ra d e  h as  re fe re n ce  to  th e  so u rc e  o f  its 

a d d itio n a l p ro p e rty  lis ts , g ra d e s  fro m  d iffe re n t c la sse s  th a t sh a re  th e  s a m e  a d d itio n a l 

p ro p e r ty  m ay  b e  c o m p a re d . T h u s  th e  C o m p a ra to r  w ill fu n c tio n  a c ro ss  se le c te d  g ra d e s  o f

se le c te d  c la s se s  fo r se le c te d  p ro p e rtie s .
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6.4 Further development of POISE to incorporate the orthogonal 
classification mechanism

POISE was modified to incorporate this extra feature within the data structure [5JJ. A 

hierarchy of definition objects to create use-property-Iists was developed, whose . 

instances would provide the partial property space definitions to be appended to the 

general property spaces, inherited from the materials hierarchy, of the polymer instances-. 

The link from an instance to a definition object is inherently dynamic: if a definition 

object is modified (e.g. to include previously unspecified properties) this is automatically 

transmitted to its dependent objects. Since the property space of each updated object 

remains sorted, their classes will remain partitioned, just as before the update.

The mechanisms within POISE that facilitate the merging of the two types of instance are 

discussed by Zucker 1521 and make use of a Smalltalk™ “Access Enhancer object,” 

which intercepts and manages the behaviour of the complete entity that acts as a single 

grade.

The interface was extended to allow use-specific properties to be defined and added to 

their appropriate lists. Plates 23 and 24 show the fibre menu within the property selection 

functionality and the property window on the fibre property tenacity, with comment, 

respectively.

If a grade requires an additional property list to be specified for it, a simple menu option 

within the Grade View window allows any number of these lists to be added to the data 

specification of that grade alone: the data relating to those special properties must be 

input after this operation has been performed, and, when viewed, will be seen as distinct 

from the data pertaining to the generic properties, whose specification has come via the 

polymer materials hierarchy.

POISE automatically records grades that have additional property lists associated with 

them, and was modified to .enable selective viewing of those types of grades, using the
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Property Comparison tool, within any chemical family class that contains one or more of 

them. For example, the values of.the general property density or the fibre property 

tenacity may be compared for the classes Nylon, Polyester and PET, but considering the 

fibre grades only. This therefore facilitates the orthogonal classification aspect of the 

mechanism, illustrated in the next section.

6.5 Testing the new mechanism
6.51 Some sample special grades

To implement the data structure of the “special,” partitioned grades described above, 

examples of such grades and their data were input into the system.

Initially, real supplier data were sought, and a number of suppliers of films and fibre 

grades were contacted to this end. This produced a variety of data sheets relating to real 

grades, such as the “Dyneema" Ultra High Molecular Weight Polyethylene fibres from 

DSM, Cellulose Acetate fibres from Novaceta, the ‘Trespaphan’ PP film range from 

Hoechst and the “Biafol” PP films from TVK.

However, in accordance with the general findings on data sheets, there was considerable 

inconsistency regarding the specialist properties specified for these grades, in respect of 

the test methods employed, the units, and the names of the properties themselves.

In addition there was little coherence in the generic properties: the only such property 

consistently specified was the intrinsic property density. It could be argued that the 

general engineering properties, suited primarily to bulk material grades, should have no 

place within film or fibre grade data, but many grades destined primarily for these 

applications can also be injection moulded and the general engineering properties are 

included as a matter of course. This applies to many grades on the CAMPUS"^^ database 

as has been confirmed by communication with a representative of BASF 1531: the 

absence of specific engineering properties for grades destined for specific uses can be 

explained by the limitations resulting from the standard data structure in this case.
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There are also grades dedicated to use as films or fibres, such as the Hoechst grades 

Hostalen PPR 1060 FI and PPN 1060 F3 (films) and Hostalen PPU 1780 F2 and PPU 

1080 F(P) (fibres) which, on the supplier’s original data sheet, have no specialist 

properties specified but have the full complement of general engineering properties. 

