
Open Research Online
The Open University’s repository of research publications
and other research outputs

Action Systems, Determinism and the Development of
Secure Systems
Thesis
How to cite:

Sinclair, Jane (1998). Action Systems, Determinism and the Development of Secure Systems. PhD thesis.
The Open University.

For guidance on citations see FAQs.

c© 1998 Jane Sinclair

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

u

A ction System s, D eterm inism and
th e D evelopm ent o f Secure System s

PhD Thesis

Jane Sinclair

Computing Department
Faculty of Mathematics and Computing

The Open University

10th February 1998
. I f

ProQuest Number: C664856

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest C664856

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A ction System s, D eterm inism and the
D evelopm ent o f Secure System s

Jane Sinclair

Computing Department, The Open University.
PhD Thesis. February 1998

A bstract
This thesis culdresses issues arising in the specification and development of
secure systems, focusing in particular on aspects of confidentiality. Various
confidentiality properties based on limiting the allowed flows of information
in a system have previously been proposed. These definitions axe reviewed
here and some of the problems inherent in their use axe outlined. Recent
work by Roscoe [106] has. provided information flow definitions based on
restricting the allowed nondeterminism within the system. These properties
axe described in detail, with a range of examples provided to illustrate their
use. f '

This thesis is concerned with providing a new, pragmatic approach to
the development of secure systems. Action systems axe chosen as a notation
which incorporates both direct representation of system state useful for effec
tive system modelling and the succession of events in a system essential for
representation of information flow properties. A definition of nondetermin­
ism and formulations of the deterministic security properties axe developed
for action systems. These axe shown to correspond to the original CSP event-
based définitions.

The emphasis of this work is on the practical application of theoretical
results. This is reflected in the case studies in which the preceding work is
applied to realistic development situations. This allows the strengths and
weaknesses of both the deterministic security conditions and the use of ac­
tion systems to be assessed. The first study investigates security constraints
applied to a distributed message-passing system. Ways of specifying security
conditions and the effects of including them at different levels axe explored.
The second case study follows through the specification and refinement of
a distributed security kernel. A technique for the simplification of security
proofs is introduced.

A cknow ledgm ents

Thanks to my supervisor Daxrel Ince for his support and encouragement.
Thanks, too, to the Open University which provided the opportunity for my
studies as it has for many other mature students.

A number of friends have read and provided comments on parts of this
thesis. For their time and effort and for their comments which have been a
great help to me, my thanks to Michael Butler, Jon Hall, Jeremy Jacob and
Ian Livingstone.

Finally, special thanks to my husband Ian who understands the traum a
of doing a PhD, and to my children Helen and Ben who help to keep things
in perspective.

This work was supported by the EPSRC.

11

C ontents

Introduction 9
1.1 Confidentiality .. 10
1 .2 Information flow ... 11

1.3 Security policies and the development p r o c e s s1 2

1.4 Overview.. 1 2

Confidentiality, information fiow and noninterference 15
2.1 Introduction to confidentiality.. 15
2 .2 Information flow ... ̂ 17
2.3 N oninterference.. 18

2.3.1 Basic noninterference.. 18
2.3.2 Noninterference for nondeterministic system s...................... 2 1

2.3.3 Inference and non in terference.. 23
2.3.4 Composability and p e r tu rb a tio n s ..24
2.3.5 Noninterference in other settings ..27

2.4 Other approaches to limiting information f lo w 28
2.4.1 Nondeducibility..28
2.4.2 Nondeducibility on strategies .. 29
2.4.3 Universal thw ry of information flow 29
2.4.4 S ep arab ility ...29
2.4.5 Probabilistic interference..30
2.4.6 Modal logic and c a u s a l i ty ...31

2.5 Comment on noninterference p roperties.. 32
2 .6 S u m m a ry .. 37

3 Security through determinism 39
3.1 The rôle of nondeterm in ism ...39

3.1.1 Considering noninterference p ro p e r t ie s 41
3.2 Security and d e te rm in ism ..42

3.2.1 Eager deterministic s e c u r i ty ...42
3.2.2 Lazy deterministic security .. 44
3.2.3 Mixed deterministic se c u rity ...45
3.2.4 E x a m p le s ... 46

3.3 An alternative formulation of deterministic security properties 51
3.3.1 Specifying abstract high-level behaviour................................51
3.3.2 Conditional s e c u r i ty .. 52

3.4 Considerations for a secure development m e th o d 53
3.5 S u m m a ry .. 58

4 Action system s and nondeterminism 60
4.1 Introduction to action system s..60

4.1.1 Actions .. 61
4.1.2 Action s y s te m s 63
4.1.3 Failures-divergences for action s y s te m s 65
4.1.4 Examples of basic action s y s te m s ...65
4.1.5 A choice operator for actions...67
4.1.6 Infinite t r a c e s ...6 8

4.2 Action systems with internal actions ...69
4.2.1 An iterative c o m m a n d ...69
4.2.2 Internal actions and CSP correspondence............................71
4.2.3 Hiding for action systems .. 72

4.3 Communication in action sy s te m s ...74
4.3.1 Value-passing ac tio n s .. 75
4.3.2 Value-passing action systems and C S P 76

4.4 Parallel composition of action s y s te m s ...78
4.5 Nondeterminism in action system s...80

4.5.1 Determinism for simple action s y s te m s 81
4.5.2 Determinism for action systems with internal actions . 8 6

2

4.5.3 Determinism for value-passing action s y s te m s87
4.5.4 Other aspects of nondeterminism for action systems . . 8 8

4.6 S u m m a ry ...89

5 Determ inistic security for action system s 91
5.1 Eager deterministic s e c u r i ty ...91

5.1.1 Eager security for action systems without value-passing 91
5.1.2 E x a m p le s ..92
5.1.3 Eager security for value-passing action system s...................95
5.1.4 E x a m p le s ... 95
5.1.5 Action systems and lazy deterministic secu rity98
5.1.6 Lazy deterministic security for simple action systems . 99
5.1.7 Correspondence with C S P .. 101
5.1.8 E x a m p le s ..102
5.1.9 Lazy deterministic security and internal even ts103
5.1.10 Lazy deterministic security for value-passing action sys­

tems .. 104
5.1.11 E x a m p le s ... 105

5.2 Mixed security conditions ...107
5.2.1 Mixed security for action sy s te m s 107

5.3 Abstract models of high-level behaviour.. 109
5.3.1 High-level b e h a v io u r ..109
5.3.2 Strong deterministic security ...110
5.3.3 Eager deterministic s e c u r i ty ...110
5.3.4 Lazy deterministic security .. I l l
5.3.5 Mixed deterministic secu rity ...112
5.3.6 Conditional s e c u r i ty ..113

5.4 Security policies...114
5.4.1 Other ways of restricting the system115
5.4.2 Relaxing the conditions... -117

5.5 Bi-directional ch a n n e ls ..117
5.5.1 The secure niultiple stack s y s te m119
5.5.2 Representation of bidirectional channels 124

5.6 S u m m a ry ..125

6 Refining secure action system s 126
6.1 Refinement and sim ulation ..126
6 .2 Refinement for basic action sy stem s... 128

6.2.1 Forwards simulation for basic action sy stem s....................129
6 .2 .2 E x a m p le s ..130
6.2.3 Backwards simulation for basic action sy s te m s134

6.3 Refinement and internal a c t io n s ..135
6.4 Refinement for value-passing action s y s te m s136
6.5 Special refinement conditions ... 137
6 .6 Refinement and s e c u r i ty ...140
6.7 Parallel re fin e m en t.. 140

6.7.1 E x a m p le s ..141
6.7.2 Security of parallel decom position..144

6 .8 Related w o r k ... 146
6.9 S u m m a ry ...148

7 M essage passing in a network: case study 1 150
7.1 Network s e c u r i ty 152
7.2 A network specification..153
7.3 Insecure nodes..158
7.4 Refining the basic specification ... 162
7.5 A different view of system s e c u r i ty ...165

7.5.1 Introducing en cryp tion ... 167
7.5.2 The information gained by an in t r u d e r168

7.6 Link en cry p tio n ...170
7.6.1 Security of the link encryption system172
7.6.2 Limited security for the link encryption system173
7.6.3 Refinement of the limited security a p p ro a c h 174

7.6.4 Further security considerations for link encryption . . . 175
7.7 End-system level en c ry p tio n .. 176
7.8 End-to-end e n c ry p tio n ..181

7.9 Further con sid e ra tio n s ..186
7.10 S u m m a ry ...191

8 A distributed security kernel: case study 2 192
8.1 Description of a security k e r n e l ... 192
8 .2 Abstract specification of the k e r n e l ...194

8.2.1 The state of the k e rn e l ...194
8.2.2 The top level action s y s t e m ...197

8.3 The security of the k e r n e l ... 198
8.4 Proving noninterference for the kernel...201

8.4.1 Obscuring high level actions in SecKerl 201
8.4.2 Nondeterminism .. 203
8.4.3 An approach to proving nondeterm inism 204
8.4.4 Showing refinement of S im p le ..205

8.5 First refinement of the kernel... ...207
8 .6 The distributed sy s te m ... 218
8.7 R em ark s ... 223

9 Conclusions and future work 225
9.1 Discussion and comparison with other work225

9.1.1 The use of action s y s te m s .. 226
9.1.2 Comparison with C S P .. 227
9.1.3 Comparison with state-based approaches........................... 230
9.1.4 The deterministic security co n d itio n s232

9.2 C onclusions... 234
9.3 Future w o rk ... 238

9.3.1 Defining other security p ro p e rtie s 238
9.3.2 Security m o d e llin g ... 240
9.3.3 Further ex am p les ...241
9.3.4 Action systems and p r o o f ...241

A A CSP reference 243

B Weakest precondition and basic notation 246

C A Z re fe ren ce 250

D P ro o fs 255
D.0.5 Proof of deterministic security p roperty273

List o f Figures

2.1 Abstract and concrete operations in Z ..36

4.1 Notation for action system A ...64

5.1 Multi-level s ta c k s ..120
5.2 Actions of obsff^j{MultiStack) for clear u l > c l121

6 .1 Abstract and concrete states related by simulation R127
6 .2 Concrete stack sp ec ifica tio n .. 138
6.3 Action system specification for the hook-up exam ple....................147

7.1 OSI m o d e l...154
7.2 Typical tasks carried out at each OSI level 154
7.3 Second level network specification............. ! 157
7.4 The schema C \N S \ ... 159
7.5 Top level network specification with security levels.......................160
7.6 Second level specification - classified m essa g e s 164
7.7 System with link en c ry p tio n .. 171
7.8 Specification for end system en cry p tio n ...178
7.9 User specification..183

7.10 Specification of individual nodes for end-to-end encryption , , 185
7.11 Specification of medium for end-to-end encryp tion 186

8.1 The state of a h o s t .. 195
8.2 The state of the k e rn e l ..195
8.3 The state of the k e rn e l ..196
8.4 The top level action system: S e c K e r l ..198

8.5 Tree describing D E C ID E ! ... 199
8 .6 SecKer! with high level actions obscu red 202
8.7 The deterministic action system: S im p le206
8 .8 The obscured system after applying the Internal Split Rule . . 208
8.9 The state of the kernel at the second level of refinement 210
8.10 The state of the kernel with distributed k e rn e l........................... 211
8.11 The state of the system, KemelSys2 ... 211
8 .1 2 The second level action system: S e cK e r2 212
8.13 The internal action getrequest.. 213
8.14 The internal action tr a n s fe r ..213
8.15 The internal action d e c id e ...213
8.16 The internal action d e liver ...214
8.17 Tree describing D E C ID E 2 ...215
8.18 Tr% describing D E C ID E Z ...216
8.19 The action system: SecKer^ for host n .. 219
8.20 Tree describing DECIDE A ...220
8 .2 1 Tree describing D E C ID E Z ...2 2 1

8.22 The internal action getrequestn.. 222
8.23 The internal action decide^...222
8.24 The internal action delivern ...222

D.l Abstract top actions for specific o u t p u t s 264
D.2 The indexed internal action g e tn ... 280

Chapter 1

Introduction

The need to provide secure computer systems haa now been a topic of concern
for nearly thirty years. Once the use of computers progressed from single
users directly accessing staind-alone machines, the need for security controls
which would apply specifically to computer systems became apparent. Since
then, there haa been much research into computer security. Developments
in the use of computers, such as the Internet and indirect accessing, have
presented further challenges. As a clearer idea of security needs has emerged,
many security-related products have become widely available (for example,
for encryption and for secure com m u n ication) and standards have been set
down for the evaluation and accreditation of such products. The demand for
improved security and greater accountability continues to grow, as do the
challenges faced by the providers of secure systems.

The work of this thesis considers one particular branch of research: that
of providing a formal definition of security properties for the specification and
development of secure systems. It attem pts to incorporate such a definition
in a pragmatic approach to the practical development of secure systems.
The aim of this thesis is to provide a context for some of the theoretically-
appealing formal security definitions which facilitates their application to the
development of general-purpose secure systems. Having formulated security
properties in such a way, it is then possible to investigate the strengths and
weaknesses of the approach and of the formal properties themselves. To
achieve these aims, this work first reviews and compares existing definitions.

Properties based on determinism are seen to have a number of theoretical
advantages and interpretations of these properties are given in a general-
purpose specification notation." To assess the suitability of the definitions and
of the development approach two case studies are presented. Both represent
aspects of real computer systems and are on a large enough scale to test out
the security properties and the development approach. This chapter sets the
context for that work and outlines the structure of the thesis.

1.1 Confidentiality

Threats to computer security have traditionally been divided into three cate­
gories, concerning confidentiality, integrity and denial of service. This thesis
addresses the first of these. Confidentiality (otherwise referred to as privacy,
secrecy or non-disclosure) encapsulates the general idea that information may
be disclosed only to those who are entitled to see it. In order to judge the
security of a system there must exist a definition of security against which
the system can be assessed. Much research in computer security has been
directed towards providing a suitable formal definition of confidentiality.

Although the idea of confidentiality is a simple and intuitive one, provid­
ing a theoretical basis for the confidentiality of computer systems has proved
notoriously difficult. Proposed definitions which at first appeared promising
have later been found to be deficient in various respects or to be applicable
only in certain, restricted circumstances. Revised definitions moved away
from the earlier, straightforward approaches resulting in less intuitive and
sometimes complex conditions (see Chapter 2). As a result, there currently
exist many alternative proposed properties for confidentiality. The diversity
of the definitions and the variety of notations in which they are proposed
complicates the task of comparison and assessment.

10

1.2 Inform ation flow

Since the work of Goguen and Meseguer [43, 44] in the early 1980s, much
research into providing confidentiality properties has focused on information
flow. Using this approach, a security policy is constructed by specifying the
allowed flows of information within a system. In order to decide whether
such a requirement is satisfied or not there must be some criterion setting
out what constitutes information flow. Goguen and Meseguer described a
property, known as noninterference, which can provide the underlying theory
for an information flow policy. For user u l to be noninterfering with user u2,
no actions of u l may be allowed to affect the view of u2 .

Since the early work on noninterference, many different information flow
definitions have been proposed. These have generally sought to extend the
original ideas to a wider context (for example, to nondeterministic systems)
or to include other desirable properties (such as the requirement that the
composition of two secure systems should itself be secure). Some have been
regarded as a generalised form of the original idea of noninterference, with
others being sufficiently different to merit new labels. Information flow defi­
nitions have been presented in a number of different notations, some of the
earlier work being couched in terms of state-transition machines with some
more recent authors favouring an event calculus such as CSP.

The number of different conditions and notations can obstruct the com­
parison and assessment of these properties. Many were developed to address
a specific concern and the exact range of situations each covers is not imme­
diately apparent.

Recent work by Roscoe and Woodcock [107, 110] has provided further
insight by noting the relationship between information flow and nondeter­
minism. The research of this thesis builds on that approach by extending
the deterministic properties to systems where the representation of system
state is regarded as being of equal importance to the succession of events.

11

1.3 Security policies and the developm ent
process

Perhaps the difficulty of interpreting and applying the information flow prop­
erties is one reason why, despite the large amount of research in this area,
little use has so far been made of them in industry. Such strong properties are
certainly not required in all cases, but there is evidence (see Chapter 3) that
even formal security developments with strict confidentiality requirements
have opted for better understood but less effective access control approaches,
and for the use of a general-purpose state-based notation such as Z. In in­
dustry more use appears generally to be made of state-based notations than
of event-based ones, yet these do not so naturally accommodate the event
analysis which has proved so useful for describing information flow.

Real security policies are rarely a straightforward application of a single
definition. At best, they might be a combination of different approaches;
at worst a complex set of requirements showing little cohesion. Formal ap­
proaches to security need to be flexible enough to accommodate such a range
of applications. It is also the case that a clear indication of how such ap­
proaches fit into an overall development method would aid their application.

1.4 O verview

This thesis examines existing information flow properties and shows how de­
terministic security conditions can be defined for state-based specification
using action systems. It also considers wider issues concerning the develop­
ment of secure systems with action systems. Chapter 2 presents a survey
of confidentiality properties, describing the information flow approach based
on noninterference and its variations. The chapter concludes with an overall
assessment of these conditions which leads on to a description of the CSP
deterministic security properties in Chapter 3. The discussion is motivated
by considering the relationship between security and determinism. The prop­
erties are illustrated by a number of CSP examples which show how they are

12

used and highlight the differences between them and other information flow
properties. The final section of this chapter considers desirable features of
any development method for secure systems. This is discussed in terms of
the deterministic security properties and their use.

Chapter 4 introduces action systems as providing a suitable notation for
the development of secure systems. In an action system, state and events
are given equal consideration. The state can be described using existing
notations, such as Z or specification statements. Action systems can be
viewed in CSP terms by giving them a failures-divergences semantics, and
this correspondence is described here. The central concept for the deter­
ministic security conditions is determinism itself. This is defined for action
systems and its soundness with respect to the CSP definitions is proved via
the failures-divergences correspondence.

Chapter 5 makes use of the deterministic definitions of Chapter 4 in defin­
ing deterministic security properties for action systems. Again, soundness is
proved with respect to the CSP definitions. Examples are used to show
how these properties work for action systems and to show the relationship
with CSP. This chapter also begins to consider how different security poli­
c ies may be constructed using the basic building blocks of determinism and
abstraction. The chapter concludes with a worked example of a multiple
stack system which is proved secure with respect to one of the deterministic
security conditions.

Chapter 6 considers the refinement of action systems, showing how simu­
lation can be used to refine both state and events. Examples axe given, and
two different versions of a key server specification are used to illustrate both
forwards and backwards simulation. Action systems axe particularly suited
to the state-based description of distributed systems since a single action
system can be refined to a parallel decomposition of action systems. Each
component system can itself be further refined and decomposed. Further,
when a deterministic security property is used this can be verified at the top
level and is then guaranteed to remain true at each subsequent level of refine­
ment. A third approach to the key server specification shows how parallel

13

refinement works.
Chapter 7 presents a case study in the area of network security. An action

system specification of network communication is used. Different approaches
to adding security constraints axe tried and their implications considered.
The study addresses general issues of secure specification, such as how en­
cryption should be represented and how the behaviour of an intruder can be
viewed. -

A second, more specific case study is given in Chapter 8 . This takes
as its starting point a description of an existing distributed security kernel.
By describing the system as an action system, the necessary structure for
considering information flow properties is emphasized. Applying the deter­
ministic security properties to this example illuminates both the strengths
and weaknesses of these conditions. A security policy for the system is formed
by combining a deterministic property with additional security requirements
placed on the state of the system. The chapter also investigates approaches
to proof which make the task more manageable.

Finally, Chapter 9 reviews the work and considers related reseaxch in this
axea. Conclusions axe drawn and future reseaxch directions axising from the
current work axe suggested.

Action systems notation is described in the text as it is needed. CSP, Z
and weakest precondition notation axe summaxised in the Appendices.

14

Chapter 2

C onfidentiality, inform ation flow and
noninterference

This chapter provides an introduction to confidentiality properties for com­
puter systems. It describes how confidentiality may be defined by placing
limitations on the allowed flows of information within a system and outlines
some existing information flow properties. The material included here moti­
vates and informs the discussion of the final section and paves the way for the
approach to confidentiality discussed in Chapter 3. A background of more
general computer security issues may be found in a number of textbooks, for
example Pfleeger [102] and Amoroso [4]. Some interesting details of early
computer security history (as well as more recent developments) are given
by Russell and Cangemi [115].

2.1 Introduction to confidentiality

One of the earliest approaches to preventing the unauthorised disclosure of
lufuriiictliuii stored on a. com p u ter was th e use o f access controls. Such con­
trols, often combining both mandatory and discretionary components, pre­
vent users from interacting with objects of the system in prohibited ways.
Perm itted ancess can be conveniently described using an object x subject ma­
trix. This approach was documented by Lampson [74] and extended in the
work of Denning and Graham [30, 46] and provides a straightforward and in­

15

tuitively appealing way of preventing unauthorised disclosure. Descriptions
of a number of models based on access matrices are given in Landwehr’s
survey [77]. A fairly direct translation can be made from the matrix to an
implementation, as shown by Jain and Landwehr [67]. Many examples of the
access control approach exist and it continues to be a topic both of practical
use and theoretical interest (see work by Sandhu [117, 118] for example).

While access control plays a vital part in the implementation of secure
systems, the use of access constraints for describing systems at a more ab­
stract level has certain disadvantages. As pointed out by Landwehr [77], with
an access m atrix approach it is difficult to prove general properties. Harrison
et al. [57] showed that for an arbitrary matrix the question of whether an
arbitrary access can at some stage be acquired is undecidable. More recent
work by O’Shea [1 0 0] investigated other problems of complexity in access
control systems. Another problem with access control is that a system can
obey the specified access constraints and yet information may still be passed
illicitly via covert channels. These were recognised by Lampson [75]. A
covert channel is emy communication channel within a system which can be
used (unexpectedly) to transm it secure information in ways which contravene
the system’s security policy. Unlike overt channels of communication, which
could be taken into account by an access control policy, covert channels are
not intended paths for transmission of information within a system, and fall
outside the scope of access controls. Work carried out on the identification of
covert channels and the calculation of their capacity includes that of Milieu
[89, 90], Kemmerer [71] and Fine [33].

A model of confidentiality based on a particular view of access control was
developed by Bell and LaPadula in the early 1970s [1 1 , 12]. This well-known
and popular approach introduced a framework for considering the security
of a system separate from its functional requirements. The system, often
referred to as BLP, is characterised by two central requirements: “no read up”
(ensuring that no one can observe an object at a security level which is higher
than their own clearance) and “no write down” (no one can alter an object
at a security level lower than their clearance). The development of BLP was

16

a significant achievement, providing a practical approach which is still used
in project development today. However, as a general-purpose method for
capturing security requirements it has a number of weaknesses. Modification
of the basic framework to accommodate differing security policies is not an
easy task since a particular view of security is built into the model. Systems
conforming to BLP can still harbour covert channels as shown by Millen [89].
Work by McLean [83, 8 6] demonstrated that systems exist for which BLP’s
Basic Security Theorem may be proved but which are intuitively insecure.
Understanding of the strengths and weaknesses of BLP has provided useful
input for later research.

2.2 Inform ation flow

A different approach to capturing the security requirements of a system is to
concentrate on the movement of information within the system and to state
explicitly what flows of information are allowed (or which are banned). This
approach is typically further removed from the concrete realisation of the
system than specification of access controls would be. It has the advantage
of allowing a high-level, concise statement of the security requirements, and
can support mathematical analysis and proof of critical properties. Early
work on information flow was carried out by Denning [28, 29] who specified
security policies in a lattice of security classes by giving a suitable “can-
flow” relation which defined permitted information flows within the lattice.
Restriction of information flow is the basis of the frameworks described in
the remainder of this chapter.

Information flow analysis provides a way to concentrate on what is re­
quired, separating this from the business of how it will be achieved, particu­
larly when used in conjunction with a formal specification of the functional
behaviour of the system. This is extremely useful for description and analysis
of secure information flow. However, it does not provide an instant solution
to the problems of covert channels. Extensive effort may be required to iden­
tify such channels and, even then, it may not be feasible to take preventative

17

measures. On the other hand, information flow analysis does provide a tool
which has the potential to analyse unexpected possible flows at different
lev e ls and g ives d evelopers the Opportunity to deal with them.

An information flow policy which details the allowed flows of information
in a system must be accompanied by a definition of what constitutes a flow
of information. The properties described below all attem pt to provide such
a basis. A brief account of a number of existing information flow proper­
ties is given to provide a context for the development of this approach to
confidentiality.

2.3 N oninterference

Noninterference is the best-known information flow property. However, the
term does not refer to a single, specific definition, but has been used to cover
a number of varying properties described in a variety of notations. These
are reviewed in this section. In the following descriptions it will be assumed
that, unless otherwise stated, there are two system users, H and L, whose
interactions with the system partition those available. This improves the
clarity of the descriptions and in most cases can be generalised to multiple

users.
High-level user H is said to be noninterfering with low-level user L if no

actions of H caji affect the view of L. If H is noninterfering with L then no
information can flow from H to L. Noninterference properties Ccin be used to
express not only standard, multi-level security but many other requirements

too.

2.3.1 B asic noninterference

Goguen and Meseguer [43, 44] gave a definition of noninterference for de­
terministic state machines. In this approach the transition between states is
total and functionad for each user command. The only information a user
can derive from the system is from the output seen by that user after each
transition. Let out{u^t) denote the output to u after the sequence of com-

18

mauds t has occurred (starting from the system’s initial state). Also let i t w
represent t restricted to the commands of u. Then user H is noninterfering
with user L if for each sequence t of commands:

out{L, t) = out{L^ t \ L) [GM\

No commands of H can make any difference to what is observed by L, so no
information can flow from H to L.

E x am p le 1 Users H and L share a resource which each of them may request.
If the request is currently unused it will be granted to the requesting user and
further requests denied until the resource has been released by the current
owner. Although there is no direct writing of data from one user to the
other, information can still flow, since H can interfere with L. (Information
can also flow from L to JÏ, but we are not concerned about that). This can
be seen, for example, with:

t = {{request^ H), {request^ L))

since:

out(Lyt) = denied

but

out{L^ t \ L) = out{Lj {{request^ T))) = granted

In CSP terms, observation of a system is by the set of events offered at each
stage. Hoare’s Communicating Sequential Processes (CSP) [59, 109] is a
widely used notation for the specification of concurrent systems. Events are
the basic elements of CSP, with events themselves being given no underlying
structure. Each event is viewed as occuring instantaneously. A process is
defined by setting out the events in whidi it may engage and in what order
they may occur. Processes interact by simultaneous participation in events
common to both. A summary of the CSP notation used is found in Appendix

19

A. For process P, a user can be conveniently represented by the events in
which that user can engage. We are assuming that H and L partition aP.
Outputs are themselves events, with an output channel formed by bringing
together the separate events for each possible output value. So for an output,
only the event for a current possible output value will be offered. This has
led to adaptations of the original noninterference property for CSP, such as
that given by Ryan [116] which states that, for any trace i, the events offered
for L after t must be the same as those offered after t f L.

[P / t f n L = ((P/(i r L) f n L [Ryanl]

where is the set of events initially offered by P. A similar definition was
given by Allen [3]. It is referred to as extended noninterference and addresses
the issue oi t \ L producing a sequence which is not a trace which would cause
P/ (t \ L) to he undefined.

In contrast to the GM property which is defined only for determinis­
tic systems, R yanl and extended noninterference are stated in a notation
which allows the presence of nondeterminism. A nondeterministic system is
one which can make internal choices which may affect the view of its users.
This raises additional questions in the attem pt to define noninterference.
Although the CSP properties mentioned so far may be applied to nondeter­
ministic systems, the observable effects of internal choice are not taken into
account by such properties. Consider the CSP process PN with H = {h}
and L = {1} defined:

PN = I ^ (I ^ PN n h PN)

Here, the choice between h and / is an internal one. A property such as
Ryanl will be satisfied since / may always be offered. However, it is equally
possible tha t / wiU be refused. This has no effect on the possible traces of the
system, but it means that L may observe a refusal, with / only being offered
again once h has occurred. Thus L has direct knowledge of P ’s activity,
providing a possible channel for information flow. If this type of interference
in a nondeterministic system is of concern to us, then, in CSP terms, the

20

system needs to be modelled at a level which can describe failures as well as
traces. The definition of noninterference will also need to be broadened to
take the possibility of internal choice into account .

2.3.2 N oninterference for nondeterm inistic system s

In addition to Ryanl a number of other extended definitions have been given
to allow noninterference to be considered for nondeterministic systems. How­
ever, as with the two definitions already given, many of these allow the
property to be stated in the presence of nondeterminism but do not take
into account the special issues concerning nondeterminism as illustrated by
process P N above. For example, McCullough’s generalised noninterference
property [81] basically requires that:

(P/ t) \ H =T (.P /{t'{h))) \ H [McCl]

Thus, whether the h action occurs or not, the continued behaviour of the
system is the same from L’s viewpoint. The hiding operator makes all H
events internal to the system. The equality = r shows that it is equivalence
of traces which is under con sid eration . T h is property can be used in the
context of nondeterministic systems but would not reveal the information
flow from H to L in P N above.

Traces are not sufficient to detect the distinction between internal and
external choice. In CSP terms, the failures-divergence semantics is needed.
There are definitions which incorporate this; such as Ryan’s second property
[116] which, using CSP refusals, states that for each trace t:

rtfusals(P! t) =L refusals{PI{t \ L)) [Ryan2]

where =l considers only elements of L in each refusal set.
Another CSP approach to noninterference was provided by Grakam-

Cumming [47, 48, 49]. Although stated first for traces and essentially equiv­
alent to Ryanl, the property is generalised by providing an algebraic for­
mulation which can be interpreted in various semantic models. This allows

21

failures/divergences to be taJcen into account if required. This property states
that for each trace t:

P / t =L P/ { t r L) [GQ

where is the equivalence on processes with all H events suppressed and
P = i Q is defined as:

P I I STOPh = Q I I STOPff

Equality can then be interpreted in the required semantic model. Note that
\f t \ L is not a trace then P/{ t \ L) is undefined and GO does not hold. For
the specific case of process PN as defined above:

PN = l - ^ { l ^ P N n h - ^ P N)

and for the trace t = (/, h) then:

PN/ t = PN
PN/{ t \ L) = l ^ P N n h ^ P N

Considering these in parallel with STOPh gives, firstly:

PN II STOPh

which is equivalent to the process Rl:

= R i n STOPh)

and secondly:

(I { P N \\ STOPh)) n STOPh

Any trace of Is is possible for both. Considering failures, ((), {/}) is a failure
of the second but the first will always be prepared to offer I initially. Hence
H is not considered noninterfering with L in PN by this definition. GO
is similar to the definitions of Ryan when interpreted in the appropriate
semantic model.

22

2.3.3 Inference and noninterference

Jacob [61, 62, 6 6] carried out much work towards providing a mathematical
framework for security properties. Inference functions are used to define what
a user with a specified interface might be able to deduce about the rest of
the system. The traces of a system P can be projected onto user U by:

P o U = { t \ U \ t E . traces P}

For user L and observation tl £ P o L the infer function is given by:

infer P L tl = { t £ traces P \ t \ L = tï)

If L observes trace tl then L knows that the overall system behaviour must
be one of the possibilities included in the set infer P L tl. This takes
into account the possibility that L knows the structure of P. The inference
function is used both as a basis for security specifications «md as a way of
comparing the level of security of two separate systems. A noninterference
condition based on Jacob’s inference functions was reported by Grctham-
Cumming [47] as:

y t l £ P o L 9 () £ {infer P L t l) o H [Jacob]

This requires tha t any trace as seen by L could be possible with no events of
H occurring. For the case where H and L partition P this may be stated:
for any trace t:

t \ L £ traces P

This property is weaker than definition GC, since if t \ L ^ traces P then
P/ { t \ L) is undefined and so GC cannot hold. That it is strictly weaker is
illustrated by the process:

P = h ^ STO P □ I STOP

which satisfies Jacob but not GC.
Although inference functions as defined by Jacob allow inferences to be

made based on trace behaviours, it would be possible to extend this to an

23

idea of inferences which include the failures of a system. This would allow
observation of refusals to be taken into account.

An approach very similar to the inference function definition of Jacob is
the noninference property described by O’Halloran [98]:

V t : traces P • (t \ H £ traces P)W {t \ L = ()) [O^Hal]

For the case of Hy L partitioning P this is equivalent to Jacob. For the more
general case where events other than those of H and L are possible 0*Hal is
stronger than Jacob. Each disjunct of O ’Hal implies Jacob. To see that it is
strictly stronger, consider the process P I whose alphabet is partitioned by
H = {&}, M = {m}, L = {/}, defined:

P I = l —̂ m —̂ P l O h —> m —>PI

The trace (/, m ,/i, m) does not obey O ’Hal since removing H events gives
(Z, m, m) which is not a trace. However, every element of P /o L is a sequence
of /s. This could be inferred by L from a sequence of Is alternating with ms.
Thus the Jacob property holds for PI.

2.3.4 C om posability and perturbations

Another direction in which noninterference definitions have been extended
is to try to provide a property which is preserved by system composition.
McCullough [80, 81, 82] noted this as a desirable feature and showed that
for certain ways of “hooking together” component systems, a confidentiality
property such as M cCl might not be preserved. This motivated further defi­
nitions, seeking to restrict the possible infiuence of high-level inputs by plac­
ing stricter constraints on the traces of a system. These definitions feature a
distinction between the inputs, outputs and other events in the system. This
is different to the various CSP definitions given above in which no separate
treatm ent is given to inputs and output. The “hook-up” security property
is described by McCullough [80]:

We will say that a system is hook-up secure if for all traces Ti , and
for all sequences T2 formed from Ti by adding or deleting high-

24

level inputs, there is a trace T3 such that T3 is the same as T2 in the
constcint portion, and differs from T2 in the changed portion only
in high-level outputs, and such that the first changed output of
T3 occurs no sooner than the first output in the changed portion
of T2 . [McC2]

This is another property given in terms of traces. It is one of a number
of such properties where security is dependent upon the occurrence (or ab­
sence) of inputs and outputs in particular positions, and is preserved when
components are “hooked up” by allowing outputs of one to become inputs
to the other. The subtle differences between such definitions can be difficult
to characterise, and a property stated in this way would be difficult to verify
for a given system. The hook-up property appeared in McCullough’s later
papers [81, 82] under the name of restrictiveness, with an alternative defini­
tion given in terms of state machines. No justification is given to show that
the different representations are equivalent, but the idea of the property is
that no high-level input can affect the low-level view of a trace. The delay in
outputs for 73 is the requirement which prevents high-level outputs feeding
back to introduce insecure composition. Restrictiveness was given a CSP in­
terpretation by Graham-Cumming [47] and was shown to be strictly weaker
than GC even for trace equivalence.

The ideas motivating restrictiveness were taken forward by Johnson and
Thayer [6 8] with their definition of forward correctability. This also supports
McCullough’s “hook-up” result but, taking the view that restrictiveness is
stronger than it need be, defines a somewhat weaker property. The definition
rests on the deletion and insertion of certain events in a trace. A sequence
obtained by deletion or insertion of high-level inputs is called a perturbation.
The result of deleting or inserting high-level, non-input events is termed a
correction. The definition of forward correctability is given [6 8] aa:

An event system is forwardly correctable iff for any trace a and
any perturbation a ’ obtained by inserting or deleting a single
high-level input closely preceding a high-input-free segment 7 ,
there is a correction of a' supported in 7 . [JT\

25

Here, an event closely precedes a segment if the two are separated by, at most,
a low-level input. A number of different definitions can be obtained in the
same way by considering various different perturbations. Some of these were
given by McLean and Meadows [84]. Such definitions can be difficult to assess
and, as mentioned above, to verify. Unwinding theorems (see Section 2.5)
go some way towards alleviating the difficulty of proof. Restrictiveness and
forward correctability aim to protect high-level inputs. Guttman and Nadel
[56] present a property, ND security, to secure both high-level input and
output. The CSP definitions above make no distinction between types of
event and aim to prevent interference by any high-level event.

The issue of composability which motivated the definitions in this section
haa continued to be explored by researchers. The CSP definitions such as
GC have been shown [47] to be preserved by CSP parallel composition. Za-
kinthos and Lee [134,135] suggested a technique to ensure that McCullough’s
“hook-up” composition will hold for generalised noninterference, McCl. This
technique introduces delays into the system when feedback loops are present,
achieving the same effect as the additional condition of the restrictiveness
property. This approach makes the treatm ent of composition enforce secu­
rity rather than trying to incorporate the hook-up property in the security
definition. More general frameworks for the composition of security prop­
erties have been suggested, for example by Landauer and Redmond [76]
and Dinolt et al. [32]. The former presented an abstract characterisation of
module specification with properties defined as predicates joined by logical
conjunction. In the latter, both components and policies were described as
relations on “information units”. Properties of closure and transitivity for
such relations were used to provide conditions for combining components in
ways which preserve security. McLean [8 8] classified information flow prop­
erties in terms of closure properties of certain trace-combining functions.
This characterisation provides a basis for investigating the effect of various
forms of composition. A similar direction was taken by Peri et al. [101] but
with many- sorted predicate logic used as the framework. Recent work by
Zakinthos and Lee [136] attem pted to characterise security properties and

26

to derive a general theory for secure composition. This work was carried out
in terms of trace sets and so applies only to deterministic systems.

2.3.5 N oninterference in other settings

McLean used a trace method [87, 85] for the abstract specification of soft­
ware. A trace specification gives the names and types of all procedures (the
syntax part) and a logical description of trace behaviour (the semantics).
A set of axioms of the trace deductive system is provided, which supports
formal verification of functional and security properties. The noninterfer­
ence property requires that the output to a low-level user after any trace t
is the same as after t \ H. This can be applied directly to the trace spec­
ification, thus proving security at the most abstract level without the need
for instantiation of state machine models that many of the properties have
required.

Although trace-based definitions of noninterference are common, there
are other approaches. Johnson and Thayer [69] used testing semantics of a
labelled transition system. For each security level of the system a further
labelled transition system is constructed which represents the possible states
and actions at or below that security level. These are known as probes. A
system is secure if it is indistinguishable (with respect to its probes) both
before and after the occurrence of any high-level event. This provides a
security property for nondeterministic systems with an interpretation going
beyond the standard traces approach. It is closer to the failures/divergence
model in CSP. Automata theory was used by Moskowitz and Costich [97]
and an algebraic approach described by Pinsky [103]. Interpretations of
noninterference for state- based notations include that of Bevier and Young
[13]. Some of these approaches are reviewed with respect to the work of this
thesis in Chapter 9.

27

2.4 Other approaches to lim iting informa­
tion flow

In addition to the noninterference approaches a number of other definitions
for restricting information fiow have been suggested.

2.4.1 N ondeducib ility

Sutherland [127, 128] described the property of nondeducibility. Within the
framework of nondeducibility it is sometimes possible for the actions of high-
level users to affect lower level users without compromising system security.
The im portant feature is whether the outputs that the lower level user sees
actually convey any high-level information or not. Each user of a system has
their own particular, possibly restricted, view of the system. If a user u \
can at any stage detect from their view of the system that certain possible
views for another user u2 would be ruled out, then information is said to
flow from u2 to u l. This is because u \ could deduce from their limited view
that certain theoretically possible wider views would be incompatible, and
hence infer information about what w2 sees. This definition relies on users
knowing their own and others’ interfaces to the system.

Nondeducibility can be expressed by observing how the views of the users
are related. Suppose for any possible trace t of the system that f l { i) gives
wl’s view of the system and f2 {i) gives u2’s view. Define / I * /2 by:

(/ I * /2) (0 = i f l { t) J 2 (t)) for all t

then information is said to fiow between til and it2 iff / I * f2 is not onto
(ra n /I) x (ran /2). This gives a symmetric interpretation of information
fiow. Sutherland showed that it is strictly weaker than the noninterference
property GM. McCullough pointed out that nondeducibility is not preserved
by hook-up composition.

28

2.4.2 N ondeducib ility on strategies

A stronger version of nondeducibility was defined by Wittbold and Johnson
[131]. This approach, known as nondeducibility on strategies, is intended to
rule out cases where feedback of output to input can cause insecure informa­
tion fiow in a system for which basic nondeducibility holds. W ittbold and
Johnson argued that it is not simply high- level inputs which are im portant,
but also the strategy behind those inputs. Given this, a low-level view should
be compatible not only with any high-level view, but also with any high-level
strategy. The hook-up property does not hold for basic nondeducibility, but
it does for nondeducibility on strategies as shown by Millen [91].

2.4.3 U niversal theory o f inform ation flow

Foley [36] used CSP to state a universal theory of information fiow in which
information flow can occur from H io L when the actions of H can limit the
possible traces for L. Much of Foley’s work, for example [37, 38, 39, 40], has
taken the wider view of describing ways of characterising information fiow
policies rather than concentrating on the definition of information fiow. This
can be seen as an extension of Denning’s work on lattice- based informa­
tion fiow policies [28, 29] with additional security classifications representing
objects of the system.

2.4.4 Separability

Another area which is similarly concerned with the use to which an infor­
mation fiow definition is put is that of separability. A separable system is
one in which users can be isolated from one another. The idea of confining
behaviour was introduced by Lampson [75] and the approach of separabil­
ity was developed and applied by Rushby [112, 113, 114] who maxie use of
a separation kernel. This maintains an environment in which each user is
apparently separate, with communication allowed only through prescribed
channels. CSP definitions have been given by Burnham [17], Jacob [64] and
Graliam-Cumming [47]. For example, Jacob’s definition (the strongest of

29

these three) says that process P is separable if:

P = i Q i

for some Qi with disjoint alphabets. Roscoe and Wulf [111] investigated the
relationship between separability and information flow, concluding that sep­
arability only ensures absence of information flow if each Qi is deterministic.

2.4.5 Probabilistic interference

The properties referred to so far have been able to address a much wider
range of information flows than previous methods, but they are still unable to
deal with the issues of timing channels or probabilistic channels. To capture
these it is necessary to extend the definitions and to model the system at a
different level (for instance, the failures-divergence model of CSP might be
replaced by a timed or probabilistic semantics). The problem of probabilistic
channels where the probability of a low-level event occurring is influenced by
high-level actions was addressed by Gray [50, 51]. The treatm ent of state
machines is modified so that each transition is given an associated probability.
If p(s, e, 5 ') is the probability that, starting from state 5 , the event e will move
the system to state 5 ', then the probability that, for user L, the system will
move from state s to state s' is given by:

Piisy e ,s ') =
 ̂ YL P(^’ 6, t') if e e L

i'=£,s'
S P(s./ .0 i f e^L

\ f ^ L A V = L S '

Gray’s security definition extends restrictiveness by including the following
requirement on probabilities:

s = i t => Pl {s , e, s') = Piity e, s')

Hence the probability that L sees a particular after-state must be the same
from all L-equivalent starting states. This is referred to as P-restrictiveness.
Probabilistic noninterference has also been defined by Gray [52].

30

2.4.6 M odal logic and causality

Several authors have used modal logic to express security properties. A
modal logic allows statements about users’ knowledge to be made directly
by use of basic modal operators. For example, Glasgow et al. [42] used the
logical formula:

Kl <f> ^ Rl <t>

to mean: if L knows 0 then L is permitted to know <t>. The R l modal operator
was also considered by Bieber and Cuppens [15] who viewed its semantics
in a way which allows certain dependencies within a system. As with many
of the previous definitions, a distinction is made between inputs, outputs
and other events. The “secure dependencies” allow L to have knowledge of
all values which are functionally dependent on L’s input. With this view, a
system is secure if for each trace^ t:

K{t\L) 4> => K{t\Li) 4>

where Li is the inputs of L. This property, stated for traces, requires that
L’s view of a trace depend on L’s inputs in the trace:

V tly t2 : TVace • t l \ Li = t2 \ Li t l \ L = t2 \ L

The property is referred to as causality. The relationship between causality,
nondeducibility, noninterference eind generalised noninterference is explored
by Bieber and Cuppens [15]. The latter three of these properties are all
shown to be stronger than causality for deterministic systems partitioned
between users H and L. The framework in which causality is defined allows
only deterministic specifications. As discussed above, this limits both the
systems that can be specified and the security analysis which is performed.
Cuppens [27] defined the strictly weaker property, nondisclosure. A system
which displays nondisclosure but not causality is regarded as “maybe secure” .
A final decision on security can only be maxle when more information is
provided either through refinement or by providing probabilities.

trace in this system model is a function mapping each object a t each time point to
a suitable value,

31

Gray and Syverson [53] used a second order modal logic to reason about
probabilistic systems. They show that causality is equivalent to probabilistic
noninterference for deterministic, non-probabilistic systems.

2.5 Com m ent on noninterference properties

The information flow properties described in this chapter have proved to
be theoretically very appealing and have provided the framework for much
debate within the computer security research community. Perhaps part of the
attraction is the wide variety of abstract properties which Ccin be produced by
small alterations in the definitions. It is then a challenging task to discover
exactly which situations each definition covers and what systems each will
pronounce secure. It is also important to compare the various definitions and
to examine the differences between them. Until it is clear what each definition
achieves and what it allows, there can be no rational way to decide between
them. The development of “improved” security properties has unfolded in
a “monster-barring” fashion [72] in which a proposed definition is found
wanting by means of displaying an intuitively insecure system which the
definition accepts as secure. A new definition is then constructed to deal
with the problem case, only to be assailed by a fresh monster.

Another feature of the different security conditions is the number of dif­
ferent notations in which they are couched. For example, there are state
machines [43, 44], labelled transition systems [68], CSP [3, 116], algebraic
trace specifications [87] and abstract machines [14]. Although state-based
notations have not generally been considered as suitable for expressing infor­
mation flow properties, these too are represented [13]. A number of studies
have maxie progress in the study of the deflnitions themselves, and in com­
paring the various approaches by casting them in a common notation. This
is not a straight-forward task since features of the notation can often have a
fundamental effect on the meaning of a definition. Attempts at comparison
include that of Zakinthos and Lee [136] for trace properties; the categorical
approach of [63]; [47] and [107] which use CSP and [35] using CCS. The

32

unifying notation for each of these latter three is a process algebra where an
explicit treatm ent of state may not always be easy to achieve. On the other
hand, properties expressed in a notation oriented towards capturing the state
of a system may have limited scope for analysing the succession of events.
When translating a definition from one notation to another for the sake of
comparison it is necessary to show that the translation is faithful to the orig­
inal. Otherwise the comparison may be misleading. For example, many of
the definitions in this chapter make a distinction between inputs, outputs
and other events. As shown by Bieber and Cuppens [15], even allowing for
notation, strict comparisons may not be possible and account must be taken
of different system assumptions such as totality of input. This great variety
of notations continues to be an axiditional obfuscating aspect of computer
security research. It is a barrier to scientific progress on top of the basic
challenge of the underlying mathematics.

As a consequence of this diversity the developer of a secure system is faced
with a bewildering array of definitions. There is little guidance as to how
a choice can be made, what the implications of each decision are or how a
chosen security definition may be incorporated into the development process
as a whole. Perhaps this explains the poor take-up of the noninterference
approach in industry. Guaspari et al. [54] referred to the proliferation of
definitions as a “cottage industry” . The project they described chose to use
the Bell and LaPaxiula approach [11] with an ad hoc consideration of covert
channels, rather than the more integrated approach of an information flow
property. There is cJso the problem that a number of these information flow
properties have intricate deflnitions including complicated trace expressions.
These are not attractive to specify and can be difficult to verify. Part of
the difficulty is that the condition is expressed as a property over all possi­
ble traces of a system. This can be overcome in some cases by the use of
unwinding theorems. An unwinding theorem in general provides sufficient
conditions which reduce the task of proving a property over all traces to the
more tractable requirement of showing that each individual event maintains
a certain property. Goguen and Meseguer [44] provided an unwinding theo-

33

rem for their original formulation of noninterference. Other examples of such
theorems can be found in [116, 34, 92]. Even with an unwinding theorem,
proof that a system satisfies a security property can be unwieldy. As pointed
out by McLean [87]:

Although noninterference is most naturally formulated as a trace
specification, the traditional approach to proving a system nonin­
terfering consists of constructing a finite state machine model of
system operation, showing that the constructed machine satisfies
a set of unwinding conditions that are sufficient for establishing
noninterference, and mapping the state machine onto the soft­
ware. Since the state machine constructed tends to embody, not
an abstract specification, but a concrete mechanism for imple­
menting that behaviour, the benefits of abstraction may be lost.

This is part of the motivation for McLean’s trace specifications for which
noninterference can be proved directly.

The very nature of security projects means that less information on them
is made public than for general project developments, but for those examples
for which some documentation is available it seems that methods pre-dating
noninterference often prevail. These may well be better-known and viewed
as “tried and trusted” but there is also the issue of ease of use. For example,
Boswell [16] reported a recent project carried out by Logica, UK to specify
a security policy for the NATO Air Command and Control System. The
specification language used was Z and the policy was a combination of the
Bell and LaPadula confidentiality model, the Clark and Wilson integrity
policy [24] and two-person rule. Other examples are quoted in [122] and
[54]. The subject of utility of security definitions is addressed further at the
end of the next chapter.

