
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Methodology for the Development of Recurrent
Networks for Sequence Processing Tasks
Thesis
How to cite:

Bradbury, David (1997). A Methodology for the Development of Recurrent Networks for Sequence Processing
Tasks. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 1997 David Bradbury

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

A Methodology for the
Development of Recurrent

Networks for Sequence
Processing Tasks

David Bradbury

Thesis submitted in partial fulfillment of the
requirements for Ph D.

September 1996

^ I

ProQuest Number: 27701071

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27701071

Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

David Clifford Bradbury B A(Hons), M.Sc

A Methodology for the Development of Recurrent Networks for Sequence

Processing Tasks

Submitted for the degree of PhD in Artificial Intelligence

Submitted 5 September 1996

Abstract

Artificial neural networks are increasingly being used for dealing with real

world applications. Many of these (e.g. speech recognition) are based on an ability to

perform sequence processing. A class of artificial neural networks, known as

recurrent networks, have architectures which incorporate feedback connections. This

in turn allows the development of a memory mechanism to allow sequence processing

to occur.

A large number of recurrent network models have been developed, together

with modifications of existing architectures and learning rules. However there has

been comparatively little effort made to compare the performance of these models

relative to each other. Such comparative studies would show differences in

performance between networks and allow an examination of what features of a

network give rise to desirable behaviours such as faster learning and superior

generalisation ability.

This thesis describes the results of a number of existing comparative studies

and the results of new research. Three different recurrent networks, both in their

original form and with modifications, are tested with four different sequence

processing tasks. The results of this research clearly show that recurrent networks

va^ widely in terms of their performance and lead to a methodology based on the

following conclusions:

• The architecture should be as simple as possible and as complex as necessary

• Learning rules where a change in connection strength is based on local variables

only are superior to those which use non-local factors.

• Adaptive memory mechanisms are under exploited and are a particularly

promising avenue for further research, particularly for those interested in their

models having physiological validity.

Finally there are some speculations as to how these principles could be put

into practice. Particularly the use of hybrid models using genetic algorithms for

controlling the complexity of the network architecture.

Contents

Chapter One. Introduction 1

1.1.1 Why Sequence Processing is Important 1

1.1.2 What Are Sequence processing problems? 1

1.1.3 Three Example Sequence processing Problems 2

1.2 Recurrent Networks: What are they and What are the Desirable Properties? 6

1.3 Overview of the Thesis 9

1.4 Aims of the Thesis 10

Chapter Two. Recurrent Networks: A Review of the Literature 11

2.1 A History of Sequence Processing Using Neural Networks 11

2.1.1 Back propagation Through Time (BPTT) 11

2.1.2 Using Shift Registers for Sequence Processing 12

2.1.3 First and Second Order Recurrent Networks 14

2.1.4 The Simple Recurrent Network (SRN) 17

2.1.5 Memory Neural Networks 25

2.1.6 Finite Impulse Response (FIR) Filters 28

2.1.7 The Real Time Recurrent Learning Model, and its variations 30

2.1.8 The Gamma Model 38

2.2 Issues of Convergence 41

2.3 Attempts at Classification 43

2.4 Other Comparative Studies 46

2.5 Conclusion ^4

Chapter Three. A Comparative Study of Three Recurrent Network Models 56

3.1 Overview and Rationale 56

3.2 The Tasks 57

3.3 The Networks 64

3.4 Experimental Variables 67

3.5 Results 68

3.5.1 The Effects of Modifying Internal Parameters on Learning 68

3.5.2 Comparative Study Results 72

3.5.3 Statistical Analysis of Results 73

3.5.4 Continuous XOR With Two Step Delay 76

3.5.5 The Letter in Word Prediction Task 78

3.5.6 Learning a Finite State Grammar 81

3.5.7 Dollar to Swiss Franc Exchange Rate 83

3.6 Some Observations on the \jl parameter 83

3.7 Discussion

3.7.1 Behaviour of Recurrent Networks in General 85

3.7.2 Why Different Recurrent Networks Behave Differently 88

3.8 What Next? 91

Chapter Four. Modifications to the RTRL Algorithm and Their Implications 93

4.1 Overview and Rationale 93

4.2 Modifying RTRL Network Architecture 94

4 .2.1 Pruning Network Architectures 94

4.2.2 A Pruned RTRL Architecture 96

4.2.3 Randomly Pruning Connections During Learning 104

4.3 Modifying the RTRL Algorithm 1®̂

4.3.1 Different Reset Intervals for Different Tasks? 112

4.3.2 Does Resetting Pÿk Allow Increased Learning Rates? 115

4.4 Summary 122

Chapter Five. Summary and Conclusion 123

5.1 The Effect of Architecture on Learning 123

5.2 The Effect of the Learning Algorithm on Learning 127

5.3 What Does this Mean for Efficient Learning? 131

5.3.1 Adaptive Memory Mechanisms 132

5.4 Can we Improve Learning Without Changing the Network? 133

5.5 Summary 135

Chapter Six. Conclusions 137

6.1 An Aside on Genetic Algorithms 137

6.1.1 Genetic Algorithms and Recurrent Networks 139

6.2 Some Guiding Principles for Recurrent Network Development 143

6.3 Speculations (i): A New Metaphor for Recurrent Network Training 146

6.3.1 The New Metaphor and Amits Criteria 150

6.4 Speculations (ii): Future Research 152

References 1^^

Appendices 1^1

Appendix 1. The Gamma Model Learning Rule 161

Appendix 2. The Summation Function for Gamma Kernels 164

Appendix 3. The Original RTRL Algorithm 166

Appendix 4. A Modified Form of the RTRL Algorithm, For Use With Networks

With Sparse Connectivity 169

Chapter One. Introduction

This chapter is divided into three sections: the first looks at why sequence

processing is important. This point is illustrated with three quite distinct problems.

The second section defines and describes recurrent artificial neural networks

(henceforth referred to as recurrent networks). Finally there is an overview of the

thesis.

1.1.1 Why sequence processing is important

Artificial neural networks which consist of relatively simple units, organised

into layers and linked by weighted connections (for a fuller description see RumeUiart

and McClelland 1986) have been used to solve a wide range of problems. Many of

these have been such that all the information that the network needs to solve the task

is available at a single time step, for example face recognition. Many real world

problems however are such that the information that the network needs to solve the

task is only available over a number of time steps.

1.1.2 What are sequence processing problems?

It is possible that a problem in which the information is received over time

would not be a sequence processing problem because the order of the stimuli is not a

factor in determining the output of the network. A sequence processing problem is

one in which the order in which the information is presented is as important as the

information itself in determining what the desired output of the neural network should

be.

1.1.3 Three example sequence processing problems

A look at three different problem domains will demonstrate that sequence

processing problems are widespread and, therefore, the development of neural

network models which can solve these problems quickly and efficiently is a

worthwhile enterprise.

Psychology

One of the main areas of inquiry for cognitive psychology is the processes by

which people perform sequence processing tasks such as speech recognition. An

important part of the formulation of any valid psychological theory is the ability to

build a model of the phenomena under investigation which accurately reflects the

phenomena and has significant predictive abilities. Increasingly, neural networks are

being used as a modelling tool.

Cleeremans and McClelland (1991) used a simple recurrent network (see

section 1.2 for a definition of a simple recurrent network and section 2.1 for further

details of this particular network) to model the way in which humans loam the

structure of sequences. The human subjects were trained on sequential material based

on a finite state grammar (see chapter three where the finite state grammar used in the

first part of Cleeremans and McClelland's study is used to generate a data set).

Cleeremans and McClelland found that the simple recurrent network

architecture was able to capture key aspects of both the learning and processing of

event sequences. The initial version of the simple recurrent network was a poor

model of human subject performance. However, modification of the activation and

learning rules of the network, so that the former was a function not only of current

input, but also a decaying trace of past inputs and the latter had two instead of one

component (see section 2.1 for further details), led to a model which fitted the human

subject data rather well.

Biology

Underlying the psychological processes described above is the physiology of

the brain. Artificial neural networks are far simpler than real neural networks such as

the human brain in terms of the number of units in the network, the stmcture of these

units and the way in which these units are organised. As well as underlying sequence

processing abilities in general, there has also been speculation that the brain uses

temporal processing to store information.

There is evidence that temporal processing takes place at the single neuron

level. A typical "neuron" in an artificial neural network will simply sum its weighted

inputs and pass the resulting value through a squashing function. A neuron in the

brain, however, is a much more complex affair. Mel (1994) suggests that the

dendritic tree of a single neuron may account for anything up to 99% of its total

surface area and may have as many as 200,000 synaptic inputs. Across the brain as a

whole, dendritic trees consume over 60% of the brain's energy. This complexity

suggests that a dendritic tree is in fact a complex information processing device. One

of the types of information processing abihties that dendritic trees are claimed to have

is to act as a spatiotemporal filter 1. Using compartmental modelling. Rail (1964) was

the first to demonstrate that a passive dendritic branch can act as a filter that selects

for specific temporal sequences.

Figure 1.1 demonstrates this principle. The peak of the voltage wave form is

twice as large when the inputs to the neuron (simplified here as a ten compartment

model) move closer to the soma during the course of the sequence. The difference is

such that the sequence D-C-B-A causes the peak voltage to be greater than the firing

 ̂An ability to perform spatiotemporal integration is one of four that researchers have

proposed. The other three are: i) the existence of semi-independent processing sub

units, ii) dendritic structure is influenced by the behaviour of the whole neuron or by

its sub units, iii) Non-linear mechanisms mean that the dendritic tree can act as a

logical network.

threshold a. The dotted line represents the voltage if the components of the sequence

are presented simultaneously. Note that in this example the neuron is broken down

into a compartmental model. This involves breaking down the complex structure of

the dendritic tree into sections (compartments), each of which consists of circuit

elements which capture the electrical properties of the corresponding part of the

dendritic tree.

o##ocococo °cocoooc##o
oco#eooooo =ooooc##ooo
occooe#ooo "0 0o##ooooo
CCCCCC0990 »oe#ocooooo

B

D

Total input
to Soma

a
A-B-C-D

t0

Figure 1.1 .a: A ten component model of a dendritic branch demonstrates difference

for different input sequences

eooooococo
Figure l.l.b: Detail of the ten component model used in figure la. The shaded

portion represents the soma. Non-shaded portions represent the dendritic tree.

Engineering

The term "engineering" represents a class of problems where the biological

plausibility of the network is not as critical as it is in the two areas described above,

so long as the task is performed efficiently. In these problem domains, neural

networks often find themselves in competition with rule based or statistical

techniques. Nevertheless much work has been done with neural networks,

particularly in control problems (see for example Venugopal et al 1994). Neural

networks have also been used in problem domains where the dynamics of a sequence

need to be understood so that accurate predictions can be made concerning its future

direction.

McCann and Kalman (1994) used a recurrent neural network architecture to

predict turning points in the gold market. The architecture used was a simple

recurrent network which also employed skip connections from the input to the output

layer. With an appropriate trading strategy, it was found that a significant paper profit

could be gained. The trading strategy used was as follows:

• IF we are in the market, and it has been the case that I<s for n consecutive days

or more then SELL

• IF we are not in the market, and it has been the case that I>b for n consecutive

days or more then BUY

In the above strategy, I is the network indicator, b is the buy threshold and s is the

sell threshold. All these as well as the constant n were adjusted experimentally to find

the optimum parameters.

1.2 Recurrent networks: What are they and what are the desirable

properties?

Broadly speaking, recurrent networks are a class of neural network models

that are distinctive because they have connections within layers and/or from a layer to

a layer "lower down" the network (here a layer is lower if it is closer to the input

layer). They are distinct from feed forward networks which only have connections

from lower to higher layers and have no connections within layers. As we shall see in

section 2.1, recurrent networks have become the architecture of choice when using

neural networks for sequence processing tasks.

Recurrent networks are particularly suitable for sequence processing tasks

because their feedback connections give rise to a capacity for storage of past

activations. This acts as a short term memory structure, allowing the network to

retain information concerning the order in which various inputs were presented to it.

As we saw in section 1.1.2, memory for order is vital if sequence processing is to

successfully undertaken.

The desirable propeities of a recuiTent network ai*e identical to those of feed

forward networks. To the casual observer it might seem that the only thing that a

neural network has to do is to produce an output that is identical to the desired output.

The truth however is more complex, as illustrated by the following quote:

"It should be first of all emphasised that a major task of any theory of neural

networks is to produce exceptional input output relations. They have to be

exceptional in that they should correspond, even if initially only in a metaphorical

sense, to our intuitions about cognitive processes. Attractive features are biological

plausibility; associativity; parallel processing; emergent behaviour (cooperativeity);

freedom from homunculi; potential for abstraction. Then, if any of these features are

captured by the model, it has to prove robust to the type of disorder, fluctuations.

disruptions that we imagine the brain to be operating under." (Amit 1992 pp6. Italics

in original).

Obviously some of these criteria have different priorities for different

researchers. Engineers will be less concerned with the question of biological

plausibility than neuroscientists for example. However it is important to realise that

there is considerable fertilisation frorn one discipline to the other. Speech recognition,

for example, is of interest to psychologists (How do we recognise speech? can we

use neural networks to model some aspect of this process?) and engineers (How do

we build a generic speech recognition system?).

One of the most important conceptual frameworks in which neural networks

have been examined is to view them as dynamical systems! Broadly speaking, a

dynamical system is one which changes over time. In order to view a neural network

as a dynamical system, it is necessary to visualise the network as consisting of two

sections:

Representation o f network states: The representation of all the possible states

of a dynamical system is known as a state space. Any network state can be viewed as

a point on an N dimensional graph, where N is the number of variables that the

system has. For a neural network N corresponds to the number of connections (and

therefore weights) that the system has.

"Laws o f motion" : Within the state space: During the learning process the

network moves around the phase space, as weight changes as a function of some

learning rule take place. The network will of course be moving towards some goal

state where the actual output of the network is identical (or within some margin of

error) to the desired output. The point on the phase space represents the combination

of connection strengths for which, given the appropriate input, transfer and output

functions, the desired output will be produced. Such a point is an example of an

attractor.

A useful analogy often used in dynamical systems theory to explain this

terminology is the landscape metaphor (see figure 1.1). A ball rolls around the

landscape, its movement is determined by two factors: the topology of the landscape

and the laws of gravity and friction. For a given landscape the ball will only find the

global minimum if the energy with which it moves round the landscape is within a

certain range. Too little energy will not give it sufficient resources to get out of local

minima, whilst too much energy will cause the ball to "escape" from global

minimum.

//jV

X / I \ \

Q1 M l Q2 Q3 M2

Figure 1.2 Diagram illustrating the landscape metaphor. Points Ml,M2 and Q1 - Q3

are basins of attraction (or attractors) defined by local maxima, labelled in the diagram

as Max.

In figure 1.2 points Ml and M2 are global minima, in a neural network these

represent memories or states such that a network in that particular state produces the

desired output for a given input. These are global minima within the system. Points

Q1 - Q3 represent spurious memories or states. These are local minima within the

system, which may cause the network to fail to learn a pattern set, should the

network have a set of connection strengths which place the network inside it. Clearly

the learning rule should try and stop this from happening by incorporating some

8

method so that whilst the network might be able to hop out of a local minimum, it

would not mistake a global minimum for a local minimum.

One question that might be raised from this comes from the fact that although

the patterns which are to be learned during sequence processing tasks are temporal in

nature, the state space onto which they are to be mapped is spatial in nature. Thus,

how do we get from one to the other? Grinasty et al (1993) reports how temporal

order is converted "into spatial correlations expressed in the distributions of neural

activities in attractors". Further study of the way in which internal representations are

formed during sequential processing tasks was reported by Elman (1991), who stated

that distributed representations were formed by the network during learning.

1.3 Overview of the Thesis.

In this section the importance of sequence processing has been made clear,

along with a general description of a class of neural network models called recurrent

networks. Neural networks have been used by researchers in a wide range of

disciplines, nevertheless there are features of a neural network that are desirable to all

of them.

Chapter two gives an overview of research into the use of neural networks for

sequence processing. Reflecting the current state of research, we concentrate on

recurrent network models, describing the major models that have been developed.

One problem with this is that researchers often use different terms for the same thing.

This is particularly true of mathematical formulae. Accordingly the formulae

associated with each network are described as they were by the original authors.

Having looked at a wide range of models, efforts that have been made to classify and

compare them are then examined.

Chapter three describes a comparative study of three recurrent network

architectures over four different sequence processing tasks. This chapter falls into

two parts: i) An examination of the effects of modifying internal network parameters

on network performance ii) The comparative study itself.

In chapter four we examine the effects that different modifications to network

architectures and learning rules have on the ability of the network to perform

sequence processing tasks. In particular we examine modifications to the Real Time

Recurrent Learning (RTRL) model of Williams and Zipser (1989).

In chapter five the results of this research are drawn together. We look at the

physical properties of the network (number of layers, level of interconnectivity etc.)

and see which of these give rise to desirable behaviours (fast learning, ability to

generalise etc.).

Finally in chapter six some guidelines for designing more powerful recurrent

neural networks are proposed, together with a theoretical metaphor which draws

together the findings reported in chapter five. This metaphor looks at the construction

of recurrent networks as being more than a matter of changing cormection strengths.

Finally a number of directions for future research are advocated.

1.4 Aims of the thesis

• To discover what properties of the architecture of a neural network give rise to

desirable behavioural properties. These desirable properties are defined as an

ability to learn a particular data set, and to generalise from learning to a new set of

data from the same problem and to produce the desired output over new data.

• To examine the interaction between the learning rule used by a neural network

and its architecture. Can modifications to a learning rule produce different

behaviours on the same architecture?

• To see which of these two factors has the greater effect on network performance

10

Chapter Two. Recurrent Networks: A Review of the Literature

2.1 A history of sequence processing using neural networks.

A large number of different neural network models have been used in

sequence processing problems. They can be divided into one of three classes: i) Feed

forward networks ii) Feed forward networks with a shift register attached and iii)

Recurrent networks. Of these, recurrent networks have become the dominant type of

model used by researchers in sequence processing problems.

2.1.1 Back Propagation Through Time (BPTT)

The use of feed forward networks for sequence processing problems stems

from the observation of Rumelhart, Hinton and Williams (1986) that a multi-layer

feed forward network trained with the back propagation learning algorithm is capable

of finding a satisfactory solution to almost any problem. In addition Minsky and

Pappert (1969) stated that for every recurrent network there is a feed forward

network with identical behaviour (over a finite period of time). This is done by

adding one layer to the network for each time step needed to represent the sequence.

This approach, which is described by Williams and Zipser (1989) as

Backpropagation through time (BPTT) has the advantage of great generality and is

shown in figure 2.1.

11

Input Layer Hidden Layer Output Layer

t

t-1

t-2

t-n

Fig 2.1. A Schematic Diagram o f the Backpropagation through time (BPTT) model,

showing how the model grows as the size (n) o f the sequence increases.

However, the difficulty comes when BPTT is implemented in order to solve

problems which include long sequences ..or where the size of sequence varies widely.

In the first case the system requires a great deal of memory, and in the second

memory may lie idle for much of the time when the system is processing short

sequences.

2.1.2 Using Shift Registers for Sequence Processing

Another approach to tackling sequential processing problems is to add a shift

register to a standard feed forward network. The shift register stores information until

there is sufficient to perform the task successfully. Tliis is done by presenting an

input pattern to the network such that the first element of the sequence is represented

by the first portion of the input pattern, the second element of the sequence is

represented by the second portion of the input pattern, and so on. A "portion" may

represent one or more units in the input layer. All portions are the same size (see

figure 2.2).

12

Output Layer

Hidden Layer

Input Layer

Figure 2.2. A feed forward network adapted to perform sequence processing tasks.

The input layer is divided into a number of compartments, which contain one or more

units. Each compartment represents one element of the sequence. As the network

receives each element of the sequence the input layer fills up until it receives the last

element o f the sequence. At which point the pattern can be spread throughout the

network in the traditional manner.

There are however a number of problems with this approach. As with the

BPTT model, the network has to accommodate the largest sequence that it is likely to

come across, which may lead to difficulties in tackling problems which include long

sequences. Furthermore, as with BPTT a problem where sequence size varies greatly

leads to inefficiency. Another difficulty with this approach is that many problems will

need to preserve the relative temporal structure of a pattern despite absolute temporal

displacement. Consider for exairiple^ the vectors.

[01 1 1 0 0 0 0 0]
[0001 1 1 0 0 0]

I This example was taken from Elman (1990).

13

The dilemma that the network has to resolve is whether the two vectors represent the

same structure displaced in time, or as dissimilar structures altogether. They can be

taught to recognise them as identical patterns which are temporally displaced, but in

doing so the network will have not learned the similarity and the concept will not

generalise to novel patterns.

An example of using shift registers is the TRACE model of speech perception

described by McClelland and Elman (1986). This model consists of three layers:

feature phoneme and word levels. Each unit represents a particular hypothesis

concerning the utterance, relative to the start of the utterance. Thus TRACE uses a

local as opposed to a distributed representation system. Each bank of feature

detectors is replicated over several successive discrete time steps. Input to the model

is fed sequentially to the appropriate feature detector at the appropriate time step. The

limitations of this type of model that have been discussed above should be obvious:

the network become^computationally expensive if a word needs a large number of

time steps to represent it, during which time large parts of the network would be idle.

Furthermore a local representation (one unit for each word) does not scale well to

large vocabularies.

Because researchers wish to capture the power of the BPTT algorithm whilst

avoiding the inefficiencies of shift registers, the majority of neural network models

used for sequence processing have been recurrent networks. Recurrent networks are

able to represent time by the way in which the previous states of the network (i.e. the

previous inputs it received from the outside world) affect the present state of the

network. The recurrent connections effectively form a short term memory

mechanism.

2.1.3 First and Second Order Recurrent Networks

Goudreau et al (1994) make a distinction between first order and second order

recurrent networks. In a first order network, the parameters are a set of weights wÿ

14

which causes the input (or neuron) j to have an effect on neuron i. Thus in a network

containing M inputs and N neurons, the output of neuron i at time t is calculated as

follows

X =8
^ M +N

(2 . 1)

Where wij is the connection strength from unit j to unit i,

if 1< j< M
(2.2)

ÿ r f^ \fM + l < j < M + N

where is the output of input j at time t, is the output of neuron j at time t-1

and the function g is a threshold function defined as follows

However a second order recurrent network differs in that there is a set of

weights wijk which cause neuron j and input k to have a combined effect on neuron i.

In such a case the output of a neuron i is calculated by the following equation

N M
(2.4)

\j=] k=\ y

Where the function g is identical to the threshold function (2.3). Goudreau et al state

that a second order recurrent network is able to represent any finite state recogniser,

whereas a first order recurrent network cannot.

The difference between first and second order recurrent networks is shown in

figure 2.3.

15

wy

(a)

k

Network Units

Inputs

(b)

Figure 2.3: (a) A first order and (b) A second order recurrent network. In the first

order recurrent network the total input to unit j is the total input from input lines

added to the total input from other units in the network i.e. wkj+wij. Whereas in the

second order recurrent network input from input linos is multiplied by the input from

other units in the network before multiplying by wÿk- The convention o f representing

multiplication in this way is taken from Rumelhart and McClelland (1986).

One of the interesting features of recurrent networks when compared to

networks with strictly feed forward connections is the richer and more diverse

behaviour that recurrent networks display. Dayhoff, Palmadesso and Richards

(1994) point out that whereas feed forward networks form fixed point attractors only,

recurrent networks can also form periodic oscillations, quasi-periodic oscillations and

chaotic attractors. Grinasty, Tsodyks and Amit (1993) describe how the temporal

order of a sequence is converted into spatial correlations of the distributions of neural

activities in attractors.

16

2.1.4 The Simple Recurrent Network (SRN)

Recurrent network models often use approximations to the BPTT algorithm.

One of the most commonly used models which falls into this category is the Simple

Recurrent Network (SRN). The SRN was first proposed by Elman (1990) and has

appeared widely throughout the literature since (See for example Cleeremans and

McClelland 1991, Servan-Schreiber, Cleeremans and McClelland 1991, Elman 1991,

Noda 1994). Elman based the SRN on a model proposed by Jordan (1986) which

had a second hidden layer, known as a context layer. Some of the variations on this

model are shown in figure 2.4. The short term memory mechanism in the SRN^ is

provided by the feedback to the context layer from the hidden layer. The fixed

connections provide the network with a history of its previous hidden layer outputs.

2Jn the discussion of the SRN architecture the network discussed will be the one

proposed by Elman, shown in figure 2.4B.

17

B

^ Output

Hidden

Input context •

Output

Hidden

Input context

] Output

Hidden

Sigma-Pi

Input context

Fig 2.4: Three examples of a Simple Recurrent Network (SRN) architecture. A) As

proposed by Jordan (1986) B) As proposed by Elman (1990) C) As proposed by

Noda (1994). Layers joined by solid lines are fully interconnected and trainable.

