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Abstract

Artificial neural networks are increasingly being used for dealing with real 

world applications. Many of these (e.g. speech recognition) are based on an ability to 

perform sequence processing. A class of artificial neural networks, known as 

recurrent networks, have architectures which incorporate feedback connections. This 

in turn allows the development of a memory mechanism to allow sequence processing 

to occur.

A large number of recurrent network models have been developed, together 

with modifications of existing architectures and learning rules. However there has 

been comparatively little effort made to compare the performance of these models 

relative to each other. Such comparative studies would show differences in 

performance between networks and allow an examination of what features of a 

network give rise to desirable behaviours such as faster learning and superior

generalisation ability.

This thesis describes the results of a number of existing comparative studies 

and the results of new research. Three different recurrent networks, both in their 

original form and with modifications, are tested with four different sequence 

processing tasks. The results of this research clearly show that recurrent networks 

va^  widely in terms of their performance and lead to a methodology based on the 

following conclusions:

• The architecture should be as simple as possible and as complex as necessary

• Learning rules where a change in connection strength is based on local variables 

only are superior to those which use non-local factors.

• Adaptive memory mechanisms are under exploited and are a particularly 

promising avenue for further research, particularly for those interested in their 

models having physiological validity.



Finally there are some speculations as to how these principles could be put 

into practice. Particularly the use of hybrid models using genetic algorithms for 

controlling the complexity of the network architecture.



Contents

Chapter One. Introduction 1

1.1.1 Why Sequence Processing is Important 1

1.1.2 What Are Sequence processing problems? 1

1.1.3 Three Example Sequence processing Problems 2

1.2 Recurrent Networks: What are they and What are the Desirable Properties? 6

1.3 Overview of the Thesis 9

1.4 Aims of the Thesis 10

Chapter Two. Recurrent Networks: A Review of the Literature 11

2.1 A History of Sequence Processing Using Neural Networks 11

2.1.1 Back propagation Through Time (BPTT) 11

2.1.2 Using Shift Registers for Sequence Processing 12

2.1.3 First and Second Order Recurrent Networks 14

2.1.4 The Simple Recurrent Network (SRN) 17

2.1.5 Memory Neural Networks 25

2.1.6 Finite Impulse Response (FIR) Filters 28

2.1.7 The Real Time Recurrent Learning Model, and its variations 30

2.1.8 The Gamma Model 38

2.2 Issues of Convergence 41

2.3 Attempts at Classification 43

2.4 Other Comparative Studies 46

2.5 Conclusion ^4



Chapter Three. A Comparative Study of Three Recurrent Network Models 56

3.1 Overview and Rationale 56

3.2 The Tasks 57

3.3 The Networks 64

3.4 Experimental Variables 67

3.5 Results 68

3.5.1 The Effects of Modifying Internal Parameters on Learning 68

3.5.2 Comparative Study Results 72

3.5.3 Statistical Analysis of Results 73

3.5.4 Continuous XOR With Two Step Delay 76

3.5.5 The Letter in Word Prediction Task 78

3.5.6 Learning a Finite State Grammar 81

3.5.7 Dollar to Swiss Franc Exchange Rate 83

3.6 Some Observations on the \jl parameter 83

3.7 Discussion

3.7.1 Behaviour of Recurrent Networks in General 85

3.7.2 Why Different Recurrent Networks Behave Differently 88

3.8 What Next? 91

Chapter Four. Modifications to the RTRL Algorithm and Their Implications 93

4.1 Overview and Rationale 93

4.2 Modifying RTRL Network Architecture 94

4 .2.1 Pruning Network Architectures 94

4.2.2 A Pruned RTRL Architecture 96

4.2.3 Randomly Pruning Connections During Learning 104

4.3 Modifying the RTRL Algorithm 1®̂

4.3.1 Different Reset Intervals for Different Tasks? 112



4.3.2 Does Resetting Pÿk Allow Increased Learning Rates? 115

4.4 Summary 122

Chapter Five. Summary and Conclusion 123

5.1 The Effect of Architecture on Learning 123

5.2 The Effect of the Learning Algorithm on Learning 127

5.3 What Does this Mean for Efficient Learning? 131

5.3.1 Adaptive Memory Mechanisms 132

5.4 Can we Improve Learning Without Changing the Network? 133

5.5 Summary 135

Chapter Six. Conclusions 137

6.1 An Aside on Genetic Algorithms 137

6.1.1 Genetic Algorithms and Recurrent Networks 139

6.2 Some Guiding Principles for Recurrent Network Development 143

6.3 Speculations (i): A New Metaphor for Recurrent Network Training 146

6.3.1 The New Metaphor and Amits Criteria 150

6.4 Speculations (ii): Future Research 152

References 1^^

Appendices 1^1

Appendix 1. The Gamma Model Learning Rule 161

Appendix 2. The Summation Function for Gamma Kernels 164

Appendix 3. The Original RTRL Algorithm 166

Appendix 4. A Modified Form of the RTRL Algorithm, For Use With Networks



With Sparse Connectivity 169



Chapter One. Introduction

This chapter is divided into three sections: the first looks at why sequence 

processing is important. This point is illustrated with three quite distinct problems. 

The second section defines and describes recurrent artificial neural networks 

(henceforth referred to as recurrent networks). Finally there is an overview of the 

thesis.

1.1.1 Why sequence processing is important

Artificial neural networks which consist of relatively simple units, organised 

into layers and linked by weighted connections (for a fuller description see RumeUiart 

and McClelland 1986) have been used to solve a wide range of problems. Many of 

these have been such that all the information that the network needs to solve the task 

is available at a single time step, for example face recognition. Many real world 

problems however are such that the information that the network needs to solve the 

task is only available over a number of time steps.

1.1.2 What are sequence processing problems?

It is possible that a problem in which the information is received over time 

would not be a sequence processing problem because the order of the stimuli is not a 

factor in determining the output of the network. A sequence processing problem is 

one in which the order in which the information is presented is as important as the 

information itself in determining what the desired output of the neural network should 

be.



1.1.3 Three example sequence processing problems

A look at three different problem domains will demonstrate that sequence 

processing problems are widespread and, therefore, the development of neural 

network models which can solve these problems quickly and efficiently is a 

worthwhile enterprise.

Psychology

One of the main areas of inquiry for cognitive psychology is the processes by 

which people perform sequence processing tasks such as speech recognition. An 

important part of the formulation of any valid psychological theory is the ability to 

build a model of the phenomena under investigation which accurately reflects the 

phenomena and has significant predictive abilities. Increasingly, neural networks are 

being used as a modelling tool.

Cleeremans and McClelland (1991) used a simple recurrent network (see 

section 1.2 for a definition of a simple recurrent network and section 2.1 for further 

details of this particular network) to model the way in which humans loam the 

structure of sequences. The human subjects were trained on sequential material based 

on a finite state grammar (see chapter three where the finite state grammar used in the 

first part of Cleeremans and McClelland's study is used to generate a data set).

Cleeremans and McClelland found that the simple recurrent network 

architecture was able to capture key aspects of both the learning and processing of 

event sequences. The initial version of the simple recurrent network was a poor 

model of human subject performance. However, modification of the activation and 

learning rules of the network, so that the former was a function not only of current 

input, but also a decaying trace of past inputs and the latter had two instead of one 

component (see section 2.1 for further details), led to a model which fitted the human 

subject data rather well.



Biology

Underlying the psychological processes described above is the physiology of 

the brain. Artificial neural networks are far simpler than real neural networks such as 

the human brain in terms of the number of units in the network, the stmcture of these 

units and the way in which these units are organised. As well as underlying sequence 

processing abilities in general, there has also been speculation that the brain uses 

temporal processing to store information.

There is evidence that temporal processing takes place at the single neuron 

level. A typical "neuron" in an artificial neural network will simply sum its weighted 

inputs and pass the resulting value through a squashing function. A neuron in the 

brain, however, is a much more complex affair. Mel (1994) suggests that the 

dendritic tree of a single neuron may account for anything up to 99% of its total 

surface area and may have as many as 200,000 synaptic inputs. Across the brain as a 

whole, dendritic trees consume over 60% of the brain's energy. This complexity 

suggests that a dendritic tree is in fact a complex information processing device. One 

of the types of information processing abihties that dendritic trees are claimed to have 

is to act as a spatiotemporal filter 1. Using compartmental modelling. Rail (1964) was 

the first to demonstrate that a passive dendritic branch can act as a filter that selects 

for specific temporal sequences.

Figure 1.1 demonstrates this principle. The peak of the voltage wave form is 

twice as large when the inputs to the neuron (simplified here as a ten compartment 

model) move closer to the soma during the course of the sequence. The difference is 

such that the sequence D-C-B-A causes the peak voltage to be greater than the firing

 ̂An ability to perform spatiotemporal integration is one of four that researchers have 

proposed. The other three are: i) the existence of semi-independent processing sub 

units, ii) dendritic structure is influenced by the behaviour of the whole neuron or by 

its sub units, iii) Non-linear mechanisms mean that the dendritic tree can act as a 

logical network.



threshold a. The dotted line represents the voltage if the components of the sequence 

are presented simultaneously. Note that in this example the neuron is broken down 

into a compartmental model. This involves breaking down the complex structure of 

the dendritic tree into sections (compartments), each of which consists of circuit 

elements which capture the electrical properties of the corresponding part of the 

dendritic tree.
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Figure 1.1 .a: A ten component model of a dendritic branch demonstrates difference 

for different input sequences

eooooococo
Figure l.l.b: Detail of the ten component model used in figure la. The shaded 

portion represents the soma. Non-shaded portions represent the dendritic tree.



Engineering

The term "engineering" represents a class of problems where the biological 

plausibility of the network is not as critical as it is in the two areas described above, 

so long as the task is performed efficiently. In these problem domains, neural 

networks often find themselves in competition with rule based or statistical 

techniques. Nevertheless much work has been done with neural networks, 

particularly in control problems (see for example Venugopal et al 1994). Neural 

networks have also been used in problem domains where the dynamics of a sequence 

need to be understood so that accurate predictions can be made concerning its future 

direction.

McCann and Kalman (1994) used a recurrent neural network architecture to 

predict turning points in the gold market. The architecture used was a simple 

recurrent network which also employed skip connections from the input to the output 

layer. With an appropriate trading strategy, it was found that a significant paper profit 

could be gained. The trading strategy used was as follows:

• IF we are in the market, and it has been the case that I<s for n consecutive days 

or more then SELL

• IF we are not in the market, and it has been the case that I>b for n consecutive 

days or more then BUY

In the above strategy, I is the network indicator, b is the buy threshold and s is the 

sell threshold. All these as well as the constant n were adjusted experimentally to find 

the optimum parameters.



1.2 Recurrent networks: What are they and what are the desirable 

properties?

Broadly speaking, recurrent networks are a class of neural network models 

that are distinctive because they have connections within layers and/or from a layer to 

a layer "lower down" the network (here a layer is lower if it is closer to the input 

layer). They are distinct from feed forward networks which only have connections 

from lower to higher layers and have no connections within layers. As we shall see in 

section 2.1, recurrent networks have become the architecture of choice when using 

neural networks for sequence processing tasks.

Recurrent networks are particularly suitable for sequence processing tasks 

because their feedback connections give rise to a capacity for storage of past 

activations. This acts as a short term memory structure, allowing the network to 

retain information concerning the order in which various inputs were presented to it. 

As we saw in section 1.1.2, memory for order is vital if sequence processing is to 

successfully undertaken.

The desirable propeities of a recuiTent network ai*e identical to those of feed 

forward networks. To the casual observer it might seem that the only thing that a 

neural network has to do is to produce an output that is identical to the desired output. 

The truth however is more complex, as illustrated by the following quote:

"It should be first of all emphasised that a major task of any theory of neural 

networks is to produce exceptional input output relations. They have to be 

exceptional in that they should correspond, even if initially only in a metaphorical 

sense, to our intuitions about cognitive processes. Attractive features are biological 

plausibility; associativity; parallel processing; emergent behaviour (cooperativeity); 

freedom from homunculi; potential for abstraction. Then, if any of these features are 

captured by the model, it has to prove robust to the type of disorder, fluctuations.



disruptions that we imagine the brain to be operating under." (Amit 1992 pp6. Italics 

in original).

Obviously some of these criteria have different priorities for different 

researchers. Engineers will be less concerned with the question of biological 

plausibility than neuroscientists for example. However it is important to realise that 

there is considerable fertilisation frorn one discipline to the other. Speech recognition, 

for example, is of interest to psychologists (How do we recognise speech? can we 

use neural networks to model some aspect of this process?) and engineers (How do 

we build a generic speech recognition system?).

One of the most important conceptual frameworks in which neural networks 

have been examined is to view them as dynamical systems! Broadly speaking, a 

dynamical system is one which changes over time. In order to view a neural network 

as a dynamical system, it is necessary to visualise the network as consisting of two 

sections:

Representation o f network states: The representation of all the possible states 

of a dynamical system is known as a state space. Any network state can be viewed as 

a point on an N dimensional graph, where N is the number of variables that the 

system has. For a neural network N corresponds to the number of connections (and 

therefore weights) that the system has.

"Laws o f motion" : Within the state space: During the learning process the 

network moves around the phase space, as weight changes as a function of some 

learning rule take place. The network will of course be moving towards some goal 

state where the actual output of the network is identical (or within some margin of 

error) to the desired output. The point on the phase space represents the combination 

of connection strengths for which, given the appropriate input, transfer and output 

functions, the desired output will be produced. Such a point is an example of an 

attractor.



A useful analogy often used in dynamical systems theory to explain this 

terminology is the landscape metaphor (see figure 1.1). A ball rolls around the 

landscape, its movement is determined by two factors: the topology of the landscape 

and the laws of gravity and friction. For a given landscape the ball will only find the 

global minimum if the energy with which it moves round the landscape is within a 

certain range. Too little energy will not give it sufficient resources to get out of local 

minima, whilst too much energy will cause the ball to "escape" from global 

minimum.