Another point which should be addressed when considering the applica­
tion of noninterference definitions concerns refinement. It might be hoped,
and indeed expected, that if a security property is shown to be true of a sys­
tem specification then that property will also hold for any implementation

34

of that specification. However, this is not true of most^ of the definitions
described in this chapter. It is an unfortunate feature that traxiitional refine­
ment techniques do not preserve these security properties and that proving
a specification secure against any of these properties is no guarantee that
the final implementation will also be secure. This was noted by McCullough
[81] and a general result for this area was set out by Jacob [66] whose “Basic
Confidentiality Theorem” shows that functionality and confidentiality axe, in
a sense, opposites: the two properties are inversely related with an increase
in one often leaxiing to a decreeise in the other. As an example of the so-
called “Refinement Paradox” consider the Z operation AOp in Figure 2.1.
It is intended here that high‘1 is a value input by a user working at a high
security classification and low\ is an output to a user working at a lower clas­
sification. A summary of Z notation is given in Appendix C. AOp accepts
a high-level input and nondeterministicadly outputs an unspecified low-level
output. In this operation, the high-level operation does not interfere with
the low-level operation. However, it can be refined by COp of Figure 2.1
which is intuitively insecure since high-level inputs are revealed as low-level
outputs.

Refinement is a major problem for secure system development. It is ob­
viously undesirable to expend effort verifying a security property of a spec­
ification only to have to re-verify the property for the implementation. A
number of approaxihes (including ignoring the problem) have been taken.
One method is to fix on a particular security property and to develop spe­
cialised refinement rules which do preserve it. This is the approach taken by
Graiiam-Cumming [47] who developed rules for a CSP interpretation of non­
interference. This provides a useful demonstration of the possibility of such
an approach, but it also raises further difficulties. For a variety of different

^There are exceptions. These include the properties which apply only to deterministic
systems, such as Goguen and Meseguer*s original definition of noninterference and Bieber
and C uppen’s causality. Another is McLean’s trace specification approach [87] which
allows only a limited am ount of h arm less” non determinism. This can be prevented from
causing any dow nw ard flow o f in form ation if th e im p lem en ta tio n is constrained always to
resolve the nondeterminism in a uniform way. However, this could be viewed as placing
ex tra requirements on the allowed refinements since only certain traditional refinements
(namely, those which resolve the nondeterminism in a consistent fashion) are acceptable.

35

A O p -----
high l : IV
low\ : IV

^ C O p ____
high? : N
low\ : M

low\ = high?

F ig u re 2.1 Abstract and concrete operations in Z

security properties, a variety of different sets of refinement rules would be
required. New tools would be needed for each, or at least, tools with different
sets of rules. If this approach is taken then, for any variation of a security
definition, we must completely rebuild the whole edifice of refinement theory.

Another, practical, response to the refinement paradox was produced by
the ICL Secure Systems High Assurance Team. This group has used HOL
[45] and Z on a range of security developments. Only systems which are
functional eind total may be considered secure. This rules out any further
weakening of preconditions or resolution of nondeterminism through refine­
ment. Again, these measures solve the problem, but are rather limiting. A
specification can no longer be as abstract, with many minor details having
to be decided at a high- level. The subject of abstractness of specification is
addressed further at the end of Chapter 3.

The overall impression of information flow created by the deflnitions of
noninterference brought together here is of a rather disorganised collection
of competing properties. The implications of choosing one definition over
another are not always clear; they can be hard to specify and expensive to
verify. There is often little to guide the developer in incorporating a security
property as part of a system development.

One question which arises is: what makes a good security property? It
seems reasonable to wish to find a property which accords with intuitive ideas

36

of system security. For practical purposes there are other features which are
also important, such as the ease of applying the property, the feasibility of
verifying the property and the desirability of maintaining security through
the development process. Perhaps at its most basic it might be hoped that
such a property would be able to distinguish between a system in which
information can pass between users and a system in which it cannot. The
wide variety of requirements and interpretations means that this is much
more demanding than it might at first appear. Different interpretations of
what constitutes information and when it can be said to have been passed
mean that an intuitive view of security for one person may be different from
that of another. This prompts the question of whether there can be a single,
basic definition of information flow which would also be flexible enough to
adapt to the many different situations in which confidentiality is required.

The definitions of this chapter have each covered certain aspects of re­
stricting information flow but none seems general enough to be regarded
as an underlying definition in this way. In the next chapter a somewhat
different property is considered which attempts to provide a more general,
theoretically appealing definition of information flow, while at the same time
addressing some of the practical considerations mentioned above.

2.6 Sum m ary

This chapter described the various approaches which have been taken to de­
fine confidentiality. Those based on sorne form of information flow allow
more general properties to be stated which can encompass both the obvious
paths of communication and a number of more unexpected routes provided
by covert channels. Despite the advantages of such definitions, there is lit­
tle evidence of their use by industry or government. Chapter 2 suggested
some reasons for this. These include the subtlety of the properties which
allows many variations to arise, the difficulty of application and the barrier
to development presented by the Refinement Paradox.

Chapter 3 reviews the use of determinism for security specification and

37

compares its utility with that of the properties in this chapter.

38

Chapter 3

Security through determ inism

This chapter introduces a different approach to defining information flow by
the fimitation of nondeterminism in a system. The properties are described
in some detail, with CSP examples provided to illustrate their use. The
chapter concludes by examining what those deflnitions achieve and what
further questions they raise.

3.1 T he rôle o f nondeterm inism

The discussion at the end of Chapter 2 begins to reveal a feature common to
the security deflnitions of that chapter: that is, the possibility that resolution
of nondeterminism might introduce insecurities to the system. A system is
nondeterministic in the CSP sense if it can make internal choices which affect
a user’s view of the system. Nondeterminism was exhibited by the schema
AOp in Figure 2.1. The abstract operation allows a nondeterministic choice
of output to the low-level user. The refinement to COp resolves this non­
determinism to constrain the value of the output. Unfortunately (from the
point of view of security) the value assigned is that of the current high-level
input. Thus, whilst nondeterminism towards a low-level user appears inno­
cent enough, a malicious or unwary refinement could introduce insecurity.

A security definition which accepts AOp as secure must suppose that the
internal choice is always resolved in a secure fashion. It is certainly true that
there are many refinements of AOp which do not reveal the high-level input.

39

for instance:

COpl
high? : N
îow\ : N

low\ = 0

Here, the low-level user sees only 0 each time the operation is executed, what­
ever the value of high?. However, using a traditional refinement path there is
nothing to prevent COp from being taken as the chosen implementation with
nondeterminism resolved by direct copying of high inputs to low outputs. It
is also worth noting that, even with AOp, when the operation is executed a
low-level user with knowledge of the system could infer that the high-level
user had input some value, even if they were unable to tell what the value
was. This might in itself be considered an undesirable flow of information.

The work of Roscoe and Woodcock [107,110] made clear the link between
determinism and security in a CSP framework. Roscoe gave noninterference
definitions based on the limitation of nondeterminism within the system and
demonstrated how these definitions in a sense underlie the earlier work on in­
formation flow. The security conditions proposed by Roscoe [107] were baaed
on the limitation of nondeterminism within a system. The appearance of the
system towards a low-level user is required to be completely deterministic.
The way in which the “appearance to a low-level user” is defined is discussed
below. If this view is deterministic then no information is said to flow from
high to low. In the CSP deflnitions that follow we will assume that, unless
explicitly stated otherwise, the alphabet of a process is partitioned into two
sets: H consisting of high-level events and L consisting of low-level events.
A low-level user can participate in L events only and should not be able to
deduce anything about high-level activity. Keeping to a division of just two
security levels simplifies the presentation, but the ideas can easily be gen­
eralised to accommodate the more general partial ordering of security levels
commonly used.

40

3.1.1 Considering noninterference properties

The whole purpose of noninterference properties is to prevent (or at least,
specify a limit to) high-level activity influencing what can be seen by a low-
level user. This aim might be stated informally as:

whenever two traces of the system appear the same to a low-level
user then the continued behaviour of the system must also be in­
distinguishable at the lower level.

Roscoe [107] translated this into CSP terms and indicated the various choices
of interpretation which might be made. Firstly, it is necessary to examine
how “equivalence” is to be decided. In CSP, the various semantic models
available (traces, failures- divergences, infinite traces etc.) give rise to various
possible ways of assessing equality. Mciny of the security deflnitions from the
previous chapter consider only treices equality and do not deal with the finer
distinctions which can be made. A second choice concerns how the view at
the lower level is determined. This consists of obscuring the high-level events
in some way. One obvious way that this can be done in CSP is to use the
hiding operator. If all ^ events are hidden, they become internal events of the
process which will happen immediately zind instantaneously with no external
participation. This is certainly an effective way of obscuring H events, but
the consequences of the way hiding is interpreted have implications for the
information flow as demonstrated below.

W ith these possible choices the informal nondeterminism description given
above might be rendered in CSP as:

'^ ty t' £ traces(P) A t \ L = t' \ L => {P /t) obs H =* {P /t') obs H

Where obs H could be hiding or some other method of obscuring H events
and =* denotes equality which could be for traces or for failures-divergences.
Different choices for these give rise to different properties which Roscoe [107]
showed can characterise many of the security definitions of the previous
chapter. For example, with hiding and trace equivalence this is basically
equivalent to McCullough’s generalised noninterference (property McCl from

41

Chapter 2). Other ways of observing the system and of abstracting high-level
behaviour can leaxi to subtle differences in the definition and consequently in
the systems classed as secure. W ith failures-divergences equivalence instead
of trax:e equivalence, a stronger property will be obtained.

3.2 Security and determ inism

The insight of [107] links information flow with nondeterminism. Another
way to view the approax:h of the previous section is to note that if the ap­
pearance of the system to the low-level user L were completely deterministic
then there would be no way that the behaviour of a high-level user could
possibly influence L’s view. Nothing at all can influence a completely deter­
mined view. L’s view of the system is its interface with the system. Hence
to ensure that the system is secure with respect to the actions of H we can
define Us interface with the system and require it to be deterministic. As
mentioned in the discussion of the previous section, there are several ways in
which we can abstract away H events to give Us interfaxie. This is reflected
in the properties defined below.

3.2.1 Eager determ inistic security

The first security definition based on determinism obscures H events by
hiding them.

D efin ition 1 Eager Deterministic Security (Roscoe) A process P is eagerly
secure with respect to H iff

P \ H is deterministic

The term “eager” comes from the interpretation of hidden events which views
them cis occurring internally whenever and as soon as they can. They occur
instantaneously and cannot delay the system. The definition uses the stan­
dard CSP interpretation of determinism in which a process P is deterministic
if:

divs{P) = 0 A {tr"{x) £ traces{P) => (Zr, {%}) ^ fails{P))

42

This requires that there is no point at which an event could be offered by
the system but might also be refused. According to Definition 1, all If
events must first be hidden in process P , making them internal events which
happen as and when they can. Any influence that H might have on L will
now appear to L to be the result of arbitrary internal decisions, that is, as
nondeterminism in P \ P . Conversely, if P \ If is deterministic, then no
behaviour of H can be capable of influencing Us view and hence P is secure.
To see how the definition is used, consider the following example.

E x am p le 2 W ith H = {h i, h2} and L = {/1 , 12}:

P I = {hi 11 ^ P I) □ {h2 Z2 P i)

P I offers an initial external choice between h i and h2. The event offered to L
is thus dependent upon W s choice. To assess P I with respect to Definition 1
H is hidden within the process:

P 1 \ H = {11 - , (P I \ H)) n {12 - , (P I \ H))

P I \ P" makes a nondeterministic choice between 11 and 12 and therefore
does not satisfy Definition 1. The process P I is insecure because the choice
of low level action depends directly on the behaviour of H. This is revealed
by the nondeterminism of P \ P . \\

This approach is referred to as eager because of the way in which hidden
events are assumed to occur internally whenever and as soon as they can.
There will be no observable delay to L (as long as the system does not
diverge). This can make a difference to the assessment of Us influence as
shown in the next example.

E x am p le 3 Let P = {/i} and L = {/}:

P2 = A - , Z - , P2

then hiding P actions gives simply :

P 2 \ H = I - , (P2 \ P)

which is deterministic. [|

43

P2 is considered secure according to Definition 1 even though occurrences of
I depend entirely on h having taken place. The hiding process conceals this:
it is as if ^ happens so quickly that no refusal could be observed by L.

3.2.2 Lazy determ inistic security

To rule out dependencies such as that in P2 above, Roscoe [107] gave a sec­
ond deterministic security definition in which high-level events are obscured
not by hiding but by allowing them to occur at any point. This method of
obscuring H events is rather less obvious since it does not conceal the high-
level events but abstracts from their specified order of occurrence within the
process. This form of obscuring can be achieved by interleaving the original
process with RUNh where:

RUNh = h : H RUNh

which is always prepared to offer any H action. The second deterministic
security definition obscures H by interleaving with RUNh -

D efin itio n 2 Lazy Deterministic Security (Roscoe) A process P is lazily se­
cure with respect to H iff

P III RUNh is deterministic

This is referred to as “lazy” abstraction. A low-level user cannot know
whether H events are contributed by P or by RUNh - Here, H events are
obscured since they may be contributed either by the original process P or
by RUNh - The following examples show how dependencies are revealed by
Definition 2.

E x a m p le 4 Considering the process P I from Example 2:

P I III RUNh = ({hi -> /I P I) D {h2 - , /2 - , P I)) ||| RUNh

One possible trace of P I ||| RUNh is (Al, Zl). However, ((^1),{Z1}) is also
a failure, and so P I ||| RUNh is nondeterministic. Thus P I does not satisfy
Definition 2.

44

E x am p le 5 Considering the process P2 from Example 3:

P2 III RUN h = (/ ? . - , / - , P 2) ||| R U N h

Again, {h. I) is a possible trace and {{h), {/}) is a failure. So P2 ||| RUNh is
nondeterministic and P2, which did satisfy the condition for eager security,
is not lazily secure. The dependency o i l on h is revealed by this method of
obscuring H events. \\

3.2.3 M ixed determ in istic security

The definitions of eager and lazy security amount to the same thing in many
cases, but the method of abstraction does have important differences which
will be made clear in the examples of the next section. In certain circum­
stances, it may be useful to be able to apply the eager condition to part of the
system and the lazy condition to the rest. This can be used for situations
where some high-level events (known as signal events) are viewed as hap­
pening so quickly that no delay can be observed by L, whilst the remaining
high-level events (known as delay events) could cause an observable refusal

to L. Again, the use of this is illustrated in the examples of the next section.

D efin ition 3 Mixed Deterministic Security (Roscoe) Suppose system P has
high-level actions H = D US where S is the set o f signal events and DC\S = 0.
Then P satisfies the mixed security condition iff:

(P \ 5) III RUNd is deterministic

The deterministic security properties will give similar results to previous
security properties for a wide range of systems, but there are im portant
differences. T h e d e term in istic d efin itions go b eyon d th e weaker te st o f trace

equivalence discussed in Section 3.1.1, since the definition of determinism
requires that failures and divergences be taken into account. However, the
requirement tha t all nondeterminism at the interface of the system with the
low-level user be banned goes further even than a definition in the style of
those in Section 3.1.1 with failures-divergences equivalence. These points are
illustrated in the examples of the following section.

45

3.2.4 E xam ples

Use of the three definitions and the differences between them are shown in
the following examples. Though the deterministic security properties are
precisely and concisely stated, their full implications are perhaps not imme­
diately apparent from the definitions. A range of examples Cctn highlight
some of the important points. This continues on from Examples 2 to 5 above
which show the basic approach to applying the definitions and the difference
between eager and lazy security. In the processes used below it is assumed
that H is the set of events used in the process definition whose names start
with h, and similarly for L and /.

E x am p le 6 This example shows a process which is both eagerly and lazily
secure.

QI always offers the choice of / no m atter what the activity of H. Hiding H
gives:

Q l \ H = l ^ { Q l \ H)

which is deterministic since it always offers I. Hence the process Q l satisfies
the eager deterministic security property with respect to jET. Q l can also be
tested for lazy deterministic security. Interleaving with RUNh always gives
a process which can never refuse any H events. Also, since Q l is always
prepared to offer /, Q l ||| RUNh ceinnot refuse / either. The system does
not diverge and cannot refuse any event in its alphabet and is therefore

deterministic. Hence Ql is also lazily secure. t|

E x a m p le 7 This example again illustrates the difference between the two
basic definitions. Here, L’s event is offered in both branches whatever the
choice of H event has been.

Q2 = (/il - , Z - , Q2) O (A2 - , Z - , Q2)

46

Hiding H actions gives simply :

Q 2 \ H = l - , i Q 2 \ H)

which is deterministic. Q2 is considered secure according to Definition 1 even
though occurrences of I depend entirely on an ^ event having taken place.
It is 35 if h i and h2 happen so quickly that no refusal could be observed by
L. In comparison, the Icizy approach tcikes the interleaving:

Q 2\\\R U N h

= {(hi Q2) □ (h2 Q2)) III (x : H - ^ RUNh)

Here, the event h i is possible for both operands. So, for example, (h i. I) is a
possible trace, but ((h i), {/}) is also a failure. Hence the process is nondeter-
ministic and so Q2 is considered insecure according to Definition 2. In this
case, the dependence of / on h is significant and is deemed to compromise
the security of the process.

The choice between eager and lazy definitions depends largely on how
the events of the system are viewed. In general, the lazy definition is prob­
ably more useful since dependencies as in Q2 are ruled out (but see also
Example 9).

E x am p le 8 The determinism definitions do not allow nondeterminism at
the interfane of the system with the low-level user, but they do not require
the overall system to be deterministic.

Q3 = / - , g3 □ ((h i Q3) n (h2 Q3))

This process allows a high-level internal choice between events h i and h2.
However, the eager deterministic security condition hides both high-level
events to give a process which always offers I and so is deterministic. Also
for the la^y property, interleaving Q3 with RUNh gives a process which never
refuses any event of its alphabet and is deterministic. Hence Ç3 is secure by
both definitions. [|

47

E x a m p le 9 It is not the case that IcLzy security can simply be said to be
stronger than eager security: there axe cases where a process is lazily secure
but not eagerly secure.

@4 = h —, Ç4 □ I — *■ Ç4

Hiding h in Ç4 causes divergence, so Q4:\ H is not deterministic and hence
Ç4 fails to meet the requirement for eager security. But interleaving with h
gives a different result. Q4 can produce any trace with elements from {h, /}
and has no refusals. It is also divergence-free. Interleaving with R U N h does
not alter the system (Q4 is always prepared to offer h, so nothing new is
added). So Q4 ||| R U N h is deterministic and the system is lazily secure. l|

The failure of Q4 with respect to Definition 1 comes about because of the
divergence introduced by hiding. It is in theory possible to have an infinite
sequence of h. When hidden, this infinite sequence results in a process which
will have no further external communication and L is permanently blocked.
W hether this really is worth worrying about again depends on the interpre­
tation of events. If an implementation of Q4 could ensure that the choice
between h and / allowed / to gain ciccess (for example, by giving priority to I
in some way) then the possibihty of H constantly monopolizing the system
would not arise. For this reason, lazy security is generally sufficient and a
system such as Q4 would be regarded as secure. The combination of eager
and lazy security was referred to by Roscoe as “strong security” . It is worth
noting th a t when P \ H is divergence-free then laay security does imply
eager security, as shown by Roscoe [107].

E x am p le 1 0 Whilst L events are not allowed to depend on H events, high-
level events may be influenced by low-level ones. For instance, compare:

Q5 — h —, (/ —, Qb O h —, Q5)
QQ = / —, (/ —, Q6 O h —, Q6)

W ith Q5, hiding H causes divergence. Taking the interleaving Q5 ||| RUNh ,
(&,/) is a possible trace, but {(h), {I}) is also a failure. So Qb fails both

48

conditions. On the other hand:

{Q6 \ H) ^ l ^ (QG \ H)

and so Definition 1 is satisfied. Also,

Q6 III RUNh = (/ - , (/ - , Q6 □ h - , Q6)) ||| (x : H ^ RUNh)

This can never refuse any H o t L event and is deterministic. Hence Defini­
tion 2 holds too. \\

In many cases, the determinism definitions are equivalent to the noninter­
ference definitions outlined in Section 3.1.1. The following examples reveal
some of the differences.

E x a m p le 1 1 A definition which tests for equality of tranes cannot deal ad­
equately with nondeterministic systems such as:

Q7 = / - , (/ - , Ç7 n - , g?)

If the low-level user observes a refusal then it must be because the system
has chosen to offer h and not /. Event / only becomes available again once h
has occurred. Lazy security fails to hold for Q7 since, for instance, (/, I) is
a traee of Q7 ||| RUNh and ({/), {/}) is also a failure. However, considering
the traee-equivalence interleaving property it is necessary to check that:

t, t' G traces{P) t \ t \ L = P \ L = ^ (f / f) ohs H =* {P/ t ') obs H

for Q7 with = r and ||| RUNh - This is true since Q7 ||| RUNh has every
trace of sequences of {/, /i}. \\

For a deterministic process the deterministic properties are equivalent to
their counterparts in the noninterference definitions of Section 3.1.1. How­
ever, for a nondeterministic process, neither the traee-equivalence properties
nor the failures-divergences equivalence properties can be relied upon.

49

E x a m p le 12 The noninterference definitions which test for equality of failures-
divergences do distinguish between deterministic and nondeterministic pro­
cesses, but there are still important differences. The determinism defini­
tions rule out the possibility of any nondeterminism at the interface with L,
whereas all the conditions characterised in Section 3.1.1 permit some nonde­
terminism. Consider the process HAVOC{kj}^ where:

HAVOCh = STO P n { x : H - , HAVOCh)

This process never diverges but it can at any point refuse every event in its
alphabet. By checking the inclusion of failures and divergences, the insecure

process Q l, for example, can be shown to refine HAVOC:

HAVOC^huL) Ç Ç1

Prom the point of view of lazy deterministic security, HAVOC^^huL) is insecure
since it is nondeterministic towards L. However, since for all traces t:

HAVOC(HuL)lt = HAVOC(̂ hul)

the noninterference conditions from Section 3.1.1 all accept it as secure. Any
definition of security which accepts HAVOC as secure immediately gives rise
to the Refinement Paradox. This example illustrates a very important feature
of the deterministic security properties. The implications of this treatm ent

of nondeterminism are discussed in Section 3.3.

E x a m p le 13 The fact that the nondeterminism conditions represent very
stringent conditions is further illustrated by the following process in which

there is no high-level activity at all.

Q8 = (il —, Q8) 11 (12 —, gS)

Both hiding and interleaving with the empty set of H events simply gives Q8
but this is itself nondeterministic. So gS is insecure by both deterministic

definitions. ^
iT his is equivalent to the process referred to by Roscoe as CHAOSh - I t is given a

different name here to avoid any possible confusion with the different definition of CHA OS
given by Hoare [59].

50

E x a m p le 14 The mixed security condition can be used when some high-
level events, such as outputs, cannot be resisted by the high-level user and
would not maJce refusals appairent at the lower level. For instance:

Q9 = hl7x - , h2\f (x) - , Q9
□ / - , Q9

For any value u, {hl7v^h2\ f{v), l) is a possible trace of Q9 ||| RUNh and
((/il?u, h2\f[v)), {/}) is a failure. So Q9 fails to meet the lazy deterministic
condition. However, the output event h2 could be given an eager interpre­
tation, since the high-level user cannot choose to delay the system by not
accepting the output h2. For the security analysis of this process we apply
the mixed security condition with D = {hi } and 5 = {A2}, which amounts
to checking that:

[Q9 \ {h2}) \\\ RUN^.^y det

This is always prepared to offer both h i and /, and is therefore deterministic.
So, under the mixed security condition, Q9 is considered secure. l|

3.3 A n alternative form ulation o f determ in­
istic security properties

The mixed security definition of Example 14 is perhaps the first step to­
wards recognising the needs of a real system: output events at the high-level
would not in reality be viewed as delaying the system, so they should be
accommodated by a view of security which tedces this into account. Roscoe
[107] introduced an alternative way to express the three conditions above.
The approach is important because it paves the way for constructing a wider
variety of security policies which may be more generally apphcable.

3.3.1 Specifying abstract h igh-level behaviour

The alternative way to specify deterministic security conditions is to con­
struct a process U which represents the high-level behaviours for which se­

51

curity should be guaranteed. The condition to be checked to show security
of P is:

\ .51 is deterministic

Using this construction, Roscoe [107] showed that Definitions 1, 2 and 3 are
equivalent to definitions in a similar format:

Eager deterministic security

(P^RU N h) \ i f is deterministic

Lazy deterministic security

(P^F IN ITE h) \ i f is deterministic

M ixed deterministic security

{P^\^^i^RUNs III FINITEd)) \ { D U S) is deterministic

Strong deterministic security

(P\\HAVOCh) \ i f is deterministic

FINITEx has the same failures-divergences as HAVOCx but has no infinite
traces (see Appendix A). This approach specifies the range of high-level ac­
tivity within which the system is required to remain secure. Constructing
different processes for U allows different policies to be specified.

3.3.2 C onditional security

One important relaxation of the basic noninterference condition noted by
its original proponents [43] is the freedom to specify conditional security
policies. A conditional property modifies the noninterference requirement by
the addition of a further condition upon whidi the security of the system is
dependent. That is, whenever the condition holds, the system is required to
obey the noninterference property. Specifying the most abstract behaviour

52

of the high-level user under which the system is expected to remain secure
represents a move towards the possibility of expressing conditional security
properties.

E x am p le 15 A system manager with high-level actions H is given the dis­
cretion to perform certain managerial tasks, M Ç when judged necessary.
The conditional noninterference condition for this is:

{P\\FINITE(^h_m) \ H is deterministic

3.4 Considerations for a secure developm ent
m ethod

The deterministic security properties have several important advantages over
previous approaches. Prom a practical point of view they are easy to state
and their intention is clear. This is a major improvement over definitions
involving obscure restrictions on perturbations of traces. The determinism
properties have the appeeiling feature of being maintained through refine­
ment. This is a result of the fact that deterministic processes are maximal
under refinement. It makes a development considerably easier if a security
property can be verified at an abstract level and then needs no further check­
ing. Traditional refinement rules and tools based on them can be used with
confidence with no hidden security implications.

Another useful aspect of the determinism conditions is the way in which
they can be verified automatically. The CSP model-checker, FDR (abbreviat­
ing Failures Divergence Refinement) [105], has been used for this purpose^.
The possibility of automatic verification such as this is a strong point in
favour of definitions based on determinism and greatly increases their utility.

^FDR checks behavioural properties of CSP specifications and has been used to verify
process refinement. Although determinism is a somewhat different property from the ones
for which FDR was originally designed, the model- checker’s capabilities can be harnessed
to verify the determinism-based security properties as described by Roscoe [107]

53

The theoretical basis of determinism properties is also very appealing.
Roscoe [107] discussed at length the nature of nondeterminism, both proba­
bilistic and as the result of under-specification. A fully-defined probabilistic
specification describes em event which is required to appear genuinely ran­
dom and can state the required distribution of the nondeterministic event.
(However, it appears that care might still be needed since a random low-level
output stream with Os and Is equally likely could be implemented by copying
the values of a similarly random high-level component, such as a key stream.
The distributions might be the same, but the system should not be regarded
as secure.) Under-specification occurs when the specifier does not care which
of a range of possible options is chosen. As illustrated in Figure 2.1, the
danger comes with the possibihty of an implementation resolving the non­
determinism in an insecure way. Banning nondeterminism completely from
the low-level user’s interface ensures that no such insecure information flow
can be introduced.

Another advantage of the determinism conditions is that they achieve
a greater degree of model-independence than many others. The notion of
nondeterminism is unchcinged across the different semantic models of CSP
(apart from the timed ones). It is also equivalent for many other concurrent
notations which can discriminate beyond the traces of a system. So the same
security definitions can be used in each case. It is obviously not possible for
security flows to be eflminated in a notation which does not have the abihty
to analyse the situation. Just as a trace-based notation cannot deal with
the issue of nondeterminism, so timing channels cannot be considered in an
untimed model.

When assessing the utility of a security definition it is necessary to con­
sider both its suitability for the theoretical modelling of security properties
and how it can be fitted into the development process of a secure system.
An event calculus is able to deal directly with sequences of events and to
mahe clear the interactions between them. However, it is also true that for
general specification purposes a state-based notation such as Z [125] can
be very useful. This style facilitates the functional description of a system.

54

supporting abstract modular specification and allowing refinement of both
operations and data structures. The appeal of such an approach is reflected
in the popularity of state-based notations. Z in particular has been used
in the development of many secure systems and the use of formal methods
is mandated by various government standards as described by Sinclair and
Ince [122]. However, the attem pts have often been unwieldy and many note
a number of difficulties, such as the inadequacy of the notation to express
event interaction, the effects of refining nondeterminism and the way in which
weakening preconditions in refinement.can cdfect security.

The utility of such a state-baaed approach to functional specification was
acknowledged by Roscoe et a i [110] where a development consisting first of
a state-based specification followed by analysis of a process algebra represen­
tation of the system is proposed. The example they gave uses three levels of
specification of a secure file system, starting with Z, then representing the Z

as an action system and finally translating the action system into CSP. FDR
can then be used to check the deterministic security conditions. This route
demonstrates the feasibility of this kind of development, using existing corre­
spondences between the languages employed. However, it also shows some of
the disadvantages inherent in any development method involving wholesale
translations between notations.

Firstly, translations themselves can introduce as many problems as they
solve. Representing one notation within another involves making a number
of decisions about interpretation. In the case of action systems, the CSP
failures-divergences semantics given by Morgan [93] put this on a firm foot­
ing. However, the “informal but systematic” translation from Z to action
systems used in [110] begs the question of how appropriate informal inter­
p reta tio n s a ie for secure developrrieuts. In th is case, a Z sp ecifica tion w h ich

is nondeterministic in its output to a low-level user is tramslated to a deter­
ministic, secure action system by the particular interpretation that is placed
upon it. The Read option for the file system is constructed from a successful
CcLse in which file data are output, and various error cases. If an unknown
file identifier is entered, the values of the output data are not specified. Since

55

this, in theory, allows any implementation the freedom to choose any data for
this purpose, the specification could obviously be refined in an insecure way
by the output of data from high-level files. This is an excimple of the Refine­
ment Paradox. The CSP interpretation chooses not to output any valid data
in such circumstances. This may seem a very sensible choice, but it leads
to the situation where a Z specification with possible insecure refinements is
declared secure by its CSP translation.

Secondly, each translation introduces an extra step during which errors
may appear. Certainly, anything other than a completely automated process
increases the opportunity for human error (and even an automated process
could suffer from human error). This is particuleirly unwelcome in the de­
velopment of secure systems. A proliferation of notations is also a deterrent
for those engaged in practical developments who must become proficient in
a number of notations and who may well require tool support for each stage
of the process.

A further consideration with a translation approach is how errors discov­
ered in the process algebra should be related back to the original specification.
It may not be clear how a particular insecurity can be isolated and removed
in the original version. Simply altering the final-stage specification may re­
sult in the specifications becoming inconsistent; this provides a poor record
of the development and malces maintainance at a later date more diflScult.

These points suggest that it would be desirable to find a method which
combines the advantages of both state-based and event-based notations,
while avoiding the need for translation of notations. One approach which is
investigated in the following chapters is to use action systems for both speci­
fication and proof of security properties. The CSP interpretation of Morgan
[93] allows criteria such as Definitions 1, 2 and 3 to be considered directly for
action systems rather than translating the action system to CSP. Work done
by Butler [20, 18] on the refinement of action systems suggested that this is a
promising line of attack, applicable to systems of some complexity. Although
it is possible to use an algebraic style of CSP (as in the final specification
in the example of Roscoe et al. [110]), an action systems approach allows

56

a much more direct consideration of state. It is also a straightforward pro­
cedure to refine action systems using the method of simulation. This treats
both state and events in a single unified step and provides a natural route
for the integrated development of both of these aspects of the secure system.

Another advantage of the combined state and events approach is that it
can provide the means for expressing and analysing more complex security
policies. In practice, it is rarely the case that noninterference conditions alone
are required. There is usually an interconnected collection of requirements as
in [99], or a combination of recognised components such as used in the project
reported by Boswell [16] which demands multi-level security, integrity emd
two-person rule. Although Roscoe et al. [110] made the case for not having
a separate security policy (no need for tedious verification that it is upheld)
in more complicated situations an explicitly stated security requirement may
be a necessity.

Even from the viewpoint of multi-level security it may not be possible to
investigate fully the security of a system by considering sequences of events
alone. There may be a need to know what is communicated and to con­
sider the classification of information as well as of actions. For example, the
process:

T = h - , T O / - , T

is lazily secure according to Definition 2. Yet if h is an event which updates
array a with a high-level message and / is an event which can display the
contents of a to a low-level user, this would hardly be considered secure.
Obviously this is over-simplified: if an output is concerned then the CSP
representation should reflect this and the dependency revealed. However, it
makes the point that interpretation of events may also be important. This
issue is also raised in Chapter 8 where a case study is presented which makes
use of both secure events and secure state.

The determinism conditions, whilst theoretically appealing and simple to
apply, are very rigid in their requirements. As well as needing to combine
noninterference with other policies, it is unrealistic to expect that a strict
noninterference policy will be sufficient for real systems. If the determinis­

57

tic security definitions are viewed as a sound theoretical basis for analysis
of security, it remains to provide a means of adapting these definitions to
the realities of actual systems and incorporating them into the development
process.

One last comment on desirable attributes of security developments con­
cerns the value of abstraction. The major benefit of specification has often
been said to be the way in which it enables us to abstract away from im­
plementation details and to concentrate on different concerns at appropriate
levels. To demand a top-level specification which is fully secure in the sense
of the definitions of Section 3.1.1 places limitations on a specifier’s freedom
of abstraction. There is a significant difference between a specification dis­
playing “don’t care” nondeterminism which an unscrupulous implementor
could exploit, and a specification about which we “don’t care at this level” .
Some specifications are definitely insecure. A specification in which high-
level inputs are written out to a low-level user would come into this category.
Others, like the Z example of Roscoe et al. [110], have no actual insecurity
at the current level but could be refined to either a secure or an insecure
implementation. It seems that this may well be a distinction worth noting.

3.5 Sum m ary

This chapter and the previous one have outlined existing approaches to the
formal statem ent of security properties and to the development of secure sys­
tems. The properties described have each aimed to provide a formal descrip­
tion of what it means for a system to be secure, and to enable the systematic
verification of the property for individual systems. The definitions based
on controlling information flow within the system have mafle a significant
contribution to the understanding of the concept of confidentiality and have
encompassed wider issues of system security, such as covert channels, which
simple access controls cannot address.

Despite the progress made in this area, the proliferation of similar defi­
nitions with subtle differences indicates a continued debate over what con­

58

stitutes an appropriate definition. It has become difficult to appreciate the
significance of the distinctions between definitions and practitioners have
found it hard to choose between them.

Chapter 3 has concentrated on one particular approach which provides
a convincing theoretical basis for confidentiality. In particular, it provides
an explanation for why refinement of secure systems can be problematic.
However, there has so far been little experience of applying this work in the
context of general systems’ development. The results as they stand are not
readily applied to the formal development languages most commonly used
in practice. As discussed above, the developers of real systems often require
the flexibility afforded by allowing direct manipulation of state within the
development process and of unifying the specification of both security and
functional properties. These are the areas not covered by existing work which
this thesis aims to address.

The next chapter introduces action systems as a suitable notation for in­
vestigating such an integrated approach. It is unreasonable to expect that
their use can accommodate all possible features, yet it provides a useful
starting point for examining the use of an approach which gives equal con­
sideration to the state and events of a system.

59

C hapter 4

A ction system s and nondeterm inism

One of the desirable features of security developments identified in the pre­
vious chapter was the ability to combine cin analysis of events with the spec­
ification of state, and to be able to refine both aspects in a uniform manner.
This chapter investigates the use of action systems for this purpose. The
chapter starts with an introduction to action systems. This includes the cor­
respondence of action systems with CSP for failures-divergences and infinite
traces and covers both value-passing action systems and those with internal
actions. This level of analysis is required for the definitions of determinism
and system security which are derived later in the chapter. Excimples of
action systems are given throughout the chapter.

4.1 Introduction to action system s

Action systems originate from the work of Back and Kurki-Suonio [7] cind
provide a state-based approach to the specification of concurrent systems. In­
formally, in an action system a collection of labelled actions share a state. An
enabled action is selected and executed, resulting in a possibly altered state.
Again, an action is selected from those currently enabled and so execution of
the action system proceeds. There has been a good deal of work developing
the use of action systems, such aa that of Back et ai [6 , 8 , 10]. The work of
this chapter follows the approach of Morgan [93] and Butler [20] by using
the semantic model provided by the correspondence of action systems with

60

CSP. This approach has several advantages, both in terms of inheritance of
CSP properties and in the way that refinement is viewed. Two particularly
useful aspects are that, firstly, refinement in the CSP approach distinguishes
between internal and external nondeterminism (that is, between choice re­
solved by the environment and choices made internally) and, secondly, action
systems may be refined into parallel components which may themselves be
further decomposed without constraints being placed on their environment.

4.1.1 A ctions

An action may be thought of as a guarded command. The guard is a pred­
icate, and an action is said to be enabled in any state in which its guard
is true. The command is a program fragment from Dijkstra’s guarded com­
mand language [31] in which a command is defined in terms of its weakest
precondition. The weakest precondition for command c to attain postcon­
dition Q is the set of gdl states from which execution of c is guaranteed to
terminate in a state satisfying a. It is denoted:

wp{c,a)

Appendix B gives Dijkstra’s wp definitions for the program statements of the
guarded command language used here.

A related concept which proves very useful is the conjugate weakest pre­
condition of a command, wp. This is the set of states from which execution
of the command might possibly establish a given postcondition:

D efin itio n 4 (Morgan) For command c and postcondition a:

wp(c,a) = -I iyp(c, -1 a)

For the correspondence between CSP and action systems Morgan [93] ex­
tended Dijkstra’s guarded command language by giving a meaning to “naked
guarded commands” of the form:

g ^ c

where the predicate g is the guard of command c. The weakest precondition
is defined:

61

D efin ition 5 (Morgan) For guard g, command c and postcondition a:

-> c ,a) = ^ => wp(c,a)

It follows that:

, c, a) = ^ A wp[c, a)

The weakest preconditions of guarded commands do not obey all the laws
which obtain for the basic commands of Dijkstra’s language. In particu­
lar, the Law of the Excluded Miracle, which holds for each command, c of
Dijkstra’s language:

wp(c, false) = false

does not hold for some guarded commands. A guarded command g c is
said to be miraculous if it fails to obey this law. For example:

wp{false —, skipj false)

= false => wp{skip, false)

= true

One useful property is the distributivity of disjunction for conjugate weakest
precondition of guarded commands which follows from the distributivity of
conjunction for basic commands:

P ro p e r ty 1 V-distribution

c, a V /?) = wp{g —, c, a) V wp{g —, c, /3)

P ro o f

wp(g - , c, a V)0)

= g A wp{c,a V P) [Defn. wp]

= ^ A -1 wp(c, -1 a A -I /?)

= ^ A -1 (wp(c, -1 a) A wp(c, -> P)) [A-dist for c]

= A (-> iyp(c, -1 a) V -> wp{c, -> P))

= g A (wp{c,a) \/ wp{c,P))

= (g A wp{c,a)) y {g A wp{c,P))

= wp{g c, a) y wp(g - , c,P)

62

It

Although an antion is defined here as a guarded command, it may be rep­
resented in other ways provided a weakest precondition semantics can be
given. For instance, Butler [20] used specification statements [95] as a con­
venient notation for specifying actions. Details of specification statements
and their weakest preconditions are to be found in Appendix B. There is no
reason why other suitable notations, such as Z, should not also be appropri­
ate. A weakest precondition semantics for Z has been ^ven by Cavalcanti
and Woodcock [23] which paves the way for the formal incorporation of Z
representing actions in action systems. For an action a specified without an
explicit guard, the guard, gd, can be calculated using:

gd a = wp(a, true)

This is the set of states in which a is enabled. It is easy to show that this
gives the expected result if applied to a guarded command since:

w i g c, true)

= g A fvp(c, true) [Defn. of wp]

= g A true [c is a command]

= g

4.1.2 A ction system s

An action system A = (A, S, A i n i t , A A) consists of a state 5 , an initialisation
A i n i t , and a set of labelled actions A a where A is an alphabet of labels.
Figure 4.1 shows the way in which such an action system is w ritten . The
state, 5 , consists of a variable or variables which may be related by a state
invariant. If an invariant is present it is taken to be part of the precondition
and postcondition for each action. The state variables are common to all
actions of the system. The initialisation is a command (although, again, this
could be represented by a Z schema or a specification statement). For an
action system to be well-formed, the initialisation must always be enabled

63

A =

(v a r S
in itia lly Ainit

ac tio n a : — g

\ :

F ig u re 4.1 Notation for action system A

and must establish the invariant. An action a G A, is said to be enabled
when its guard g a evaluates to true. When an action system is executed the
initialisation is performed first. E x ecu tio n proceeds by repeated selection of
an enabled guard and execution of the associated command. If no action is
enabled, the action system is deadlocked. An action system is said to abort
if its initialisation or one of its actions aborts.

For a set of actions A Ç A we write gd{Ax) for the disjunction of the
guards of all actions in A x- Also, for any sequence s of elements of A we
write Aa for the sequential composition of the A elements corresponding to
s, with A(̂) defined as skip. It will often be clear from the context which
action system A is under consideration and in this case w e w ill w rite gd(X)
and s respectively. The following example shows the use of a basic action
system.

E x a m p le 16 W ith action systems, sequencing of events is achieved by en­
abling guards when appropriate. The following action system initialises its
state variable r to 0 and then allows the actions h and / to flip the value of
X alternately:

A l =

f v a r X : {0 , 1 } \
in itia lly r := 0

ac tio n h. : —r = 0 —> x : = l
\ a c tio n / : — x = 1 x := 0 j

64

4.1.3 Failures-divergences for action system s

The standard model for CSP is the failures-divergences model. For process
P , the failures fails{P) is the set of all pairs (fr, R) where tr is a possible
trace of events for P and P is a set of events each of which P may refuse
after trace tr has occurred. The divergences, divs{P), are the traces after
which P may behave chaotically. CSP definitions are given in Appendix A.

A correspondence between action systems and CSP was given by Morgan
[93] who defined the failures and divergences of an action system:

Definition 6 (Morgan) For an action system A = Ainit, Aa):

traces(A) are those t £ A* satisfying:

W i^ iin ity t , true)

fails (A) are those t £ A*,X £ P A satisfying:

W (^{ in u y t ,- ' gd{Ax))

divs{A) are those t £ A* satisfying:
W i^ iin ity tJa lse)

Here, as defined above, gd(Ax) is the disjunction of the guards of all the
actions in X .

4.1.4 E xam ples o f basic action system s

Example 17 Consider the action system A l from Example 16. The se­
quence (h), for example, is a trace of X I since :

wp{{init)"{h), true)

= wp{x := 0,wp{x = 0 —, r := 1 , true))

= wp(x := 0 ,x = 0)

= true

65

Also, ((A), {^}) is a failure since:

wp{(init)^{h),x ^ 1)

= wp(x := 0 , wp(a: = 0 —, a; := 1, a; = 1))

= wp{x := 0 ,x = 0)

= true

In fact, X I is equivalent to process P2 in Example 3 from Chapter 3 in that
it has the same failures and divergences. The actions h and / must alternate,
starting with h. Therefore, after an h action, repetition of h is refused,
and similarly for /. The system cannot diverge. Since X l is equivalent to
P2 in this sense it could therefore also be considered secure with respect to
Definition 2 but insecure against Definition 1 . \\

E x am p le 18 Many other action systems are also equivalent to P2. Consider
the following example in which a specification statement (see Appendix B)
is used to specify the commands:

X2 =

/ var s : seq M ; n : N \
initially [s = () A n G w]
action h : — s, n : [sq = () A n > no A s = (n)]

\ action / : - s : [sq ^ () A s = {)]

A2 looks rather different to X l, yet the action I depends on h in exactly
the same way. Notice that X 2 allows nondeterminism in the choice of n
made initially and on execution of h. However, from the point of view of
its CSP semantics, X 2 is deterministic. This is because the nondeterministic
assignments cannot at any stage alter the set of guards which are enabled. \\

These two examples show that there can be a great difference between two
systems which are nevertheless regarded aa equivalent with respect to CSP
failures- divergence. The action systems specifications make these differences
clear and present the possibility of data refinement.

66

X3 =

E x a m p le 19 In contrast to the two action systems above, A3 allows internal
choice which does alter the available actions. This is therefore nondetermin­
istic in the CSP sense.

 ̂ v a r X : {0 , 1 } ^
in itia lly x := 0

a c tio n h : — x = 0 - , x :G {0,1}
 ̂ ac tio n / : —x = l —, x : = 0 j

The sequence (h, h) is a possible trace of A3 (in the case that the first h
choses to set x to 0). However, (A, {^}) is also a failure since h may arbi­
trarily choose to set x to 1 . Hence the failures-divergences interpretation is
nondeterministic. A3 is equivalent to the CSP process:

Q3 = h —> Q3a

where Q3a = (A —, Q3a D I —, Q3)

which fails to satisfy both Definitions 1 and 2 . l|

4.1.5 A choice operator for actions

The following dioice operator for actions is defined by Sinclair and Wood­
cock [123].

D efin ition 7 For actions al and a2:

wp(al I @2,a) = wp(al,a) A wp(a2,a)

It follows that:

wp{al I a2,o:) = wp{al^a) V wp{a2^a)

This represents êin internal choice between actions, so both paths must estab­
lish the desired postcondition. The combined action is enabled when either
of the component actions is enabled:

wp(al I o2 , true)

= wp(al^ true) V wp{a2, true)

= gd{al) V gd{a2)

67

In fact, as confirmed by their weakest preconditions, the choice between
nahed guarded commands is equivalent to an “alternative” command in Di­
jkstra’s guarded command language with the appropriate guard:

(^1 ► cl j g2 —, c2) = (^1 V ^2) —, if g\ —, cl

[] g2 c2
fi

The operator is used in the definitions of hiding and of lazy deterministic
security for action systems. Amongst the properties enjoyed by the choice
operator are the following distribution properties:

P ro p e r ty 2 For guarded commands al,a2,a3:

al; (a2 | a3) = (a l; a2) | (a l; a3)
(a l I a2); a3 = (a l; a3) j (a2; a3)

4.1.6 Infinite traces

The failures-divergences model of CSP ceumot deal properly with unbounded

nondeterminism since it cannot distinguish between a process which may
never terminate and one which is guaranteed to terminate but after an un­
known and unbounded number of events. For example, processes Q and R
below have the same failures and divergences.

Q = STOP n / g

P = n t G N • Ri
where R{+i = / —, and Rq = STOP

The solution in action systems as in CSP is to extend the model to include the
consideration of infinite traces. Butler [20] defined infinite traces for action
systems and demonstrated the correspondence with CSP.

There are some circumstances in which it is necessary to move to the
infinite traces model to represent the action systems/CSP correspondence
correctly. The problem arises in the definition of the hiding operator and is
caused by the presence of unbounded nondeterminism as displayed by R. For

68

example, hiding I in either of Ç or R leads to divergence in the CSP failures-
divergences semantics. However, hiding / in an action system equivalent to
R (by consideration of failures- divergence) would lead to deadlock rather
than divergence.

For a correct treatment of the hiding operator it is therefore necessary
to use the infinite traces model. If c is an infinite sequence of actions then
we write in f (a) to characterise the set of states from which execution of
the whole of a is possible. Infinite sequential composition of actions was
formalised by Butler and Morgan [22] allowing the following definition:

D efin ition 8 (Butler and Morgan) For action system A = (A, 5 , Xa)
the infinite traces are those t £ satisfying:

in f (A^init)‘ t)

4.2 A ction system s w ith internal actions

The CSP eager deterministic security property was defined using the CSP
hiding operator. To make a direct translation of this property into action
systems an equivalent action systems operator will be needed. This section
follows Butler [20] in describing action systems with internal actions. This
paves the way for a definition of action system hiding.

In an action system, an action which is hidden becomes an internal action.
An internal action may be executed any number of times between occurrences
of visible actions. It may change the state, ctnd it may move the action system
into a state in which a different set of actions is enabled. If it is possible for
internal actions to occur infinitely many times in succession then the action
system is said to diverge.

4.2.1 A n iterative com m and

To reflect the way in which an internal action may be performed repeatedly
between visible actions, the iterative command, i t a ti, defined by Butler
and Morgan [2 2] is used. This allows repetition of a with the possibility

69

of terminating with skip at each iteration. The definition makes use of the
least fixed point operator p (see Appendix B), here used with respect to the
refinement ordering (described in Chapter 6).