Dashed lines indicate 1:1 non trainable connections with a weight value ^ L

The SRN works as follows for any given time t for which the network

receives information from the "outside world". The input is fed forward through the

network and the hidden layer outputs are stored in the context layer. At the next time

step t+1, the hidden layer receives not only input from the outside world but also

from its own outputs (stored in the context layer) at time t. At time t+2 the network

18

receives the appropriate information from the outside world as well as from itself at

time t+1 and so on. Elman set the values of the context units to 0.5 for the first time

step, when the network had no history of activations. Weight modification is

achieved by using the traditional backpropagation learning algorithm. Thus the

network has the power of the backpropagation technique, without the restrictiveness

of the BPTT algorithm. Some authors have described the SRN as a truncated BPTT

network.

Note that the network proposed by Noda is identical to the one proposed by

Elman except for the addition of a layer of sigma-pi units (Rumelhart, Hinton and

McClelland 1986). Sigma-pi units differ from more traditional units in that inputs to

the unit are multiplied as well as summed. Thus the net input to a standard unit is

given by

(2.5)

where w.j is the connection strength from unit i to unit j and a. is the activation of

unit i. Conversely the net input to a sigma-pi unit is given by

(2.6)

Where i is an index of the pairs of units, sometimes called conjuncts^, which impact

on unit jj and a i i , ..., aik are the k units in the conjunct. The presence of sigma-pi

units in a network make it dynamically programmable in that the output of one unit

can directly effect the output of another unit. The most obvious example of this is if

3Although conjunctions can be of any size, Rumelhart, Hinton and McClelland

(1986) state that they have found no application where a conjunct of size > 2 is

needed.

19

one of the units in a given conjunct is zero then the output of the conjunct is zero, no

matter how large the output of the other unit in the conjunct.

Servan-Schreiber, Cleeremans and McClelland (1991) argue that an SRN is

able to closely mimic a finite state automaton in terms of its behaviour and state

representations. They go on to state that it is able to process strings of infinite length

even though it has only been trained on strings of finite length. After training an SRN

to learn a finite state grammar, Servan-Schreiber, Cleeremans and McClelland (1991)

found that not only did activation patterns group according to the different nodes in

the finite state grammar, but sub grouping according to the path traversed before

reaching the particular node had also taken place.

An alternative method for training SRN models is the TRAINREC algorithm

proposed by Kalman and Kwasny (1994). There are three important differences

between TRAINREC and the traditional SRN learning algorithm.

The Error function: Instead of the usual error function which is some function

of the target output minus the actual output, Kalman and Kwasny propose

error = —— (2. 7)

Where t is the target value and a is the activation of a unit. This error function

significantly decreases the number of trials needed for learning to take place (See

Table 2.1).

20

Error Function Optimisation

Method

Epochs Presentations

Sum of Squares Backprop oo oo

Kalman-Kwasny Backprop 13000 146900

Sum of Squares Conjugate Gradient 639 72151

Kalman-Kwasny Conjugate Gradient 237 26871

Table 2.1. Table showing differences between error function and optimisation

methods of Kalman and Kwasny (1994) over the sum of squares error function and

the backpropagation optimisation method. The task measured was training a network

to be a deterministic parser (From Kalman and Kwasny 1994fig 2).

Using skip connections: Skip connections connect units which are not in

adjacent layers. The use of skip connections can reduce the number of units needed to

perform a particular task. A simple example of this is the XOR problem. Normally

this task can be learned with a network of five units minimum. Using skip

connections however reduces the minimum number of units to four (see fig 2.5).

This in turn reduces the number of degrees of freedom that the network has. The

number of variables taken up with skip connections reflects the degree of linearity

that the problem has. The higher the number of variables, the more linear the task is.

21

B

Figure 2.5:Minimum size neiwurks lu perfurm the XOR problem (A) without and (B)

with skip connections. Dashed lines represent inhibitory connections, solid lines

represent excitatory connections.

Singular value decomposition:(SVD): This is a method of pre-processing

information before it arrives at the input layer. S VD allows training to take place

when training is not possible on raw data. It may also reduce the number of input

units required to represent the sequence. Kalman and Kwasny (1994) use SVD in

conjunction with an affine transformation to squash input values into the interval

[- 1, 1].

Correctness criterion: The usual way to judge the output of a neural network

is if the difference between the output and the target output of a network is less than

some specified tolerance value. An alternative method proposed by Kalman and

Kwasny (1994) is to use Best Vector Match (BVM). This system works best in

categorisation tasks where each output unit represents one category. The unit target

vector which forms the largest cosine with the unit output vector is the winner. If this

category is the same as the target then obviously the answer is correct. Otherwise the

weights of the network are modified according to the learning rule used.

22

The value of the research undertaken by Kalman and Kwasny (1994) is that

changing the learning algorithm without changing the architecture of the network can

lead to an improvement in the performance of the network.

Robinson, Hochberg and Renais (1995) report on a recurrent network model

for speech recognition. The architecture of the model is shown in figure 2.6.

x(t+l)y(t)

Time Delay

x(t)u(t)

Fig 2.6: Recurrent network used by Robinson, Hochberg and Renats (1995). In the

interests of clarity, not all connections are shown.

The network receives two inputs: The current input u(t) and the current state x(t).

This produces two distinct outputs: The output y(t) and the next state x(t+l). If we

take the combined input to be z(t) and the weight matrices to the outputs and the next

state as W and V respectively, then:

z(0 =
1

u{t)
x{t)

(2 .8)

Where 1 is included to apply a bias mechanism.

23

i+exp(-v:;0M

Robinson, Hochberg and Renais (1995) use backpropagation through time as

the algorithm for calculating the value of the weight change during learning. The state

units are treated as hidden units in a traditional feed forward network since they have

no target values attached to them. The value of the weight change is then used

to update the weights according to the following formula:

otherwise '

This model also uses a pruning algorithm to remove unnecessary connections

and therefore increase the speed of the network. It was used as part of a system

where more than one network was 'combined'. This was done by averaging the

outputs of four such networks, although more sophisticated averaging methods are

available. Each network differed in the way in which pre-processing of data was

performed. It was found that this led to a 17% reduction of error. The performance of

the model over a range of speech recognition data sets is shown in table 2.2. The

terms MEL+ and PLP refer to forms of standard acoustic vector representations. The

former is "a twenty channel power normalised mel-scaled filter bank representation

augmented with power, pitch and degree of voicing" (Robinson, Hochberg and

Renais 1995 pp7). The latter is "a twelfth order perceptual linear prediction cepstral

coefficients plus energy" (Robinson, Hochberg and Renais 1995 pp7).

24

Merge Type Word Error Rate

Spoke 5 Spoke 6 H2

Forward MEL+ 17.3 15.0 16.2

Forward PLP 17.1 15.1 16.5

Backward MEL+ 17.8 . 15.5 16.1

Backward PLP 16.9 14.4 15.2

Average 17.3 15.0 16.0

Uniform Merge 15.2 11.4 13.4

Log-Domain 13.4 11.0 12.6

Table 2.2 Performance of the recurrent network model o f Robinson, Hochberg and

Renais (1995). Figures shown are percentage error.

2.1.5 Memory Neural Networks

The use of recurrent networks of the type found in the SRN was taken a step

further with the memory neural network (Surkan and Skurikhin 1994). There are

recurrent connections at all three layers of the network. Each network neuron has an

associated memory neuron, which as the name suggests holds information

concerning the activity of the network neuron from previous time steps. The

architecture of a memory neural network is shown in figure 2.7.

25

Fig 2.7. A typical memory neural network architecture. Clear circles represent

network neurons, shaded circles represent memory neurons. In the interests of

clarity, not all neurons and connections are shown.

As can be seen in the diagram, a network neuron in a given layer 1 receives

input from both the memory and network neurons in the layer below it. All neurons

in layer 1 feed forward to only the network neurons in layer 1+1. A given memory

neuron will only receive input from its associated network neuron. The input to the

jth network neuron of layer 1 at time t is calculated as follows:

N,.x
x) (0 = s < ' • (()+ z / , r - (f) (2 .12)

1=0 /=!

For the network neurons at the output layer, however, the total input is as follows:

26

= ï * ^ r « r w + ï / r •''‘■'(O + l A r v ^ W (2.13)
i = 0 f = l i = l

Where Ni is the number of network neurons in the 1-th layer. Mj is ttie number of

memory neurons associated with the j-th network neuron of the output layer. u){t) is

the output of the network neuron at time t. vj(r) is the output of the corresponding

memory neurons at time t. j3' (0 is the connection strength from the i-th memory

neuron of the j-th network neuron to the j-th network neuron in the output layer, wi

is the connection strength from network neuron i to network neuron j (where j is a

unit in layer 1+1). f-j is the connection strength from the corresponding memory

neuron of neuron i to the j-th network neuron.

To produce an output, the total input is passed through a transfer function.

The output for all memory neurons not in the output layer is calculated thus:

Vj (t) = (Xj ■ Uj(f - 1) + (1 - (Xj) • Vj(t -1) (2.14)

for the memory neurons in the output layer the output is calculated according to the

following formula:

Vÿ (0 = otÿ • -1) + (1 - a,() • v‘ (f -1) (2.15)

Where vjg=u!'. The network will remain stable provided that 0 < a ,j, o ' ^ 1.

During learning there is modification of connection strengths between network

neurons, between memory and network neurons as well as modification of the

memory coefficient for memory neurons. The learning rule employed is a

modification of the traditional back propagation algorithm.

Surkan and Skurikhin tested their network on its ability to predict daily

energy usage in a large geographical area. They found that the learning process

converged in fewer than 5000 iterations, with the majority of learning being done in

27

the first 100 to 2500 iterations of learning. The networks were tested on their ability

to predict energy usage for a range of times into the future (one, two or three days

ahead). It was found that accuracy decreased as the network was asked to predict

further into the future.

Memory neural networks were also used by Fallon Garcia and Tummala

(1994) as a missile guidance system. They found that whilst the network was good at

predicting target velocity, it did rather less well at predicting target position.

2.1.6 Finite Impulse Response (FIR) filters

An alternative modification of a traditional feed forward network is to use

Finite Impulse Response (FIR) filters. An example of this method is described by

Wan (1993). The network operates by passing input signals to a unit through FIR

filters. The filter works as follows: Past samples of the input can be represented as a

vector x(t) = [x(t), x(t-l),...,x(t-N)]. Also there is a weight vector for the filter

coefficients w = [w(0), w(l),...,w(N)]. The static weight of the original feed

forward network can now be replaced by the FIR filter. The values at time t of the

activation and output (y(t) and out(t) jespectively)"^ for each unit in the network is

now defined as follows

XO = %w,.'X.(f) (2.16)
I

out(t) = f[y(t)] (2-17)

The network learns by using a rule called temporal backpropagation. The

formula for which is as follows

4 In Wan (1993) from where this description of FIR filters is taken time is denoted as

k, which has been changed in this description to the more standard t.

28

w' a + 1) = (2 . 1 8)

5 '(0 =

-2ej(.t)f'(yf-(t)) l = L
Ni+i (2 i g \

/(y ,'(0) l 5 i " ' (0 w'„
m = l

Where ej(t) is the error of unit j at time t, specifies the coefficients for the

connecting filter y‘j is a filter connecting unit i in layer 1-1 to unit j in layer 1 and L is

the number of layers in the network. The learning process is applied layer by layer

working from the output layer to the input layer.

Wan (1993) demonstrates the ability of a neural network using a FIR filter

structure. The model was tested on a chaotic time series. In this case the intensity

pulsation of an NH3 laser. For the training data Wan used 1000 samples from the

data set, the task of the network being to predict the next 100 samples. The neural

network outperformed all the other methods used, which included standard recurrent

and feed forward networks.

Another model to utilise a filter structure is the Infinite Impulse Response

(HR) synapse multi-layer perceptron advocated by Back and Tsoi (1991). The

synapses of this model have a linear transfer function (see fig 2.8) The neuron used

by Back and Tsoi (1991) is a modification of the McCuUoch-Pitt neuron

y(t) = f
\i= 0

(2.20)

Where x.{t) is the input to the neuron from the previous layer and G,(z) is a linear

transfer function. The inputs to the neuron may be taken from either the previous

layer (in which case it is local synapse feedback) or from the output of the unit (in

which case it is local output feedback). In a comparative study (see sections 2.2 and

2.3), Tsoi and Back argue that different positions of feedback give rise to different

kinds of behaviour. A model referred to by Back and Tsoi (1991) as the Frasconi-

29

Gori-Soda architecture differs from the model designed by Back and Tsoi (1991) in

that the feedback occurs after the non linearity introduced to the system by the

transfer function (see fig 2.8).

2.1.7 The Real Time Recurrent Learning model, and its variations.

Whilst acknowledging the limitations of the BPTT approach, other

researchers have tried to capture its generahty in a more practical framework. The

Real Time Recurrent Learning (RTRL) model of Williams and Zipser (1989) is an

example of this. The general RTRL model has an unrestricted architecture i.e. every

unit in the network is connected to all other units in the network. Information from

the outside world is fed to the system by external input lines, each of which connects

to all the units in the RTRL network. An example of an RTRL network is shown in

figure 2.8.

RTRL Layer

Input Lines

Figure 2.8 A Real Time Recurrent Learning (RTRL) network. The subset of output

units are shaded. Not all connections between units are shown.

During learning, the connection Wij is updated according to the following

equation:

wM+X) = w^{t) + aY,e,(.t)pl{t) . (2.21)
kFÜ

\Aihe^e, oC. i s A caliceJL fko. ̂aa.cL

30

Where ek(t) is an error term such that:

Where T is the subset of RTRL units designated as output (or target) units, dk(t) is

the desired output of unit k and yk(t) is the actual output of unit k. The second part of

the learning rule is a dynamic variable called impact which measures the

sensitivity of the output value of unit k at time t to a small change in the weight wÿ.

This sensitivity is calculated as follows:

P,y(f+1) =
. / e u

(2.23)

with initial conditions:

Where: Z: /S ike. op f\,eurof\J j

/jk[*y*(0] = yk(t+i)[i-yk(t+iJ3 (2.25)

and denotes the Kronecker delta:

r _ fl if i = k (2.26)
\0 Otherwise

Note that equation 2.25 is only applicable when a sigmoid transfer function is

used. Perhaps the most obvious feature of this learning rule is that, because of the

impacts, changing one weight is in part a function of all the other units in the

network. Thus the RTRL learning rule is non-local. However no repHcation of the

31

network over time is required. The amount of storage and computation depends not

on the size of the sequence to be processed but instead on the size of the network.

Williams and Zipser (1989) show that for a network with n units and m external input

lines there are n^+nm^ values.

Williams and Zipser (1989) tested their network on a range of tasks, using

both the original and the teacher forcing RTRL algorithm. There were tasks that both

versions of RTRL were capable of performing. An example of which is the XOR

task modified so that a delay is introduced. The difference between this and the

standard version of the XOR task is that not only does the network have to be capable

of learning the task, but it also has to hold inputs from individual time steps in its

memory mechanism. However other tasks did reveal differences in performance

between the two versions of RTRL. An example of which is when Wilhams and

Zipser (1989) taught the network to produce oscillatory outputs: training a single unit

to produce the sequence 010101... or a two unit set to produce 00110011.. then

only the teacher forcing version of RTRL is able to perform this task.

One variant of the learning rule described above is to use a techmque

described by Williams and Zipser as teacher forcing. In this method, the actual output

of the network is replaced by a teacher signal (i.e. the desired output). Under the

original RTRL algorithm the outputs of the network could be denoted thus

Whereas under RTRL with teacher forcing the outputs of the network are as follows

x^(0 i f k e l
d,(t) if k eT (t) (2-28)

y,ft) if k s U - n t)

32

In equations (2.27) and (2.28) I denotes the input lines to an RTRL network, U

denotes the units in the RTRL network itself. T denotes the subset of RTRL units that

are target units. Another feature of RTRL with teacher forcing is that the p,* values

are set to zero for all target units after each weight update. Thus the learning rule is

similar to equation (2.23).

/e U -T (0
P^(r+l) = / i(4 (0)

(2.29)

Several modifications to the RTRL model have been suggested so as to

improve performance. Schmidhuber (1992) suggests an algorithm which combines

the RTRL algorithm with the BPTT algorithm. The training data is broken down into

blocks, a block consists of a number of discrete time steps. If we use the error

calculation as defined in equation (2.22), the total error over all target units k is

calculated as follows:

£ (0 - —X [^ (0] (2.30)
^ keU

Whilst the total error over the time interval (t, t') i.e. one block is defined as:

E'"'"'(f,f)= %E(T) (2.31)
T = t ' +1

Schmidhuber uses the following notation to describe his improved learning rule:

U is the set of indices k such that at time t, x^(t) is the output of non input unit k.

I is the set of indices k such that at time t, xk(t) is the external input of input unit k.

T(t) denotes the units for which there is a target v^ue dk(t) at time t.

wij denotes the connection strength from unit j to unit i.

33

The algorithm can be divided into the following steps:

i) Compute the contribution of tQ+h) to the change in wjj:

àWy (to +h) = - a ÿ (2.32)

Where a is a constant.

ii) From time interval to to tQ+h let the network run according to the dynamics

described as follows:

^ i(0 = fih^^k(0] (2.33)

Where is a differentiable (usually semi-linear) function and

net/^(t + l)= ^Wj^(t + l)xi(0, net^(0) = 0 (2.34)

iii) Perform calculations for calculating error derivatives similar to those used in the

standard Real Time Recurrent Learning algorithm of Williams and Zipser (1989), but

in a manner similar to the Back Propagation Through Time algorithm:

dE"““(0,t„+h) dE"^(0,to) I ^ dE ^(0,to+h)
dWij dw,j dw^(.r)

+ ' f i E ! ! (2 A ± ^ where ^Ë !Ü (M) = o

Where

(2.35)

y <?g'°""(0-<o + A) ^ _ 'fg (T);c ,.(T -1) (2.36)
,=T*i <) ,̂)(T)

34

/.[netfT)] e,.(T) if T = fg + A
^,(T) = ^/ .[netfr)] g,(T)4-%w,,.J,(T + l)

/€£/
if tg < T < fg + A (2.37)

T = 1

(2.38)

iv) Compute ^' (fg + h) for all possible 1, i and j. Perform one set of calculations for

each 1 according to the following formulae:

tf̂ +h
9,i('o+A) =

teU f=fQ +1

4,'(0) = 0

(2.39)

ifx = to+h: 7/,('^) =
n ifl = i
0 otherwise

(2.40)

else if to ^ T ̂ + A: y .̂(T) = /i[nef.(T)]5^w^^y/„(T+1) (2.41)
aeU

v) Set to = to+h and go back to step i.

The main advantage of this algorithm according to Schmidhuber is that the

average number of calculations per time step is O(n^) compared to O(n^) in the

original RTRL algorithm. Schmidhuber tested this modification on what was termed

a "flip flop" task. This is defined as follows: the desired output of the network is 1 as

soon as an event B follows an event A and 0 at all other times. The key aspect of this

problem is that unlike the XOR with delay task, the length of interval between events

A and B is unknown and indeed may vary widely, thus a more powerful and flexible

memory representation is required. Williams and Zipser found that both the original

and teacher forced RTRL algorithms were typically able to solve this problem after

35

5000 presentations. The modified algorithm could solve the problem after 300

presentations.

Another method for improving the performance of the RTRL model was

suggested by Zipser (1989). This involves dividing the network into fully recurrent

sub networks. It is assumed that the sub networks are of equal size. The only criteria

for dividing the network is that each of the sub networks must have at least one of the

"target" units as a member. Simply dividing a network into two sub networks wiU

lead to the pfj values being calculated four times more quickly than in an undivided

network.

Zipser found that his modified RTRL model performed identically to the

original RTRL algorithm, indeed the connection strengths for the two were often

quite similar. Differences appeared however when the models were compared on a

"Turing machine" test, where the network sees the inputs and outputs of a finite state

machine, but not the internal structure of the machine, which the network must

create. Whereas the original RTRL algorithm was able to successfully perform the

task on 50% of attempts, Zipser's subdivided network could only do so when teacher

forcing was used, again the subdivided network was only successful 50% of the

time.

RTRL, however, is not the only algorithm developed for training fully

connected networks. Metzger and Lehmann (1994) describe a learning rule where the

units are divided into two groups defined by the nature of their outputs. Units can be

either excitatory or inhibitory. At a given time step, units are chosen at random and

their state is updated. The two main parts of the updating equation are i) the input to

neuron i:

h. = h(i,S) + H. -U, (2.42)

and ii) the noise level T of the network. In equation (2.42) h(i, S) is the input that i

receives from other neurons in the network. Hi is the input that the network receives

36

from the outside world and Uj is a threshold. Updating is performed according to the

following rule:

ri With probability/(/!,)
' 10 With probabihty 1 - /(A,)

where

/ (^) = [l + e x p (-/i,/r)] '' (2.44)

The units are divided equally into the two sets of excitatory and inhibitory

units. The connections linked to inhibitory units are constant and are not modified

during learning. Because there are no connections between inhibitory units their only

function is to regulate the activity of the excitatory units. Weight updates are

performed according to a hebbian learning rule.

The mechanism developed by Wilhams and Zipser (1989) for training an

RTRL network has also been used by Schmidhuber (1992) to show an alternative to

recurrent networks for sequence processing problems. Instead the model consists of

two feed forward networks. The first net learns to produce the weight changes for the

second net (caUed a fast weight network). Schmidhuber claims that because this

model does not require a fully fledged feedback system to provide a memory

mechanism (indeed in some cases a single weight may be sufficient) this provides an

opportunity for increased storage capacity. If the network which outputs the weight

changes has one output unit per weight then its weight update is as follows

àw, j=-n (2.45)

Where 77 is a constant learning rate and

37

Where wab is a weighted connection from unit a to unit b and Sab(0 is the output

units activation at time t. However in the above equation the number of output units

grows in proportion to the size of the network. To combat this, Schmidhuber

proposes that the feed forward network should have an output unit for each unit from

which a fast weight originates and an output unit for each unit to which a fast weight

leads. In this case the term Sab(0 is replaced by Sa(t)sy(t).

2.1.8 The Gamma Model

In the recurrent network models discussed above, note that the memory

mechanism used by the network is static. In such a situation the rest of the network

has to modify its connections so that a task can be successfully performed. However,

it should be clear that not aU sequence processing problems require the same type of

memory mechanism, both in terms of the number of items that need to be stored in

memory and the form that these items should take. There has also been much

research into recurrent network models which have dynamic memory mechanisms,

which allow the network to form meinory structures appropriate to a particular task.

An example of a recurrent network with a dynamic memory structure is the

gamma model (de Vries and Principe 1992; Principe, de Vries and de Oliveira 1993).

In this case it is more appropriate to describe the gamma model as a gamma memory

structure, since de Vries and Principe claim that it can be 'bolted on' to a number of

different feed forward network models, turning them into recurrent networks capable

of dealing with sequence processing problems. An example of a gamma network is

shown in figure 2.9.

38

Output Layer

Hidden Layer

/ Gamma Layer
/

o—
Gamma Kernel; Detail

Input Line

Figure 2.9. A gcmvna network. In this case the gamma memory structure connects to

a feed forward network. Shaded units in the gamma kernels have feedback

connections to themselves.

The gamma memory structure consists of groups of units, called kernels.

Each kernel has a dedicated input line, whose output at any time is equal to the input

it receives from the outside world. All units in the gamma memory structure feed

forward to the next layer in the network. The output of units in a gamma kernel are

calculated as follows:

(0 — f,-)

=)% (f-l)+ /rx . (t -1)

(2.47)

(2.48)

39

Equation (2.47) relates to the input line to the kernel. Equation (2.48) relates to

members of the kernel. The key to the way in which the gamma memory structure

works is the variable ji. The memory is a trade-off between two factors: memory

depth aiid resolution. Memory depth refers to how many time steps baek information

is held, whereas resolution refers to the degree of detail in which the information is

kept. A kernel with high memory depth will have a coarse grained description of its

previous states and vice versa.

This principle can be seen in equation 2.48. The unit xik at time t receives

information from the previous unit in the gamma kernel and from itself from the

previous time step. The former is multiplied by |i, the latter by 1-|X. Thus the higher

the value of |i the more information from the previous unit in the gamma kernel will

be preserved and more information concerning the output xik at t-1 will be lost. The

opposite will be the case as the value of \i decreases.

During learning the value of |X will be updated according to the following

equations:

AH= (2.49)

Where

«,*(0 = (1 -)«, (f - l) + ■(«- !) + (' - !) - ((- 1) 1 (2-50)
L,

In these equations e^(t) is desired output - actual output, (net^(t)) is the

back propagated error from the layer(s) above the gamma memory structure and

is the connection strength between units i and k.

A variation on this model was proposed by Principe and Turner (1994)

whose gamma memory structure differed in that the memory parameter p. was

adapted locally. Hence there will be a different value of p for every unit in the gamma

40

kemel. This leads to a gamma network having a composite memory depth and

resolution. The memory depth is given by:

V = (2.51)
1 = 1

Where

3^-1, - i (2.52)

Composite memory resolution is calculated according to the following

formulae:

-N . .+] ~ (2 53)

As with the original implementation of the gamma model, the memory

structure mapped onto a multi-layer perceptron.