Communication with a representative from Hoechst 1541 confirmed that in the majority of 

cases, such data were of no relevance to these grades. Clearly there is a need for more 

consistent and useful data specification: difficulties also arise when the same material has 

multiple grade names because it takes multiple forms.

But standardisation of data and nomenclature has not been the objective of this research 

and it is apparent, despite the confusion amongst published engineering polymer data, 

that there are cases where a single polymer grade can be processed in a number of ways 

to produce commercial materials of different forms, and that for such a grade different 

types of property are simultaneously appropriate, for the purposes of studying the 

performance of the material, as a standard sample, in its different forms. To illustrate this 

phenomenon simply, some hypothetical grades have been devised, based on intrinsic and 

specific engineering property data from real.grades and supplemented with generic 

engineering property data taken from chemical family averages where it was lacking. The 

data in italics are specific engineering data, particular to grades of the stated form, and not 

inherited via the polymer materials hierarchy. See Tables 7 and 8.
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PROPERTY FILM 1 FILM 2 FILM 3

UËn SiTV (g/ml) 1.12 1.12 1.12

HDT/A (-C) 70 70 -

NOTCHED IMPACT 
STRENGTH (IZOD) @ 
23"C (kJ/m2)

60 60 60

t e n s ile  s t r e n g th 85 85 85
(MPa)
THERMAL EXP. 
COEFF. LONG. 23- 
80‘ C (exp-4/K)

0.82 0.82 0.82

WATER ABS. (%) 1.6 1.6 1.6

ELÔNÙÀtlÔN @  
BREAK MACHINE 
DIRN. (%)

425 .......... - ............. 350 350

ELONGATION©  
BREAK TRANSVERSE 
DIRN. (%)

425 350 350

MAX SERVICE TEMP 93 93 -

r o
02 PERMEABILITY

(cm^cm/cm^s(cm hg) 
exp -11)

NA

TEARING STRENGTH 
(N/m)

30 70 90

TENSILE STRENGTH 
MACHINE
DIRN,(N/mm^)

80 71 too

TENSILE STRENGTH 
TRANS DIRN. (N/mm^)

80 71 100

Table 7: Three PA6 film grades
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PROPERTY FIBRE 1 FIBRE 2 FIBRE 3

DENSITY (g/mi) Ü.9Ü8 0.903 " 0.90/

HDT/A ("C) 72 55 55
IMPACT STRENGTH 
(IZOD) @ 23"C 
(kJ/m2)

65 65 85

YOUNG’S MODULUS 
(MPa)

1500 1400 1450

STRAIN @ BREAK (50 
mm/mln) (%)

>50 >50 > 50

THERMAL 
CONDUCTIVITY OF 
MELT (W/mK)

0.118 0.118

VlCATA/50 (10N) ("C) 154 151 154

WATER ABSORPTION 
(%)

0.1 - 0,1

ELONGATION©  
BREAK (%)

17 15 20

MOISTURE REGAIN 0 0 0
(%)
TENACITY (g/denier) 8 10 7

Table 8: Three PP fibre grades

The Grade View windows on POISE for two of these grades are shown in Plate 25.

6.52 Use o f the Property Comparison Tool to explore the data

In addition to the above hypothetical grades, some real grades of films and fibres and

their corresponding data were input into the system for testing purposes. These included

the commercial grades previously mentioned, which suffer inconsistency in terms of the

properties specified for them. This has limited the data available for useful comparison,

particularly those pertaining to the general engineering properties. However, some

examples of the types of comparison that may be performed with a more complete data

set are offered.

Use of the orthogonal classification facility is facilitated on the Property Comparison 

screen by the button to the left of the polymer class button. This can be seen in Plate 26. 

When clicked, this button limits comparison to one subset of the polymer database, 

delineated by geometrical form in these cases, and transcending the existing chemical
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family classification, which is effectively separated into multiple classifications. Plate 26 

illustrates the comparison of fibre grades only, for the fibre property tenacity, across three 

chemical based classes.

Also illustrated in Plate 26 is the comparison of film grades only for the film property 

tensile strength in the machine direction. Due to the limited data available, little can be 

ascertained about the nature of the classes viewed in these cases.