D efin ition 9 (Butler and Morgan)

it a t i = {p X • skip | (a; A))

Unwinding the definition for iteration gives:

it a t i

= skip I (a; (it a ti))

= skip I (a; {skip | (a; (it a ti)))

= skip I (a; skip) | (a; a; (it a ti))

= skip I a I (a; a; (it a ti))

= skip I a I (a; a) | (a; a; a; (it a ti))

[Definition 9]

[Definition 9]

[Property 2]

[Property of skip]

[Definition 9]

If for a particular a it can be shown that iterating a k times is miraculous,
then the above expression can be simplified by removing all sequences of
length > k. This was shown in detail by Sinclair and Woodcodc [123]. Fol­
lowing this unwinding it can be seen informally that the weakest precondition
for it a t i to establish postcondition a is:

wp{skip,Oi) A w p { a ^ a) A wp{ a] a ,a) A •••

This motivates the formal definition which uses the least fixed point operator
on predicates with respect to logical implication:

D efin itio n 1 0 (Butler and Morgan)

wp(it a ti. O') = (^ y • a A wp(a, F))

The iteration of a set X of actions from action system A is:

IT x = it (I A .) t i
reX

70

4.2.2 Internal actions and CSP correspondence

Action systems may now include a set / of internal actions. This is denoted;

X = (A, S, Xintt) Xaï X /)

The definition of correspondence with CSP must be extended to include the
possible occurrence of internal actions. This definition and the following ones
by Butler may be found in reference [20].

D efin ition 1 1 (Butler) For action system X = (A, 5 ,X i,X A ,X /) with hid­
den actions, the failures are those t £ A*, X Ç A satisfying:

wp{^{iyt * I , - ' gd iiA x))

where X , * / is defined by:

X() * I = skip

A { a) * / = A a ; I T i

Aa‘t * I = (X, * /) ; (X< * I)

and

gdi(Ax) = { y x £ X • gd{ITi\ X*))

The divergences are those t £ A* satisfying:

wp{^{iyt * I , false)

The infinite traces are those are those a £ A^ satisfying:

inf{A{iycr * I)

The execution of the visible actions of an action system may now be inter­
spersed with any sequence of hidden actions which is enabled.

71

4.2.3 H iding for action system s

Hiding a set X of actions in action system A is simply a m atter of removing
X actions from the set of visible actions of A and including them in the
internal actions. This prompts the following definition:

Definition 12 (Butler) I f A = {A ,S^Ain it,AA ,A i) and X Ç. A then:

.4 \ A" = (A — X^S^AiniitAA-XtAlyjx)

The following theorem shows correspondence with CSP in the infinite traces
model for the hiding operator.

Theorem 1 (Butler) I f A = {A, S , Ainiu Aa, A i) and X Ç. A then:

F D I{A \ X) = FDI{A) \ X

Here, FD I(A) denotes the failures, divergence and infinite traces represen­
tation of action system A. The notation FD(A) will also be used and this
denotes the failures-divergences representation of A.

Exam ple 20 As an example of the use of hiding in action systems consider
the following specification of a component intended to monitor a user’s pass­
word to check that it is not older than the maximum allowed age for the
system (in this case, 100 days). If a positive number of days is left before
expiry, the action newday decrements the variable daysleft (this could be
thought of as acting in parallel with a clock which determines when a new
day occurs). When the password has expired the system waits for the user
to cooperate in resetting the time period (presumably in conjunction with
entering a new password). Until this is done it will refuse to participate in
the newday action.

Countdown =
 ̂ var daysleft : N ^
initially daysleft := 100
action newday : — daysleft > 0 —> daysleft := daysleft — 1

 ̂ action reset : — daysleft = 0 ^ daysleft := 100 j

72

The two actions in this system axe both external. The system waits for the
cooperation of the user to reset the time. However, suppose the component
is intended for a system which generates passwords internally. The time
counter can then be reset internally. This can be represented by hiding the
reset action.

Countdown \ {reset} =
/ var daysleft : IM ^

initially daysleft := 100
action newday : — daysleft > 0 —> daysleft := daysleft — 1

 ̂ internal reset : — daysleft = 0 —̂ daysleft := 100

This system will never refuse the newday action since resetting is done in­
ternally when the reset action is enabled. The internal action cannot occur
more than once because its guard becomes false after execution. So there is
no possibility of divergence in this system. \

Example 21 The action system A l in Example 16 was shown to correspond
to the process P2 from Example 3. Here the effects of hiding h are examined.
The resu ltin g sy s te m is given by:

 ̂ var X : {0, 1} \
initially x := 0
action I :—x = l —> x : = 0

 ̂ internal h : — x = 0 x := l

The internal action h may be iterated between each visible action of the
system. However, one h followed by another would be miraculous since:

.41 \ {h} =

wp{x = 0 —► X := 1 , wp{x = 0 —► X := 1 ,/a/se))

= wp{x = 0 X := 1, X = 0 => false)

= wp{x = 0 —̂ X := 1, X ^ 0)

= x = 0 = > l y ^ 0

= true

73

So, using the simplification of it A t l for miraculous branches:

i t h t i = skip I h

It might appear that it h t i could choose to skip, in which case action I
would never become enabled. However, by the way the iteration construct is
defined, i t h t i is forced to take a path which enables I. This can be seen by

calculating the guard of I:

. gdk{l)

= gd(\t h ti; /) [Defn. 11]

= wp(it h ti; /, true)

= wp{{skip |&); /, true)

= wp{skip I A, X = 1)

= wp{skip^ X = 1) V wp(h^ X = 1)

= x = l V x = 0

= true

4.3 C om m unication in action system s

Action systems communicate with their environment using input and output
actions. This section gives definitions which take account of value-passing in
action systems. Again, this correspondence was first defined by Butler [20].
A value-passing action system is denoted:

A — (A, jS, Ainity A ai *4/, dir)

where dir is a total function from A to the set {tn, out}. A can be thought
of as the set of channel names, with each action labelled by a channel name
and each channel declared to be either an input or an output channel.

If a is an input channel then a.i represents the input of value i on channel
a, and similarly for an output channel. If W is the set of all possible values

74

that might be communicated, then the alphabet of action system A is Ay\;
where:

Ay\f = {a.i I a € A A t G W}

For any set of values % Ç W we write A^.x for the set of all input actions
on channel a with input values from X .

E x am p le 2 2 The following example shows the notation used for a value-
parsing action system. System A5 defines a stack which can always accept
input and which, when non-empty, will output the value most recently en­
tered.

/

A5 =

\

var s : seq N
initially s := ()
action put-on in t ? : IM : —

true —> s := s"{»?)
action take-off out o! : IM : —

s ^ 0 —> s, o! := front s, last s

\

When s is non-empty, both guards are enabled and so both the input action
put-on and and the output action take-off are possible. This is viewed as
an external choice and does not introduce nondeterminism to the system.
Ab is equivalent to the CSP process:

S T K = STK(^)
STK(^ = pu t-o n li —> STK(^i)
STK,-i^i) = {put-onlj —► □ {take^offli STK,)

4.3.1 V alue-passing actions

Given a particular value, v G W, the action corresponding to the input of v
on channel a is calculated from Aa using the following definition in which :?
is the variable representing the input value:

75

D efin ition 13 (Butler) I f dir (a) = in then:

Aa.v — [value v/:?]

Here, substitution by value is used where, for x not free in a:

wp{S[vsL\ue E /x] ,a) = wp{S,a)[E/x]

For example:

A b p y , t_ o n .3

= {true —»■ s := s"(t?))[value 3 /t'?]

= true —> s := s"(3)

A similar means is used to calculate an output action for a given output value
V with o\ being the variable representing the output of the channel:

D efin ition 14 (Butler) I f dir{a) = out then:

A a . v — (local o! e A a [o \ = u])

Here, o\ is introduced as a local variable where for o! not free in or.

wp((local o! # s) ,a) = (Vo! e wp{s,a))

Again, taking the stack specification:

Ab take-off .2

= (local o! • s ^ 0 —»« s, o! := front s, last s)[o! = 2]

= ̂ 7 ̂ () "^ (local o! • o! := last s[o! = 2]); s := front s

= 5 ^ () —> (local o! • last s = 2 —> o! := last s); s := front s

= s ^ 0 A last s = 2 —> s := front s

4.3.2 V alue-passing action system s and CSP

For an input channel a and X Ç VV, the set Aa.x is enabled whenever some
value from X satisfies the guard of Aa* However, an output action may be

76

required to select a nondeterministic output value. In this case, a particular
value may be possible (and hence the action enabled) but is not selected
by the action. Thus that value is refused. This motivates the following
definitions which can be used to describe the failures of a value-passing action
system:

Definition 15 (Butler) I f dir (a) = in, then for X Ç W ;

commgd{Aa.x) = S x Ç. X • gd{Aa)

I f dir{a) = out with output variable y, then for X Ç W ;

commgd(Aa.x) - gd{Aa) A wp{Aa, 2/ E %)

I f X Ç. Ay\f, possibly containing inputs and outputs on several channels then:

commgd{Ax) = (V a E A • commgd{Ax\a))

For an action system with internal actions, I:

commgdi{Ax) = (V a E A • wp(ITi, commgd{Ax\a)))

where X \ a is the set of all X actions on channel a .

Example 23 The output action a defined below makes an internal choice
from the set s : P N when selecting its output.

action a out o! : M : — s ^ 0 —> o! :G s

Suppose s = { 0 ,1 } , then a is guaranteed to output one of these values but
could refuse either 0 or 1. This is reflected in the commgd for these since for
X Ç IM :

commgd(a.X) = s ^ 0 A wp{a, o\ G X)
= s ^ 0 A s Ç %

In the situation described, this is true when X = { 0 ,1 } (or any subset of IM
co u ta iu iu g 0 and 1) b u t false fur X = {0 } and % = { 1 } (an d any su b set o f

IM which fails to contain both 0 and 1). The action a cannot be guaranteed
to output any one particular value unless s is a singleton set. \\

77

It is now possible to define the correspondence with CSP up to infinite
traces for value-passing action systems.

D efin itio n 16 (Butler) For action system A = (A ,S ,A in it fA A iA i, dir):

fails(A) are those t G A ^ , X Ç Aw satisfying:

W i^ iin ity t * commgdi(Ax))

divs{A) are those t G AJy satisfying:

W{A^{inityt * I , false)

infs (A) are those u G A%, satisfying:

inf {Affinity u * ^)

It is a requirement for a well-formed action system that output actions should
always terminate.

4.4 Parallel com position o f action system s

A parallel composition operator for actions sytems was given by Butler [20].
This was shown to be equivalent to parallel composition in CSP. Common
actions of the two systems are joined as described below and their states
are unioned. The restriction is made that systems being joined by parallel
composition should have no state variables in common. (It would be possible
to define a more general composition but this would be at the expense of other
pleasing features: in particular, the ability to refine and further decompose
individual component systems independently would be lost).

First, the definition for systems without value-passing is given.

D efin itio n 17 (Butler) For action systems A = (A, 5, A i,A A ^A i) and B =
(B, T^Bi^BsyBj) the parallel composition is defined:

A 11 B = (A U B, (5, T), A- 11 Bi,par(AA,BB), A / U Bj)

78

where:

par{A A, B b) = A a- b U B b - a U {A c | | B e | c E A P I B }

and:

(x l := E l II x2 := E2) = (x l,x2 := B1,B2)
(^ 1 c l) II {g2 c2) = (^ 1 A g 2 -^ cl; c2)

When value-passing action systems are placed in parallel similarly-named
channels must be combined. Following the approach of [20], two input chan­
nels may be combined in parallel as long as the types of the input variable
are compatible. The resulting action will itself be an input action willing to
accept any input suitable for both component actions.

D efin ition 18 (Butler) For input actions:

(action A& in x? : % : — ^ > c) || (action B& in x? : X ' : — g' c')
= (ac tion {A || B). in x? : (X H X ') : - ^ A p' -v c || c')

When an output channel is combined with an input channel the output value
of the former is taJien as input for the latter. Again, any value that might be
output by the output channel must be a possible input for the input channel,
so the type of the output value must be a subset of the type of the input
value. As well as being passed to the input action, the output value is still
made externally visible. This means that the combined action is classed as
an output action.

D efin ition 19 (Butler) For output action and input action with X Q X ':

(action Aa o u t y\ : X : — g c) \\ (action B» in x? : X ' : — g' c')
— (ac tio n (A || B)& o u t y\: X : — g A g' c\\ c' [value y!/x?])

where

wp(Aa, y! E %) = true

and

(3 ! : % # yd(Ba[value t/x?]))
=> (V t : % # yd(Ba[value t/x?]))

79

The first condition ensures that Aa outputs a value within the specified type
(it also imphes that Aa terminates). The second condition demands that if
Ba is enabled for some input value then it is enabled for all possible input
values.

Combining output channels could cause deadlock if the channels attem pt
to output differing values. Rather than attem pting to define suitable condi­
tions, the parallel combination of output actions will not be used.

Given the previous two definitions, parallel composition can be defined
for value- passing action systems:

Definition 20 (Butler) For action systems A = (A, 5, Ai, Aa, A i , dir a) and
B = (B, T ,B i, A g ,B j, dirs) which have no common state variables, no com­
mon output channels and which satisfy the conditions of Definition 19 for
each input-output pair:

A \ \ B = (A U B , (5 , T) , A i || B „A x || B ^, A / U Ay, dtr)

in which commonly labelled actions are combined according to Definitions 18
and 19 and actions with labels unique to either A or B are included un­
changed.

4.5 N ondeterm inism in action system s

The previous sections in this chapter set out the basic definitions needed to
formulate security conditions directly for action systems. The concept un­
derlying the CSP security properties of Definitions 1 and 2 is that of nonde­
terminism. This section considers nondeterminism in action systems, giving
a defiuitiuu of determinism which is shown to correspond to determinism in
CSP. The definition for the simple case of basic action systems is given first,
with internal actions and value-passing taken account of later.

80

A3 =

4.5.1 D eterm in ism for sim ple action system s

In CSP a process P is deterministic if it does not diverge and cannot choose
to refuse an event in which it might engage, that is:

divs{P) = 0 A

tr^{x) e traces{P) => (ir,{x}) ^ fails{P)

For an action system, nondeterminism in the failures-divergences sense arises
if, after a particular sequence of events, it is possible both that some action
will be enabled or that it will not have been. For example, consider action
system A3 from Example 19:

 ̂ var X : {0,1} ^
initially x := 0
action h : — x = 0 -> x :G {0,1}

 ̂ action / x = l —►x:=0 /

Here, action h makes a nondeterministic choice for the value of x. If 1 is
selected then action I is enabled, so (A, /) is a possible trace. However, if 0

is selected then I will be refused, so (A, {/}) is a failure. An action system
is therefore nondeterministic if it is possible for a trace both to establish a
guard and to establish the negation of the guard. This motivates the following
definition.

Definition 21 Action system A = (A, 5 , Ain»<, A>i) is deterministic i f
divs{A) = 0 and for each trace tr and action x:

yd (A x)) = ^̂ P(Â ,*ni<)*<rj yd(A x))

This definition says tha t if a trace may enable a guard, then it must enable
that guard. For example, with A3:

W(*43(i„i<,A),i = 1)

= wp{x := 0, X = 0 A wp{x :E { 0 , 1}, x = 1))

= wp{x := 0 , true)

= true

81

whereas:

îup(A3 ,̂,ii<,A), X = 1)

= wp(x := 0 ,x = 0 => wp(x :€ {0 , 1 } ,x = 1))

= wp{x := 0, X = 0 false)

= false

Definition 21 gives the criterion for determinism in the failures- divergence
model but this would be exactly the same for a system considered with

respect to infinite traces too.
The following theorem shows how Definition 2 1 corresponds to CSP de­

terminism.

T h e o re m 2 I fF D {A) stands for the failures-divergences semantics of action

system A = (A, 5 , Ainit » A a) then :

A deterministic ^ FD{A) deterministic

P ro o f Assuming FD{A) is deterministic it follows immediately from Defini­

tion 6 tha t for each trace tr and action x:

W{A^{iytr‘{x)Arue) => -1 gd{Ax))

Using wp definitions this is equivalent to:

W{A,{iytr, gd{Ax)) v}p{A{iytr, gd{Ax))

Also:

’̂ piAiiyir.gdiAi)) W(A{iytr,gd{AT))

= gd{Ax)) V W(A{i)-tT, gd(Ax))

= wp{A{iytr-, true) [V- dist. Prop. 1]

which holds since tr is a trace. So:

FD{A) deterministic => A deterministic

82

A 6 =

Similarly,

A deterministic FD{A) deterministic

follows from the definitions and wp calculus.

Definition 21 is a condition which requires proof for all possible traces of
the system. It might be hoped that a set of sufficient conditions similar to
unwinding could be found which would reduce the task to checking the effect
of each action on each guard. However, this is complicated by the fact that
a nondeterministic choice might not affect the set of guards enabled until a
later stage. For example:

/ var X : IM \

initially x := 0

action set : — x = 0 — x : [x > 1 0 0]

 ̂ action dec : —x > l —>x: [x = xb — 1] j

The action set will always enable the guard of dec. The nondeterminism
becomes apparent only after at least 1 0 0 repetitions of dec.

As shown by Theorem 3, if the initialisation m d each action is deter­
ministic then the overall system is deterministic. These conditions are very
strong, but are certainly sufficient for the determinism of an action system.

T h e o re m 3 For action system A = (A, 5 , A,-, i f for any postcondition
a:

W (A ni<,a) = wp{Ainit^ot)

and for each a € A and postcondition a:

wp{Atr,a) = wp{Atr,a)

then A is deterministic.

P ro o f By induction on length of trace we show that for any trace tr and
postcondition a

Wp{AayOi) = Wp(AayOc)

83

B a s e c a s e :

W (A i n i t , O t) = W p { A in i t , O c)

follows directly from assumption on AinU.
Inductive step: assume that for all a:

W (A{inuyua) = wp(A(^inityua)

holds for all t with Ĥ t < n. Then:

w p { A ^ i n u y i ‘ ^xy O')

= wp{A{inityuW{Ax,a))

= wp{A(^^nityuW{Ax,oc)) [Ind. hyp.]

= wp{A(^inityu wp{Ax, O ')) [Ass. on Ax]

— O')

h
Whilst requiring each action to be deterministic is a sufficient condition for
determinism of an action system it is certainly not necessary. This was
shown, for example, by A2 of Example 18.

Another approach to the proof of determinism is to note that, in a nondi-
vergent system, all actions whose guard is true cire always enabled. Thus it
is sufficient to prove tha t the system is deterministic for those actions whose
guards are some condition other than true. For value-passing channels, the
guard of an action would be calculated for possible outputs. This is expressed
in the following theorem.

T h e o re m 4 For nondivergent action system A = (A, B,A,-,A^) if there is
some A' Ç. A such that gd{a) = true for all a E A' then A is deterministic
if for each trace tr and each x ^ A — A ':

W {A(iytr, gd{x)) = wp{A(^iytr,gd{x))

P ro o f For any a G A' and trace tr:

wp{A(iytr, gd{a))

= wp{A(^iyir,true)

= -1 wp[A(^iytr, false) = true [A nondivergent]

84

also:

= true)

= [tr is a trace]

Hence:

wp(A{iytr,gdia)) = wp{A{iytr,gd{a))

By assumption, this is also true for each action in A — A'. So for all x G A:

‘̂ P(A{iytr,gd{x)) = wp{A(iytr, gd{x))

That is, A is deterministic. [|

It follows from Theorem 4 that if all guards are true then A is determin­
istic.

C o ro lla ry 5 I f A = (A ,5,A i,A yi) is a nondivergent action system with
gd(a) = true for all a £ A then A is deterministic.

It is also worth noting that an action whose guard is never enabled by the
system satisfies the condition for determinism:

T h e o re m 6 For nondivergent action system A = (A, 5, A,-, Aa)j if a £ A
such that for each trace tr:

W {A{iytr, gd(a)) = false

then for each trace tr:

tr, gd{a)) = w p {A ^ iy , r ,g d {a))

P ro o f

true = wp(A(^iyir, true) [fr a trace]

= wp{A(iytr,gd(a) V -< gd{a))

= w{A{iytr,gd{a)) V wp{A(iytr,-> gd{a)) [V-dist. Prop 1]

= false V wp{A(iytr, gd{a)) [Ass,]

= wp(A(^iytr,-^ gdia))

= -< wp{A^iytr,gd{a))

85

Hence:

wp(A{iyir,gd{a)) = false = wp{A(iyir, gd(a))

4.5.2 D eterm in ism for action system s w ith internal
actions

When internal actions are taken into account, a trace of the system consists
of a sequence of visible actions, t, interspersed with internal actions, with
the whole being a possible sequence of events within the action system. The
system is nondeterministic if execution of some t interspersed with internal
actions can enable a particular action, while for the same t interspersed with
internal actions in a possibly different way, the guard of the action may also
become false. This indicates that the definition of determinism for an action
system should be extended.

D efin ition 2 2 Action system A = (A, S , A i n i u A a , A j) is deterministic if
divs{A) = 0 and for each possible trace of visible actions t E A* and for each
action x:

W {A {in u y tr * I ,gdi(Ax)) = wp(A{innytr * I,gdi(Ax))

Again, this definition can be shown to correspond to CSP.

T h e o re m 7 For action system with internal actions A = (A, 5, A ,, A a , A /):

A deterministic ^ FZ)/(A) deterministic

P ro o f Suppose FDI{A) deterministic, then for each trace t E A* and action
x:

W (A{iyr{x) * I , true) => -• ♦ / , -» gdi{Ax))

= wp{A{iyt * I,gdi{Ax)) => wp{A{iyt * I,gdi{Ax))

86

This follows since:

W {A{iyr{x) + trtie)

= * /) ; M(*> * ^^6)

= W (A (i)‘

= W(*4(,)‘

= wp(A{iy

= wp{A(iy

= w p { A (i y

= wp{A(iy

* / , wp{A{x) * I , true))

* I; I ,wp(A(x)* I,true))

* / ; I,wp{A^^),wp{lArue)))

* / ; /,tZip(A(,),frue))

* I ,w p (I ; A(x),true))

*I,gdi{Ax))

[ITx = ITx'i ITx]

[wp{ITx, true) = true]

Also,

wp{A^iyt * /,yd/(A x)) => wp{A{iyt * I,gdi{Ax))

= wp{A(^iyt * !,-> gdi{Ax)) V w p { A { i y t * I,gdi{Ax))

= wp(A(^)'< * / , ^rue)

which is true since < is a trace and FDI{A) deterministic ensures that the
system does not diverge. Using this fact the proof follows as before. t)

4.5.3 D eterm in ism for value-passing action system s

For a value-parsing action system it is important to consider not only whether
an action is enabled for a particular channel but also what values it is possible
to communicate. For example, an output on channel take—off of action
system A5 is enabled whenever the sequence s is non-empty. However, the
o u tp u t a c tio n Abtake—off.O is p ossib le ex a c tly w hen th e lart va lue in s is 0.

Input actions, when enabled, are always ready to accept any value of the
appropriate type, so there is no need to consider individual veilues. The ques­
tion of type is important for both input and output channels since a channel
can communicate a value of the appropriate type only. The commgd con­
struct already takes account of these considerations and so this can be used
in the following definition of determinism for value-passing action systems.

87

Definition 23 Action system A = {A, S , AinU, Aa, A j , dir) is deterministic
if divs{A) = 0 and for each trace t E A* of visible actions and each x E Aw-

W { A { i n i t y t r * I,gdi{Ax)) = iop(A(,n,<)*tr * I , commgdi{Ax))

As before, this definition also corresponds to that in CSP.

T h e o re m 8 I f A = {A, S , Ai, A a , A i, dir) then :

A deterministic <=> FDI{A) deterministic

P ro o f As above, the proof follows from the fact that:

W {A{iyr(x) * I , true) = * ^^9di{Ax))

and so

W {A(iyr{x) * I , true) => i iop(A(,)‘< ♦ / , -> commgdi(Ax))

= wp{A(iyt * I,gdi{Ax)) => wp(A(,)‘< * / , commgdj{Ax))

4.5.4 O ther aspects o f nondeterm inism for action sys­
tem s

The definitions of action systems given in the previous sections take into
account only the internal choice which is reflected in the failures-divergences
semantics of an action system. As war noted in Exeimple 18, an action system
can make internal choices, but ar long ar they do not affect the enablement
of guards within the system, the failures-divergences representation will be
deterministic. It may seem a little strange to regard a system ar deterministic
when it can make internal choices. However, for the purposes of security this
is just what is required, since nondeterminism can compromise security only
if its resolution is observable.

The user of an action system is able to observe which events are enabled
for them at any stage. If this is altered by internal choices of the system,

88

A7 =

then the system is nondeterministic. It is the case that outputs allow a user
to view parts of the system state, and it may at first appear that it would
be necessary to take additional steps to ensure that high level actions do not
update values which will be output to a low level user. However, because of
the way outputs are defined, any “writing down” of this sort is reflected by
nondeterminism of the system at the interface with the low level user. Hence
the nondeterminism conditions will cover this aspect of noninterference too.

E x a m p le 24 Consider the following value-passing action system:

 ̂ v a r X : {0,1} ^
in itia lly x := 0
ac tio n h i n i7 : — true —► x := t?

 ̂ ac tio n I o u t o\ : — true —> o! := x y

where A is a high-level action and / a low-level action. The action for output
to / of a particular value, v, is:

A7/.V = (local o! • A7/[o! = u])

= (local o! • true —> o\ := x[o\ = u])

= (local o! • X = V —> o! := x)

= X = V —y s k ip

Hence A7i,v is only enabled when x = v. Whether this is true or not will be
a direct consequence of the inputs of h, and so there will be nondeterminism
detectable at the low user’s interface. t)

4.6 Sum m ary

This chapter has described the action system notation and showed how action
systems are used. A correspondence with CSP was deflned for basic action
systems and extended to include both systems with internal actions and
value-passing systems. Since the failures and divergences of an action system
can be calculated, it is possible to apply CSP properties to an action system
by obtaining its failures-divergences representation. However, this is not

89

a very convenient approach and introduces additional layers of complexity
which offer additional potential for error. The aim of this thesis is to obtain
results which apply directly to action systems. The first step in this process
was the definition of a determinism property for action systems which was
shown to correspond to determinism in CSP. This paves the way for the work
of the following chapter which considers deterministic security properties for
action systems.

90

Chapter 5

D eterm in istic security for action
system s

The two types of deterministic security property, eager and leizy, may be
defined directly for action systems without the need to translate the system
to CSP failures- divergences. In this chapter the definitions axe presented
and their equivalence to their CSP counterparts is demonstrated. Given the
definition of action system hiding above, eager security for action systems
follows straightforwardly. The concepts used to define Xazy security do not
admit direct translation to action systems without redefinition of the original
system and hence we define the lazy condition in a different way and show
its equivalence. The use of the action system conditions is shown for some
example systems.

5.1 Eager determ inistic security

Eager deterministic security in CSP requires a system to be deterministic
w h eii dll h ig h -lev e l ev en ts axe hidden. We first consider the case of simple
action systems.

5.1.1 Eager security for action system s w ith ou t value-

passing

This definition mirrors that for eager security in CSP.

91

Definition 24 I f A = (A, S ,A i ,A A ,A j) then A is eagerly secure with the
set of actions H Ç A if divs{A \ B) = 0 and:

A \ H deterministic

We check for correspondence with the CSP version.

Theorem 9 I f A = (A, 5 , A,-, A/) then A is eagerly secure with respect
to H C A iff FDI(A) is eagerly secure with respect to H.

Proof Both the action system hiding operator and the definition of deter­
minism correspond to those in CSP, and this ensures that the eager security
property also corresponds. Firstly:

A \ H deterministic ^ FDI{A \ H) deterministic [Thm 8]

Also, the result of Theorem 1 ensures that:

FD I{A \ H) = FDI{A) \ H

So:

F D I (A \ H) deterministic ^ FDI{A) \ H deterministic

Hence A is eagerly secure as an action system iff FDI {A) is an eagerly secure
process. \\

5.1.2 E xam ples

The following examples show how the above definition may be used in prac­
tice.

Example 25 First we consider the action system A l which was defined as:

 ̂ var X : {0 ,1} ^
initially x 0

action h : —x = 0 —> x : = l
\ action I :—x = l —> x : = 0

92

A l =

The system with high-level action h hidden is A l \ {h}. For any trace t of
visible actions of A l \ {/i} we need to determine whether:

W { A l{ iy t * {h},gd^h}{Ali)) = wp{Al{iyt * {h],gd^hy{Ali))

The postcondition for both simplifies in the following way:

gd{h}{Ali)

= wp{{skip\h)', l,true)

= wp{(l\{h] I),true)

= wp{l, true) V wp{h] /, true)

= x = l V x = 0

= true

[Defn. of gd and |]

[Prop 2]

[Defn. wp I]

[Defn. wp]

[From type of x]

[Since Ms a trace]

Using this we have:

wp[Al(^i)-i * {h},gd^k}{Ah))

= wp{Al{iyt * {/i}, true)

= true

Also, for the right hand side:

wp{Al(^iyt * {h},gd^h}(Ali))

= wp(Al(,)-< * {/»}, true)

= true [Since the system does not diverge]

So A l \ {A} is deterministic and hence A l is eagerly secure. \\

Example 26 Here we examine:

/ var X : {0,1} ^
initially x := 0
action h : — x = 0 x :G {0 ,1 }

 ̂ action / : —x = l —> x : = 0

It is clear that A3 \ {h} diverges since it is possible for h to be executed an
infinite number of times. Thus A3 is not eagerly secure. \\

A3 =

93

E x am p le 27 Finally we consider an action system which does not diverge
but nevertheless fails to satisfy the eager security property:

 ̂ var X : {0,1,2} ^
initially x := 0
action h i :—x = 0 —> x : = l
action h2 :—x = 0 - ^ x : = 2
action 11 :—x = l —> x : = 0
action 12 : — x = 2 —> x := 0

A8 =

\ /
Occurrence of the low-level actions is directly dependent on the high-level
actions. A 8 \ {h l ,h 2 } is certainly not deterministic since, for example, for

1 1 :

gd{hi,h2}{ASn)

= wp{(skip I Al I A2); /I, true)

= w p (l l \{h l; ll),true)

= wp{ll,true)W w p({hl\ 1 1) , true)

= x = l V x = 0

Hence:

tDp(A8 (i) * {hl,h2},gd^hi,h2}{ASii))

= W(® := 0; IT{ki,h2h X = 0 V X = 1)
= wp(x := 0; X = 0 V X == 1)

= true

However:

î/;p(A8 (i) + {hl,h2},gd{hi,h2){A^ii))

= wp{x := 0, wp{IT{ki,h2}, X = 0 V X = 1))

= wp{x := 0, wp(skip | Al | A2, x = 0 V x = 1))

= wp(x := 0, X = 1)

= false

Therefore A 8 does not meet the condition for eager security. I

94

5.1.3 Eager security for value-passing action system s

The security condition for value-passing action systems makes use of the
commgd construct for each visible action;

D efin itio n 25 I f A = (A, 5 , A,-, Aa, A /, dtV) then A is eagerly secure with

the set of actions H Ç. A if divs{A \ B) = 0 and:

A \ B deterministic

This also corresponds to the CSP version:

T h e o re m 1 0 I f A ^ { A ,S ,A i ,A A ,A i , dir) then A is eagerly secure with
respect to H Ç A iff FDI {A) is eagerly secure with respect to H.

P ro o f As with Theorem 9, the proof here follows since, for value-passing

action systems:

A \ B deterministic ^ FDI [A \ B) deterministic [Thm 8]

a n d :

F D I(A \ H) = FDI{A) \ H [Thm 1]

5.1.4 E xam ples

Here, Definition 25 is used to determine whether or not the given value-

passing action systems axe secure.

E x a m p le 28 Action system A7 was defined above as:

 ̂ v a r X : {0 , 1 } ^
in itia lly x := 0

ac tio n A in t? : — true —> x := t?
 ̂ ac tio n I o u t o! : — true —► o! := x j

95

A7 =

To show that A7 is not eagerly secure, note that A7 \ {A} diverges since the
guard for A actions is always true. For example, the action A.O describing
the high-level input of value 0 is calculated from A by:

A7h.o

= A7A [value 0/t?] [Defn 13]

= {true —> X := ;?)[value 0 /:?]

= true —+ X := 0

and it is clear that an infinite trace of these is possible. \\

Example 28 demonstrates the fact that no action system which is always
ready to accept high-level input can be considered eagerly secure. This is
because the possibility of an infinite trace of high-level inputs causes diver­
gence within the system when high-level actions are internalised. This is also
true for the CSP security definitions since value-passing for action systems
is based on the communication channels of CSP.

E x am p le 29 In this example, a flag is used to indicate when input is pos­
sible fur A. User A must wait until I has read the value before another is
input.

/ var X : {0 , 1 }; flag : {on, off} \
initially x := 0; flag := on
action A in :? : — flag = on x,flag := t?, off

 ̂ action / out o! : — flag = off o\,flag := x, on j

This is obviously insecure, and the example shows how the insecurity is
revealed by Definition 25. Consider A9 with trace () and action Z.O. Firstly:

commgd{k}{A9i.Q)

= wp{IT{h.^, commgd{A9i,Q)) [Defn. of commgd^k}]

= wp{IT{k),gd{A9i) A wp{A9i, o\ = 0)) [Defn. of commgd]

= wp{IT{k},flag = off A X = 0)

= wp{skip I h.O,flag = off A x = 0)

96

A9 =

= wp{skip,f lag = off A x = 0) V wp{h.0^flag = off A x = 0)

= (flO’Ç = off A X = 0) V flag = on

Similarly:

gd{h}{A9i.o) = {flag = off A x = 0)W flag = on

Using this:

wp{A9{i) * {&}, commgd{h}{A9i.o))

= wp{x := 0; flag := on; {flag = off A x = 0)W flag = on)

= true

Also:

îop(^9(i) * {&}, commgd{k}{A9i,o))

= wp{x := 0; flag := on; {flag = off A x = 0) \/ flag = on)

= wp(r := 0 ; flag := on,

{flag = off A X = 0) y flag = on))

= iyp(a; := 0 ; f lag := on,

wp{skip I /i.O I /i.l, {flag = off A x = 0) V flag = on)))

= wp{x := 0; flag := on, flag = off A x = 0)

= false

Hence the system with high-level actions hidden is nondeterministic. I]

E x am p le 30 Although low-level actions may not depend on high-level ac­
tions, it is permissible for high-level actions to be influenced by low-level
ones. This situation occurs in the following system:

 ̂ var X : {0, l},^a^ : {on, off} ^

_ initially x := 0; flag := on
action I in t? : — flag = on —> x,f lag := :?, off

 ̂ action h out o! : — flag = off o\, flag := x, on y

97

For any value v G {0,1}:

coTnmgd{f,y(AlOi.^)

= commgd{AlOi,v))

= wp{IT{k},flag = on)

= true

S i m i l a r l y :

gd{h}{AlOi.y) = true

For any trace, t, of .410 \ {h}:

îÿp(.4lO(,)*t * {&}, true)

= true

and:

[Defn. of commgd for input]

[f is a trace]

w p (^ 1 0 ,̂y< * {h}, true)

= true

Hence AlO is secure with respect to Definition 25

[XlO does not diverge]

5.1.5 A ction system s and lazy determ in istic security

The definition of laay deterministic security does not translate so easily from
CSP. This is because the nature of action systems places limitations on the
operations which can be applied. The CSP definition of lazy security uses
RUNff and interleaving, both of which can be defined for an action system
only by redefinition of the original actions. For example:

 ̂ var X : {0 , 1 } \
in itia lly % : = 0

.41 =
ac tio n h : —r = 0 —> r : = l

 ̂ ac tio n I : —x = l —> r : = 0 j

98

is equivalent to:

P = h _ . / -4 P

In CSP, RUNy^h,!} consists of all possible traces of h and /. In action systems
the action definitions fix the ordering in which events can occur and so some
sequences can never be a trace of the system. For instance, the sequence
{h,h) cannot be a trace since:

wp{x : = 0 ; X = 0 —> X : = 1 ; x = 0 —> x := 1 , true)

= false

It is certainly possible to construct an action system equivalent to RUNff,
for example:

 ̂ var ^
initially skip

 ̂ action h : — skip y

but the action h must be redefined.
Similarly, interleaving in CSP allows actions from a given set to appear

anywhere in a trace, which may not be possible in an action system. In
general, constructs such as these cannot be defined for action systems without
redefining the actions themselves. In the following sections we suggest a
simple way to amend the definition of H actions, which has the same effect
(in terms of the CSP semantics) as interleaving with RUNff. We first consider
action systems without value-passing or internal actions.

5.1.6 Lazy determ in istic security for sim ple action
system s

In order to define lazy deterministic security for action systems we talse a

different approach. We construct an action system whose failures and di­
vergences are equivalent to those of the equivalent CSP process interleaved
with RUNh- First we identify what those failures and divergences should be.

99

The process. RUNff has all traces of elements of H. It can never refuse to
engage in an event and can never engage in any non-H event. RUNff is
also divergence-free. Hence the divergences of P ||| RUNff are:

{u^w I w G {aP U H)* A

(3s G traces{P); t G traces(RUNff) • s G divs{P) A u G s ||| ^)}

That is, a divergence of P ||| RUNff is a divergence of P with arbitrary
elements of H interspersed.

The failures of P ||| RUNff include all (s, for any divergence s, plus:

{(u,(A' n Y)) I 3(s,%) efails{P)] (t, V) e fails(RUNff) #
V G s III t}

A failure of RUNff consists of any trace of H events and any set (including
0) of L events. So the failures of P ||| RUNff are the failures of P with each
trace interspersed with H events and all H events removed from each refusal
set.

To create an action system which obscures H events in the same way as
P III RUNff does, H events must be allowed to occur at any point during
execution of the system. This suggests that weakening the guard to true
may help. However, the command part of each action must also be altered
to prevent “interleaved” occurrences of H events from introducing unwanted
divergence. This learls to the following definition:

D efin itio n 26 I f A is the action system { A ,S ,A i ,A A ,A i ,d ir) and H a
set of actions of A then obsff{A) is the action system obtained from A by
obscuring each h E H in the following way:

obsff{A)h — I {true —> skip) for h Ç: H

obsff{A)a — Aa for a e A — H

The effect of H actions is obscured by allowing each one to make an
internal decision to skip. Hence H actions may occur at any point during
the execution of obsff{A). Each high-level action h makes a nondeterministic

100

choice between skipping or, within the guard of Ah, behaving as .4^. It
follows from the definition that:

wp{obsH(A)h,a) = wp{Ah,Oi) V a

Using obsff we can define lazy security for action systems, since A will be
IcLzily secure if obsif{A) is deterministic.

D efin ition 27 I f A = {A ,S ,A i ,A A) then A is lazily secure for the set of
actions H Ç A i f for all tr G traces {obsn {A)) and for all x E A \ H :

wp{obsf f {A)(iy t r ,gd{Af)) = wp{obsH(A)(iytr i9d{Ax))

5.1.7 C orrespondence w ith CSP

To demonstrate that the representation of obscuring is satisfactory we need
to show:

T h e o re m 1 1 For action system A = {A ,S ,A i ,A A) and H Ç A:

FD{obsH{A)) = f d FD{A) III RUNh

P ro o f Any H in obsff{A) may choose to skip. So if f is a trace of A such
that for postcondition (j)\

then for any s Ç: H* and any int G t ||| s:

A divergence of FD{A) ||| RUNh is any divergence of FD{A) interspersed
with elements of H. For obsff{A), if f is a divergence of A then:

W{A(^iyufaise)

So from the fact noted above, for any s £ H* and any tnf G f 111 s we have:

W{A(^iy int , false)

101

Hence any divergence of A interspersed with elements of is a divergence

of obsff(A).
No new divergences can be introduced since the only new possibility for

the altered actions is the option to skip. Hence the divergences of obsff(A)

and those of FD(A) ||| RUNh are equal.
A failure of FD{A) ||| RUNh is a failure, (t ,X) , of FD{A) with t inter­

spersed with elements of H and H events removed from X . For A, if { t ,X)

is a failure then:

9d{Ax))

In obsniA) the guards of H actions are weakened to true, so H events are
always enabled. However, the subset of X containing all no n -^ actions will

still be included in the failure pair, so:

wp{obsH{A)(^iyt,-^ gd{obsH{A)x\H))

and hence (t ,X \ H) is a failure of obsn^A). Again, from the fact noted
above, it follows that for any s Ç: H* and any int G t ||| s:

wp{o^3H{A){iyinu gd(obsH{Ax\H)))

and so {int, X \ H) is also a failure of obsH{A).
The only additional behaviour of obsH{A) is the abihty of H actions to

skip, so no new failures can be introduced. Hence the failures of obsH{AÎ) are

equal to those of FD{A) ||| RUNh - h

5.1.8 E xam ples

The following examples show how Definition 27 is applied.

E x am p le 31 As before we have:

 ̂ v a r X : {0,1} ^

A1 =
in itia lly x := 0

ac tio n h : —x = 0 —+ x : = l
 ̂ a c tio n I : — x = 1 x :=0 j

102

For lazy deterministic security we need to check whether:

 ̂ var X : {0 , 1 }
in itia lly x := 0

action h : —(x = 0 —► x := 1) | {true
 ̂ ac tion / : —x = l —> x : = 0

is deterministic. However:

obsH{Al) =
skip)

wp{obsH{Al){i;h),gd{l)) = true

but

wp{obsH{Al){i;h),gd{l)) = false

and so, as we would expect, .41 is not lazily secure.

.46 =

\

Example 32

 ̂ var X : {0,1}
initially x := 0
action h : — true —» x := 1

 ̂ action I : — true —> x := 0 j

4 6 is not eagerly secure because hiding h leads to divergence. Obscuring H
events in 4 6 gives:

 ̂ var X : {0,1} ^
initially x := 0
action h : —{true —> x := 1) | skip

 ̂ action / : — true —> x := 0

The guards of both actions are always enabled and so obsff{A6) is determin­
istic. Hence 4 6 is lazily secure.

obsn{A6) =

6,1,9 Lazy determ inistic security and internal events

Definition 26 is equally applicable to action systems with internal actions
this is confirmed by the following theorem.

103

T h e o rem 1 2 For action system A = { A ,S ,A i ,A A ,A i) and H C A:

FDI{obsH(A)) = FDI{A) III RUNh

P ro o f The equivalence for failures and divergences follows in the same way
as in Theorem 11. An infinite trace of FDI{A) ||| RUNh is either an infinite
trace of FDI{A) interspersed with elements of H, or it is an infinite sequence
of H events (possibly both). This is also the case for o6s^(4), so the infinite
traces are equal. I)
So for action systems with internal actions:

D efin ition 28 I f A = { A ,S ,A i ,A A ,A i) then A is lazily secure for the set
of actions H ^ A if for all tr G traces{obsn{A^) and for all x ^ A \ H :

wp{obsH{A)(i)-tr * I,gdi{Ax)) = wp{obsH(A)(^iytr * I,gdi{Ax))

5.1.10 Lazy determ in istic security for value-passing
action system s

The situation is also similar for value-passing action systems. The o6sjy(4)
action for any h ^ H has been defined:

obsH{A)h = Ah I skip

We can therefore calculate input and output actions for specific values as
follows. If dir{h) = in then:

obsH(A)h.v

= {Ah I sttp)[value u/t'?]

= ((4&)[value v/t?]) | skip

= Ah.v I skip

If dir{h) = out then:

obsH{A)h.v

= (local o! • { A h I st:p)[o! = u])

= (local o! • (4 a) [o ! = u]) | skip)

= Ah.v I skip

104

Considering the case of an obscured output action, the guard of /i.v is always
true (because the option to skip is always available) and so the output of any
particular value is always enabled. Effectively, the user is offered the choice
between all possible output values on that channel. This accords with the
effect of obscuring in CSP where an obscured output channel offers the choice
of value externally and hence can be viewed as an input channel. In fact, it
does not really m atter how we refer to the channel as long as the failures-
divergences semantics agrees with the CSP equivalent. The following theorem
shows tha t this consistency with CSP does indeed hold.

T h e o re m 13 For action system A — (A, 5 ,4 , ,4 y i ,4 / , dir) and H C A:

FDI{obsff{A)) = FDI(A) III R U N h

Essentially, the only difference is that commgd is used in the definition of
failures and the proof follows as before. Once again we have:

Definition 29 I f A = (A, 5 ,4 i ,4 > i ,4 / , dir) then A is lazily secure for the
set of actions H C A i f for all tr € traces {obsn {A)) and for all x Ç: A \ H :

Wp{0^SH{A){i)Ur + / ,^ d /(4 ,)) =
wp{obsH{A)i^i)Ur * commgdi{Ax))

5.1.11 E xam ples

In the following examples Definition 29 is used to establish whether or not
the given value-passing action systems are lazily secure.

Example 33 Once again we consider action system A7 of Example 24:

 ̂ var X : {0,1} ^
initially x := 0
action h in t? : — true —► x := :?
action I out o! : — true —► o! := x j

This failed to be eagerly secure since hiding high-level actions causes diver­
gence. It is also insecure with respect to the lazy definition. We confirm this

105

47 =

by looking at the system with H actions obscured:

 ̂ var X : {0,1} ^
initially x := 0
action h in i? : — {true —> x := t?) | {true —> skip)

 ̂ action / out o! : — true —> o! := x j

obsh{A7) =

This is nondeterministic since for v G {0,1} the action h.v can either enable
l.v or it can skip. \\

E x am p le 34 Here we look at system 4 5 defined in Example 22. We will
let H = {take-off} and L = {put^on}. This gives:

 ̂ v ar s : seq N ^

o6sjy(45) =

in itia lly s := {)
ac tio n put-on in t? : IM : —

true —> s := s"(t?)
ac tio n take-off o u t o! : N : —

(5 ^ 0 —> s, o\ := front s, last s) | {true —> skip)

For any low-level action, put^on,v\

commgd{obsH{Ab)fnt-on.v) = frue

and for any trace t\

wp{obsH{Ah)(iyutrue) = wp{obsH{Ab)(^iyt,true) = true

Since high-level actions have the option to skip they are always enabled.
Therefore, in investigating the nondeterminism of a system we have to con­
sider the enablement of low-level actions only. Hence 4 5 with H as defined
here is lazily secure. \\

In the previous example it was a high-level output action which was ob­
scured. The effect of this is to enable the output of any value required by the
user at any point in the execution of the system. That is, take-off is now
prepared to communicate whatever value the environment wishes. Following

106

the CSP interpretation, since the value communication is now under the con­
trol of the environment, this is equivalent to an input channel. The action
is prepared to communicate any value chosen by the environment, but only
in the caae of that value being equivalent to last s can the action choose to
diminish s (although even in this case it can choose not to). Hence another
(and perhaps more satisfactory) way of viewing the obscured action would

be as an input:

ac tio n take-off in o? : N : —
(5 ^ A 0 ? = last s s := front s) | {true —> skip)

However, the way in which the action is view ed is really nut im p o rta n t for

present purposes, since the action is not part of a system to be implemented,
but merely a device in the definition of the security property. The important
point is tha t these definitions are equivalent in terms of their behaviour in
the definition, and this follows since for both cases the action to communicate
any value v is calculated as:

take-off.v = {s ^ {) A v = last s s := front s) | {true —► skip)

5.2 M ixed security conditions

As was described in Chapter 3, in the CSP approach of Roscoe [107] a mixed
security condition combining both eager and lazy definitions is used. This
allows signal events which cannot delay the system to be viewed in an eager
fashion whilst the rest of the system must maintain lazy security.

5.2.1 M ixed security for action system s

A similar definition may be given for action systems.

D efin ition 80 I f A = (A ,5 ,4 ,- ,4 a ,4 / , dtr) where the high- level actions
H Ç. A are divided into delay events, D, and signal events, S, then A satisfies
the mixed security condition if:

obso{A \ S) deterministic

107

E x a m p le 35 The following action system is a suitable Ccindidate for con­

sideration under the mixed security condition.

 ̂ v ar flag : {on, off} ^
in itia lly flag ;= off

A l l = ac tio n hi : — flag = off flag := on
ac tio n h2 : — flag = on ^ flag := off

 ̂a c tio n I : — flag = off skip

In 411, I can only occur when the flag is off. The high-level action h i may
also occur when the flag is off, and this action resets the flag to on. Action
I cannot then occur until h2 has set the flag back to off. That this fails to
meet the lazy security condition can be seen by considering:

^ var flag : {on, off} ^
in itia lly flag := off
action hi : — {flag = off flag := on)

obsH{All) = I {true —»■ skip)
action h2 : — {flag = on flag := off)

I {true —>> skip)
ac tion I : — flag = off skip

Here, {hi, h^) may enable I or it may not, so obsff{All) is nondeterministic.
However, we could choose to regard h2 as a signal event, resetting the flag to
off as soon as it is able to. In this case we should check 411 against the mixed
security condition. Here, the guard of the low-level action in obso{All) \ S

\

is:

gd{h2}{fl(i9 = off ^ skip)

= gd{IT{h2}\ {flag = off skip))

= gd{skip I h2; {flag = off skip))

= {flag = off) V {flag = on)

= true

The system does not diverge, so it is not possible for any trace of events
to affect whether I is enabled or not (it always is). So o6sjo(4ll) \ 5 is
deterministic and hence 411 meets the mixed security condition. h

108

5.3 A bstract m odels o f high-level behaviour

In Section 3.3 an alternative definition of the deterministic security properties
wae given. This defined in each case the most nondeterministic behaviour
possible for the high-level user. The condition which then must be checked
is of the form:

(P\\u„) \ H det

In the following sections we discuss how this abstraction may be expressed
for action systems.

5.3.1 H igh-level behaviour

HAVOC and FINITE are the two basic behaviours needed for these def­
initions. FINITE simply introduces a bound on the possible number of
iterations of H actions.