2.2 Issues of Convergence

Research into the use of neural networks to perform sequence processing

tasks has given rise to a wide range of models. An important consideration, however,

is their ability to learn a particular data set. Here emphasis will be given to three

recurrent network models: the Simple Recurrent Network (Elman 1990), the Real

Time Recurrent Learning (RTRL) network (Williams and Zipser 1989) and the

Gamma Model (de Vries and Princippe 1992), as these wiU form the basis of

comparative studies in chapters three and four of this thesis.

The Simple Recurrent Network has been apphed across a range of sequence

processing problems, particularly the processing of finite state grammars. Changes to

41

various aspects of the network reported by Kalman and Kwasny (1994) led to

improvements in its ability to converge. These included changes to the architecture

(adding skip connections) and to the learning algorithm (a new way to calculate the

error). Tlicsc gave rise to faster convergence. Interestingly, the Simple Recurrent

Network has been shown to be capable of processing quite long sequences of widely

varying lengths, even though the only information that is retained is the activation

values of the hidden layer from the previous time step. This is in contrast to the Back

Propagation Through Time model, where complete copies of the network are

preserved for each element of the sequence.

Williams and Zipser (1989) report results of experiments using the RTRL

network over a range of tasks. Although no statistics are given, they report that

solutions to various problems are "readily found" by the network. Despite this,

Zipser (1989) conducted research on ways to improve the performance of RTRL

because of the high computational load that the network places on hardware (see page

36 for details of this modification). Again no statistical data was presented to back up

claims that subgrouping an RTRL network can converge much faster than the original

RTRL model. Comparative studies have shown that RTRL tends to perfonn rather

poorly compaired to other recurrent network models (see section 2.4 for further

details).

Reports concerning the performance of the Gamma Model indicate that it is

capable of learning quite complex tasks and benefits from receiving integrated data as

input (Principe and Motter 1994). This enables faster learning and means that fewer

hidden units need be used (although at a cost of expanding the size of the input

layer). Principe, Kuo and Celebi (1994) argue that the recursive nature of the gamma

memory structure gives rise to an additional parameter over recurrent networks which

have tapped delay lines:

"[W]hen a [gamma network] is used...The angle between the desired signal and the

memory space changes as a function of the feedback parameter. Therefore a memory

42

filter of a given order still has an extra parameter to decrease the difference between

the desired signal and its orthogonal projection" Principe, Kuo and Celebi (1994) pp

336.

2.3 Attempts at classification.

It is clear from section 2.1 that work on sequence processing using neural

networks has produced a large collection of models. Furthermore the models are

diverse in terms of their architectures, the learning rules that they use and the

behaviours that they exhibit. Small wonder, then, that efforts have been made to

create a set of rules by which different recurrent networks can be classified.

Mozer (1993) divides a neural network for sequence processing into two

parts; the short term memory mechanism which captures those aspects of the input

sequence that are needed to make accurate predictions and a feed forward structure

that can make accurate predictions based on the input it receives from the short term

memory structure. When designing a neural network for sequence processing Mozer

believes that three distinct factors need to be taken into consideration: What is the

architecture of the network (number of layers, units etc.)? What is the nature of the

training algorithm? What form does the short term memory mechanism take?

Concentrating on the third factor in the above list, Mozer develops a

taxonomy of short term memory structures based on the following three criteria:

The form that the memory takes: Mozer describes three different forms. The

most simple form is where the memory mechanism is a buffer of size n which

contains the n most recent inputs to the network, an example of this is the TRACE

model of McClelland and Elman (1986) discussed above. Another form is the

exponential trace memory, an example of which is Elman's SRN. Finally there is the

gamma memory of de Vries and Principe. This gives us three different types of

memory form.

43

The content of the memory mechanism: Although the memory mechanism

must hold information about the sequence, the memory structure does not have to

hold raw data. The sequence may be encoded into a new representation.

Furthermore, this representation may also be transformed in some way. Further

options for memory content can be seen by storing either the state of the network or

its outputs. This gives us six different types of memory content.

Memory adaptability: The memory mechanism can be static, where the

memory state is a predetermined function of some part of network activity.

Alternatively the memory mechanism can be adaptive where, during learning, the

network is able to select those aspects of the sequence which make the most

contribution to correctly processing the sequence. This gives us another two

parameters to classify a given memory structure.

In total, Mozer's classification system gives us thirty six different types of

memory. Classifying various neural network models used in sequence processing

tasks shows that the majority of work done so far has been concentrated on models

which use a delay line. The gamma memory structure in particular has received little

attention.

A different type of memory mechanism classification was advocated by Tsoi

and Back (1994). In total they advocate splitting neural networks for sequence

processing into three categories:

Models based on multi-layer perceptrons: This involves using a feed forward

network with Finite Impulse Response (FIR) filters. An example of this is the

network described by Wan (1993).

Recurrent Networks: As was stated earlier, these are networks which have

feedback connections either within or between layers. Both the Simple Recurrent

Network of Elman (1990) and the Real time recurrent learning network of Williams

and Zipser (1989) fall into this category.

Finally, there is a group of models which combine some of the features of

multi-layer perceptron based networks and recurrent networks. These are defined by

44

Tsoi and Back (1994) as local-recurrent-global-feed forward (LRGF) models. Such

networks, as their name suggests will incorporate both feed forward and recurrent

connections. Networks which fall into this category include the Back-Tsoi

architecture, the gamma memory structure and memory neural networks. Tsoi and

Back also establish their own criteria by which to judge LRGF models:

1. Does the model have the ability to be a universal approximator for a set of input-

output mappings?

2. The model should be as simple (i.e. have as few units and connections) as

possible.

3. What is the optimum form of feedback structure?

4. The model should be robust to structural perturbations.

Tsoi and Back also define a taxonomy for LRGF models, based on the type

of synapse (simple or dynamic) and the feedback location (synapse, activation or

output). In total this gives six different types of LRGF model. These can be

summarised in a generalised LGRF architecture as shown in fig 2.10.

G1

G2
a(t) y(t)

Gn

H(z)

Fig 2.10: Generalised LRGF architecture. Gl, G2,...,Gn are local synapse feedback

functions. H(z) is a local output feedback function.

45

Perhaps the simplest classification system to date was suggested by Home

and Giles (1994). In their research, recurrent networks examined in their comparative

study (see section 2.3) were divided into two categories: those with observable states

and those without. A particular network was deemed to have observable states if its

states can always be determined from observations of the input and output alone.

Networks with hidden dynamics have states which are not easy to observe.

2.4 Other comparative studies.

Associated with the methods of classification discussed in section 2.2, there

are also comparative studies of the different recurrent network models. Additionally,

some researchers have used comparative studies as a means to justify their particular

model without attempting to fit this into any kind of overall framework.

Mozer (1993) carried out a detailed study of three recurrent networks, which

differed according to the content of their short term memory mechanism:

1. An input memory mechanism (I), where the content was simply a copy of the

inputs to the network.

2. A transformed input and state (TIS-0) mechanism, where a non-linear

transformation is carried out over the current input and the current memory state.

3. A hybrid architecture which contained both memory mechanisms.

Mozer conducted the experiments by constructing a general architecture (see fig

2.11), eliminating memory mechanisms so that a particular network was tested.

46

Output Layer

Hidden .

I-Delay
Memory

TIS-0
Memory

Input Layer

Figure 2.11 Generalised architecture developed by Mozer for use in a comparative

study o f recurrent networks over a time series analysis problem.

The problem used to compare these networks was the dollar/Swiss franc

exchange rate prediction problem used in the Santa Fe time series competition^. Each

of the three networks were tested with different numbers of units per layer, different

learning rates and learning rules. Interestingly Mozer found that the simplest model

tested, the delay memory mechanism, performed as well as, if not better than, the

more elaborate TIS-0 and hybrid models (see table 2.3).

5 This data set is discussed further in chapter three pp 61,

47

Architecture 1 Minute Prediction (57773) data points
I-delay, 0 Hidden .999
I-delay, 5 Hidden .985

I-delay, 10 Hidden .985
I-delay, 20 Hidden .985

TIS-0 .986
Hybrid TIS-0 and I-delay .986

Table 2.3 Normalised Mean Squared Error for financial data series in comparative

study carried out by Mozer (1993).

Similarly, Tsoi and Back report the preliminary results of a comparative study

in which they hope to demonstrate that LRGF models are the best neural networks

for sequence processing tasks. In total four different networks were tested: The Back

and Tsoi LRGF model, the Frasconi-Gori-Soda LRGF model, the RTRL model of

Williams and Zipser and a feed forward network which incorporates time delayed

inputs. These were tested on a speech recognition task. The results are shown in table

2.4.

Architecture MSB Variance

Back-Tsoi 0.0522 0.0097

Frasconi-Gori-Soda 0.0225 0.0041

Wilhams and Zipser 0.1803 0.1777

Feed forward Network 0.0299 0.0097

Table 2.4 Mean squared error and Variance results from the Tsoi and Back (1994)

comparative study of neural network performance over a speech prediction task.

It is clear from the table that the LRGF model of Frasconi, Gori and Soda

gives the best results, whilst the RTRL model of Williams and Zipser gives the

poorest results.

48

As was stated earlier, some researchers have used comparative studies in

order to demonstrate the usefulness of their own model. Principe and Turner (1994)

compare the gamma model to a Finite Impulse Response (FIR) filter (see section 2.1)

over a speech recognition task. Their results showed a superior pcrfonnancc by the

gamma model (see table 2.5).

Memory Epoch Error

FIR 700 0.0321

Gamma 463 2.81x10-8

Table 2.5 Comparative results between a gamma memory and a FIR filter over a

speech recognition task. Table shows the minimum error and the number of epochs

taken to reach this minimum. Taken from Principe and Turner (1994).

A similar comparative study was performed by Principe and Motter (1994),

who compared two different Time Delay Neural Network (TDNN) models with two

networks which incorporated a gamma memory structure. The different attributes of

the networks are summarised in fig 2.6.

TDNNl TDNN2 Gamma 1 Gamma2

Input Layer 7 64 16 20+20

1st Hidden 14 14 14 6

2nd Hidden 6 6 6 0

Output 1 1 1 1

Table 2.6 Description of Network topologies used in comparative study by Principe

and Motter (1994).

In Gamma2, the input layer consisted of two distinct layers, with an integrator

between them, this accounts for the fewer number of hidden layers compared to the

other networks in the study.

49

The networks were trained on their ability to identify the dynamics of a wind

tunnel. Once again the gamma models outperformed the TDNN models (see table

2.7).

TDNNl TDNN2 Gammal Gamma2
Lowest MSE 0.02 0.004 0.005 0.003

Iterations 100,000 10,000 5,000 5,000

Table 2.7 Results of the comparative study undertaken by Principe and Motter

(1994). Mean Squared Error (MSE) and the number of iterations that the network

was trained on are shown.

Although TDNN2 and Gammal were able to learn the task, they did so whilst

displaying significant oscillations. These were not exhibited by Gamma2.

Another comparative study which looked at the effect that different adaptive

memory structures had on network performance was performed by Principe and

Turner (1994). The details of their modifications are described in section 2.1 above.

The modified Gamma model outperformed both the original gamma model as well as

a time delay neural network model which has the memory layer restricted to the input

layer. The task on which the networks were tested involved recognising spoken

words. The results are shown in table 2.8.

Memory Type Epoch Error

TDNN 700 0.0321

Principe and Turner 463 2.81x10-8

Table 2.8 Error scores for the Gamma memory structure proposed by Principe and

Turner (1994) against a conventional Time Delay Neural Network. Epoch refers to

the number o f epoch needed to reach the error score shown in the third column.

50

The comparative study of Home and Giles (1994) is very wide ranging. Each

network was tested over two different tasks: Learning a finite state machine and non

linear system identification. The nurnber of weights and the number of states were

kept approximately equal across all networks, since these factors may have a

significant effect on learning^. The results of this study are shown in table 2.9a (for

the finite state grammar) and table 2.9b (for the non-linear system identification

problem).

6 The number of weights that a network has is known to effect the ability of a

feedforward network to generalise, but it is not known if this is also true of recurrent

networks.

51

FSM Architecture Training
Error

Testing Error %P W S

N&P 2.8 (4.4) 16.9 (8.6) 22 56 8
TDNN 12.5 (2.1) 33.8 (4.1) 0 56 8
Gamma 19.6 (2.4) 24.8 (3.2) 0 56 8

First Order 12.9 (6.9) 26.5 (9.0) 0 48 6
RND High Order 0.8 (1.5) 6.2 (6.1) 60 50 5

Bilinear 1.3 (2.7) 5.7 (6.1) 46 55 5
Quadratic 12.9 (13.4) 17.7 (14.1) 12 45 3

Multi-layer 19.4 (13.6) 23.4 (13.5) 6 54 4
Elman . 3.5 (5.5) 12.7 (9.1) 27 55 6

Local 2.8 (1.5) 26.7 (7.6) 4 60 20

N&P 0.0 (0.2) 0.1 (1.1) 99 56 8
TDNN 6.9 (2.1) 15.8 (3.2) 0 56 8
Gamma 7.7 (2.2) 15.7 (3.3) 0 56 8

First Order 4.8 (3.0) 16.0 (6.5) 1 48 6

FMM High Order 5.3 (4.0) 26.0 (5.1) 1 50 5
Bilinear 9.5 (10.4) 25.8 (7.0) 0 55 5

Quadratic 32.5 (10.8) 40.5 (7.3) 0 45 3
Multi-layer 36.7 (11.9) 43.5 (8.5) 0 54 4

Elman 12.0 (12.5) 24.9 (7.9) 5 55 6

Local 0.1 (0.3) 1.0 (3.0) 97 60 20

(a)

52

FSM Architecture Training
Error

Testing Error %P W S

N&P • 4.6 (8.4) 14.1 (11.3) 38 73 6
TDNN 11,7 (2.0) 34,3 (3,9) 0 73 6
Gamma 19.0 (2.4) 25.2 (3.1) 0 74 6

First Order 12.9 (6.9) 26.5 (9.0) 0 48 6
RND High Order 0.3 (0.5) 4.6 (5.1) 79 74 6

Bilinear 0.6 (0.9) 4.4 (4.6) 55 78 6
Quadratic 0.2 (0.5) 3.2 (2.6) 83 216 6

Multi-layer 15.4 (14.1) 19.9 (14.4) 16 76 6
Elman 3.5 (5.5) 12.7 (9.1) 27 55 6
Lxxîal 13.9 (4.5) 20.2 (5.7) 0 26 6

N&P 0.1 (0.8) 0.3 (1.4) 97 73 6
TDNN 6.8 (1.7) 16.2 (2.9) 0 73 6
Gamma 9.0 (2.9) 14.9 (2.8) 0 73 6

First Order • 4.8 (3.0) 16.0 (6.5) 1 48 6
FMM High Order 1.2 (1.7) 25.1 (5.1) 31 74 6

Bilinear 2.6 (4.2) 20.3 (7.2) 21 78 6
Quadratic 12.6 (17.3) 26.1 (12.8) 13 216 6

Multi-layer 38.1 (12.6) 42.8 (9.2) 0 76 6
Elman 12.8 (14.8) 27.6 (10.7) 8 55 6
Local 15.3 (3.8) 22.2 (4.9) 0 26 6

(b)

Table 2.9 Results of the comparative study performed by Home and Giles (1994)

using the data generated from a finite state grammar. Table (a) shows results when

the networks have an approximately identical number of weights. Table (b) shows

results when the networks have an approximately identical number o f state variables.

%P denotes the number of trials for which the training set was learned perfectly. W

denotes the number of weights. S denotes the number of states. Note that the gamma

kernels used in this study were not adaptive.

53

Architecture Fixed weights Fixed states
N&P 0.101 0.067

TDNN 0.160 0.165
Gamma 0.157 0.151

First Order 0.105 0.105
High Order 1.034 1.050

Bilinear 0.118 0.111
Quadratic 0.108 0.096

Multi-layer 0.096 0.084
Elman 0.115 0.115
Local 0.117 0.123

Figure 2.10: Mean squared error on a test signal for the non-linear system

identification problem. The column denoted "Fixed weights" is the results when all

networks had a similar number of weights. The column denoted "Fixed states" is the

results when all networks had a similar number of states.

2(îy'Conclusion

The search for neural network models capable of solving sequence processing

problems has spawned a large number of diverse architectures and algorithms. The

predominant class of neural network models used by researchers are known as

recurrent networks. However, choosing this one class only slightly clarifies the

picture, since the choice is still large and diverse. This has produced two closely

connected avenues of research: classification and comparison.

These two research efforts have yielded some useful information.

Classification studies have shown that recurrent networks can be defined according to

a particular taxonomy. The more variables in the taxonomy leads to a more fine

grained classification. However, in comparison to the amount of research done on

54

developing new networks and the modification of existing networks, the number of

systematic comparative studies performed is relatively small.

Of the comparative studies that have been performed, some have been

attempts to prove the effectiveness of the researcher's own model against other

existing architectures and/or algorithms. There has been some work, however, that

can be defined as "purely comparative". Such studies have attempted to identify the

most effective recurrent networks so that future research (either pure or applied) can

be concentrated on them. The aim of this thesis is to pinpoint the most effective form

of recurrent network in order to facilitate this research.

55

Chapter Three. A Comparative Study of Three Recurrent Network

Models

3.1 Overview and Rationale

In chapter two we examined the numerous attempts to design neural networks

capable of performing sequence processing tasks, together with attempts to classify

and compare them. Although many of the comparative studies done so far have

provided useful information, they have often been limited in that either one data set

was used and/or only a particular type of neural network has been tested. Since the

term sequence processing' covers a wide range of phenomena, it will be useful to

compare the performance of different recurrent networks over more than one task. It

is worth using multiple data sets for the following reasons:

Attributes of the sequence: Different sequences have different properties. An

element of a sequence at a single time step may only be influenced by events in the

recent past. Alternatively longer term factors may well play a part. If for a given

sequence both short and long term factors are significant, how important are they and

what is the nature of the interaction (if any) between them? Are the sequences of the

same or similar length or do they vary quite widely? Hence the design of a network

for a particular task will be affected by what is known about the attributes of the

sequence. If this information is known and easily defined then the type of short term

memory mechanism can be much more easily specified. Alternatively if the

information is less known or less easily defined then we would seek to use the most

powerful short term memory mechanism available, since a powerful mechamsm may

be what is needed.

Attributes of the network: Are different recurrent networks suited to particular

types of sequence? Or is there one type which significantly outperforms the others

over a wide range of sequence types? The ability of the network to perform a given

sequence processing task is determined by the following factors:

56

• The nature of the short term memory mechanism: Is the mechanism powerful

enough to retain information about the sequence of data of sufficient quantity and

quality to ensure that learning can take place?

• The level of connectivity of the network: Does the network have a state space

which is rich enough to form an internal representation of the sequence?

• The learning rule: Does the learning rule allow the network to traverse the state

space in such a way that it can avoid local minima but still find the global

minimum.

This chapter describes the details of a comparative study of three recurrent

network models over four sequence processing tasks. Section 3.2 gives the details of

the different tasks. The networks which were tested can be found in section 3.3.

Finally, section 3.4 describes the results of both modifying the internal parameters of

each network and the effect that this has on network performance, as well as the

comparative study itself.

3.2 The Tasks

A number of different types of time series were used to measure network

performance, so that comparing the networks over a range of different tasks will give

a better idea of their overall capabilities.

1. A near replication of the letter in word prediction task described in Elman (1990).

The difference is that Elman used a thirteen word lexicon to generate his data sets

whereas a fifteen word data set was used in this study. The learning data was a non-

grammatical sequence of one thousand words each of which was chosen at random

from a fifteen word lexicon. The test data was a sequence of twenty words drawn

57

Time Input Desired Output Output = solution at

time

t=l 00 n/a n/a

t=2 10 n/a n/a

t=3 0 1 0 t=l

t=4 1 1 1 t=2

t=5 00 1 t=3

Table 3.2: Sample data for the XOR with two step delay task, showing the memory

needed by the network to solve the task.

Unlike the Elman task, the network should have a consistently low error score as

soon as enough information is available (in table 3.2 for example the network should

have a low error score from time t=3 onwards).

3. A sequence generated from a simple finite state grammar, as described in

Cleeremans and McClelland (1989). The grammar consisted of eight nodes and a

total of twelve arcs connecting them (see figure 3.1). The learning data consisted of

one hundred and fifty complete traversals (of varying length) of the finite state

grammar. The test data consisted of ten complete traversals, again of varying length.

60

XI

S2
W1

A P2

T2

X2
V2

Fig 3.1. A finite state grammar used to generate data set three (see above), which is

identical to the one used in Cleeremans and McClelland (1993). Nodes are labelled

with bold letters, connections with plain text.

A finite state machine in this case consists of nodes A-G and a series of

connections P,Q,S,T,W,X. Each of these letters is applied to two nodes. The data set

is generated by traversing the network and noting down the letter associated with the

particular node. Each of these letters was assigned a number one through to six

respectively. The input to the network took the binary form of each number. This is

shown in table 3.3.

61

Letter Number Binary Form

P 1 001

Q 2 010

S 3 Oil

T 4 100

W 5 101

X 6 110

Table 3.3: Representation of nodes for the Finite State Grammar task.

If there is a choice of steps from a particular node, then the next node in the

sequence is chosen randomly. The network is presented with the traversal one node

at a time, and has the next connection label in the sequence as the desired output. For

the finite state machine in figure 3.1 for example, the traversal A-B-C-B-G-F-A

would produce the training data shown in table 3.4:

Input Desired Output Input to Network Desired Output of

Network

P T 001 100

T W 100 101

W X 101 110

X P 110 001

P S 001 Oil

Table 3.4 Example o f training data for letter in Finite State Grammar task.

This data set has attributes similar to those of the Elman letter in word

prediction task described above. However there is a significant difference in that the

62

potential length of a sequence is much greater, requiring the network to have a more

powerful and flexible short term memory mechanism.

4. One of the classic problem areas in time series learning and prediction was

examined: financial data series, formed by the exchange rate between Swiss Franc
Vf-and US dollars. This data set was use in the SantaFe institute's tinie series

competition and the problem is a classic one in time series hterature. It is also a test

which has been used in comparative studies of recurrent networks and other time

series prediction methods. The learning and test data were a single portion of

a ten thousand point series, the last one hundred points formed the test data, the rest

formed the learning data. This data set has the following attributes:

• The exchange rate is the product of both short term and long term factors, which

can be subjective (the mood of the currency dealers) as well as objective (the

health of the US and Swiss economies and the nature of trade between them).

• The network will need a powerful short term memory mechanism and a rich

architecture capable of reflecting the complex nature of the sequence in its state

space.

The SantaFe data was modified into a form readable by the network by converting the

data into a binary representation.

^ P re o l .c è .v ^ fuèurz. cu\e{ uyiders'toindiAj ^ /),

63

3.3 The Networks^

In this comparative study, three different recurrent network models were

examined: The simple recurrent network (SRN) used by Elman (1990), the Real

Time Recurrent Learning (RTRL) model devised by Williams and Zipser (1989) and

the Gamma memory model of deVries and Principe (1992). Each of the three

networks were constructed as described in these papers, with none of the later

modifications that have been suggested by some researchers (see chapter four). Table

3.5 shows the different sizes of each network over the different tasks described in

section 3.2 above.

iThe networks examined in this chapter are described in sections 2.1.4 (Simple

Recurrent Network), 2.1.7 (Real Time Recurrent Learning) and 2.1.8 (Gamma).

64

Simple

Recurrent

Network

Real Time

Recurrent

Learning

Gamma

Memory

Input Layer

Size

Output Layer

Size

2-delay XOR Hid = 4 RTRL = 4 Hid = 4 2 1

Letter in

Word P.T Hid = 20 RTRL = 20 Hid = 20 5 5

Finite State

Grammar Hid = 20 RTRL =20 Hid = 12 3 3

Dol - SF Ex

Rate Hid = 20 RTRL = 20 Hid = 20 10 10

Table 3.5: Architecture of the models tested, giving number of units in the "hidden''

layer for each network. The gamma memory layer k is below the hidden layer (see fig

3.2c). The architecture is the same for gamma kernel size k=l and k=2. The output

"layer" for the RTRL network is a subset of the RTRL layer.

These networks are also shown in figure 3.2

65

(a) (b)

(c)

O
key to units

Standard unit

Member of
RTRL
"output layer"
Member of
Gamma Kernel.
Recieves input
from worid, does
not feed back to
itself
Member of
Gamma Kernel.
Does not recieve
input from world,
does feed back to
itself

Figure 3.2. Illustrations of architectures used for the XOR with two step delay

problem: (a) A Simple Recurrent Network, (b) an RTRL Network and (c) a Gamma

memory model with kernel size =2. Some connections have been deleted to aid

clarity. Connections marked by solid lines are trainable. Connections marked by

dashed lines are not trainable and have a fixed value = 1.