This facility can be used to find those grades of a desired form within a class, by selecting 

a special property from the appropriate additional property list and investigating the class 

for that property. Only those grades with data pertaining to the property will be picked up 

by the Property Comparison tool. This is illustrated by selecting the film property tensile 

strength in the machine direction for all grades of the Thermoplastic, PA and PP classes. 

See Plate 27.

Here the film grades of the respective chemical family classes have been sifted out by 

virtue of the property chosen. PA films with high values of tensile strength in the 

machine direction have been investigated as ^  illustration of the selection and inspection 

facilities as applied to this type of grade and property.

Comparison can also be made between all grades of any polymer family and just the film 

or fibre grades of that family, for general properties, where the data are available. Plate 28 

illustrates this for the property density, which is widely specified, for all partly crystalline 

grades as compared with fibre partly crystalline grades, and for all grades of Polymer as 

compared with film grades of Polymer.

The general property density reveals markedly more data for film than for fibre grades: 

this is because a number of film grades have been located in the CAMPUS™ database 

and classified as such within POISE. They were found by searching for the keyword 

“film” in the comments field and checking that this was only used to describe an
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application of the grade. Although a number of fibre grades are also to be found on 

CAMPUS™, they could not be easily separated out by this method as the word “fibre” 

also appeared in the description of grades with fibre reinforcements.

The relatively large number of film grades were gathered together, and classified as such 

by adding the film property list to each, although there were no data to accompany these 

properties as no such properties are specified by CAMPUS™.

A methodical inspection of the nature of the film grades on the database, in respect of 

their generic properties, could therefore be performed in a similar fashion to the previous 

investigation of the general POISE hierarchy.

From comparisons of the Amorphous class for films with the Partly Crystalline class for 

films and the Amorphous class for films with some amorphous chemical family classes 

for films (namely ABS and EVA), it was found that there were few amorphous films, and 

those that existed were all of the chemical family ABS and exhibited generally lower 

performance than the partly crystalline films, with the exception of the properties 

Young’s modulus and HDT/A, w h e r e  t l ic  ABS films had a wider overall spread.

Comparison of the Polymer class for films with the Polymer class for all grades 

suggested that grades destined for use as films showed relatively low values of 

mechanical properties, illustrated by the properties Young’s modulus and heat deflection 

temperature A, in Plate 29.

Comparison was also made of the Partly Crystalline class for films with some partly 

crystalline family classes for films (namely PA, PP and PE).

This showed partly crystalline chemical family classes for films to be distinct from one 

another in respect of the properties density, relative permittivity, strain at yield and 

HDT/A but to show very similar ranges for the properties stress at yield, Vicat A and
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Young’s modulus.' Data for other properties were not available. See Plate 30 for 

examples.

It can be seen that with a more populated data set, some important generalisations about 

the behaviours of engineering polymers in correlation with their ultimate applications and 

geometrical forms could, where relevant, be made by these means.

6.6 Other uses of the mechanism
6.61 User company properties

Other additional properties not easily accommodated by conventional database systems 

are those specified by users for a particular purpose. User companies will specify 

properties for which they need to ascertain values for material grades purchased: often 

these are listed within their purchasing specifications, together with acceptable ranges if 

purchase is to proceed, and employ application specific tests which are not to be found 

amongst the widely quoted generic properties.

This presents another example of the information representation problem resulting from 

data supplied in addition to the generic data quoted for nearly all supplied grades. User 

properties need to be positioned and accessed in a way that preserves their distinction 

from generic properties.

By applying the property combining strategy and mechanism to this problem, an 

appropriate data structure is obtained which serves the purpose of property space 

partitioning while at the same time classifying as separate those grades that share a 

common user company. This has been tested on a small scale using Lucas as the example 

user company.

Purchasing specifications for a selection of materials were obtained, and from them a 

number of Lucas properties and their acceptable ranges for various materials. Using these 

ranges, together with some general property data from what were hypothesised to be 

likely candidates for Lucas grades, three example such grades, all polypropylenes, were
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created and input into the system, together with a Lucas property list. These are shown in 

Table 9.