//jV

X /  I \  \

Q1 M l Q2 Q3 M2

Figure 1.2 Diagram illustrating the landscape metaphor. Points Ml,M2 and Q1 - Q3 

are basins of attraction (or attractors) defined by local maxima, labelled in the diagram 

as Max.

In figure 1.2 points Ml and M2 are global minima, in a neural network these 

represent memories or states such that a network in that particular state produces the 

desired output for a given input. These are global minima within the system. Points 

Q1 - Q3 represent spurious memories or states. These are local minima within the 

system, which may cause the network to fail to learn a pattern set, should the 

network have a set of connection strengths which place the network inside it. Clearly 

the learning rule should try and stop this from happening by incorporating some

8



method so that whilst the network might be able to hop out of a local minimum, it 

would not mistake a global minimum for a local minimum.

One question that might be raised from this comes from the fact that although 

the patterns which are to be learned during sequence processing tasks are temporal in 

nature, the state space onto which they are to be mapped is spatial in nature. Thus, 

how do we get from one to the other? Grinasty et al (1993) reports how temporal 

order is converted "into spatial correlations expressed in the distributions of neural 

activities in attractors". Further study of the way in which internal representations are 

formed during sequential processing tasks was reported by Elman (1991), who stated 

that distributed representations were formed by the network during learning.

1.3 Overview of the Thesis.

In this section the importance of sequence processing has been made clear, 

along with a general description of a class of neural network models called recurrent 

networks. Neural networks have been used by researchers in a wide range of 

disciplines, nevertheless there are features of a neural network that are desirable to all 

of them.

Chapter two gives an overview of research into the use of neural networks for 

sequence processing. Reflecting the current state of research, we concentrate on 

recurrent network models, describing the major models that have been developed. 

One problem with this is that researchers often use different terms for the same thing. 

This is particularly true of mathematical formulae. Accordingly the formulae 

associated with each network are described as they were by the original authors. 

Having looked at a wide range of models, efforts that have been made to classify and

compare them are then examined.

Chapter three describes a comparative study of three recurrent network 

architectures over four different sequence processing tasks. This chapter falls into



two parts: i) An examination of the effects of modifying internal network parameters 

on network performance ii) The comparative study itself.

In chapter four we examine the effects that different modifications to network 

architectures and learning rules have on the ability of the network to perform 

sequence processing tasks. In particular we examine modifications to the Real Time 

Recurrent Learning (RTRL) model of Williams and Zipser (1989).

In chapter five the results of this research are drawn together. We look at the 

physical properties of the network (number of layers, level of interconnectivity etc.) 

and see which of these give rise to desirable behaviours (fast learning, ability to 

generalise etc.).

Finally in chapter six some guidelines for designing more powerful recurrent 

neural networks are proposed, together with a theoretical metaphor which draws 

together the findings reported in chapter five. This metaphor looks at the construction 

of recurrent networks as being more than a matter of changing cormection strengths. 

Finally a number of directions for future research are advocated.

1.4 Aims of the thesis

• To discover what properties of the architecture of a neural network give rise to 

desirable behavioural properties. These desirable properties are defined as an 

ability to learn a particular data set, and to generalise from learning to a new set of 

data from the same problem and to produce the desired output over new data.

• To examine the interaction between the learning rule used by a neural network 

and its architecture. Can modifications to a learning rule produce different 

behaviours on the same architecture?

• To see which of these two factors has the greater effect on network performance

10



Chapter Two. Recurrent Networks: A Review of the Literature 

2.1 A history of sequence processing using neural networks.

A large number of different neural network models have been used in 

sequence processing problems. They can be divided into one of three classes: i) Feed 

forward networks ii) Feed forward networks with a shift register attached and iii) 

Recurrent networks. Of these, recurrent networks have become the dominant type of 

model used by researchers in sequence processing problems.

2.1.1 Back Propagation Through Time (BPTT)

The use of feed forward networks for sequence processing problems stems 

from the observation of Rumelhart, Hinton and Williams (1986) that a multi-layer 

feed forward network trained with the back propagation learning algorithm is capable 

of finding a satisfactory solution to almost any problem. In addition Minsky and 

Pappert (1969) stated that for every recurrent network there is a feed forward 

network with identical behaviour (over a finite period of time). This is done by 

adding one layer to the network for each time step needed to represent the sequence. 

This approach, which is described by Williams and Zipser (1989) as 

Backpropagation through time (BPTT) has the advantage of great generality and is 

shown in figure 2.1.

11



Input Layer Hidden Layer Output Layer

t

t-1

t-2

t-n

Fig 2.1. A Schematic Diagram o f the Backpropagation through time (BPTT) model, 

showing how the model grows as the size (n) o f the sequence increases.

However, the difficulty comes when BPTT is implemented in order to solve 

problems which include long sequences ..or where the size of sequence varies widely. 

In the first case the system requires a great deal of memory, and in the second 

memory may lie idle for much of the time when the system is processing short 

sequences.

2.1.2 Using Shift Registers for Sequence Processing

Another approach to tackling sequential processing problems is to add a shift 

register to a standard feed forward network. The shift register stores information until 

there is sufficient to perform the task successfully. Tliis is done by presenting an 

input pattern to the network such that the first element of the sequence is represented 

by the first portion of the input pattern, the second element of the sequence is 

represented by the second portion of the input pattern, and so on. A "portion" may 

represent one or more units in the input layer. All portions are the same size (see 

figure 2.2).

12



Output Layer

Hidden Layer

Input Layer

Figure 2.2. A feed forward network adapted to perform sequence processing tasks. 

The input layer is divided into a number of compartments, which contain one or more 

units. Each compartment represents one element of the sequence. As the network 

receives each element of the sequence the input layer fills up until it receives the last 

element o f the sequence. At which point the pattern can be spread throughout the 

network in the traditional manner.

There are however a number of problems with this approach. As with the 

BPTT model, the network has to accommodate the largest sequence that it is likely to 

come across, which may lead to difficulties in tackling problems which include long 

sequences. Furthermore, as with BPTT a problem where sequence size varies greatly 

leads to inefficiency. Another difficulty with this approach is that many problems will 

need to preserve the relative temporal structure of a pattern despite absolute temporal 

displacement. Consider for exairiple^ the vectors.

[01 1 1 0 0 0 0 0 ] 
[ 0001  1 1 0 0 0 ]

I This example was taken from Elman (1990).
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The dilemma that the network has to resolve is whether the two vectors represent the 

same structure displaced in time, or as dissimilar structures altogether. They can be 

taught to recognise them as identical patterns which are temporally displaced, but in 

doing so the network will have not learned the similarity and the concept will not 

generalise to novel patterns.

An example of using shift registers is the TRACE model of speech perception 

described by McClelland and Elman (1986). This model consists of three layers: 

feature phoneme and word levels. Each unit represents a particular hypothesis 

concerning the utterance, relative to the start of the utterance. Thus TRACE uses a 

local as opposed to a distributed representation system. Each bank of feature 

detectors is replicated over several successive discrete time steps. Input to the model 

is fed sequentially to the appropriate feature detector at the appropriate time step. The 

limitations of this type of model that have been discussed above should be obvious: 

the network become^computationally expensive if a word needs a large number of 

time steps to represent it, during which time large parts of the network would be idle. 

Furthermore a local representation (one unit for each word) does not scale well to 

large vocabularies.

Because researchers wish to capture the power of the BPTT algorithm whilst 

avoiding the inefficiencies of shift registers, the majority of neural network models 

used for sequence processing have been recurrent networks. Recurrent networks are 

able to represent time by the way in which the previous states of the network (i.e. the 

previous inputs it received from the outside world) affect the present state of the 

network. The recurrent connections effectively form a short term memory 

mechanism.

2.1.3 First and Second Order Recurrent Networks

Goudreau et al (1994) make a distinction between first order and second order 

recurrent networks. In a first order network, the parameters are a set of weights wÿ

14



which causes the input (or neuron) j to have an effect on neuron i. Thus in a network 

containing M inputs and N neurons, the output of neuron i at time t is calculated as 

follows

X =8
^ M +N

(2 . 1)

Where wij is the connection strength from unit j to unit i, 

if 1< j< M
(2.2)

ÿ r f^ \fM  + l < j < M  + N

where is the output of input j at time t, is the output of neuron j at time t-1 

and the function g is a threshold function defined as follows

However a second order recurrent network differs in that there is a set of 

weights wijk which cause neuron j and input k to have a combined effect on neuron i. 

In such a case the output of a neuron i is calculated by the following equation

N M
(2.4)

\j=] k=\ y

Where the function g is identical to the threshold function (2.3). Goudreau et al state 

that a second order recurrent network is able to represent any finite state recogniser, 

whereas a first order recurrent network cannot.

The difference between first and second order recurrent networks is shown in 

figure 2.3.

15
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(a)

k

Network Units

Inputs

(b)

Figure 2.3: (a) A first order and (b) A second order recurrent network. In the first 

order recurrent network the total input to unit j  is the total input from input lines 

added to the total input from other units in the network i.e. wkj+wij. Whereas in the 

second order recurrent network input from input linos is multiplied by the input from 

other units in the network before multiplying by wÿk- The convention o f representing 

multiplication in this way is taken from Rumelhart and McClelland (1986).

One of the interesting features of recurrent networks when compared to 

networks with strictly feed forward connections is the richer and more diverse 

behaviour that recurrent networks display. Dayhoff, Palmadesso and Richards 

(1994) point out that whereas feed forward networks form fixed point attractors only, 

recurrent networks can also form periodic oscillations, quasi-periodic oscillations and 

chaotic attractors. Grinasty, Tsodyks and Amit (1993) describe how the temporal 

order of a sequence is converted into spatial correlations of the distributions of neural 

activities in attractors.

16



2.1.4 The Simple Recurrent Network (SRN)

Recurrent network models often use approximations to the BPTT algorithm. 

One of the most commonly used models which falls into this category is the Simple 

Recurrent Network (SRN). The SRN was first proposed by Elman (1990) and has 

appeared widely throughout the literature since (See for example Cleeremans and 

McClelland 1991, Servan-Schreiber, Cleeremans and McClelland 1991, Elman 1991, 

Noda 1994). Elman based the SRN on a model proposed by Jordan (1986) which 

had a second hidden layer, known as a context layer. Some of the variations on this 

model are shown in figure 2.4. The short term memory mechanism in the SRN^ is 

provided by the feedback to the context layer from the hidden layer. The fixed 

connections provide the network with a history of its previous hidden layer outputs.

2Jn the discussion of the SRN architecture the network discussed will be the one 

proposed by Elman, shown in figure 2.4B.

17
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^ Output

Hidden

Input context •

Output

Hidden

Input context

] Output

Hidden

Sigma-Pi

Input context

Fig 2.4: Three examples of a Simple Recurrent Network (SRN) architecture. A) As 

proposed by Jordan (1986) B) As proposed by Elman (1990) C) As proposed by 

Noda (1994). Layers joined by solid lines are fully interconnected and trainable. 

Dashed lines indicate 1:1 non trainable connections with a weight value ^  L

The SRN works as follows for any given time t for which the network 

receives information from the "outside world". The input is fed forward through the 

network and the hidden layer outputs are stored in the context layer. At the next time 

step t+1, the hidden layer receives not only input from the outside world but also 

from its own outputs (stored in the context layer) at time t. At time t+2 the network

18



receives the appropriate information from the outside world as well as from itself at 

time t+1 and so on. Elman set the values of the context units to 0.5 for the first time 

step, when the network had no history of activations. Weight modification is 

achieved by using the traditional backpropagation learning algorithm. Thus the 

network has the power of the backpropagation technique, without the restrictiveness 

of the BPTT algorithm. Some authors have described the SRN as a truncated BPTT 

network.

Note that the network proposed by Noda is identical to the one proposed by 

Elman except for the addition of a layer of sigma-pi units (Rumelhart, Hinton and 

McClelland 1986). Sigma-pi units differ from more traditional units in that inputs to 

the unit are multiplied as well as summed. Thus the net input to a standard unit is 

given by

(2.5)

where w.j is the connection strength from unit i to unit j and a. is the activation of 

unit i. Conversely the net input to a sigma-pi unit is given by

(2.6)

Where i is an index of the pairs of units, sometimes called conjuncts^, which impact 

on unit jj and a i i , ..., aik are the k units in the conjunct. The presence of sigma-pi 

units in a network make it dynamically programmable in that the output of one unit 

can directly effect the output of another unit. The most obvious example of this is if

3Although conjunctions can be of any size, Rumelhart, Hinton and McClelland 

(1986) state that they have found no application where a conjunct of size > 2 is 

needed.
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one of the units in a given conjunct is zero then the output of the conjunct is zero, no 

matter how large the output of the other unit in the conjunct.

Servan-Schreiber, Cleeremans and McClelland (1991) argue that an SRN is 

able to closely mimic a finite state automaton in terms of its behaviour and state 

representations. They go on to state that it is able to process strings of infinite length 

even though it has only been trained on strings of finite length. After training an SRN 

to learn a finite state grammar, Servan-Schreiber, Cleeremans and McClelland (1991) 

found that not only did activation patterns group according to the different nodes in 

the finite state grammar, but sub grouping according to the path traversed before 

reaching the particular node had also taken place.

An alternative method for training SRN models is the TRAINREC algorithm 

proposed by Kalman and Kwasny (1994). There are three important differences 

between TRAINREC and the traditional SRN learning algorithm.