66

3.4 Experimental Variables

Each network model (SRN, RTRL, Gamma) was tested using the following

as experimental variables: Different numbers of hidden (or RTRL or Gamma) units

and different learning rates (1,2 or 4). Each combination was tested ten times to

measure sensitivity to initial conditions. For the purposes of the comparative study,

results from networks with the combination of units which gave the best performance

were selected. Two distinct gamma networks were run; one with a kernel of size one,

the other with a kernel of size two.

All the experiments were run using the Neuralworks simulation package,

supplied by Scientific Computing, on a Sun workstation. The learning algorithms for

the RTRL and Gamma networks, as well as the summation function for the Gamma

network were developed in C using the User Defined Neuro-Dynamics package,

which was supplied by the same company. The code for these algorithms is shown

and described in appendices one and two. The RTRL algorithm is based on the

equations used in Williams and Zipser (1989). The Gamma model is based on the

equations used in deVries and Principe (1992).

67

3.5 Results

3.5.1. The effects of modifying internal parameters on Learning

Although the three networks described in this study are diverse in terms of

their architectures and learning rules, it is still possible to describe general behaviours

common to all of them.

Increasing the size of the hidden layer led to an increase in the ability of the

network to learn the pattern set, with a subsequent increase in ability to predict the

test data. Furthermore the fluctuations observed under certain conditions were more

pronounced as the size of the hidden layer was increased. Once the hidden layer size

had been increased to a size such that learning could take place, increasing it still

further had no effect on network performance, other than increasing the time the

network took to cycle through the pattern set.

An example of this can be seen when we examine the performance of the

gamma model over the letter in word prediction task. In this experiment we are

looking to replicate Elman's finding that the error is high at the start of the word and

decreases as more of the word becomes known (with a subsequent decrease in

ambiguity). Typical test results are shown in figure 3.3. In this example the two
other

networks were identical in ever^respect, with a gamma kernel size of two and a

learning rate of one.

68

U 0.8 liliiMil

ii i i i ii i i i i i i i iimMiHHHHiiiii i i i i i i i i i i i iHinnni i inMi i ii i i i ii i iiiiiii
| s . C O O) l J O ' » - h - C O O > U 5 i - r ^ C O O >

CVJ CO CO lO CO CO
Test p a tte rn

(Û)

I III0 4HH^?MIIMIIMMIIIIIIi?Mlj l l lHnffl?H+ttH
. , - i s . c o o) i n i - r ^ c o o)

T- 1— C\j CO CO Tf Tf
Test p a tte rn

C b)
Figure 3.3 (a) Test data for the Gamma model with five hidden Units over the Letter

in Word. Prediction task, b) Test data for the Gamma model with twenty hidden Units

over the Letter in Word Prediction task

Note that when the gamma network with five hidden units is tested, the

overall error is not as low, and the sudden dips in error over the course of a word are

not as sharply marked.

The behaviours which were observed with the changing of hidden layer size

were also encountered with the Gamma layer. Often the network could leam with a

69

kernel size K=l. Increasing K once the network could perform a particular task had

no effect on network performance.

With regard to learning coefficients, the network is most likely to successfully

leam the data when the learning rate is small. As the size of the coefficient increases,

the speed at which the network learns may well increase, but at the same time

learning becomes more unstable and of poorer quality. This was most marked with

the Gamma model. So that, when for example C=2, the network learns on some

trials, but not on others. There was also a tendency for the error value to increase and

decrease, rather than simply decreasing over time. If C is too large, the network will

not leam at all. Similarly with the RTRL network on the XOR problem with two step

delay, the increase in learning speed that came with increasing the size of the learning

coefficient brought increased instability.

Figure 3.4 shows the performance of two different simulations with the same

parameters. Both simulations were mn with a kernel size two with twenty hidden

units. Figure 3.4(a) shows the results on the test data from a network using a

learning rate of one. Over the ten trials the sort of behaviour predicted by Elman

(1990) can be clearly seen. Conversely in figure 3.4(b) the results on the test data

from a network using a learning rate of two shows a set of behaviour less faithful to

Elman's results. The reason for this is that when the learning rate was two^the

network learned the task on some simulations but not on others.

70

I

1.6

1.4
1.2

1

0.8
0.6
0.4
0.2

0

T

W-

■

L
■

■

c o o i o - r - r ^ - c o o m - r - r ^
T - i - c u c o c o T f T f i n t o c o

■■
HH44

CO o>

Test p a tte rn

(a)

IB

■■ ?

0.6 ■ ■

0.4
0.2 - ■

IIIIIIIIIIIIIIIIIIIII III IIIIIIIHIH-H
in
in

o>COh-in COCO
Test p a tte rn

(b)

Figure 3.4: Two sets of results from the gamma model performing Elman's letter in

word prediction task.

Table 3.5 gives details of the architectures used in terms of the number of

units. Whilst other combinations were tried, the architectures that gave the best

results (or the smallest architecture if results did not vary over network size) are the

71

ones used in tables 3.5 and 3.6. In table 3.5, Inp is the number of input units; Hid is

the number of hidden units and Out is the number of output units.

Note that the "output" units for the RTRL network are in fact a subset of the

hidden units. For the gamma memory network two models were used, one with a

kernel size of 2 (K=2), the other with a kernel size of 1 (k=l). To calculate the total

number of units in the gamma layer, use the formula: U = Inp * (k+1), where U is

the number of gamma units. The hidden layer value for the SRN is the size of one

hidden layer, the second hidden layer (i.e. the context layer) is of the same size.

3.5.2. Comparative Study Results

The RMS error scores for each of the networks averaged over ten runs are

presented in table 3.6.

Simple

Recurrent

Network

Real Time

Recurrent

Learning

Gamma

Memory K=1

Gamma

Memory K=2

2-delay XOR 0.542 0.240 0.498 0.205

Letter in Word

Prediction

0.648 1.011 0.702 0.713

Finite State

Grammar

0.669 0.816 0.683 0.675

Dollar - Swiss

Franc

Exchange Rate

1.080 1.129 1.080 1.100

Table 3.6: RMS error scores for each of the networks across the test data of the four

problems described above.

72

3.5.3 Statistical Analysis of Results

In order to get a better appreciation of the performance of the networks over

the various sequence processing tasks, statistical analysis of the results was carried

out. The results of this are shown in the following tables:

Table 3.7 For the XOR with two step delay.

Table 3.8 For Elman's letter in word promotion task.

Table 3.9 For the finite state grammar.

Table 3.10 For the financial data series.

SRN RTRL Gamma K=1 Gamma K=2

Mean 0.542 0.240 0.498 0.205

Standard

Deviation

0.055 0.055 0.012 0.152

Range: Min 0.524 0.219 0.485 0.007

Max 0.706 0.403 0.523 0.426

Confidence

Limits

0.542+0.039 0.240+0.039 0.498+0.003 0.205±0.034

Table 3.7 Summary statistics for the four recurrent networks tested over the XOR

with two step delay task. Figures shown represent the mean, standard deviation,

range and confidence limits for the root mean squared error over the test data.

As well as the statistics shown above, an analysis of variance (ANOVA)

together with the Newman-Keuls test to check for significant differences between

73

pairwise comparisons. These revealed that the networks differed significantly on their

performance on this task. The four networks could be split into two groups: The

gamma network with a kernel size of two and the RTRL network in one group

significantly doing better than the gamma network with a kernel size of one and the

Simple Recurrent Network in the other group. There was no significant difference

within these two groups.

SRN RTRL Gamma K=1 Gamma K=2

Mean 0.648 1.011 0.702 0.713

Standard

Deviation

0.018 0.095 0.011 0.134

Range: Min 0.630 0.857 0.683 0.639

Max 0.683 1.215 0.717 1.095

Confidence

Limits

0.648+0.004 1.011±0.021 0.702±0.003 0.713+0.031

Table 3.8 Summary statistics for the four recurrent networks tested over the Elman

letter in word prediction task.

Analysis of variance again revealed significant differences between the four

networks. The RTRL network performed significantly worse than the other three

networks tested (p<0.01). Analysis using the Newman-Keuels test showed that there

was no significant difference between the other three networks over this task.

74

SRN RTRL Gamma K=1 Gamma K=2

Mean 0.669 0.816 0.683 0.675

Standard

Deviation

0.001 0.001 0.001 0.019

Range: Min 0.655 0.802 0.681 0.651

Max 0.688 0.828 0.685 0.828

Confidence

Limits

0.669+0.001 0.816±0.001 0.683+e

e<0.001

0.675±0.004

Table 3.9 Summary statistics for the four recurrent networks tested over the Finite

state grammar task.

Analysis of variance showed that the RTRL network performed significantly

worse than the other three networks (p<0.01). There was also a less significant

difference (p<0.05) between the simple recurrent network and the gamma network

with a kernel size of one.

75

SRN RTRL Gamma K=1 Gamma K=2

Mean 1.080 1.129 1.080 1.100

Standard

Deviation

0.013 0.045 0.008 0.008

Range: Min 1.062 1.095 1.066 1.086

Max 1.106 1.247 1.090 1.116

Confidence

Limits

1.08010.003 1.12910.011 1.08010.002 1.10010.002

Table 3.10. Summary statistics for the four recurrent networks over the Dollar to

Swiss Franc exchange rate data

Analysis of variance for this data revealed that the RTRL network performed

significantly worse than the other three networks Although the difference was less

pronounced for the gamma model with a kernel size of two (p<0.05) than for the

other two models (p<0.01). There were no significant differences between the other

three models.

3.5.4 Continuous XOR with Two Step Delay

All three networks proved to be capable of performing this task, which

proved to give the best results across all tasks. The Gamma model with kernel K=2

proved to be the most successful at learning this task, followed by the RTRL and the

Simple Recurrent Network. Although the error score for the Simple Recurrent

Network appears to be fairly low, it is worth pointing out that the error score over llic

test set shows that the error is quite low on some of the data, but not on others.

Increasing the size of the hidden layer to ten units also failed to bring about an

76

improvement in performance. The mean error for a Simple Recurrent Network with

ten hidden units is 0.291. Performance on the test sequence is shown in figure 3.5:

0 . 4 5 ^
0 .4

0 . 3 5 --
0 .3 --u

Ê
0.2 - -

0 . 0 5 --

Test P a tte rn

(a)

0 . 6 T

0 . 5 --

0 . 4 --

Ë 0 . 3 --

0.2 - -

Test P a tte rn

(b)

Figure 3.5: (see previous page) Graph depicting the average performance often

presentations of test data to ten different learning trials o f the Simple Recurrent

Network on the XOR with two step delay task. Graph (a) shows the performance of

the network using four hidden units. Graph (b) shows the performance o f the

network using ten hidden units.

11

Interestingly, figure 3.5 shows that the addition of hidden units does not

really change the performance of the network, even though the state space of the

network is made much more complex. It is worthwhile noting that the Simple

Recurrent Network only receives both the present input and a copy of hidden layer

activations from the previous time step. It may well be the case that it is the nature of

the memory mechanism that is the problem, since the RTRL network with four units

proved to be more than capable of solving this problem.

3.5.5 The Letter in Word Prediction Task

Both the Elman and the Gamma network were able to leam the data. On the

test data the Gamma network exhibited the same behaviour as the Elman network; i.e.

error is highest at the start of the word and decreases as more of the word is held in

the network's short-term memory (see the description of the problem made by Elman

for further details). Both performed significantly better than the RTRL network,

which seemed unable to perform this particular task. Furthermore this inability was

not affected by the addition of RTRL units, which only served to slow down even

further the training process. Table 3.8 provides a numerical summary of these

findings. One interesting point is that whilst the gamma model was being tested, one

of the trials failed to find a satisfactory solution with a subsequent failure to decrease

error significantly during learning. This sets the Gamma Model apart from the Simple

Recurrent Network which learned the data successfully across.all ten trials. This may

account for the significant difference between the two (p<0.05).

78

Note, however, that although the mean error scores are higher than for the

XOR with two step delay task, what we are looking for here is the ability of the

network to replicate the behaviour of Elman's original study: that error should be

high at the start of a word and decrease as ambiguity about the word decreases. To

demonstrate this it is useful to look at a portion of the test data consisting of three

words and to examine the behaviours of each network in turn. The portion consists

of the words [ANIMAL, DOG, BOUND] and breaks down into the following sets of

input / desired output pairings:

Pattern Number Input Desired Output

2** E A

2 A N

3 N I

4 I M

5 M A

6 A L

y** L D

8 D 0

9 0 G

10** G B

11 B O

12 0 U

13 U N

14 N D

Table 3.11 A portion of the test data from the letter in word prediction task.

79

Note that in table 3.11 those patterns marked ** are the transition points

between words and are, according to Elman's model, where a sudden increase in the

error score is to be expected.

0.8 - -

Ê 0.6 - -
fid

0 .4 --

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

Test P a tte rn

(a)

I 0 . 8 - -

M 0 . 6 - -

0 . 4 --

0.2

2 3 4 5 6 7 8 9 1 0 11 1 2 1 3 1 41

Test P a tte rn

(b)

Figure 3.6 (a) Performance of the Gamma model over the portion of the pattern set

described in table 3.11 (b) Performance of the RTRL network over the same data.

80

According to Elman's original findings high error rates are to be expected for

patterns 1,7 and 10. This is clearly shown to be the case for the Gamma model. The

same behaviour can also be vaguely seen in the RTRL model, but is much less clear.

Note that even when the ambiguity is much reduced, the RTRL model still seems to

have a great deal of difficulty in predicting the next letters in the sequence.

3.5.6 Learning a Finite State Grammar

The results with this task were similar to those shown in the Letter in Word

Prediction Task. Interestingly the RTRL network performed better on this task than

on the Letter in Word Prediction Task. However its performance was still worse than

both the SRN and the gamma networks. Both the Gamma Model and the Simple

Recurrent Network learned the data successfully across all ten trials. The difference

in performance between the Simple Recurrent Network and the RTRL network is

shown in figure 3.7 (see overleaf).

81

1.6
1.4

1.2

u 0.8

W 0.6
0.4

0.2

CO lO h- O) co w C3>
r— T— T— T— t— C \J C \J CVJ CVJ CVJ

Test Pattern

(a)

0.8 - -I XM 0.6 + A
0 . 4 --

0.2 - -

CO LO O)
CVJ CVJ CVJ CVJ

coCO lO N ai

Test P a tte rn

(b)

Figure 3:7: Performance of (a) A simple recurrent network and (b) an RTRL network

over the first thirty points of the Finite State Grammar test data.

82

3.5.7 Dollar to Swiss Franc Exchange Rate

This problem proved to be the most difficult for all the networks used in this

study. The behaviours shown by the networks were similar in that they were all fairly

ineffective at learning the training data or predicting the test data. However, statistical

analysis of the results showed significant differences in performance between the

networks.

3.6 Some Observations on the |i Parameter

As described above, the gamma memory has a parameter ji which is used to

vary the parameters of the memory, so that depth and resolution of memory can adapt

to a level appropriate for a particular task. The different values of p evolved over the

tasks used in this study are shown in table 3.12 (see overleaf)

83

-
Gamma Memory K=1 Gamma Memory K=2

2-delay XOR

Max = 0.755

Min = 0.569

Mean = 0.667

M. Depth = 1.499

RMS Error = 0.248

Max = 1.049

Min = 1.037

Mean = 1.042

M. Depth = 1.919

RMS Error = 0.023

Letter in Word Prediction

Max = 1.278

Min = 0.711

Mean = 0.998

M. Depth = 1.002

RMS Error = 0.493

Max = 1.398

Min = 0.63

Mean = 0.962

M. Depth = 2.078

RMS Error = 0.525

Finite State Grammar

Max = 1.000

Min = 1.000

Mean = 1.000

M. Depth = 1

RMS Error = 0.467

Max = 1.302

Min = 0.551

Mean = 0.921

M. Depth = 2.171

RMS Error = 0.456

Dollar - Swiss Franc

Exchange Rate

Max = 1.249

Min = 0

Mean = 0.512

M. Depth = 1.953

RMS Error = 1.166

Max = 1.207

Min = 0

Mean = 0.443

M. Depth = 4.509

RMS Error = 1.209

Table 3.12: Maximum (Max), minimum (Min), mean values (Mean) of gamma

memory parameter ji ,mean memory depth (M. Depth) and RMS Error after

presentation of learning data

84

3.7. Discussion

3.7.1 Behaviour of Recurrent Networks in General

Although this is a comparative study, where the main focus of attention is to

see what differences exist between different types of recurrent network, an

opportunity also arises to see what different types of recurrent network have in

common. This will also be of help in assessing which features of recurrent network

architectures or learning rules give rise to improved performance.

Obviously the size of the hidden layer is of critical importance. In order to

leam a given data set, the hidden layer of a recurrent network must be sufficiently

complex to form an internal representation of the data. This complexity is in terms of

both the number of units in the hidden layer and the level of connectivity. In the

terminology of dynamical systems a neural network can be viewed as a state space of

N dimensions, where N is the number of connections within the network. A point P

within that state space represents a matrix of connection strengths, which will

embody the desired behaviour of the network to a greater or lesser degree.

If during learning the connection strengths of a network are such that some of

the features of the data set have been modelled (i.e. the error is lower than at the start

of learning but still falls short of the desired output) then the network lies in a local

minimum. Conversely, if the connection strengths of a network are such that all of

the features of the data set have been modelled (i.e. the error is zero or within some

permitted range) then the network lies in a "satisfactory" minimum^. The number of

"satisfactory" minima will depend on the number of connection strength sets that

2 There are two types of "satisfactory" minima: Firstly the global minima of the state

space, which represents a set of connection strengths which represent the lowest

possible error value. Secondly those local minima which represent a set of connection

strengths which represent the a tollerable error value.

85

allow this latter condition to arise. The probability that the network will find a

"satisfactory" minima will depend on the following three factors: i) The number of

local minima ii) The number of "satisfactory" minima and iii) The complexity of the

state space. The probability that a local minima will be found increases as (i) and (iii)

increase and (ii) decreases.

Therefore the size of the hidden layer can adversely effect learning in one of

two ways: If the state space is too small to capture the features of the data set then

learning cannot take place. Does this mean that all networks should have hidden

layers with large numbers of intricately connected units? The answer is no since such

hidden layers bring with them large state spaces, more local minima with not

necessarily more global minima^.

Another feature of the comparative study is the way in which increasing the

learning rate brought with it an increase in the probability that the network would fail

to converge. Of particular interest was the behaviour of the gamma model during

simulations where the network had a high learning rate, where the rate of error went

up as well as down. This suggests that one of two things happens when the learning

rate is too large: One possibility is that the network fails to recognise the global

minima when it arrives in it (see fig 3.8).

3 This is because a global minimum in a large hidden layer is expressed in terms of a

large number of connections, which means more correct connection strengths are

necessary to express this and there will be more partial solutions.

86

L2

Figure 3.8: State space diagram showing the problems caused by inappropriate

learning rates.

In figure 3.8 we see a simplified state space with two local minima (L1.L2)

and one global minima G. The arrowed lines represent the force exerted on the

network by the learning coefficient. If the line is greater than the ininiina then the

network will leave the minima. A network with a learning rate of a will become stuck

in local minima. A network with a learning rate of P will be able to escape the local

m inim a but not the global minimum. Conversely a network with a learning rate of %

will not only escape the local minima, but the global minimum as well and will

continue to traverse the state space looking for a (non existent) minimum from which

it cannot escape.

Another possibility is that the system is oscillating between local minima. The

learning rate will be large enough to escape from local minima, but in each direction it

jumps it finds itself in another local minima. Hence the network will be unable to

escape from this state and will continue to oscillate.

87

3.7.2 Why Different Recurrent Networks Behave Differently

Before looking at the performance over the different networks over the

different sequence processing tasks, it is worth remembering that, particularly in

problems of physiological and psychological modelling, researchers will be looking

for a particular pattern of behaviour as a criteria for success, rather than simply

looking for the lowest possible error. Thus, in the Letter in Word Prediction Task,

the sudden increase in error between words is only to be expected. This would mean

that the lowest possible error rate would not be zero.

It is clear, however, that the RTRL network is the weakest of the three. This

would seem to be inconsistent with the observation made by Zipser (1989) that

"RTRL has been shown to have great power and generality". One possible way to

resolve this apparent contradiction is the possibility that because RTRL is

computationally expensive it is slower than the SRN or the Gamma network. This

would be true both in terms of the number of learning epochs and real time.

The other possibilities for the poor performance of the RTRL network are

concerned with deficiencies with the network. The RTRL network has a very high

level of connectivity (each unit in the RTRL layer is connected to every other unit in

the RTRL layer). This leads to many degrees of freedom even in a small RTRL

network. Corresponding to this is the fact that the large number of modifiable

connections gives a highly complex state space, which may contain many local

minima. Thus during learning when the network attempts to traverse the state space it

is hardly surprising that the network takes a long time to traverse it or faüs to leam

the task at all. Corresponding to a complex state space is a complex computationally

expensive learning rule, where one weight change is a function of all other nodes in

the network. Not only does this increase the amount of time that the network needs to

cycle a given number of epochs, it also appears that the algorithm is unable to deal

with the complex state space that the network has to traverse.

88

It is interesting to note that in a paper which gave details of successful training

of an RTRL network (Catfolis 1993) the network size was small, the learning rate

was small and a modified form of the RTRL learning rule was used (see chapter

four). In this study we similarly see that the network performs best when its

architecture is small and the task is well defined. When performing the XOR with

two step delay task the RTRL layer was smaller than for any of the conditions tried

for the other three tasks, yet performance was better than for any of the other three

tasks.

The results seem to confirm observations made by Tsoi and Back (1995) that

the RTRL algorithm is the least satisfactory recurrent algorithm. In Tsoi and Back's

studies the RTRL network was given a longer training period than the other networks

tested, but still provided the poorest results. Furthermore architectures which employ

local as opposed to global feedback connections are advocated as being superior. The

Locally Recurrent Globally Feed forward (LRGF) class of recurrent networks, of

which the gamma model is one example is capable of providing a rich architecture

which is able to solve non trivial problems.

Overall the statistical analysis of the results showed that the Simple Recurrent

Network was the most effective network, narrowly outperforming both gamma

models and easily outstripping the RTRL network. One possibility is that the tests

used were biased towards the Simple Recurrent Network since two of the four tests

used (Elman's letter in word prediction task and the finite state grammar) are drawn

from papers which take the Simple Recurrent Network as their subject. There was no

significant difference between the Simple Recurrent Network and the two gamma

models on the dollar to Swiss Franc exchange rate problem and the Simple Recurrent

Network was the worst network over the XOR with two step delay problem, which

was drawn from Zipser's paper on the RTRL algorithm.

With regard to the gamma model. Table 3.12 shows a number of cases where

11=1 or takes a value very close to it. The gamma model is a tapped delay line when

p=l. The results also showed that the gamma memory parameter |i decreased in size

89

as problem complexity increased. This is because, in order to solve complex

sequential problems, a recurrent network will have to remember events that have

taken place further back in the past than when it is processing more simple problems.

It is particularly interesting to compare the respective values of |a and the

memory depth evolved of the different sized gamma kernels when they were tested

on the XOR with two step delay task. The gamma network with a kernel size of one

performs less well than the gamma network with a kernel size of two. The memory

depth evolved by the latter (1.919) is of course very close to the time interval in the

data (two time steps).

It is also clear that, as problems become more complex, the size of gamma

kernel used does not have to increase in size in proportion to this complexity. Indeed,

on the Dollar - Swiss Franc exchange rate data set, there was no statistically

significant difference between the model with a kernel size of one and the model with

a kernel size of two, although given the general ineffectiveness of both models not

too much should be read into this result.

Another feature of the size of | l l in relation to problem complexity is that the

range of the values of the \l[obtained over a number of trials increases as problem

complexity increases. This could be for one of two possible reasons: either a wider

range of values for \i are needed if complex problems are to be solved or the network

is unable to find a solution. In the latter case a wider range of values for p is simply a

reflection of a fruitless search (e.g. as may possibly be the case for the Dollar / Swiss

Franc problem). This may well be a reflection of the inability of SRN, RTRL or the

Gamma model to predict future exchange rates from past exchange rates alone,

presumably because exchange rates may not be predictable at all from their past.

Useful results from financial data prediction problems have been obtained.

Using a Simple Recurrent Network, McCann and Kalman (see section 1.3 above)

created a trend predictor for the gold bullion market. Their study claimed that useful

predictions can be made without the use of more extensive market data or

knowledge". This would suggest that the networks in our comparative study which

90

performed poorly on the financial data might well do so if their internal parameters

allowed them to better model the dynamics of the exchange rate system. It should

also be noted that McCann and Kalman did not look at currency markets, but at the

gold market. It may well be the case that different factors affects these two areas and

that the factors which influence movements in the price of gold are easier to model

than those which produce exchange rate fluctuations. Furthermore McCann and

Kalman tried to predict turning points (i.e. when the price started to rise or fall)

which may be easier than predicting an exchange rate from one moment to the next.

One interesting feature is that the Simple Recurrent Network is sometimes

more effective at learning the data described above. This seems to be something of a

paradox when one considers the respective learning rules of the Simple Recurrent

Network and the RTRL networks: whilst the Simple Recurrent Network learning rule

is a straightforward extension of the traditional simple back-propagation learning

rule, the RTRL learning rule is a variation of the BPTT algorithm and would

therefore seem to be better suited to sequence processing. A key factor however may

be the computational expense of the RTRL learning rule and the BPTT algorithm

from which it was derived.