Each of these hypothetical grades is associated with a Lucas specification number, w h ic h  

refers to a specific type of material and the property requirements it must meet. The 

Lucas property values for the grades were taken by locating the middle of the relevant 

specification range.

Although this method has only been employed as a convenient means of providing 

examples, it highlights a useful application of the system: to compare real data of 

available materials with data for a hypothetical “ideal” grade or wiih an acceptable range 

of such data. This would not be difficult to do using the Property Comparison tool. (An 

alternative approach might be to incorporate an algorithm into each user property object, 

which provides information on the acceptable range for that property, and effectively 

eliminates grades outside that range).

Some Lucas properties have the same name as similar properties in the generic properties 

list, but are distinguished by different test methods or conditions, and these test methods 

are given a Lucas code number. The code numbers proved not to be enough in themselves 

to distinguish each property as they are often applied to more than one property: it is the 

combination of property name and Lucas code number that sets aside the property as 

unique.
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pr o p e r ty LUCAS 1 
(3-53-102)

LUCAS 2 
(3-53-101)

■QJCa S'3
(3-53-100)

DENSITY (g/ml) 1.U0Ü Ü.9U2 ir y i4
HDT/A (“O 131 66 65
GLASS CONTENT, 
LUCAS H 3.1 (% )

20 - -

IZOD IMPACT. -20°C, 
LUCAS
B6.3(J/12.7mm)

0.9

■ • -
0.26

IZOD IMPACT. +20*C, 
LUCAS
B6.3(J/12.7mm)

1.1 0.1 1.7

MELT FLOW INDEX.
LUCASA1.2(g/10
min)

4.0 4.7 8.0

TENSILE s t r e n g t h  
@ BREAK. LUCAS 
B1.7(M Pa)

66

TENSILE STRENGTH 
@ YIELD. LUCAS B1.7 
(MPa)

44 37

VICAT SOFTENING 
POINT. LUCAS E1.2
r c )

167 149 153

Table 9: Three Lucas grades

Again those properties specific to Lucas are indicated by an italic script. An example of 

the way in which a Lucas property differs from that of a generic property of the same 

name is Izod impact strength. As can be seen, it is measured by Lucas at -20°C and 20°C 

respectively, whereas the CAMPUS™ Izod impact strength is measured at -30°C and 

23°C. The units are also significantly different: J/I2.7mm for Lucas as compared with 

kJ/m- for the standard form of the property.

A  commented property window for the Lucas property glass content is shown in Plate 31.

For illustrative purposes only (due to the nature of the data) the use of the Comparison 

tool for the inspection of user-classified grades is shown in Plate 32.
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Clearly, with the appropriate data to hand, many useful comparisons could be made by

user companies for their own purposes, which could not have been achieved with an

existing polymer supplier database on its own.

6.62 Ideas for future uses

This system has the potential to be used for other situations where there is a conflict 

between criteria for class creation and information representation, resulting in additional 

factorings that are completely independent of an existing, chemical family based 

hierarchy. It may therefore be appropriate for creating additional factorisations based on 

the existence and type of reinforcement or chemical filler, for example. Clear decisions 

must be made as to which factors should influence the main hierarchy and which should 

be incorporated by way of the orthogonal classification mechanism. It is believed that the 

primary distinction should be between criteria based on material (polymer) characteristics 

and criteria based on other, more physical or application-oriented characteristics if the 

structure is to remain principled.
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7. Future work
In addition to the foregoing suggestions, it is proposed that the system would benefit 

from the following:

(i) Further exploration of the potential for utilising the functionality of object- 

oriented systems. For example, the implementation of appropriate “rules of thumb” 

within certain polymer classes, in the form of object-specific methods, could be used to 

predict unknown properties, to establish relationships between properties, and so on.