The Error function: Instead of the usual error function which is some function 

of the target output minus the actual output, Kalman and Kwasny propose

error = —— (2. 7)

Where t is the target value and a is the activation of a unit. This error function 

significantly decreases the number of trials needed for learning to take place (See 

Table 2.1).
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Error Function Optimisation

Method

Epochs Presentations

Sum of Squares Backprop oo oo

Kalman-Kwasny Backprop 13000 146900

Sum of Squares Conjugate Gradient 639 72151

Kalman-Kwasny Conjugate Gradient 237 26871

Table 2.1. Table showing differences between error function and optimisation 

methods of Kalman and Kwasny (1994) over the sum of squares error function and 

the backpropagation optimisation method. The task measured was training a network 

to be a deterministic parser (From Kalman and Kwasny 1994fig 2).

Using skip connections: Skip connections connect units which are not in 

adjacent layers. The use of skip connections can reduce the number of units needed to 

perform a particular task. A simple example of this is the XOR problem. Normally 

this task can be learned with a network of five units minimum. Using skip 

connections however reduces the minimum number of units to four (see fig 2.5).

This in turn reduces the number of degrees of freedom that the network has. The 

number of variables taken up with skip connections reflects the degree of linearity 

that the problem has. The higher the number of variables, the more linear the task is.
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B

Figure 2.5:Minimum size neiwurks lu perfurm the XOR problem  (A) without and (B) 

with skip connections. Dashed lines represent inhibitory connections, solid lines 

represent excitatory connections.

Singular value decomposition:(SVD): This is a method of pre-processing 

information before it arrives at the input layer. S VD allows training to take place 

when training is not possible on raw data. It may also reduce the number of input 

units required to represent the sequence. Kalman and Kwasny (1994) use SVD in 

conjunction with an affine transformation to squash input values into the interval 

[ - 1, 1].

Correctness criterion: The usual way to judge the output of a neural network 

is if the difference between the output and the target output of a network is less than 

some specified tolerance value. An alternative method proposed by Kalman and 

Kwasny (1994) is to use Best Vector Match (BVM). This system works best in 

categorisation tasks where each output unit represents one category. The unit target 

vector which forms the largest cosine with the unit output vector is the winner. If this 

category is the same as the target then obviously the answer is correct. Otherwise the 

weights of the network are modified according to the learning rule used.
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The value of the research undertaken by Kalman and Kwasny (1994) is that 

changing the learning algorithm without changing the architecture of the network can 

lead to an improvement in the performance of the network.

Robinson, Hochberg and Renais (1995) report on a recurrent network model 

for speech recognition. The architecture of the model is shown in figure 2.6.

x(t+l)y(t)

Time Delay

x(t)u(t)

Fig 2.6: Recurrent network used by Robinson, Hochberg and Renats (1995). In the 

interests of clarity, not all connections are shown.

The network receives two inputs: The current input u(t) and the current state x(t). 

This produces two distinct outputs: The output y(t) and the next state x(t+l). If we 

take the combined input to be z(t) and the weight matrices to the outputs and the next 

state as W and V respectively, then:

z(0 =
1

u{t)
x{t)

(2 .8)

Where 1 is included to apply a bias mechanism.
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i+exp(-v:;0M

Robinson, Hochberg and Renais (1995) use backpropagation through time as 

the algorithm for calculating the value of the weight change during learning. The state 

units are treated as hidden units in a traditional feed forward network since they have 

no target values attached to them. The value of the weight change is then used

to update the weights according to the following formula:

otherwise '

This model also uses a pruning algorithm to remove unnecessary connections 

and therefore increase the speed of the network. It was used as part of a system 

where more than one network was 'combined'. This was done by averaging the 

outputs of four such networks, although more sophisticated averaging methods are 

available. Each network differed in the way in which pre-processing of data was 

performed. It was found that this led to a 17% reduction of error. The performance of 

the model over a range of speech recognition data sets is shown in table 2.2. The 

terms MEL+ and PLP refer to forms of standard acoustic vector representations. The 

former is "a twenty channel power normalised mel-scaled filter bank representation 

augmented with power, pitch and degree of voicing" (Robinson, Hochberg and 

Renais 1995 pp7). The latter is "a twelfth order perceptual linear prediction cepstral 

coefficients plus energy" (Robinson, Hochberg and Renais 1995 pp7).
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Merge Type Word Error Rate

Spoke 5 Spoke 6 H2

Forward MEL+ 17.3 15.0 16.2

Forward PLP 17.1 15.1 16.5

Backward MEL+ 17.8 . 15.5 16.1

Backward PLP 16.9 14.4 15.2

Average 17.3 15.0 16.0

Uniform Merge 15.2 11.4 13.4

Log-Domain 13.4 11.0 12.6

Table 2.2 Performance of the recurrent network model o f Robinson, Hochberg and 

Renais (1995). Figures shown are percentage error.

2.1.5 Memory Neural Networks

The use of recurrent networks of the type found in the SRN was taken a step 

further with the memory neural network (Surkan and Skurikhin 1994). There are 

recurrent connections at all three layers of the network. Each network neuron has an 

associated memory neuron, which as the name suggests holds information 

concerning the activity of the network neuron from previous time steps. The 

architecture of a memory neural network is shown in figure 2.7.
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Fig 2.7. A typical memory neural network architecture. Clear circles represent 

network neurons, shaded circles represent memory neurons. In the interests of 

clarity, not all neurons and connections are shown.

As can be seen in the diagram, a network neuron in a given layer 1 receives 

input from both the memory and network neurons in the layer below it. All neurons 

in layer 1 feed forward to only the network neurons in layer 1+1. A given memory 

neuron will only receive input from its associated network neuron. The input to the 

jth network neuron of layer 1 at time t is calculated as follows:

N,.x
x) ( 0 = s  < '  • (()+ z / , r -  (f) (2 .12)

1=0 /=!

For the network neurons at the output layer, however, the total input is as follows:
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= ï * ^ r  « r w  + ï / r  •''‘■'(O + l A r v ^ W  (2.13)
i = 0  f = l  i = l

Where Ni is the number of network neurons in the 1-th layer. Mj is ttie number of 

memory neurons associated with the j-th network neuron of the output layer. u){t) is 

the output of the network neuron at time t. vj(r) is the output of the corresponding 

memory neurons at time t. j3' (0 is the connection strength from the i-th memory 

neuron of the j-th network neuron to the j-th network neuron in the output layer, wi

is the connection strength from network neuron i to network neuron j (where j is a 

unit in layer 1+1). f-j is the connection strength from the corresponding memory

neuron of neuron i to the j-th network neuron.

To produce an output, the total input is passed through a transfer function. 

The output for all memory neurons not in the output layer is calculated thus:

Vj (t) = (Xj ■ Uj( f - 1) + (1 -  (Xj) • Vj(t -1 ) (2.14)

for the memory neurons in the output layer the output is calculated according to the 

following formula:

Vÿ (0 = otÿ • -1 ) + (1 -  a,() • v‘ (f -1 ) (2.15)

Where vjg=u!'. The network will remain stable provided that 0 < a ,j, o ' ^ 1.

During learning there is modification of connection strengths between network 

neurons, between memory and network neurons as well as modification of the 

memory coefficient for memory neurons. The learning rule employed is a 

modification of the traditional back propagation algorithm.

Surkan and Skurikhin tested their network on its ability to predict daily 

energy usage in a large geographical area. They found that the learning process 

converged in fewer than 5000 iterations, with the majority of learning being done in
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the first 100 to 2500 iterations of learning. The networks were tested on their ability 

to predict energy usage for a range of times into the future (one, two or three days 

ahead). It was found that accuracy decreased as the network was asked to predict 

further into the future.

Memory neural networks were also used by Fallon Garcia and Tummala 

(1994) as a missile guidance system. They found that whilst the network was good at 

predicting target velocity, it did rather less well at predicting target position.

2.1.6 Finite Impulse Response (FIR) filters

An alternative modification of a traditional feed forward network is to use 

Finite Impulse Response (FIR) filters. An example of this method is described by 

Wan (1993). The network operates by passing input signals to a unit through FIR 

filters. The filter works as follows: Past samples of the input can be represented as a 

vector x(t) = [x(t), x(t-l),...,x(t-N)]. Also there is a weight vector for the filter 

coefficients w = [w(0), w(l),...,w(N)]. The static weight of the original feed 

forward network can now be replaced by the FIR filter. The values at time t of the 

activation and output (y(t) and out(t) jespectively)"^ for each unit in the network is 

now defined as follows

XO = %w,.'X.(f) (2.16)
I

out(t) = f[y(t)] (2-17)

The network learns by using a rule called temporal backpropagation. The 

formula for which is as follows

4 In Wan (1993) from where this description of FIR filters is taken time is denoted as 

k, which has been changed in this description to the more standard t.
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w' a + 1 ) = ( 2 . 1 8 )

5 '(0  =

-2ej(.t)f'(yf-(t)) l = L
Ni+i (2 i g \

/(y ,'(0 ) l 5 i " ' ( 0  w'„
m = l

Where ej(t) is the error of unit j at time t, specifies the coefficients for the 

connecting filter y‘j is a filter connecting unit i in layer 1-1 to unit j in layer 1 and L is 

the number of layers in the network. The learning process is applied layer by layer 

working from the output layer to the input layer.

Wan (1993) demonstrates the ability of a neural network using a FIR filter 

structure. The model was tested on a chaotic time series. In this case the intensity 

pulsation of an NH3 laser. For the training data Wan used 1000 samples from the 

data set, the task of the network being to predict the next 100 samples. The neural 

network outperformed all the other methods used, which included standard recurrent 

and feed forward networks.

Another model to utilise a filter structure is the Infinite Impulse Response 

(HR) synapse multi-layer perceptron advocated by Back and Tsoi (1991). The 

synapses of this model have a linear transfer function (see fig 2.8) The neuron used 

by Back and Tsoi (1991) is a modification of the McCuUoch-Pitt neuron

y(t) = f
\i= 0

(2.20)

Where x.{t) is the input to the neuron from the previous layer and G,(z ) is a linear 

transfer function. The inputs to the neuron may be taken from either the previous 

layer (in which case it is local synapse feedback) or from the output of the unit (in 

which case it is local output feedback). In a comparative study (see sections 2.2 and 

2.3), Tsoi and Back argue that different positions of feedback give rise to different 

kinds of behaviour. A model referred to by Back and Tsoi (1991) as the Frasconi-
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Gori-Soda architecture differs from the model designed by Back and Tsoi (1991) in 

that the feedback occurs after the non linearity introduced to the system by the 

transfer function (see fig 2.8).

2.1.7 The Real Time Recurrent Learning model, and its variations.

Whilst acknowledging the limitations of the BPTT approach, other 

researchers have tried to capture its generahty in a more practical framework. The 

Real Time Recurrent Learning (RTRL) model of Williams and Zipser (1989) is an 

example of this. The general RTRL model has an unrestricted architecture i.e. every 

unit in the network is connected to all other units in the network. Information from 

the outside world is fed to the system by external input lines, each of which connects 

to all the units in the RTRL network. An example of an RTRL network is shown in 

figure 2.8.

RTRL Layer

Input Lines

Figure 2.8 A Real Time Recurrent Learning (RTRL) network. The subset of output 

units are shaded. Not all connections between units are shown.

During learning, the connection Wij is updated according to the following 

equation:

wM+X) = w^{t) + aY,e,(.t)pl{t) . (2.21)
kFÜ

\Aihe^e, oC. i s  A caliceJL fko.  ̂aa.cL
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Where ek(t) is an error term such that:

Where T is the subset of RTRL units designated as output (or target) units, dk(t) is 

the desired output of unit k and yk(t) is the actual output of unit k. The second part of 

the learning rule is a dynamic variable called impact which measures the

sensitivity of the output value of unit k at time t to a small change in the weight wÿ.

This sensitivity is calculated as follows:

P,y(f+1) =
. / e u

(2.23)

with initial conditions:

Where: Z: /S ike. op f\,eurof\J j

/jk[*y*(0] = yk(t+i)[i-yk(t+iJ3 (2.25)

and denotes the Kronecker delta:

r  _ fl if i = k (2.26)
\0  Otherwise

Note that equation 2.25 is only applicable when a sigmoid transfer function is 

used. Perhaps the most obvious feature of this learning rule is that, because of the 

impacts, changing one weight is in part a function of all the other units in the 

network. Thus the RTRL learning rule is non-local. However no repHcation of the
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network over time is required. The amount of storage and computation depends not 

on the size of the sequence to be processed but instead on the size of the network. 

Williams and Zipser (1989) show that for a network with n units and m external input 

lines there are n^+nm^ values.

Williams and Zipser (1989) tested their network on a range of tasks, using 

both the original and the teacher forcing RTRL algorithm. There were tasks that both 

versions of RTRL were capable of performing. An example of which is the XOR 

task modified so that a delay is introduced. The difference between this and the 

standard version of the XOR task is that not only does the network have to be capable 

of learning the task, but it also has to hold inputs from individual time steps in its 

memory mechanism. However other tasks did reveal differences in performance 

between the two versions of RTRL. An example of which is when Wilhams and 

Zipser (1989) taught the network to produce oscillatory outputs: training a single unit 

to produce the sequence 010101... or a two unit set to produce 00110011.. then 

only the teacher forcing version of RTRL is able to perform this task.

One variant of the learning rule described above is to use a techmque 

described by Williams and Zipser as teacher forcing. In this method, the actual output 

of the network is replaced by a teacher signal (i.e. the desired output). Under the 

original RTRL algorithm the outputs of the network could be denoted thus

Whereas under RTRL with teacher forcing the outputs of the network are as follows

x^(0 i f k e l
d,(t) if k eT ( t )  (2-28)

y,ft) if k s U - n t )
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In equations (2.27) and (2.28) I denotes the input lines to an RTRL network, U

denotes the units in the RTRL network itself. T denotes the subset of RTRL units that 

are target units. Another feature of RTRL with teacher forcing is that the p,* values

are set to zero for all target units after each weight update. Thus the learning rule is 

similar to equation (2.23).