F IN IT E h =

 ̂ var count : N ^
initially count :G M

 ̂ action hi ^ H : — count > 0 —̂ count := count — I j

F IN IT E h has aa traces all sequences of H actions but, on execution, repeti­
tion will always be bounded by the initial choice of count. F IN IT E h has no
divergences.

To define HAVOC we use a variable select which restricts the choice of
the next action to be executed. If select is the emptyset then no further H
actions can occur. Using this we have:

H A V O C h =

 ̂ var select : P H ^
initially select :C H

 ̂ action hi E H : — hi G select —> select iQ H j

U n lik e F IN IT E h, in fin ite traces of H actions can occur in H A V O C h but
their failures and divergences are equivalent. The definition of parallel com­
position can be used to give security definitions in terms of the independent

109

characterisation of high-level behaviour. These security definitions are given
in the following sections. It is intended that the variables count and select
should be different from the variables of any action system with which they
are composed. If a clash of variables occurs then different variables can be
chosen for use in FINITE and HAVOC.

5.3.2 Strong determ inistic security

A system which exhibits both lazy and eager security is strongly secure (see
page 48). The abstract behaviour Uh is in this case described by HAVOCh -
Hence the condition to be checked is:

{P^HAVOCh) \ H deterministic

E x a m p le 36 For 4 1 defined in Example 16, (A\\HAVOCh) \ H is:

 ̂ var X : {0,1}; select : P { / i } ^
initially x := 0; select :C {/&}
action I :—x = l —> x : = 0
internal h : — {x = 0 A h E select) —+

\ (x := 1; select :C {/i}) y

Here, for example, (/) is a trace since the initialisation may set select to {A},
thus enabling the internal action. However, in the case that select is set to
0 initially, the system is immediately deadlocked. Thus, as expected, 4 1 is
not strongly secure. []

5.3.3 Eager determ inistic security

As pointed out in [107], this case is trivial. In CSP the appropriate high-
level user is characterised by RUNh- Since (P^RU Nh) = P for all P and H ,

the abstract high-level user approach is equivalent to the original definition
of eager security:

{{P\\RUNh) \ H) deterministic ^ {P \ H) deterministic

110

413 =

5.3.4 Lazy determ inistic security

To define appropriate high-level user behaviour for the case of lazy security,
Roscoe [107] uses the infinite traces model of CSP. The high-level user’s
behaviour is described by the process FINITEh - Hence a system is lazily
deterministic if:

[P^FINITEh) \ H deterministic

Exam ple 37 The following action system is not eagerly secure since hiding
h leads to divergence.

 ̂ v ar X : {0,1} ^
in itia lly x :G {0,1}
ac tio n h : — true —+ x := 0

 ̂ ac tio n I : — true —> x := 1 j

This example shows how this approach deals with the possibility of divergence
amongst hidden H actions. The system representing 413 with the most
nondeterministic characterisation of H compatible with lazy security is given

by {A l8 \\FINITEh) \ H, which is:

 ̂ v a r X : {0,1}; count : N ^
in itia lly X :G {0,1}; count :G M
ac tio n I : — true —> x := 1

 ̂ in te rn a l h : — count > 0 —> x, count := 0, count — I j

Hiding h does not cause divergence since count acts as an upper bound on the
number of occurences of h. Further, (AlS\\FINITEh) \ H is deterministic
(since the guard of / is true and the system does not diverge) and so 413 is
lazily secure. t]

Example 38 To see how systems which are not lazily secure fail to meet the
requirement we use system 4 1 again. We construct (Allj^FINITEn) \ H:

(var X : {0,1}; count : N ^
initially x := 0; count :G N
action / : —x = l —> x : = 0

 ̂ internal h : — (x = 0 A count > 0) —> x, count := 1, count — I j

111

In fact, count has little effect here, since the system is nondeterministic
because of the possible values of x after ITh - t]

5.3.5 M ixed determ inistic security

In CSP mixed deterministic security is defined for a process where high-level
events are divided into two classes: delay events, D, and signal events, S. The
signal events are thought of as happening instantaneously whenever possible,
such as would be the case with a high-level output sent by the system in
response to some high- level input. The CSP mixed security condition is:

III FINITEo)) \ H) deterministic

where 5 , D partition H.
Since S and D are disjoint the action system equivalent of RUNs |||

FINITEd can be obtained simply by putting together the actions from both:

/ v ar count : IM \
in itia lly count :6 IM
ac tio n hg E S : — true —> skip

 ̂ a c tio n hi E D : — count > 0 —> count := count — 1 /

Example 39

 ̂ var X : {0,1} \
initially x := 0

414 = action h i : — true —► skip
action h2 : — true —> x := 1

 ̂ action / : — x = 0 —► skip

Here we consider h i as the delay event and h2 as the signal event. In order to
assess 414 under the mixed security condition we construct {Al4:\\{RUN^h2} ||
FINITE^hi})) \ H:

/ v a r X : {0,1}; count : IM \
in itia lly x := 0; count :E IM
ac tio n / : — x = 0 —► skip
internal h i : — count > 0 —̂ count := count — 1

\ internal h2 : — true x := 1

112

However, this diverges with unbounded repetition of the internal action h2,
so 414 is not secure with respect to the mixed security condition.]\

E x a m p le 40 By altering the actions of h we can produce a system which is
secure:

 ̂ var X : {0,1} ^
in itia lly x := 0

415 = ac tio n hi : —x = 0 —> x : = l
ac tio n h2 : —x = l —> x : = 0

 ̂ ac tio n I : — x = 0 —> skip ;

Again, for the mixed security condition with h i the delay action and h2 the

signal action we consider {Alb\\(RUN^h2} III F^NITEy^hi})) \ H:

 ̂ v a r X : {0,1}; count : N ^
in itia lly x := 0; count :G N
ac tio n I : — x = 0 —> skip
in te rn a l hi : — (x = 0 A count > 0) —> x, count := 1, count — 1

\ in te rn a l / i 2 : —x = l —> x : = 0 /

We need to check whether this is deterministic. In fact, with the high level
actions hidden the guard of the low-level action becomes:

gd{hi,h2}{i)

= gd{IT{hi,h2}i^ — 0)

= x = O V x = l

= true

Thus I is always enabled. So {Alb\\(RUNy^h2} III EINITE^hi})) \ is deter­
ministic and 415 satisfies the mixed security condition. h

5.3.6 C onditional security

Conditional security, as introduced in [43], specifics that a system is secure
dependent upon some condition. For Example 15 of Chapter 3, the manage­
rial tasks, M, of the high-level user may breach the security policy. The user

113

has to be trusted to perform these judiciously. The security condition says
that all other behaviours within the system must be lazily secure:

[P^FINITEh- m) \ H deterministic

The same can be done for action systems using the corresponding action

system, FINITEh- m -

E x am p le 41

(v a r X : {0,1}
in itia lly x := 0

414 = ac tio n hi : — true —> skip
ac tio n h2 : — true —> x := 1
ac tio n I : — x = 0 —> skip

W ith H = {h l,h 2 } and M = {h2} we need to check (AIAiV^FINITEh- m) \
H. We have:

f v a r X : {0,1}; count : IM
in itia lly x := 0; count :€ IM
ac tio n / : — x = 0 —> skip
in te rn a l hi : — count > 0

 ̂ in te rn a l h2 : — false

count := count — 1

/

Hiding H produces a non-divergent, deterministic system, so 414 is secure
for actions other than h2. t|

5.4 Security policies

The approach of the previous section begins to address the question of an
independent security policy. For any system 4 , the appropriate high-level
user action is defined and then the combined system is checked for nonde-
term in ism . However, the security policy is not straightforwardly reflected
in the high-level user behaviour (it may not be immediately apparent, for
example, that FINITEh encapsulates lazy deterministic security). Also, it is

114

only appropriate for conditional security where the condition can be defined
as a structural requirement on the behaviour of H. For instance, suppose
we wish to specify a system in which high- and low- level users may both
send and receive messages. Within a certain time of the generation of each
message no information flow from high to low may occur. However, after a
period of tim e the messages from high-level users are no longer considered
sensitive and there is no further need to protect them. In this situation it is
not the actions of the high-level user alone which determine the condition,
but some aspect of the system state will also be involved.

5.4.1 O ther ways o f restricting th e system

In the following examples we investigate some of the ways in which the se­
curity requirements of a system can be represented in an action system.

E x a m p le 42 This is a simple aggregation problem in which a structural
restriction is placed on L. The system is regarded as insecure if the low-
level user makes more than ten interactions with the system. This could
represent, for example, the low-level user gaining a number of separate bits
of information which together might be considered a security threat. This
restriction can be made for action system A by:

a I a GGRl

where

AG GRl =

/ v a r ints : IM \
co n s t limit = 10
in itia lly ints := 0

 ̂ a c tio n I, E L : — ints < limit —> ints := ints + 1 ;

The limit can be set to the required value for any particular case.

115

E x am p le 43 In this example the agreement of the system manager is re­
quired for all operations from a set, 5. Again for action system A we have:

4 5 A GREEs

where

A G RE ES =

(v a r {flaggy : {yes, no] | s,- G 5}
in itia lly V s, • flagg. := no
ac tio n s,- G 5 : — flagg. = yes —> flagg. := no
ac tio n allowg. : — (me —»> flagg. := yes /

E x am p le 44 If explicit restrictions on the state are needed, an invariant can
be used. This becomes an implicit part of the guard and must be reestab­
lished by the execution of any action. A convenient way to record an invariant
on the state is by using a Z schema. This example gives an invariant schema
for a simple Chinese Wall policy. Various consultants, represented by the
given set GONSULTANT, are employed by a number of different organi­
sations from the set ORGANISATION. There may be conflicts of interest
between the different orgctnisations. Security is maintained by ensuring that
a consultant employed by one organisation does not simultaneously carry out
work for any competing organisation. The state consists of a set of conflict of
interest classes and a function showing which organisations each consultant
is currently working for.

[GONSULTANT, ORGANISATION]

C W A L L ___
coiclass : P P ORGANISATION
workson : GONSULTANT P ORGANISATION

Vc : GONSULTANT] o l, o2 : ORGANISATION .
{ol, o2} Ç workson c =>

-1 (3 c/ : coiclass • {ol, o2} Ç cl)

116

These approaches can all be combined with the determinism checks for non­
interference.

5.4.2 R elaxing th e conditions

The deterministic conditions debar any internal choices from influencing the
actions of L. For instance, with:

^ v a r X : {0,1} ^

in itia lly x :G {0,1}

415 = ac tio n 11 : — x = 0 —> skip

ac tio n 12 : — x = 1 —► skip

\ • J

415 is insecure since it is nondeterministic towards L. The justification is
that this system could be refined by one in which the nondeterminism is re­
solved by interference from the high-level actions. The internal nondetermin­
ism could also arise through internal actions. In either case, the possibility

of unfortunate refinements means that the system is labelled as insecure. It
may sometimes be useful to use a diflPerent, more liberal condition. The cur­
rent ones say that there must be no nondeterminism towards L which could
be influenced by A more generous condition might check that there is no
such nondeterminism which is influenced by H. This is a retrograde step in
terms of the refinement paradox but it is necessary in order to avoid, for ex­
ample, explaining the whole of a key-generating mechanism at the top level.
It does certainly put an onus on the user to re-prove the security property
at a lower level to ensure that no insecurity is introduced. The caae studies
of Chapters 7 and 8 return to this topic.

5.5 B i-d irectional channels

One aspect of action systems syntax not mentioned so far is the use of bi­
directional channels. Butler [20] provides for these by extending the set dir

117

to:

dir ^ {in, out, inout]

If a is a bi-directional channel then a .{j,k) represents the action a with input
value j and output value k. A particular action can be calculated for a given

bi-directional channel in the following way:

D efin itio n 31 (Butler) I f dir(a) = inout then:

Aa.{j,k) = (local x , y [{x, y) = {j, t)] Aa [(%, y) = (;, k)])

T h e ex is t in g definitions can be used with bi-directional channels if coTnmgd

is extended in the following way:

D efin itio n 32 (Butler) I f dir {a) = inout then for 5 Ç W :

commgd{Aa.s) = (3 x 6 fst{S) • gd{Aa) A wp{Aa, y € &))

where

fst{S) = { j \ (3 k . (j , k) e S) }

Sj = { k \ {j ,k) G 5}

E x a m p le 45

416 =

/ v a r ^
in itia lly skip

y action a in t? : {0,1} out o! : {0,1} : —true —*■ o\ := flip i? j

where flip 0 = 1 and flip 1 = 0 . The action 416o.(o,i) with input 0 and

output 1 is:

(local I?, o! # [(t?, o!) = (0,1)] 416& [(i?, o!) = (0,1)])

= (local t?, o! • [(t?, o!) = (0,1)] *? = 0 —► ol := flip i?)

= (local i?, o! • t? = 0 A o! = 1 —> o! := flip t?)

= true —*■ skip

118

On the other hand, since 4 1 6 a can never satisfy a postcondition which re­
quires *? and o! both to have the same value, we have that 4l6g.(o,o) is a
miracle. tj

If bi-directional channels are used there is no need for the mixed security
property of Section 5.3. Signal events axe represented as the output part of
an in o u t channel, so no delay in the system will be observable.

5.5.1 T he secure m ultip le stack system

This example is adapted from [87] where a trace specification is used to define
multi-level stacks. Here, an action system is used to specify a, sy s tem in w hich

each classification has an associated stack. The set CLASS, of classifications,
is assumed to be hnearly ordered. There is a set USER of users, each of
which has an associated classification specifying their clearance level. We
will assume that these two sets are finite. User classification is represented
by the function:

clear : USER CLASS

Each stank is modelled as a sequence of DATA. The state of the system
is noted in the v a r part of an action system. Here we use a Z schema to
define the state, using the schema name within the action system. This is a
convenient way to make the action system more readable, particularly when
the state is more complex with a lengthy invariant. Note that this is just
one possible way to denote the state: it is not an integral part of the action
systems approach. Any notation incorporated in this way wiU be used in a
strictly limited way within the framework of an action system. The state is
defined by the following schema:

^ S ___

stack : CLASS —*■ seq DATA

We also define the possible outputs from the system as either an item of
data or one of two error messages:

REP ::= Rep {{DATA)) | empty | error

119

MultiStack =

/ v a r 5

in itia lly stack : [raja, stack = {{>}]

ac tio n push in u? : USER] sc? : CLASS] d? : DATA : —
(clear u?) < sc? —*■ (stack sc?) := (stack sc?)"(d?)

a c tio n pop in u? : USER] sc? : CLASS : —
(clear u?) < sc? if (stack sc?) ^ ()

then (stack sc?) := front (stack sc?)
else skip

ac tio n top in u? : USER] sc? : CLASS o u t r! : REP : —
true —*■ if (clear u?) < sc?

then r! := error
else if (stack sc?) = {)

then r! := empty
 ̂ else r! := Rep (last (stack sc?))

F ig u re 5.1 Multi-level stacks

There are three operations on stacks:

• PUSH allows a user to put a given data item on the top of a specified

stack

• TOP returns the top data item from the specified stack to the request­

ing user but does not alter the stack

• POP removes the top item of data from the specified stack

The system must not allow users to read above their clearance or to write
below it. The action system MultiStack of Figure 5.1 specifies the system.

The MultiStack action top is an example of the use of bidirectional chan­
nels, introduced in the previous section. The actions for any classification,
cl, are those with clear u? = cl. Let Hd be the set of all actions with
clear u? > cl. To satisfy the eager security condition we would need:

(MultiStack \ Hd) deterministic for each Hd

120

push :
/ (clear u?) < sc? —*■
\ (stack sc?) := (stack sc?)"(d?)) I skip

pop :
f (clear u?) < sc? —*■

(if (stack sc?) ^ {)
then (stack sc?) := front (stack sc?)
else skip)\

top :
/ true

(if (clear u?) < sc?
then r! := error
else if (stack 5C?) = {)

then r! := empty
else r! := Rep(last (stack sc?))

I skip

I skip

F ig u re 5.2 Actions of obsff^j(MultiStack) for clear u? > cl

Hiding the actions in any Hd causes divergence. For example, the Hd action
top for user of clearance cl is always enabled. Hence the specification is not
eagerly secure.

Next we check for lazy deterministic security by considering the system
obsH^i(MultiStack). For any arbitrary classification cl, the high-level actions
Hd, that is those for clear u? > cl, will be as shown in Figure 5.2. Lower
level actions remain unchanged.

Actions for clear u? > cl are always enabled so the system can only
be nondeterministic if there is some lower level action whose guard could,
through internal choice, either be enabled or not after a particular trace.
Hence we consider the actions for lower level users, that is, with clear u? < cl.

The guard for all lower level push 2ind pop actions is clear u? < sc?. The
clearance is never changed, so this is not something that could be enabled
or otherwise by any trace of actions. For top the situation is a little more
complicated. The guard is true but the definition of a channel requires that
the guard has to be calculated for specific values of inputs u? and sc? and

121

output r!.
Suppose the input user is t and the input class is c. Since we are dealing

with a lower-level top action we are assuming that clear t < cl. There axe
three possible cases for the output reply. Firstly, consider the case of an
“error” output. Using Definition 31 the specific top action in this case is:

(local w?, sc?, r! •
[(u?, sc?, r!) = (t, c, error)]

obsH î (̂ ‘̂ mStack) iof

[(«?, sc?, r!) = (i, c, error)]

)

= (local %?,sc?, r! •
[(u?, sc?, r!) = (t, c, error)]
true —> i f {clear m?) < sc?

then r! := error
else if {stack sc?) = ()

then r! := empty
else r! := Rep{last {stack sc?))

[(«?, sc?, r!) = (t, c, error)]

)

= (local w?, sc?, r! e
[(u?, sc?, r!) = (t, c, error)]
u? = i A sc? = c A {clear u?) < sc? —*■ r! := error

)

= {clear i) < c —> skip

So the guard of top for these values is clear i < c. Again, this is fully
determined by the actual inputs and cannot be enabled or disabled by any
preceding trace of actions.

122

In the second case, r! = empty. The action this time is:

(local u?, sc?, r! #
[(w?, sc?, r!) = (t, c, empty)]

obsH^^{MuhiStack)top
[(w?, sc?, r!) = (i, c, empiy)]

)

= (local u?, sc?, r! •
[(w?, sc?, r!) = (t, c, empty)]
u? = i A sc? = c A (c/ear u?) > sc? A {stack sc?) = ()

r! := empty

)

= (c/ear t) > c A {stack c) = () —> stty

The first conjunct of this is, as before, determined by the inputs alone. If it
is false, the action is not enabled. So assume it is true, that is: {clear i) > c.
Since the action is a lower level one we know that cl > clear i. Combin­
ing this with the previous assumption gives c/ > c, which means that the
classification of the requested stack is strictly less than the high level clas­
sification, cl. Any action at a level > cl cannot alter the stack at level c
since the high-level actions can only affect stacks whose classification is as
least as great as their own. This means that no high-level action has any
influence over whether {stack c) = () or not. So the internal actions made
by the high-level actions of obsH^i{MultiStack) do not affect the enabling of
the low-level guards in this case.

123

The guard for the third case is determined as follows:

(local u ? , s c ? , r ! #

[(u?,sc?,r!) = {i,c,Rep(d))]

obsH^j{MultiStack)top
[(w?, sc?, r!) = (i, c, Rep{d))]

)

= (local ÎX?, sc?, r! •
[(w?, sc?, r!) = (t, c, Rep{d))]
u? = i A sc? = c A {clear «?) > sc?

A (sfoct sc?) ^ () A last{stack sc?) = d
—*■ r! := Rep{d)

)

= {clear t) > c A lcLst{stack c) = d —> sttp

As in the previous case, no high-level action can influence the enabling of the
guard of this action.

This hcis shown that the internal choices of high-level actions can have
no effect on the enablement of low-level actions. There is no other way
that nondeterminism could arise in obsH^j{MultiStack) (no internal actions,
no low-level nondeterminism) and hence the system is deterministic. Thus
MultiStack meets the condition for lazy deterministic security.

5.5.2 R epresentation o f bidirectional channels

Representing bidirectional channels^ in the manner described above has the
axivantage of removing the need for the mixed deterministic security property
for dealing with high-level output actions. However, such a representation
may be problematic from the point of view of the development of a system.
Given this interpretation, a bidirectional channel must always be refined
as a unit and cannot be decomposed in a way which splits up input and

^Thanks to Michael Butler for discussion on this point.

124

output. This makes the possibilities for refinement greatly limited. Output
values must be regarded as being calculated simultaneously with receiving
the input. There is no scope for receiving input and then following on with
internal processing which will determine an output. If this is regarded as a
problem it would be possible to provide a model for bidirectional channels
which interprets them semantically as two separate actions: input followed
by output. The situation for the security definitions would then be the same
as for the original CSP ones and mixed security conditions would be required.

In practical terms, the restrictions on refinement mean that bidirectional
channels axe perhaps not as useful as they might first appear. Although they
work well for the examples given here, they do not appear in the case studies
of later chapters because of the inflexibility caused by their introduction.
Hence, whilst bidirectional chanels provide a neat chaxacterisation at the
specification level, the practicalities of system development mean that they
axe not such a good choice for general use.

5.6 Sum m ary

This chapter introduced the definitions necessary for using deterministic se­
curity properties for action systems. The two main properties, for eager and
lazy forms of the definition, were given. These were shown to correspond to
the equivalent properties in CSP. Other forms of security (including strong
security, mixed security and conditional security) were also addressed. Cor­
responding to the alternative representation of deterministic security prop­
erties in CSP, Section 5.3 provided a chaxacterisation in terms of the allowed
high-level user activity. Examples throughout the chapter illustrated these
concepts as they were introduced and showed how the security definitions
axe applied.

The provision of security definitions is necessary for the assessment of
security at any given level. Another important factor for system development
is the relationship of a secure system at one level to a refinement of that
system. This is explored in the next chapter.

125

C hapter 6

R efining secure action system s

This chapter presents refinement rules for action systems. The basis for ac­
tion system refinement corresponding to CSP failures-divergences refinement
was presented by Woodcock and Morgan [132]. Given a simulation relation
between abstract and concrete states obeying certain properties, then sound­
ness with respect to failures-divergences is guaxcinteed. This work has been
taJien further by Butler [20, 18] who defines refinement for action systems
with internal actions and for value-passing action systems.

This chapter gives the definitions with examples of their use and consid­
ers how refinement is related to the deterministic security properties. One
im portant aspect of action system refinement is the technique of parallel de­
composition and that is also covered here. Given the basic definitions for
action system refinement it is possible to deduce a number of simplified rules
which can be applied in particular circumstances. A number of these which
prove useful for later chapters are introduced here.

6.1 Refinem ent and sim ulation

Refinement is the process of moving from an abstract representation of a
system to a more concrete one. In CSP terms, process Q is a refinement of

126

A Op

F ig u re 6 . 1 Abstract and concrete states related by simulation R

process P if it displays a subset of the possible behaviours of P , that is:

fails(Q) Q fails{P)
divs{Q) Ç divs{P)
infs{Q) Ç infs{P)

A deterministic system has no proper refinements.
An action system considers state as well as events. In this case, part of

the process of refinement involves moving from an abstract representation of
the state of the system to a more concrete one. This is referred to as data
refinement. Each concrete operation must correspond to a distinct abstract
operation in a way which ensures that the behaviours of the concrete system
form a subset of the behaviours of the abstract system.

Refinement can be characterised by means of simulation. A simulation
is a relation between abstract and concrete states which must obey certain
properties (detailed below). One system is refined by another if and only if
a simulation exists between them.

In general terms, a forwards simulation between abstract state A S and
concrete state CS is a relation R : A S CS for which the effect of applying
any concrete operation, COp, must be matched by application of the equiv­
alent abstract operation, A Op, to a related state. This is often depicted as
in Diagram 6 . 1 in which dashes represent the state after the operation.

Starting from as, if R followed by COp can result in state cs% then

127

it must also be possible to arrive at cs' by AOp followed by R. Hence,
R;CO p Ç A O p;R . This is known as forwards simulation (since any forward
move of the concrete system must be matched by a corresponding move in
the related abstract state) or as downwards simulation (given the direction
of the arrows, down from abstract to concrete).

A complementary relationship is provided by backwards (or upwards)
simulation. Again, with reference to Figure 6 .1 , starting from concrete state
CS, COp ; R ̂ must be matchable by R~^ ; AOp. This can be viewed as
moving upwards from the concrete to the abstract. Given any concrete state
CS in the range of P , if COp can arrive at cs' then a matching move of AOp
can reach a related abstract state. That is: COp ; R~^ Ç R~^ 5 AOp. This
interpretation of looking back to see how a given concrete state was reached
leads to the term backwards simulation.

A good general introduction to refinement and to simulation is provided
by Woodcock and Davies [133].

6.2 R efinem ent for basic action system s

In [132] Morgan and Woodcock give forwards and backwcirds simulation rules
for basic action systems which are shown to be sound and jointly complete
with respect to CSP refinement^. However, by using a general representation
function, Butler [20] accommodates both types of simulation with a single
definition. Forwards and backwards simulation can be distinguished by the
nature of the representation function. This single, combined approach allows
a neater, uniform presentation of the theory for the general case. However, in
practice forwards simulation is often sufficient to prove most refinements. By
narrowing the scope to consider only this method of refinement, developments
can be greatly assisted by the use of refinement calculus techniques. Also,
refinement rules can be simplified when the simulation relation is functional
from concrete to abstract states.

^Although a completeness theorem is proved for the basic action systems of [132], this
result has not been extended to value-passing action systems.

128

Here, definitions are first given for both forms of simulation with exam­
ples to show the difference between them. Following this, throughout the
remainder of the chapter the rules for forward simulation will be used.

6.2.1 Forwards sim ulation for basic action system s

Action h refines action a if the possible behaviours of h are a subset of the
possible behaviours of a. Nondeterminism may be eliminated, but no ‘extra’
activity may be introduced. For data refinement, the change of represen­
tation of state from abstract to concrete must also be taken into account.
Suppose abstract state 5 and concrete state T are related by R (known as
the refinement relation, retrieve relation or abstraction invariant). If b re­
fines a with respect to R we write a :<r b. In the case that A is a forwards
simulation this is defined as follows:

D efin ition 33 For any postcondition a with no free occurrences of concrete
variables, a -<r b if:

{3 S • R A wp{a, a)) ^w p {b , {3 S • R A a))

Here, ^ represents entailment (that is, implication true in all states).
The corresponding condition for forwards simulation between initialisa­

tions is:

w p (A i , a) ^ w p { B i , (3 S • R Act))

In this case we write: A i ■<'r ̂Bi.
For action system 5 to be a refinement of action system A , both must

share the same alphabet, with Aa refined by B* for each a in the joint al­
phabet. The initialisation of A must also be refined by that of B. A third
requirement concerns the relationship between guards. The guard of the
concrete action must be no stronger than that of the abstract action, oth­
erwise additional refusals could be introduced. This motivates the following
definition of action system refinement.

129

\

D efin itio n 34 Forwards simulation (Butler) Action system A = (A, 5 , A i, A a)
is refined by action system B = (A, T, i f there is a relation R between

them such that:

1. A i Bi

2. Aa :<R Ba for each a in A

3 . {3S • R A gd{Aa)) ^gd (B a) for each a in A

I f these conditions are satisfied we imite A E a B.

6.2.2 E xam ples

E x a m p le 46 Take A3 as defined above:

 ̂ var X : {0,1}
initially a; := 0
action h : — r = 0 —> x :G {0,1}
action I : —x = l —» x : = 0

A purely algorithmic refinement of this (that is, with no change of state) is:

 ̂ var X : {0,1} ^
initially x := 0

action h : —x = 0 —> x : = l
action I : —x = l —> x : = 0

This has simply limited the nondeterminism by making a definite choice for
the value of x in action h. Therefore A3 Q B l . Resolving the nondeterminism
by setting x to 0 in h would also produce an acceptable refinement. In this
case, only h actions would ever be enabled.

Any introduction of nondeterminism will cause condition 2 of Defini­
tion 3 4 to be false. For instance, BI is not refined by .A3. This is because:

\

BI =

\

and:

wp{Blh,oc) = X = 0 => ck[l/x]

wp{A3k,a) = X = 0 (a[0/x] V a [l/x])

130

and so:

wp{Blh,a) ^wp{A3k,ot)

E x a m p le 47 Here data refinement is used as well. With:

A17 =

 ̂ var s : P IM; 71 : IV \

in itia lly s := 0; 71 :G N
action a l : — true —> 7i :G N — s; s := s U { 71}

 ̂ action a2 : — s ^ 0 —> 71 :G s; s := s — { 71} /

var m : N \

in itia lly m := 0

action a l : - true —► 771 :== 771-1-1
action a2 : - 771 ^ 0 —» 771 := 771 — 1 j

B2 =

The concrete variable m is simply a number which may be incremented or
decremented. The refinement relation is:

i? = s = (l . . m) A n = m

The refinement of A l7 by B2 is established by checking the three conditions
from Definition 34. Proof of this is given in Appendix D. Thus:

X17 Or B2

h

E x a m p le 48 In this example the abstract system describes a very basic
key server. We specify a single user setting up a session and obtaining a key.
The key allocated by the keyserver is drawn from the following given set
which is assumed to be nonempty:

[KEY]

The data type STATUS is defined:

STATUS ::= no | yes | send

with the following intended meanings:

131

no no session is established with the keyserver.

yes a session is established with the keyserver (but no key has yet been sent).

send a session is established and a key has been sent.

The abstract system is defined:

KeyServerl =

f v a r k l : K E Y; s i : STATUS \
in itia lly s i := no; k l :G K E Y
a ction startsession : — s i = no s i := yes

 ̂ action sendkey : — s i = yes —> k l :G K E Y ’, s i := send j

When the user requests the start of a session the status is set to yes. When
the user requests that the key be sent, the keyserver chooses a key and the
status is set to send. (This abstracts away from the details of actually sending
the key).

The action system KeyServer2 describes a similar system, the difference
being that KeyServer2 decides which key is to be allocated as soon as the
session is established. The key is not communicated until it is requested, so
from the user’s point of view, the two systems are equivalent. The status
variables s i and s2 ensure that the same succession of actions within the
system is maintained.

KeyServer2 =

f var i 2 : K E Y; s 2 : STATUS \
in itia lly s2 := no; k2 :G K E Y
action startsession : — s2 = no —> s2 := yes; k2 :G K E Y

 ̂ action sendkey : — s 2 = yes —> s2 := send y

For the relation between the two systems, at the point at which the key is
communicated it must be possible for both systems to supply the same key.
This leads to the definition:

R = (s i = s2) A (s i = s2 = send => t l = k2)

132

All the refinement conditions axe satisfied, as confirmed in Appendix D, and
so:

KeyServerl KeyServer2

Since the two versions of the key server axe so similar it may be useful to
investigate whether refinement holds in the other direction: that is, does
KeyServer2 Ç KeyServerl? However, a problem axises when checking Con­
dition 2 for sendkey where:

LHS = (3k2: K EY; s2 : STATUS • R A

wp{s2 — yes —> s2 := send, a))

= (3 k2 : K E Y; s2 : STATUS # (si = s2) A

(si = s2 = send => t l = k2) A

(s2 = yes => a[send/s2]))

= {3k2 : K E Y • (si = send k l = k2) A (si = yes => a[send/s2]))

RH S = wp{sl — yes —> k l :G K E Y; s i := send,

(3 k2 : K E Y; s2 : STATUS • R A a))

= s l = yes => (Vifcl : K E Y • { 3 k 2 : K E Y; s2 : STATUS •

s2 = send A k l = k2 A a))

= s i = yes => (V&l : K E Y • a[kl, send/ k2, s2])

= s i = yes => (Vt2 : K E Y • a[send/s2])

Therefore LHS ^ R H S . The LHS does imply that:

(3 k2 : K E Y • s i = yes =>- a[send/s2]) A

s i = yes => (3 12 : K E Y • a[send/s2])

but this is not strong enough to imply the RHS which demands that the result
hold for all k2. The problem in this case is that KeyServerl delays the choice

133

of key. Any choice made by KeyServerl could previously have been made
by KeyServer2. Hence there is an abstract state from which the abstract
sendkey could have ended up with the same result. However, this is not
good enough for forwards simulation, and the conditions cannot be satisfied.
Since KeyServerl and KeyServer2 have exactly the same failures, divergences
and infinite traces in their CSP interpretations, this illustrates the fact that
forwards simulation is not complete with respect to CSP refinement. The
complementary relation of backwards simulation is needed (see Example 49).
Although forwards simulation proves sufficient for many applications it is
worth noting that in ceises such as this where choice is delayed, backwards
simulation will be needed.

6.2.3 Backwards sim ulation for basic action system s

For backwards simulation a different interpretation is given to the refinement
of actions. For actions a and b and abstraction invariant R we will write
a -<fi b if:

(y S • R=> wp(a,a)) ^w p {b , (V5 • R => a))

for all postconditions, a , with no free ocurrences of concrete variables. Sim­
ilarly, a backwards simulation between initialisations A i and Bi is written
A i ■<'R Bi and defined as:

w p [A i , a) ^ w p { B i , y S # R => a))

where again, a may be any post condition with no free occurrences of concrete
variables. The definition of backwards simulation makes use of this:

D efin ition 35 Backwards simulation (Butler) Action system A = (A, 5 , A{, A a)
is refined by action system B = (A, T , B i , B A) i f there is a relation R between
them such that:

1. A i ^ ' R B i

2. Aa :<R Ba for each a in A

3. (V5 • R =>• gd{A,)) ^gd(Bg) for each s Ç. A

134

I f these conditions are satisfied we write A Ç/j B.

E x am p le 49 W ith KeyServerl and KeyServer2 as defined in the previous
example:

KeyServer2 KeyServerl

under backwards simulation. A proof is given in Appendix D. Given the
refinement in both directions the two systems KeyServerl and KeyServer2
are essentially equivalent. This can also be seen by consideration of their
failures-divergences interpretations. We return to the KeyServer example
later in the chapter showing how a simple system can be defined and refined
to output the chosen key. \\

6.3 R efinem ent and internal actions

For action systems with internal actions the refinement rule needs to axidress
the effect of hidden actions. This is achieved by modifying the conditions
with the * operator defined in Chapter 4.

D efin ition 36 (Butler) Action system A = { A ,S ,A i ,A A ,A i) is refined by
action system B = (A, T, Bi , Ba, Bj) if there is a relation R between them
such that:

1. A i * I Bi * J

2 . Aa * I dA Ba * J for each a in A

3. {3S • R A gdi{Aa)) ^gdj (Ba) for each a in A

E x am p le 50 The Countdown specification with automatic resetting was de­
fined in Example 2 0 as:

 ̂ v a r daysleft : N ^
in itia lly daysleft := 1 0 0

ac tio n newday : — daysleft > 0 —> daysleft := daysleft — 1
 ̂ in te rn a l reset : — daysleft = 0 —> daysleft := 1 0 0 j

135

We will refer to this as ConcCount. It may be viewed as a refinement of the
abstract action system AbsCount which is always willing to participate in
the newday action:

AbsCount =
 ̂ v ar \
in itia lly skip

 ̂ ac tio n newday : — true —> skip y

The refinement:

AbsCount ConcCount

may be verified by proof of the conditions of Definition 36 with refinement
relation R defined simply as true. This is confirmed in Appendix D. \\

Proof of these conditions can be unwieldy for large systems and in certain
circumstances simplification is possible (see Section 6.5).

6.4 Refinem ent for value-passing action sys­
tem s

Refinement may be defined between two value-passing action systems with
the same set of channels and with identical channel directions and values
of communication. The pattern of the definition for forwards simulation is
the same as for the previous refinement definitions, with three conditions
ensuring correctness of initialisation, correctness of actions and applicability
of actions respectively.

D efin itio ii 37 (Butler) Action system A — (A, 5 , A i, A a , A r, dir) is refined
by action system B = (A, T, Bi , Ba, Bj , d i r) if there is a relation R between
them such that:

1. A i * I B i * J

2. Aa.i * / dfz Ba.i * J for each a.i in A

3. {3 S • R A commgdi(Aa)) ^com m gdj(Ba) for each a in A

136

If the action systems have no internal actions and output is deterministic
then Definition 37 is equivalent to Definition 34 with Conditions 2 and 3

holding for each channel-value pair, a.v.

E x am p le 51 Here the secure multi-stack of Example 5.5.1 is refined. Sup­
pose the relationship between stacks and their classification is to be imple­
mented by parallel arrays. The concrete stack may be defined:

cclass : arr/ CLASS
cstack : arr\ (seqDAJA)

ran cclass = CLASS

where arr/ % is an /-length sequence oi X , I being the number of classifica­
tions in the system. The abstraction relation R is defined:

R = CS A 5 A V c/ : CLASS • stack cl = cstack (cc/ass“ ̂ cV)

The concrete system is shown in Figure 6 .2 . It has no internal actions and
output is deterministic. The conditions of Definition 34 are checked in Ap­
pendix D showing that:

MultiStack O ConcStack

It was shown above that MultiStack is secure with respect to the condition
for lazy deterministic security. No new nondeterminism can be introduced
by refinement, and hence ConcStack is also secure.

6.5 Special refinem ent conditions

The refinement conditions given above can be hard to verify in practice. For
instance. Definition 37 requires correspondence of each individual communi-
catiuu Aa.i and Ba.,-. As soon as the refinement rules are applied to particular
systems it becomes apparent that there are many simplified rules which can
be derived to be applied in specific circumstances. A number of these were

137

.f ;■ -'.v'■'■f-r' '

ConcStack =

v a r CSI
in itia lly cclass, cstack :

\

ran cclass = CLASS A
ran cstack = {()}

action push in u? : USER; sc? : CLASS; d? : DATA : —
{clear u?) < sc? —>

{cstack {cclass~^ sc?)) := {cstack {cclass~^ sc?))"(d?)

action pop in u? : USER; sc? : CLASS : —
{clear u?) < sc? —>

if {cstack {cclass~^ sc?)) ^ ()
then {cstack {cclass~"^ s c ?))

:= front {cstack {cclass~^ sc?))
else skip

action top in u? : USER; sc? : CLASS ou t r! : REP : —
true —> i f {clear u?) < sc?

then r! := error
else if {cstack {cclass~^ sc?)) = {)

then r! := empty
else r! := Rep{last {cstack {cclass~^ sc?)))

F ig u re 6 . 2 Concrete stack specification

noted by Butler [20] during the development of case studies. Derived rules
for action systems are also calculated by Sinclair and Woodcock [123]. It
is extremely useful to have a library of such laws available as it can often
reduce the verification work required.

The following two rules (proved in [20]) are used in the case studies of
Chapters 7 and 8 . The first can be used instead of Definition 37 to verify
forwards simulation for value-passing action systems.

P ro p e r ty 3 Action system A = {A, S, A i , A a , A i , Ah-, dir) is refined by ac­
tion system B = {A, T , B i , B a , B j , dir) with refinement relation R if:

1. Ai^'uBi

2 . A a ^ R B a for each a in A

138

3. IT h -^r IT j

4. (3 5 • R A wp{ITh, g d (A a))) gd{Ba))

for each input action a

5. (3 S • R A w p (I T h , gd{A a) A wp{Aa , <!>))) #

w p { I T j , g d { B a) A wp{Ba,<t>))

for each output action a and predicate (j) on the output variable

The second property can be used if the abstract system has no hidden actions.
Each hidden action of the concrete system is shown to refine skip. Non­
divergence of hidden actions is ensured by means of a variant (E, belonging
to well-founded set WF) which is decreased by each concrete hidden action.

P ro p e r ty 4 Ac/ton system A = (A, 5, dir) is refined by action sys­
tem B = { A, T, Bi , Ba , Bj , d i r) if there is a relation R between them such
that for some well-founded set WF and variant E:

1. Ai^'^Bi

2 . .4a :<R Ba for each a in A

3. skip :<R B j for each j in J

4. (3 S 9 R) ^ E e WF

5. {3S • R) A E = e ^ wp (B j , E < e) for each j in J

6 . { 3 S . R A gd{Aa)) ^gd{Ba) V (3 ; G J . gd(Bj))
for each a in A

Another useful property allows a single internal action to be split into several
internal actions.

P ro p e r ty 5 (In te rn a l S p lit R u le) Suppose action system A has internal
action a and action system B is the same action system as A but with action
a replaced by two internal actions, b and c, such that for any postcondition
a :

wp{Aa,o t) = wp[Bh I B e , a)

139

then:

A Q B

Here, there is no data refinement involved and all actions and other internal
actions are equivalent between the two systems. The assumptions ensure

that IT^Aa} — since for any postcondition ÿ:

= wp(it Bb I Be t i , <l>)

= wp{it Aa ti , ÿ) [By assumption]

=

Hence the result follows from Property 3.

6.6 R efinem ent and security

One very important aspect of the deterministic security properties is that
they are preserved by refinement. If action system A \ H is deterministic
and A ^ B then B \ H is also deterministic. This follows by analogy
with CSP since deterministic processes are maximal under the refinement
order. The same is true for the lazy deterministic security property. Hence,
any abstract system which can be shown to be secure with respect to a
deterministic property may be refined to a secure implementation with no
further security validation necessary.

6.7 Parallel refinem ent

Another technique introduced in [20] is the refinement of an action system by
a set of action systems to be executed in parallel. For this, it must be possible
to partition the state of the original system, with each disjoint subset form­
ing the state of one of the parallel components. Thus parallel composition
synchronises on common actions but no state variables are shared.

140

6.7.1 E xam ples

The first example shows how a single action system can be refined to a parallel
implementation. Again, a variation of the simple key server is used.

E x a m p le 52

[KEY]

STATUS ::= null \ ready | sendA | sendB

KeyServer3 =

^ v a r k : K E Y ; sess : STATUS
in itia lly sess := null

ac tio n startsess : — sess = null —> sess := ready
ac tio n fixkey : — sess = ready —> & :G K E Y; sess := sendA
ac tio n keytoA o u t k\ : K E Y : —

sess = sendA —+ k\,sess := k,sendB
a c tio n keytoB o u t k\ : K E Y : —

 ̂ sess = sendB —> A;!, sess := k, null j

KeyServer3 establishes a key and distributes it to two users, A and B. The
variable sess is used to maintain the correct flow of control and k represents
the session key. A session is entered by selecting the action startsess. The
key for this session is then determined by fixkey. The key is sent to the two
users, first by sendA and then sendB.

The key server is to be refined by a system in which the server itself sends
the key to user A only. User A is then responsible for sending the key on to
B. Here the key server is modelled for the parallel version as KeyServer4:,

141

and user A, UserA. Each has its own status variable and session key variable.

KeyServer4: ^

v a r pk : K E Y ; psess : STATUS
in itia lly psess := null
ac tio n startsess : — psess — null —> psess := ready

a c tio n fixkey : —
psess = ready —► pk :G K E Y; psess := sendA

ac tio n keytoA o u t k\ : K E Y : —

\

\ psess — sendA — kl, psess pk. null

UserA =

v a r A t : K E Y ; Asess : STATUS
in itia lly Asess := null
action startsess : — Asess = null —+ Asess := sendA

action keytoA in k? : K E Y : —
Asess = sendA —)> Ak, Asess := k l, sendB

action keytoB ou t kl : K E Y : —
y Asess = sendB —> Asess := Ak, null

142

We now check to see that the parallel version really is a refinement of
KeyServerS. The parallel system can be calculated as:

(KeyServeri || UserA) =

 ̂ v a r pk, Ak : K E Y ; psess, Asess : STATUS ^
in itia lly psess, Asess := null, null
a c tio n startsess : —

psess — null A Asess = null —>
psess, Asess := ready, sendA

a c tio n fixkey : — psess = ready —» p t :G K E Y ; psess := sendA
a c tio n keytoA o u t k\ : K E Y : —

psess = sendA A Asess = sendA —>
k\, Ak, psess, Asess := pk, pk, null, sendB

a c tio n keytoB o u t A;! : K E Y : —
 ̂ Asess = sendB k\, Asess := Ak, null j

The retrieve relation, R, shows how the different possible abstract and con­
crete states are related:

R = k = pk A

((sess = null A psess = null A Asess = null) V
(sess = ready A psess = ready A Asess = sendA) V
(sess = sendA A psess = sendA A Asess = sendA) V
(sess = sendB A psess = null A Asess = sendB A Ak = k)

.)

The required proof of refinement is given in Appendix D. Since the fixkey
operation represents the choice of a key by the server and requires no ex­
ternal participation, it would be reasonable to view it as an internal action.
Both KeyServerS and KeyServerA could be altered to reflect this, and the
refinement still holds. \\

E x a m p le 53 Another possible use for parallel refinement is for the MultiStack
specification of Section 5.5.1 where the stack for each classification cl could

143

be represented as:

iStackei =

 ̂ v a r cstackci : seqDATA \

in itia lly cstack := (>

ac tio n push in u l : USER; sc? : CLASS; d l : DATA : -
(c/ear u?) < sc? — t/ sc? = cl

then cstackci := cs tackcC {dl)

else skip

ac tio n pop in ul ; sc? : CLASS : -

{clear u?) < sc? if cstackd ^ () A sc? = cl

then cstackd := front cstackd
else skip

ac tio n top in u? : USER; sc? : CLASS o u t r! : REP : -
/rue —♦ i f sc? = cl

then (if {clear u?) < cl
then r! := error

else i f cstackd = ()
then r! := empty

else r! := Rep{last stack,c)

)

\ else skip j

The full system is the parallel composition of all the components, stackd, for
each cl G CLASS . This refines MultiStack with retrieve relation:

R — (y c : CLASS * stack c = cstackc)

6.7.2 Security o f parallel decom position

As discussed in Section 6 .6 , refinement preserves deterministic security. So
if A. is secure and A Ç (B || C) then B || C is secure too. It is also relevant to

144

c =

question whether the individual components of a secure parallel decomposi­
tion are secure. In fact, examples can easily be constructed to show that the
components need not be secure.

E x am p le 54 With:

 ̂ var X, z : { 0 , 1 } ^
in itia lly x ,z := 0 , 0

B = a c t io n /I : — x = 0 —> x, z := 1 , 1

action / 2 : — x = 0 —> skip
 ̂ a c tion h\ : — z = 1 —> skip]

I v a r y : {0 , 1 } \
in itia lly y :=0
ac tio n 12 : — y = 1 —> skip

\ ac tio n h i : —y = 0 —> y : = l j

the parallel composition, B \\C, is:

/ v a r x,y, z : {0 , 1 } \
in itia lly x, y, z := 0 , 0 , 0

ac tio n 11 : — x = 0 —> x, z := 1 , 1

ac tio n 12 : —x = OAy = l —> skip
\ a c tio n h i y = OAz = l —> y : = l ;

No trace of actions within the combined system can establish the guard of
12, and 11 is only enabled immediately after initialisation. Hence the system
is eagerly and lazily secure. However, in C, 12 is directly dependent on h i
and so C is not lazily secure. In B, hiding ^ 1 causes divergence, so this is not
eagerly secure. \\

The above example shows that a system can be secure but the individual
components of its decomposition are not. This is a fact which must be bourne
in mind during the development of secure systems. A secure action system
may be refined to a parallel implementation with the knowledge that security
is maintained by the interaction of the components. However, outside the

145

context of the original system no guarantees can be made for the security
of the components. It would not be safe to take components from a secure
developmeut and place them in a different situation without checking the
security implications of the new context.

The converse question C2tn also be aaked: that is, if B and C are both
secure is B || C also secure? Once again, the correspondence with CSP gives
the answer. In [111] Roscoe and Wuff showed that if process P with alphabet
A and process Q with alphabet B are lazily secure then so is P II Q. Since
action system parallel composition mirrors that for CSP, this is exactly what
is needed. Hence, composing secure components yields a secure system.

Finally, su p p ose that B || C is secure and that B C D and C ^ S. Then,
as demonstrated in [2 0], by the monotonicity of the parallel operator:

{ B \ \ C) Q { V \ \ E)

This allows components of a secure system to be refined individually. Chap­
ter 2 noted various studies which have sought to set out the conditions under
which components may be combined to preserve security. This section shows
th a t deterministically secure action systems may be combined safely using
parallel decomposition. For example, the system used by McCullough [81]
to show the inadequacy of generalised noninterference for composability uses
two subsystems A and B which are each shown to obey generalised noninter­
ference individually. The action system equivalent of system A for instance
is given in Figure 6.3.

This is insecure according to the deterministic definitions since 12 is di­
rectly affected hy hi and h2.

6 . 8 R elated work

The simulation refinement method used here allows an integrated refinement
of the events and the state variables of an action system. Data may be refined
in a manner similar to that originally proposed by Hoare et al. [58] with the
relationship between abstract and concrete variables specified in the retrieve

146

 ̂ var count : IM ; stop : Boolean
initially county stop := QJalse
action /il in n? : W : —

stop = false —> count := count + 1

action h2 out n! : N : —
stop = false —► count := count + 1

action /I out ml! : Message : —
stop = false —> m ll ,5^op := ^stop^count^,true

action 12 out m2! : Message : —
stop = true —̂ if odd(count) —> m2 ! := ^odd^^

[] even[count) - 4- m2! := “even”
V îf

Figure 6.3 Action system specification for the hook-up example

relation, R. Refinement of actions also maintains the CSP correspondence,
preserving the inclusion of failures, divergences and infinite traces required
for process refinement.