Most such rules draw on chemical, rather than engineering data and so would not be 

practical in a system relying solely on C.AMPUS™ data. If, however, a database of 

scientific properties was also associated with POISE, there would be some scope for 

modelling relationships between properties and perhaps predicting likely property ranges 

for polymers. Molecular mass and degree of crystallinity, for example, influence a 

number of mechanical properties, such as hardness and softening temperature; the 

solubility parameter of a polymer can also be estimated from fundamental properties 

(density, molecular mass and the sum of the molar attraction constants of the repeating 

unit in the chain) according to Hildebrand’s rule F391.

The relevance of many such rules may be limited to classes or sub-classes of the 

engineering polynier domain. This is easy to deal with in object-oriented systems since 

the methods are simply restricted to the appropriate class or sub-class. However care 

would need to be taken regarding extrapolation to new grades, since many rules have 

little or no physical basis and could produce misleading results.

Methods could also be written to test for and model relationships between additives and 

the affected properties; they could be placed in classes partitioned according to additive 

content.
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(ii) Further use of the browsing facility. This is a valuable feature of the system, 

currently used to summarise and display only quantitative information (property data). 

However there is much qualitative information pertaining to classes of engineering 

polymers that is currently available in textbooks, supplier data sheets, and as comments 

on individual grades in computerised systems (and therefore not easily accessible on such 

systems). Such information common to the members of a class within the POISE 

hierarchy could be abstracted and displayed in the form of text or graphs, as annotations 

for that class. It could be accessed by means of a hypertext tool that would respond when 

the class in the hierarchy display of the Hierarchy Editor window was selected. This 

would enable the full potential of the browsing facility to be exploited.
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8. Conclusions
The benefits of an object-oriented system for modelling the prolific amounts of data . 

relating to engineering polymers have been outlined and compared with aspects of 

conventional database models within the same context. Object-orientation is considered 

to provide greater flexibility in terms of the data model, which is allowed to evolve and 

does not require a fixed structure in (information) space or time. Object-orientation also 

allows the introduction of functionality at desired points within the model.

It was also shown that there is a need for existing engineering polymer information 

systems to acknowledge the benefits of materials classification if the user is to navigate 

the information space with ease and a degree of guidance. The object-oriented language 

Smalltalk 80™ is based on a naturally hierarchical organisation of code and data, and has 

been used to develop an information system for engineering polymers, POISE, which 

exploits this aspect and employs a single inheritance hierarchy as the main structure for 

their data. POISE was designed to model the design environment; this project 

concentrated exclusively on its application to the materials domain of that environment, 

in the belief that other areas, such as geometry and manufacturing, belong in different 

perspectives and therefore deserve their own models.

An analysis of the plastics domain lead to the development of a taxonomy of engineering 

polymers with which POISE has been populated. This taxonomy is based on a 

hierarchical structure with inheritance, which abstracts generic plastics information into 

classes. It was argued that for the preconditions of extensibility and independence from 

user perspectives to be met, classification must be done on the basis of criteria 

fundamental to the materials domain, i.e. criteria of chemistry and molecular structure, 

eliminating an approach based purely on physical property values.
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It was found that conventional classification systems for plastics are loosely defined and 

provide a means of nomenclature rather than a principled scientific description of groups 

of plastics. However the complexity of the factors affecting the properties of plastics 

precluded the construction of a class hierarchy based purely on detailed scientific 

reasoning.

A shallow but broad classification based on accepted polymer families, subsumed within 

superclasses founded on microstructural type, was proposed as an acceptable means of 

abstracting generic information.

This classification was implemented within POISE and the Property Comparison tool 

was used to compare the data visually within and between the classes. It was found that 

generally, chemical family classes exhibited property value distributions that were fairly 

tightly spread within a class and noticeably different between classes, except where fillers 

and reinforcements had significant effects. The use of such additives is a widespread 

phenomenon, and may be considered a distracting influence on the ability of the system 

to reflect the fundamental character of a material type. However this was not considered 

to present an insurmountable barrier to modelling the domain, since in theory the effects 

of additives could themselves be modelled, by utilising the functional capabilities of the 

system.