/e U -T (0
P^(r+l) = / i(4 (0 )

(2.29)

Several modifications to the RTRL model have been suggested so as to 

improve performance. Schmidhuber (1992) suggests an algorithm which combines 

the RTRL algorithm with the BPTT algorithm. The training data is broken down into 

blocks, a block consists of a number of discrete time steps. If we use the error 

calculation as defined in equation (2.22), the total error over all target units k is 

calculated as follows:

£ ( 0 - —X [^ (0 ]  (2.30)
^ keU

Whilst the total error over the time interval (t, t') i.e. one block is defined as: 

E'"'"'(f,f)= %E(T) (2.31)
T = t '  +1

Schmidhuber uses the following notation to describe his improved learning rule:

U is the set of indices k such that at time t, x^(t) is the output of non input unit k.

I is the set of indices k such that at time t, xk(t) is the external input of input unit k. 

T(t) denotes the units for which there is a target v^ue dk(t) at time t. 

wij denotes the connection strength from unit j to unit i.
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The algorithm can be divided into the following steps:

i) Compute the contribution of tQ+h) to the change in wjj:

àWy (to +h) = - a ÿ  (2.32)

Where a  is a constant.

ii) From time interval to to tQ+h let the network run according to the dynamics 

described as follows:

^ i(0  = fih^^k(0]  (2.33)

Where is a differentiable (usually semi-linear) function and

net/^(t + l)= ^Wj^(t  + l)xi(0, net^(0) = 0 (2.34)

iii) Perform calculations for calculating error derivatives similar to those used in the 

standard Real Time Recurrent Learning algorithm of Williams and Zipser (1989), but 

in a manner similar to the Back Propagation Through Time algorithm:

dE"““(0,t„+h) dE"^(0,to) I ^ dE ^(0,to+h) 
dWij dw,j dw^(.r)

+ ' f  i E ! ! ( 2 A ± ^  where ^Ë !Ü (M ) = o

Where

(2.35)

y  <?g'°""(0-<o + A) ^ _ 'fg (T );c ,.(T -1) (2.36)
,=T*i <) ,̂)(T)
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/.[netfT)] e,.(T) if T = fg + A
^,(T) = ^/ .[netfr)] g,(T)4-%w,,.J,(T + l) 

/€£/
if tg < T < fg + A (2.37)

T = 1

(2.38)

iv) Compute ^' (fg + h) for all possible 1, i and j. Perform one set of calculations for 

each 1 according to the following formulae:

tf̂ +h
9,i('o+A) =

teU f=fQ +1

4,'(0) = 0

(2.39)

ifx = to+h: 7/,('^) =
n ifl = i 
0 otherwise

(2.40)

else if to ^  T ̂  + A: y .̂(T) = /i[nef.(T)]5^w^^y/„(T+1) (2.41)
aeU

v) Set to = to+h and go back to step i.

The main advantage of this algorithm according to Schmidhuber is that the 

average number of calculations per time step is O(n^) compared to O(n^) in the 

original RTRL algorithm. Schmidhuber tested this modification on what was termed 

a "flip flop" task. This is defined as follows: the desired output of the network is 1 as 

soon as an event B follows an event A and 0 at all other times. The key aspect of this 

problem is that unlike the XOR with delay task, the length of interval between events 

A and B is unknown and indeed may vary widely, thus a more powerful and flexible 

memory representation is required. Williams and Zipser found that both the original 

and teacher forced RTRL algorithms were typically able to solve this problem after

35



5000 presentations. The modified algorithm could solve the problem after 300 

presentations.

Another method for improving the performance of the RTRL model was

suggested by Zipser (1989). This involves dividing the network into fully recurrent

sub networks. It is assumed that the sub networks are of equal size. The only criteria

for dividing the network is that each of the sub networks must have at least one of the

"target" units as a member. Simply dividing a network into two sub networks wiU 

lead to the pfj values being calculated four times more quickly than in an undivided

network.

Zipser found that his modified RTRL model performed identically to the 

original RTRL algorithm, indeed the connection strengths for the two were often 

quite similar. Differences appeared however when the models were compared on a 

"Turing machine" test, where the network sees the inputs and outputs of a finite state 

machine, but not the internal structure of the machine, which the network must 

create. Whereas the original RTRL algorithm was able to successfully perform the 

task on 50% of attempts, Zipser's subdivided network could only do so when teacher 

forcing was used, again the subdivided network was only successful 50% of the 

time.

RTRL, however, is not the only algorithm developed for training fully 

connected networks. Metzger and Lehmann (1994) describe a learning rule where the 

units are divided into two groups defined by the nature of their outputs. Units can be 

either excitatory or inhibitory. At a given time step, units are chosen at random and 

their state is updated. The two main parts of the updating equation are i) the input to 

neuron i:

h. = h(i,S) + H. -U,  (2.42)

and ii) the noise level T of the network. In equation (2.42) h(i, S) is the input that i 

receives from other neurons in the network. Hi is the input that the network receives
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from the outside world and Uj is a threshold. Updating is performed according to the 

following rule:

ri With probability/(/!,)
' 10 With probabihty 1 -  /(A, )

where

/ ( ^ )  = [l + e x p (-/i,/r)] '' (2.44)

The units are divided equally into the two sets of excitatory and inhibitory 

units. The connections linked to inhibitory units are constant and are not modified 

during learning. Because there are no connections between inhibitory units their only 

function is to regulate the activity of the excitatory units. Weight updates are 

performed according to a hebbian learning rule.

The mechanism developed by Wilhams and Zipser (1989) for training an 

RTRL network has also been used by Schmidhuber (1992) to show an alternative to 

recurrent networks for sequence processing problems. Instead the model consists of 

two feed forward networks. The first net learns to produce the weight changes for the 

second net (caUed a fast weight network). Schmidhuber claims that because this 

model does not require a fully fledged feedback system to provide a memory 

mechanism (indeed in some cases a single weight may be sufficient) this provides an 

opportunity for increased storage capacity. If the network which outputs the weight 

changes has one output unit per weight then its weight update is as follows

àw, j=-n  (2.45)

Where 77 is a constant learning rate and
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Where wab is a weighted connection from unit a to unit b and Sab(0 is the output 

units activation at time t. However in the above equation the number of output units 

grows in proportion to the size of the network. To combat this, Schmidhuber 

proposes that the feed forward network should have an output unit for each unit from 

which a fast weight originates and an output unit for each unit to which a fast weight 

leads. In this case the term Sab(0 is replaced by Sa(t)sy(t).

2.1.8 The Gamma Model

In the recurrent network models discussed above, note that the memory 

mechanism used by the network is static. In such a situation the rest of the network 

has to modify its connections so that a task can be successfully performed. However, 

it should be clear that not aU sequence processing problems require the same type of 

memory mechanism, both in terms of the number of items that need to be stored in 

memory and the form that these items should take. There has also been much 

research into recurrent network models which have dynamic memory mechanisms, 

which allow the network to form meinory structures appropriate to a particular task.

An example of a recurrent network with a dynamic memory structure is the 

gamma model (de Vries and Principe 1992; Principe, de Vries and de Oliveira 1993). 

In this case it is more appropriate to describe the gamma model as a gamma memory 

structure, since de Vries and Principe claim that it can be 'bolted on' to a number of 

different feed forward network models, turning them into recurrent networks capable 

of dealing with sequence processing problems. An example of a gamma network is 

shown in figure 2.9.
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Output Layer

Hidden Layer

/ Gamma Layer
/

o—
Gamma Kernel; Detail

Input Line

Figure 2.9. A gcmvna network. In this case the gamma memory structure connects to 

a feed forward network. Shaded units in the gamma kernels have feedback 

connections to themselves.

The gamma memory structure consists of groups of units, called kernels. 

Each kernel has a dedicated input line, whose output at any time is equal to the input 

it receives from the outside world. All units in the gamma memory structure feed 

forward to the next layer in the network. The output of units in a gamma kernel are 

calculated as follows:

(0 — f,- )

= )% (f-l)+ /rx . (t -1 )

(2.47)

(2.48)
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Equation (2.47) relates to the input line to the kernel. Equation (2.48) relates to 

members of the kernel. The key to the way in which the gamma memory structure 

works is the variable ji. The memory is a trade-off between two factors: memory 

depth aiid resolution. Memory depth refers to how many time steps baek information 

is held, whereas resolution refers to the degree of detail in which the information is 

kept. A kernel with high memory depth will have a coarse grained description of its 

previous states and vice versa.

This principle can be seen in equation 2.48. The unit xik at time t receives 

information from the previous unit in the gamma kernel and from itself from the 

previous time step. The former is multiplied by |i, the latter by 1-|X. Thus the higher 

the value of |i the more information from the previous unit in the gamma kernel will 

be preserved and more information concerning the output xik at t-1 will be lost. The 

opposite will be the case as the value of \i decreases.

During learning the value of |X will be updated according to the following 

equations:

AH= (2.49)

Where

«,*(0  = (1 - )«,  ( f - l ) + ■( «- ! )  + ( ' - ! ) - ( ( - 1 ) 1  (2-50)
L,

In these equations e^(t) is desired output - actual output, (net^(t)) is the 

back propagated error from the layer(s) above the gamma memory structure and

is the connection strength between units i and k.

A variation on this model was proposed by Principe and Turner (1994) 

whose gamma memory structure differed in that the memory parameter p. was 

adapted locally. Hence there will be a different value of p  for every unit in the gamma
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kemel. This leads to a gamma network having a composite memory depth and 

resolution. The memory depth is given by:

V  = (2.51)
1 = 1

Where

3^-1, -  i (2.52)

Composite memory resolution is calculated according to the following

formulae:

-N . .+ ]  ~ (2 53)

As with the original implementation of the gamma model, the memory 

structure mapped onto a multi-layer perceptron.

2.2 Issues of Convergence

Research into the use of neural networks to perform sequence processing 

tasks has given rise to a wide range of models. An important consideration, however, 

is their ability to learn a particular data set. Here emphasis will be given to three 

recurrent network models: the Simple Recurrent Network (Elman 1990), the Real 

Time Recurrent Learning (RTRL) network (Williams and Zipser 1989) and the 

Gamma Model (de Vries and Princippe 1992), as these wiU form the basis of 

comparative studies in chapters three and four of this thesis.

The Simple Recurrent Network has been apphed across a range of sequence 

processing problems, particularly the processing of finite state grammars. Changes to
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various aspects of the network reported by Kalman and Kwasny (1994) led to 

improvements in its ability to converge. These included changes to the architecture 

(adding skip connections) and to the learning algorithm (a new way to calculate the 

error). Tlicsc gave rise to faster convergence. Interestingly, the Simple Recurrent 

Network has been shown to be capable of processing quite long sequences of widely 

varying lengths, even though the only information that is retained is the activation 

values of the hidden layer from the previous time step. This is in contrast to the Back 

Propagation Through Time model, where complete copies of the network are 

preserved for each element of the sequence.

Williams and Zipser (1989) report results of experiments using the RTRL 

network over a range of tasks. Although no statistics are given, they report that 

solutions to various problems are "readily found" by the network. Despite this,

Zipser (1989) conducted research on ways to improve the performance of RTRL 

because of the high computational load that the network places on hardware (see page 

36 for details of this modification). Again no statistical data was presented to back up 

claims that subgrouping an RTRL network can converge much faster than the original 

RTRL model. Comparative studies have shown that RTRL tends to perfonn rather 

poorly compaired to other recurrent network models (see section 2.4 for further 

details).

Reports concerning the performance of the Gamma Model indicate that it is 

capable of learning quite complex tasks and benefits from receiving integrated data as 

input (Principe and Motter 1994). This enables faster learning and means that fewer 

hidden units need be used (although at a cost of expanding the size of the input 

layer). Principe, Kuo and Celebi (1994) argue that the recursive nature of the gamma 

memory structure gives rise to an additional parameter over recurrent networks which 

have tapped delay lines:

"[W]hen a [gamma network] is used...The angle between the desired signal and the 

memory space changes as a function of the feedback parameter. Therefore a memory
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filter of a given order still has an extra parameter to decrease the difference between 

the desired signal and its orthogonal projection" Principe, Kuo and Celebi (1994) pp 

336.

2.3 Attempts at classification.

It is clear from section 2.1 that work on sequence processing using neural 

networks has produced a large collection of models. Furthermore the models are 

diverse in terms of their architectures, the learning rules that they use and the 

behaviours that they exhibit. Small wonder, then, that efforts have been made to 

create a set of rules by which different recurrent networks can be classified.

Mozer (1993) divides a neural network for sequence processing into two 

parts; the short term memory mechanism which captures those aspects of the input 

sequence that are needed to make accurate predictions and a feed forward structure 

that can make accurate predictions based on the input it receives from the short term 

memory structure. When designing a neural network for sequence processing Mozer 

believes that three distinct factors need to be taken into consideration: What is the 

architecture of the network (number of layers, units etc.)? What is the nature of the 

training algorithm? What form does the short term memory mechanism take?

Concentrating on the third factor in the above list, Mozer develops a 

taxonomy of short term memory structures based on the following three criteria:

The form that the memory takes: Mozer describes three different forms. The 

most simple form is where the memory mechanism is a buffer of size n which 

contains the n most recent inputs to the network, an example of this is the TRACE 

model of McClelland and Elman (1986) discussed above. Another form is the 

exponential trace memory, an example of which is Elman's SRN. Finally there is the 

gamma memory of de Vries and Principe. This gives us three different types of 

memory form.
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The content of the memory mechanism: Although the memory mechanism 

must hold information about the sequence, the memory structure does not have to 

hold raw data. The sequence may be encoded into a new representation. 

Furthermore, this representation may also be transformed in some way. Further 

options for memory content can be seen by storing either the state of the network or 

its outputs. This gives us six different types of memory content.