There are a number of related refinement techniques. Of particular inter­
est is the Refinement Calculus [6 , 94, 96, 96] where specification statements
are given a weakest precondition semantics. A succession of correctness- pre­
serving rules may be applied to statements in order to develop the abstract
specification into an implementation. In an action system, actions may be
given as specification statements. Refinement calculus techniques can then
be used to refine the command within the framework of action system for­
wards simulation.

Another interesting comparison can be made between the method of sim­
ulation for action systems and refinement of action systems based on super­
position [7]. This is seen as a. sp ec ia l case of the general refinement calculus
approach in which new variables may be added. New (auxilliary) actions
may then be added to update the new variables. Old actions can be altered
to include reference to the new variables, but they must preserve the effect of
the orig inal version on all existing variables. This technique is extended by
Back and Sere [9] to allow for the presence of stuttering actions. Stuttering
and stuttering equivalence were introduced by Lamport [73] and used [1] for

147

concurrent systems specified in a transition-axiom system based on temporal
logic. They allow refinements to ignore the repetition of transitions in which
the external state remains unchanged. A similar effect can be achieved for
action systems by hiding stuttering actions. The refinement rule obtained
for such a system [20, 123] is very similar to those of Back and Sere [9].

The overriding factor in favour of the approach used here is that it main­
tains the correspondence with CSP necesseiry for the definition of determinis­
tic security properties. With Back’s rule, for example, there is no distinction
between internal and external choice. The CSP interpretation clearly distin­
guishes between a system with external choice such as:

 ̂ initially skip ^
A = action h : — skip

 ̂ action I : — skip j

and one with internal (nondeterministic) choice:

/ var X : Boolean \
initially x :E Boolean
action h : — x —> a; :G Boolean

 ̂ action I : — x x :E Boolean j

B would not be allowed as a refinement of A because of the additional non­
determinism. Back’s refinement approach basically ensures trace inclusion,
and since the traces of the two systems are indistinguishable, B would be
considered a refinement of A. This would obviously be disastrous from the
point of view of deterministic security.

6.9 Sum m ary

Chapter 6 describes how action systems may be refined, with particuler ref­
erence to the effects on secure systems. Three basic refinement definitions
were given, and from these may be derived other rules which can be used
when particular conditions hold. The intention is that these will be simpler
to apply. The examples presented here and in previous chapters have been

148

kept simple to introduce and explain the use of action systems. In the follow­
ing chapters the use of action systems for the specification of more realistic
systems is explored.

149

Chapter 7

M essage passing in a network; case
stu d y 1

This chapter and the next consider how the methods described so fax can be
applied in practice. They investigate how the techniques of previous chapters
can be used, questioning whether the use of action systems and of the secu­
rity properties developed for action systems can support the development of
secure systems in a more convenient and practical way than was possible with
previous approaches. The emphasis here is on a pragmatic approach to the
development of secure systems, with the basis for confidentiality provided
by the deterministic conditions for action systems. However, the concern
is wider than simply wishing to apply these conditions: the case studies
of these two chapters axe intended to explore the use of action systems in
the wider context of the development of secure systems and to see whether
the theoretically-appealing deterministic conditions really can be applied in
practice. Chapter 7 is an exploration of these ideas, viewing the effects of
different approaches on an existing action system specification. Chapter 8

provides a more focused case study based on the development of a kernel
system.

The axea of application addressed here is network security. This is a
very broaxi axea indeed, and has received much attention in recent years (see
for example [70] and [41]). Networks in themselves provide a challenging
area of study with many inter-related issues to be considered. The shift in
computer usage away from isolated, stand-alone machines means that the

150

understanding of computer networks is a crucial aspect of computer science.
Machines may be linked within an organisation to form a local area network
(LAN) with cohesive security requirements applying across the range of com­
ponents. However, a LAN may be connected to another LAN or to a wider
network (such as the Internet) with widely differing security expectations
and guarantees.

The widespread reliance on remotely-accessed machines and on the con­
nections between them means that issues of security axe of increasing concern.
There have been mzmy and varied attacks on networks (well-documented ex­
amples include the Internet Worm [124] and the widespread unauthorised
access described by Stoll [126]). Prom the point of view of confidentiality,
information may be at risk from eavesdropping whilst it is in transmission
between two nodes of the system. The potential for unauthorised access on
any node, both destination or intermediate, through which the information
may pass should also be considered. The increasing demand for commercial
transactions across networks has brought into focus many other aspects of
security, including the integrity of data and the authentication of users.

For a network to be secure, all aspects of security must be considered
across the range of interconnecting components. This is an extremely diffi­
cult task, but one weak point in the system could vitiate the most meticulous
security axrangements elsewhere in the system. It is also important to con­
sider the security implications of the interplay between different components
of the system.

The specifications in this chapter concentrate on an abstract representa­
tion of a network, starting with a top-level view and gradually expanding to
show how different security constraints can be added. This layered approach
exploits the general specification technique of separation of concerns, allow­
ing many details to be hidden at the higher levels. It is not possible here to
address a comprehensive set of network security requirements (even if such
could be defined) but a selection of possible approaches is investigated to
show how each can be accommodated.

To describe a system fully a specification should be able to capture both

151

the functional and the security aspects of a system. This is where action
systems can offer major benefits by supporting the description of both state
changes and the succession of events within a network. Although it is possible
to describe both functionality and confidentiality in a language such as CSP,
the strength of action systems is their ability to describe the system in a
state-rich notation and to allow the unified refinement of both state and
events. Thus the approach described in previous chapters and applied in
Chapters 7 and 8 has pragmatic advantages for the development of secure
systems. The semantics of parallel action systems (described in Chapter 4)
in which state is not shared between components is also well-suited to the
description of networks.

The following section introduces the topic of computer networks, high­
lighting some of the main problems of security. The general specification
of a network is then outlined, and this is used throughout the rest of the
chapter as the framework within which security constraints may be specified
and analysed.

7.1 N etw ork security

In a computer network, many independent processors may be linked together
in a variety of different ways. A message sent by one node may be routed via
a number of intermediate nodes before it reaches its final destination. The
message itself is generally broken into uniform pieces which can be transm it­
ted in individual packets. The nodes of the network may be very diverse, with
each component having different hardware and software which could cause
significant communication problems. To cdlow for this, a layered protocol
is generally used by each node of a network, providing a standard interface
for network communication. The Open Systems Interconnection (OSI) Ref­
erence model as described in [60] sets out a model which recognizes seven
steps that must be followed to allow seamless communication between ap­
plications running on different platforms. The importance of the layers is
to partition the task of the communications protocol into different subtasks.

152

The number of layers is somewhat open to interpretation: the T C P /IP [26]
is the protocol used for internet communication and this is based on a model
which distinguishes only four main layers. However, the same basic layering
pattern is used in both. It is necessary to mention the layered protocol ar­
chitecture since this has a direct influence on the options available for secure
communication.

Figure 7.1 shows the levels identified in the OSI model. An application
on node A wishing to communicate with an application on node B sends
the message through the layers of protocol. At each stage a different func­
tion is performed on the message as received from the previous layer. The
effect is to package the message incrementally until it is ready for transmis­
sion. When received on node B, the corresponding layers are checked and
the information added by node A is stripped off in reverse order. The lay­
ered protocols effectively establish communication between similar layers at
each node. Figure 7.2 shows examples of the functions carried out at each
level. This model will be of use in subsequent sections when considering how
security constraints may be brought in.

7.2 A network specification

In [20] Butler presented an aetion system specification of a message passing
system. This is a well-structured, layered specification which gives a broad
abstract description at the top level and uses repeated levels of refinement
to arrive at a representation of the system as the parallel composition of
individual agents with the communication network. Here this is taken as an
“off the peg” specification to form the basic network description in which to
try out various security properties. It is useful to be able to reuse existing
specifications, and one as robust as this provides solid ground on which to
work. In this section the first two levels of the message-passing system are
presented, tailored slightly for present purposes.

The set Node represents the finite set of nodes of the system and Comm

153

Node A
(sender)

Node B
(receiver)

Layer 7:
Application

Layer 6 :
Presentation

Layer 5:
Session

Layer 4:
Transport

Layer 3:
Network

Layer 2:
Data Link

Layer 1 :
Physical

application
protocol

presentation
protocol

session
protocol

transport
protocol

network
protocol

data link
protocol

physical
protocol

Physical Connection

F ig u re 7.1 OSI model

O SI layer P ossib le functions
Application Makes network services available to user
Presentation Transforms message to node-independent format
Session Adds controls for synchronisation of dialogue
Transport Orders packets with sequence num bers

Reconstructs received packets to form original
Network Computes paths and adds routing information
Data link Organises communications across a single link

Controls next (intermediate) destination of each packet
Physical Sends/receives bit strea m over physical link

F ig u re 7.2 Typical tasks carried out at each OSI level

154

the set of possible communications.

[Node^ Comm\

An envelope consists of a destination node along with a message intended for
that node:

Env = Node x Comm

A node may send a communication to any node in the system and can receive
any communication sent to it. This is reflected in the top-level action system,
N ETl^ where comms is a bag of envelopes which represents the full set
of communications currently in the system. Here, for statements are used
to represent sets of actions indexed by Node and actions are specified by
specification statements (see Appendix B).

N E T l =

 ̂ var comms : bag Env ^
initially comms : [comms — ||]
for s G Node action send, in (r?, m?) : Env : —

comms : [comms = commso |(r? , m?)|]
for r G Node action receiver out m! : Comm : —

comms : [(r, m!) in commso A comms = commso — |(r , m!)|] j

Initially, comms is empty. Each node may send a communication to any
node in the system, and may also receive messages sent to it. The next
level of refinement reveals more of the internal structure of the system, with
internal actions to forward messages along links of the network. At this
stage, questions of routing must be addressed and a brief summary of the
route description defined in [2 0] is given.

A network is a fixed set of pairs, showing the connections between nodes:

net : Node Node

Routes of the network are defined to be subrelations of the net such that for
any route R and for any nodes a, b and c, if:

(a R b) A (6 R* c)

155

then:

e/î(6,c) < eü(a,c)

where R* is the reflexive transitive closure of R and y) is the length of
the maximum path (containing no repeated nodes) from x to y in R. This
ensures that following a route brings a communication step by step to its
destination. Tagging the routes of the network allows routing to be dealt
with in the speciflcation without detailing the actual routes:

route : Tag —► Routes(net)

It is assumed that there is at least one route linking each pair of nodes (this
is formalised in [20]).

This allows a reflnement of N E T l in which each node may hold messages
for forwarding. Communication is modelled by link actions which transfer
messages between nodes. This is regarded as internal network behaviour
and so link actions are hidden within the action system. Communications
are assigned an appropriate route and marked with the corresponding tag.
During transmission, they may be held in the stores of individual nodes or
they may be on a link between nodes. The following Z schema can be used
to represent the state:

^ N S 2 .
store : Node —*■ bag(Tag x Env)
link : net —> bag(Tag x Env)

V i : Tag; r : Node; m : Comm; a, b : Node •
(t, (r , m)) in store(a) (a, r) G route(i)* A
(a, b) in net A (:, (r, m)) G link(a, b) => (6, r) G route{iy

Whether a communication is at a node or on a link it must still be on course
within its specifled route. Action system NET2 in Figure 7.3 specifies net­
work behaviour at this level. A communication is stored at a node and then
forwarded by internal links through intermediate nodes on its route until it

156

NET2 =

. . . . ,1 store, in itia lly :

store

store

(var NS2

(V o : Node • Node{a) = | |) A
(V(o, b) : net m link{a, 6) = jj)

for s G Node action send, in (r?, m?) : Env : —
(3 i : Tag # (5 , r?) G route{i)* A

store{s) = storeo{s) -f l(t, (r?, m?))|)

for r G Node action receiver out m! : Comm : —
(3 1 : Tag • (t, (r, m!)) in storeo{r) A

store(r) = storeo{r) — |(t, (r, m!))J)

internal/omard : —
(3 a, 6, r : ATode; i : Tag; m : Comm •

(j, (r, m)) in storto{a) A r ^ a A
(a, 6) G rouie(t) A (6, r) G rottte(t)* A
5fore(a) = storeo(a) — m))| A

6) = Hnko{a, b) + |(i, (r, m))J)

internal relay : —
(3 a ,b ,r : Node; i : Tag; m : Comm #

(t, (r, m)) in linko{a, b) A
link(a, b) = linko{a, b) — |(i, (r, m))J) A

V L store(b) = sforco(6) + l(t, (r, m))|

store,
link

store,
link

F ig u re 7.3 Second level network specification

157

is received at its destination node. Eventucd receipt of messages is ensured
by the decrease in length of maximum paths at each step. That this is a
refinement of the original:

N E T l Ç NET2

is proved by Butler [20] using the retrieve relation:

N S 2 A

comms = (Sa G Node • untag{store{a)))
-f (S (a, 6) G net • untag(link{a, b)))

where untag is the function which constructs the bag of untagged envelopes
from the corresponding bag of tagged ones.

7.3 Insecure nodes

Given a basic view of the network there are many ways in which security
constraints can be axided. First, the case in which each message may be
given a security classification reflecting its sensitivity is considered. Nodes
will also be assigned a classification representing the maximum security level
of material they are allowed to process. As with the network description, the
clearance function is a system constant:

clear : Node —> Class

where Class is a linearly ordered set of security classifications adhered to
throughout the network. An envelope must now state the classification of
the communication, which leads to the definition:

SecEnv = Node x Comm x Class

Then for any envelope e:

node e, comm e, class e

project out the associated recipient, message and classification respectively.
The security policy represented here is a very simple-minded one and makes

158

^ C l N S l ___________
comms : bag SecEnv

Vc : comms • clear {node c) > {class c)

F ig u re 7.4 The schema C lN S l

a number of assumptions which would not be justified in most systems. This
is taken as a starting point to show how the ideas of previous chapters can
be applied. The later sections of this chapter clarify and question some of
the assumptions and modify the specification accordingly.

The state of the system specifies that no communication may be sent to a
node of insufficient clearance. This is given by the schema C lN S l defined in
Figure 7.4. At the top level it is necessary to specify that a message can only
be sent to a suitably cleared recipient (no read up) and that the classification
of the message must be at least as great as the sender (no write down). The
classification is included as an output with the received message so that it
may be handled appropriately at the receiving node. The system is shown
in Figure 7.5. The guards of a specification statement x : [post] may be
calculated explicitly as (3x • post)[x/xo] (see Appendix B):

gd sendg = true

gd receiver = (r, m!, c!) G comms

This system may appear at first glance to maintain security, but checking the
nondeterministic security properties quickly reveals a problem. As outlined
in Section 4.3.2, when dealing with value-passing action systems the commgd
must be calculated to give a true picture of the possible refusals. In the case
of receiver, for any set S of outputs:

commgd{receiver.S) = {gd receiver) A wp{receiver,{m\,c\) G S)

T h is has the effect of axiding the requirement that the set of messages for r
in comms is a subset of S. However, if the two distinct messages m l with
classification cl and m2 with classification c2 are the messages in the system

159

C l N E T l =

(var C lN S l

initially comms : [comms = ||]

for s e Node action sendg in (r?, m?, c?) : SecEnv : —
{clear s < c? A c? < clear r? A

comms — commso -f |(r? , m?, c?)|)
V
(-1 {clear s < c? A c? < clear r?) A

comms = commso)

for r G Node action receiver out m! : Comm; cl : Cîass
(r, ml, c!) in commso A comms : ̂ . . .\ comms = commso — |(r, ml, c!)|

comms

F ig u re 7.5 Top level network specification with security levels

for recipient r, then:

commgd{receivCr.{{ml, cl)})
= (r, m l, cl) in comms A wp{receivcr, (?n!, c!) in {(m l, cl)})
= true A wp{receiver, (m!, c!) in {(m l, cl)})
= {(m l, c l), (m2, c2)} Ç {(m l, cl)})
= false

So, for distinct messages, r could refuse to output each specific message (but
not both) in this situation, although either is possible.

In terms of system behaviour, the problem is that there is a nondeter­
ministic choice between outputs. This could in theory be resolved by the
influence of high level actions and a covert channel established through the
output order of low-level messages.

The deterministic security property has done its job in detecting a pos­
sible covert channel. The system developer now has to decide how to act
on this information. One approach might be to decide that, if this is the
worst the system can do we are prepared to live with it. This could be a
valid approach depending on how stringent the security requirements for the

160

system are. Another approach would be to alter the specification to remove
the nondeterminism. The problem with this is that it means including a lot
of otherwise unnecessary detail at the top level and losing the clarity of the
specification. All that is required is a mechanism to resolve output order.
This is a common situation in specifications. It is similar to McLean’s ex­
ample of a secure stack [87] where, for instance, the action to be taken by
the system if an attem pt is made to POP or TOP an empty stack is left
undefined. McLean’s theory solves this problem by requiring refinements to
resolve the nondeterminism in a benign way. It takes the onus away from the
specification, but it introduces non-standard requirements into refinement
rules.

For the purpose of this discussion the choice is made to add a mechanism
for selecting the next message to output without fully defining how this is
done. For each node r:

nextr : bag Comm -++ Comm

where nextr picks the next message from any non-empty bag. The way in
which the “next” message is decided is not allowed to depend on any high-
le v e l a c tio n s . This is not an entirely satisfactory solution since the ordering
of outputs is very limiting with no possibility of altering the order in future
refinements. Parallel decomposition becomes very awkward in such a rigid
structure. This problem is inherent in the deterministic approach. It is
encountered again and discussed further in the next chapter. For now, it is
noted tha t a potential covert channel has been flagged and nextr is introduced
in order to pursue the specification further. W ith this the action receiver can
be amended to:

(r, m!, c!) in commso A

comms : (r, m!,c!) = nextr{commsQ) A
comms = commso — |(r , m!, c!)j

Now, for any output message m at classification c:

commgd{receiver.{{m, c)})

= (r, m, c) G comms A (r, m, c) = nextr{comms)

161

There is now no choice of message to be output, so the action system cannot
refuse an output in which it might also engage. To ensure the security of the
amended system it is necessary to show that:

obsff(C lN E T l) deterministic

It is sufficient to choose an arbitrary classification, c, to divide the actions
between high and low levels: H actions are all those with clear {node) > c,
with the node being the s of a send or the r of a retrieve. The guard for
any send action is always true. The commgd for a low-level receive is as
above. Only r can receive r ’s messages, and r now receives messages in
a fixed order, so it could only be affected by H actions if a send from a
node of higher clearance puts some message, m, into the system for r where
the classification of m is greater than clear{r). However, the send action
demands that the classification of the message be less than or equal to the
clearance of r.

This informal description gives an outline for a proof. However, a formal
proof of determinism even for such a small system is complicated by the
need to prove the property for all traces. In the next chapter a technique is
introduced to make formal proofs of determinism more manageable.

7.4 R efining the basic specification

Once a basic top-level specification is shown to be secure then any refinement
of that specification is also guaranteed to be secure with no further proof
necessary (apart from that of the refinement itself). The antion system of
the previous section may be refined to a version of NET2 with security
conditions. We assume here that a message may not pass through nodes
whose classification is less than that of the message. The function:

rclear : Routes{net) —► Class

maps each route in the network to the maximum clearance of traffic it is
allowed to deal with. It is assumed that at least one route exists for every

162

possible node to node communication within the system. This abstracts away
from the details of how the clearance would be determined. It is a very crude
way of assessing security since a route may encompass many more nodes
than those which any given message will actually pass through. However,
it provides a first-pass abstraction to which detail can be added at a later
stage.

The state is the same as for NET2 except that envelopes now contain
classified messages.

C 1N S2__
store : Node bag(Tag x SecEnv)
link : net —*■ bag(Tag x SecEnv)

V t : Tag; r : Node; m : Comm; c : Class; a, b : Node •
(i, (r, m, c)) in store{a) ^ (a, r) G route(i)*
(o, b) G net A (t, (r, m, c)) in link{a, b) =>*

(6, r) G route(i)*

The system with internal actions is given in Figure 7.6. Here:

next{storeo(r)) = nextr (commso)

As before:

C lN E T l Ç C1NET2

with the refinement relation:

C1NS2 A

comms = (Ea G Node • untag{store{a)))
-f(S (a , 6) G net • untag(link{a,b)))

The proof of this refinement follows a similar pattern to that of the corre­
sponding level in [20].

163

C IN E T 2 =

/ v ar C1NS2

• • Il stove,
link

store

(Va : Node • Node{a) = (]) A
(V(a, b) : nef • link(a, 6) = (|)

for s G Node ac tio n sendg in
r? : Node; m? : Comm; c? : Cïass : —

{clear s < c? A c? < clear r? A
(3 1 : Tag • (5 , r?) G roufe(t)* A

rclear{route i) > c? A
5fore(s) = sforeo(s) + [(t, (r?, m?, c?))|)

)
V
(-1 {clear s < c? A c? < c/ear r?) A
sforc = storeo)

fo r r G Wode ac tio n receiver o u t m! : Comm; c\ : Class : —
(3 1 : Tâ f • {i, {r, m!, c!)) in 5ioreo(r) A

(r, m\, c!) = next{storeQ{r)) A
store{r) = sforco(r) — |(t, (r, m\, c!))|)

in te rn a l/o n o ard : —
(3 a ,b ,r : Node; i : Tag; m : Comm; c : Class •

(t, {r, m, c)) in storeo{a) A r ^ a A
(a, b) G route{i) A (6, r) G route{i)* A
sfore(a) = storeo{a) — [(t, (r, m, c))| A
link{a, b) = linko{a, b) + |(i, (r, m, c))|)

in te rn a l relay : —
(3 a ,b ,r : Node; i : Tag; m : Comm; c : Class #

(i, (r, m)) in linko{a, b) A
link{a, b) = linko{a, b) — |(t, (r , m, c))|) A
store{b) = storeo{b) + |(t, (r, m, c))|

store :

store,
link

store,
link

F ig u re 7.6 Second level specification - classified messages

164

7.5 A different view o f system security

Since C lN E T l is secure and C lN E T l Ç CTNET2 il follows that C1NET2
is also secure. However, there is a problem with modelling the system this
way. Since forward and relay are internal actions they play no part in what
can be revealed by the system, other than in their immediate role of passing
communications on to the rightful recipient. In the specification of C1NET2
care was taken to avoid communications passing through insecure nodes, and
the route for any communication was constrained accordingly. However, the
refinement proof makes no use of this constraint: the refinement would still
hold if messages were allowed to follow an insecure path. This is because there
is no representation in the specification of external behaviour at intermediate
nodes.

One way to address this is to model the potential leak situations explicitly.
This is the approach taken by Roscoe [106] and Schneider [119] who both
model the behaviour of an intruder to the system. To do this, the possible
interactions of the enemy with the system must be set out. Here, the con­
cern is with confidentiality, so the enemy’s ability to gain information from
th e system must be represented. For example, in the network sp ecifica tion

it might be assumed that a node with clearance c could not be trusted to
handle material of higher classification. So possible leaks might be modelled
as outputs of any communication with classification greater than c passing
through tha t node. The success of this approach depends on the developer’s
ability to imagine and characterise the behaviour of the intruder. Thus it
is im portant to analyse the possible threats to the system, and to capture
this as part of the system specification. This cannot be done at the top level
because the structure of stores is not represented there. It is useful to be able
to construct a separate action system to represent the intruder’s behaviour.
This can then be placed in parallel with the network specification (with addi­
tional actions representing the leakage of information to correspond with the
intruder’s actions). To check system security it is then necessary tu determine
whether the interface of the system with the intruder is deterministic.

There is another deficiency with the model, because no account has been

165

taken of the need to protect communications whilst being transm itted on a
link. Rather than assigning different levels of security to a link, it is more
usual to assume that a link can either be tapped into or that it cannot, that
is: it is either secure or it is insecure. In a network this may well be the case,
for instance, with links within a local area network considered secure and
links outside considered insecure. Communication over an external link can
only be relied upon as secure if the message is encrypted in a way which an
eavesdropper is considered to be unable to decipher in a timely way. Thus
for the next attem pt at network specification, encryption is introduced.

At the beginning of this chapter an outline was given of the layered ar­
chitecture for network communication. If messages are to be encrypted (and
later decrypted) a number of questions arise. For example, what form of
encryption should be used, how it should be specified and what architec­
tural layer should perform the task. The two most common levels at which
cryptographic tasks are carried out are the physical (or data link) level and,
higher up, at the application level. A message encrypted at the lower level
is encrypted for a single link only. The corresponding physical (or data link)
layer at the receiving end of the link must decipher the communication to find
the header information which determines the forward routing of the message.
The message is again encrypted and sent on the chosen link. This method
is known as link encryption. It has the advantage of being easily imple-
mentable at the hardware level and is transparent to the applications which
are communicating. However, since encryption is carried out at each node,
the message will appear in plaintext on each node. In contrast, encrypting
at the application level allows header information to be packaged around the
encrypted message, which can then be sent in encrypted form right through
to its final destination with no need for access to be gained by intermediate
nodes. However, if header information is not encrypted, anyone intercepting
the message may discover the intended recipient and other information. This
information could possibly be exploited by traffic analysis or used for attacks
involving replay of messages.

Whilst link encryption and end-to-end encryption are the two models

166

most frequently cited, encryption at other levels may also be used. For
example, end- system level encryption is carried out, not by individual appli­
cations, but by the end-system (usually a single machine) which hosts them.
It provides protection on an end-system to end-system basis and would be
carried out at the transport or sub- network independent layers. This ap­
proach has some of the advantages of end-to-end encryption but it cannot
provide application-specific security. However, it can be used if a single
(consistent) security policy is sufficient for a particular node. It can operate
more efficiently and it ensures that some of the layered header information
is encrypted with the message.

Link encryption is specified in the next section, followed by end system
encryption in Section 7.7. End-to-end encryption is addressed in Section 7 .8 .

Encrypted messages can be problematic in the modelling of secure sys­
tems. Usually, high-level behaviour is not allowed to influence the view
of a low-level user. However, encrypted high-level messages may be seen
by low-level users and it is assumed that, without knowledge of the key,
the message itself cannot be derived. Of course, there may still be other
information which even an encrypted communication reveals: the fields of
an unencrypted header may be read and the very presence of the message
can contribute to intelligence gained through traffic analysis. However, for
present purposes the situation is simplified by assuming that an encrypted
communication yields no information unless the key is also available.

7.5.1 Introducing encryption

The format of messages must be altered to allow for the possibility of en­
cryption, Here the situation is kept as simple as possible by distinguishing
between plaintext and keys:

[PLAINTEXT, KEY]

167

A message may consist of either of these, or it may be the result of encrypting
another message using a key:

Mess ::= text{{PLAINTEXT))
I key {{KEY))
I enc{{KEY x Mess))

Notice tha t this definition allows multiple layers of encryption. An envelope
once again consists of a message and the recipient node. This time however
a classification is not included. It is assumed at this stage that all commu­
nications within the system axe to be encrypted, returning later to consider
other possibilities. For now, an envelope is defined:

Env = Node x Mess

Encryption may be carried out on a message but (for link encryption) a
message already tagged with additional information, such as routing, may
also be encrypted. Thus a communication aa transm itted across the medium
is represented as follows:

TCOM = Tag x Env
ECOM = K E Y X TCOM
COMM ::= tcomilTCOM))

I ecom{{ECOM))

It is assumed tha t a public key encryption system is used and that for each
node n in the network, pkn is the public key for that node and skn is its secret
key. Again, this represents just one possible situation. Further variations
could be given for secret key systems or for networks which use both.

7.5.2 T he inform ation gained by an intruder

The shift in approach to modelling described in this section is greater than
might at first be apparent. W ith a system-wide convention of classifications
it is easy to characterise unwanted activity as anything causing information
flow from high to low levels. In such a case it is clear how the deterministic

168

security conditions may be applied to check the appearance of the system
to a lower-level user. However, the realities of communications security lead
to the consideration of networks with insecure connections where the major
tool for protecting confidentiality is encryption. It would be the intention
tha t an encrypted message should be decipherable only by the recipient for
whom it is intended. However, it is not necessarily the case that an encrypted
message should not be viewed by other users - indeed, it is the very purpose
of encryption to allow communications to pass over insecure media without
conveying confidential information to uncleared parties. This leads to the
view that encrypted messages should somehow be an “exception” to the
information flow assessment. On the other hand, it would not be correct to
dismiss encrypted messages as having no effect on system security. Amongst
the ways they can convey information are:

• the presence of messages between certain destinations

• unencrypted information in the message header

• compromise of keys allowing unauthorised decryption

• weak encryption process vulnerable to cryptographic attack.

The choice of whether or not these axe to be examined is a part of the analysis
of the system. For instance, in all the examples here using encryption it will
be assumed that decryption without knowledge of the relevant key is not
within the scope of possible intruder activity. This places the security of a
system within certain limits, such as “secure assuming encryption cannot be
broken”. It is very useful to be able to do this since it allows the analysis
to Concentrate on the specific aspects which are important for any given
approach. However, it is also important to recognise that such simplifications
axe being made and to note any implicit assumptions.

As mentioned above, each of the following approaches models the be­
haviour of an intruder. This will necessarily constrain the consideration of
security. The network specification itself must be allowed to include the cor­
responding actions representing participation of the system in information-

169

leaking actions. For instance, information passing along a link may be inter­
cepted by the intruder and this should be reflected in the specification both
of the medium and of the eavesdropper. Examples of how this is done axe
given in the following specifications.

Once the interaction of an intruder has been defined for a system, the
deterministic security properties may be checked as before.

7.6 Link encryption

The state of the network is still basically the same as in the previous example,
but the structure of the underlying sets has been changed somewhat. Each
node continues to deal with tagged envelopes, but these will be forwarded as
encrypted communications. This is given by the schema C2NS2.

. C 2N S2__
store : Node bag(Tag x Env)
link : net bag COMM

V i : Tag; r ,a ,b : Node; m : Mess; k : K E Y •
(t, (r, m)) in store{a) (a, r) G route{i)* A
(a, 6) G net A tcom {i,{r,m)) in link{a,b) =>

(6, r) G route(i)* A
(a, b) G net A ecom{k, (t, (r, m))) in link{a, b) =>

(b ,r) S route{i)*

The system with link encryption is then represented by the action system
C2NET2 in Figure 7.7. The action tap represents the way in which an in­
truder might gain information from the system. Any message sent across a
link may be overheard. However, we make the assumption that only unen­
crypted messages can convey information to the intruder. As discussed in the
previous section, this assumes that no encrypted message can be deciphered
by the intruder. Of course, even if the encryption algorithm is assumed to
be unbreakable it would still be possible for the eavesdropper to decrypt

170

C 2N E T 2=

« • I l stove,initially :

store

store

(var C2NS2

(Va : Node • store(a) = | |) A
(V(a, b) : net • link{a, 5) = | |)

for s e Node action send, in r? : Node; m l : Mess : —
3 1 : Tag • (s, r?) G route{iy A

store(s) = s^oreb(s) + |(t, (r?, m?))|

for r G iVode action receiver ou t m! : Mess : —
3 1 : Tag • (t, (r, m!)) in storeo(r) A

store(r) = sforeo(r) — |(t, (r, m!)|

in te r n a l/onaard : —
3 a, 6, r : Node; i : Tag; m : Mess # r ^ a A

(a, b) G net A (t, (r, m)) in storeo{a) A
(a, b) G route(i) A (6, r) G route{i)* A
store(a) = storeo(a) — |(t, (r, m))| A
link{a, b) = Ztn&o(a, &)+

[ecom {ph ,{i,{r,m)))\ .

in tern a l re/ay : —
3 a, 6 : Node; i : Tag; c : TCOM #

(a, 6) G net A ecom{pkb, c) in linko(a, b) A
link{a, b) = linko{a, b) — |ecom(pt6, c)| A
store(b) = store^(6) + [cj

action tap o u t c! : COMM : —
\ : [3 a, 6 : Aode # cl in link(a, b)

store,
link

store,
link

Figure 7.7 System with link encryption

171

messages if keys have been compromised. For present purposes we will as­
sume that the only way for keys to be leaked is within the system (that is,
we discount at this stage the possibility of keys being passed, for example,
by an informant who simply tells the eavesdropper the secret keys over the
telephone). In this case, a key can only be leaked if it is sent as plaintext
(otherwise knowledge of a prior key would be needed) so it is sufficient to
check that no unencrypted messages can be overheard.

The actions of the intruder are kept as simple as possible here, but it is
equally possible to imagine a more sophisticated interaction. For example,
each communication is seen in isolation here but it would be possible to inves­
tigate the effects of accumulated knowledge by maintaining a state variable
of the collection of information the user has gathered so far. An approach
along these lines is given by Scheider [119] where a function is used to de­
scribe how information may be derived from communications (for instance,
an encrypted message plus the relevant key yield the plaintext message).
Any newly intercepted communication may be combined with the existing
set and all new information generated can be output to the user. This type
of interaction is reaxlily accommodated in action systems since the state vari­
ables are all dealt with explicitly, it allows an analysis to be carried out of
what information is compromised following a particular leak: for example, if
a certain key is compromised it may be useful to find out what further losses
are sustained throughout the system.

7.6.1 Security o f th e link encryption system

To establish whether the specification is secure we view {fap} as the cdlowed
set of actions of the uncleared user and {send^^ receiver} as the “high- level”
actions in the system. The condition to be checked is:

ohs{atnia,rtctivtr}[C2NET2) deterministic

However, in this interpretation any message entering the system could affect
the view of the intruder even if the message were encrypted. This interference
is certainly worth noting, but we wish to discount the influence of encrypted

172

messages for now. In effect, aetions tap.{ecom e) for any e need to be ex­
cluded from the interface of the low level user when assessing security. What
is required is a way of stating that, in the combined system with send and
receive obscured, no intruder action other than one of these tap.{ecom e) may
be nondeterministically enabled or disabled. The tap.(^ecom e) should not be
obscured in the system—they are not high-level events and their enablement
and the effects of their execution are apparent to the intruder. To represent
the situation an approach is needed which allows security to be assessed for
limited aspects of the low-level user’s view of the system. In the following sec­
tions a possible way of doing this is suggested and its consequences explored
for the link encryption system.

7.6.2 L im ited security for th e link encryption system

The following definition provides a way to assess security with respect to
particular low level actions.

D efin ition 38 Suppose A is an action system with alphabet A and with
B Ç. A. A is deterministic within B if divs{A) = 0 and for each trace tr and
each action x E B:

“̂piA^innytri yd{Ax)) = Wp[A^inU)‘tn y^i'^x))

We can then say that a system A is lazily secure for high level actions H
within the set of low level actions L' Ç L if:

obsff[A) is deterministic within L'.

This reduces to the original definition if U — L. Definition 38 extends in a
natural way to systems with internal actions and value-passing systems. It
allows the security of a system to be treated within clearly stated boundaries.
As mentioned above, it is important that these limitations are understood
and suitable justification g iven fur ignoring other interaction. In the present
example, discounting encrypted outputs certainly allows the eavesdropper to
be influenced by the sending node, but it is an interaction we have declared

173

ourselves willing to accept in this example (as would be the case in most
real life situations). However, it should not be forgotten that this gives the
potential for a covert channel in the system. If that risk is not acceptable,
then preventative measures must be taken.

For the network specification of Figure 7.7 it is necessary to check that :

obs{atni,nctivt}{C2NET2) is deterministic within {tap.c \ c E ran (com}

For any t : TCOM the guard of action tap.{tcom t) is:

(3 a, 6 : Node • {tcom t) in link{a, b))

So, as would be expected, for this action to be enabled the intercepted com­
munication must be the unencrypted communication (tcom t). No trace of
actions in the system can reach a state where this guard is enabled. This is
a result that can be proved formally using structural induction over traces.
Informally it can be seen that this property is a trivial consequence of the
fact that no unencrypted messages are ever placed on a link. So tap.(tcom t)
can never be enabled and hence by Theorem 6 the system is secure for un­
encrypted communications.

7.6.3 R efinem ent o f th e lim ited security approach

One of the main advantages of the deterministic security approach is the
way in which the properties are preserved by refinement. It should also
be questioned whether the restricted interpretation of security also has this
property. Suppose .4 is an action system which is lazily secure with respect
to H within the set of low level actions V Ç L. Suppose that in a refinement
of this the concrete system trc^(x) is a trace and (irg, {z}) is also a failure
for some x E V . Then, by the refinement property of failures inclusion,
both these must hold in the abstract system too and hence would contradict
the assumption of limited security for the abstract system. So the limited
security property holds through refinement. This does not prevent low level
actions within L \ V from being refined in an insecure way. For example, in

174

the present case manipulating the frequency, routing or content of encrypted
messages could convey information to the intruder.

This approach will not be suitable for all sy stem s because the source
of nondeterminism to be discounted may be bound up with other aspects
which cannot be treated so lightly. For instance, in Section 7.3 the first
attem pt at specifying C \N E T \ suffered from nondeterminism in the allowed
ordering of messages output to low-level users. However, it would not be
wise to discount the receive action when considering nondeterminism since
the actual messages output might depend on high-level actions resulting in
nondeterminism in the obscured system which should be dealt with.

For systems where a suitable separation presents itself it would be possible
to perform an incremental proof of security at different levels of refinement.
For example, suppose at a later stage or for a particular implementation of a
network it is decided that it is not acceptable for even enciphered messages
to appear as sent within the system (since, for example, increased traffic to
a particular destination may give much away). It would be possible to affd
further constraints which mask the effect, such as multiple broadcasting and
added noise. If this could be done as a refinement of the original then the
top level security checks need not be repeated, but an additional proof of a
suitably-constructed determinism property for encrypted outputs could also
be considered.

7.6.4 Further security considerations for link encryp­
tion

One of the assumptions implicit in the link encryption model is that, whilst
links may be tapped, information held on all nodes is secure. However, if
it is further suspected that any message which appears in plaintext on an
intermediate node could be misused, then the specification should reflect this
additional possible source of leaked information.

Such a lealc may not be the result of intruder a ction , b u t is an unfortunate
consequence of too much information being available to intermediate nodes.
However, it is certainly something which may need to be legislated against

175

on a system-wide basis. It is reasonable to require that messages should
only be read by the recipients for whom they are intended. It may also
be the case that certain nodes are not secure and that an intruder could
gain access and thus see in plaintext all messages which were routed through
that node. A leak will therefore be modelled as additional output to a node
which occurs when communications for other destinations appear in that
node’s store. The security conditions should check whether the determinism
property holds when the leak action is added and regarded as a low-level
activity (allowing for encrypted messages as above).

for a e Node action koka out : TCOM : -
: [i! in store{a) A dest i! ^ a]

where for any t : TCOM:

dest t = first (second t)

which is, the intended recipient node obtained from the envelope of the
communication. The constraint that dest t ^ a ensures that only com­
munications for other nodes are considered as leaks. The requirement that
t\ E TCOM means that only unencrypted communications are regarded as
leaks.

If security is assessed for C2NET2 with leak added it is clear that since
communications will appear in plaintext on intermediate nodes the deter­
ministic security conditions can certainly not be met. This is to be expected
since link encryption does not protect information on intermediate nodes.

7.7 E nd-system level encryption

A message can be protected throughout the length of its journey from sender
node to receiver node in several different ways. Here we describe a method
of end-system level encryption. In terms of protocol layers, the encryption
is performed much higher up (for example, at the transport layer) than the
physical level and does not have to be reversed on each intermediate node.

176

The message is encrypted using the public key of the intended eventual recip­
ient node. As before, this only requires one public key per node but it must
be performed by the software for the appropriate layer rather than embed­
ded in hardware. Intermediate nodes will now only see encrypted messages.
Some header information (notably that concerning routing) will be trans­
m itted in clear, but the information axlded at higher protocol layers will be
protected by encryption. In this view of system security, although messages
within envelopes are encrypted, the overall communication will not again be
encrypted for forwarding over specific links. Hence the original state schema,
NS2 defined on page 156 can be used. This defined stores and links as simply
containing tagged envelopes. The system itself is defined in exactly the same
way as N ET2 in Figure 7.3 except that messages are encrypted on sending
and decrypted upon receipt. We also add the actions representing the tap­
ping of links and the output of information from the stores of intermediate
nodes. For clarity, the whole is written out again as action system C3NET2
in Figure 7.8. Once again, any action of the legitimate network users wiU
influence the intruder’s view, but again, we wish to discount the effect of
encrypted messages. In the case of link encryption, encrypted messages were
set aside by allowing them to be ignored when checking the determinism cri­
teria. The same could be done here, but the structure of the communications
reveals that header information is also conveyed, and this appears in plain­
text whether or not the message itself is encrypted. Excluding actions from
consideration in the security conditions is a rather “blunt instrument” and
it would be preferable to have a means of setting out exactly what our as­
sumptions are about the way an intruder might gain information. So for end
system encryption we try a different approach which expresses the output
to the intruder by means of a function. The function describes how infor­
mation is derived from the intercepted communications, allowing a complete
and self-contained description of this to be set out. The specification can
if desired be investigated with different definitions of information function
to see which representations are consistent with maintaining system security
and which would indicate a problem.

177

CZNET2=

• #. # Il storem
link :

store :

store

I var NS2

(V a : Node • Store{a) = J|) A
(V(a, 6) : net • link{a^ 6) = |J)

for s E Node action send, in r? : Node\ m? : Mess : —
3 1 : Tag # (5 , r?) E rouie(t)* A

store(s) = sioreo(s)+
|(i,(r?,enc(pA:r?,m?)))]

for r E iVode action receiver ou t m! : Mess : —
3 1 : Taff • (t, (r, enc(pkry m!))) in storeo(r) A

sioj^(r) = sforeo(r)—
|(i ,(r , enc(pkr,m!)))i

in te rna l forward : —
3 a, 6, r : Wode; t : Tag; m : Mess • r ^ a A

(a, b) E net A (*, (r, m)) in sforeo(a) A
(a, b) E route{i) A (6, r) E route{i)* A
s^ore(a) = 5^or^(o) — ((:, (r, m))| A
link{a^ b) = b) + ((:, (r, m))|

in te rn a l relay : —
3 a, 6, r : Node; i : Tag; m : Mess <

(a, b) E net A
tcom{i^ (r, m)) in linko{a, b) A
link{ay b) = linko{ay b)—

siore(6) = 5^orco(6) + |(t, (r, m))|
action tap out it! : INFO : —

3 a, 6 : Node; c : TCOM •
c in link(a, b) A it! = info (tcom c)

for a E Node action leaka out it! : INFO : —
3 i : TCOM #

i in giore(a) A desi t ^ a A
it! = info(tcom i)

store ̂
link

store y
link

Figure 7.8 Specification for end system encryption

178

The type INFO is introduced to allow information to be either a message
(which, as defined above, can be text, a key, or an encrypted message) or is
said to be nil.

INFO ::= milf^Mess))
I nil

The function gives the information derivable by the intruder from a commu­
nication, and its type is:

info : COMM INFO

W ith this, the intruder’s action tap can be described as before, but with
output modified by the info function. A full definition must be given for info
reflecting the required security policy. For example, if only the unencrypted
message part of a communication is considered as being able to convey any
information then for any k : K E Y ; c : TCOM; i : Tag; r : Node; m : Mess
we can define:

info {ecom(k^c)) = nil

if m E ran enc/ nil
1 mt(

info (tco m (i,(r ,m))) = , .
t(m) otherwise

There is still a barrier to the complete determinism of the intruder’s view,
and that is the fact that an output of nil still constitutes information de­
rived from network activity. However, this can be dealt with as before and,
after noting the possible consequences of covert channels, the deterministic
security condition can be limited to check only those outputs where the in­
formation is not nil. Using this approach, the envisaged interaction of the
intruder is defined using the info function and the only ex cep tio n which ever
needs to be made in the security conditions is for a nil output value. A
similar approach can be taken with the leak action.

The type of the output from C3NET2uak is a tagged envelope, which is
also the type of objects in the store of each node. This allows messages to
be encrypted or in plaintext, but always shows the destination in the header
as a plaintext item. In practice it would generally be necessary for some

179

destination and/or routing information to appear in this way when a mes­
sage is in a node’s store since the node must direct the message on its future
path. It is possible to d ev ise a system which could operate without this,
for example where a fully encrypted communication is broadcast to every
node and each node attem pts to decrypt it with only the intended recipient
succeeding. However, this is not a practical option for most networks. For
this analysis the leaks can be represented as independent action systems in
this way. However, if a more complex representation of derived information
were used (such as considering the accumulation of intercepted communica­
tions) then it would be necessary to consider the effect of combined sources
of information.

To investigate the security of the system the effects of both the tap action
and the leak actions must be considered. So, in the Scime way as before,
the result of obscuring {send, receive} in C3NET2 must be checked. The
property to check is that:

obs^acnd,receive) (C 3 N E T 2)

is deterministic within {tap.i | i ^ nil} U {leak.i | i ^ nil}. The guard of
tap.i for a specific value t is:

(3 a, è : Node; c : COMM • c in link(a, b) A i = info c)

For the limited security condition applied here, only the guard of actions with
I ^ nil need be considered. This, given the definition of in/o, is equivalent
to:

(3 t : Tag; o, 6 , r : Node; m : Mess •
tcom(t, (r , m)) in Z:n&(<%, b) A m f ran enc A t = mt(m))

By construction, the system never reaches any state satisfying this (nor any
state from which internal actions could do so) because every message sent into
the sy stem is encrypted. A similar argument holds for leak since messages
remain encrypted in the store of any node. This indicates that the system is
secure within the stated limits.

180

This example emphasises the point that any verification of a security
property is only as accurate as the property itself: For, although the network
with end-system encryption appears secure in the above analysis, the situa­
tion is changed dramatically if the information function is defined differently.
For example, if unencrypted header information is deemed to be confidential
then the type INFO could be extended to include information about a re­
cipient node and the info function could include this type of output also. In
this case, there is a direct influence from any send action on the information
output by tap and leak. So with this change in the view of system security,
CSN ET2 would not be secure.

This shows that the analysis and understanding of security requirements is
crucial to the overall specification, since the interpretation of what constitutes
acceptable information flow will obviously govern the outcome of the security
validation. The network with end-system encryption aa currently specified
does not protect or disguise destination information. As discussed above,
some form of multiple broadcasting could be used to mask the true recipient.
Link encryption in addition to end-system encryption gives protection on the
link, but the header information would still appear in clear on all intermediate
links.

7.8 End-to-end encryption

Another way to protect a message throughout the whole length of its journey
from sender to receiver is to use end-to-end encryption. The sending applica­
tion performs the encryption (at the highest level of OSI protocol layer) using
the public key of the recipient. The encrypted message is passed down the
layers of the protocol with additional routing and other information added
at each level. Thus the node (which may host many applications) does not
have to participate in the encryption process. The store of each node again
receives tagged, encrypted messages. This method provides a security tunnel
not simply between nodes, but directly between applications and users.

The encryption process is now represented at the application level. Here,

181

we simplify by introducing user activity which is seen merely as generating
and receiving messages for the purpose of demonstrating the interface with
the network. There may of course be many users running different applica­
tions, but at this stage we introduce no more than the idea of a user able to
encrypt and decrypt messages. Even with this modest addition changes must
be made to the structure of the specification. Messages are now directed at
a user on a node rather than just a node, so envelopes need to carry this
information. The set:

[USER]

represents the users of the system, and for each u : USER a public key,
p L , and the corresponding secret key, are needed. An envelope is now
represented:

E N V = USER X Node x Mess

To avoid the problem of messages being sent to users at the wrong node,
each request to send a message will be checked for the correct affdress. The
function:

users : Node —> P USER

is introduced to represent the sets of users found at eaeh node. A message
m may be encrypted with a public key:

enc(pA:u, m)

or decrypted with a secret key:

dec{sk^y m)

The decryption process will only yield the original plaintext if m was pro­
duced by encryption with pk^.

The action system USERy, of Figure 7.9 gives the behaviour for user
u. The variable flag is introduced to indicate when the system is reaxiy to
accept input. The emphasis of system security has now changed, since each

182

USERu —

flag^ = true A
usrstgrey, = ||

outcom^y
flagy

flagu :

f v a r outcorriy : ENV; usrstore^ : bag Mess; flag^, : {true^ false} \

outcorriuy
initially usTstore^y :

flagy

ac tio n inmsg in u? : USER; r? : Node; m? : Mess : —
[flo.g*)Q = ^rve A u? E users r? A
outcorriy = (u?, r?, euc(ptr?, m?)) A

= false

ac tio n send o u t e! : Env : —
iflagu)o = false A = true A
e! = outcomy,

ac tio n receive in m? : Mess : —
((m? E ran text V m? E ran fcey) A
usrstorey = (usrs^ore«)o + [m?|)

V
(m? E ran enc A
usrstorcy = (usrs(ore«)o + |dec(st*, m ?)|)

ac tio n outmsg o u t m! : Mess : —
m! in usrstorcy A
usrstorcy = (usrstore»)o — |m !|

usrstore^

usrstore*

F ig u re 7.9 User specification

183

user is made directly responsible for encryption and hence for protecting
information. The send and receive actions of each user are the counterparts
to the actions of those names in the network specification. The action inmsg
takes as input the details of a message to be communicated in the network and
encrypts it in an appropriate way for the recipient. The converse decryption
operation is performed by the user receiving the message, with the plaintext
version output to the user by outmsg. This view of the system begins to look
at a wider picture, taking into account not only the nodes and the medium
of the network, but also the interaction of the end users.