The Property Comparison tool was also used to explore the tensile and brittle behaviours 

of certain materials, and showed that Pugh's rule applies in general to the Polycarbonate 

class of engineering polymers, and furthermore that the Property Comparison tool was 

useful in ascertaining the applicability of such rules.

Use of other tools developed for POISE demonstrated that the hierarchy is extensible 

since new classes and grades can be incorporated without difficulty; the abstract classes 

cover the domain completely by virtue of the fundamental structural principles on which
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they are based; and new chemical family classes can therefore be placed easily within the 

structure.

Howeyer the classification was shown not to provide a useful factoring for grades from.a 

specific, use- or form-related engineering point of view.

A manifestation of this point with particular relevance to data representation issues occurs 

in terms of the different properties defined for a grade of polymer. Grades that are similar 

in terms of their intended use or the degree of processing they have undergone may be 

described by properties tailored to their particular use or form, in addition to the general, 

scientific properties that are specified as a matter of course. Accommodating these 

properties, without creating redundant specifications for those grades that do not require 

them, has been one of the aims of the research, and has resulted in a need to separate 

those grades with a special engineering significance from other, more general material 

grades.

Thus the chosen classification system is offered in conjunction with an orthogonal 

classification, whereby the final material classes of the hierarchy are partitioned further 

according to factors extraneous to the scientific principles used to create the material 

hierarchy. This orthogonal classification is facilitated by a software mechanism which 

operates in conjunction with the existing POISE software and introduces the engineering- 

specific properties as a supplement to the generic properties that are inherited via the 

main hierarchy. A partition between the different property types for each grade is 

maintained throughout.

This provides a useful engineering factoring at the grade level together with the ability to 

utilise this factoring within the Property Comparison tool. A number of demonstrations 

using example special-engineering grades were, performed. These illustrated the ability of 

the system to compare such grades from selected classes with respect to selected 

properties, and provided evidence of the orthogonal classification that had been created.
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Appendix 1: Campus™ properties
Mechanical Properties (@ 23°C, 50% R.H.)

Density of the moulding compound (g/ml)
Stress at yield: 50 mm/min (MPa)
Strain at yield: 50 mm/min {%)
Strain at break: 50 mm/min (%)
Stress at 50% elongation: 50 mm/min (MPa)
Tensile Strength: 5mm/min (MPa) , .
Strain at break: 5mm/min (%)
Young’s Modulus: sec. 1 mm/min (MPa)
Creep Modulus: I hr (MPa)
Impact Strength: Izod, 23°C (kJ/m-)
Impact Strength: Izod. -30°C (kJ/m-)
Notched Impact Strength: Izod, 23®C (kJ/m-)
Notched Impact Strength: Izod, -30°C (kJ/m-)
Notched Tensile Impact Strength; 23"C (kJ/m-)

Thermal Properties
Heat Deflection Temperature: HDT/A. 1.8 MPa (“C)
Heat Deflection Temperature: HDT/B. 0.45 MPa (°C)
Heat Deflection Temperature: HDT/C. 5.00 MPa (°C)
Vicat VST/A/50. ION (°C)
Vicat VST/B/50. 50N (°C)
Thermal Expansion Coefficient, longitudinal. 23-80°C (exp-4/K) 
Thermal Expansion Coefficient, transverse. 23-80°C (exp-4/K)

Electrical Properties (@ 23°C, 50% R.H.)
Relative Permittivity. 50Hz (-)
Relative  P erm ituv ity , IM H z ( - )
Dissipation Factor. 50Hz (exp -4.)
Dissipation Factor. IMHz (exp -4)
Dielectric Strength (kV/mm)
Comp. Tracking Index. CTI (-)
CTI 100 drops value (-)
Comp. Tracking Index. CTIM (-)
CTIM 100 drops value (-)
Specific Volume Resistivity (ohm.cm)
Specific Surface Resistivity (ohm)
Electrolytic Corrosion (-)

Processing Properties
Melt Volume Rate. MVR. 1st value (ml/lOmin) 

at test temperature (®C) 
at test load (kg)