Memory adaptability: The memory mechanism can be static, where the 

memory state is a predetermined function of some part of network activity. 

Alternatively the memory mechanism can be adaptive where, during learning, the 

network is able to select those aspects of the sequence which make the most 

contribution to correctly processing the sequence. This gives us another two 

parameters to classify a given memory structure.

In total, Mozer's classification system gives us thirty six different types of 

memory. Classifying various neural network models used in sequence processing 

tasks shows that the majority of work done so far has been concentrated on models 

which use a delay line. The gamma memory structure in particular has received little 

attention.

A different type of memory mechanism classification was advocated by Tsoi 

and Back (1994). In total they advocate splitting neural networks for sequence 

processing into three categories:

Models based on multi-layer perceptrons: This involves using a feed forward 

network with Finite Impulse Response (FIR) filters. An example of this is the 

network described by Wan (1993).

Recurrent Networks: As was stated earlier, these are networks which have 

feedback connections either within or between layers. Both the Simple Recurrent 

Network of Elman (1990) and the Real time recurrent learning network of Williams 

and Zipser (1989) fall into this category.

Finally, there is a group of models which combine some of the features of 

multi-layer perceptron based networks and recurrent networks. These are defined by
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Tsoi and Back (1994) as local-recurrent-global-feed forward (LRGF) models. Such 

networks, as their name suggests will incorporate both feed forward and recurrent 

connections. Networks which fall into this category include the Back-Tsoi 

architecture, the gamma memory structure and memory neural networks. Tsoi and 

Back also establish their own criteria by which to judge LRGF models:

1. Does the model have the ability to be a universal approximator for a set of input- 

output mappings?

2. The model should be as simple (i.e. have as few units and connections) as 

possible.

3. What is the optimum form of feedback structure?

4. The model should be robust to structural perturbations.

Tsoi and Back also define a taxonomy for LRGF models, based on the type 

of synapse (simple or dynamic) and the feedback location (synapse, activation or 

output). In total this gives six different types of LRGF model. These can be 

summarised in a generalised LGRF architecture as shown in fig 2.10.

G1

G2
a(t) y(t)

Gn

H(z)

Fig 2.10: Generalised LRGF architecture. Gl, G2,...,Gn are local synapse feedback 

functions. H(z) is a local output feedback function.
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Perhaps the simplest classification system to date was suggested by Home 

and Giles (1994). In their research, recurrent networks examined in their comparative 

study (see section 2.3) were divided into two categories: those with observable states 

and those without. A particular network was deemed to have observable states if its 

states can always be determined from observations of the input and output alone. 

Networks with hidden dynamics have states which are not easy to observe.

2.4 Other comparative studies.

Associated with the methods of classification discussed in section 2.2, there 

are also comparative studies of the different recurrent network models. Additionally, 

some researchers have used comparative studies as a means to justify their particular 

model without attempting to fit this into any kind of overall framework.

Mozer (1993) carried out a detailed study of three recurrent networks, which 

differed according to the content of their short term memory mechanism:

1. An input memory mechanism (I), where the content was simply a copy of the 

inputs to the network.

2. A transformed input and state (TIS-0) mechanism, where a non-linear 

transformation is carried out over the current input and the current memory state.

3. A hybrid architecture which contained both memory mechanisms.

Mozer conducted the experiments by constructing a general architecture (see fig 

2.11), eliminating memory mechanisms so that a particular network was tested.
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Output Layer

Hidden .

I-Delay
Memory

TIS-0
Memory

Input Layer

Figure 2.11 Generalised architecture developed by Mozer for use in a comparative 

study o f recurrent networks over a time series analysis problem.

The problem used to compare these networks was the dollar/Swiss franc 

exchange rate prediction problem used in the Santa Fe time series competition^. Each 

of the three networks were tested with different numbers of units per layer, different 

learning rates and learning rules. Interestingly Mozer found that the simplest model 

tested, the delay memory mechanism, performed as well as, if not better than, the 

more elaborate TIS-0 and hybrid models (see table 2.3).

5 This data set is discussed further in chapter three pp 61,
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Architecture 1 Minute Prediction (57773) data points
I-delay, 0 Hidden .999
I-delay, 5 Hidden .985

I-delay, 10 Hidden .985
I-delay, 20 Hidden .985

TIS-0 .986
Hybrid TIS-0 and I-delay .986

Table 2.3 Normalised Mean Squared Error for financial data series in comparative 

study carried out by Mozer (1993).

Similarly, Tsoi and Back report the preliminary results of a comparative study 

in which they hope to demonstrate that LRGF models are the best neural networks 

for sequence processing tasks. In total four different networks were tested: The Back 

and Tsoi LRGF model, the Frasconi-Gori-Soda LRGF model, the RTRL model of 

Williams and Zipser and a feed forward network which incorporates time delayed 

inputs. These were tested on a speech recognition task. The results are shown in table 

2.4.

Architecture MSB Variance

Back-Tsoi 0.0522 0.0097

Frasconi-Gori-Soda 0.0225 0.0041

Wilhams and Zipser 0.1803 0.1777

Feed forward Network 0.0299 0.0097

Table 2.4 Mean squared error and Variance results from the Tsoi and Back (1994) 

comparative study of neural network performance over a speech prediction task.

It is clear from the table that the LRGF model of Frasconi, Gori and Soda 

gives the best results, whilst the RTRL model of Williams and Zipser gives the 

poorest results.
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As was stated earlier, some researchers have used comparative studies in 

order to demonstrate the usefulness of their own model. Principe and Turner (1994) 

compare the gamma model to a Finite Impulse Response (FIR) filter (see section 2.1) 

over a speech recognition task. Their results showed a superior pcrfonnancc by the 

gamma model (see table 2.5).

Memory Epoch Error

FIR 700 0.0321

Gamma 463 2.81x10-8

Table 2.5 Comparative results between a gamma memory and a FIR filter over a 

speech recognition task. Table shows the minimum error and the number of epochs 

taken to reach this minimum. Taken from Principe and Turner (1994).

A similar comparative study was performed by Principe and Motter (1994), 

who compared two different Time Delay Neural Network (TDNN) models with two 

networks which incorporated a gamma memory structure. The different attributes of 

the networks are summarised in fig 2.6.

TDNNl TDNN2 Gamma 1 Gamma2

Input Layer 7 64 16 20+20

1st Hidden 14 14 14 6

2nd Hidden 6 6 6 0

Output 1 1 1 1

Table 2.6 Description of Network topologies used in comparative study by Principe 

and Motter (1994).

In Gamma2, the input layer consisted of two distinct layers, with an integrator 

between them, this accounts for the fewer number of hidden layers compared to the 

other networks in the study.
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The networks were trained on their ability to identify the dynamics of a wind 

tunnel. Once again the gamma models outperformed the TDNN models (see table 

2.7).

TDNNl TDNN2 Gammal Gamma2
Lowest MSE 0.02 0.004 0.005 0.003

Iterations 100,000 10,000 5,000 5,000

Table 2.7 Results of the comparative study undertaken by Principe and Motter 

(1994). Mean Squared Error (MSE) and the number of iterations that the network 

was trained on are shown.

Although TDNN2 and Gammal were able to learn the task, they did so whilst 

displaying significant oscillations. These were not exhibited by Gamma2.

Another comparative study which looked at the effect that different adaptive 

memory structures had on network performance was performed by Principe and 

Turner (1994). The details of their modifications are described in section 2.1 above. 

The modified Gamma model outperformed both the original gamma model as well as 

a time delay neural network model which has the memory layer restricted to the input 

layer. The task on which the networks were tested involved recognising spoken 

words. The results are shown in table 2.8.

Memory Type Epoch Error

TDNN 700 0.0321

Principe and Turner 463 2.81x10-8

Table 2.8 Error scores for the Gamma memory structure proposed by Principe and 

Turner (1994) against a conventional Time Delay Neural Network. Epoch refers to 

the number o f epoch needed to reach the error score shown in the third column.
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The comparative study of Home and Giles (1994) is very wide ranging. Each 

network was tested over two different tasks: Learning a finite state machine and non­

linear system identification. The nurnber of weights and the number of states were 

kept approximately equal across all networks, since these factors may have a 

significant effect on learning^. The results of this study are shown in table 2.9a (for 

the finite state grammar) and table 2.9b (for the non-linear system identification 

problem).

6 The number of weights that a network has is known to effect the ability of a 

feedforward network to generalise, but it is not known if this is also true of recurrent 

networks.
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FSM Architecture Training
Error

Testing Error %P W S

N&P 2.8 (4.4) 16.9 (8.6) 22 56 8
TDNN 12.5 (2.1) 33.8 (4.1) 0 56 8
Gamma 19.6 (2.4) 24.8 (3.2) 0 56 8

First Order 12.9 (6.9) 26.5 (9.0) 0 48 6
RND High Order 0.8 (1.5) 6.2 (6.1) 60 50 5

Bilinear 1.3 (2.7) 5.7 (6.1) 46 55 5
Quadratic 12.9 (13.4) 17.7 (14.1) 12 45 3

Multi-layer 19.4 (13.6) 23.4 (13.5) 6 54 4
Elman . 3.5 (5.5) 12.7 (9.1) 27 55 6

Local 2.8 (1.5) 26.7 (7.6) 4 60 20

N&P 0.0 (0.2) 0.1 (1.1) 99 56 8
TDNN 6.9 (2.1) 15.8 (3.2) 0 56 8
Gamma 7.7 (2.2) 15.7 (3.3) 0 56 8

First Order 4.8 (3.0) 16.0 (6.5) 1 48 6

FMM High Order 5.3 (4.0) 26.0 (5.1) 1 50 5
Bilinear 9.5 (10.4) 25.8 (7.0) 0 55 5

Quadratic 32.5 (10.8) 40.5 (7.3) 0 45 3
Multi-layer 36.7 (11.9) 43.5 (8.5) 0 54 4

Elman 12.0 (12.5) 24.9 (7.9) 5 55 6

Local 0.1 (0.3) 1.0 (3.0) 97 60 20

(a)

52



FSM Architecture Training
Error

Testing Error %P W S

N&P • 4.6 (8.4) 14.1 (11.3) 38 73 6
TDNN 11,7 (2.0) 34,3 (3,9) 0 73 6
Gamma 19.0 (2.4) 25.2 (3.1) 0 74 6

First Order 12.9 (6.9) 26.5 (9.0) 0 48 6
RND High Order 0.3 (0.5) 4.6 (5.1) 79 74 6

Bilinear 0.6 (0.9) 4.4 (4.6) 55 78 6
Quadratic 0.2 (0.5) 3.2 (2.6) 83 216 6

Multi-layer 15.4 (14.1) 19.9 (14.4) 16 76 6
Elman 3.5 (5.5) 12.7 (9.1) 27 55 6
Lxxîal 13.9 (4.5) 20.2 (5.7) 0 26 6

N&P 0.1 (0.8) 0.3 (1.4) 97 73 6
TDNN 6.8 (1.7) 16.2 (2.9) 0 73 6
Gamma 9.0 (2.9) 14.9 (2.8) 0 73 6

First Order • 4.8 (3.0) 16.0 (6.5) 1 48 6
FMM High Order 1.2 (1.7) 25.1 (5.1) 31 74 6

Bilinear 2.6 (4.2) 20.3 (7.2) 21 78 6
Quadratic 12.6 (17.3) 26.1 (12.8) 13 216 6

Multi-layer 38.1 (12.6) 42.8 (9.2) 0 76 6
Elman 12.8 (14.8) 27.6 (10.7) 8 55 6
Local 15.3 (3.8) 22.2 (4.9) 0 26 6

(b)

Table 2.9 Results of the comparative study performed by Home and Giles (1994) 

using the data generated from a finite state grammar. Table (a) shows results when 

the networks have an approximately identical number of weights. Table (b) shows 

results when the networks have an approximately identical number o f state variables. 

%P denotes the number of trials for which the training set was learned perfectly. W 

denotes the number of weights. S denotes the number of states. Note that the gamma 

kernels used in this study were not adaptive.
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Architecture Fixed weights Fixed states
N&P 0.101 0.067

TDNN 0.160 0.165
Gamma 0.157 0.151

First Order 0.105 0.105
High Order 1.034 1.050

Bilinear 0.118 0.111
Quadratic 0.108 0.096

Multi-layer 0.096 0.084
Elman 0.115 0.115
Local 0.117 0.123

Figure 2.10: Mean squared error on a test signal for the non-linear system 

identification problem. The column denoted "Fixed weights" is the results when all 

networks had a similar number of weights. The column denoted "Fixed states" is the 

results when all networks had a similar number of states.

2(îy'Conclusion

The search for neural network models capable of solving sequence processing 

problems has spawned a large number of diverse architectures and algorithms. The 

predominant class of neural network models used by researchers are known as 

recurrent networks. However, choosing this one class only slightly clarifies the 

picture, since the choice is still large and diverse. This has produced two closely 

connected avenues of research: classification and comparison.

These two research efforts have yielded some useful information. 

Classification studies have shown that recurrent networks can be defined according to 

a particular taxonomy. The more variables in the taxonomy leads to a more fine 

grained classification. However, in comparison to the amount of research done on
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developing new networks and the modification of existing networks, the number of 

systematic comparative studies performed is relatively small.