The network C ^N ET2 is not required to provide any security mecha­
nisms, so it can be specified in exactly the same way as the basic network
N ET2 of Figure 7.3. Again, the addition of tap and leak functions models
intruder aetion. To show the interaction with the user applications, the net­
work specification can be refined to the next level (as in [2 0]) representing
each node as a separate action system, C4:N0DEny shown in Figure 7.10. The
links of the network together form the action system CAMEDIA as shown in
Figure 7.11. W ith these definitions the next level of the overall system can
be constructed:

C4AET3 = ((II n € Node • C^NODEy) || MEDIA) \
({forwarda \ a G Node} U {relays \ b E Node})

and

C4N ET2 Ç C4NET3

with proof of this following the similar level of refinement in [2 0].
Parallel composition can again be used to represent the interaction of the

users with the nodes of the system. First we define:

SYSU SERS = (| | u E USER . USERy)

Then, if:

C4:NET2 II SYSUSERS

184

C4:N0DEy =

storey :

storey :

store ;

storey :

(v a r storey : bag(Tag x Env)

initially store : [storsy — {]]

action send in (u?, r?, m?) : Env : —
3 i : Tag # (n, r?) € rouie(i)* A

storey = (storen)o + {(*, («?> r?, m?))|

action receive* out m! : Mess : —
3 i : Tag • (i, (u, r, m!)) in (siore„)o A

storey = {storey)o - [(i, (u, r, m!))|

action/onvard out b\ : Node; i! : Tag; (u!,r!,m!) : Env : —
(Ü, (u!, r!, m!)) in (storey)o A r! a A
(n, b\) £ route{i\) A (6!, r!) G rowic(i!)* A
storey ~ (storey)o — |(i!, (u!, r!, m!))|

action relay out a? : Node; i? : Tag; («?, r?, m?) : Env : —
(fl?,n) € net =>

sfore* = (sioren)o + |(*?, (u?, r?, m?))|

action leak out t\ : TCOM : —
\ : [i! in storCy A dest t! ^ n |

F ig u re 7.10 Specification of individual nodes for end-to-end encryption

185

C4:MEDIA =

(var link : net —> bag(Tag x Env)

initially link : [lajo. link = { ||}

for a G Node action forward^ in
6 ? : Node; t? : Tag; (u?, r? ,m ?) : Env : —

link • ^ ^
/mÂ;(a, 6 ?) = /inAb(a, 6 ?) -f l(t!, (u!, r!, m!))|

for 6 G iVode action rc/ayj out
a! : TVode; t! : Tag; (u!,r!,m !) : Env : —

, (fl!,6) G nei A (t!,(u !,r!,m !)) in/tnA ^(a,6) A
link{ay b) = linko{a, b) — ((*?, (u?, r?, m?))|

action (op out t\ : TCOM : —
: [3 o, 6 : (Vbde • t\ in linkway b) J

F ig u re 7.11 Specification of medium for end-to-end encryption

is secure, so is:

C4:NETZ II SYSUSERS

Again, if leak and tap are the actions of an intruder to the system, the
guards cannot be enabled when all the messages are encrypted, so C ^N ET2 \ \
SYSU SERS with all other actions obscured is deterministic, and hence both
C ^N ET2 II SYSU SERS and C4ÆET3 || SYSUSERS are secure with respect
to the given analysis.

7.9 Further considerations

Each of the models presented above represents a very simplified view of se­
curity for network communication, with a single mechanism represented in
each. This is useful from the point of view of trying out the deterministic
security properties and showing how they can be applied, but for most real
networks such a simplified model would be of little use. In this section we

186

consider some further issues which arise when considering secure communi­
cations in many practical networks.

Of the models above, the most satisfactory from the concerned user’s
point of view is probably the end-to-end encryption model since it provides
the means of creating a virtual secure communications tunnel by setting up
an encrypted pathway direct from user to user. There is no need to rely on
what the network may or may not do and there is no need to worry about
the specific links over which the message may travel. The approach does
introduce other considerations: the confidentiality of an encrypted message
is only as assured as the strength of the encryption algorithm and the secrecy
of the keys. W ith each user requiring keys, key distribution and authenticity
of keys and users becomes an issue.

Another problem is that eaeh individual user may not always follow best
practice for security or may not have the capability to do so. In some cases,
a structure may be imposed by, for example, the manager of a local area net­
work. This could be at the node level, or perhaps by routing communications
through a firewall. The question édso arises of how different security policies
which may exist on the different nodes of a network can be accommodated
within the overall plan of system security. In practice, a combination of mea­
sures will usually be in force: users may choose whether or not to encrypt
messages; nodes may axid layers of encryption; firewalls may enforce various
constraints. Different levels of encryption (or none at all) may be modelled
by combining these aspects of the previous specifications.

When the full generality and diversity of security requirements within a
system is considered the question arises of what any network-wide policy may
hope to provide. An individual node or user may decide to encrypt some mes­
sages for communication while others are sent in plaintext. If it were known
at the system level what messages were supposed to be kept secret then it
would be possible to check that none of these ever appeared in plaintext on
links or in intermediate stores. However, it does not seem reasonable that
a system-level view should be expected to know what each individual node
requires to be protected. The best that the network can be expected to do is

187

to maintain the confidentiality of messages that have been encrypted (by not
revealing keys) and to assume that any communication containing plaintext
messages may be viewed by anyone without compromising security.

This view of security puts more emphasis on the nodes’ ability to manage
their own security requirements. Nodes with different security policies may
be attached to the network. It is not just individual nodes which may have
specific security requirements. Sub-networks, such as the LAN of a particular
company, may operate a comprehensive policy for the member nodes. Once
connected to the wider network, this policy cannot be expected to be main­
tained by outside links and nodes. So the individual node or sub-network
must ultimately be responsible for identifying trustworthy nodes if they wish
to communicate outside their own secure territory. They may reasonably
expect some system-level help in making this decision, as is discussed below.

A sub-network with a specific policy may in part be represented as an
instance of one of the networks specified above, or perhaps as a variant of
one which is tailored for a required policy. For example, a sub-network of
nodes may co-operate to maintain a multi-level security policy. However, the
point or points at which connections are made to a wider network will lead
b eyon d th is safe environment to where the assumptions and guarantees of
the local network no longer hold. The specification of a sub-network must
be expanded to show the effect of these external connections.

There are many different aspects of network security but here we continue
to concentrate on the area of confidentiality in a network of communicating
nodes. Prom this viewpoint we can attem pt to answer the question of what
a node or sub-network can reasonably expect to be provided on a system-
wide basis. Firstly it seems reasonable to require that encrypted messages
are only ever successfully d ecryp ted by their intended recipients. As became
clear in the previous sections, there is no way in general to prevent any
communication passing through many intermediate nodes, so the secrecy
of the messages has to be maintained by securing the secret keys rather
than restricting the communications. The preceding examples have used
the approach of a public key system, but the same would be true for any

188

cryptographie system: secret keys are expected to be kept secret. So perhaps
one requirement which could be expressed and checked for at the system level
is that no secret keys axe revealed to anyone other than the owner. This
could be done as before using an information function in conjunction with
the antions leak and tap.

Another issue which affects the confidentiality of a message is the correct
identification of the paxty with whom the sender wishes to correspond. Sup­
pose sender s wishes to correspond with recipient r. If intruder t tricks s
into thinking that t is in fact r, then s may well reveal confidential material
to i by mistake. In a system with public key cryptography this can happen
if t can promote their public key as r ’s. The usual solution is a system of
certificates whereby a trusted intermediary with a known, trusted public key
“signs” r ’s public key with their own secret key. In practice, a chain of cer­
tificates may be required, starting from a trusted source, with eanh certificate
in the chain vouching for the next element in the chain, and ending with r ’s
key.

W hether or not a provision of this nature is seen as the responsibility
of the network depends on the approach taken. Certainly, the various con­
stituent parts of the network need to co-operate in such a scheme for it to
work properly. In practice there have been various different approaches for
the implementation of such a scheme. The original plan of certification for the
secure mail application. Privacy Enhanced Mail (PEM), envisaged a strict
hierarchy of certification authorities, leading back to one central authority
which would be ultimately responsible for each complete chain. Such a sys­
tem could maintain a very strict check on authenticity of keys (in fact, the
original PEM vision was of a global system secure enough for legally-binding
commercial transactions to be carried out) but the problems involved in
setting up the ultim ate certification authority have led to a less ambitious
implementation. However, any individual network or sub-network could im­
plement something similar, with authentication thus viewed as a global issue
for the network.

The fallback position for PEM has been a graxled system with root au­

189

thentication provided by the Internet Society. Authorities at lower levels are
certified to specified degrees of trust with correspondingly different require­
ments on the stringency with which they are assessed. Users must decide
which level of assurance they require and only accept keys which can provide
a chain of certificates each meeting the required standard.

In contrast, another product. Pretty Good Privacy (PGP), designed to
maintain the confidentiality of communications is much less rigid in its ap­
proach to certification. Each user chooses whom to trust and can store or
accept a certificate without recourse to external authorities. This approach
places the decision of whom to trust in the user’s hands.

Each of these approaches has its advantages and disadvantages. The
point of interest here is that what is expected to be enforced at a global level
for a network is different in each case. There is a balance between what is
provided by the user and what responsibility must be taken by the user.

Another consideration for confidentiality is the possibility that a commu­
nication received from an intruder or a corrupt node could contain a “Trojan
horse” program which could operate to divulge confidential information. It
is worth noting that such a program can operate only within the boundaries
of the local security policy. However, any channels which have been left open
by that policy can be exploited. This will include any of the routes of in­
formation fiow which have been discounted as acceptable risks in the local
analysis of security. For example, a suspect node s may not be able to sub­
vert another node n so that messages are sent directly from n to s. However,
clever manipulation of messages (even encrypted ones) sent to other trusted
parties could be used to signal information when observed by s.

Again, this problem is difficult to address at any global level. Each node
or sub- network must take on the responsibility for guarding against such
attacks if the risk is significant.

190

7.10 Summeiry

This chapter has m a d e a general investigation of the way in which security
constraints may be used in an action system specification. It outlined several
different ways of adding confidentiality requirements to a basic description
of communication in a network. The approaches used represent very dif­
ferent ways of viewing system security. Initially, system-wide classifications
were used and an overall multi-level security policy was specified. The later
approach, with no security levels but with confidenticdity maintained by en­
cryption, is more suited to the realities of general networks. The use of
action systems has allow ed us to explore the effect of encryption at differ­
ent levels and to incorporate the security requirements into a full functional
specification. Since the aim here was to define and compare a number of
different approaches, this chapter did not present the development of any
one particular method in detail. The next chapter takes a specific example
and shows how a security policy can be formulated and formally defined for
that system.

191

C hapter 8

A distributed security kernel: case
stu d y 2

The previous chapter explored some of the general issues involved with using
action systems for the development of secure systems and with the application
of the deterministic security properties in particular. The current chapter
takes a specific example and follows through the specification, statement
and proof of security properties, and definition and proof of several levels of
refinement for this single application. The problem area, though simplified
from its original form, is a real application which has been researched and
developed by members of Odyssey Research Associates Inc. (ORA). The case
study was chosen as an example of a useful, sizeable system which seemed
suited to an action system approach. The choice was not influenced by
any attem pt to find a system for which the deterministic security properties
would be ideal, indeed, part of the purpose of the investigation is to see if the
deterministic security properties do have a rôle to play in forming a security
policy for a general purpose system.

8 . 1 D escription of a security kernel

This case study involves the specification of a security kernel. This is basically
a data base of items to which access may be restricted in various ways. The
kernel serves a network of distributed hosts, receiving access requests and

192

checking to allow legitimate access only. The kernel can be refined so tha t it
itself is distributed amongst the various hosts. Thus each host will each have
its own local kernel component and these kernel components can interact to
make decisions about non- local accesses. The combined effect of the kernel
portions working together is the same as the top-level definition of a single,
overall kernel.

The area for the case study is loosely based on descriptions of the kernel
of a secure distributed operating system developed at ORA [54, 121]. The
scope of the specification has been reduced and some aspects changed to
allow a full specification and several layers of refinement to be represented
here, but the basic concept is the same. The analysis performed by the au­
thors [54] describes the possible approaches considered for this project. It is
interesting to find that although the authors note the usefulness of process
algebras for describing such things as kernel to kernel communication, the
intricacy of such specifications and the need to represent state and invariants
on that state led to the eventual choice of Larch [55] for specifications. The
authors are well aware of the variety of information fiow properties available,
referring to the “cottage industry” in the development of such properties.
Their decision in the face of this is to choose Bell and LaPaxiula with a “sep­
arate and somewhat ad hoc argument that information fiows through other
channels . . . are not a serious threat” [54]page 287. The problems caused by
the Refinement Paradox are also noted. No solution can be provided, but
the authors suggest that any security analysis must somehow take account
of the refinement level currently of interest.

The kernel restricts access to a persistent object database (other aspects
such as authentication are not addressed here). Each host must operate
within a specified security range, so all information accessed by that host
must be within its range. A user currently active on a host can, via an
application, request access to a database object. The user and the application
must both be registered with the kernel and must be operating within their
allowed security ranges. The access request (viewed here as a request for
permission to view information stored in a database object) is processed by

193

the kernel and a decision is made based on the security information stored
by the kernel.

8 . 2 A bstract specification o f the kernel

The state of the system is a very important aspect to model for this system
and, even for the simplified system described here, can become quite complex.
Z [125] is used here to specify the state of the system. As mentioned previ­
ously, this is just one possible approach that can be used to specify the state
of an action system. An overview of Z syntax is included in Appendix C.

8.2.1 T he sta te of the kernel

The given sets for the specification are:

[HNAMEy CLASSyAPPIDy OBJECT y USER]

Hosts, applications and users of the system are uniquely identified by ele­
ments of HNAMEy APPID and USER respectively. OBJECT is the set of
objects in the database administered by the security kernel. CLASS is the
set of security classifications. For simplicity it is assumed that CLASS is
linearly ordered and that it has least element J_. The set of (possibly empty)
security ranges is defined:

range CLASS = = {cl, c2 : CLASS • cl .. c2 }

A further type is used to denote the access decisions made by the kernel. Since
we are here interested in one sort of access (reading an object) the result of a
request will simply be denoted by a “grant” message or a “denied” message:

Reply ::= grant (^OBJECT)} \ denied{{OBJECT))

In this simplified system the important aspects of a host are the users cur­
rently cLctive on it and the applications available to them. This is specified by
the schema, Hostl given in Figure 8.1. Identifiers used here at the top level

194

 Host 1 ------------------
users 1 : P USER
applnsl : P APPID

F ig u re 8.1 The state of a host

^ K em ell — --------------------------------------- -----------------------
userc/ecirl : USER —► range CLASS
hrangel : HNAME —♦ range CLASS
dbasel : OBJECT CLASS
cMrrentusersl : HNAM E —» {USER CLASS)
regappsl : HNAME —► {APPID -++ range CLASS)
kem elinl : ha.g{HNAME x APPID X USER x OBJECT)
kem eloutl : hag{HNAME x APPID x USER x Reply)

Vu : USER; h ; HNAME | u G dom(curreu(usersl h) •
{currentusersl h) u E userclearl u A
(currentusersl h) u E hrangel h

Vfl : APPID; h : HNAME | a E dom{regappsl h)
{regappsl h) a Ç. hrangel h_______________

1
2

F ig u re 8.2 The state of the kernel

of abstraction are identified by names ending in 1. The kernel is defined at
this level as a single database. It has a number of components which model
the security information needed for the system. The kernel is described by
schema ifeme/1 in Figure 8.2. Each user and each host must operate within
a certain security range. The allowed ranges for each user and each host are
recorded by the functions usereleorl and hrangel respectively. The function
dbasel gives, for each object of the database, a corresponding security clas­
sification. Not all users or applications working on hosts will be currently
registered with the kernel (and therefore will not be able to access database
objects). The currently registered users on each host, together with the secu­
rity level they are working at, are recorded by currentusersl. Similarly, the
registered applications from each host are recorded along with the security

195

i_ KemelSys 1_____________
hostsl : HNAM E —» Host!
K em ell

V a : APPID; h : HNAME | a G d o m (re g a p p s l h) •
o G {hostsl h).applnsl

V u : USER; h : HNAM E | u G d o m (cu T T en (u se rs l (i) •
u G (/ios(sl /i).user5l

F ig u re 8.3 The state of the kernel

range within which they may operate. This is the purpose of regappsl. The
component kem elinl is a bag of access requests waiting to be dealt with by
the kernel. A request to access an object is made by a user of a particular
application working on a specific host. The fined element kem eloutl holds
the replies from the kernel waiting to be delivered to the correct recipient.

The predicates relating the schema components may be described as fol­
lows:

1 . the clearance at which a registered user is currently operating is within
the allowed range for that user.

2 . the clearance at which a registered user is currently operating is within
the allowed range for its host.

3. a registered application has a clearance range within that of its host.

As it stands, a user could be active on different hosts at the same time and
with different current levels of security in each place. There is no problem
w ith this for current purposes, b u t it m igh t need to b e ruled ou t in other
situations.

Using the schemas representing individual hosts and the security kernel,
the system is described by the schema Kem elSysl in Figure 8.3. The system
consists of a co llec tio n of named hosts and a security kernel. The given
constraints relate these in the following ways:

196

4. the applications registered with the kernel are all existing applications on
the appropriate host.

5. a user registered with the kernel must indeed be a user on the stated host.

8.2.2 T he top level action system

For the purposes of this specification we wish only to consider the cictivities
of maJsing aecess requests and receiving replies. Other matters such as the
logging on and registration of users will be left ciside. It will therefore be
assumed that all state components except for kem elinl and hemeloutl are
fixed to some initial value obeying the state invariant and that they are un­
changed throughout. When the system is refined, the corresponding initial
settings axe assumed for the concrete version. The action system represen­
tation of the system is given in Figure 8.4. It uses a functional decision
procedure, DECIDEl^ to allow or deny access requests. This is represented
by the tree in Figure 8.5. Each branch of the tree represents a possible situa­
tion (within the guard of the action) and shows the corresponding command
in each case. The situations described in the tree axe mutually exclusive
and so the choice of case is deterministic. This representation is intended
to give a graphic picture of the basis on which a decision is made. It can
be captured more conventionally as an alternative statement from which the
weakest precondition may also be calculated.

Execution of SecKerl proceeds as follows. Initially there are no input or
output messages. A request to an object may be made from a host by an
application invoked by a user. This action is always enabled and the input
request is placed in kemelinl. The way in which a decision is reached by
the kernel is represented at this level by an internal action, decide. There is
no output to the user from this internal action. Whenever the kem elinl bag
is nonempty, a request may be selected, removed from kem elinl and a de­
cision placed in kemeloutl as specified by DECIDEl. Whenever kemeloutl
is nonempty the output action, response is enabled. This can deliver any
waiting reply, removing it from kemeloutl.

197

SecKerl =

(var Kem elSysl \

in itia lly kemelinl., kem eloutl := |] , (|

for h 6 HNAME action invokek in
a? : APPID] u? : USER] o? : OBJECT

true —> kemelinl := kem elinl + |(&, o?, u?, o?)|

in ternai decide : —
A;eme/ml ^ (J -+ (var (h, a, m, o) G Àreme/tnl •

for A G HNAME action response^ out
a! : A f f /D ; u! : USER] r! : Æep/y

{h, a!, m!, r!) in kemeloutl —>
V ^eme/ottil := kem eloutl — |(h , a!, w!, r!)j j

F ig u re 8.4 The top level action system: SecKerl

8.3 T he security o f th e kernel

The specification combines a fixed state of hosts, users, database objects
and clearances with the actions for invoking objects and receiving responses.
To analyse the security of the system solely in terms of events it would be
necessary to model the complete history of the system, with values assigned
to all the state components by visible actions and each such event classified
according to the classification of the component it initialised. This is cer­
tainly possible, but it would involve a good deal of additional complexity.
The additional specification needed would not be particularly useful in any
other context and would make the overall effect of the specification less clear.
Also, as remarked earlier, there are often additional properties to be proved
apart from basic noninterference. These can often be stated most easily as
invariants on the state. These considerations lead to the following analysis
of security for SecKerl in which both actions and certain security-sensitive
state components are taken into account.

When considering the security of a system it is necessary to provide a
definition of what constitutes security for that particular system. The step

198

D E C ID E l

kem elinl := kem elinl — |(h , a, «, o)|

If the requesting user or application is no t reg­
istered then the request is ignored ^

G dom{currentusersl h)^ dom{currentusersl h)

{currentusersl h) u ^ {regappsl h)

{currentusersl h) u < dbasel o

{currentusersl h) u E {regappsl h)

{currentusersl A) w > dbasel o

kem elinl := kem elinl — |(A, a, «, o)| kem elinl := kem elinl — \{h^ a, w, o)|
kem eloutl := kemeloutl-l- kemeloutl := kemeloutl-\-

((&, a, u, denied o)| |(/i, a, u, grant o)|

/ I f the user is no t registered a t a classihcationX
I w ithin th e perm itted range of the application I (If all the security requirem ents are m et th en \

the request is granted /

\req u ested object, then the request is denied /

F ig u re 8.5 Tree describing DECIDE]

199

needed to create this is similar to performing a risk analysis for a safety-
critical system to identify risks and to assess which axe severe enough to try
to p reven t. Such an approach can help formulate a security policy against
which a specification cem be measured. Even for a system which could be
viewed solely in terms of the deterministic security properties, it would still
be necessary to categorise the actions as high-level or low-level, and this in
itself represents a step of analysis. Here, the level of an action is identified
with the level of the corresponding user (as specified by currentusersl or
J_ if the user is not registered with the kernel). This allows the familiar
noninterference requirement to be stated:

51 no high level action should interfere with a low level action.

However, to protect the objects in the database, which have classifications
in their own right, a more direct approach can be taken:

52 no object with classification > c is granted to a user with security level
less than c.

Several other security requirements can be stated for the system:

53 each user must work at a security level within the allowed range for its
current host.

54 a user cannot make use of an application unless their security level is
within the allowed range for the application.

55 each user must work at a level within their own allowed range.

The conditions S I . . . S5 represent the security policy selected for the system.
S3 and S5 are incorporated directly into the specification as they are both
part of the state invariant of K em ell. S 2 is a familiar requirement similar
to the “no read up” rule of Bell and LaPadula. S I is an information flow
property which could make use of the deterministic security conditions. This
is addressed in the following section.

200

The property S 2 will be ensured if, whenever the guard of response is
enabled for output (h, a, granted o), then the user’s clearance must be at
least as high as the classification of the object. That is:

((h, a, granted o) G kemeloutl) =>
{{currentusersl h) u > {dbasel o))

That this property holds can be shown by induction over the actions of
SecKerl as shown in Appendix D. Property S4 may be stated formally in a
similar way, with r G Reply:

((h, a, u, r) G kem eloutl) => ((currenfusersl h) u G {regappsl h) a)

For proof of this, see Appendix D.

8.4 Proving noninterference for th e kernel

Suppose we wish to show S i with information flow defined as for the lazy
deterministic security property. It would therefore be necessary to show that
SecKerl with high-level actions obscured is deterministic.

8.4.1 O bscuring high level actions in SecKerl

Taking an arbitrary security level c, the system with high-level actions (that
is, ones with user’s clearance greater than c) obscured is given in Figure 8 .6 .
Some extra notation is required to do this. High-level actions are those which
are genuine requests (or replies) from a user working at classification greater
than c. Requests from unregistered users will be regarded as having level ± ,
and so will always be low-level. This is reflected in the definitions of creq
and cresp which give the security level of a request and a reply respectively.
For any h : HNAME^ a : APPID^ u : USER^ o : OBJECT and r : Reply:

. I {currentusersl h) u if w G dom(cwrrenf«sersl h)
creq {h ,a ,u ,o)= (

I JL otherwise
. , {currentusersl h) u if u G dom{currentusersl h)

cresp(h, a, u, r) = <
^ ^ ' X otherwise

201

obsff (SecKerl) =

 ̂ v a r Kem elSysl

in itia lly kem elinl, kemeloutl ;= {], {j

fo r h G HNAME ac tio n invokek in
a? : APPID', u? : [/SEE; o7 : OBJECT

creq(h, a?, «?, o?) < c —►
kemelinl ;= /:eme/ml + |(h , a?, «?, o?)|

I creq(h,a7,u7,o7) > c —>
Â:eme/ml := Âremc/tnl -f |(/i, a?, «?, o?)J

I creq{h, a?, u?, o?) > c —► st:p

in te rn a l decide : —
fceme/ml ^ || —► (var (h, a, u, o) in kem elinl # DEÇIDE1)

fo r h G HNAME Siction responseh o u t
a! : APPID\ u\ : USER] r! : Reply : —

(cresp{h, o!, «!, r !) < c) A {(h, a!, «!, r !) in kem eloutl) -
kemeloutl := kemeloutl — ((h, a?, u7, o?)|

I {creq(h, a!, u ! , r!) > c) A {{h, a!, «!, r!) in kemeloutl) -
kemeloutl := kemeloutl — [{h, a?, u?, o?)j

I creç(h, a!, w!, r!) > c -* skip

F ig u re 8 . 6 SecKerl with high level actions obscured

202

8.4.2 N ondeterm inism

The lazy deterministic security property requires that the obscured version
of SecKerl be deterministic. Since high-level actions are always enabled,
and low -level inputs axe always enabled, this is equivalent (by Theorem 4)
to showing that low-level outputs axe enabled deterministically. However,
it is immediately cleax that this cannot be the case because any reply in
the bag of outputs may be chosen by the system, and so the system can
behave nondeterministically towaxds the low-level user. This is similax to
the problem with bags noted in the previous chapter. There it was suggested
that one (albeit unappealing) way to deal with the problem would be to
have a less abstract top level specification. Here it would not be possible
to keep the same level of abstraction and the same structure and simply
change bags to sequences. The overall aim of the development is to produce
a distributed secure kernel system. A top level which used sequences could
not be refined to a lower level of distributed sequences since the order of
output actions cannot be guaranteed. There axe definitions of refinement,
such as Jacob’s interleaving refinement [65], which would allow this, but since

nondetermimsm can be introduced by such a refinement, it is not helpful in
this context.

Another approach is to leave the proof of security until a later level, in
this case, when the distribution has been accomplished. However, there aure
several problems with this. Firstly, the proof of determinism becomes more
difficult the more detailed the specification becomes. To make the proofs
more manageable it is necessary to attack the problem at as high a level as
possible. Secondly, it may not always be possible to remove all nondeter­
minism. There axe systems, paurticulaxly when dealing with networks, where
genuine nondeterminism lurks. When sending messages over a network it
may not be possible to say which will arrive first and, indeed, if either wiU
actually axrive at all. Once again, this shows the difficulty of applying such
stringent conditions to the development of general systems.

For present purposes we note that manipulation of order of output is one
possible source of information flow from high to low which should be recorded

203

and bourne in mind during the development. However, it is still legitimate to
ask whether, if the order of output could be fixed, would any information flow
from high to low remain? So the lazy deterministic security property will be
applied to SecKerl with sequences rather than bags even though the version
with bags is the one to be refined. Again, as with the route taken in the
previous chapter, this is an expedient which makes continued development
possible, but it is not an ideal solution.

8.4.3 A n approach to proving nondeterm inism

Even for a simple system of the size of obsH(SecKerl)^ a proof of determin­
ism can be difficult to achieve. As discussed in Chapter 5, the property must
be proved for all possible traces of the system and for all guards. A sufficient
condition would certainly be that each action makes no internal choice, but
this is not a necessary condition. As demonstrated by system .42 in Exam­
ple 18, a system can involve internal choices and yet still be deterministic
with respect to events (this was referred to as event nondeterminism). This
may well be the case with obsH(SecKerl) (when sequences are used). Inter­
nal choices are possible for both high-level input and output actions, yet the
system may be event deterministic.

To avoid a head-on attem pt at proving this property we take another
approach which can make proof easier. Suppose a non-divergent system
Simple can be found which has deterministic actions (in the sense that no
action makes an internal choice) and which is refined by obsn(SecKerl).
By Theorem 3, Simple is deterministic and, since Simple Ç obsn(SecKerl),
the obscured SecKerl system must also be deterministic. The proof then
becomes one of refinement. This is generally a more manageable problem,
and it is one for which a number of simplified rules already exist.

The first step is to choose an appropriate deterministic system. Simple.
The expectation is that high-level actions will not interfere with low-level
ones, so Simple is constructed by allowing high-level actions to be defined as
skip. Several other definitions help to make the definition of Simple as clear

204

as possible. Firstly, let:

REQUEST = = HNAME x APPID x USER x OBJECT
OUTPUT == HNAME x APPID x USER x Reply

The DECIDEl choice deals with a single request. Its result is either to ignore
the request (if invalid) or to place a decision in kemeloutl. The function /
is defined to be of type:

/ : REQUEST —̂ bag Reply

with, for (h, a, u, o) : REQUEST:

f (h ,a ,u ,o) = 4

II
|(h , a, u, denied o)| as specified by DECIDEl
|(h , a, u, granted o)|

The action system Simple is defined in Figure 8.7.

8.4 .4 Showing refinem ent o f Simple

It is necessary to show that:

Simple Ç ohsniSecKerl)

The refinement relation R R is given by:

R R = = (kem elinl = kem elinl f c) A (kemeloutO = kemeloutl t c)

where f restricts the queues to elements with cresp < c and crep < c respec­
tively.

Both systems contain internal actions and, although a direct proof of
refinement is possible, once again the easiest approach is to use a simplified
rule. Proof for systems without internal actions can be validated relatively
easily. So one way to proceed is to view (for the purposes of the proof)
the internal action decide as a visible action in both systems and to show
refinement between these systems. If this can be achieved the required result

205 .

Simple =

(var kemelinO : bag REQUEST]
kemeloutO : bag OUTPUT

initially kemelinO, kemeloutO := | | , [|

action invoke in r? : REQUEST : —
creq r? < c —*

kemelinO := kemelinO + [r?j
I creq r? > c —» skip

internal decide : —
kemelinO 7 ̂ |j —►

(var m in kemelinO #
kemelinO, kemeloutO :=

kemelinO — [m\, kemeloutO + (/ m))

action response out r! : OUTPUT : —
{cresp r! < c) A (r! in kemeloutO) —»

kemeloutO := kemeloutO + |r!|
 ̂ I cresp r! > c skip

Figure 8.7 The deterministic action system: Simple

206

would then follow since for any action systems A and B and set of actions
%:

A 0 B ^ (A \ X) C (B \ X)

There is a further complication because making decide visible reveals that
this action in the concrete system would be enabled more often than in
the abstract system, and so this would not conform to the action system
refinement conditions. To remedy this, we could split the concrete decide
internal action into two internal actions which are together equivalent to the
single internal action. This is justified by the Internal Split Rule (Property 5
from Chapter 6). W ith this rule the system ohsH{SecKer\)' can be defined
as shown in Figure 8.8. By the Internal Split Rule this system is equivalent
to ohsH{SecKerl). If decide is made external (for the purpose of verification
as described above) the concrete action system still has one internal event,
decidehigh. However, the abstract system Simple has none so the simplified
refinement rule given as Property 4 on page 139 may be used. The proof in
Appendix D shows that:

Simple Ç ohsH{SecKeriy

and so Simple is refined by ohsH{SecKerl) also. The system Simple with bags
replaced by sequences is event deterministic since each action is deterministic,
and so there can be no information flow from high to low levels except by
manipulating the ordering of output messages.

8.5 F irst refinem ent o f the kernel

The first refinement views the database objects as each residing on a paxtic-
ulax host. Each host has its own “portion” of the security kernel which is
responsible for taking security decisions involving objects, users and applica­
tions resident on that host. If a required object is not resident on the host
from which the request originates then the host kernel must communicate
with the kernel of the object’s host. At this level we still represent the whole

207

obsff[SecKeriy =

/ v a r Kem elSysl

in itia lly kem elinl, kem eloutl := | | , fj

for h G HNAME ac tio n invokek in
a? : APPID] «? : USER] o7 : OBJECT

creq{h, a?, u7, o?) < c
kem elinl := A:eme/ml + |(h , a?, u?, o?)|

I creq{h, a?, «?, o?) > c —►
A;eme/ml := Â:eme/tnl 4- I(h, a?, u?, o?)|

I creq{h, a?, u7, o7) > c ->■ skip

in te rn a l decide : —
(kem elinl t c) ^ fj —»

(var(/i, o, w, o) in (kem elinl f c) • DECIDEl)

in te rn a l decidehigh : —
Â;eme/ml — (kem elinl f c) ^ |J —>

(var(h, a, u, o) in (kem elinl - (kem elinl f c)) e D ECIDEl)

for h G HNAME ac tio n responsek o u t
a! : APPID] u\ : USER] r! : Reply : -

(cresp(h, a!, u!, r!) < c) A ((h, a\, u!, r!) in kemeloutl) —►
kemeloutl kemeloutl — [(h, a7, u7, o?)|

I a!, u!, r!) > c) A ((h, a\, w!, r!) in kem eloutl) —♦
kemeloutl := kem eloutl — |(h, a7, u7, o?)|

\ I creq(h, a\, u!, r!) > c skip

\

F ig u re 8.8 The obscured system after applying the Internal Split Rule

208

system cls a single action system, although the state is now defined in a way
more suggestive of a distributed kernel.

At the previous level the bags kemelinl and kemeloutl store the com­
munications between the users and the kernel. Here, in addition to this the
kernel on each host will have a bag of pending messages. This contains valid
requests (that is, ones for registered users and applications) which may be
for objects on this host or may need to be passed on to another host. It also
contains replies which may be for delivery to a user on this host or again may
need to be passed to another host for delivery. The pending queues will thus
be used to store communications between kernels. So that both requests and
replies can be held together we introduce the type PMsg:

PMsg ::= request (^OBJECT x (7LA55))
I decision{{Reply))

The classification in a request represents the current security level of the
requesting user. This is information which the user’s host kernel will know,
but if the requested object is on a different host the security level will need
to be communicated with the request. The type of pending elements will be
similar to those in kemelin and kemelout:

PENDING = = HNAME x APPID x USER x PMsg

It is convenient to define the type:

M T ::= req | dec

and the function:

mtype : PENDING —> M T

Vp : PENDING
mtype p — req 4*̂ fourth p G ran request A
mtype p = dec fourth p G ran decision

When a request is passed to another kernel there are various w ays lu w hich

the routing can be handled. For simplicity, we assume that there is a di­
rectory of locations for all objects and that each host has a copy of this.

209

K em el2__________________________________
usercîear2 : USER range CLASS
hrange2 : range CLASS
dhase2 : OBJECT - 4 CLASS
currentusers2 : USER -++ CLASS
regapps2 : APPID -** range CLASS
kemelin2 : ha.g{APPID x USER x OBJECT)
kemelout2 : ha.g[APPID x USER x Reply)
pending : bag PENDING

V u : USER 1 u G dom currentusers2 •
(currentusers2 u) G (tiserc/ear2 «) A 1
[currentusers2 u) G hrange2 2

V a : APPID | a G dom regapps2 #
(repapps2 a) Ç hrange2 3

ran dbase2 Ç hrange2 6

F ig u re 8.9 The state of the kernel at the second level of refinement

Communications can then be viewed at this level as a simple transfer to the
correct host. The directory is specified as a global function:

I location : OBJECT —► HNAME

The kernel for each host is described by the schema Kemel2 in Figure 8.9.
Each host’s kernel needs the full information about users’ allowed security
ranges since any user may sign on to any host. Thus userclear2 is simply a
copy of userclearX replicated in full on each host. The allowed security range
of operation for the host is given by hrange2. The portion of the database
allotted to this host is denoted by dbase2. The next four state components
of Kem el2 are essentially the same as the corresponding components at the
previous level, but restricted to a single host. The new element, pending, is
also included. In the predicate part of the schema. Constraints 1, 2 and 3
have the same purpose as their counterparts at the top level. Constraint
6 requires the database objects resident on the host to have security levels
within the range allowed for the host. It is assumed that there exist hosts
with ranges spanning all possible security levels, making it possible for the

210

 Host2____________
users2 : P USER
applns2 : P APPID
Kemel2

dom regapps2 Ç dom applns2 4
dom currentusers2 C dom users2 5

F ig u re 8.10 The state of the kernel with distributed kernel

^ Kem elSys2__
hosts2 : HNAME —► Host2

F ig u re 8.11 The state of the system, KemelSys2

database to be distributed and the security conditions maintained.
Eaeh host is now viewed as having current users, applications and a local

kernel. This is defined as Host2 in Figure 8.10. Conditions 4 and 5 in this
schema correspond to the similar ones at the previous level. The system is
now described by a simple function representing named hosts. This is given
as KemelSys2 in Figure 8.11. The global function location is related to this
by the condition:

dom((hos^s2 h).dbasc2) = location~^^{h})

The action system SecKer2 given in Figure 8.12 describes the system at this
level. The behaviour of the kernel is still represented by internal actions, but
it has been split up to show the different aspects of kernel activity. Instead of
the single DECIDEl function the process is now represented with two steps,
DECIDE2 and DECIDES pictured in Figures 8.17 and 8.18. DECIDE2
defines the action taken by a local host when a request is made. It checks
that this is a valid request - that is, the user and the application must be
registered and the user must be w orking at a security lev e l ap propriate for

that level. For valid requests which have been passed on to the host of the
requested object, DECIDES makes the final decision on whether access is to

211

SecKer2 =

f var KemelSys2

initially (Vh : HNAME • (hosts2 h).kemelin2,
{hosts2 h).kemelout2,(hosts2 h).pending := I | , | | , | |)

for h G HNAME action invokek in
a? : APPID] u? : USER] o? : OBJECT : -

true —+ (hosts2 h).kemelin2 :=
[hosts2 h).kemelin2 + |(a?, w?, o?)|

internal getrequest

internal transfer

internal decide

internal deliver

for h G HNAME action responsek out
a! : APPID] u! : USER] r! : Reply : —

(a!, u!, r!) G (hosts2 h).kemelout2 —>
(hosts2 h).kemelout2 :=

V (hosts2 h).kemelout2 — |(a!, u!, r!)|)

Figure 8.12 The second level action system: SecKer2

be perm itted or not.
The internal actions supporting this activity are described below. It is

useful first to define the function destination which maps a pending message
to the host to which it is en route. For a request, this will be the host
on which the requested object is located. For a reply, it is the host of the
requesting user. So:

destination(h, a, u, request{o, c)) = location o
destination(h, a, u, decision r) = h

The internal actions are defined separately below. This structures the speci­
fication a little by dealing with the details of internal events first. The guards
and commands have been separated out to emphasise each. The first internal
action getrequest defined in Figure 8.13 deals with a request present in any of

212

getrequest

g u ard
(3 h : HNAME • (hosts2 h).kemeîin2 ^ | |)

com m and
(var h : HNAME] a : APPID] U : USER] o : OBJECT \

(a, u, o) G {hosts2 h).kemeîin2 # DECIDE2)

F ig u re 8.13 The internai action getrequest

transfer

g u ard
(3 h : HNAME] p : PENDING •

(p G (hosts2 h).pending) A (destination p ^ h))

com m and
(var h : HNAME] p : PENDING \

(p G (hosts2 h).pending) A (destination p ^ h) •
(hosts2 h).pending, (hosts2 (destination p)).pending

(hosts2 h).pending — (p |,
(hosts2 (destination p)).pending + |p |)

F ig u re 8.14 The internai action transfer

decide

g u ard
(3 h ! HNAME] p : PENDING • (p G (hosts2 h).pending) A

(mfype p = reç) A (destination p = h))

com m an d
(var h : HNAME] p : PENDING | (p G (hosts2 h).pending) A

(mtype p = reç) A (destination p ^ h) • DECIDES)

Figure 8.15 The internai action decide

213

deliver

guard
(3 h : HNAME] a : APPID] u : USER] r : Reply •

{h, a, u, (decision r)) 6 (hosts2 h).pending)

co m m an d
(var h : HNAME] a : APPID] u : r : Rep/y |

(h, a, u, (decision r)) G (hosts2 h).pending) •
(/iosfs2 h).pending, (hosts2 h).kemelout2 :=

(hosts2 h).pending — |(h, a, u, (decision r) |,
(hosts2 h).kemelout2 + |(a , u, r)J)

F ig u re 8.16 The internal action deliver

the kemel2 queues. The request is removed from the appropriate kemelin2
and the command indicated by DECIDE2 is executed. If the request is valid
it will be placed in the host’s pending queue. A request in a pending queue
may be for the host which owns the queue or it may need to be transferred
to a different host in order for an access decision to be made. The pend­
ing queue may also contain replies and, again, they may need to be sent
to another host for delivery. This is done by the internal action transfer of
Figure 8.14. Any request which is in the pending queue for the host of its
requested object may be dealt with directly by the host. The action decide of
Figure 8.15 describes how the request is removed from the pending queue and
a reply (as defined by DECIDES) put back on the same queue. The transfer
action already described is responsible for moving the reply to the correct
host. The final internal action removes a reply from a pending queue when
it has reached the correct host for the requesting user. This action, deliver,
is defined in Figure 8.16. The reply is placed in the kemelout2 component
for that host reaxiy to be communicated to the correct user.

The relationship between the two levels is as follows. The original kem elinl
queue can be constructed by collecting together the kemelin2 queues for each
host, plus all the messages which are still pending. Similarly, kemeloutl is
the collection of all kemelout2 queues. The following definition is used:

214

DECIDE2

{hker h).kemelin2 :=
{hker h).kemelin2 — |(a , u, o)|

(If the requesting user or application is no t reg-N
istered then the request is ignored /

(hker h).currenULfierfi2 u ^
{hker h).regapps2 a

u ^ dom{hker h).currentusers2

a ^ dom{hker h).regapps2

u G dom(hker h).currentusers2

G doiu(h^er h).regapps2

{hker h).currentusers2 u G
{hker h).regapps2 a

{hker h).kemelin2 :=
{hker h).kemelin2—

| (o , t», o) l
{hker h).kemelout2 :=

{hker h).kemelout2d-
|(a , u, denied o)|

{hker h).kemelin2 :=
{hker h).kemelin2 — |(a , «, o)|

{hker h).pending := {hker h).pendingd-
\{h, a, u, request{o, {hker h).currentusers2 u))|

(If th e user is no t registered a t a classifiA
cation w ithin the perm itted range of the I
application, then th e request is denied /

^If the request is well-formed then it is p laced\
.on the pending queue for fu rther consideration/

Figure 8.17 Tree describing DECIDE2

215

DECIDES

c > (hker h).dbase2 o c < (hker h).dbase2 o

(hker h).pending := (hker h).pending :=
(hker h).pending-]- (hker h).pending-\-

|(h, a, u, decision(granted o))| |(/i, a, u, decision (denied o))|
(hker h).pending := (hker h).pending :=

(hker h).pending- (hker h).pending-
I(/i, a, w, request(o, c))| ((h, a, u, request(o, c))|

^If the requesting user is allowed access to th e \
object, then the request is removed from the 1
pending queue and a granted message p u t into I

^pending J

f i î the requesting user is no t allowed access to>
the object, then the request is removed from
the pending queue and a denied message p u t

^into pending }

F ig u re 8.18 Tree describing DECIDES

216

pendreqs : bag PENDING —>

hag[HNAME x APPID x USER x OBJECT)

V 6 : bag PENDING] h : HNAME] a : APPID] u : C/5FR;
o : OBJEGT] r : REPLY] c : CL455 e

(A, a, u, o) G pendreqs p ^

{(h, a, u, request{o, c)) G 6) V

(h, a, u, decision(granted o)) G 6 V

(A, a, u, decision(denied o)) G 6

)

If m is a message in (hosVZ h).kemelin2 it can be mapped to the correct type
for a kem elin l message by including the information about its host, h, that
is:

(a, w,o) 1-^ (h, o, u, o)

The function origin adds h to each message of the bag (hosts2 h).kemelin2 in
this way. The function origout performs a similar task for output messages.
The retrieve relation R R l can then be defined:

R R l =

kem elin l = h G HNAME # origin {hosts2 h).kemelin2)

+
E h G HNAME • penreqs {hosts2 h).pending)

A
kem elou tl = E h G HNAME • origout (hosts2 h).kemelout2)

Once again, both the concrete and the abstract systems have internal actions.
The internal actions of the concrete system are intended to have the same
overall effect as the single internal action of the abstract system, although
when several messages are present there are various ways in which concrete
internal actions can be interleaved. The external actions and initialisation are
equivalent (via the retrieve relation) and the correspondence of the internal
activities ensures that exactly the same traces and failures are available in
both SecKerl and SecKer2.

217

8.6 The distributed system

For this step, the system is represented as a collection of action systems, one
for each host. At the previous level, the state was described as a function
from host names to individual host states, so the work is already partly done.
Now the events are divided in a similar way, with the overall system being
described by a parallel composition of the individual host action systems.
The state of a host is Host2 defined at the previous level. We will refer to
the state of host n as Host2n with all component names similarly subscripted
with n. The action system for host n is given by SecKeVn in Figure 8.19.
Again, the internal actions getrequest^, decide», and deliver,, have been de
fined separately in Figures 8.22, 8.23 and 8.24. These are basically the same
actions as at the previous level but confined to a single host. The corre­
sponding decision trees DECIDE4 and DECIDED are given in Figures 8.20
and 8.21. The main difference is with the aetion transfer. This was an in­
ternal action at the previous level, but here it is made visible to represent
communication between the different parts of the kernel on different hosts.
The transfer action will appear differently to a participant depending on the
rôle they play. If a message is transferred from node a to node b then it is an
output action for a and 2in input action for b. These differences are reflected
in the way that transfer^»^m) is defined, with the two cases distinguished.

The overall system is formed by the parallel composition of all the indi­
vidual host systems. Actions with like names are composed as described by
the parallel composition operator defined in Section 4.4. These consist of
the actions transfe^»^,»'^ which will be joined in sender/ receiver pairs. The
communication channels described by the transfer actions are then hidden.
The parallel decomposition achieved by this is given by;

SecKerS =

(II n G HNAME • SecKer») \ {m, n : HNAME • transfer^ ,̂»^»)}

Since hosts2 is a total function on HNAME we identify each Host2» with
the corresponding n {hosts2 n) from the previous level. So statements
involving concrete variables will be equated with the same statement with

218

SecKer» =

f var Host2n

in itia lly kemelin2», kemelout2», pending := | | , | | , (])

action invoke» in a? : APPID] u? : USER] o? : OBJECT : -
true kemelin2» := kemelin2» + ((a?, u?, o?)J

in te rnai getrequest»

for m G HNAM E action transfe^»^»,) out p\ : PENDING : -
m ^ n A (p! G pending») A {destination p\ = m) —+

pending» := pending» — |p!|
for m G HNAM E action frans/er(„^,„) in p? : PENDING : -

frue —► pending» -.= pending» + [p?j

in te rna l decide»

in te rnal deliver»

action response» out a\ : APPID] u\ : USER] r! : Reply
(a!, u!, r!) G kemelout2» —>

V kemelout2» := kemelout2» — ((a!, u!, r!)|

F igure 8.19 The action system: SecKer» for host n

219

DECIDE4

kemelin2n := kemeîin2n — |(a , u, o)|

If the requesting user or application is not reg­
istered then the request is ignored ,

currentusers2n u ^ regapps2n a

u E dom currentusers2u ^ dom currentuseTs2

currentusers2n w E regapps2n a

kemelin2n := kemelin2n :=
kemelin2n — |(a , w, o)| kemelin2n — |(a , w, o)|

kemelout2n := pendingn := pendingn-\-
kemelout2n + [(a, u, denied o)J |(/i, a, u, request{o, currentusers2n u))|

(If the user is no t registered a t a classifi-\
cation w ithin the perm itted range of the I

applinatinn, then the request is denied /

^If the request is well-formed then it is placedN
^on the pending queue for fu rther consideration/

Figure 8,20 Tree describing DECIDED

220

DECIDES

pending := pending-\-
|(/i, a, u, decision(granted o))|

pending := pending—
|(/i, a, u, request{o^ c))|

pending :=
|(A, a, w, decision{denied o))J

pending := pending—
|(/i, a, u, request{o^ c))J

'I f the requesting user is allowed access to th e \
object, then the request is removed from the I
pending queue and a granted message p u t into I

^pending J

'I f the requesting user is no t allowed access to \
the object, then the request is removed from
the pending queue and a denied message p u t

(into pending)

F ig u re 8.21 Tree describing DECIDED

221

getrequest

g u a rd
kemelin2n ^ [|

co m m an d
(var a : APPID- u : USER] o : OBJECT |

(a, o) G kemelin2n • DECIDED)

F ig u re 8.22 The internal action getrequestn

decide

g u a rd
(3 p : PENDING • (p E pending„) A (mtype p = req) A

{destination p = n))

co m m an d
(var p : PENDING | {p G pending^) A {mtype p = req) À

{destination p ^ h) • DEGIDEb)

F ig u re 8.23 The internal action deciden

deliver

g u a rd
(3 a : APPID] u : USER] r : Reply • (n, a, u, {decision r)) G pending^)

co m m an d
(var a : APPID] u : USER] r : i2ep/y |

(n, <z, «, {decision r)) G pendingn) •
pendingn^kemelout2n := pending^ — |(h , a, w, {decision r)j,

kemelout2n + |(a , u, r)j)

F ig u re 8.24 The internal action delivern

222

corresponding abstract variables. For example:

kemelin2n := kemelin2n + ((a?, u?, o?)|

is equivalent to:

{hosts2 n).kemelin2 := (hosts2 n).kemelin2 + [(a?, u?, o?)|

Proof of this refinement is given in Appendix D.