Melt Volume Rate. MVR. 2nd value (ml/lOmin) 
at test temperature (°C) 
at test load (kg)
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Other Properties
Viscosity Coefficient (ml/g)
Characteristic Density, 23°C fg/ml)
Isotaxy Index (-)

Behaviour towards external influences 
Flammability UL 94, 1st value (steps) 

at thickness (mm)
Flammability UL 94, 2nd value (steps) 

at thickness (mm)
Flammability UL 94/5V (steps) 

at thickness (mm)
Water Absorption. 23®C, saturated. 11 (%) 
Moisture Absorption. 23°C. 50% R.H.. 11 (%)

Optical Properties (@ 23°C, 50% R.H.) 
Refractive Index (-)
D egree o f  L ig h t Transm ission (% )

Specimen Production
Specimen and Properties according to DIN (-) 
Injection Moulding: Melt Temperature (°C) 
Injection Moulding: Mould Temperature (®C) 
Injection Moulding: Flow Front Velocity (mm/s) 
Compression Moulding: Press Temperature (°C) 
Compression Moulding: Cooling Rate (K/min)

Data for Rheological Calculations 
Density of melt (g/ml)
Thermal Conductivity of melt (W/m.K)
S pecific  H eat Capacity o f  m elt (J /kg .K )
Effective Thermal Diffusivity, a-effective (m-/s) 
No-flow Temperature (“C)
Freeze Temperature (®C)
Power Approximation Constant A (-)
Power Approximation Constant B (-)
Power Approximation Constant C (-)
Carreau-WLF Approximation Constant K1 (-) 
Carreau-WLF Approximation Constant K2 (-) 
Carreau-WLF Approximation Constant K3 (-) 
Carreau-WLF Approximation Constant K4 (-) 
Carreau-WLF Approximation Constant K5 (-)
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Appendix 2: Film and fibre properties
Film Properties

Mechanical
Tensile Strength, M ach ine D irection (M P a )
Tensile Strength. Transverse Direction (MPa)
Elongation at break. Machine Direction (%)
Elongation at break. Transverse Direction (%)
Bursting strength (Mullen Points)
Tearing Strength (N/m)
Folding Endurance (-)
Seal strength (N/15mm)

Thermal
Minimum service temperature (°C)
Maximum service temperature (°C)
Heat sealing temperature range (®C)
Thermal shrinkage (%)

Optical
Haze (%)

Behaviour under external influences
Gas permeability: CO]. Ni. 0% (cm^.cm/cm-.sec.(cm Hg) x 10*“ )
Water vapour permeability (cm^.cm/cmLsec.(cm Hg) x 10*“ )
Rate of water vapour transmission, 24 hrs (g.mm/mm-'

Tribological
Coefficient of Friction. Machine Direction (-)
Coefficient of Friction. Transverse Direction (-)

. . Other
Thickness range (mm)
Area factor, area covered by 1 kg film 1 mm thick (m- x 10 )̂
Maximum width (m)

Special Characteristics 
Whether anti-static 
Whether laminated 
Whether coated

F ibre Properties

Mechanical
Axial tensile strength (MPa)
Transverse tensile strength (MPa)
Elongation at break (%)
Tenacity, (g/denier)
Elastic recovery (%. from elongation)
Stiffness (MPa)
Crimp Level (-)
Toughness (g.cm)
Cross Section (mm-)

Thermal
M e lt tem perature (°C )

Behaviour under external influences 
Moisture regain (%)
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/ ŝX'̂  ̂  > N >• \v\V>
vj^morpî^o$i^

kC"'5~;̂''v̂'5fS6.' 'r̂ ;̂ :yy3' ' 33:1̂ '̂̂
LCrystalirne

% m i# 3 T S 2 :^

&.COOOO<14̂ -
' #W  '

kiSOOO<lU '

V W

g;mgs#s3'\ »r'
K  '.)K

.^Xv. //.s . .v.',».\<»>\\«̂ X\\ . . . . ^ .  ,f,".\ .',K . .'X.'X\ .s'.'.'.vX'