Of the comparative studies that have been performed, some have been 

attempts to prove the effectiveness of the researcher's own model against other 

existing architectures and/or algorithms. There has been some work, however, that 

can be defined as "purely comparative". Such studies have attempted to identify the 

most effective recurrent networks so that future research (either pure or applied) can 

be concentrated on them. The aim of this thesis is to pinpoint the most effective form 

of recurrent network in order to facilitate this research.
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Chapter Three. A Comparative Study of Three Recurrent Network 

Models

3.1 Overview and Rationale

In chapter two we examined the numerous attempts to design neural networks 

capable of performing sequence processing tasks, together with attempts to classify 

and compare them. Although many of the comparative studies done so far have 

provided useful information, they have often been limited in that either one data set 

was used and/or only a particular type of neural network has been tested. Since the 

term sequence processing' covers a wide range of phenomena, it will be useful to 

compare the performance of different recurrent networks over more than one task. It 

is worth using multiple data sets for the following reasons:

Attributes of the sequence: Different sequences have different properties. An 

element of a sequence at a single time step may only be influenced by events in the 

recent past. Alternatively longer term factors may well play a part. If for a given 

sequence both short and long term factors are significant, how important are they and 

what is the nature of the interaction (if any) between them? Are the sequences of the 

same or similar length or do they vary quite widely? Hence the design of a network 

for a particular task will be affected by what is known about the attributes of the 

sequence. If this information is known and easily defined then the type of short term 

memory mechanism can be much more easily specified. Alternatively if the 

information is less known or less easily defined then we would seek to use the most 

powerful short term memory mechanism available, since a powerful mechamsm may 

be what is needed.

Attributes of the network: Are different recurrent networks suited to particular 

types of sequence? Or is there one type which significantly outperforms the others 

over a wide range of sequence types? The ability of the network to perform a given 

sequence processing task is determined by the following factors:
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• The nature of the short term memory mechanism: Is the mechanism powerful 

enough to retain information about the sequence of data of sufficient quantity and 

quality to ensure that learning can take place?

• The level of connectivity of the network: Does the network have a state space 

which is rich enough to form an internal representation of the sequence?

• The learning rule: Does the learning rule allow the network to traverse the state 

space in such a way that it can avoid local minima but still find the global 

minimum.

This chapter describes the details of a comparative study of three recurrent 

network models over four sequence processing tasks. Section 3.2 gives the details of 

the different tasks. The networks which were tested can be found in section 3.3. 

Finally, section 3.4 describes the results of both modifying the internal parameters of 

each network and the effect that this has on network performance, as well as the 

comparative study itself.

3.2 The Tasks

A number of different types of time series were used to measure network 

performance, so that comparing the networks over a range of different tasks will give 

a better idea of their overall capabilities.

1. A near replication of the letter in word prediction task described in Elman (1990). 

The difference is that Elman used a thirteen word lexicon to generate his data sets 

whereas a fifteen word data set was used in this study. The learning data was a non- 

grammatical sequence of one thousand words each of which was chosen at random 

from a fifteen word lexicon. The test data was a sequence of twenty words drawn

57



Time Input Desired Output Output = solution at 

time

t=l 00 n/a n/a

t=2 10 n/a n/a

t=3 0 1 0 t=l

t=4 1 1 1 t=2

t=5 00 1 t=3

Table 3.2: Sample data for the XOR with two step delay task, showing the memory 

needed by the network to solve the task.

Unlike the Elman task, the network should have a consistently low error score as 

soon as enough information is available (in table 3.2 for example the network should 

have a low error score from time t=3 onwards).

3. A sequence generated from a simple finite state grammar, as described in 

Cleeremans and McClelland (1989 ). The grammar consisted of eight nodes and a 

total of twelve arcs connecting them (see figure 3.1). The learning data consisted of 

one hundred and fifty complete traversals (of varying length) of the finite state 

grammar. The test data consisted of ten complete traversals, again of varying length.

60



XI

S2
W1

A P2

T2

X2
V2

Fig 3.1. A finite state grammar used to generate data set three (see above), which is 

identical to the one used in Cleeremans and McClelland (1993). Nodes are labelled 

with bold letters, connections with plain text.

A finite state machine in this case consists of nodes A-G and a series of 

connections P,Q,S,T,W,X. Each of these letters is applied to two nodes. The data set 

is generated by traversing the network and noting down the letter associated with the 

particular node. Each of these letters was assigned a number one through to six 

respectively. The input to the network took the binary form of each number. This is 

shown in table 3.3.
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Letter Number Binary Form

P 1 001

Q 2 010

S 3 Oil

T 4 100

W 5 101

X 6 110

Table 3.3: Representation of nodes for the Finite State Grammar task.

If there is a choice of steps from a particular node, then the next node in the 

sequence is chosen randomly. The network is presented with the traversal one node 

at a time, and has the next connection label in the sequence as the desired output. For 

the finite state machine in figure 3.1 for example, the traversal A-B-C-B-G-F-A 

would produce the training data shown in table 3.4:

Input Desired Output Input to Network Desired Output of 

Network

P T 001 100

T W 100 101

W X 101 110

X P 110 001

P S 001 Oil

Table 3.4 Example o f training data for letter in Finite State Grammar task.

This data set has attributes similar to those of the Elman letter in word 

prediction task described above. However there is a significant difference in that the
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potential length of a sequence is much greater, requiring the network to have a more 

powerful and flexible short term memory mechanism.

4. One of the classic problem areas in time series learning and prediction was

examined: financial data series, formed by the exchange rate between Swiss Franc 
Vf-and US dollars. This data set was use in the SantaFe institute's tinie series 

competition and the problem is a classic one in time series hterature. It is also a test 

which has been used in comparative studies of recurrent networks and other time 

series prediction methods. The learning and test data were a single portion of 

a ten thousand point series, the last one hundred points formed the test data, the rest 

formed the learning data. This data set has the following attributes:

• The exchange rate is the product of both short term and long term factors, which 

can be subjective (the mood of the currency dealers) as well as objective (the 

health of the US and Swiss economies and the nature of trade between them).

• The network will need a powerful short term memory mechanism and a rich 

architecture capable of reflecting the complex nature of the sequence in its state 

space.

The SantaFe data was modified into a form readable by the network by converting the 

data into a binary representation.

^  P re o l .c è .v ^  fuèurz. cu\e{ uyiders'toindiAj  ^ /),
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3.3 The Networks^

In this comparative study, three different recurrent network models were 

examined: The simple recurrent network (SRN) used by Elman (1990), the Real 

Time Recurrent Learning (RTRL) model devised by Williams and Zipser (1989) and 

the Gamma memory model of deVries and Principe (1992). Each of the three 

networks were constructed as described in these papers, with none of the later 

modifications that have been suggested by some researchers (see chapter four). Table 

3.5 shows the different sizes of each network over the different tasks described in 

section 3.2 above.

iThe networks examined in this chapter are described in sections 2.1.4 (Simple 

Recurrent Network), 2.1.7 (Real Time Recurrent Learning) and 2.1.8 (Gamma).
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Simple

Recurrent

Network

Real Time 

Recurrent 

Learning

Gamma

Memory

Input Layer 

Size

Output Layer 

Size

2-delay XOR Hid = 4 RTRL = 4 Hid = 4 2 1

Letter in 

Word P.T Hid = 20 RTRL = 20 Hid = 20 5 5

Finite State 

Grammar Hid = 20 RTRL =20 Hid = 12 3 3

Dol - SF Ex 

Rate Hid = 20 RTRL = 20 Hid = 20 10 10

Table 3.5: Architecture of the models tested, giving number of units in the "hidden'' 

layer for each network. The gamma memory layer k is below the hidden layer (see fig 

3.2c). The architecture is the same for gamma kernel size k=l and k=2. The output 

"layer" for the RTRL network is a subset of the RTRL layer.

These networks are also shown in figure 3.2
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(a) (b)

(c)

O
key to units

Standard unit

Member of 
RTRL
"output layer"
Member of 
Gamma Kernel. 
Recieves input 
from worid, does 
not feed back to 
itself
Member of 
Gamma Kernel. 
Does not recieve 
input from world, 
does feed back to 
itself

Figure 3.2. Illustrations of architectures used for the XOR with two step delay 

problem: (a) A Simple Recurrent Network, (b) an RTRL Network and (c) a Gamma 

memory model with kernel size =2. Some connections have been deleted to aid 

clarity. Connections marked by solid lines are trainable. Connections marked by 

dashed lines are not trainable and have a fixed value = 1.
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3.4 Experimental Variables

Each network model (SRN, RTRL, Gamma) was tested using the following 

as experimental variables: Different numbers of hidden (or RTRL or Gamma) units 

and different learning rates (1,2 or 4). Each combination was tested ten times to 

measure sensitivity to initial conditions. For the purposes of the comparative study, 

results from networks with the combination of units which gave the best performance 

were selected. Two distinct gamma networks were run; one with a kernel of size one, 

the other with a kernel of size two.

All the experiments were run using the Neuralworks simulation package, 

supplied by Scientific Computing, on a Sun workstation. The learning algorithms for 

the RTRL and Gamma networks, as well as the summation function for the Gamma 

network were developed in C using the User Defined Neuro-Dynamics package, 

which was supplied by the same company. The code for these algorithms is shown 

and described in appendices one and two. The RTRL algorithm is based on the 

equations used in Williams and Zipser ( 1989). The Gamma model is based on the 

equations used in deVries and Principe (1992).
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3.5 Results

3.5.1. The effects of modifying internal parameters on Learning

Although the three networks described in this study are diverse in terms of 

their architectures and learning rules, it is still possible to describe general behaviours 

common to all of them.

Increasing the size of the hidden layer led to an increase in the ability of the 

network to learn the pattern set, with a subsequent increase in ability to predict the 

test data. Furthermore the fluctuations observed under certain conditions were more 

pronounced as the size of the hidden layer was increased. Once the hidden layer size 

had been increased to a size such that learning could take place, increasing it still 

further had no effect on network performance, other than increasing the time the 

network took to cycle through the pattern set.

An example of this can be seen when we examine the performance of the 

gamma model over the letter in word prediction task. In this experiment we are 

looking to replicate Elman's finding that the error is high at the start of the word and 

decreases as more of the word becomes known (with a subsequent decrease in

ambiguity). Typical test results are shown in figure 3.3. In this example the two
other

networks were identical in ever^respect, with a gamma kernel size of two and a 

learning rate of one.
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Figure 3.3 (a) Test data for the Gamma model with five hidden Units over the Letter 

in Word. Prediction task, b) Test data for the Gamma model with twenty hidden Units 

over the Letter in Word Prediction task

Note that when the gamma network with five hidden units is tested, the 

overall error is not as low, and the sudden dips in error over the course of a word are 

not as sharply marked.

The behaviours which were observed with the changing of hidden layer size 

were also encountered with the Gamma layer. Often the network could leam with a
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kernel size K=l. Increasing K once the network could perform a particular task had 

no effect on network performance.

With regard to learning coefficients, the network is most likely to successfully 

leam the data when the learning rate is small. As the size of the coefficient increases, 

the speed at which the network learns may well increase, but at the same time 

learning becomes more unstable and of poorer quality. This was most marked with 

the Gamma model. So that, when for example C=2, the network learns on some 

trials, but not on others. There was also a tendency for the error value to increase and 

decrease, rather than simply decreasing over time. If C is too large, the network will 

not leam at all. Similarly with the RTRL network on the XOR problem with two step 

delay, the increase in learning speed that came with increasing the size of the learning 

coefficient brought increased instability.

Figure 3.4 shows the performance of two different simulations with the same 

parameters. Both simulations were mn with a kernel size two with twenty hidden 

units. Figure 3.4(a) shows the results on the test data from a network using a 

learning rate of one. Over the ten trials the sort of behaviour predicted by Elman 

(1990) can be clearly seen. Conversely in figure 3.4(b) the results on the test data 

from a network using a learning rate of two shows a set of behaviour less faithful to 

Elman's results. The reason for this is that when the learning rate was two^the 

network learned the task on some simulations but not on others.
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Figure 3.4: Two sets of results from the gamma model performing Elman's letter in 

word prediction task.

Table 3.5 gives details of the architectures used in terms of the number of 

units. Whilst other combinations were tried, the architectures that gave the best 

results (or the smallest architecture if results did not vary over network size) are the
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ones used in tables 3.5 and 3.6. In table 3.5, Inp is the number of input units; Hid is 

the number of hidden units and Out is the number of output units.

Note that the "output" units for the RTRL network are in fact a subset of the 

hidden units. For the gamma memory network two models were used, one with a 

kernel size of 2 (K=2), the other with a kernel size of 1 (k=l). To calculate the total 

number of units in the gamma layer, use the formula: U = Inp * (k+1), where U is 

the number of gamma units. The hidden layer value for the SRN is the size of one 

hidden layer, the second hidden layer (i.e. the context layer) is of the same size.

3.5.2. Comparative Study Results

The RMS error scores for each of the networks averaged over ten runs are 

presented in table 3.6.

Simple

Recurrent

Network

Real Time 

Recurrent 

Learning

Gamma 

Memory K=1

Gamma 

Memory K=2

2-delay XOR 0.542 0.240 0.498 0.205

Letter in Word 

Prediction

0.648 1.011 0.702 0.713

Finite State 

Grammar

0.669 0.816 0.683 0.675

Dollar - Swiss 

Franc 

Exchange Rate

1.080 1.129 1.080 1.100

Table 3.6: RMS error scores for each of the networks across the test data of the four 

problems described above.
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3.5.3 Statistical Analysis of Results

In order to get a better appreciation of the performance of the networks over 

the various sequence processing tasks, statistical analysis of the results was carried 

out. The results of this are shown in the following tables:

Table 3.7 For the XOR with two step delay.

Table 3.8 For Elman's letter in word promotion task.

Table 3.9 For the finite state grammar.

Table 3.10 For the financial data series.

SRN RTRL Gamma K=1 Gamma K=2

Mean 0.542 0.240 0.498 0.205

Standard

Deviation

0.055 0.055 0.012 0.152

Range: Min 0.524 0.219 0.485 0.007

Max 0.706 0.403 0.523 0.426

Confidence

Limits

0.542+0.039 0.240+0.039 0.498+0.003 0.205±0.034

Table 3.7 Summary statistics for the four recurrent networks tested over the XOR 

with two step delay task. Figures shown represent the mean, standard deviation, 

range and confidence limits for the root mean squared error over the test data.