8.7 Rem arks

The development described here gives a top level specification and two levels
of refinement for the security kernel. Security properties axe stated and
proved at the top level. Both the results about determinism and the trace
properties axe preserved by refinement. The refinements given here show how
a single top level description cam be decomposed into a distributed collection
of action systems acting in paxallel, with communication via synchronised
value-paasing. The development cam be continued further towaxds vaxious
different implementations of the kernel system. For example, a kernel may
operate in either “multi-level secure” mode or ss “multiple single levels” . For
the latter, the communications at each security level axe kept sepaxate. Both
of these approaches cam be regaxded aa refinements of the same baisic top
level description.

Although the specification presented here is a simplified version of any
real requirements for a security kernel, it outlines a general approach which
could be expanded to include mamy other features of both the state and the
interaction of events in the system.

The security analysis combines a number of requirements, with informa­
tion fiow viewed in terms of the laizy deterministic security property. W ith
action systems, consideration of information flow does not have to be ap­
proached in am ad hoc fashion (which was one of the points noted with re­
spect to the original Theta kernel specification [54]). The explicit description
of event dependency means that the deterministic properties or other infor­
mation flow conditions cam be applied directly. This chapter introduces a

223

technique for facilitating proof of deterministic security properties. The ap­
proach reduces the verification of determinism to proof of refinement. This
case study also highlights some of the problems of applying the determin­
istic security properties including the difficulty of dealing with “genuinely”
nondeterministic features of a system. This is discussed further in the next
chapter. Another difficulty is that of providing formal verification for all
security properties and refinements. This again is discussed in Chapter 9.

The security of any system, however strictly verified, is still only as good
as the security policy set out for it. In the case of the security kernel there are
still other questions which might be asked. For example, the communication
between host kernels is not meide explicit until the second refinement level.
Since the security analysis is done at a level where this communication is
internal, it is in effect regarded as hidden from the outside users’ view. So, if
we have doubts about the security of the medium over which com m u n ic a tio n

talces place it would be necessary to make that an explicit consideration and
perform a security analysis which takes it into account at an appropriate
level (perhaps using the techniques of the previous chapter).

224

C hapter 9

C onclusions and future work

The work presented here has brought together a number of different theories,
techniques and notations to provide a pragmatic approach to the develop­
ment of secure systems. It has drawn on the results of previous work in
the field on its way to forming a unified approach. The work has involved
consideration of a diverse range of notations including state- based, event-
based, specification statements and wp calculus. The main aim has been
to draw these threads together in a way which can incorporate some of the
most im portant features of each. This chapter reviews the work of earlier
chapters, presenting conclusions and comparison with similar work. Finally,
we suggest future work arising from this research.

9.1 D iscussion and com parison w ith other
work

This work took as its starting point the various different approaches to achiev­
ing confidentiality outlined in Chapter 2. The information flow properties,
though able to provide the basis for abstract security policies encompassing
many possible sources of covert channels, are less intuitive and more difficult
to apply than simpler methods such as access controls. The fact that such
a variety of d efin ition s ex is ts makes it difficult for the practitioner to judge
the merits of each and to decide which is appropriate to use. One of the
problems of working with research into security is that, by the very nature of

225

the work, practitioners are often unable to provide information about what
their requirements are and what methods they are employing. However, both
available published reports (such as that of Boswell [16]) and informal com­
munications suggest that the Bell and LaPadula model is still used and that
Z is still a common notation. This contrasts with the concentration on in­
formation flow properties and event-based notations evident in much of the
research into confidentiality over the past 15 years.

Given this apparent gap between theory and practice the approach of
this thesis has been to use a formal notation, action systems, which can be
used to express the various information flow properties and yet still retain
some of the features of a popular, general- purpose specification language.
This combines suitability for defining and proving information flow properties
within a notation that provides equal support for defining the state and
events of a system, together with the facility for both data and operation
refinement. The case studies of the previous two chapters have shown how
action systems achieve this and give an indication of the way in which such
specifications can be structured and how levels of detail can be introduced
by stepwise refinement.

The work of this thesis can be seen as both an investigation of the use of
action systems for the development of secure systems in general and of the
development of one specific approach (deterministic security) in particular.
The former aspect is considered first.

9.1.1 T he use o f action system s

Action systems were chosen for this work both for their suitability in spec­
ifying state and events and for the relationship of the notation with CSP.
This connection, formalised as shown in Chapter 4, provides a semantics for
action systems in terms of CSP failures-divergences and infinite traces. This
close association between the two notations means that various CSP opera­
tors can be defined directly for action systems. This in turn allows properties
expressed in CSP to be defined for action systems, with the appropriateness
of the translation confirmed formally with respect to the failures- divergence

226

semantics. This is useful since, as outlined in Chapter 2, many information
flow properties have been expressed in terms of CSP.

The definition of action systems used here agrees with that of Butler [20]
and differs slightly from the approach of Back and Kurki-Suoni [7]. The
basic format of an action system is similar in the two views, but there are
some im portant differences. The approach taken by Back does not distin­
guish between internal and external choice. This is a vital distinction to
malce when considering information flow properties, and hence makes But­
ler’s approach much better suited to this type of security analysis. Another
aspect to consider concerns the difference in refinement between the two ap­
proaches. Back defines parallel action systems which are connected by their
shared state (rather than by similarly-labelled actions). This has the conse­
quence that components of parallel compositions cannot be refined separately
and independently, but have to be considered as a whole. The approach used
here places greater emphasis on the events, with shared labels but no com­
mon state. Components of a parallel composition may be refined in isolation.
This allows greater flexibility in development and a separation of concerns
in refinement.

9.1.2 Com parison w ith CSP

Since the close link with CSP has been stated as an advantage it is perhaps
necessary to ask what benefits the use of action systems brings. The main
motivation, as stated above, is that state and events should be given equal
treatm ent. The case studies of Chapters 7 and 8 show that action systems
can be successfully employed for the specification and development of general-
purpose systems, and the security constrdnts can be incorporated a« part of
an overall development. However, variables can also be used in CSP in an
algebraic approach, with variables appearing as program parameters as with
the process S T K of Example 22. Just as the Back approach to action systems
seemed to place greater emphasis on state, so the algebraic CSP approach
is still mainly focused on representing event interaction. State and events
must be refined separately in CSP, whereas the unified treatm ent provided

227

by action systems simulations justifies the refinement of an action system as a
whole. Also, tools such as FDR [105] which appear very attractive for formal
development of CSP specifications cannot deal with anything more than very
limited state components. Thus, when using such a tool, the specification
must be rendered in a format which takes this into account.

Another difference pointed out by Butler [20] is that in CSP the com­
munication events for a single channel may occur in many places within a
single process description. This can make reasoning about parallel composi­
tion more complicated than for action systems in which the composition of
a pair of actions is all that is required.

Following on from the general points of difference between action systems
and CSP, it is likely that the nature of an application may make it more suited
to one or the other. For example, there has been much successful work carried
out using CSP to model security protocols and to investigate their effective­
ness. Roscoe [108] models the nodes and communications medium as CSP
processes for a formal description of the Needham-Schroeder key exchange
protocol. To investigate the security of the protocol, the assumed abilities
of an intruder are also represented as a process operating in parallel with
the rest of the system. The properties of interest are confidentiality (using
deterministic security) and nondisruption (defined as a related property in
which intruder behaviour must not affect the services available to legitimate
users). Similar analysis is also carried out by Lowe [78, 79]. Schneider [119]
also models both network m d intruder behaviour with CSP, giving trace
and process algebra definitions of confidentiality and other key properties for
security protocols. This has led Schneider to develop a new library of CSP
theory of particular use in the proof of security properties [120]. The key
points for the suitability of this area of application to CSP are the need for
detailed consideration of sequences of events required for the analysis of se­
curity protocols, together with the comparatively simple state requirements.

It is perfectly possible to model security protocols in action systems.
This hcLS been demonstrated by Butler’s action system representation of the
Needham-Schroeder protocol [19]. This shows the feasibility of such mod­

228

elling and gives a well-structured and readable presentation of the protocol.
However, from the point of view of the security analysis of the protocol,
action systems offer few advantages over CSP

Whilst analysis of security protocols fits well in a predominantly event-
based notation, the case studies of Chapters 7 and 8 show that action systems
provide an expressive notation for general system specification. Action sys­
tems can be viewed as extending existing state-based approaches by making
clear the possible succession of events. This allows not only the information
flow analysis described here, but also extends the notation to permit the de­
scription of distributed systems whose components work together in parallel.
The state may be described and structured using existing notations (such as
Z or specification statements) which have already been shown to be beneficial
for this purpose.

It is often the case that security policies are formed from a combination
of different security models. For example, the project reported by Boswell
[16] uses Bell and LaPadula [11] for confidentiality, Clarke and Wilson [24]
for integrity and two-person rule. Other policies may be even more com­
plex and may be more naturally accommodated in a notation with explicit
reference to state. For instance, a Chinese Wall policy setting out groups
whose members may have conflicting interests can be described graphically
in Z or action systems. These concepts go beyond the very specific informa­
tion flow properties of confidentiality considered here, but are relevant to the
applicability of action systems to a broader class of security developments.

Whilst comparing action systems with CSP it is important to consider
not only the suitability of the specification but also the ease of development.
The emergence of the FDR tool [105] has proved very useful for CSP de­
velopments and has been used to good effect for security-related work as
described by Roscoe [108] and Lowe [78]. FDR is a CSP model-checker
which automatically verifies refinements in the failures-divergence semantics.
It can also be used for checking determinism, which means that the deter­
ministic security properties can be automatically verified. FDR has been
used to detect and discover a number of attacks on security protocols [78].

229

Further work continues to improve and extend FDR. Since the difficulty of
obtaining the proofs of properties necessary in a formal development is well-
known, the contribution of FDR is very welcome and makes use of CSP all the
more attractive. Schneider [119] states that his CSP work on protocols has
to some extent been motivated by the availability of model-checking tools.
However, there are still some practical barriers which mean that successful
use of FDR relies on careful preparation of the input specification. The main
problem is the necessity to limit the state space. Even though the data sets
required to specify a protocol may be small in number, the individual size
of each may be large. For example, there may be many possible messages in
the system and many possible keys. Roscoe [105] discusses ways for dealing
with this by reducing data sets to small number of representative values, or
by symbolic model checking. Research in this area continues, but current
limitations mean that only carefully chosen and prepared specifications can
be dealt with. Prospects for proof support for action systems are discussed
below.

9.1.3 Com parison w ith state-based approaches

Although state-based approaches have frequently been used for security spec­
ifications (for example, see [122] for a survey of the use of Z) the difficulty
of expressing interaction of events in such a notation has resulted in most
research in this area being carried out in notations where such concerns are
more naturally accommodated. However, there have been a number of ini­
tiatives to incorporate some of the lessons learned from information flow
analysis into a state-based approach. This section outlines these attempts.

Work carried out by Collinson [25] based on the approach of the ICL
Secure systems Group [5] uses Z to specify both the particular system under
consideration and a more abstract state machine version which outlines the
security constraints on the system. A correspondence must be made between
the two to show how tho transitions of the system match those of the state
machine. Proof of the security conditions is then carried out for the inter­
preted specification. As demonstrated by Collinson, this approach can catch

230

errors that occur as the result of a succession of operations. The approach is
for deterministic specifications only, and requires additional layers of specifi­
cation and proof to interpret the system as a state machine. The complexity
involved can hide important details. For example, although the specification
is required to be functional, no check is made that this is so. The error of
using a non-functional specification can vitiate the whole complex process
designed to show proof of security.

In Appendix A of his thesis, Graham-Gumming [47] considers secure re­
finement for an abstract data type (ADT). ADT’s are closely related to action
systems, comprising state, initialisation and events. In effect, action systems
provide a way of specifying the behaviour of an ADT. Graham-Gumming
relates ADTs to GSP using the “garage map” which creates the process that
first selects an initial state and then offers an external choice between events
whose precondition is true. This approach gives a specific process, rather
than the semantic characterisation of traces, failures and divergences used
here. The security condition used is Graham-Gumming’s noninterference
property (described in Ghapter 2). A Z specification viewed as an ADT can
be translated to GSP using the garage map and the resulting process tested
for noninterference. In contrast to the present approach, the security condi­
tion is not applied to the Z or the ADT but to the GSP translation. Also, no
distinction is made between the precondition and guard of an action. This
view differs from the usual interpretation of Z preconditions. It can also lead
to significant divergence between the possible refinements of a Z specification
and the possible refinements of the “equivalent” process.

Another approach to state-based specification of noninterference is de­
scribed by Bevier and Young [13] whose system model resembles that of
Goguen and Meseguer [43] with a set of states and agents acting on the
states. However, progress in the system is modelled as a function mapping
each state-agent pair to a set of possible resulting states. This consideration
of sets of behaviours rather than simple traces allows for nondeterminism in
the system. In contrast to the determinism approach, Bevier and Young give
definitions in terms of a user’s view of the system but leave the description

231

of such views as part of the development process for each individual system.
Since there can be many different definitions for a user’s view, the effective­
ness of the approach will depend upon a suitable characterisation of the View
function. This allows flexibility in defining the policies, but also introduces
the possibihty of insecurity if the views aie not well-chosen. The approach
provides a basic framework and any system description must be interpreted
in terms of the model’s components. The framework allows- a nondetermin­
istic system to be considered secure if the view of any low-level user could
have arisen without high-level activity. However, it does not deal with infor­
mation flow caused by observed refusals. The approach is also subject to the
Refinement Paradux.

9.1.4 T he determ inistic security conditions

The background to the development of the deterministic security conditions
was described in Chapters 1 and 2. The main attraction of these conditions
is the persuasiveness of the theoretical link between nondeterminism and
potential information flow as outlined by Roscoe [107]. Instead of trying to
categorise and limit specific interactions as some approaches have done, the
determinism conditions take a more abstract view. If the appearance of the
system to a low-level user is completely deterministic then no antions of a
high-level user can possibly have any effect. The way in which the appearance
of the system to the low-level user is defined is crucial to the definition of
security. The lazy and eager deterministic conditions are examples of this.
Further discussion on ways of abstracting the high-level user’s behaviour is
given by Roscoe [109] Chapter 12 along with associated applications in the
aiea of fault tolerance.

The deterministic conditions detect both existing interference from high
to low and possible interference which might arise through injudicious reso­
lution of under- specification. Hence these can be regarded as rejecting all
specifications which are potentially insecure. Because of this, the Refinement
Paradox does not arise for these conditions. A specification proved secure at
the top level can be refined to an implementation with no further security

232

checks needed and with no security-related constraints on the refinement
relation. Determinism is defined in a similar way in a variety of different
notations and so the definitions are not limited to a single language or a
specific approach. The conditions are stated in a concise and simple way and
the use of FDR has shown that automatic verification is possible for CSP
specifications.

Despite the theoretical advantages of the determinism properties it is still
necessary to question their suitability and practicality for general use. As
mentioned above, they have proved beneficial in the specific area of analysing
security protocols. The case studies of Chapters 7 and 8 attem pt to view the
deterministic approach in the wider context of general systems development.
When viewed in this way, some of the strengths of the approach also cause
difficulties. The main problem is that the conditions are so strong that, in
practice, no system could ever be expected to obey them. Even a limited
application to a secure subsystem is unlikely to conform strictly to these
definitions. This is a difficulty which must be faced by all the information
flow properties, but is of additional significance for the even more limiting
deterministic security conditions. It is certainly useful to have a theoretical
bcisis for deciding what constitutes (within the bounds set) total absence of
information flow. It has perhaps been thought in the past that total system
security was achievable. However, it is now more generally acknowledged
tha t no system which performs any useful work will be perfectly secure. The
task of defining a security policy amounts to deciding what the unacceptable
risks are. A useful security condition in this context is one which is flexible
enough to capture a range of different requirements, many of which may fall
short of the ideals of perfect security. It is possible for the deterministic
security conditions to be modified to adlow, for example, specific conditional
policies, but they are still very rigid and incorporating a large number of
exceptions may become unwieldy.

Another consequence of the strength of the deterministic security condi­
tions is the difficulties encountered in applying them at an abstract level. The
CcLse study of Chapter 8 illustrates that it is very useful to allow nondetermin­

233

ism at the top level of specification. The deterministic security conditions
may only be applied at the stage where all nondeterminism to the low-level
user is removed. This conflicts with the desirability of proving security (and
functional) properties of the system at as abstract a level as possible to make
proofs more manageable. In some systems there may be genuine nondeter­
minism (such as the possible loss of messages between nodes of a network).
Another example of this was seen in Chapter 8 where it was necessary at the
top level to model queues of messages as bags. For a distributed refinement,
it is not possible to give a specific ordering to the receipt of messages.

There may be many situations for which information flow analysis and
hence the deterministic security properties are unsuitable. If covert channels
are not an issue then simple access controls may be sufficient. There are also
situations in which the complexity of the policy or the need for specialised
requirements may weigh against the use of the deterministic security con­
ditions. The use of action systems in no way limits us to a deterministic
approach, and further applications are considered below in Section 9.3.1. As
shown in the case study of Chapter 8, the combination of state and events
in action systems allows a system to be viewed in a variety of ways. Also,
different requirements pertaining to both aspects may be stated and proved.

9.2 Conclusions

This section lists the main points arising from the work of previous chapters,
highlighting the contribution made by this, research.

• The main contribution of the research is the definition of deterministic
security properties for action systems. This is achieved by extending
the existing theory of action systems with a definition of determinism
which is shown to be equivalent to the CSP concept of determinism.
Three basic security conditions are defined and these are again shown
to be equivalent to their CSP counterparts. Using the results obtained
here, it is possible to construct security policies and carry out the de­
velopment of secure systems in a novel way using action systems. This
work extends the results of Roscoe [107] and Butler [20].

234

• Using action systems has facilitated an approach which gives equal con­
sideration to both state and the interaction of events within a system.
Z has previously been commonly used in security specifications, but
capturing security flow properties in a state-based language requires
additional structure. The approach here accommodates the same de­
tailed, structured specification of state, yet incorporates information
about event interaction which can be used to define interference be­
tween users. This improves on the situation often found where some
security aspects are ignored or, as with the Theta specification [54],
where they are treated in an ad hoc fashion.

• The work here explores a pragmatic approach to the development of
secure systems. The case studies show that action system specifications
are suitable for use with reasonably large examples, allowing state to
be structured in a number of ways (such as with Z schemas or specifi­
cation statements) and combining descriptive clarity with the capacity
for formal analysis of security properties. This again extends the work
of Roscoe et al. [107, 110] where manipulation of complex state de­
scriptions would be difficult.

• Action systems provide a formal marriage of state and events which,
through simulation, allows both data and operation refinement to be
carried out together. A state-based approach has often been preferred
for general systems development, and this work allows the consideration
of security to be brought into that process. CSP allows an algebraic ap­
proach, but this does not deal as directly with the state. Alternatively,
Z is widely used for state-based specifications, but there are difficulties
here in interpreting the actions as events. For example, interpreta­
tion of the preconditions will affect the security of the system. They
could be viewed in a similar way as the guards of actions, but then the
traditional weakening of preconditions through refinement would not
preserve this correspondence. The approach here provides a simpler
solution than, for example, the method of interpreting Z specifications

235

in terms of a secure system model [25]. Also, it does not rely on placing
non-standard (and hard to verify) constraints on an existing language.
Other key concepts such as the meaning of determinism for a Z spec­
ification also need to be made clear. These issues and the possible
incorporation of Z operation schemas within action systems will be fa­
cilitated by the weakest precondition semantics for Z recently proposed
by Cavalcanti and Woodcock [23].

• Proof of information flow properties can be difficult. The deterministic
properties for action systems can be hard to verify directly. This thesis
introduces some novel approaches to these proofs to make the task more
manageable. The technique of defining a simple deterministic system
of which the system under consideration is a refinement was used in
Chapter 8. This looks promising since it reduces the information flow
proofs to a proof of refinement. This is an area where previous work
on action system refinement can be of assistance and for which tool
support is likely to become available. The approach bears similarity to
the FDR method of proving determinism by resolving nondeterministic
choice and showing equivalence. It may be possible to exploit this
technique to simplify the verification task for action systems.

• An approach such as this has clear advantages over a route which in­
corporates both state and events by translating between them, such as
tha t demonstrated by Roscoe et al. [110]. A development method which
requires translation steps is particularly prone to the introduction of
errors. It introduces additional stages to the process and requires de­
velopers to be familiar with a number of different notations.

• Whilst confirming the benefits of the approach, the work here also iden­
tifies a number of difficulties. For the deterministic properties them­
selves, the greatest difficulty arises from the debarring of all nondeter­
minism from the specification. This limits the suitability of the defini­
tions. For action systems, refinement conditions can be very difficult
to prove. Further work is needed in this area.

• The combination of state and events allows for security policies to be
formed from a variety of different components. For example, in Chap-

236

ter 8 a deterministic property for information flow is combined with
restrictions on the state. This could be extended to incorporate other
aspects of security, such as integrity and authentication. The need for
this has been noted by a number of authors, for example Boswell [16].

• Use of the deterministic security properties avoids the problem of the
Refinement Paradox which has continued to be a difficulty in the de­
velopment of secure systems and is inherent in nearly all the definitions
described in Chapter 2. If such a property can be proved at an abstract
level there is no need for further validation after refinement. This thesis
shows that such an approach is theoretically valid for state based sys­
tems also. The work here considers the practicalities of the approach
as well as soundness of the theory. The case studies reveal that in
practice it is often not possible to remove the nondeterminism from the
top-level specification.

• The work here brings together results from a number of different areas,
combining aspects of action systems, CSP, Z, specification statements
and weakest precondition. The diversity of approach and notation in
computer science can cause complication, as evidenced by the many
different information flow properties reviewed in Chapter 2 and the
difficulty of comparing them and applying them. Here, we bring nota­
tions together to combine some of the most useful aspects of each.

• The use of action systems allows parallel decomposition of a state-based
specification, in which each component can be refined separately. The
case studies have concentrated on various issues of networks. This area
of application, where security considérations are currently of particular
concern, is shown to be well- suited to an action system style of specifi­
cation. The case studies suggest that action systems are a good choice
for the state-based description of distributed systems.

• The case studies also show the importance of detailed representation of
state. Chapter 7 considered the effect of encryption at various levels.

237

showing the consequences this has for the security of the system. For
example, the layering of messages sent via a communications protocol
can be expressed very clearly using the type system Z. The correct rep­
resentation of state is thus vital to the security of the system. It would
be possible to use a modified Z type-checker to provide a preliminary
check on the specification.

Defining the deterministic properties for action systems shows that the
notation is well-suited to dealing with information flow properties. The
notation does not restrict us to any one specific approach and other
information flow properties can be defined as required. Indeed, since
action systems deal directly with both state and events they provide an
ideal notation in which to compare properties from a variety of different
notations (see below).

9.3 Future work

The work of this thesis suggests a number of further directions for research,
in both practical and theoretical aspects of security. This section identifies
some of these.

9.3.1 D efining other security properties

The deterministic security conditions from CSP have been shown to be
equally applicable to action systems. However, there are other information
flow properties which we may wish to consider and these could be accom­
modated in action systems in a similar manner. For example, as described
in Chapter 2, in [47] Graham- Cumming proposed a noninterference condi­
tion based on the user’s inability to distinguish between different states of
the system. The definition is in CSP, but to represent the user’s view, the
concept of global state is introduced based on equivalence classes formed by
trcLces. The idea is common to other noninterference definitions too: after
any trace, the state must appear the same to a low-level user as it would had

238

the trace contained no high-level actions.
In action systems, the explicit presence of the state allows a direct assault

to be made on this sort of definition. However, there is no need to try to
partition the state to achieve a view. In an action system, values of state
variables are revealed by the enabling of actions. So for example, an action
to output the value of a state component will be enabled only for the current
value. This leads to the following definition of noninterference in which tr |%
represents the trace tr with all actions from the set X removed.

D efin ition 39 In an action system, the set of actions H is said to be non­
interfering with the (disjoint) set L if for each trace tr, each ai ^ L and each
o>H ^ H , tr \h is also a trace and:

wp{tr,gd ai) = wp{tr a^)

That is, it is possible for a trace to enable a low-level action if and only if the
same trace without H actions can also enable it. Although H and L must
be disjoint they need not partition the actions of the system.

As in [47] it is possible to provide an unwinding theorem, giving sufficient
o u u J iiio u s for D efin ition 39.

T h e o re m 14 I f for each trace tr, a^ E H , ai E L and e ^ H:

gd ai) = gd ai

and

wp{tr,gd ai) = wp{tr \H,gd ai)
^ w p (tr ^ { e) ,g d aL) = wp{{tr \HY{e),gd ai)

then H is noninterfering with L.

P ro o f by induction on length of traces.
This is a strictly weaker condition than the determinism one which entails

that for a trace otr in the obscured system:

wp{otr,gd ai) = wp{otr,gd ai)

239

Since high-level actions in the obscured system may skip at any point, their
presence or absence can have no effect on enabling gd a^. Hence, for the
equivalent trace tr in the original system:

wp{tr,gd ai)

= wp{otr,gd ai)

= wp{otr \n,gd ai)

= wp[tr\i,gdaL)

The property is not in general preserved by refinement.
There may well be uses for this and other information flow properties

for which it would be useful to provide action system definitions. The large
number of such properties makes it very difficult to see the similarities and
differences between them and to compare their suitability for a particular
purpose. A useful direction for future research would be to define the various
properties in a common notation to allow this comparison and assessment
to take place. As discussed above, some categorisation of results has alreaffy
been attem pted but this has been purely event-based and does not provide
motivation for choice between the available properties. The use of action
systems for this purpose would be an interesting area to explore and could
provide a future doctoral research topic.

9.3.2 Security m odelling

The work of Chapter 7 shows that system modelling for a secure system has
moved away from the approach of a single policy (such as multi-level security)
which can be applied throughout the whole system. Particularly in the area of
network security, components are likely to be more diverse, with a move from
system-wide security to a more individual view in which each user or local
network is responsible for their own security. Users may decide to rely on a
particular encryption algorithm or to receive assistance from other authorities
on authentication, but the ultimate decisions arc taken locally. This is an
approach explored by Bull et al [42]. With this view of the system, the
way in which security is assessed will also be somewhat different. A clear

240

statem ent needs to be made about what constitutes confidentiality. In the
same way that the development process for safety-critical systems includes
a risk analysis, so the development of a secure system needs to include a
phase of recognising possible illegal flows and deciding what (if anything)
should be done. These issues are important ones for the development of
secure systems and it would be of interest to develop them further. The use
of action systems for this purpose is one possible approach, and it would be
useful to investigate these aspects and their rôle in the overall development
process.

9.3.3 Further exam ples

The caae studies of Chapters 7 and 8 provide an introduction to the study
of several aspects of network security. It would be useful to extend this work
to consider other specific project developments in this area. Further work
is needed to establish the practicality of action systems and the suitability
of information flow properties. Practical applications are needed to test the
theory and to show how it fits into the overall plan of system development.
This type of work could form the basis for a larger-scale research project
involving collaboration with industrial partners working on the development
of secure systems.

9.3.4 A ction system s and proof

One of the biggest problems with formal development techniques is the com­
plexity of proofs. This is no exception for action systems, and the case studies
of this thesis have shown that proof of determinism can be very difficult. The
technique of reducing verification of determinism to that of a refinement helps
the situation, but proof of refinement can itself be problematic. The diffi­
culty is two-fold. Firstly, the refinement conditions in their general form are
simple to state but inherently difficult to verify. Where simplified conditions
apply, the situation is mafle much more tractable. Further work needs to be
done in providing rules for action system refinement. The second problem

241

is that even relatively simple proofs are tedious by hand. Tool support is
needed to make the development process feasible. There axe several possible
avenues to explore. Firstly, the B-tool has already been used by Walden and
Sere [130] for refinement of the Back style of action systems. Butler has also
explored the relationship of the CSP style of action systems with abstract
machine notation [2]. So it is likely that use of the B-tool could be beneficial.

FDR has proved very successful with CSP verification, and it may be that
ways can be found of representing state which make it applicable to general
systems. However, because of the problems of state-space explosion it is not
likely that such developments will occur in the neax future.

Another option is the use of a refinement editor which could deal with
actions written in the specification statement style. Such a tool is currently
under development by a team based at Abo Akademi, Finland [21]. To be
of most use, this needs to be able to deal with refinements of whole systems
as well as of single actions. This, combined with a richer set of refinement
rules, could support a refinement calculus approach in which specifications
axe developed through small, easily proved steps. Given the difficulty of
proving large steps of refinement, this may well be a fruitful axea to explore.

242

A ppendix A

A C S P reference

Communicating sequential processes (CSP) were first described by Hoare
[59]. Processes are defined in terms of the (atomic) events in which they par­
ticipate, with a process definition outlining the possible sequences of events
for that process. The set of events in which a process may engage is referred
to as its alphabet. A trace of a process is a possible sequence of events for
tha t process. Processes communicate by synchronising on common events
in their alphabets. If an infinite sequence of internal events can occur the

process is said to diverge.
The following CSP notation is used in this thesis. For any processes P

and Q, and set of events A:

a (P) the alphabet of P , that is, the set of events in which P

may participate
A* the set of all finite sequences of elements of A
A^ the set of all infinite sequences of elements of A

(races (P) the set of finite traces of P
refusals(P) the set of events of a (P) in which P may decline to engage

initially
fails(P) the set of pairs ((r, R) where tr is a trace after which

all events in R may be refused
divs(P) the set of traces of P after which P may diverge
p Q trace equivalence of processes P and Q
P =FD Q failures-divergence equivalence of processes P and Q

243

a ^ p
a : A —> P

P deterministic

P \ \ \ Q

P \ A

RUN A

P / t

P \ \ Q

p y g

POQ
P n g
STOPa

HAVOCa

FINITEa

t r A

event a, then P

the (external) choice of event a from A, then P
P is non-divergent and cannot refuse any events in which it
might engage, that is, for each trace tr and each x G a (P):

divs{P) = 0 A

tr^{x) G (races(P) ((r, {i}) ^ fails{P)
the interleaving operator which joins processes to operate
concurrently without direct synchronisation. The tranes
of P III g consist of all arbitrary interleavings of P and Q
the hiding operator which conceals all occurrences of events
in A. Traces of P \ A are traces of P with A events removed.
Hidden events are thought of as taking place internally
whenever the possibility arises
the process always ready to participate in any event from H:

RUNa = a : a —> RUNa
the process which behaves as P after engaging in trace (
the parallel combination of processes P and Q synchronising
on events from a (P) fl ot{Q)
the parallel combination of processes P and Q synchronising
on events from A.
external choice between P and Q
nondeterministic choice between P and Q
the process with alphabet A which refuses to participate
in any event.

the most nondeterministic divergence-free process:

HAVOCh = STOP n { x : H -> HAVOCh)
similar to HAVOCa but with no infinite traces. It may
be defined:

FINITEa = n {g„ | n g M}
where

Qo = STOP and Qn-\-i = o : A — > g „
trace (with all the events of set A removed

244

the set of events in which P may engage initially

245

A ppendix B

W eakest precondition and basic
notation

W eakest precondition and the guarded com ­
m and language

The weakest precondition for statement S to establish the condition post is

written:

wp{S,post)

It is the predicate describing the set of states in which execution of 5 is
guaranteed to terminate in a state satisfying post.

A predicate may be viewed as a set of states. In the context of some
non-empty set of states S, predicate a is a subset of S. For two predicates a
and p to be equivalent, written a = f3 the two sets of states must be equal.
Predicate a entails predicate 13, written a ^ if the states of ot form a
subset of the states of (3.

A function from predicates to predicates is referred to as a predicate trans­
former. Predicate transformer / is monotonie if whenever a ^ P then it

follows that f{a) ^ f (p) .
If f is a predicate transformer then predicate X is a fixed point of f if:

f (X) = X

246

The least fixed point of / is denoted:

l i X * f (X)

That the least fixed point exists for monotonie / for the set of all predicates
with entailment ordering ^ is a consequence of the Knaster-Tarski Theorem
[129).

For predicate ot the expression a[e/x] denotes substitution of e for ea^h
free occurrence of x in a .

Dijkstra’s guarded command language [31] defines a programming lan­
guage in terms of the weakest precondition of each construct. The basic
commands used here are defined as follows.

wp{skip,a) = a

wp{ahort^a) = false

iüp(sl; s2 ,a) = «;p(sl, u;p(s2,a))

wp(x := e ,a) = a [e /i] for well-defined e

The alternative command is written:
if 9 i - ^ Cl

[] 92 C2

|] 9n Cn

Û

If this is denoted by IF then it can be defined for well-defined gii

wp{IF, a) = {3 i : 1 .. n • Qi) A Çii : 1 . . n • gi wp(ci^a))

In addition to the basic assignment statement, nondeterministic assignment
is also used. If 5 is a set then x :£ S assigns x some value of S. Its weakest
precondition is:

wp(x :6 5 ,a) = s ^ 0 A (Vs : 5 • a [s / i j)

S i m i l a r l y ,

wp{x :Ç 5 ,a) = (Vi : P 5 • ot[t/x])

247

Specification statem ents

A specification statement consists of a precondition prc, a postcondition post
and a frame x of variables. It is written:

X : [pre^post]

From a state satisfying pre the statement assigns values to x to establish
post. Occurences of xq in post refer to the original values of x. The weakest
precondition of the specification statement is:

wp{x : [pre,pos^],a) = pre A (Vr • post => o)[x I xq])

So, for example, the guard of action:

I : [s ^ 0 ,r G s] (1)

is true. Note that while weakening the precondition represents a valid re­
finement for a specification statement it is not sufficient for ciction system
refinement. This is because action systems are also concerned with possible
sequences of actions. So, for example, since the guard of:

X : [(rue, r G s] (2)

is 5 ^ 0, £kction (2) could not be used to refine action (1) because the condition
on guards would not be met.

A useful variation is the specification with precondition omitted:

X : [pos(]

This is used by both Morgan [94] and Butler [20] but their definitions differ.
We adopt the approach of Butler [20] where :

X : [post] = X : [true^ post]

since this is usually the most convenient interpretation for use with action
system specifications. It has the useful property that:

wp{x : [post]^a) = (V i • post => CK)[r/%]

248

and hence:

gd[x : [pos(]) = (3 a: • post)[xlxo]

For a system with invariant IN V we follow the convention of allowing input
action:

ac tio n a in i? : T : —
X : [pos(]

to represent:

X \[x Ç: T A INVq a IN V A post]

and allowing output action:

ac tio n b o u t o\ : T : —
o\,x : [pos(]

to represent:

o!, a: : [o! G T A I N V q A IN V A post]

where:

I N V q = I N V [vq/ v] for state variable v

249

A ppendix C

A Z reference

Z [125] is a specification notation which describes the state of a system
explicitly. Operations are defined by describing their effect on the system
state. Z encompasses a range of (mainly standard) mathematical and logical
notation for expressing the typed set theory used in its definitions. It also
malces use of a structuring mechanism, known as the schema calculus, which
allows the description of both state and operations to be built up in a modular
fashion. Z and its use are described in a number of text books (see [104,
125, 133] for example). The list given below summarises the notation used

in this thesis.

Sets and relations

[T] introduces T as a basic type of the specification
P X the power set of the set X , that is, the set of all subsets of X

0 emptyset
X Ç: X z is an element of set X
X Q Y set % is a subset of set Y
X (Z Y set % is a proper subset of set Y
X — Y set % minus set Y
X \ J Y the union of sets X and Y
% n y the intersection of sets % and T

X the generalised union of all sets in X
p j X the generalised intersection of all sets in X

250

X X Y the Cartesian product of sets X and F , that is the set of all
pairs, (a;,y), with x e X and y G F

M the set of all natural numbers, {0 ,1 ,2 ,...}
IM1 the set of all positive natural numbers, {1 ,2 ,...}
(1 .. n) the set of all numbers from 1 to n inclusive
x l a variable name ending in ? represents an input
y! a variable name ending in ! represents an output
X* a variable name ending with a dash represents the state of the

variable after an operation has been performed on it
X Y the set of all relations between X and F , where eanh relation is

a set of ordered pairs:
X Y = = P { X x Y)

X \-y y X maps to y in some relation; alternative notation for (r , y)
dom R the domain of the relation R defined ioi R \ X <-> Y as:

{x \ X \ {3y : Y • X y E A)}
ran R the range of the relation R defined ioi R : X Y as:

{y : Y \ {3x : X • X y Ç: R)}
R* the reflexive transitive closure of the relation R: if R^ represents

the iteration of R n times, then:

R* = U {n : IM • Æ"}
X Y the set of all partial functions from % to y defined:

{R : X Y \ {VX : X \ y ,z : Y •
x h - ^ y E i R A x y - ^ z G R = > y = z}

X Y the set of all total functions from % to y defined:
{ / : X y I do m / = X)

Logical expressions

-I P negation of P
P A Q conjunction of P and Q
P W Q disjunction of P and Q
P Q P imphes Q
Wx : T \ P • Q universal quantification - equivalent to:

251

y x : T \ P ^ Q
3 x : T \ P • Q existential quantification - equivalent to:

3 x : T \ P A Q

Sequences and bags

seq X the set of all finite sequences of elements of X :
iseq X the set of all injective sequences of elements of X : tha t is,

no element occurs more than once
the sequence with elements xi to

s l"s2 concatenation of sequences s i and s2
last s the last element of the non-empty sequence s
fro n t s all but the last element of the non-empty sequence s
bag X the set of all bags of elements of X : each element in the bag may occur

a finite number of times, thus:
b agX = = % -w IMi

j i i . . . Xa| the bag with elements xi to %%
X in b 5 is an clement of bag b

61 -|- 62 addition of bags 61 and 62
61 — 62 subtraction of bag 62 from bag 61

Schem as

A Z schema is a named unit bringing together a collection of variable dec­
larations and a predicate relating the variables. For example, a schema 51
may be defined:

_ 5 1 __

X : N

y : p W

X £ y

252

The name of a previously-defined schema may be included in a schema defi­
nition, in which case the declarations and predicate will be incorporated. For
instance:

_ 5 2 __

5 1

z : IM

z ^ y

is equivalent to:

Free ty p e definitions

A free type definition defines a new named type from the existing types of
the specification. For example, if COLOUR and SHAPE are existing types
of a specification then:

P R O P E R T Y :— col{{COLVUR))
I shai^SHAPEjj

describes an overall type, PROPERTY^ constructed from the two existing
ones.

O rderings

A partial order is a relation R : X X which is:

reflexive S/ x : X • x R x
antisymmetric V z , y : % # % ; R y A y R x ^ x = y
transitive Vz, y ,z : % • x R y / \ y R z ^ x R z

253

A linear order is a partial order such that:

V z, y : X % x R y y y R x

254

A ppendix D

Proofs

T he One Point R ules

The One Point Rules are logical laws which are useful in the type of proofs
carried out here. The first of these is for existentially quantified formulae. If
part of the quantified statement gives an exact value for the quantified vari­
able, then the quantification can be removed, replacing the variable wherever
it appears.

T h e 3 O ne P o in t R u le

(B x : S 9 p A x = t) = t e S A p[t/x] [z n.f.i. i]

The side condition is the requirement that z is not free in L A similar rule
holds for universally quantified expressions.

T h e V O ne P o in t R u le

(V z : 5 # z = f A p) = f G 5 A p[^/zj [z n.f.i. t]

Again, the side condition that z is not free in t is required. A variant on this
is the equivalence:

(y X : S • X = t ^ p) = t ^ S y p[t/x] [z n.f.i. t]

This follows from the 3 One Point Rule.

255

Proofs for Chapter 6

P ro o f o f refiaem ent for E xam ple 47

Each condition of Definition 34 is checked in turn.
1. For the left hand side (LHS):

wp{s := 0; n :G N , a) = (Vn : N • a[0/s])

For the right hand side (RHS):

wp{m : =0, (3 s : P M; n : S • s = (l . . m) A n = mA a))

= wp{m := 0, a[(l .. m), m /s, n]) [One point rule]

= a [0 ,0 /s, n] [m not free in a]

LHS ^ R H S y so condition 1 holds.

2. Considering action al:

LHS = (3 s : P IM; 7% : IM • s = (l . . m) A n = mA wp{Al7ai,ct))

= (3 s : P IM; n : I M#s = (l . . m) A n = m A s ^ N . A

(Vn : (N — s) • a[s U {%}/&])) [Defn. of wp\

= (Vn : (IM — (1 .. m)) • a [(l .. m) U {»}/s]) [One point rule]

RH S = wp[B2a\^ (3s :P IM; n:IM • s = (l . . m) A n = mA a))

= wp[m := m -f l,o;[(l .. m), m /s, %]) [One point rule]

= a [(l .. m + 1), m + 1/s, n] [m not free in a]

LHS =) RHS since m + 1 G (IM — (ran i)), so condition 2 holds for aL
Similarly for a2:

LHS = (3 s : P IM; n : IM • s = (l . . m) A n = mA wp(Xl7g2, û:))

==(3s : P IM; n:IM # s = (l . . m) A n = mA

(s ^ 0 ^ (Vn : s • a[s — {n}/s]))) [Defn. of wp\

= (1 .. m) ^ 0 =»■ (Vn : (1 .. m) • a [(l .. m) — {n}/s])[One point rule]

256

RHS = wp{B2,2, (3 s : P N; n : N • s = (1 .. m) A n = m A a))

= m ^ 0 =C «y(m := m - 1, a [(l .. m), m /s , »]) [One point rule]

= m 5̂ 0 => a [(l .. m - l) ,m - l/« ,n] [m not free in a]

LHS ^ R H S since m - 1 6 (1. . So Condition 2 holds for a2.

3. Finally we consider the guards. For a l:

(3 s . P IM; n : IM • s = (l . . A n = m A true)
= true

For a2:

(3 s . P IM, 7i : IM»5 = (1. . m) A n = m A s ^ ^ 0)

= (1. . m) ^ 0

= m ^ 0

P ro o f o f refinem ent for E xam ple 48

The conditions of Definition 34 are checked.
1. This is the initialisation condition.

LHS = wip(sl := no; k l :G KEY^ a)

= {\/kl : K E Y e a[no /sl])

RH S = wp(s2 := no; k2 :£ K E Y ,{ 3 k l : KEY-, s i : STATUS . R A a))

= (3 *1 : KEY-, s i : STATUS • s i = no A a) [s2, k2 n.f.i. a]

^ { 3 k l - . K E Y , a [n o ! s l]) [One pt. rule]

Therefore, since K E Y is assumed nonempty: LHS ^ R H S .

2. For startsesaion:

LHS s (3 i l : KEY-, s i : STATUS • A

257

wp{sl = no —y s i := yes, a))

= { 3 k l : KEY; s i : STATUS • (s i = s2) A

(s i = s2 = send => t l = t2) A (s i = no => a[yes/sl]))

= (3 All : K E Y • (s2 = send t l = A?2) A

(s2 = no a[yes/sl]))

RHS = wp{s2 = no s2 := yes; k2 :G K E Y ,

(3 t l : K EY; s i : STATUS • R A a))

= s2 = no => (3k l : K EY; s i : STATUS • s i = yes A ot)

= s2 = no => (3 &1 : K E Y • o:[yes/sl])

Therefore LHS ^ R H S .

For sendkey:

LHS = { 3 k l : KEY; s i : STATUS • R A

wp(sl = yes —> All :6 K E Y ; s i := send, a))

= (3 All : K EY; s i : STATUS • A

(s i = yes => (VAil : K E Y • a[send/sl])))

= (3 ^ 1 : K E Y # (s2 = send => &1 = Ai2) A

(s2 = yes => (VAil : K E Y • a[send/sl])))

RH S = wp(s2 = yes —*■ s2 := send,

(3 All : KEY; s i : STATUS • R A a))

= s2 = yes ^

(3 All : K E Y ; s i : STATUS • s i = send A Ail = Ai2 A a)

= s2 = yes =» a[send, Ai2/sl, Ail])

Again, since K E Y is nonempty: LHS ^ H H S .

3. Finally the condition on guards must be checked for each action.

258

For startsession:

LHS = { 3 k l : KEY; s i : STATUS • R A s i = no)

= (3 k l : K E Y • s2 = no)

= s2 = no

= RHS

and similarly for sendkey.

All the refinement conditions are satisfied and hence:

KeyServerl KeyServer2

P ro o f o f refinem ent for E xam ple 49

The conditions for Definition 35 are checked.
1. Initialisation:

LHS = wp{s2 := no; k2 :G K E Y , a)

= (VA:2 : K E Y . afno/s2])

RHS

= top(sl := no; :€ K E Y ,{ i k 2 : K E Y ; s2 : STATUS # A => a))

= (V&l : K E Y . (VA2 : K E Y ; s2 : STATUS # s2 = no => a))

= (Vk2 : K E Y • a[no/s2]) [V One pt. rule, k l n.f.i. a]

Therefore LHS ^ R H S .

2. For startsession:

LHS = (Vifc2 : KEY; s2 : STATUS • R =>

wp{s2 = no —y s2 := yes; k2 :G KEY,n))

= (V&2 : KEY; s2 : STATUS • R

(s2 = no (VA;2 : K E Y # a[yes/s2]))

259

= {\ fk2: K EY; s2 : STATUS •

(s i = no A s2 = no) =» (VA:2 : K E Y • a[yes/s2]))

= (VAi2: K E Y; s2 : STATUS •

s 2 = no (s i = no => (V A;2 : K E Y • a[yes/s2])))

= s i = no (VAi2 : K E Y • a[yes/s2])

= iüy(sl = no —> s i := yes,

(VJfc2 : üTE-y; s2 : STATUS • R = ^ a))

= s i = no => (Vt2 : s2 ; STATUS • s2 = yes a))

= s i = no => (VA;2 : K E Y • o:[yes/s2])

Therefore LHS ^ R H S .

For sendkey:

LHS = (V&2 : K E y; s2 : STATUS • R = ^

wp{s2 = yes —> s2 := send, a))

= (V t2 : iTF?y; s2 : STATUS • ((s i = s2) A

(s i = s2 = send ^ k l = k2)) =>

(s2 = yes => a[send/s2]))

= (V t2 : K E Y • (s i = send => &1 = t2) A (s i = yes => a[send/s2]))

— {Wk2 : K E Y • s i = send => &1 = &2) A

(V t2 : K E Y • s i = yes a[send/s2])

RÆ9 = iyp(sl = yes —> t l :G KEY; s i := send,

(V t2 : K E Y ; s2 : STATUS • R = > a))

= s l = yes => w y(tl :G A :Ey,(V t2 : A:Ey; s2 : STATUS •

(s2 = send A &1 = A:2) => a))

= s i = yes (Vifcl : K E Y # (VJb2 : % Ey; s2 ; STATUS •

(s2 = send A t l = A:2) a))

= s i = yes => (VAll : K E Y • a[send, Ail/s2, A:2])

260

= s i = yes => (Vt2 : K E Y • a[send/s2])

Therefore LHS ^ R H S .

3.For backwards simulation the condition on guards requires each subset of
guards to be checked. Here there are 4 possible sets:

{}, {startsession}, {sendkey}, {startsession, sendkey}

For {}:

LHS = (Vt2 : KEY; s2 : STATUS • R ^ gd{KeyServer2^y))

= (Vt2 : KEY; s2 : STATUS m R ^ false)

= {\ /k2: KEY; s2 : STATUS • ^ R)

= false

= gd{KeyServerlQ)

= RHS

Therefore LHS ^ R H S .

For {s^ar^esston}:

LHS

= (VA;2 : K EY; s2 : STATUS • R => gd{KeyServer2^startsc3sion}))

= (Wk2: KEY; s2 : STATUS #

((s i = s2) A (s i = s2 = send => t l = t2)) => s2 = no)

= (y k2 : K E Y • (s i = send k l = k2) ^ s i = no)

= (3k2 : K E Y • s i = send k l = k2) s i = no

= (si = send ^ 3k2 : K E Y • k l = k2) => s i = no

= (si = send true) => s i = no

= s i = no

— 9 ^ { , ^ ^ y ^ ^ ^ ^ ^ ^ { s i a r t a e 3 a i o n })

= RHS

261

A similar argument holds for the remaining two sets.

So with the rules for backwards simulation:

KeyServer2 Ç KeyServerl

P roof of refinem ent for Exam ple 50

Checking the conditions of Definition 36: / / 1. Initialisation:

LHS = vjp(AbsCounti,a) = wp(skip,a) = a

RHS = wp{ConcCounti * {resef},a)

= wp{ConcCounti; IT^stuot)

= wp(ConcCounti\ (skip preset), a)

= wp(ConcCounti\ skip,a) [Removing miraculous branches]

= wp(daysleft := 100, a)

= a[100/days/e/t] = a [daysleft n.f.i. a]

Therefore LHS ^ R H S ,

2. Correctness:

LHS = wp(true —> skip, a) = a

RHS = v)p{daysleft > 0 —y daysleft := daysleft — 1 * {reset},a)

= wp((daysleft > 0 —> daysleft := daysleft — 1);

(skip I daysleft = 0 —► daysleft := 100), a)

= (daysleft > 0 =» a[daysleft — 1 /daysleft]) A

(daysleft = 1 => a[100/days/e/t])

= daysleft > 0 => a [daysleft n.f.i. a]

Therefore LHS ^ R H S .