3.8. What Next?

There seems to be little reason (in terms of error scores) to choose the gamma

model over the SRN in this study. Principe and Turner (1994) reported on a gamma

network which included several modifications from the original gamma model. Chief

amongst these modifications was that a different value of p, was calculated for each

unit within each kernel (as opposed to the simple form of the model which has one p

parameter for all the units in each kernel). This modified gamma network

outperformed a more conventional recurrent network. Principe and Turner reported

that for the problem they examined (word spotting) a more coarse grained (i.e. low

resolution) representation of past inputs was sufficient and indeed advantageous.

91

Whilst this may not be the case for other sequence processing problems, the ability of

the gamma network to adjust its internal memory parameters is a clear advantage.

If we wish to improve the ability of recurrent networks to perform sequence

processing tasks, we can attempt to do so in one of two ways: create a more

favourable state space: one which is as simple as possible, with fewer local minima,

yet is still able to capture the properties of the sequence which is to be learned.

Alternatively we could create a better learning algorithm: cne which is able to find the

global minima more quickly and is better able to avoid or escape local minimum. In

the next chapter we shall attempt to apply these two approaches to the RTRL

algorithm to try and improve its performance.

92

Chapter Four. Modifications to the RTRL Algorithm and Their

Implications

4.1. Overview and Rationale

In chapter three, a comparative study of three different recurrent network

models was undertaken. The results of the study confirmed what various other

comparative studies have shown: that different recurrent network models have

different sequence processing abilities. In the comparative study described in the

previous chapter the models tested were duplications of the recurrent networks as

they were originally proposed. However one feature of research in this field has been

the modifications to these (and other) models that have been proposed by various

researchers in order to try and improve their learning and generalisation ability.

In this chapte^two improvements to the Real Time Recurrent Learning

(RTRL) network that have been proposed will be examined to see if they lead to an

improvement in the poor performance (over all tasks save the XOR with two step

delay) that this model demonstrated in chapter three. One of these modifications is

concerned with the architecture of the network whilst the other is concerned with the

learning algorithm itself. Each of these modifications wiU be described in turn and

their performance on the data sets used in chapter three will be reported. In addition,

the learning rate will also be varied when a modified form of calculating the Pyk

values are used, in order to see if this modified Pjjk calculation allows the use of

higher learning rates (see section 4.3 below). For each simulation, the networks used

to perform the XOR with two step delay problem have four hidden units, whereas for

the other three problems the network has twenty hidden units. As in chapter three

each data set was presented to the network ten times unless otherwise stated. This

design was chosen because limitations on time and computing resources meant that

ten trials was the most feasible number for testing to see if the networks were

93

sensitive to initial conditions. Obviously the results would be more statistically

reliable if more trials were undertaken.

4.2. Modifying RTRL Network Architecture

A significant feature of the RTRL network architecture is the high level of

interconnectedness between units and the resulting large number of non-local

connections. This architecture gives rise to a complex state space with many degrees

of freedom, which increases the chances of the network falling into a local minimum

during learning.

4.2.1 Pruning Network Architectures

If the architecture of a network has to be large enough to develop an internal

representation which allows it to perform a particular task, yet small enough to avoid

the problem of overfitting (i.e. where the state space is too complex for the problem),

how can an ideal architecture be found? One w ay suggested by Giles and Omlin

(1994) is to use a pruning algorithm. The basic definition of a pruning algorithm is

one which severs connections or deletes units within a network until the minimum

architecture for performing a particular task remains.

Giles and Omlin carried out their research on a fully connected recurrent

network using the RTRL algorithm. This form of recurrent network would

particularly benefit from pruning because the high level of interconnectivity and the

number of calculations required at each time step means that RTRL networks with

large numbers of nodes are very computationally expensive and it would speed up

learning considerably if the smallest possible network could be used.

The pruning algorithm is fairly simple: Start with a large network and present

the training data to it. If the training is successful (i.e. the network converges within a

given number of epochs) remove the neuron from the RTRL layer that has the

94

smallest weight vector. Then retrain the network as above. If a network with N

RTRL units fails to converge, take the network with N+1 RTRL units as the network

which is accepted. After the training data was learned a small number of negative

examples were added to the training data.

Giles and Omlin showed that their algorithm gave rise to an improvement in

network performance as the number of RTRL units were reduced, although retraining

of the network became more difficult during this process. See table 4.1:

Neurons Time Size NN Performance

15 197 142 6.75%

14 7 46 6.89%

13 98 99 2.61%

12 11 62 1.51%

11 14 67 0.97%

10 22 83 1.26%

9 111 157 2.95% .

8 102 140 2.44%

7 104 118 0.14%

Table 4.1: Table showing Summary of results from Giles and Omlin (1994). Results

are after each pruning cycle. Summary of Table Headings: Neurons = size of

network; Time = number o f epochs before convergence; Size = size of maximum

training set (see text); NN Performance = rate of error on test data.

The time taken after pruning can be taken as an indication of the level of activity of

the pruned neuron. A short training time can be taken to indicate that the neuron

which was inactive had little involvement in developing an internal representation of

the task. The fact that retraining time increases as the number of neurons decreases

can be seen as a "weeding out" of these peripheral neurons during the initial stages of

95

pruning. However as the number of peripheral neurons decreases the probability that

a pruned neuron will play a more significant role in the internal representation created

by the network increases.

The problem with a pruning approach however is that it assumes that the

network has a level of state space complexity equal to or greater than the task

requires. Because pruning will always simplify the state space then ho solution will

ever be reached if the architecture fails to satisfy the above criteria. Furthermore, as

was demonstrated with the experiments in learning the XOR with two step delay task

in chapter four a pruning approach is particularly problematic if the network is small.

4.2.2. A pruned RTRL Architecture

One way round this problem is to reduce the number of degrees of freedom

by reducing the number of connections in the network. One way to do this would be

to randomly prune a number of connections. However the method we have chosen

causes the network to be equivalent to the network architecture proposed by Manolios

and Franelli (1994) which took a three layered feed forward network and added

recurrent connections (see figure 4.1). This architecture, they argue, is the simplest

universal approximator for sequence processing tasks. There are a subset of state

units which are considered as output units for the purposes of learning, as in the

original RTRL architecture. Using back propagation through time as the learning

rule, these networks proved to be capable of learning a subset of the seven Tomita

grammars (see section 5.3.2 for a full description of this data). Manolios and Franelli

(1994) trained their networks on grammars one, two, four and six. The Back

Propagation Through Time algorithm was used. Weight updates were done at the end

of each string.

Manolios and Franelh (1994) showed that small sparsely connected recurrent

networks are able to leam complex tasks. For grammars one and two the network has

one input unit, two state units (one of which is designated as an output unit) and two

96

hidden units. The architecture is identical for Tomita grammars four and six except

that three hidden units are used. Even on the hardest task (grammar six) the network

was able to leam the data such that it could classify all the test data to within 0.02 of

the desired output.

Hidden

State - OutputInput

Figure 4.1: Architecture proposed by Manolios and Franelli (1994). Arrows indicate

full connectivity between layers.

Applying the ideas behind the architecture used by Manolios and Franelli

(1994) the result is that the RTRL layer is split in two. Connections are pruned so

that the portion of the RTRL layer which contains the output units does not receive

direct connections from the input layer. A two way connection exists between the two

portions (see figure 4.2). Nodes within the same portion do not conncol lo each

other. Running this network required the writing of a modified form of the RTRL

learning rule, details of which can be found in Appendix 4. Note that this rewrite was

purely in terms of getting the learning rule to work with a sparsely connected

architecture, not because the underlying formulae were different in any way.

97

RTRL Layer

Input Lines

Figure 4.2: A Sparse RTRL network architecture o f the type described by Manolios

and Franelli (1994). Arrowed lines indicate full interconnectivity. The subset of

output units are shaded. Both portions of the RTRL layer are fully interconnected to

each other. As indicated earlier, nodes within the same portion are not connected to

each other.

This network is trained with the traditional RTRL algorithm. However the

reduced number of connections leads to the calculation of the Pijk variable being less

computationally expensive, as well as decreasing the complexity of the state space

which the network traverses during learning. This sparse architecture was tested

against the four sequence processing tasks described in chapter three. Details of each

architecture are shown in table 4.2.

98

Input Layer Portion 1 Portion 2 Output Subset

2 delay XOR 2 2 2 1

Letter in word

prediction

5 10 10 5

Finite state

grammar

3 10 10 3

Exchange rate

prediction

10 10 10 10

Table 4.2: Details of architectures used for the modified RTRL architecture. Portion 1

and portion 2 refer to the divided RTRL layer. Only portion 1 receives input from the

outside world. The output subset lies in portion 2. TuUq r ort Au/Vihtrs t f

Each of the architectures was tested ten times to evaluate the effect of initial

conditions on learning. For all simulations the learning rate was fixed at one. Results

are shown in table 4.3.

Original RTRL Model Sparse RTRL Model

2-delay XOR 0.240 0.180

Letter in Word Prediction 1.011 1.002

Finite State Grammar 0.816 0.925

Dollar - Swiss Franc

Exchange Rate

1.129 1.184

Table 4.3: RMS Error scores showing the performance of the sparse RTRL

architecture described above against the traditional RTRL architecture advocated by

Williams and Zipser.

99

As with the work done in chapter three, these results were then subjected to a

more thorough statistical analysis. Table 4.4 shows a comparison over the XOR with

two step delay task. Table 4.5 shows a comparison over the Elman letter in word

prediction task* Table 4.6 shows a comparison over the finite state grammar. Finally

table 4.7 shows a comparison over the Dollar / Swiss franc exchange rate data.

Original RTRL Model Sparse RTRL Model

Mean 0.240 0.180

Standard Deviation 0.055 0.013

Range: Min 0.219 0.153

Max 0.403 0.199

Confidence Limits 0.240±0.013 0.180±0.003

e,trof
Table 4.4 Statistical analysis of thej^results of the original and sparse RTRL

architectures over the XOR with two step delay task.

Analysis of variance showed that there was a significant difference between

the two networks (p<0.01), with the sparse RTRL outperforming the original fully

connected model.

Original RTRL Model Sparse RTRL Model

Mean 1.011 1.002

Standard Deviation 0.095 0.063

Range: Min 0.857 0.953

Max 1.215 1.080

Confidence Limits 1.011+0.021 1.002+0.014

Table 4.5 Statistical analysis of the results of the original and sparse RTRL

architectures over the Elman letter in word prediction task.

100

Unlike the XOR with two step delay, analysis of variance showed that there

were no significant differences between the original and sparse RTRL models on this

task (Uttcr-iA

Original RTRL Model Sparse RTRL Model

Mean 0.816 0.925

Standard Deviation 0.009 0.055

Range: Min 0.802 0.879

Max 0.828 0.997

Confidence Limits 0.816+0.002 0.925±0.014

Table 4.6 Statistical analysis of the results of the original and sparse RTRL

architectures over the finite state grammar task.

Analysis of variance shows that the original RTRL network outperformed the

sparse RTRL model (p<0.001) for tKe f .n.te. gro/v»/v*a/'

Original RTRL Model Sparse RTRL Model

Mean 1.129 1.184

Standard Deviation 0.045 0.084

Range: Min 1.095 1.108

Max 1.247 1.314

Confidence Limits 1.129±0.011 1.184+0.019

Table 4.7 Statistical analysis of the results o f the original and sparse RTRL

architectures over the Dollar /Swiss Franc exchange rate task..

Analysis of variance showed that there were no significant differences

between the original and sparse RTRL models on this task faxcKaAje rote).

101

The above analysis shows that the sparse RTRL model does not do

significantly better than the original fully connected RTRL model apart from the XOR

with two step delay task, a task which Zipser (1990) describes as being "too simple a

problem,to provide a meaningful test" (Zipser 1989 pp 556). On this data, a sparsely

connected RTRL model does httle to bridge the gap between it and other recurrent

network models such as the simple recurrent network and the gamma model.

Another way to compare these two versions of RTRL is to examine the time

taken for the networks to converge to a solution. Although of course the most

important property of a neural network is its abihty to find a solution, it is also

desirable that such a solution should be found as quickly as possible. Figures

showing the convergence performance of the original and sparse RTRL architectures

for the XOR with two step delay are shown in table 4.8. In order to arrive at these

figures each network was run ten times. Each network had two inputs and four

RTRL units (one of which was an output unit). The learning rate was set to one.

Original RTRL Model Sparse RTRL Model

Maximum 8599 11715

Minimum 5902 5142

Mean 7395.8 7596.5

Table 4.8 The Maximum, minimum and mean number o f trials needed for the original

and the sparse RTRL Model to converge for the XOR with two step delay task.

These figures would seem to indicate that although there is little difference in

mean convergence times, the sparse RTRL architecture seems to have a wider range

of convergence times than the fully connected RTRL architecture. This may reflect

the fact that the state space of the sparse RTRL architecture is shghtly more sensitive

to initial conditions than the fully connected RTRL architecture, though not so much

as to effect the networks abihty to leam or the time it takes to converge significantly.

102

Why does the sparse RTRL architecture perform differently to the original

RTRL architecture? For a particular task, a network needs to have a mechanism

which is sufficiently complex to capture the properties of what it is trying to model

whilst not being so complex as to face excessive numbers of local minima in which

the network may become trapped during learning. If the sparse RTRL architecture

outperforms the original RTRL architecture, it may well be the case that the original

RTRL architecture is too complex for this particular task. This is not to say that the

original RTRL architecture is incapable of learning the task, rather that a less complex

architecture (i.e. one with fewer connections or units) could do the job equally well.

Conversely, if the original RTRL architecture outperforms the sparse RTRL

architecture, it will be the case that the sparse RTRL architecture is not sufficiently

complex (i.e. the network has insufficient connections or units) to perform the task in

question.

The work of Manolios and Franelli shows that sparsely connected small

recurrent networks are capable of learning complex sequence processing tasks. This

may partly be due to the fact that the overall set of training strings is small and the

length of each individual string is quite short (no string had a length greater than

four). This suggests that whilst fully connected architectures are able to deal with

problems which require a relatively short term memory mechanism they have

difficulty in dealing with problems with longer strings or where the length of string

could vary widely (i.e. all the tasks used in our comparative study except for the two

step delay XOR). The original network proposed by Manolios and Franelli would

also cause difficulties over these data sets because of the computational expense of

the Back Propagation Through Time algorithm (a copy of the network is needed for

each time step).

The failure of the modified RTRL architecture to match the performance of

either the Simple Recurrent Network or the Gamma Model suggests two possible

alternatives: Either the non local nature of the RTRL algorithm is the main obstacle to

learning and no tampering with the architecture will get round this, or sparse

103

connectivity can solve the problem, but the network needs to be sparse in a different

way. If the second point is to be proven then there needs to be an exhaustive check of

all the various sparsely connected architectures that exist. Only when this is done can

the first point be accepted or rejected, Since this would be a long drawn out process,

it is worth noting that researchers have attempted to automate the process of finding

the optimum architecture for a given task (see section 4.2.1 and section 6.2).

4.2.3 Randomly Pruning Connections During Learning

The work of Manohos and Franelh (1994) uses an architecture which has

been pruned before learning takes place. However there is an alternative way to

reduce the level of connectivity in the network. This alternative examines the

connections between units at pre-set intervals and removes those connections

according to some criteria. An example of this type of algorithm was used by Giles

and Omhn (1994) (see section 4.2.1 for further details). In this section we report on

the findings of the use of a pruning strategy on an RTRL network attempting to leam

the finite state machine used in Chapter Three. The pmning critena was as follows: at

a given point in the learning schedule, a given percentage of connections of smaUest

absolute magnitude are to be disabled. Three different values of pruning points (once

per presentation of training data, twice per presentation of training data and once

every two presentations of training data) and percentage of weights to be pruned

(1%, 5% and 10%). This creates nine separate conditions.

For each of the above conditions training consisted of ten presentations of the

training data (thus for the above conditions pmning occurred ten, twenty and five

times respectively). The learning rate in all conditions was one. The network

consisted of three input units and twenty RTRL units, three of which served as

output units. The performance of the networks when trying to predict the test data is

shown in table 4.9:

104

Pmne once every

two presentations

Pmne once every

presentation

Pmne twice every

presentation

Pmne 1% 0.655 0.66 0.657

Pmne 5% 0.663 0.875 0.882

Pmne 10% 0.716 0.788 0.834

Table 4.9 Root Mean Squared Error of Test data for Finite State Machine learning

task using an RTRL network and a pruning algorithm

Note that the root mean squared error score for the original RTRL algorithm

over this task was 0.665. On this evidence it would seem that for the best results,,

pruning should not take place very often and the percentage of connections pruned

should be small. However none of the combinations of interval between pruning or

percentage of connections pruned proved capable of significantly improving the

performance of the RTRL network. Indeed some combinations only lead to inferior

perfonnance. The probability of such a deterioration seems to increase when the

interval between pruning is short and the percentage of connections pruned increases.

As with the pruned architecture discussed in section 4.2.2, this method was

also tested with a view to examining the time taken for the networks to converge to a

solution. For this the different pmning variables were tested on the XOR with two

step delay task. All other variables concerning the network were constant: each

network had two inputs and four RTRL units (one of which was an output unit). The

learning rate was set to one. The results are shown in table 4.10.

105

Pmne once every

2000 pattems

Pmne once every

1000 pattems

Pmne twice every

500 pattems

Pmne 1% Max= 10803

Min= 5334

Mean= 7192

Max= 9630

Min= 5896

Mean= 8209.375

Max= 10094

Min= 5672

Mean= 7485.2

Pmne 5% NL NL NL

Pmne 10% NL NL NL

Table 4.10: Maximum (Max), minimum (Min) and Mean number of trials to

convergence for dijferent pruning variables, tested on the XOR with two step delay

task. Note that NL means that the network did not converge on any of the ten trials.

The results summarised in table 4.10 would seem to suggest that the network

performed best when pruning took place relatively infrequently and the number of

connections pruned was small. Even so none of the mean convergence times were

significantly lower the mean convergence time for an unmodified RTRL architecture

which were 8599, 5902 and 7395.8 for maximum, minimum and mean convergence

respectively.

Table 4.10 also reveals the difficulties that can result from too much pruning.

If too many connections are pruned then the network loses the abihty to leam

completely. This is tme both in terms of the interval between pmning being too short

or if the percentage of connections pmned is too high.

The instability caused by too much pruning becomes even more apparent

when one considers the fact that under only one set of conditions (pmne 1% of

connections once every 2(XX) pattems) did the network converge every time. When

1% of connections were pmned once every 10(X) pattems the network failed to

converge on two occasions. When 1% of connections were pmned once every 500

pattems the network failed to converge on five occasions.

106

4.3 Modifying the RTRL Algorithm

The architecture of an RTRL network has a large number of non local

connections. These are used by the RTRL learning rule in that a change in one

weight is a function of all the other weights in the network. This algorithm is

computationally expensive, particularly when the number of RTRL units is large. But

according to Williams and Zipser (1989) this algorithm has the benefits of great

power and generality, which, if it were true, would be well worth the computational

expense.

One way to preserve this power and generahty in the face of the problems of

local minima described in section 4.2 is to zero the Pÿk variable after a set number of

input pattems have been presented to the network. If the interval is set to a value of

five for example, Pijk is calculated in the normal way for the first four inputs and is

set to zero on the fifth input. The process is then repeated until the desired number of

pattem presentations have been reached. Note that whilst Pijk values may be lost as

the result of this resetting, the weight changes are preserved.

This method was first pruposcd by Gatfolis (1993). Schematics of the

original RTRL algorithm proposed by Williams and Zipser and the modification

proposed by Catfolis are shown in figures 4.3 and 4.4. In the schematic of the

Catfohs version of RTRL, Pijk is reset to zero after x presentations to the network.

The effect of periodic resetting of Pijk values is to "jolt" the network out of local

minima. This works because resetting Pijk causes a significantly different

modification to connection strengths within the network than would otherwise be the

case. The idea of somehow restricting the network during learning is one which has

been discussed elsewhere in the literature, the detailed mechanics of this process is

discussed in section 5.4. and by Elman (1993).

107

Epoch 1 Epoch2

W=0
5W = 0
Pijk = 0

5W = 0
Pijk = 0

Initialisations

e e e e e e e e
Tîme

ÔW ÔW ÔW ôw ÔW ôw ÔW ÔW Calculations

j II n I H
§W* SW* SW* SW* 5W* 5W* 5W* 6W*

W W

Figure 4.3 The Original form of calculating the Pÿk portion of the RTRL algorithm

proposed by Williams and Zipser (1989).

108

w=o
Pijk = 0 Pÿk = 0 Pijk = 0 Pÿk = 0 Initialisations

i
SW

^ Time
G G e e e e eI I I i I i I

ÔW SW SW SW SW SW SW Calculations

I I I I I I j J
w w w w w w w w

Figure 4.4 A Modified form of calculating the Pÿk portion of the RTRL algorithm

proposed by Ca foils (1993).

Does this method of avoiding local minima lead to an improvement in

learning? Comparative results of the original and modified RTRL algorithms are

shown in table 4.11. In all of the tests described below the reset interval x for the

modified RTRL algorithm is set to four. In all other respects the two networks are

identical.

Original RTRL Algorithm Modified RTRL Algorithm

2-delay XOR 0.240 0.123

Letter in Word Prediction 1.011 0.903
Finite State Grammar 0.816 0.840

Dollar - Swiss Franc

Exchange Rate

1.129 1.114

Table4.11 Comparative results of the original and modified RTRL algorithms (RMS).

109

As in section 4.1, these figures were subjected to a more detailed statistical

analysis.

Original RTRL Algorithm Modified RTRL Algorithm

Mean 0.240 0.123

Standard Deviation 0.055 0.032

Range: Min 0.219 0.085

Max 0.403 0.183

3̂ % Confidence Limits 0.240±0.039 0.123+0.023

Table 4.12 Statistical analysis of the original and modified RTRL learning algorithm

over the two step delay XOR task.

An analysis of variance on the above results showed that the RTRL network

with the modified learning algorithm did significantly better that the original RTRL

algorithm (p<0.01).

Original RTRL Algorithm Modified RTRL Algorithm

Mean K MS tm r 1.011 0.903

Standard Deviation 0.095 0.021

Range: Min 0.857 0.883

Max 1.215 0.940

Confidence Limits 1.011±0.021 0.903±0.005

Table 4.13: Statistical analysis of the original and modified RTRL learning algorithm

over the Elman letter in word prediction task.

110

As in the case of the XOR with two step delay task, the modified version of

the RTRL algorithm performed significantly better than the original RTRL algorithm

(p<0.01).

Original RTRL Algorithm Modified RTRL Algorithm

Mean RMS error 0.816 0.840

Standard Deviation 0.003 0.006

Range: Min 0.802 0.832

Max 0.828 0.849

Confidence Limits 0.816+0.002 0.840±0.001

Table 4.14: Statistical analysis of the original and modified RTRL learning algorithm

over finite state grammar task.

In this case analysis of variance showed that there was no significant

difference between the two forms of the RTRL algorithm.

Original RTRL Algorithm Modified RTRL Algorithm

Meank^^ er/or 1.129 1.114

Standard Deviation 0.044 0.010

Range: Min 1.095 1.099

Max 1.247 1.133

Confidence Limits 1.129+0.011 1.114±0.002

Table 4.15: Statistical analysis of the original and modified RTRL learning algorithm

over the Dollar to Swiss Franc exchange rate prediction task.

As was the case with the finite state grammar task, there was no significant

differences between the original and modified RTRL algorithms over this data set.

I l l

Thus modification of the learning algorithm would seem to lead to a greater

improvement than modification of the architecture, giving rise to significant

improvements over two tasks (XOR with two step delay and Elman's letter in word

prediction task).

4.3.1 Different Reset intervals for different tasks?

One additional factor to be considered when examining the learning

capabilities of the modified RTRL algorithm is that the interval between resetting the

Pijk variable is of critical importance: too short an interval renders the short term

memory mechanism ineffective, since the network will not be able to hold all the

information it needs to perform a particular task. Conversely too long an interval

causes the network to more closely resemble the original RTRL model and any

advantage that might be gained by using this method is lost. Thus there exists a range

of reset values which will affect learning in some way. What is more, since different

tasks require the network to process sequences of varying length, this critical range

will differ for different tasks.

The effect of different x values on the learning abihty of the network is also

supported by Catfolis (1993), who concluded that the x value needs to be as close as

possible to the temporal requirement of the problem. If the x value is significantly

higher than the temporal requirement of the problem, then the network will receive ah

the information it needs "but the weights wih change too much. The direction of the

weight change wih not follow the true gradient of the total error" (Catfohs 1993

pp815). Conversely, if the x value is significantly lower than the temporal

requirement of the problem, the network will not receive all the information it needs

and generahsation will be poor.