As well as the statistics shown above, an analysis of variance (ANOVA) 

together with the Newman-Keuls test to check for significant differences between
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pairwise comparisons. These revealed that the networks differed significantly on their 

performance on this task. The four networks could be split into two groups: The 

gamma network with a kernel size of two and the RTRL network in one group 

significantly doing better than the gamma network with a kernel size of one and the 

Simple Recurrent Network in the other group. There was no significant difference 

within these two groups.

SRN RTRL Gamma K=1 Gamma K=2

Mean 0.648 1.011 0.702 0.713

Standard

Deviation

0.018 0.095 0.011 0.134

Range: Min 0.630 0.857 0.683 0.639

Max 0.683 1.215 0.717 1.095

Confidence

Limits

0.648+0.004 1.011±0.021 0.702±0.003 0.713+0.031

Table 3.8 Summary statistics for the four recurrent networks tested over the Elman 

letter in word prediction task.

Analysis of variance again revealed significant differences between the four 

networks. The RTRL network performed significantly worse than the other three 

networks tested (p<0.01). Analysis using the Newman-Keuels test showed that there 

was no significant difference between the other three networks over this task.
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SRN RTRL Gamma K=1 Gamma K=2

Mean 0.669 0.816 0.683 0.675

Standard

Deviation

0.001 0.001 0.001 0.019

Range: Min 0.655 0.802 0.681 0.651

Max 0.688 0.828 0.685 0.828

Confidence

Limits

0.669+0.001 0.816±0.001 0.683+e

e<0.001

0.675±0.004

Table 3.9 Summary statistics for the four recurrent networks tested over the Finite 

state grammar task.

Analysis of variance showed that the RTRL network performed significantly 

worse than the other three networks (p<0.01). There was also a less significant 

difference (p<0.05) between the simple recurrent network and the gamma network 

with a kernel size of one.
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SRN RTRL Gamma K=1 Gamma K=2

Mean 1.080 1.129 1.080 1.100

Standard

Deviation

0.013 0.045 0.008 0.008

Range: Min 1.062 1.095 1.066 1.086

Max 1.106 1.247 1.090 1.116

Confidence

Limits

1.08010.003 1.12910.011 1.08010.002 1.10010.002

Table 3.10. Summary statistics for the four recurrent networks over the Dollar to 

Swiss Franc exchange rate data

Analysis of variance for this data revealed that the RTRL network performed 

significantly worse than the other three networks Although the difference was less 

pronounced for the gamma model with a kernel size of two (p<0.05) than for the 

other two models (p<0.01). There were no significant differences between the other 

three models.

3.5.4 Continuous XOR with Two Step Delay

All three networks proved to be capable of performing this task, which 

proved to give the best results across all tasks. The Gamma model with kernel K=2 

proved to be the most successful at learning this task, followed by the RTRL and the 

Simple Recurrent Network. Although the error score for the Simple Recurrent 

Network appears to be fairly low, it is worth pointing out that the error score over llic 

test set shows that the error is quite low on some of the data, but not on others. 

Increasing the size of the hidden layer to ten units also failed to bring about an
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improvement in performance. The mean error for a Simple Recurrent Network with 

ten hidden units is 0.291. Performance on the test sequence is shown in figure 3.5:

0 . 4 5  ^  
0 .4  

0 . 3 5  -- 
0 .3  --u

Ê
0.2  - -

0 . 0 5  --

Test P a tte rn

(a)

0 . 6  T

0 . 5  --

0 . 4  -- 

Ë 0 . 3  -- 

0.2  - -

Test P a tte rn

(b)

Figure 3.5: (see previous page) Graph depicting the average performance often 

presentations of test data to ten different learning trials o f the Simple Recurrent 

Network on the XOR with two step delay task. Graph (a) shows the performance of 

the network using four hidden units. Graph (b) shows the performance o f the 

network using ten hidden units.

11



Interestingly, figure 3.5 shows that the addition of hidden units does not 

really change the performance of the network, even though the state space of the 

network is made much more complex. It is worthwhile noting that the Simple 

Recurrent Network only receives both the present input and a copy of hidden layer 

activations from the previous time step. It may well be the case that it is the nature of 

the memory mechanism that is the problem, since the RTRL network with four units 

proved to be more than capable of solving this problem.

3.5.5 The Letter in Word Prediction Task

Both the Elman and the Gamma network were able to leam the data. On the 

test data the Gamma network exhibited the same behaviour as the Elman network; i.e. 

error is highest at the start of the word and decreases as more of the word is held in 

the network's short-term memory (see the description of the problem made by Elman 

for further details). Both performed significantly better than the RTRL network, 

which seemed unable to perform this particular task. Furthermore this inability was 

not affected by the addition of RTRL units, which only served to slow down even 

further the training process. Table 3.8 provides a numerical summary of these 

findings. One interesting point is that whilst the gamma model was being tested, one 

of the trials failed to find a satisfactory solution with a subsequent failure to decrease 

error significantly during learning. This sets the Gamma Model apart from the Simple 

Recurrent Network which learned the data successfully across.all ten trials. This may 

account for the significant difference between the two (p<0.05).
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Note, however, that although the mean error scores are higher than for the 

XOR with two step delay task, what we are looking for here is the ability of the 

network to replicate the behaviour of Elman's original study: that error should be 

high at the start of a word and decrease as ambiguity about the word decreases. To 

demonstrate this it is useful to look at a portion of the test data consisting of three 

words and to examine the behaviours of each network in turn. The portion consists 

of the words [ANIMAL, DOG, BOUND] and breaks down into the following sets of 

input / desired output pairings:

Pattern Number Input Desired Output

2** E A

2 A N

3 N I

4 I M

5 M A

6 A L

y** L D

8 D 0

9 0 G

10** G B

11 B O

12 0 U

13 U N

14 N D

Table 3.11 A portion of the test data from the letter in word prediction task.
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Note that in table 3.11 those patterns marked ** are the transition points 

between words and are, according to Elman's model, where a sudden increase in the 

error score is to be expected.

0.8  - -  

Ê 0.6  - -
fid

0 .4  --

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

Test P a tte rn

(a)

I  0 . 8 - -  

M  0 . 6  - -

0 . 4  --

0.2

2 3 4 5 6 7 8 9 1 0  11 1 2  1 3  1 41

Test P a tte rn

(b)

Figure 3.6 (a) Performance of the Gamma model over the portion of the pattern set 

described in table 3.11 (b) Performance of the RTRL network over the same data.
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According to Elman's original findings high error rates are to be expected for 

patterns 1,7 and 10. This is clearly shown to be the case for the Gamma model. The 

same behaviour can also be vaguely seen in the RTRL model, but is much less clear. 

Note that even when the ambiguity is much reduced, the RTRL model still seems to 

have a great deal of difficulty in predicting the next letters in the sequence.

3.5.6 Learning a Finite State Grammar

The results with this task were similar to those shown in the Letter in Word 

Prediction Task. Interestingly the RTRL network performed better on this task than 

on the Letter in Word Prediction Task. However its performance was still worse than 

both the SRN and the gamma networks. Both the Gamma Model and the Simple 

Recurrent Network learned the data successfully across all ten trials. The difference 

in performance between the Simple Recurrent Network and the RTRL network is 

shown in figure 3.7 (see overleaf).
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Figure 3:7: Performance of (a) A simple recurrent network and (b) an RTRL network 

over the first thirty points of the Finite State Grammar test data.
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3.5.7 Dollar to Swiss Franc Exchange Rate

This problem proved to be the most difficult for all the networks used in this 

study. The behaviours shown by the networks were similar in that they were all fairly 

ineffective at learning the training data or predicting the test data. However, statistical 

analysis of the results showed significant differences in performance between the 

networks.

3.6 Some Observations on the |i Parameter

As described above, the gamma memory has a parameter ji which is used to 

vary the parameters of the memory, so that depth and resolution of memory can adapt 

to a level appropriate for a particular task. The different values of p evolved over the 

tasks used in this study are shown in table 3.12 (see overleaf)
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-
Gamma Memory K=1 Gamma Memory K=2

2-delay XOR

Max = 0.755 

Min = 0.569 

Mean = 0.667 

M. Depth = 1.499 

RMS Error = 0.248

Max = 1.049 

Min = 1.037 

Mean = 1.042 

M. Depth = 1.919 

RMS Error = 0.023

Letter in Word Prediction

Max = 1.278 

Min = 0.711 

Mean = 0.998 

M. Depth = 1.002 

RMS Error = 0.493

Max = 1.398 

Min = 0.63 

Mean = 0.962 

M. Depth = 2.078 

RMS Error = 0.525

Finite State Grammar

Max = 1.000 

Min = 1.000 

Mean = 1.000 

M. Depth = 1 

RMS Error = 0.467

Max = 1.302 

Min = 0.551 

Mean = 0.921 

M. Depth = 2.171 

RMS Error = 0.456

Dollar - Swiss Franc 

Exchange Rate

Max = 1.249 

Min = 0 

Mean = 0.512 

M. Depth = 1.953 

RMS Error = 1.166

Max = 1.207 

Min = 0 

Mean = 0.443 

M. Depth = 4.509 

RMS Error = 1.209

Table 3.12: Maximum (Max), minimum (Min), mean values (Mean) of gamma 

memory parameter ji ,mean memory depth (M. Depth) and RMS Error after 

presentation of learning data
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3.7. Discussion

3.7.1 Behaviour of Recurrent Networks in General

Although this is a comparative study, where the main focus of attention is to 

see what differences exist between different types of recurrent network, an 

opportunity also arises to see what different types of recurrent network have in 

common. This will also be of help in assessing which features of recurrent network 

architectures or learning rules give rise to improved performance.

Obviously the size of the hidden layer is of critical importance. In order to 

leam a given data set, the hidden layer of a recurrent network must be sufficiently 

complex to form an internal representation of the data. This complexity is in terms of 

both the number of units in the hidden layer and the level of connectivity. In the 

terminology of dynamical systems a neural network can be viewed as a state space of 

N dimensions, where N is the number of connections within the network. A point P 

within that state space represents a matrix of connection strengths, which will 

embody the desired behaviour of the network to a greater or lesser degree.

If during learning the connection strengths of a network are such that some of 

the features of the data set have been modelled (i.e. the error is lower than at the start 

of learning but still falls short of the desired output) then the network lies in a local 

minimum. Conversely, if the connection strengths of a network are such that all of 

the features of the data set have been modelled (i.e. the error is zero or within some 

permitted range) then the network lies in a "satisfactory" minimum^. The number of 

"satisfactory" minima will depend on the number of connection strength sets that

2 There are two types of "satisfactory" minima: Firstly the global minima of the state 

space, which represents a set of connection strengths which represent the lowest 

possible error value. Secondly those local minima which represent a set of connection 

strengths which represent the a tollerable error value.
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allow this latter condition to arise. The probability that the network will find a 

"satisfactory" minima will depend on the following three factors: i) The number of 

local minima ii) The number of "satisfactory" minima and iii) The complexity of the 

state space. The probability that a local minima will be found increases as (i) and (iii) 

increase and (ii) decreases.

Therefore the size of the hidden layer can adversely effect learning in one of 

two ways: If the state space is too small to capture the features of the data set then 

learning cannot take place. Does this mean that all networks should have hidden 

layers with large numbers of intricately connected units? The answer is no since such 

hidden layers bring with them large state spaces, more local minima with not 

necessarily more global minima^.

Another feature of the comparative study is the way in which increasing the 

learning rate brought with it an increase in the probability that the network would fail 

to converge. Of particular interest was the behaviour of the gamma model during 

simulations where the network had a high learning rate, where the rate of error went 

up as well as down. This suggests that one of two things happens when the learning 

rate is too large: One possibility is that the network fails to recognise the global 

minima when it arrives in it (see fig 3.8).

3 This is because a global minimum in a large hidden layer is expressed in terms of a 

large number of connections, which means more correct connection strengths are 

necessary to express this and there will be more partial solutions.
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L2

Figure 3.8: State space diagram showing the problems caused by inappropriate 

learning rates.

In figure 3.8 we see a simplified state space with two local minima (L1.L2) 

and one global minima G. The arrowed lines represent the force exerted on the 

network by the learning coefficient. If the line is greater than the ininiina then the 

network will leave the minima. A network with a learning rate of a  will become stuck 

in local minima. A network with a learning rate of P will be able to escape the local 

m inim a but not the global minimum. Conversely a network with a learning rate of % 

will not only escape the local minima, but the global minimum as well and will 

continue to traverse the state space looking for a (non existent) minimum from which 

it cannot escape.

Another possibility is that the system is oscillating between local minima. The 

learning rate will be large enough to escape from local minima, but in each direction it 

jumps it finds itself in another local minima. Hence the network will be unable to 

escape from this state and will continue to oscillate.
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3.7.2 Why Different Recurrent Networks Behave Differently

Before looking at the performance over the different networks over the 

different sequence processing tasks, it is worth remembering that, particularly in 

problems of physiological and psychological modelling, researchers will be looking 

for a particular pattern of behaviour as a criteria for success, rather than simply 

looking for the lowest possible error. Thus, in the Letter in Word Prediction Task, 

the sudden increase in error between words is only to be expected. This would mean 

that the lowest possible error rate would not be zero.

It is clear, however, that the RTRL network is the weakest of the three. This 

would seem to be inconsistent with the observation made by Zipser (1989) that 

"RTRL has been shown to have great power and generality". One possible way to 

resolve this apparent contradiction is the possibility that because RTRL is 

computationally expensive it is slower than the SRN or the Gamma network. This 

would be true both in terms of the number of learning epochs and real time.