262

3. Applicability:

LHS = true

RHS = gd^resetyidaysleft > 0 —> daysleft := daysleft — 1)

= wp{IT{reaei}i daysleft > 0 daysleft := daysleft — 1, true)

= wp{skip I reset, daysleft > 0)

= daysleft > 0 V daysleft = 0

= true

So:

AhsCount ConcCount

P ro o f of refinem ent for E xam ple 51

1. For the initialisation:

LHS = wp{MultiStacki,a)

= (V5 • lanstack = {()} => a)

RHS = wp(ConcStacki, (3 S • R A a))

= (V CS • ran cclass = CLASS A ran cstack = {{)} =>

(3 5 • (Vc/ : CLASS • stack cl = cstack (cclass~^ cl)) A a))

= (3 5 • (V c/ : CLASS • stack cl = {) A a))

= (3 5 • ran stack = {()} A a)

If empstack denotes the abstract stack system with the stack for each clas­
sification empty, then, by the One Point Rules, both branches above are
equivalent to a[empstack/stack] and so LHS = RHS.

2. Correctness for push: for inputs iu : USER; ic : CLASS; id : DATA the
abstract push action is:

{clear iu) < ic —y {stack ic) := {stack ic)"{id)

263

output action
error {clear iu) < ic —> skip
empty {{clear iu) < ic) A {{stack ic) = {)) —> skip

Rep{d) {{clear iu) < ic) A {{stack ic) ^ ()) A {last{stack ic)) = d)
—y skip

F ig u re D .l Abstract top actions for specific outputs

and the concrete version is:

{clear iu) < ic —> {cstack{cclass~^ tc)) := {cstack{cclass~^ ic))"(id)

Using these:

LHS = {clear iu) < ic =>• a[{cstack{cclass~^ ic))({stack tc)]

= RHS

For pop the reasoning is similar with both LHS and RHS equivalent to:

{clear iu) < ic
{{{c3tack{cclas3~^ ic)) = () a) A
{{cstack{cclass~^ ic)) ^ () =>

a[front{cstack{c c l a s s ic))j{cstack{cclass~^ tc))]))

Finally, for the bi-directional channel top with inputs tu : USER, ic : CLASS
the individual actions depend on the outputs in each case. Figure D .l shows
this for the abstract specification. The concrete actions follow a similar
pattern and each is equivalent via the retrieve relation to its abstract coun­
terpart. Therefore LHS ^ R H S .

3. For each action the LHS of the guard condition is equivalent to the RHS.
This shows that:

MultiStack C ConcStack

264

P roof o f refinem ent for Exam ple 52

There are no internal actions and so the basic refinement rule of Definition 34
can be used.

1. Initialisation.

LHS = wp{sess := null, a) = a[null/sess]

RHS

= wp{psess, Asess := null, null, (3 sess : STATUS; k ; K E Y # A «))

= (3 sess : STATUS', k : K E Y • k = pk A sess = null A a)

[psess, Asess n.f.i. a]

= a[null, pk/sess. A:]

Therefore; LHS ^ RHS

2. For startsess:

LHS = (3 sess : STATUS', k : K E Y #

R A top (sess = null —y sess := ready,a))

= (3 sess : STATUS; k : K E Y • R A (sess = null a[ready/ sess]))

= (3 sess : STATUS; k : K E Y • (R A sess = null A oi[ready(sess]) V

[R A sess ^ null))

= (3 sess : STATUS; k : K E Y • R A sess = null A a[ready/ sess]) V

(3 sess : STATUS; k : K E Y • R A sess ^ null)

= (3 sess : STATUS; k : K E Y • k = pk A sess = null A psess = null

A Asess = null A a[ready/ sess]) V

(3 sess : STATUS; k : K E Y • R A sess ^ null)

= {psess = null A Asess = null A €n[ready,pk/sess,k]) V

(3 sess : STATUS; k : K E Y • R A sess ^ null)

265

RHS

= wp{psess — null A Asess = null —> psess, Asess := ready, sendA,

{ 3 S ^ R A a))

= (psess = null A Asess = null)

(3 sess : STATUS', k : K E Y • k = pk A sess = ready A a)

= (psess = null A Asess = null) a[ready,pk/sess,k]

Need to show that RHS follows for each disjunct of LHS. For first disjunct,
RH S follows immediately. For second disjunct, if sess ^ null then sess must

be one of {ready,sendi4,sen</^}. In each case, R ensures that -> (psess =
null A Asess = null) and so RHS follows. Therefore: LHS ^ RHS.

For fixkey:

LHS = (3 sess : STATUS; k : K E Y • R A

(sess = ready ̂ (Vk : K E Y • a[sendA/sess])))

= (3 sess : STATUS; k : K E Y • k = pk A sess = ready A

psess = ready A Asess = sendA A (VA; : K E Y # a[sendA/sess])) V

(3 sess : STATUS; k : K E Y • R A sess ^ ready

= (psess = ready A Asess = sendA A (Vk : K E Y • a[send>4/sess])) V

(3 sess : STATUS; k : K E Y • R A sess ^ ready)

RHS = top (psess = ready —> pk :G K E Y; psess := sendA,

(3 sess : STATUS; k : K E Y • R A a))

= psess = ready ^

y pk : K E Y • 3 sess : STATUS; k : K E Y • k = pk A

sess = sendA A Asess = sendA A a)

= psess = ready

(VpAr : K E Y • Asess = sendA A a[sendA,pklsess,k])

= psess = ready => (Asess = sendA A (VA; : jifET # a[sendA/sess]))

266

We show that RHS follows from each disjunct of LHS. For first disjunct,
implication follows immediately. For second disjunct: if sess ^ ready then
sess must be one of {null, sendA, sendB] and R ensures that in each case
psess ^ ready. Hence RHS follows.

For key to A with output value kv:

LHS = (3 sess : STATUS', k : K E Y • R A

wp(sess = sendA A k = kv —y sess := sendB,a))

= (3 sess : STATUS', k : K E Y % RA

(sess = sendA A k = kv ^ a[sendB/ sess]))

= (3 sess : STATUS', k : K E Y • sess = sendA A k = kv A

k = pk A psess = sendA A Asess = sendA A a[sendB(sess]) V

(3 sess : STATUS; k : K E Y • R A -f (sess = sendA A k = kv))

= (psess = sendA A Asess = sendA A pk = kv A a[sendB, kv/sess, &)) V

(3 sess : STATUS; k : K E Y • R A -> (sess = sendA A k = A:u))

RH S = top (p se ss = sendA A Asess = sendA A pk = kv —y

Ak, psess, Asess := pk, null, sendB, (3 5 • R A a))

= (psess = sendA A Asess = sendA A pk = kv) =>

(3 sess : STATUS; k : K E Y • k = pk A sess = sendB A pk = k A a)

= (psess = sendA A Asess = sendA A pk = kv) => a[sendB, pk/sess, t])

Again, the RHS follows immediately from first disjunct of LHS. For the
second disjunct of the LHS: either sess ^ sendA ot k ^ kv. In conjunction
with R each of these would ensure that the expression to the left of the im­
plication in the RHS is false. Hence: LHS ^ RHS.

For key to B with output value kv:

LHS = (3 sess : STATUS', k : K E Y • R A

top (sess = sendB A k = kv —y sess := null,a))

267

= (3 sess : STATUS; k : K E Y • k = pk A sess = sendB A

psess = null A Asess = sendB A Ak = k A k = kv A a[nu///sess]) V

(3 sess : STATUS; k : K E Y • R A -> {sess = sendB A k = kv))

= (pk = kv A psess = null A Asess = sendB A Ak = kv A

a[null,kv/sess,k]) V

(3 sess : STATUS; k : K E Y • R A (sess = sendB A k = kv))

RHS

= wp(Asess = sendB A Ak = kv —y Asess := null, (3 S • R A a))

= (Asess = sendB A Ak = Aiv) =>

(3 sess : STATUS; k : K E Y • k = pk A sess = null A

psess = null A a)

= (Asess = sendB A Ak = kv) (psess = null A a[null,pk/sess,k])

Again, the RH S follows from each disjunct of LHS. For the second disjunct
of the LHS: if R A (sess ^ sendB) then Asess ^ sendB, so RHS follows.
Now assume R A (k ^ kv). Either Asess ^ sendB, in which case LHS
follows, or Asess = sendB). In the latter case R ensures that Ak = k and so
Ak ^ kv. This again implies RHS.

3. For startsess:

LHS = (3 sess : STATUS; k : K E Y • R A sess = null)

= (3 sess : STATUS; k : K E Y #

k = pk A sess = null A Asess = null A psess = null)

= Asess = null A psess = null

For fixkey:

LHS = (3 sess : STATUS; k : K E Y • R A sess = ready)

268

= [3 sess : STATUS; k : K E Y .

k = pk A sess = ready A psess = ready A Asess = sendA)

= psess = ready A Asess = sendA

For keytoA with output kv:

LHS = (3 sess : STATUS; k : K E Y • k = pk A sess = sendA A

Asess = sendA A psess = sendA A k = kv)

= psess =s sendA A Asess — sendA A pk = kv

For keytoB with output kv:

LHS = (3 sess : STATUS; k : K E Y • k = pk A sess = sendB A

Asess = sendB A psess = null A Ak = k A Ak = kv)

= Asess = sendB A psess = null A Ak = k A Ak = kv

In each case, the expression obtained above implies the guard of the corre­
sponding action of the concrete system. Thus edl three conditions hold.

P ro o f o f properties for Chapter 8

P ro o f o f security property 82

To show that for all h : HNAME, a : APPID, u : USER, o : OBJECT:

({h, a, u, granted o) G kemeloutl) =>
((currentusersl h) u > (dhasel o)) (S2)

by induction over the actions of SecKerl. Firstly, it is established by the
initialisation since:

iop(tntY,S2)

269

= {{h, a, u, granted o) G | |) => {(currentusersl h) u > {dbasel o))

= true

Suppose S 2 holds, then we need to show that it is preserved by each action,
a , of SecKerl, that is: S 2 => tsp(a, S2).

For invokek’.

The only variable altered by the action is kemelinl so:

wp{invokek, S2) = S 2

For responseki

For output [h i, a l, u l, r l) :

wp{response(^ki,ai,ui,ri), S2)

= {{hi, a l, u l, r l) G kemeloutl) =>

{{{h, a, u, granted o) G {kemeloutl — |(h l, a l , u l, r l) |)) =>

((curreniusersl h) u > {dbasel o)))

which is implied by S2 .

For decide:

wp{decide, S2)

= kem elinl ^ |j

u;p((var {hi, a l, u l, o l) G kem elinl • D ECID El), S 2)

= kem elinl ÿé [j ^

(V (h i, a l , u l, ol) G kem elinl • wp{DECIDEl, S2))

= kem elinl ^ || =>

(V (h i, a l , u l, ol) G kem elinl •

270

u! ^ dom(currentusersl h l) V
a! ^ dom(reyappsl h l)

/ S2 [heme/ml — ((h l, a l , u l, o l) j /
y kemelinl]

A

 ̂ u! G dom(currentusersl hl) A ^
a! G dom(reyappsl hl) A
{(currentusersl h l) u l ^ {regappsl h l) al V

 ̂ {currentusersl h l) ul < dbasel ol)]

^ S2 [heme/tnl — |(h l , a l , u l, o l) |, ^
kem eloutl + |(h l , a l , u l, denied o l) | /

\ kem elin l, kem eloutl] j

 ̂ uî G dom(currentusersl h l) A ^
a! G dom(reyappsl h l) A
{currentusersl h l) u l G (reyappsl h l) a l A

 ̂ {currentusersl h l) u l > dbasel ol j

f S2 [her7ie/ml — |(h l , a l , u l, o l) |, ^
kem eloutl -f ((h l, a l , u l, yranted o l)] /

\ kem elin l, kem eloutl] j

)

To show that S 2 => wp{decide,S2), Suppose S 2 , tha t is:

((h, a, u, granted o) G kem eloutl) =>

{{currentusersl h) u > {dbasel o))

suppose also that:

kem elinl ^ (j

a n d :

(h l, a l , u l, o l) G kemelinl

[i]

[ii]

[iii]

271

C ase 1 If:

u\ ^ dom(currentusersl h i) V a! ^ dom(regappsl h i)

then:

S2[A;erne/tnl — |(&1, a l, til, ol)|]

= ((/i, granted o) E kem eloutl) =>

((currentusersl h) u > (dbasel o))

This is implied by [i].

C ase 2 If:

u\ 6 dom(currentusersl A1)A
a! £ dom(re^appsl h i) A
((currentusersl h i) u l ^ (re^appsl h i) a l V
[currentusersl h i) u l < dbasel ol)

then:

S2[hcme/tnl — |(h l, a l , u l, o l) | ,

kemeloutl + |(h l, a l , u l, denied o l) | /

hem e/m l, kemeloutl]

= (h, a, u, granted o) 6 {kemeloutl + |(h l, a l , u l, denied o l) |) =>

{currentusersl h) u > dbasel o

Again, this is implied by [i].

C ase 3 If:

u! £ dom(currentusersl h i) A

a! £ dom(re^appsl h i) A

(currentifsersl h i) u l £ (repappsl h i) a l A

{currentusersl h i) u l > dbasel ol [iv]

272

then:

S2[kemelinl — [(hi, al, ul, o l)|,

kem eloutl + [(hi, al, ul, granted o l) |/

kemelinl^ kemeloutl]

= (h, a, u, granted o) £ (kemeloutl + [(hi, al, ul, granted ol)|) =>

(currentusersl h) u > dbasel o

If (h, a, û granted o) £ kemeloutl then this is implied by [i].
If (h, a, u ̂granted o) = (h i, a l, ul^ granted o) then it is implied by the final

coojuiict of [iv].

P roof o f security property 54

Property S4:

(h, a, u, r) £ kemeloutl =*- (curentusersl h) u > dbasel o

This is similar to S 2 and its proof follows the same pattern. Again, invoke
does not alter kemeloutl^ and response only diminishes it, so the property
is preserved by these. The DECIDE 1 definition ensures that an element is
only placed in kemeloutl if the RHS of S4 holds.

D .0.5 P roof o f determ inistic security property

Need to show that:

Simple Ç obsH(SecKerl)'

with refinement relation:

R R = (kemelinO = kem elinl t c) A (kem eloutl = kemeloutl \ c)

The Hiding Refinement Rule (Property 4) can be used to show this. The
conditions are verified below, with <j> representing any condition with no free
occurences of concrete variables. The expression:

(3 kemelinO^ kemeloutO • RR A

273

occurs below and expands to:

<!>[kemdin\ f c^kemeloutl f c/hezTie/tnO,heme/outO]

The substitution kcTnelinl f kem eloutl t c/kemelinO ̂ kemeloutO will be
denoted RRrep.

1. R efin em en t o f in itia lisa tio n

Required to show:

Simpleinii -<RR ohsH{SecKerl)\^R

that is:

wp{Simpleinity<l>) # wp{obsH{SecKeriyi^n,<l>[RRrep])

LHS = wp(kemelinO^ kemeloutO :=

= ÿ [||, \ \I kemelinO,kemeloutO]

RH S = wp(kemelinl^ kemeloutl := | | , ||>

= (^[RRrep])[(|, II/hem e/m l, kemeloutl]

— ÿ[[| f c, II \ c/kemelinO^ kemeloutO]

— <l>[\\i l]/kemelinOj kemeloutO]

Therefore LHS ^ RHS.

2. R efin em en t o f ac tions

For each action, a , required to show:

Sim pka :<RR obsniSecKerl)'^

tha t is:

(3 kemelinO^ kemeloutO # RR A wp{Simpleai4^)) ^
wp(obsH(SecKeriy^ y {3 kemelinO ̂ kemeloutO • RR A <j>))

which is equivalent to:

wp{Simplea^(i>)[RRrep] ^ wp{obsH{SecKeriy^.,(j>[RRrep])

274

For invoke

Suppose creq r? < c. Then:

LHS = (wp{true kemelinO := kemelinO + (r?l,<^))[RRrep]

= <^[heme/tnO + |r?|/heme/mO][RRrep]

= <j>[{kemelinl f c) + \rl\^ kem eloutl t c/kemelinO^ kemeloutO]

RH S = wp{true —*■ kem elinl := kem elinl + [r?|,^[RRrep])

= (^[RRrep])[A:eme/tnl + |r? |/hem e/m l]

= <j)[{kemelinl + (r?j) \ c^kemeloutl \ c j kemelinO ̂ kemeloutO]

= ^[(heme/ml t c) + (r?), heme/ouil \ c/kemelinO y kemeloutO]

[Since creq r? < c]

Therefore LHS # RHS.

Suppose creq r? > c. Then:

LHS = wp{skipy<l>)[RRrep] = <j>\RRrep]

RH S = wp{{true —*■ kem elinl := kemelinl + (r?j) [] skipy<j>[RRrep])

= (j>[{kemelinl + (r? |) \ Cykem eloutl \ c j kemelinO y kemeloutO] A

ÿ [RRrep]

= <^[heme/ml \ Cykem elou tl \ c /kem elinO y kemeloutO]

[Since creq r? > c]

= ^[RRrep]

Therefore LHS ^ RHS.

F or decide

LHS = [wp(kem elinO ^ | | — +

(var m G kemelinO • heme/tnO, kemeloutO :=

275

kemelinO - \m\ y kemeloutO + (/ m), <l>)))[RRrep\

= (^eme/mO ^ (| (Vm G kemelinO •

^[heme/mO - |m j, hem e/oui 0 + (/ m)/

heme/mO, heme/ou^O])) [RRrep]

= kem elinl T c ^ (J =4̂ (Vm G kem elinl t c) •

(j>[{kemelinl f c) - (m |, (hem e/oun t c) + (/ m)/

heme/mO, heme/ou^O])

RR5 = wp{kemelinl r c ^ [| - . DRC/DRl,ÿ[RRrep])

— hemelinl f c ^ (j (Vm G heme/tnl t c) •

(ÿ[RRrep])[heme/ml - (m J,hem e/oua + (/ m)/

heme/ml, kemeloutl])

= kem elinl (“ c 7̂ |J =̂>- (Vm G kem elinl Te) »

<j>[[kemelinl — (mj) 1“ Cy[kemeloutl + (/ m) f c /

kemelinO y kemeloutO])

— hemelinl f c ^ (j => (Vm G kem elinl f c) •

^[(heme/inl r c) - |m |,(h em e/o u n t c) + (/ m))/

kemelinO y kemeloutO])[SixLQjQ m G heme/ml f c]

Therefore LHS ^ RR5 .

F or response

Suppose cresp r! < c:

LHS

— G heme/oufO heme/ou^O := kemeloutO - Jr!|,<^))[RRrep]
= r! E heme/inl t c =>

(^[heme/ml f Cy{kemeloutl f c) — [rlJ/heme/inO,heme/ouiO]

RH S

276

= wp{r\ G kemeloutl —*■ kemeloutl := kemeloutl — | r ! | , ÿ[RRrep])

= r! G kemeloutl =>

ÿ[heme/înl \ Cy(kemeloutl — |r ! |) \ c I kemelinO y kemeloutO]

Again, using the assumption that cresp r! < c, it follows that LHS ^ RHS.

Suppose cresp r! > c:

LHS = wp{skipy(j))[RRrep] = <j>[RRrep]

RH S = îüp((r! G kemeloutl kem eloutl := kemeloutl — |r ! |)

[] skip y (f)[RRrep\)

= (r! G k e m e lou t l => <^[heme/tnl \ Cy{kemeloutl — |r ! |) f c/

kemelinO y kemeloutO]) A (j)[RRrep]

= (r! G kemeloutl => [Since cresp r\ > c]

<^[heme/tnl \ C y kemeloutl \ c/kemelinO y kemeloutO]) A (j)[RRrep]

= <l)[RRrep]

Therefore RHS ^ LHS as required.

3. C o n c re te in te rn a l ac tions

This condition checks that all internal actions introduced at the concrete
level refine skip. In this case we need to show that:

wp{skipy<l>)[RRrep] ^ wp{decidehighy <l)[RRrep])

LHS — (j>[RRrep]

RH S

= wp(kemelinl — {kemelinl T c) ^ II —>■

(var m G {kemelinl — {kemelinl \ c)) • DECIDEly(l>[RRrep\)

277

= herne/ml — {kemelinl f c) ^ [| =>>

(V m 6 kem elinl — (heme/ml \ c) •

<j>[{kemelinl — (m |) \ c,{kemeloutl + (/ m)) \ c /

kemelinO y kemeloutO])

= heme/ml — (heme/ml f c) ^ ||

(V m G kem elinl — {kemelinl \ c) •

<l>[kemelinl \ Cykemeloutl \ c/kemelinO y kemeloutO])

[Since creq m > c and hence also cresp {f m) > c]

= heme/ini — {kemelinl f c) ^ [j =>•

(Vm G kem elinl — {kemelinl \ c) • <j>[RRrep])

Hence LHS # RHS.

4. V arian t

The variant is provided by the number of high level message in the input
bag: jj(heme/*nl — {kemelinl T c)). Values of this expression are members of
N which is well-founded.

5. D ecreasing th e v a rian t

Each execution of the internal action decidehigh removes one element from
the set {kemelinl — {kemelinl t c)). So the variant is decreased each time.
Hence execution of internal actions is bounded.

6. R efin em en t o f g u ard s

For action, a , need to show:

gd{Simplea)[RRrep] ^
{gd{ohsH{SecKer)'„) V 9 d{obsH{SecKeT)'^^u^i^^))

278

For invoke

Both abstract and concrete actions have guard true^ so the condition holds
for invoke.

For decide

LHS = kemelinl \ c ^ \ \

RHS = {kemelinl [• c ^ | |) V {kemelinl — {kemelinl t c) 7 ̂ (|)

So again LHS ^ RHS.

For response

LHS = {cresp r! < c A r! G kem elinl \ c) V {cresp r! > c)

RHS = {cresp r! < c A r! G heme/ml) V {cresp r! > c) V

(heme/:nl — {kemelinl \ c) 7 ̂ | |)

So the property also holds for response.

Each of the conditions has been verified, proving the required refinement.

P ro o f o f second refinem ent

We need to show that:

SecKer2 =
(II n G HNAM E • SecKern) \ {m, n : HNAME • transferrin

First, the parallel composition of all the SecKern action systems is calcu­
lated by repeated application of the composition rule from Section 4.4. The
combined state is formed by the union of the Host2n'.

(U 71 G HNAME • Hosts2n)

= (U 71 G HNAME • 72 > host2 71) [Equivalence from Ch. 8]

= Hosts2

279

guard
(hosts2 n).kemelin2 ^ (|

com m and
(var a : APPID\ u : USER\ o : OBJECT \

(a, u, o) E (hosts2 n).kemelin2 • DECIDE2)

Figure D .2 The indexed internal action getn

In fact, the state is partitioned between the concrete action systems. The

initialisations are combined as follows:

(I I 71 G HNAM E • {kemelin2n,kemelout2nypendingn := | | , | | , | |)

= (I I 71 G HNAME •

{hosts2 n).kemelin2y{hosts2 n).kemelout2y(hosts2 n).pending :=

11, 11, 11)
= SecKer2init

For actions invoke^ and response^ the labels are unique, so no labelled actions
have to be composed. The identity above ensures that the combined actions
are equivalent to the corresponding actions from SecKer2.

An internal action which selects an arbitrary value is equivalent to an
indexed set of internal actions (proof in [2 0]), that is:

in te rnal h : — u : [(3 r G X # postg]

is equivalent to:

for X e X in te rnal h : — u : [postg]

This means that, for example, the internal action getrequest is equivalent to:

for n G HNAM E • in te rnal getn

with getn as defined in Figure D.2. Using the identity on state components,

280

each indexed action is equivalent to its counterpart from SecKern as required.
The results for decide and deliver follow in a similar manner.

The only actions which will need to be combined are the transfer actions.
In transferring a pending item from host m to host n the two actions to be
combined are, from SecKer^ :

action transfer̂ m̂ n) on t p! : PENDING : —
Ti ^ m A (p! G pendinçm) A (destination p! = n) —►

pendingm := pendingm — |p!|

and from SecKern'

action transferrm,n) in p? : PENDING : —
true —► pendingn := pendingn + |p?l

Using the parallel composition rule for value passing action systems (Sec­
tion 4.4) the composition of these two is:

action transferrm,n) ou t p! : PENDING : —
n ^ m A {p\ £ pending^) A (destination p! = n) —>

pendingm,pendingn := pendingm - |p!l,pendmpn + |p!|

The conditions required for this are ensured since the original input action
is always willing to accept any input of type PENDING.

All these actions for each m, n are to be hidden. First, the output variable
p! is localised. This gives:

action transferrm,n) : —
(3 p : PENDING • n ^ m A (p G pendingm) A

(destination p = n)) —>

(var p : PENDING • pendingm,pendingn •=
pendingm - \p\,pendingn + |p |)

281

When internalised these actions can be combined as before to give:

ac tio n transfer : —
(3 m, n : HNAME y p : PENDING •

71 ^ m A (p G pending^) A (destination p = n))
(var 771,71 : HNAME] p : PENDING # pendingm,pending^ :=

pendingm ~ |p | , pendingn + |p |)

Using the One Point Rule this is equivalent to:

action transfer : —
(3 772 : HNAME] p : PENDING #

(destination p ^ 772) A (p G pendingm)) —*■
(var 772 : HNAME] p : PENDING •

pendingm,pendingritaiination p) •

pendingm \p\,pendingritatina,tion p) 3 “ I p I)

and using the identity for state between the two levels this in turn is equiv­
alent to:

action transfer : —
(3 772 : HNAME] p : PENDING •

(destination p ^ 772) A (p G (host2 m).pending)) —>
(var 772 : HNAME] p : PENDING •

(host2 m).pendingy (host2 (destination p)).pending :=
(host2 m).pending — [pj,
(host2 (destination p)).pe7idt72p -f (p|)

which is the definition of transfer in SecKer2. Hence the parallel composition

of the SecKern with the transfer^m^n) actions hidden is equivalent to SecKer2
as required.

282

Bibliography

[1] M. Abadi and L. Lamport. The existence of refinement mappings. In
Proceedings o f the 3rd IEEE Symposium on Logic in Computer Science^
pages 165-177. IEEE Computer Society Press, 1988.

[2] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

[3] P.O. Allen. A comparison of non-interference and non-deducibility us­
ing CSP. In Proceedings of the Jth IEEE Computer Security Founda­
tions Workshopy pages 43-54. IEEE Computer Society Press, 1991.

[4] Edward Amoroso. Fundamentals of Computer Security Technology.
Prentice Hall, 1994.

[5] R.D. Arthan. A method for specifying secure systems. Technical Re­
port DS/FM U/RDA/13, ICL Defence Systems Formal Methods Unit,
Eskdale Road, Winnersh, Berks, UK, R G ll 5TT, 1989.

[6] R.J.R. Back. Refinement calculus II: Parallel and reactive programs.
In W-P. de Roever J.W. de Bakker and G. Rozenburg, editors, Proc
R E X Workshop on Stepwise Refinement o f Distributed Systems: Mod-,
els, Formalisms, CorrectnesSy LNCS 430, pages 67-93. Springer-Verlag,
1990.

[7] R.J.R. Back and R. Kurki-Suonio. Decentralisation of process nets
with centralised control. In 2nd ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computingy pages 131-142, 1983.

[8] R.J.R. Back and K. Sere. Refinement of action systems. In Mathemat­
ics of Program Construction, LNCS 375. Springer-Verlag, 1989.

283

[9] R. J.R . Back and K. Sere. Deriving an Occam implementation of action
systems. In Carroll Morgan and J.C.P. Woodcock, editors. Proceed­
ings o f 3rd BCS-FACS Refinement Workshop^ LNCS 430, pages 9-30.
Springer-Verlag, 1990.

[10] R.J.R. Back and J. von Wright. Refinement calculus I: Sequential
nondeterministic programs. In W-P. de Roever J.W. de Bakker and
G. Rozenburg, editors, Proc R E X Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness, LNCS 430,
pages 42-66. Springer-Verlag, 1990.

[11] D.E. Bell and L.J. LaPadula. Secure computer systems; Mathemati­
cal foundations and model. Technical Report M74-244, The MITRE
Corporation, Bedford, MA, 01730, 1974.

[12] D.E. Bell and L.J. LaPadula. Secure computer system: Unified expo­
sition and multics interpretation. Technical Report ESD-TR-75-306,
The MITRE Corporation, Bedford, MA, 01730, March 1976.

[13] William R. Bevier and William D. Young. A state-based approach to
noninterference. In Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pages 11-21. IEEE Computer Society Press,
1994.

[14] P. Bieber, N. Boulahia-Cuppens, T. Lehmann, and E. van Wickeren.
Abstract machines for communications security. In Proceedings o f the
6th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, 1993.

[16] Pierre Bieber and Frédéric Cuppens. A logical view of secure depen­
dencies. Journal o f Computer Security, 1(1):99-129, 1992.

[16] Anthony Boswell. Specification and validation of a security policy
model. TEEE Transactions on Software Engineering, 21(2), February
1995.

284

[17] R. Burnham. The specification of security in distributed computing
systems. Master’s thesis, Oxford University, 1987.

[18] M. Butler. Stepwise refinement of communicating systems. Technical
Report Ser. A. No 147, Abo Akademi University, 1994.

[19] M. Butler. Action systems and security protocols. Draft, 1997.

[20] M.J. Butler. A CSP Approach to Action Systems. PhD thesis, Oxford
University, 1992.

[21] M.J. Butler et al. Specification of a program derivation editor. Re­
ports in Mathematics and Computer Science A94-157, Abo Akademi
University, Finland, 1997.

[2 2] M.J. Butler and C.C. Morgan. Action systems, unbounded nondeter­
minism and infinite traces. Formal Aspects o f Computing, 7:37-53,
1994.

[23] Ana Cavalcanti and Jim Woodcock. A wealcest precondition semantics
for Z. Technical Report TR-24-95, Programming Research Group, Ox­
ford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, 0X1 3QD, November 1995.

[24] D.D. Clark and D R. Wilson. A comparison of commercial and military
computer security policies. In Proceedings of the 8th IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 1987.

[25] Rodger Collinson. Proving critical properties of functional specifi­
cations. Technical report. Communications and Electronic Security
Croup, 1993. Draft 0.2.

[26] D.E. Comer. Internetworking with TCP/IP: Principles, Protocols and
Architecture. Prentice Hall, 1988.

[27] F. Cuppens. A logical formalization of secrecy. In Proceedings o f the

6th IEEE Computer Security Foundations Workshop. IEEE Computer
Society Press, 1993.

285

[28] D. E. Denning. Secure information flow in computer systems. PhD
thesis, Purdue University, 1975.

[29] D. E. Denning. A lattice model of secure information flow. Communi­
cations of the ACM, 19(5):236-243, May 1976.

[30] P. J. Denning. Third generation computer systems. Computing Sur­
veys, 3(4):171-216, December 1971.

[31] E.W Dijkstra. A Discipline of Programming. Prentice HaU, 1976.

[32] G. W. Dinolt, L. A. Benzinger, and M. G. Yatabe. Combining compo­
nents and policies. In Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pages 22-33. IEEE Computer Society Press,
1994.

[33] Todd Fine. A foundation for covert channel analysis. In Proceedings
of the 15th National Computer Security Conference, pages 204-212,
Baltimore, USA, 1992.

[34] Todd Fine, J. Thomas Haigh, Richard O’Brien, and Dana L. Toups.
Noninterference and unwinding for lock. In Proceedings of the 2nd
IEEE Computer Security Foundations Workshop. IEEE Computer So­
ciety Press, 1989.

[35] Riccajdo Focardi and Roberto Gorrieri. A taxonomy of trace-based
security properties for CCS. In Proceedings o f the 7th IEEE Computer
Security Foundations Workshop. IEEE Computer Society Press, 1994.

[36] Simon N. Foley. A universal theory of information flow. In Proceedings
of the 8th IEEE Symposium on Security and Privacy, pages 116-122,
Oakland, CA., 1987. IEEE Computer Society Press.

[37] Simon N. Foley. A model for secure information flow. In Proceedings
o f the 10th IEEE Symposium on Security and Privacy, pages 248-258,
Oakland, CA., 1989. IEEE Computer Society Press.

286

[38] Simon N. Foley. Secure information flow using security groups. In Pro­
ceedings of the 3rd IEEE Computer Security Foundations Workshop,
pages 62-72, IEEE Computer Society Press, 1990.

[39] Simon N. Foley. Aggregation and separation as noninterference prop­
erties. Journal o f Computer Security, 1(2):159-188, 1992.

[40] Simon N. Foley. Reasoning about confidentiality requirements. In Pro­
ceedings of the 7th IEEE Computer Security Foundations Workshop,
pages 150-160. IEEE Computer Society Press, 1994.

[41] Warwidc Ford. Computer Communications Security. Prentice Hall,
1994.

[42] Janice Glasgow, Glenn MacEwen, and Prakash Panangaden. A logic
for reasoning about security. In Proceedings of the 3rd IEEE Computer
Security Foundations Workshop. IEEE Computer Society Press, 1990.

[43] J.A. Goguen and J. Meseguer. Security policies and security models.
In Proceedings o f the 3rd IEEE Symposium on Security and Privacy,
pages 11-20, Oakland, CA., 1982. IEEE Computer Society Press.

[44] Joseph A. Goguen and Jose Meseguer. Unwinding and inference con­
trol. In Proceedings of the 5th IEEE Symposium on Security and Pri­
vacy, pages 75-86, Oakland, CA., 1984. IEEE Computer Society Press.

[45] M.J. Gordon. HOL: a machine oriented formulation of higher order
logic. Technical Report 6 8 , University of Cambridge Computer Labo­
ratory, 1985.

[46] G.S. Graham and P.J. Denning. Protection: principles and practice.
In Proceedings o f the AFIPS Spring Joint Computer Conference, vol­
ume 40, pages 417-429. AFIPS Press, 1972.

[47] John Graham-Gumming. The Formal Development of Secure Systems.
PhD thesis, Oxford University, 1992.

287

[48] John Graham-Gumming. Some laws of non-interference. In Proceed­
ings of the 5th IEEE Computer Security Foundations Workshop, pages
22-33. IEEE Computer Society Press, 1992.

[49] John Graham-Cumming. Laws of non-interference in CSP. Journal o f
Computer Security, 2(l):37-52, 1993.

[50] James W. Gray III. Probabilistic interference. In Proceedings o f the
11th IEEE Symposium on Security and Privacy, pages 170-179, Oak­
land, CA., 1990. IEEE Computer Society Press.

[51] James W. Gray III. Toward a mathematical foundation for information
flow security. In Proceedings of the 12th IEEE Symposium on Security
and Privacy, pages 21-34, Oakland, CA., 1991. IEEE Computer Soci­
ety Press.

[52] James W. Gray III. Towards a mathematical foundation for informa­
tion flow security. Journal of Computer Security, l(3):255-294, 1992.

[53] Jeunes W. Gray III and Paul F. Syverson. A logical approach to multi­
level security of probabilistic systems. In Proceedings o f the 13th IEEE
Symposium on Security and Privacy, pages 164-176, Oakland, CA.,
1992. IEEE Computer Society Press.

[54] David Guaapari, Mike Seager, and M att Stillerman. Specifying the
kernel of a secure distributed operating system. In Michael G. Hinchey
and Jonthan P. Bowen, editors. Applications of formal methods, chap­
ter 12, pages 285-437. Prentice Hall, 1995.

[55] J. V. Guttag and J.J. Horning. Larch:Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer
Verlag, New York, 1993.

[56] Joshua D. G uttm an and Mark E. Nadel. What needs securing? In
Proceedings o f the 1st Computer Security Foundations Workshop, pages
34-57, Bedford, MA, 01730, June 1988. The MITRE Corporation.

288

[57] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in oper­
ating systems. Communications of the ACM, 19(8):461-471, August

1976.

[58] J. He, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In
European Symposium on Programming, LNCS 213. Springer-Verlag,
1986.

[59] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[60] TSO/IEC 7498-1. Information Technology - Open Systems Interconnec-
tion - Basic Refence Model.

[61] Jeremy Jacob. A security framework. In Proceedings of the 1st Com­
puter Security Foundations Workshop, pages 98-111, Bedford, MA,
01730, June 1988. The MITRE Corporation.

[62] Jeremy Jacob. Security specifications. In Proceedings of the 9th IEEE
Symposium on Security and Privacy, pages 14-23, Oakland, CA., 1988.
IEEE Computer Society Press.

[63] Jeremy Jacob. Categorising non-interference. In. Proceedings of the 3rd
IEEE Computer Security Foundations Workshop, pages 44-50, 1990.

[64] Jeremy Jacob. Separability and the detection of hidden channels. In­
formation Processing Letters, 34(l):27-29, 1990.

[65] Jeremy Jacob. The varieties of refinement. In Proceedings of the 4th
BCS-FACS Refinement Workshop, LNCS, pages 441-455. Springer-

Verlag, 1991.

[66] Jeremy Jacob. Basic theorems about security. Journal of Computer
Security, 1(4) *.385-411, 1992.

[67] R. Jain and C. Landwehr. On access checking in capability-based sys­
tems. IEEE Transactions on Software Engineering, 13(2), 1987.

289

[68] Dale M. Johnson and F. Javier Thayer. Security and the composition
of mgichines. In Proceedings o f the 1st Computer Security Foundations
Workshop, pages 72-89, Bedford, MA, 01730, June 1988. The MITRE
Corporation.

[69] Dale M. Johnson and F. Javier Thayer. Security properties consistent
with the testing semantics for communicating processes. In Proceed­
ings o f the 2nd Computer Security Foundations Workshop, pages 9-21.
IEEE Computer Society Press, 1989.

[70] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Secu­
rity. Prentice Hall, 1995.

[71] Richard A. Kemmerer. Shared resource matrix methodology: an ap­
proach to identifying storage and timing channels. ACM Transactions
on Computer Systems, 1:256-277, August 1983.

[72] Imre Lakatos. Proofs and Refutations: the logic o f mathematical dis­
covery. Cambridge University Press, 1979.

[73] L. Lamport. A simple approach to specifying concurrent systems.
Communications o f the ACM, 32:32-45, 1989.

[74] B. W. Lampson. Protection. In Proceedings of the 5th Princeton Sym ­
posium on Information Sciences and Systems, pages 437-443, 1971.
Reprinted in ACM SIGOPS Operating Systems Review 8(1):18- 24,
Jan. 1974.

[75] B. W. Lampson. A note on the confinement problem. Communications
o f the ACM, 16:613-615, 1973.

[76] J. Landauer and T. Redmond. A framework for composition of secu­
rity models. In Proceedings of the 5th Computer Security Foundations
Workshop, pages 157-165. IEEE Computer Society Press, 1992.

[77] Carl E. Landwehr. Formal models for computer security. Computing
Surveys, 13:247-278, September 1981.

290

[78] Gavin Lowe. Some new attacks upon security protocols. In Proceedings
of the 9th Computer Security Foundations Workshop, pages 162-169.
IEEE Computer Society Press, 1996.

[79] Gavin Lowe. Casper: a compiler for the analysis of security protocols.
In Proceedings of the 10th Computer Security Foundations Workshop,
pages 18-30. IEEE Computer Society Press, 1997.

[80] Daryl McCullough. Specifications for multi-level security and a hook­
up property. In Proceedings of the 8th IEEE Symposium on Security
and Privacy, pages 161-166, Oakland, CA., 1987. IEEE Computer So­
ciety Press.

[81] Daryl McCullough. Noninterference and the composability of security
properties. In Proceedings of the 9th IEEE Symposium on Security and
Privacy, pages 177-186, Oakland, CA., 1988. IEEE Computer Society
Press.

[82] Daryl McCullough. A hookup theorem for multilevel security. IEEE
Transactions on Software Engineering, 16(6):563-568, June 1990.
IEEE Computer Society Press.

[83] J. McLean. A comment on the basic security theorem of Bell and
LaPadula. Information Processing Letters, 20:67-70, 1985.

[84] J. McLean and C. Meadows. Composable security properties. Cipher,
pages 27-37, 1989.

[85] John McLean. A formal method for the abstract specification of soft­
ware. Journal of the ACM, pages 600-627, July 1984.

[86] John McLean. Reasoning about security models. In Proceedings of
the 8th IEEE Symposium on Research in Security and Privacy, pages
123-131, Oakland, CA., 1987. IEEE Computer Society Press.

[87] John McLean. Proving noninterference and functional correctness us­
ing traces. Journal o f Computer Security, l(l):37-57, 1992.

291

[88] John McLean. A general theory of composition for trace sets closed
under selective interleaving functions. In Proceedings of the 15th IEEE
Symposium on Research in Security and Privacy, pages 79-93, Oak­
land, CA., 1994. IEEE Computer Society Press.

[89] Jonathan MiUen. Security kernel validation in practice. Communica­
tions of the ACM, 19(5):243-250, May 1976.

[90] Jonathan Millen. Foundations of covert channel detection. Technical
Report MTR10538, The MITRE Corporation, Bedford, MA, 01730,
January 1989.

[91] Jonathan Millen. Hookup security for synchronous machines. In Pro­
ceedings o f the 3rd IEEE Computer Security Foundations Workshop,
pages 84-90. IEEE Computer Society Press, 1990.

[92] Jonathan Millen. Unwinding forward correctability. In Proceedings o f
the 7th IEEE Computer Security Foundations Workshop, pages 2-10.
IEEE Computer Society Press, 1994.

[93] C.C. Morgan. Of wp and CSP. In D. Cries W.H.J. Feijen, A.G.M.
van Gasteren and J. Misra, editors. Beauty is our business: a birthday
salute to Edsger W. Dijkstra. Springer-Verlag, 1990.

[94] C.C. Morgan. Programing from Specifications. International Series in
Computer Science. Prentice Hall, 2 edition, 1994.

[95] C.C. Morgan, K.A. Robinson, and P.H.B. Gardiner. On the refine­
ment calculus. Technical monograph PRG-70, Programming Research
Group, Oxford University, 1988.

[96] J.M. Morris. A theoretical basis for stepwise refinement and the pro­
gramming calculus. Sci. Comp. Prog., 9:298-306, 1987.

[97] Ira S. Moskowitz and Oliver L. Costich. A classical automata approach
to noninterference type problems. In Proceedings of the 5t.h IEEE Com­
puter Security Foundations Workshop, pages 2-8. IEEE Computer So­
ciety Press, 1992.

292

[98] Colin O’Halloran. A calculus of information flow. In Proceedings o f the
European Symposium on Research in Computer Security (ESORICS),
Lecture Notes in Computer Science, pages 147-159. Springer-Verlag,
1990.

[99] Colin O’Halloran. On requirements and security in a CCIS. In Pro­
ceedings o f the 5th IEEE Computer Security Foundations Workshop,
pages 121-134. IEEE Computer Society Press, 1992.

[100] Greg O’Shea. On the specification, validation and verification of secu­
rity in access control systems. The Computer Journal, 37(5), 1994.

[101] Ramesh V. Peri, William A. Wulf, and Darrell M. Kienzle. A logic of
composition for information flow predicates. In Proceedings of the 9th
IEEE Computer Security Foundations Workshop, pages 82-93. IEEE
Computer Society Press, 1996.

[102] Charles P. Pfleeger. Security in Computing. Prentice Hall, 1989.

[103] Sylvan Pinsky. An algebraic approcich to non-interference. In Proceed­
ings o f the 5th IEEE Computer Security Foundations Workshop, pages
34-47. IEEE Computer Society Press, 1992.

[104] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal
Specification and Z. Prentice Hall, 1991.

[105] A.W. Roscoe. Model checking CSP. In A.W. Roscoe, editor, A Clas­
sical Mind. Prentice Hall, 1994.

[106] A.W. Roscoe. Prospects for describing, specifying and verifying key-
exchange protocols in CSP and FDR. Technical report. Formal Sys­
tems, December 1994.

[107] A.W. Roscoe. CSP and determinism in security modelling. In Pro­
ceedings of the 16th IEEE Symposium on Security and Privacy, pages

114-127. IEEE Computer Society Press, 1995.

293

[108] A.W. Roscoe. Modelling and verifying key-exchange protocols using
CSP and FDR. In Proceedings o f the 8th IEEE Computer Security
Foundations Workshop, pages 98-107. IEEE Computer Society Press,
1995.

[109] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1997.

[110] A.W. Roscoe, J.C.P. Woodcock, and L. WuK. Non-interference through
determinism. In Proceedings of the European Symposium on Research
in Computer Security (ESORICS), Lecture Notes in Computer Science
875, pages 33-53. Springer-Verlag, 1994.

[111] A.W. Roscoe and L. Wulf. Composing and decomposing systems under
security properties. In Proceedings of the 8th IEEE Computer Security
Foundations Workshop, pages 9-15. IEEE Computer Society Press,
1995.

[112] John Rushby. Design and verification of secure systems. In Proceedings
o f the 8th ACM Symposium on Operating Systems Principles, pages
12-21, Pacific Grove, CA., USA, December 1981.

[113] John Rushby. Proof of separability: A verification technique for a class
of security kernels. Technical report. Computer Science Laboratory,
SRI International, Menlo Park, CA 94025, USA, 1982.

[114] John Rushby. The SRI security model. Technical report. Computer
Science Laboratory, SRI International, Menlo Park, CA 94025, USA,
1985.

[115] Deborah RusseU and G.T.Gangemi Sr. Computer Security Basics.
O’Reilly & Assoc. Inc., 1989.

[116] P.Y.A. Ryan. A CSP formulation of non-interference. Cipher, pages
19-27, 1991. IEEE Computer Society Press.

294

[117] Ravi S. Sandhu. A lattice interpretation of the Chinese Wall policy.
In Proceedings o f the 15th NIST-NCSC National Computer Security

Conference, pages 329-339, 1992.

[118] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer,
pages 9-19, 1993. IEEE Computer Society Press.

[119] S.A. Schneider. Security properties and CSP. In Proceedings o f the
17th IEEE Symposium on Security and Privacy. IEEE Computer So­
ciety Press, 1996.

[120] S-A. Schneider. Using CSP for protocol analysis: the Needham-
Schroeder public-key protocol. Technical report CSD-TR-96-14, Royal

Holloway, University of London, 1996.

[121] Mike Seager, David Guaspari, M att Stillerman, and Carla Marceau.
Formal methods in the theta kernel. In Proceedings of the 16th IEEE
Symposium on Security and Privacy, pages 88-100. IEEE Computer

Society Press, 1995.

[122] Jane Sinclair and Darrel Ince. The use of Z in specifying security prop­
erties. In H. Habrias, editor, 7th International Conference on putting
into practice methods and tools for information system design, ISBN:
2-906082-19-8, pages 27-39, IRIN, Université de Nantes, France, Oc­
tober 1995.

[123] Jane Sinclair and Jim Woodcock. Event refinement in state-based con­
current systems. Formal Aspects o f Computing, 7:266-288, 1995.

[124] E.H Spafford. The Internet worm: Crisis and aftermath. Communi­

cations of the ACM, 32(6), 1989.

[125] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd
edition, 1992.

[126] Clifford Stoll. The Cuckooes Egg. Doubleday, 1989.

295

[127] David Sutherland. A model of information. In Proceedings of the 9th
National Computer Security Conference, pages 175-183. U. S. National
Computer Security Center zind U. S. National Bureau of Standards,
1986.

[128] Ian Sutherland, Stanley Perlo, and Rammohan Varadarajan. De­
ducibility security with dynamic level assignments. In Proceedings of
the 2nd IEEE Computer Security Foundations Workshop, pages 3-8.
IEEE Computer Society Press, 1989.

[129] A. Tarski. A lattice-theoretic fixpoint theorem and its applications.
Pacific Journal o f Mathematics, 5, 1955.

[130] M. Walden and K. Sere. Refining action systems within B-tool. In
Proceedings of FME 96. IEEE Computer Society Press, 1996.

[131] J. Todd W ittbold and Dale M. Johnson. Information flow in nonde­
terministic systems. In Proceedings of the 11th IEEE Symposium on
Research in Security and Privacy, pages 144-161, Oakland, CA., 1990.
IEEE Computer Society Press.

[132] J.C.P. Woodcock and C.C. Morgan. Refinement of state-based con­
current systems. In Proceedings of the VDM Symposium, LNCS 428.
Springer-Verlag, 1990.

[133] Jim Woodcock and Jim Davies. Using Z: specification refinement and
proof. Prentice Hall, 1996.

[134] A. Zakinthinos and E.S. Lee. The composability of non-interference.
In Proceedings of the 8th IEEE Computer Security Foundations Work­
shop, pages 2-8. IEEE Computer Society Press, 1995.

[135] A. Zakinthinos and E.S. Lee. How and why feedback composition fails.
In Proceedings of the 9th IEEE Computer Security Foundations Work­
shop, pages 95-101. IEEE Computer Society Press, 1996.

296

[136] A. Zalcinthinos and E.S. Lee. A general theory of security properties
and secure composition. In Proceedings of the 18th IEEE Symposium
on Research in Security and Privacy^ Oahland, CA., 1997. IEEE Com­
puter Society Press.

297