An illustration of this can be found when we consider the four data sets used

in this comparative study. The XOR with two step delay problem requires the

network to recall inputs from a fixed point in the past (i.e. two time steps

112

previously). In contrast the letter in word prediction and finite state grammar tasks

require the network to process sequences of differing lengths. Prediction of the

Dollar / Swiss Franc exchange rate is more complex still: each market movement

being a combination of short and long term factors.

An example of this can be found when training the network on the XOR task

with two step delay. If the T value is set to three the network performs less well than

the original RTRL algorithm over ten presentations of the data set. If however the

network is given another ten presentations of the data set then the RMS error score

over the test data is as good as the original RTRL algorithm. Indeed performance is

slightly improved after twenty presentations. This is shown in table 4.16.

Original RTRL algorithm

after ten presentations of

data

Modified RTRL after ten

presentations of data

Modified RTRL after

twenty presentations of

data

0.240 0.501 0.144

Table 4.16 Comparative RMS error scores over the XOR with two step delay task

between the original RTRL algorithm and the modified RTRL algorithm, when the

Pijk value is set to zero after every three presentations.

One possible explanation for this is that resetting Pÿk values at such a

relatively short interval hampers the network in its attempts to converge, but not

sufficiently as to stop the learning process altogether. Resetting Pÿk after every three

presentations may well reset Pÿk before the information held in memory can be used

to correctly solve the problem at a particular time step. Therefore the collection of

"uncut" strings will take longer to build up, resulting in slower convergence.

Interestingly this problem requires a memory of fixed length, since the desired output

at time t is always the solution to the input at time t-2, whilst the interval between

resets is larger than the required memory length. This suggests that Pÿk values from

113

one string of data ̂can assist in the learning of another string of data. Of course if the

strings are of variable length resetting of the networks' Pÿk values will take place in

the middle of data strings as well as at their beginning or end. This handicap may be

overcome by increasing the learning rate (see section 4.3.2). Another factor to take

into consideration is that XOR with two step delay is a continuous problem, unlike

the finite state grammar or the Elman letter in word prediction task.

The effect of reset interval on network performance can also be seen when

examining the results of a pattem set on which RTRL did less well such as the finite

state grammar, as shown by the results in table 4.17

Original RTRL

Algorithm

Reset =2 Reset =3 Reset =4 Reset =5

0.665 0.738 0.667 0.705 0.657

Table 4.17 Comparative RMS error scores over the finite state grammar task between

the original RTRL algorithm and the modified RTRL algorithm with different reset

values.

The results in table 4.17 seem to show that the error scores fluctuate, rather

than a smooth decrease followed by an increase as one moves through the range of

critical reset values. Accordingly the search for an optimal T value must be fairly

exhaustive. It may not always be enough to start with one value and increment by one

so long as the mean RMS error across the test data is lower than tlic previous reset

value. Although the search space for the optimal t value is fairly rich, the cost is that

finding the optimal value may well be a long drawn out process.

Ifu this context the term "string of data" or "data string" refers to a grammatical string

of inputs and desired outputs within a pattem set, such as whole word for the letter in

word prediction task or one complete traversal of the finite state grammar.

114

Are there any heuristics that could be used by researchers to find the optimal T

value for a particular task? Obviously the nature of the sequence processing task is of

considerable importance. Catfolis (1993) suggests that the optimal x value is a

function of the number o f RTRL units;

"When the number of RTRL nodes is small (i.e. the net has a low memory capacity),

the best nets will be those which are able to extract the most information from a

minimal amount of time. Nets trained with a [x] that is related to that (small) piece of

time will show the best results. The smaller the number of nodes the smaller the

optimal X value will need to be" (Catfolis 1993 pp 816).

However Catfolis goes on to suggest that there is not an optimal x value, but rather

there is a range of values which give better results. This supports the interpretation

made in connection with the results shown in table 4.7, which does not support the

idea that there exists an optimum reset value with less ideal reset values either side.

Indeed setting a reset value of r as opposed to r+1 can often make a significant

difference. Catfohs demonstrates that zeroing Pÿk at different places in the training

epoch means that the network gains a richer information sample, which facihtates

better learning.

4.3.2 Does Resetting Pijk Allow Increased Learning Rates?

On the face of it, when training a neural network large learning rates would

always seem to be a good thing, since the larger the learning rate the faster the

network leams a task. However the reality is much more complex.

115

p

a

LI G L2

Figure 4.5: A simplified state space showing the problems that too high a learning

rate can cause.

The problem is illustrated in figure 4.5. The diagram depicts a state space

where the global minimum G is surrounded by local minima (L1,L2)2. The state of

the network is such that whilst the network lies somewhere within LI, the learning

rule (3 is large enough to escape it, moving the network in the direction of G.

Unfortunately the movement is large enough to miss G completely and land

somewhere in L2. On the next training cycle the network moves in the direction of G,

but only succeeds in landing back in LI. However with a smaller learning rate such

as a , the network is able to escape LI and lands somewhere within G.

^Given the complexity of the real state space that an RTRL network would have to

traverse, it could be argued that this simplification is not a realistic situation.

However since parts of the regions around a global minimum would represent some

of the connection strengths found in tlie global minimum but not others (i.e. they

would be local minima) this simplified example seems to be justified.

116

Because the act of resetting Pÿk values allows the network to escape local

minima (by giving the system a "jolt"), one possibility of using this method is that we

can increase the learning rate of the network without increasing the probability that

the network will fail to leam at all, thus increasing the speed at which the network

leams a particular pattem set. The effect of increasing the teaming rate on the network

is shown in table 4.18. In the experiments described below, the Pÿk values are reset

after every four pattem presentations.

Original RTRL

Algorithm

Reset RTRL K=1 Reset RTRL K=4

2-delay XOR 0.240 0.123 0.121

Letter in Word

Prediction

1.011 0.903 1.098

Finite State

Grammar

0.816 0.840 0.833

Dollar - Swiss

Franc Exchange

Rate

1.129 1.114 1.231

Table 4.18 RMS Error for different RTRL networks, showing the effect of

increasing the learning rate (K). For all reset RTRL networks the reset interval was

set to four, apart from the 2-delay when K=4, where the reset interval was set to

three.

Again, a more detailed statistical analysis of these results was carried out. The

results are shown in the following tables:

Table 4.19 gives an analysis for the XOR with two step delay task.

Table 4.20 gives an analysis for the Elman letter in word prediction task.

117

Table 4.21 gives an analysis for the finite state grammar task.

Table 4.22 gives an analysis for the Dollar to Swiss Franc exchange rate task.

Original RTRL Reset L=1 Reset L=4

Mean 0.240 0.123 0.121

Standard Deviation 0.055 0.032 0.005

Range: Min 0.219 0.085 0.112

Max 0.403 0.183 0.131

Confidence Limits 0.240±0.393 0.123+0.008 0.121±0.001

Figure 4.19 Statistical analysis of the original RTRL algorithm together with the

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm

with a learning rate o f four over the XOR with two step delay task.

For xoR.̂ Analysis of variance showed that increasing the learning rate did not effect the

performance of the modified RTRL algorithm. Both significantly outperformed the

original RTRL algorithm (p<0.01) but there was no significant difference between

either of the two modified algorithms.

Original RTRL Reset L=1 Reset L=4

Mean 1.011 0.903 1.098

Standard Deviation 0.095 0.021 0.045

Range: Min 0.857 0.883 1.033

Max 1.215 0.940 1.189

Confidence Limits 1.011±0.021 0.903+0.005 1.098±0.009

Figure 4.20 Statistical analysis of the original RTRL algorithm together with the

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm

with a learning rate of four over the Elman letter in word prediction task.

118

Analysis of variance showed that over this task increasing the learning rate led

to a significantly worse performance for the modified RTRL algorithm than both the

other two networks (p<0.01) (Iefcfcfr- ;<n-^o©r<().

Original RTRL Reset L=1 Reset L=4

Mean 0.816 0.840 0.833

Standard Deviation 0.009 0.006 0.045

Range: Min 0.802 0.832 0.744

Max 0.828 0.849 0.934

Confidence Limits 0.816+0.001 0.840+0.001 0.833±0.010

Figure 4.21 Statistical analysis of the original RTRL algorithm together with the

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm

with a learning rate of four over the finite state grammar task.

Analysis of variance showed that increasing the learning rate of the modified

RTRL algorithm did not lead to a significant improvement in overall performance.

Although it did bring about a greater variability in performance, as indicated by a

Original RTRL Reset L=1 Reset L=4

Mean 1.129 1.114 1.231

Standard Deviation 0.044 0.010 0.063

Range; Min 1.095 1.099 1.166

Max 1.247 1.133 1.327

Confidence Limits 1.129+0.011 1.114db0.002 1.231+0.014

Figure 4.22: Statistical analysis of the onginal RTRL algorithm together with the

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm

with a learning rate of four over the Dollar to Swiss Franc exchange rate task.

119

e x c Aangc. /> é e
Analysis of variance showed that increasing the learning rate brought about a

significantly worse performance than either the original or modified RTRL networks

with a smaller learning rate.

The most dramatic improvement brought about by an increase in learning rate

is when the network is faced with the two step delay problem. The rate of error is

lower than the original RTRL score whilst the reset interval used caused a slower

convergence time when the learning rate was set to one (see table 4.18). The reason

for this improvement may well be that the more coarse grained movement round the

state space which occurs when the learning rate is increased is better able to take

advantage of the "jolts" which occur when the Pÿk values are reset. When the

learning rate was set to four, the network did not always succeed in learning the data

and consequently performed poorly on the test data, whereas when the learning rate

was set to one the network always succeeded in learning the data. However in the

former case the network failed to learn the data on one occasion only.

As with the RTRL model with a modified architecture, the improvements that

were reported were still not sufficient to give the RTRL network the same ability as

the Simple Recurrent Network or the Gamma model.

The other reason for increasing the learning rate is to reduce the time that the

network takes to learn the data. In order to investigate this property the performance

of the RTRL network over the XOR with two step delay task was examined. The

following parameters were used: Learning rate had a constant value of either one, two

or four. The Pÿk reset value was either three, four, five or not at all. Each

combination was repeated ten times and the number of presentations required for

convergence was noted. The results are shown in table 4.23. Each network had an

identical architecture of two input units and four RTRL units (one of which served as

the output unit).

120

None x=3 X=4 t=5

L=1 7203.3 12567.5 9965.8 8877.5

L=2 3507.7 6494.8 5401.5 5242.6

L=4 2328.3* 3296.5 3312.3 3312.1

Table 4.23 Mean convergence times (in number of trials) for different combinations

o f reset value (t) and different learning rates (L) over the XOR with two step delay

task. A * indicates that the network did not converge over all ten trials.

As we can see from table 4.23 increasing the learning rate does lead to a

reduction of the time that the network needs to learn the task. Indeed the fastest times

are achieved with the original RTRL algorithm and Pÿk is never reset. This does not

mean however that the modified RTRL algorithm devised by Catfolis is of no use.

The speed of the original RTRL algorithm with a learning rate of four is at the cost of

stability, since the network failed to converge during three out of ten trials, as

opposed to all other combinations, which converged every time.

Thus it would appear that resetting the Pijk values serves to suppress the

tendency of the network to become trapped in local minima when the learning rate is

large. So prone is the RTRL algorithm to this problem that Catfolis used a learning

rate of 0.00001, far smaller than any of the learning rates used in this research. This

is borne out by findings which were reported in Chapter Three, where increasing the

learning coefficient was shown to lead to increased instability in some cases, notably

with the gamma model. However since resetting Pijk values allows the network to

escape local minima then the learning rate can be increased without much loss of

speed of convergence.

Overall it is clear that both changing the learning rate and the reset interval has

an effect on learning. Although none of the various combinations of learning rules

and reset intervals tried has significantly improved the RTRL algorithm to the extent

121

that they perform as well as either the Simple Recurrent Network or the Gamma

Model.

4.4 Summary

In this chapter we describe and replicate two attempts to improve the

performance of the RTRL algorithm by modifications to the architecture and the

learning rule. Overall the results are disappointing since none of the modifications

suggested brought the RTRL network up to the standard of either the Simple

Recurrent Network or the Gamma Model. What they do reveal however is the rich

nature of the RTRL networks behaviour and that it is best suited to tasks where the

memory requirement is known and the data set sihall.

122

Chapter Five. Summary and Conclusion

5.1 The Effect of Architecture on Learning

Of the three architectures examined in chapters three and four, the networks

which have an RTRL architecture perform the most poorly, even when we consider

the performance of the "improved" RTRL models discussed in chapter four. This

finding is at odds with the claims of Williams and Zipser (1989) who state that the

RTRL algorithm has great power and generality. One reason for this apparent

contradiction is the way in which the RTRL algorithm traverses the search space. The

reason for this becomes apparent when one considers the observations of Dayhoff et '

al (1994):

"Unlike feed-forward networks, which are static, networks with recurrent

connections can exhibit periodic oscillations, quasi-periodic oscillations, and chaotic

attractors as well as fixed point attractors...[Recurrent networks]...offer a wide

repertoire of differing basins of attraction with complex boundaries".

Examples of these different types of attractor are shown in figure 5.1. Graph

(a) represents a fixed point attractor where the activity of the system tends towards a

single state a over time. Graph (b) represents a periodic attractor where the activity of

the system tends towards oscillating between two states a and p over time. This idea

is extended in graph (c) where activity oscillates within the region bounded by a and

P between more than two states but does so in a regular fashion. This is known as a

quasi-periodic attractor. Still more complex is graph (d) which as in the case of the

quasi-periodic attractor oscillates within the region bounded by a and p but does so

in an unpredictable manner. This is known as a chaotic attractor.

123

a

a

t
a

a

P

t
a

a

P

t
a

a

P

t

Figure 5.1: Four different kinds of attractor (a) a fixed point attractor, (b) a periodic

attractor, (c) a quasi - periodic attractor, (d) a chaotic attractor.

Note that in a neural network, whilst die state space is defined by the number

of connections, the attractors in this system are defined by the desired outputs of this

124

network since the global minimum will represent the matrix of connection strengths

which produce the desired outputs of a data set.

Dayhoff et al (1994) were concerned with the ability of recurrent networks to

form attractors under different conditions (size of network, different learning rates

etc.) and the robustness of this ability to perturbations in the system (for example the

presence of noise). But although the above remarks were made in a different context,

their observation that the search space which is traversed during learning in a

recurrent network is much more complex than that of a feed-forward network is still

useful and important to the examination of the ability of recurrent networks to

perform sequence processing tasks. If we consider the landscape metaphor for

describing the processes that underlie dynamical systems, attractors are often far

more complex than simple fixed points. Given that local minima are a problem in

traditional feed-forward networks, the complexity of recurrent network state spaces

and the variety of attractors that lie within them would make the journey to the

optimum solution much more difficult.

Simplifying the state space by having a sparsely connected architecture does

little to improve the performance of the KTRL network. A sparsely connected

architecture has fewer degrees of freedom than a fully connected RTRL architecture.

This would suggest that the reduction in the dimensionality of the state space does not

reduce its complexity sufficiently in terms of the density of local minima, different

type of attractors etc. so as to enable learning to take place. This would suggest that

the Simple Recurrent Network is better suited to the classification of test data than the

RTRL network. It is much more reliable at the task of learning and is able to

generalise what it has learned to test data. The Simple Recurrent Network is derived

from the standard three layer back propagation network, which it is claimed, is also

capable of great power and generality.

The Simple Recurrent Network, although it has full interconnectedness from

one layer to the next (with the exception of connections which run from the hidden

layer to the context layer), has far fewer connections than an RTRL model. A Simple

125

Recurrent Network with two input units, three hidden units, three context units and

one output unit will have a total of twenty one connections, compared to a RTRL

network consisting of two units in the input layer and seven units in the RTRL layer

which has sixty one connections.

This would suggest that, in order to be effective, recurrent networks should

be as sparsely connected as possible. Each additional connection adds one more

dimension to the state space which the network traverses whilst attempting to find a

solution. As a state space increases in dimensionality, the number of possible

network states increases, thus making the "search" for the state (or states) which

produce the desired behaviour more complex. This leaves the question of how sparse

the connectivity can get before the network is incapable of solving the problem (see

section 5.3). Note that a successful use of the RTRL algorithm (Catfolis 1993) did so

using networks with relatively few units and a modified form of the algorithm. The

only successful use of an RTRL model in the simulations described in chapters three

and four used a network with four RTRL units, whereas other tasks used twenty

RTRL units. Reducing the number of RTRL units to a similarly low value (five) did

not improve network performance, which suggests that overfitting was not the

problem, rather the short term memory requirements of the task and the state space it

created were too complex for the RTRL algorithm.

The Gamma Model achieves roughly the same rate of success as the Simple

Recurrent Network, but with a radically different architecture which allows the

network to develop a short term memory mechanism tailored to the task in question.

As we saw with the modification of the RTRL algorithm suggested by Catfolis,

changing the parameters of the memory mechanism can lead to significant differences

in the behaviour of the network and can often mean the difference between success

and failure. Thus either the memory mechanism itself finds the optimum parameters

for a particular task or some external method is found, such as those suggested in

section 5.3.

126

5.2 The Effect of The Learning Algorithm on Learning

On this evidence the RTRL learning algorithm would seem to be a poor

choice. It only proved to be able to perform one task (XOR with two step delay)

with any sort of consistency, and performed significantly worse than either the

Simple Recurrent Network or the Gamma Model on the other three tasks. Some of

the reasons for these failings were discussed in chapter four, centring on the idea that

the RTRL algorithm does not develop a short term memory mechanism capable of

handling sequences of different lengths.

What the RTRL algorithm did demonstrate however is the sensitivity of the

learning ability of recurrent networks with regard to changes in certain parameters. If

one considers the resetting of Pÿk values discussed in section 4.3 and the effect that

this has on the choice of learning rate it is clear that, for a given sequence processing

task, there will be a range of Pijk reset values which allow the use of higher learning

rates (see figure 5.2)

Reset Value

R2

R1

Learning Rate
LI L2 L3

Fig 5.2: Graph showing the relationship between learning rate and Pijk reset values

127

In Figure 5.2 testing the two different parameters over a hypothetical

sequence processing task has shown that if the Pijk values are never reset, the

network is able to learn the sequence for values of the learning coefficient K such that

K is less than L2. However, if Pijk is reset after a number of trials such that the reset

value r has a value between R1 and R2 the network is able to learn, furthermore the

learning may well be faster between the coefficient values L2 and L3, where learning

would have been less reliable when periodic Pijk resetting had not been in place.

Unfortunately this did not increase the learning ability of the RTRL network so that it

would be on a par with the other two models tested.

One way to improve learning in neural networks generally is by the use of

noise. Amit (1992) makes the point that if the level of noise in a system is too high,

there is more chance of the network "stepping in the wrong direction". However,

some levels of noise may aid learning:

"At higher levels of noise [the network] may hop across barriers between adjacent

minima. In this way noise may be an agent for eliminating the effect of spurious

states while preserving the retrieval in the stored memories...the barrier for crossing

from a local minimum to a global one is lower than the barrier for the reverse

process. This promises that there be a window in noise values for which spurious

states be de stabilised, while the stored memories remain good attractors." (Amit

1992 pp 86-87)

In other words, noise allows the network to leave local minima (what Amit refers to

as "spurious states"). However, it is also possible that too much noise could cause

the network to jump out of either the global minimum or a local minimum which

represents a tolerably low error score.

The method of resetting Pijk values as examined in section 4.3 would appear

to fit into this pattern. Similarly, Elman (1993) uses periodic zeroing of the context

128

unit outputs to improve learning. In a word in sentence prediction task (the network

was given a sentence one word at a time and had to predict the next word in the

sentence) learning was divided into a number of phases:

i) Zero the output of the context layer randomly after either every third or every fourth

word.

ii) Increase the interval between resets to four or five words (again the exact value

was chosen at random).

iii) Increase the interval between resets to five or six words

iv) Increase the interval between resets to six or seven words

v) Do not reset at all.

Elman found that by using this method the network was able to learn sequences that it

was unable to if learning had taken place without zeroing of context unit outputs. It

was claimed that this approach was analogous to learning with graded data sets (see

section 5.4). Note however that the period between setting of context layer outputs to

zero is not fixed and is increased during learning before finally doing away with the

process altogether.

The reason for this flexibility is due to the nature of the activation function

used in neural networks. In figure 5.3 we can see that the range of greatest sensitivity

is when the input to a unit is around zero.

129

0.8 - -
c
o
S 0 . 6 --
(0
>
= 0 . 4 - -o
<

0.2 - ■

oco00 co 00o o

I n p u t

Figure 5.3: A typical logistic function used to determine neuronal activation. Note

how the same difference between two sets of inputs can lead to much greater

differences in output. The difference in output between an input ofO and 5 is much

greater than between inputs of 5 and 10. (T k f fvmcfcioÂ is sKgjoo),

At the start of a typical learning regime, connections are randomly determined

between a small range. Thus the net input to a unit will tend to be close to zero, with

the result that at the start of its journey through the state space the network will be in

the region of greatest sensitivity. As the network learns and connection strengths

become more strongly excitatory or inhibitory the net input may well move away

from this sensitive region and changes in the level of activation become harder to

achieve. A unit will start to receive inputs which are much more strongly excitatory or

inhibitory, with the result that unit outputs will be pushed towards less sensitive

regions of the curve. Thus it is much more difficult to cause radical changes in the

outputs of a network during the later stages of the learning process.

The periodic resetting of unit activations in the context layer to zero (or

resetting Pijk values in the case of the RTRL model) will also serve to move the

network towards this more sensitive region of the state space, since resetting causes a

reduction in net input to units in the hidden layer. This means that there is an

130

increased level of flexibility in the system and that the loss of plasticity that occurs

during the later stages of learning is reduced. Note that the nodes in an RTRL

network will not be moved towards this sensitive region since the Pyk variable does

not play a part in determining the activation or output of a node.

5.3 What does this mean for efficient Learning?

The discussion in sections 5.1 and 5.2 above might well be summarised as

follows: whether or not we succeed, or get trapped in a local minimum depends on a

number of factors, including how big the steps are through the weight space which

we allow ourselves, as well as what the shape of the error surface looks like "because

the error surface is a joint function of the network architecture and the problem at

hand" (Elman 1993 pp91).

In the above quote, Elman takes the word "architecture" to mean both the

physical layout of the network (number of layers, number of units per layer etc.) as

well as the learning algorithm. The physical layout of the network determines the

dimensionality of the state space, whilst the learning algorithm determines the way in

which the network moves through the state space.

Thus changing the parameters of the learning rule and modification of the

network architecture can significantly effect the ability of a neural network to perform

sequence processing tasks. The picture is further complicated by the fact that one set

of network parameters may work well on one task, but not on others. If we wish to

use a neural network to perform such a task one would ideally like a way to search

through the various network configurations without having to laboriously wade

through them by hand i.e. testing lots of different types of network parameters until

you find the best one. Techniques to automate this process have been developed, one

of which will be described below.

131

5.3.1 Adaptive Memory Mechanisms

The main way in which recurrent networks differ from feed forward

networks is their ability to develop a short term memory mechanism which allows

them to perform sequence processing tasks. Different tasks require different types of

memory: some sequences wül be of fixed length, others will be of variable length.

The output at a certain time may depend on short or long term factors, or a

combination of the two. It is because of this variability that an adaptive memory

mechanism is desirable, since it can modify its internal parameters to suit the

particular task in question.

The limitations of static memory mechanisms were set out by Mozer (1993):

"Static memory models can be a reasonable approach if there is adequate domain

knowledge to constrain the type of information that should be preserved in the

memory". However many problem domains may not have sufficient knowledge

known about them for this to take place. This means that adaptive memory

mechanisms are more desirable since they can overcome the lack of knowledge by

building a tailored short term memory mechanism during learning.

This class of short term memory mechanisms is under exploited by

researchers. At present the most popular type of adaptive memory mechanism is de

Vries and Principe's gamma model, which was described (along with modifications

suggested by other researchers) in chapter two (see section 2.1.8 for further details).

An area which is relatively unexplored however is the use of Gamma Memory

structures with different types of content. Mozer (1993) describes six different types

of memory content (see chapter two section 2.3 for further details). Gamma memory

networks to date have contained the activations from within the memory structure

from the previous time step. However it is possible to use a non linear transformation

function on either the current input to the network or the contents of the short term

memory mechanism.

132

Furthermore the memory could hold a completely different type of content

such as the output of the network from the previous time step. Mozer states that the

latter type of memory content would be particularly useful for auto predictive tasks

i.e. one where the network is given an input at time t and the desired output is the

input at time t+1. Given that all but one of the tasks used in this comparative study

are of this type^ (and this type of prediction task is quite a common one in general) it

would seem that this type of memory mechanism would be particularly useful.

5.4 Can we improve Learning without changing the network?

In the above sections we have looked at various means of improving the

ability of recurrent neural networks to perform sequence processing tasks. This has

been attempted by modifying some aspect of a particular network architecture or

learning algorithm. However, it is worth noting that there is another possibility for

improving network performance: by paying closer attention to the data sets on which

the network is trained and tested.