6
Jar? bTcC § <

Plate 6 Comparison of strain at yield and specific volume
resistivity for Thermoplastic, Amorphous and Partly 
Crystalline classes



NOUOLEN 251 1 PCH TA5 | I |

I Characteristic dercsity 23cC 
I Creep 1h
I Creep rnedulus tCOOh
I Date of last update 

Deg. of light transmissieẑ  
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Plate 18 Young's modulus data fo r the copolymer PCABS and the 
polymers PC and ABS
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Plate 19 Investigation of Pugh's Rule: grades of PC with high
values of Young's modulus
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Plate 20 In\'estigation of Pugh's Rule: grades of PC with high
values of notched impact strength
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Plate 21 In \’estigatioîi of Pugh's Rule: grades of PC w ith low
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Plate 22 In\'estigation of Pugh's Rule: grades of PC with low
\ alues of notched impact strength
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Plate 23 The specialist property menu: fibre properties



cr

o

CD

CD
1300CQ

TD
C LO

CO
CDN

CD

N
CD

Plate 24 Property Editor u indow on the fibre property tenacity u ith
comment



Fibre  1

Yàter V'SpoiS': permeability

D irn p  Leve3 
Cross Section 
Elastic Recoyeri  ̂
Elongation at bre^
Fibre F Fitness 
Ffere Length 
Moisture Reg-ain 
Stiffness 
Tenacity 
Touahness

8.:: g/de nier
Film 7 F-.: . = U liH i

i V f
Maximum Service Temperature 
Maximum vidth 
Minimum Service Temperature 
H2 perme-^ility 
02 permeability
Rate ef vrater vapour transmission 
Seat Strength 
Tear%g Strength
Tensile Strength machine direction 
Tensile strength trarsverse d’re^cticn 
Thermal Shrinkage Machine Direction 
TherrrialSt^inkage.iTransverse Dirê ctlon; 
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Plate 25 Example film  and fibre grades
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Plate 26 Comparison o f tenacity data for fibre grades o f Partly
Crystalline, PET and PP; and o f tensile strength, machine 
direction data, for the film  grades o f PP, PVC and PA



Proper ty  compar ison

TensHe S treng th  m achine d ire c tio n N/mm*2 7

' A i l : , L . . J î r ^ o p î â k i,% 1 V ■> i '  A ll d
î  /CcV^ _  

’ 'A^'*\.>-y-

bioo^x
' r

V % "  - V
'\V<'>\

 ̂ '̂' hv "
3 4 ^

2' \ \  "45 v>i»o' ^ '>'' I
  \\ / s ^
5 CSubShortList

Grade Select
( ^ d e sP o lym er

ÙA.PAANMBD1Ù2 
CAPRANOEB

ElEliCflPRflN OEB

Therm.exp^coet tran. 23-8DoC
Thermal oonductivity of nielt 
Tradename ef polymer 
VicatA/50 CtOJO
Vicat B/5Û (5Œ<)
Visoesitg ooeff.
Vater absorption (2ToC-sat.) IL 
Vour»g*s modubs Cseo. 1 rr^n/mb)

Anti-statb?
Area farter 
Bursting Strength 
C02 permeabilibj

# # # # # # # #

Caprart OEB (Oriented Extra Barrier) fs a cl ear f i lm  having 
excellent gas barrier properties, high strength and good 
chemical resistance. It also exhibits good p rtn tab illty  
and IS machinable on commercial packaging equipment. '

A  F
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show the property has picked out film  grades
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Plate 28 Density data for all Partly Crystalline grades compared
with fibre Partly Crystalline grades only; repeated fo r all 
Polymer grades and film  Polymer grades
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Plate 29 A ll polymers compared with film  grades o f the Pol) mer
class for Y oung's modulus and heat deflection temperature
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Plate 30 Density and Young's modulus data fo r the film  grades o f 
some Partly Cr}’stalline classes
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Plate 31 Property editor u indow for the Lucas property glass
content
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Plate 32 Illustration o f two Lucas properties for the class
Thermoplastic; also, comparison o f density data fo r all o f 
the PP class and just the Lucas grades o f the PP class