One such method was proposed by Elman (1993). In the same study in which

he examined the effect of periodically zeroing the outputs of the context layer he also

looked at the effect of grading data sets on learning performance. The Simple

Recurrent Network model used proved to be a poor performer on a data set which

consisted of simple and complex sentences all mixed together. A new training method

was developed. This consisted of live separate databases containing different

iThe obvious exception is the two step delay XOR problem, where the desired

output of the network at time t is the solution to the input pair shown to the network

at time t-2.

133

proportions of simple and complex sentences^. Each database was presented to the

network five times and was then discarded. The contents of each database were as

follows:

i) 10,000 simple sentences.

ii) 7,500 simple sentences and 2,500 complex sentences.

iii) Simple and complex examples in equal measure.

iv) 2,500 simple sentences and 7,500 complex sentences.

v) 10,000 complex sentences.

Whereas in the first training regime the network failed to learn the task,

presenting graded data sets allowed the network to leam. This finding was

independent of learning rate, initial conditions, number of hidden units etc.

F.iman attributes the success of what he refers to as incremental learning to the

fact that grading data sets allows the network to organise its state space. As we have

seen, learning in neural networks involves the journey through a state space of n

dimensions (where n is the number of connections in the network) from a random

starting point to a point where the network can perform a task perfectly or within

some margin of error. When the network starts learning simple sentences the portion

of the state space which yields a satisfactory solution is much smaller than in non

incremental learning, since only three of the four sources of variance are present^.

This method of state space restriction also applies when the short term memory

2ln this problem, complexity stems from the fact that sentences sometimes contained

"multiple embeddings in the form of relative clauses (in which the head could either

be the subject or object of the relative clause). Complex sentences contained relative

clauses, simple ones did not" (Elman 1993).

^Grammatical category, number of words in sentence and verb argument type are

present. Long distance dependencies are only found in complex sentences.

134

mechanism is restricted (see section 5.2). Either way the network learns a set of

subgoals which can then help to guide it towards the final goal later in learning,

avoiding local minima at the same time. In learning with non graded data sets, the

solution space is very large and may contain lots of different types of attractor, many

of which will be local minima.

Elman's findings also lead to questions about the problem of selecting data

sets in general. Whilst a small sample size increases the risk that the sample will not

be a good representation of the population as a whole, larger data sets may increase

the risk that the network will have a restricted ability to generalise (since ambiguity

decreases as sample size increases). Elman also proposes that neural networks are at

their most flexible during the early stages of learning because of this ambiguity.

5.5 Summary

In this chapter an attempt has been made to draw together the results of the

experiments described in chapters three and four, together with the aims of the thesis

set out in section 1.4. The conclusions drawn are as follows:

• Architectures which are more sparsely connected are better than those which are

more fully connected. The fully connected RTRL network is the poorest

performer in the comparative study described in chapter three, learning and

generalisation in this model was significantly worse than either the Simple

Recurrent Network or the Gamma Model.

• At the same time the network needs to be of sufficient complexity to be able to

capture the properties of the data it is trying to leam. Because of this a fully

connected RTRL network is sometimes able to outperform a sparsely connected

RTRL network. For example see the comparison between a fully connected and

135

sparse RTRL network over the finite state grammar task (Chapter Four Table

4.6).

• Once the network is able to leam a data set, increasing its complexity does not

improve learning further. If anything increasing architectural complexity will lead

to a poorer performance. For example see the comparison between a fully

connected and sparse RTRL network over the XOR with two step delay task

(Chapter Four Table 4.4).

• Learning rules which are non-local perform worse than those leaming mles

which change according to local values only. For example the RTRL algorithm

which is non-local is outperformed by the Simple Recurrent Network and the

Gamma Model, whose leaming mles are more local (see chapter three).

• Restricting the memory capacity of a leaming mle (by periodic resetting of the

Pijk values of the RTRL algorithm for example) can lead to an improvement in

performance over the same architecture. For example the superior performance of

the Catfolis implementation of the RTRL algorithm against the original RTRL

algorithm described in chapter four section 4.3.

• Evidence from sections 4.2 and 4.3 would seem to suggest that the leaming mle

has the greater effect oh network performance. The improvements in the

performance of the RTRL algorithm were greater when the learning mle was

modified than when the architecture was modified. The modified leaming mle

performed significantly better over two data sets (see Chapter Four tables 4.12

and 4.13) as against one for the RTRL network with modified architecture

(Chapter Four Tabic 4.4). Moreover, at no time did the original RTRL algorithm

outperform the modified leaming algorithm. This was not the case with the

modified architecture (see third point above).

• The fact that modification of the RTRL networks architecture or leaming mle

alone does not raise the level to that of the Simple Recurrent Network or the

Gamma Model suggests that recurrent networks should be relatively sparsely

connected and have a non local leaming mle to be most effective.

136

Chapter Six. Further Work

6.1 An Aside on Genetic Algorithms

Neural networks are not the only type of computer program which adapt

themselves to perform a particular task. There exists another class of programs called

Genetic Algorithms which do this as well. Just as neural networks can be said to

"leam" to perform a particular task, genetic algorithms can be said to "evolve" to

perform a particular task. Genetic algorithms can be defined as follows:

"Genetic algorithms are search algorithms based on the mechanics of natural selection

and natural genetics. They combine survival of the fittest among string stmctures

with a stmctured yet randomised information exchange to form a search algorithm

with some of the irmovative flair of human search." (Goldberg 1989 ppl)

What does this mean in practice? Assuming that we want to perform a

particular task, the first step is to create a set of "creatures" (in our case computer

programs) to perform the task. The characteristics of each creature can be encoded in

a binary string, analogous to human DNA. When using genetic algorithms, each

string can be viewed as a single approach to tackling a particular probleriL Each bit

within the string represents various objects which are important to the approach

represented across the string as a whole. Let us take as a simplified example^ a

population of four strings:

1, 01101

2,11000

3, 01000

iThis example is taken from Goldberg (1989)

137

4, 10011

Each string then attempts to perform the task set. Its success (or otherwise) in doing

this is quantified by a fitness function, as shown in table 6.1

String Number String Fitness % of Total

1 OlIOl 169 14.4

2 11000 576 49.2

3 01000 64 5.5

4 10011 361 30.9

Total 1170 100.0

Table 6.1 Sample strings and fitness values

Assuming that none of the strings above represent a satisfactory solution, a new

generation of creatures are needed. These are created by using the following

operators:

Reproduction: Strings become involved in the reproduction process by means of their

fitness score. Sufficient numbers of strings are chosen until there are enough of them

to breed a new generation. The probability of a string being chosen is equal to the

percentage of total fitness it achieved. In our example, string 2 would have a

probability of .492 of becoming involved in this process.

Crossover: This is the means by which new strings are created. A point along the

string length is randomly chosen. If we have a string population of length 1,

partitioned at point p, the first new string will contain its original code up to point p

and the portion of the second string between p+1 and 1. If in the above example

138

strings 2 and 4 were chosen for crossover, with the partition between the third and

fourth bit the process would look like this

Old Strings New Strings

2 = 110100 2 ’ = 11011

4=100111 4' = 10000

Mutation: This is a simple operation involving random "flipping" of bits. If mutation

were to be applied to string 4' for example (and the third bit was randomly selected

for mutation) the result would be as follows:

Before Mutation After Mutation

4' = 10000 4' = 10100

There is much debate in the genetic algorithm hterature concerning the

usefulness of different evolutionary processes, the contribution of mutation to the

evolutionary process and so on. The point here is to illustrate the general principles of

genetic algorithms and their operation.

6.1.1 Genetic Algorithms and Recurrent Networks

There has been much crossover between research into genetic algorithms and

neural networks, using the former to improve the performance of the latter. This has

been attempted in two ways: firstly by using a genetic algorithm as leaming mle.

Secondly by using a genetic algorithm as a means of modifying the network

architecture. An example of these methods is the GNARL^ algorithm created by

Angeline, Sanders and Pollack (1994).

^The acronym stands for GeNeralised Acquisition of Recurrent Links.

139

The algorithm works as follows: a population of networks are randonily

generated and tested. The fittest 50% are selected to breed the next generation (see

section 5.3.1). The fitness function is some error score when the actual output of the

network is compared against the desired output. Angeline, Sanders and Pollack quote

three different error scores: sum of square errors, sum of absolute errors and sum of

exponential absolute errors. However they claim that the choice of fitness function

does not effect the mechanics of the algorithm. During the breeding process, the

level of mutation is determined by how close the parents are to being a solution to the

task. Networks which are far away from a solution are more likely to undergo severe

mutation. Conversely, networks which are close to a solution are more likely to

undergo slight mutation. Thus the search undertaken by the algorithm is coarse

grained to begin with, but becomes more fine grained as it gets closer to a solution.

This is defined by a variable called the temperature of the parent T(T|):

r(T/) = i - ^
J max (6.1)

Where f(T|) is the fitness level of the parent and fmax is the maximum fimess for the

task.

Weight updates are accomplished on a method based on perturbation of

connection strengths with gaussian noise. However GNARL's update algorithm

compensates for the tendency of this method to inhibit the offspring's ability to

outperform its parent. Firstly the instantaneous temperature of the network is

computed:

f(T7) = C/(0,1)1(77) (6.2)

Where U(0,1) is a uniform random variable between 0 and 1. This term is then

substituted into the following weight update rule:

140

w = w + N{0,aT{rf)) Vw e 77 (6.3)

Where a is constant and N() is a gaussian random variable.

Structural changes are concerned with changing the number of hidden units

and the level of connectivity between all nodes. In order to avoid radical changes to

the network new connections have an initial value of zero and new units have no

incoming or outgoing connections. These features are added in future generations.

^m in + I / [0 ,1] T (7 7) (A ^ - A ^ „) (6.4)

Where Amax is the maximum number of nodes or links added or deleted and Amin is

the minimum number of nodes or links added or deleted.

This system was trained on a set of regular languages (See table 6.2). Each

language was shown to the network as a series of positive and negative examples.

Language Description

1 1*

2 (1,0)

3 No odd length 0 strings anytime after an odd length 1 string

4 No more than two G's in a row

5 An even number of IQ's and OTs pairwise

6 (Number of I's - number of G's) mod 3 = G

7 0*1*G*1*

Table 6.2. Languages learned by the GNARL algorithm. * indicates that a character

can be either aOoral .

141

Two sets of experiment were performed. One using sum of absolute errors as a

fitness measure, the other using sum of square errors as a fitness measure. The

results are shown in table 6.3.

Language Evaluations

(SAE) .

% Accuracy

(SAE)

Evaluations

(SSE)

% Accuracy

(SSE)

1 3975 100.00 5300 99.27

2 5400 96.34 13975 73.33

3 25050 58.87 18650 68.00

4 15775 92.57 21850 57.15

5 25050 49.39 22325 51.25

6 21475 55.59 25050 44.11

7 12200 71.37 25050 31.46

Table 6.3: Speed (Number of generalisations) and accuracy of the GNARL method

over the languages described in table 6.2

Unsurprisingly, the algorithm was most efficient at leaming the simplest

grammar from the set (number one). This was the case both in terms of the number

of generations needed to evolve to an optimum solution and the percentage accuracy

of said network on the task.

An additional feature of networks evolved using the GNARL algorithm is that

the complexity of the networks increased as they evolved. An example of this can be

found when GNARL was used to perform what was termed an "Enable-Trigger

Task". This task involves the following rule. For two inputs (a,b) and a starting state

SI, the network switches to state S2 when a=l and remains in this state until it is

triggered by b=l, when the network has a desired output of 1 and reverts to state SI.

For example the input stream [(0,0) (0,1) (1,1) (0,1)] will have the desired output [0,

0,0, 1]. The fittest members of two generations are shown in figure 6.1.

142

(a) (b)

o

o
Figure 6.1: Architectures of two networks evolved by the GNARL algorithm to solve

the "enable-trigger task”. Black circles represent bias units, shaded circles represent

units which have feedback connections to themselves.

In the above diagram (a) represents the fittest architecture of generation I. (b)

represents the fittest architecture of generation 765. This network solves the task for

all strings of length eight. Note that even at generation 765 the network is still

evolving since we can see that two units have no connectivity. This is because one of

the rules for breeding new offspring states that units which are added at generation g

may not be connected until generation g+1 at the earliest.

6.2 Some Guiding Principles for Recurrent Network Development

In terms of the recurrent networks themselves, leaming rules where the

change in one weight is affected only by local considerations gives a learning and

generalisation performance at least as good as non local leaming rules such as RTRL,

143

and has the added advantage of being less computationally expensive. Following on

from that this thesis has shown what has been stated elsewhere in the literature, that

recurrent networks whose architectures are complex (lots of units, full

interconnectivity etc.) are less efficient than their more sparsely connected relatives.

The key to the complexity of a recurrent network appears to lie in its hidden

layer where, during learning, the network attempts to develop an internal

representation of some particular task. If the hidden layer is too small then the

network will not be able to develop this internal representation. If the hidden layer is

too large then although the network will theoretically be able to develop this internal

representation, the state space generated will be very complex, with a much higher

probability that the network will get stuck in a local minimum during learning.

It would appear that if there is a single thread running through this thesis it is

the relationship in successful learning systems between simplicity and complexity.

Given an identical size in terms of the number of hidden units, the networks

examined in chapters three and four differ considerably in terms of the complexity of

their state spaces. Let us take two hypothetical recurrent networks N1 and N2, where

the state space of N1 is less complex than the state space of N2. If N1 and N2 both

have state spaces that are rich enough to learn a given set of input - output relations,

then N1 is more likely to be successful at actually learning this set of relations. This

is because the more complex state space of N2 means that the network is more likely

to encounter local minima during learning.

Thus the failure of the RTRL network to perform as well as the Simple

Rccuiient Network or the Gamma Model is not because its state space is

insufficiently complex. Indeed so great is the problem of having an overly complex

state space that improved methods of state space traversal (i.e. using more powerful

learning algorithms) are not sufficient to overcome this handicap.

Similarly Elman's (1993) set of experiments concerning the Simple Recurrent

Network demonstrated how learning of simple concepts enabled the network to learn

more complex concepts which might have otherwise been beyond its comprehension

144

had the order of learning stayed random as in most neural network learning regimes.

Similarly Angeline, Saunders and Pollack (1994) showed that the recurrent networks

evolved by their genetic algorithm system started as simple networks, but became

iiioit: complex as tlieir evolution progressed. When during the evolutionary process

complex and more simple architectures fought it out the simpler architecture always

came out on top.

Comparative studies described here and elsewhere show that recurrent

networks which use adaptive memory mechanisms (e.g. deVries and Principe's

Gamma Model) are perhaps the most promising avenue of research, since they give

rise to networks which are biologically plausible (Bressloff 1993) and satisfy the

problem of attempting to develop an appropriate short term memory mechanism for a

particular task (since the network does this for us). When using the gamma memory

structure, an interesting question might be just what should the outputs of the

memory structure feed forward to? The search for biological plausibility and the

results of the comparative studies carried out would suggest that such a structure

would be sparsely connected and perhaps modular in design, such as the CALM

algorithm developed by Murre (1992). Associated with such architectures are

learning rules where weight changes in one particular part of the network are the

function of local information only.

Although these guiding principles will be useful rules of thumb for

researchers to create new recurrent network models or improve on old ones, the sheer

diversity of recurrent network types means that the search space to be explored is still

very large. However new techniques, particularly genetic algorithms, can be used to

automate the process. Accordingly, when neural networks are being developed, it is

no longer sufficient to talk of training as being the change in connection strengths by

a predetermined learning rule between units in an otherwise fixed architecture as

being the whole picture.

The two approaches outlined above represent processes where the system

starts simple and goes complex. Of course it is possible that starting from a position

145

of complexity and moving towards simplicity will give rise to a satisfactory solution.

This route is represented by learning algorithms which represent pruning strategies.

However, the first approach (from simplicity to complexity) is superior since with a

pruning algorithm learning may not succeed because the State space of tlie existing

network is too complex or because the state space is not complex enough (i.e. there

are too few hidden units). Thus the guiding principle for recurrent network

development would appear to be this: Start simple, then get as complex as you need

to be, but no more.

6.3 Speculations (:): A New metaphor for Recurrent Network Training

All neural networks attempt to solve a particular problem by learning i.e. by

forming an internal representation of the data with which they have been presented.

Neural networks have proved to be a powerful technique for solving many different

types of non-trivial problem. However this study has shown that the parameters of

the network can often determine if learning has been successful or not. A given

application may fail, not because a neural network is unable to perform a particular

task, but because the wrong parameters were chosen. Furthermore the nature of the

data set used can also increase or decrease the probability of success or failure.

It therefore seems appropriate to take on board these results and integrate

them into a new metaphor for developing neural networks, whereas previously the

metaphor has been one based on learning, die proposed metaphor is based on a

notion of agency. The definitions of agency are many and varied. Here an agent is

deemed to be an object, operating in an environment such that it can understand

aspects of its environment and can generalise these to novel situations. Agent is a

broad term which can include both natural (e.g. humans, animals) and artificial

objects (e.g. robots).

146

Instead of speaking of a neural network learning a given task the agent

metaphor instead speaks of development. This can be broken into three connected

stages:

1. Evolution: In the real world no agent starts from scratch. Almost all animals have

non-leamed behaviours (instincts) which are encoded in its genes and are the result of

the evolutionary process. The same could also be said for the form of its body, which

is adapted so that an agent is best able to move around the environment, spot dangers

and exploit whatever resources are available. In the same way genetic algorithms

could be used to determine the architecture (and/or the connection strengths) of a

neural network. Research has shown that genetic algorithms can be used to get round

some of the problems found when using recurrent networks (Angeline, Saunders and

Pollack 1994) and are an elegant way of finding the optimum parameters of a

network.

2. Tuition: In a world of intelligent agents, it is rare for a new agent to be left to find

its way in the world without help from more experienced peers. Humans learn

complex concepts with the help of others, starting with relatively simple concepts,

then progress to more complex ones, using the learned simple concepts as building

blocks. The work of Elman (1993) shows that this approach can also be extended to

recurrent networks, where a network that was presented with graded training data

was able to learn a task in which it was unable to learn the same, ungraded, data.

3. Training: This is the traditional learning rule based part of the process. This may or

may not include restricting the short term memory mechanism. As Elman (1993)

noted, presenting graded training data has the same effect as restricting the short term

memory mechanism. The precise choice will largely depend on the "gradability" of

the data set. If the data is easily gradable (for example in Elman's study, complexity

was judged by the presence or otherwise of embedded clauses in a sequence of

147

words) then this is an option. However the alternative method of restricting the short

term memory mechanism is more attractive for two reasons: not all data is easily

classified in this way, and restricting the short term memory mechanism offers a way

of using this technique on data whose complexity is both easily or not so easily

defined. Furthermore restricting the short term memory mechanism can be seen to be

analogous to the modifications to real brains in the formative stages of their

development, and is therefore more plausible from a physiological perspective.

This new metaphor gives rise to the development cycle displayed in figure

6 .2 :

148

Does one of the
networks learn?

No

Yes

Breed a new generation
of networks from
existing population

Train networks using
graded data OR

increase short term
memory size

Stop

Start with a population
of networks

Figure 6.2: A new development cycle for recurrent neural networks based on Agent

Theory.

Note that although the agent theory metaphor may apply there are in fact a

number of different development cycles that could be tried (see section 6.5).

According to the agent metaphor the recurrent network is a creature attempting to

perform a particular task. The ability of the network to perform the task is a measure

149

of its evolutionary fitness. Furthermore the short term memory mechanism of the

network grows more powerful during learning.

6.3.1 The New Metaphor and Amit's Criteria

In chapter one, a shopping list of the desirable properties of a recurrent

network was set out by Amit (1992). How does the agent theory metaphor stand up

to some of these demands?

Biologwal Plausibility: The agent metaphor is a much more holistic approach than

traditional neural network learning paradigms. Taking into account evolution (the use

of genetic algorithms) and allowing expert knowledge to facilitate development

(grading of data sets), Happel and Murre (1994) showed that neural networks

evolved using genetic algorithms often give rise to architectures which resemble some

aspect of real brains, in their case "The best performing network architectures seem to

have reproduced some of the overall characteristics of the visual nervous system".

Also the use of genetic algorithms seems to lead to better performance (see the

"Emergent Behaviour" section below) and is cited by Happel and Murre as to why

"for many vital learning tasks in organisms only a minimal exposure to relevant

stimuli is necessary" (Happel and Murre 1994 p 985).

Emergent Behaviour and Potential for Abstraction: These two categories have been

linked together because of the high degree of overlap. A key aspect of the emergent

behaviour of a neural network is the ability of the network to successfully perform a

task on novel data (i.e. its potential for abstraction). The guidelines suggested for

developing networks in the future (sparsely connected networks, local learning rules,

adaptive short term memory mechanisms) give rise to better generalisation abilities.

Furthermore, using genetic algorithms to develop network architectures "can not only

enhance learning and recognition performance, but can also induce a system to better

150

generalise its learned behaviour to instances never encountered before" (Happel and

Murre 1994 p 985).

Freedom From Homunculi: This criterion is concerned with the need for the system

to adapt itself to a particular task without the need for some kind of overseer. It could

be argued that using genetic algorithms, grading data sets and restricting the short

term memory mechanism during the early stages of learning are forms of homunculi.

However, in developing a neural network in these fashions, the parameters of the

network are set implicitly, not explicitly. It may well be that an architecture evolved

through the use of a genetic algorithm will be sparsely connected, but this is because

the dynamical properties of the network mean that such an architecture is best suited

to the particular task, not because it has been explicitly programmed to do so.

Similarly it is because of the network dynamics that restricting short term memory

and grading the data set gives rise to improved performance. There may be problems

where such an approach is less necessary.

Parallel Processing Hardware: A neural network will need to have a high degree of

parallel processing if it is not to take up an unreasonably large amount of computing

time to perform a particular task. Furthermore the ability of real brains to perform non

trivial tasks very quickly means that this is an important requirement if we are

particularly interested in making the network as physiologically plausible as possible.

Associativity : This refers to the ability of a network to combine similar inputs into a

single representation for the purposes of cognition. Taking an example from visual

processing, an individual object may look different when viewed from different

angles, but it is the same individual and needs to be recognised as such. As with

parallel processing, a neural network will need to have this ability if it is to be used to

perform non trivial tasks. Again it is an important ingredient of physiological and

psychological plausibility.

151

6.4 Speculations (il): Future Research

The most obvious avenue of future research is to use the theoretical

framework in section 6.2 in a system for creating recurrent networks. Attempting to

do so immediately creates questions: for example the relationship between the

evolution of network architecture and the presentation of graded data sets. One way

to do this is shown in figure 6.2. However other combinations are possible, as

shown in figure 6.3. Here network fitness is judged at each level of difficulty, so that

a random sample of networks are the starting population at the first level of difficulty,

the fittest networks at the first level of difficulty are the starting population at the

second level of difficulty and so on. This cycle continues until all data sets have been

successfully learned. Thus the philosophy of starting with simple problems is also

applied to the evolution of the network architecture as well as connection strengths.

152

Does a
network learn?

No

Yes

Move to data
 with next level

of difficulty
last data set

hardest?

Yes

Finish

Start with a population
of networks

move to next level of
difficulty

Breed New generation
of networks

Train networks with a
dataset

Figure 6.3 An alternative development cycle for recurrent neural networks based on

Agent Theory.

153

An additional area of research would be to examine the extent to which the

state of a recurrent network is determined by the genetic algorithm or by the learning

rule. Is the genetic algorithm simply to be used to create the architecture with no role

in determining connection strengths, does the genetic algorithm determine connection

strengths alone or is a more hybrid approach required? Another question is concerned

with the overall plasticity of the system: is the whole network modifiable by genetic

algorithm or is it only part modifiable (for example we might wish to use a particular

type of memory structure, but the rest can be created by the evolution of the

network)?

What these questions do demonstrate is that recurrent neural networks

represent a powerful tool for sequence processing tasks and that their limits have not

yet been discovered. It is clear that much research stiU needs to be done.

154

References

Alexandre, F., Guyot, F., & Haton, J.-P. (1990). The Cortical Column: A New

Processing Unit for Multilayered Networks. Neural Networks, 3, 15-25.

Amit, D. J. (1992). Modeling Brain Function: The World of Attractor Neural

Networks. Cambridge University Press.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An Evolutionary

Algorithm that Constructs Recurrent Neural Networks. IEEE Transactions on Neural

Networks, 5, 54-65.

Back, A. D. & Tsoi, A. C. (1991). FIR and HR Synapses, a New Neural Network

Architecture for Time Series Processing. Neural Computation, 3(3), 375-385.

Bressloff, P. C. (1993). Temporal Processing in Neural Networks With Adaptive

Short Term Memory: A Compartmental model Approach. Network Computation In

Neural Systems, 4, 155-175.

Catfolis, T. (1993). A Method for Improving the Real-Time Recurrent Learning

Algorithm. Neural Networks, 6, 807-821.

Cleeremans, A. & McClelland, J. L. (1991). Learning the Structure of Event

Sequences. Journal o f Experimental Psychology: General, 120, 235-253.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite State

Automata and Simple recurrent Networks. Neural Computation, 1, 372-381.

155

Crick, F. H. C. & Asanuma, C. (1986). Certain Aspects of the Anatomy and

Physiology in Cerebral Cortex. In J. L. McClelland & D. E. Rumelhart (Eds.),

Parallel Distributed Processing: Explorations in the Microstructure of Cognition

Volume 2: Psychological and Biological Models (pp. 333-371). M.I.T Press.

Dayhoff, J. E., Palmadesso, P. J., & Richards, F. (1994). Developing Multiple

Attractors in a Recurrent Neural Network. In Proceedings of World Congress on

Neural Networks, 4 (pp. 710-715). Town & Country Hotel, San Diego, California,

USA.: Lawrence Earlbaum Associates.

De Vries, B. & Principe, J. C. (1992). The Gamma Model - A New Neural Model

for Temporal processing. Neural Networks, 5, 565-576.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14, 179-211.

Elman, J. L. (1991). Distributed Representations, Simple recurrent Networks, and

Grammatical Structure. Machine Learning, 7, 195-225.

Elman, J. L. (1993). Learning and Development in Neural Networks: The

Importance of Starting Small. Cognition, 48, 71-99.

Gaudiano, P. & Grossberg, S. (1991). Vector Associative Maps: Unsupervised

Real-Time Error-Based Learning and Control of Movement Trajectories. Neural

Networks,^, 147-183.

Goldberg, D.E. (1989) Genetic Algorithms in Search Optimization and Machine

Learning. Addison Wesley,

156

Grinasty, M., Tsodyks, M. V., & Amit, D. J. (1993). Conversion of Temporal

Correlations Between Stimuli to Spatial Correlations Between Attractors. Neural

Computation, 5, 1-17.

Happel, B. L. M. & Murre, J. M. J. (1994). Evolving Complex Dynamics in

Modular Interactive Neural Networks. In Press

Home, B. G. & Giles, C. L. (1994). An Experimental Comparision of Recurrent

Neural Networks NEC Research Institute.

Jordan, M. I. (1986). Serial Order: A Parallel Distributed Processing Approach (Tech

Report No. 8604). University of California Institute for Cognitive Science.

Kalman, B. L. & Kwasny, S. C. (1994). TRAINREC: A System for Training

Feedforward & Simple Recurrent Networks Efficiently and Correctly . (Technical

Report No. 94.02). P.N.P Program, Washington University in St Louis.

Manolios, P. & Fanelli, R. (1994). First-Order Recurrent Neural Networks and

Deterministic Finite State Automata. Neural Computation, 6, 1155-1173.

McCann, P. J. & Kalman, B. L. (1994). A Neural Network Model for the Gold

Market No. 94.09). P.N.P Program, Washington Unversity in St Louis.

McClelland, J. L. & Elman, J. L. (1986). Interactive Processes in Speech

Perception: The TRACE Model. In J. L. McClelland & D. E. Rumelhart (Eds.),

Parallel Distributed Processing: Explorations in the Microstructure of Cognition.

Volume 2: Psychological and Biological Models. M.I.T. Press.

157

Mel, B. W. (1994). Information Processing in Dendritic Trees. Neural Computation,

6, 1031-1085.

Metzger, Y. & Lehmann, D. (1994). Learning Temporal Sequences by Excitatory

Synaptic Changes Only. Network Computation in Neural Systems, 5(1), 89-99.

Minsky, M. & Papert, S. (1969). Perceptrons. Cambridge, M.A.: M.I.T Press.

Mozer, M. C. (1993). Neural Net ArcWtectiires for Temporal Sequence Processing.

In A. Weigend & N. Gershenfield (Eds.), Predicting the Future and Understanding

the Past, Addison-Wesley.

Murre, J. M. J. (1992). Learning and Categorization in Modular Neural Networks.

Harvester Wheatsheaf.

Noda, I. (1994). A Model of Recurrent Neural Networks that Learn State-Transitions

of Finite State Transducers. In Proceedings of World Congress on Neural Networks,

4 (pp. 447-452). Town & Country Hotel, San Diego, California, USA.: INNS

Press.

Principe, J. C., de Vries, B., & de Oliveira, P. G. (1993). The Gamma Filter-A

New Class of Adaptive HR Filters with Restrticted Feedback. IEEE Transactions on

Signal Processing, 41, 649-656.

Principe, J. C. & Turner, L. A. (1994). Word Spotting with the Gamma Neural

Model. In Proceedings o f World Congress on Neural Networks, 4 (pp. 502-505).

Town & Country Hotel, San Diego, Califorma, USA.: Lawrence Earlbaum

Associates.

158

Rail, W. (1964). Theoretical Significance of Dendritic Trees for Neuronal Input-

Output Relations. In R. Reiss (Eds.), Neuronal Theory and Modeling Stanford

University Press.

Robinson, T., Hochberg, M., & Renais, S. (1995). The use of Recurrent Neural

Networks in Continuous Speech Recognition. In Press

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Internal

Representations by Error Propagation. In D. E. Rumelhart & J. L. McClelland

(Eds.), Parallel Distributed Processing Explorations in the Microstructure of

Cognition Volume 1: Foundations M.I.T. Press.

Rumelhart, D. E. & McClelland, J. L. (Ed.). (1986). Parallel Distributed Processing

Explorations in the Microstructure of Cognition Volume 1: Foundations. M.I.T

Press.

Schmidhuber, J. (1992). A Fixed Size Storage O(n^) Time Complexity Learning

Algorithm for Fully Recurrent Continually Running Networks. Neural Computation,

4, 243-248.

Schwartz, J. T. (1989). The New Connectionism: Developing Relationships

Between Neuurocsience and Artificial Intelligence. In S. R. Graubard (Eds.), The

Artificial Intelligence Debate: False Starts Real Foundations (pp. 123-141). M.I.T

Press.

Servan-Schreiber, D., Cleeremans, A., & McClelland, J. L. (1991). Graded State

Machines: The Representation of Temporal Contingencies in Simple Recurrent

Networks. Machine Learning, 1, 161-193.

159

Stevens, C. F. (1989). How Cortical Interconnectedness Varies With Network Size.

Neural Computation, 1, 473-479.

Surkan, A. J. & Skurikhin, A. N. (1994). Memory Neural Networks Applied to the

Prediction of Daily Energy Usage. In Proceedings of World Congress on Neural

Networks, 2 (pp. 254-259). Town and Country Hotel, San Diego, California, USA.:

INNS Press.

Tsoi, A. C. & Back, A. D. (1994). Locally Recurrent Globally Feedforward

Networks: A Critical Review of Architectures. IEEE Transactions on Neural

Networks, 5(2), 229-239.

Wan, E. A. (1993). Discrete Time Neural Networks. Journal of Applied Intelligence,

3, 91-105.

Werbos, P. J. (1990). Backpropagation Through Time: What it Does and How to do

it. Proceedings o f the IEEE, 78, 1550-1560.

Williams, R. J. & Zipser, D. (1989). Experimental Analysis of the Real-time

Recurrent Learning Algorithm. Connection Science, 1, 87-111.

Wilhams, R. J. & Zipser, D. (1989). A Learning Algorithm for Continually Running

Fully Recurrent Neural Networks. Neural Computation, 1, 270-280.

Zipser, D. (1989). A Subgrouping Strategy that Reduces Complexity and Speeds up

Learning in Recurrent Networks. Neural Computation, 1, 552-558.

160

Appendices

Although the research described in this thesis was performed using the

Neuralworks simulator, some source code still had to be written in order to create

RTRL and Gamma networks. The learning and summation functions created are

presented here. All code was written in C and uses structures found in the package

used in conjunction with Neuralworks, called User Defined Neuro Dynamics.

Comments about the code can be found within the body of code itself and are

bracketed with /* */ in the standard C format.

161

Appendix 1: The Gamma Model Learning Rule

The following code implements the gamma learning rule described in

equations 2.49 and 2.50

/* this is the learning rule for the Gamma memory algorithm */

#if defmed(ANSI_HEADER)

NINT um_l_gamma(USR_PE *upep, USR_CN_HDR *uchp, USR_LYR *ulp)

#else

NINT um_l_gamma(upep, uchp, ulp)
USR_PE *upep;
USR_CN_HDR *uchp;
USR_LYR *ulp;
*/

/* pointer to current PE */
/* pointer to connection header */
/* pointer to current layer i.e one above

/* gamma layer */

#endif

{
USR_PE *firsti;
USR_PE *curpe;
USR.PE *kpe;
USR_PE *ppe;
USR_CONN *connection;
USR_CONN *ct;

USR_CN_HDR *header;

/* pointer to first PE of i group */
/* pointer to offset to conn table for first i */
/* pointer to PE for alpha calculation */

/* pointer to previous PE for alpha calculation */
/* pointer to connection(s) from gamma layer */

/* pointer to connection table (for backprop */
/♦calculation) */
/* pointer to connection header at gamma + 1 */

REAL totsum, ksum, alpha, oldalpha, deltai, Icoef, wv;
NINT gape, ker, connoff, outnodes, k, i, inp, inputs, sizewts, wx;

if(IS_POSTLYR) {
return (0);

}

if (IS_INIT) return (0);
*/

if(IS_PRELYR) {

first_time_flag = 1;

/* do little on postlayer call */
/* end of if (IS_POSTLYR) statement */

/* do nothing on init (handled by Neuralware)

/* IS_PRELYR does all the work! */

/* set first_time_flag to TRUE to force */
/♦PRELYRcall */

inputs = ulp->l_prev->l_prev->num_pes;
k = (ulp->l_prev->num_pes / inputs) -1; /* calculates kernel size */
firsti = ulp->l_prev->l_ep; /* first node in gamma layer */
sizewts = ulp->functions.size_wts; /♦ size to skip connections in hidden layer ♦/

162

/* this is the i loop, which loops through the input lines */

for (i=0; i < inputs; i++){

totsum = 0; /* accumilator for total error (output layer) refers to m loop */
curpe = ulp->l_ep; /* initialise pointer to first PE in hidden layer */
connoff = i * (k-Hl); /* offset to comi table for flrsti */

/* we are now at the m loop, which loops through the nodes in the output layer */

for (outnodes = 0; outnodes < ulp->num_pes; outnodes++, curpe = curpe-
>pe_next) {

kpe = firsti; /* pick up first node in ith kernel */
ksum = 0; /* accumulator for delta mu calculation */
header = curpe->io_wtoff; /* connection header for current (m) hidden layer*/

/* node */
connection = &header->conn_table[0]; /* first connection for this npde */

UPDWXP(connection, sizewts); /* to skip bias MAKE SURE IT'S
/* CONNECTED!!! */

/* the following loop skips through the gamma layer connections of the current */
/* (m) node skipping connections to previous gamma kernels */

for (wx = 0; wx < connoff; UPDWXP(connection, sizewts), wx++);

/* now we start the k loop, which calculates a separate value for all m */
/* note that gape = 1 is starting point because alpha of first PE in kernel */
/* is always = 0 so we skip connections and alpha for k=0 */

for (gape = 1 ; gape <= k; gape++) { , . * /
UPDWXP(connection, sizewts); /* step through k connections */
kpe = kpe->pe_next; /* skip to next node in kernel */
ksum += connection->weight * kpe->des_val;
} /* end of k loop */

totsum += curpe->err_val * ksum; /* e * f taken from err_val via control
strategy

} /* end of m loop */

deltai = LC0EF3 * totsum;

/* now we can do the alpha calculation for each PE in the gamma layer */
/* checking where each kernel begins, this value is to be used in the */
/* next pass, i he alpha for the first unit in a kernel = 0 remember to */
/* store kernel size in L0CEF3 mu is stored in kpe->errfac alpha is stored */
/* in kpe->des_val */

oldalpha = 0.0; /* set up for kernel calculation */
ppe = firsti; /* first node in kernel */
kpe = ppe->pe_next; /* second node in kernel */

for (inp = 0; inp <= k; inp++) { , , */
firsti->err_fac += deltai; /* update mu, stored for each umt in */

/* gamma layer */
if (firsti->crr_fac < 0.0) firsti->crr__fac = 0.0;
if (firsti->err_fac > 2.0) firsti->err_fac = 2.0;

163

firsti = firsti->pe_next; /* skip first i on, leave pointing at first */
/* node of next kernel */

} /* end of inp loop */

for (ker = 1 ; ker <= k; ker++) {
alpha = (((1 - kpe->err_fac) * kpe->des_val) + (kpe->err_fac * oldalpha)) +

(ppe->out_val - kpe->out_val);
oldalpha = kpe->des_val;

kpe->des_val = alpha; /* store for next set of calculations */
ppe = kpe; /* move along to next units in kernel */
k ^ = kpe->pe_next;
} /* end of k loop */

} /* end of i loop */
retum(O);
} /* end of PRELYR processing */

/* the following is done for every PE! This is normal processing */

if (first_time_flag) {
ulp->pe_kcur = upep; /* this forces a postlayer call (needed for updates!) */

first_time_flag = 0;
} /* end of if (first_time_flag) statement */

/* This code calculates the backprop learn and weight update for the hidden layer */
/* and has been lifted directly from usermath.c */

Icoef = LCOEFl * upep->err_val;

sizewts = ulp->functions.size_wts;

for (wx = 0, ct = &uchp->conn_table[0];
wx < uchp->num_conns; wx+h-, UPDWXP(ct,sizewts)) {

if ((ct->flag & (CN_DISABLEDICN_WT_MASK)) != CN_VAR)
continue; /* Not a variable weight */

/* compute the weight change */
wv = Icoef * ct->src_pe->out_val + LC0EF2 * ct->last_dw;
ct->last_dw = wv;
ct-> weight += wv;

}

/* end of normal processing */
retum(O);
}

164

Appendix 2: The Summation Function for Gamma Kernels

This code is to simulate the summation function for units in a gamma kernel

described in equations 2.47 and 2.48

/* this is the summation function for the gamma layer */
/* it is largely based on the sununation function given in usermath.c */
/* with the addition of an additional if / else if function at the */
/* end of the code, which represents equations 41 and 42 in the */
/* De Varies and Principe paper */

#if defmed(ANSLHEADER)

NINT um_s_gamma(USR_PE *upep, USR_CN_HDR *uchp, USR_LYR *ulp)

#else

NINT um_s_gamma(upep, uchp, ulp)
USR_PE *upep;
USR_CN_HDR *uchp;
USR_LYR *ulp;

#endif

/* pointer to current PE */
/* pointer to connection header */

/* pointer to current layer */

/* connection table for current PR */

NINT wx, wf, sizewts;
REAL accum;
USR.CONN *ct;

if(IS_INIT)
return (0);

if (IS_PRE_POST)
return (0);

if (uchp->num_conns == 1) {
ct = &uchp->conn_table[0];
upep->sum_val = ct->src_pe->out_val;

} else {
accum = 0.0;
sizewts = ulp->functions.size__wls;
for (wx = 0, ct = &uchp->conn_table[0];

wx < uchp->num_conns; wx++, UPDWXP(ct,sizewts)) {
wf = ct->flag;
if ((wf & CN.DISABLED) != 0) continue;
if (upep == ct->src_pe)

accum += (ct->src_pe->tm_val * (1 - upep->err_fac)) ;
else

accum += (ct->src_pe->tm_val * upep->err_fac);

upep->sum_val = accum;

}
retum(O);

/* end of if (uchp->num_conns ==1) statement */

165

166

Appendix 3: The Original RTRL Algorithm

The following piece of code impliments the original form of the RTRL

algorithm as devised by Williams and Zipser (1989) and as described in section 2.1.7

of the literature review.

/* this is the learning mle for the RTRL algorithm */

#if defmed(ANSI_HE ADER)

NINT umj_rtrl(USR_PE *upep, USR_CN_HDR *uchp, USR_LYR *ulp)

#else

NINT um_l_rtrl(upep, uchp, ulp)
USR_PE *upep;
USR_CN_HDR *uchp;
USR_LYR *ulp;

/* pointer to current PE */
/* pointer to connection header */

/* pointer to current layer */

#endif

{
USR_PE *pel;
USR_CN_HDR *wap2;
USR_CONN *ctw;
USR_CONN *ctp;

/* pointer to other nodes for P(i j,k) reference */
/* pointer to weights table for above node */
/* pointer to connections table in above Header */
/* pointer to incoming connections for this node */

NINT sizewts, wx, othems, iw, rtrlwts; /* mainly counters except sizewts */
REAL sum, errsum; /* accumulators, one for P(i j,k) calculation, other for weight */

if(IS_PRELYR) {
first_time_flag = 1 ; /* set first_time_flag to TRUE to force POSTLYR call */
return (0); /* do little on prelayer call */

} /* end of if (IS_PRELYR) statement */

if (IS_INIT) return (0); /* do nothing on init (handled by Neuralware) */

/* IS_POSTLYR updates the P(ijk) with the newly calculated ones */

sizewts = ulp->functions.size_wts; /* for UPDWXP (moves pointer over */
/* connections) */

if(IS_POSTLYR) {
pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) */

for (othems = 0; othems < ulp >num_pes; othems++, pel = pel->pe_next) {
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */

for (wx = 0 ;
wx < wap2->num_conns; wx-H-, UPDWXP(ctw, sizewts)) {

167

ctw->weights[0] += ctw->weights[l]; /* update weights */
for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts++) {

ctw->weights[2 + (rtrlwts * 2)] = ctw->weights[3 + (rtrlwts * 2)];
} /* end of rtrlwts (P(i j,k) loop */

} /* end of wx (connections) loop */
} /* end of othems (nodes in RTRL layer) loop */

retum (0);
} /* end of if IS_POSTL YR statement */

if (first_time_flag) {
ulp->pe_kcur = upep; /* this forces a postlayer call (needed for updates!) */

first_time_flag = 0;
} /* end of if (first_time_flag) statement */

/* START OF MAIN CODE (but note sizewts set up above)
/* Neuralware provides the i-loop, looping over all RTRL nodes calling this routine*/
/* once for each one */

/* j-loop, loop over all incoming connections to this PE (node)-recurrent */
/* and upwards */
/* ctp points to the connections */

for (wx = 0, ctp = &uchp > conn_table[0];
wx < uchp->num_conns; wx++, UPDWXP(ctp, sizewts)) {

pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) */
errsum = 0; /* accumulator for weight u^ate sum (at end of j loop) */

/* k-loop, loop over all other RTRL nodes, pel starts at the first and */
/* skips down through the linked list (pe_next) */

for (othems = 0; othems < ulp->num_pes; othems++, pel = pel->pe _next) {
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */
sum = 0; /* accumulator for P(ijk) calculation */

/* skip the input weights (1-loop is over RTRL nodes only) */
/* skipping by looking for a connection FROM a node in the same layer */

while (ctw->src_pe->io_layerx != ulp->l_selfx) UPDWXP(ctw, sizewts);

/* 1-loop, over RTRL nodes, sum of weights(k,l) * P(i j,l) */
/* P (i j i) are stored after weight and delta-weight (->weights[0] and [1]) */
/* Old P(i j,k) are in even no:s (2,4,6) and New P(ij,k) in odd no:s (3,5,7) */

for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts-H-) {
sum += ctw->weights[0] * ctp->weights[2 + (rtrlwts * 2)];
UPDWXP(ctw, sizewts);
} /* end of rtrlwts 1-loop */

/* out_val should be the old y (output) value: make sure the control file agrees! */

if (pel==upep) /* if i = j */
sum += ctp->src_pe-X)ut_val; /* kronecka's delta calculation */

/* Final calculation of New P(ij,k) into odd no: wts */
/* tm_val is NEW y (y(t4-l)) */

168

ctp->weights[3 + (othems * 2)] = pel->tm_val * (1 - pel->tm_val) * sum;

/* LEARNING CALCULATION */
/* This is the weight update summation calculation: doesn't have anything to */
/* do with the above calculation for P(i j,k), but USES New P(ij,k) */
/* We are accumulating eirors(k) * OLDP(i j,k) */
/* pel refers to PE(k), ctp->weights to OldP(iJ) (and index in for k) */

errsum += pel->err_val * ctp->weights[2 + (othems * 2)];

} /* end of othems k-loop */

ctp->weights[l] = LCOEFl * errsum; /* Delta weights (ij) final calculation */

} /* end of wx (j) loop */

retum(O);
}

169

Appendix 4: A Modified form of the RTRL algorithm, for use with

networks with sparse connectivity.

The following piece of code was used for the experiments descirbed in

chapter four in section 4.1

/* this is the learning rule for the RTRL algorithm used in chapter four */

#if defmed(ANSI_HEADER)

NINT umj_rtrl(USR_PE *upep, USR_CN_HDR *uchp, USR.LYR *ulp)

#else

NINT um_l_rtrl(upep, uchp, ulp)
USR_PE *upep; /* pointer to current PE */
USR_CN_HDR *uchp; /* pointer to connection header */
USR_LYR *ulp; /* pointer to current layer */

#endif

{
USR_PE *pel; /* pointer to other nodes for P(ij,k) reference
*/
USR_CN_HDR *wap2; /* pointer to weights table for above node */
USR_CONN *ctw; /* pointer to connections table in above Header */
USR_CONN *ctp; /* pointer to incoming connections for this node */

NINT sizewts, wx, othems, iw, rtrlwts; /* mainly counters except sizewts */
REAL sum, errsum; /* accumulators, one for P(i j,k) calculation, other for weight
* /

if(IS_PRELYR) {
first_time_flag = 1; /* set first_time_flag to TRUE to force POSTLYR call */
retum (0); /* do little on prelayer call */

} /* end of if (IS_PREL YR) statement */

if (IS_INIT) retum (0); /* do nothing on init (handled by Neuralware) */

/* IS_POSTLYR updates the P(ijk) with the newly calculated ones */

sizewts = ulp->functions.size_wts; /* for UPDWXP (moves pointer over
connections) */

if (IS_POSTLYR) {
pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) *l

for (othems = 0; othems < ulp->num_pes; othems++, pel = pel->pe_next) {
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */

for (wx = 0 ;

170

wx < wap2->num_conns; wx++, UPDWXP(ctw, sizewts)) {

ctw->weights[0] += ctw->weights[l]; /* update weights */
for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts++) {

ctw->weights[2 + (rtrlwts * 2)] = ctw->weights[3 + (rtrlwts * 2)];
} /* end of rtrlwts (P(iJ,k) loop */

} /* end of wx (connections) loop */
} /* end of othems (nodes in RTRL layer) loop */

first_time_flag = 0;
retum (0);
} /* end of if IS_POSTL YR statement */

if (first_time_flag == 2) retum(O);
if (first_time_flag ==!){

ulp->pe_kcur = upep; /* this forces a postlayer call (needed for updates!) */
first_time_flag = 0;

} /* end of if (first_time_flag) statement */

/* START OF MAIN CODE (but note sizewts set up above) */
/*Neuralware provides the i-loop, looping over all RTRL nodes calling this routine */
/* once for each one */

/* j-loop, loop over all incoming connections to this PE (node)-recurrent and
upwar(6 */
/* ctp points to the connections */

for (wx = 0, ctp = &uchp > conn_table[0];
wx < uchp->num_conns; wx++, UPDWXP(ctp, sizewts)) {

pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) */
errsum = 0; /* accumulator for weight update sum (at end of j loop) */

I* k-loop, loop over all other RTRL nodes, pel starts at the first and */
/* skips down through the linked list (pe_next) */

for (othems = 0; othems < ulp->num_pes; othems++, pel = pel->pe_next) {
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */
sum = 0; /* accumulator for P(ijk) calculation */

/* skip the input weights (1-loop is over RTRL nodes only) */
/* skipping by looking for a connection FROM a node in the same layer */

while (ctw->src_pe->io_layerx != ulp->l_selfx) UPDWXP(ctw, sizewts);

/* 1-loop, over RTRL nodes, sum of weights(k,l) * P(ij,l) */
/* P(ij j:) are stored after weight and delta-weight (->weights[0] and [1]) */
/* Old P(i,j,k) are in even no:s (2,4,6) and New P(ij,k) in odd no:s (3,5,7) */

for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts++) {
sum += ctw->weights[0] * ctp->weights[2 + (rtrlwts * 2)];
UPDWXP(ctw, sizewts);
} /* end of rtrlwts 1-loop */

/* out_val should be the old y (output) value: make sure the control file agrees! */

if (pel==upep) /* if i = j */
sum += ctp->src_pe->out_val; /* kronecka's delta calculation */

171

/* Final calculation of New P(i j Je) into odd no: wts */
/* tm_val is NEW y (y(t+l)) */

ctp->weights[3 + (othems * 2)] = pel->tm_val * (1 - pel->tm_val) * sum;

/* LEARNING CALCULATION */
/* This is the weight update summation calculation: doesn't have anything to */
/* do with the above calculation for P(ij,k), but USES New P(ij,k) */
/* We are accumulating errors(k) * OLDP(ij,k) */
/* pel refers to PE(k), ctp->weights to 01dP(i j) (and index in for k) */

errsum += pel->err_val * ctp->weights[2 + (othems * 2)];

} /* end of othems k-loop */

ctp->weights[l] = LCOEFl * errsum; /* Delta weights (ij) final calculation */

} /* end of wx (j) loop */

retum(O);
}

172