The other possibilities for the poor performance of the RTRL network are 

concerned with deficiencies with the network. The RTRL network has a very high 

level of connectivity (each unit in the RTRL layer is connected to every other unit in 

the RTRL layer). This leads to many degrees of freedom even in a small RTRL 

network. Corresponding to this is the fact that the large number of modifiable 

connections gives a highly complex state space, which may contain many local 

minima. Thus during learning when the network attempts to traverse the state space it 

is hardly surprising that the network takes a long time to traverse it or faüs to leam 

the task at all. Corresponding to a complex state space is a complex computationally 

expensive learning rule, where one weight change is a function of all other nodes in 

the network. Not only does this increase the amount of time that the network needs to 

cycle a given number of epochs, it also appears that the algorithm is unable to deal 

with the complex state space that the network has to traverse.
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It is interesting to note that in a paper which gave details of successful training 

of an RTRL network (Catfolis 1993) the network size was small, the learning rate 

was small and a modified form of the RTRL learning rule was used (see chapter 

four). In this study we similarly see that the network performs best when its 

architecture is small and the task is well defined. When performing the XOR with 

two step delay task the RTRL layer was smaller than for any of the conditions tried 

for the other three tasks, yet performance was better than for any of the other three 

tasks.

The results seem to confirm observations made by Tsoi and Back (1995) that 

the RTRL algorithm is the least satisfactory recurrent algorithm. In Tsoi and Back's 

studies the RTRL network was given a longer training period than the other networks 

tested, but still provided the poorest results. Furthermore architectures which employ 

local as opposed to global feedback connections are advocated as being superior. The 

Locally Recurrent Globally Feed forward (LRGF) class of recurrent networks, of 

which the gamma model is one example is capable of providing a rich architecture 

which is able to solve non trivial problems.

Overall the statistical analysis of the results showed that the Simple Recurrent 

Network was the most effective network, narrowly outperforming both gamma 

models and easily outstripping the RTRL network. One possibility is that the tests 

used were biased towards the Simple Recurrent Network since two of the four tests 

used (Elman's letter in word prediction task and the finite state grammar) are drawn 

from papers which take the Simple Recurrent Network as their subject. There was no 

significant difference between the Simple Recurrent Network and the two gamma 

models on the dollar to Swiss Franc exchange rate problem and the Simple Recurrent 

Network was the worst network over the XOR with two step delay problem, which 

was drawn from Zipser's paper on the RTRL algorithm.

With regard to the gamma model. Table 3.12 shows a number of cases where 

11=1 or takes a value very close to it. The gamma model is a tapped delay line when 

p=l. The results also showed that the gamma memory parameter |i decreased in size
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as problem complexity increased. This is because, in order to solve complex 

sequential problems, a recurrent network will have to remember events that have 

taken place further back in the past than when it is processing more simple problems.

It is particularly interesting to compare the respective values of |a and the 

memory depth evolved of the different sized gamma kernels when they were tested 

on the XOR with two step delay task. The gamma network with a kernel size of one 

performs less well than the gamma network with a kernel size of two. The memory 

depth evolved by the latter (1.919) is of course very close to the time interval in the 

data (two time steps).

It is also clear that, as problems become more complex, the size of gamma 

kernel used does not have to increase in size in proportion to this complexity. Indeed, 

on the Dollar - Swiss Franc exchange rate data set, there was no statistically 

significant difference between the model with a kernel size of one and the model with 

a kernel size of two, although given the general ineffectiveness of both models not 

too much should be read into this result.

Another feature of the size of | l l  in relation to problem complexity is that the 

range of the values of the \l[ obtained over a number of trials increases as problem 

complexity increases. This could be for one of two possible reasons: either a wider 

range of values for \i are needed if complex problems are to be solved or the network 

is unable to find a solution. In the latter case a wider range of values for p is simply a 

reflection of a fruitless search (e.g. as may possibly be the case for the Dollar / Swiss 

Franc problem). This may well be a reflection of the inability of SRN, RTRL or the 

Gamma model to predict future exchange rates from past exchange rates alone, 

presumably because exchange rates may not be predictable at all from their past.

Useful results from financial data prediction problems have been obtained. 

Using a Simple Recurrent Network, McCann and Kalman (see section 1.3 above) 

created a trend predictor for the gold bullion market. Their study claimed that useful 

predictions can be made without the use of more extensive market data or 

knowledge". This would suggest that the networks in our comparative study which
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performed poorly on the financial data might well do so if their internal parameters 

allowed them to better model the dynamics of the exchange rate system. It should 

also be noted that McCann and Kalman did not look at currency markets, but at the 

gold market. It may well be the case that different factors affects these two areas and 

that the factors which influence movements in the price of gold are easier to model 

than those which produce exchange rate fluctuations. Furthermore McCann and 

Kalman tried to predict turning points (i.e. when the price started to rise or fall) 

which may be easier than predicting an exchange rate from one moment to the next.

One interesting feature is that the Simple Recurrent Network is sometimes 

more effective at learning the data described above. This seems to be something of a 

paradox when one considers the respective learning rules of the Simple Recurrent 

Network and the RTRL networks: whilst the Simple Recurrent Network learning rule 

is a straightforward extension of the traditional simple back-propagation learning 

rule, the RTRL learning rule is a variation of the BPTT algorithm and would 

therefore seem to be better suited to sequence processing. A key factor however may 

be the computational expense of the RTRL learning rule and the BPTT algorithm 

from which it was derived.

3.8. What Next?

There seems to be little reason (in terms of error scores) to choose the gamma 

model over the SRN in this study. Principe and Turner (1994) reported on a gamma 

network which included several modifications from the original gamma model. Chief 

amongst these modifications was that a different value of p, was calculated for each 

unit within each kernel (as opposed to the simple form of the model which has one p 

parameter for all the units in each kernel). This modified gamma network 

outperformed a more conventional recurrent network. Principe and Turner reported 

that for the problem they examined (word spotting) a more coarse grained (i.e. low 

resolution) representation of past inputs was sufficient and indeed advantageous.
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Whilst this may not be the case for other sequence processing problems, the ability of 

the gamma network to adjust its internal memory parameters is a clear advantage.

If we wish to improve the ability of recurrent networks to perform sequence 

processing tasks, we can attempt to do so in one of two ways: create a more 

favourable state space: one which is as simple as possible, with fewer local minima, 

yet is still able to capture the properties of the sequence which is to be learned. 

Alternatively we could create a better learning algorithm: cne which is able to find the 

global minima more quickly and is better able to avoid or escape local minimum. In 

the next chapter we shall attempt to apply these two approaches to the RTRL 

algorithm to try and improve its performance.
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Chapter Four. Modifications to the RTRL Algorithm and Their 

Implications

4.1. Overview and Rationale

In chapter three, a comparative study of three different recurrent network 

models was undertaken. The results of the study confirmed what various other 

comparative studies have shown: that different recurrent network models have 

different sequence processing abilities. In the comparative study described in the 

previous chapter the models tested were duplications of the recurrent networks as 

they were originally proposed. However one feature of research in this field has been 

the modifications to these (and other) models that have been proposed by various 

researchers in order to try and improve their learning and generalisation ability.

In this chapte^two improvements to the Real Time Recurrent Learning 

(RTRL) network that have been proposed will be examined to see if they lead to an 

improvement in the poor performance (over all tasks save the XOR with two step 

delay) that this model demonstrated in chapter three. One of these modifications is 

concerned with the architecture of the network whilst the other is concerned with the 

learning algorithm itself. Each of these modifications wiU be described in turn and 

their performance on the data sets used in chapter three will be reported. In addition, 

the learning rate will also be varied when a modified form of calculating the Pyk 

values are used, in order to see if this modified Pjjk calculation allows the use of 

higher learning rates (see section 4.3 below). For each simulation, the networks used 

to perform the XOR with two step delay problem have four hidden units, whereas for 

the other three problems the network has twenty hidden units. As in chapter three 

each data set was presented to the network ten times unless otherwise stated. This 

design was chosen because limitations on time and computing resources meant that 

ten trials was the most feasible number for testing to see if the networks were
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sensitive to initial conditions. Obviously the results would be more statistically 

reliable if more trials were undertaken.

4.2. Modifying RTRL Network Architecture

A significant feature of the RTRL network architecture is the high level of 

interconnectedness between units and the resulting large number of non-local 

connections. This architecture gives rise to a complex state space with many degrees 

of freedom, which increases the chances of the network falling into a local minimum 

during learning.

4.2.1 Pruning Network Architectures

If the architecture of a network has to be large enough to develop an internal 

representation which allows it to perform a particular task, yet small enough to avoid 

the problem of overfitting (i.e. where the state space is too complex for the problem), 

how can an ideal architecture be found? One w ay suggested by Giles and Omlin 

(1994) is to use a pruning algorithm. The basic definition of a pruning algorithm is 

one which severs connections or deletes units within a network until the minimum 

architecture for performing a particular task remains.

Giles and Omlin carried out their research on a fully connected recurrent 

network using the RTRL algorithm. This form of recurrent network would 

particularly benefit from pruning because the high level of interconnectivity and the 

number of calculations required at each time step means that RTRL networks with 

large numbers of nodes are very computationally expensive and it would speed up 

learning considerably if the smallest possible network could be used.

The pruning algorithm is fairly simple: Start with a large network and present 

the training data to it. If the training is successful (i.e. the network converges within a 

given number of epochs) remove the neuron from the RTRL layer that has the
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smallest weight vector. Then retrain the network as above. If a network with N 

RTRL units fails to converge, take the network with N+1 RTRL units as the network 

which is accepted. After the training data was learned a small number of negative 

examples were added to the training data.

Giles and Omlin showed that their algorithm gave rise to an improvement in 

network performance as the number of RTRL units were reduced, although retraining 

of the network became more difficult during this process. See table 4.1:

Neurons Time Size NN Performance

15 197 142 6.75%

14 7 46 6.89%

13 98 99 2.61%

12 11 62 1.51%

11 14 67 0.97%

10 22 83 1.26%

9 111 157 2.95% .

8 102 140 2.44%

7 104 118 0.14%

Table 4.1: Table showing Summary of results from Giles and Omlin (1994). Results 

are after each pruning cycle. Summary of Table Headings: Neurons = size of 

network; Time = number o f epochs before convergence; Size = size of maximum 

training set (see text); NN Performance = rate of error on test data.

The time taken after pruning can be taken as an indication of the level of activity of 

the pruned neuron. A short training time can be taken to indicate that the neuron 

which was inactive had little involvement in developing an internal representation of 

the task. The fact that retraining time increases as the number of neurons decreases 

can be seen as a "weeding out" of these peripheral neurons during the initial stages of
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pruning. However as the number of peripheral neurons decreases the probability that 

a pruned neuron will play a more significant role in the internal representation created 

by the network increases.

The problem with a pruning approach however is that it assumes that the 

network has a level of state space complexity equal to or greater than the task 

requires. Because pruning will always simplify the state space then ho solution will 

ever be reached if the architecture fails to satisfy the above criteria. Furthermore, as 

was demonstrated with the experiments in learning the XOR with two step delay task 

in chapter four a pruning approach is particularly problematic if the network is small.

4.2.2. A pruned RTRL Architecture

One way round this problem is to reduce the number of degrees of freedom 

by reducing the number of connections in the network. One way to do this would be 

to randomly prune a number of connections. However the method we have chosen 

causes the network to be equivalent to the network architecture proposed by Manolios 

and Franelli (1994) which took a three layered feed forward network and added 

recurrent connections (see figure 4.1). This architecture, they argue, is the simplest 

universal approximator for sequence processing tasks. There are a subset of state 

units which are considered as output units for the purposes of learning, as in the 

original RTRL architecture. Using back propagation through time as the learning 

rule, these networks proved to be capable of learning a subset of the seven Tomita 

grammars (see section 5.3.2 for a full description of this data). Manolios and Franelli 

(1994) trained their networks on grammars one, two, four and six. The Back 

Propagation Through Time algorithm was used. Weight updates were done at the end 

of each string.

Manolios and Franelh (1994) showed that small sparsely connected recurrent 

networks are able to leam complex tasks. For grammars one and two the network has 

one input unit, two state units (one of which is designated as an output unit) and two
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hidden units. The architecture is identical for Tomita grammars four and six except 

that three hidden units are used. Even on the hardest task (grammar six) the network 

was able to leam the data such that it could classify all the test data to within 0.02 of 

the desired output.

Hidden

State - OutputInput

Figure 4.1: Architecture proposed by Manolios and Franelli (1994). Arrows indicate 

full connectivity between layers.

Applying the ideas behind the architecture used by Manolios and Franelli 

(1994) the result is that the RTRL layer is split in two. Connections are pruned so 

that the portion of the RTRL layer which contains the output units does not receive 

direct connections from the input layer. A two way connection exists between the two 

portions (see figure 4.2). Nodes within the same portion do not conncol lo each 

other. Running this network required the writing of a modified form of the RTRL 

learning rule, details of which can be found in Appendix 4. Note that this rewrite was 

purely in terms of getting the learning rule to work with a sparsely connected 

architecture, not because the underlying formulae were different in any way.
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RTRL Layer

Input Lines

Figure 4.2: A Sparse RTRL network architecture o f the type described by Manolios 

and Franelli (1994). Arrowed lines indicate full interconnectivity. The subset of 

output units are shaded. Both portions of the RTRL layer are fully interconnected to 

each other. As indicated earlier, nodes within the same portion are not connected to 

each other.

This network is trained with the traditional RTRL algorithm. However the 

reduced number of connections leads to the calculation of the Pijk variable being less 

computationally expensive, as well as decreasing the complexity of the state space 

which the network traverses during learning. This sparse architecture was tested 

against the four sequence processing tasks described in chapter three. Details of each 

architecture are shown in table 4.2.
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Input Layer Portion 1 Portion 2 Output Subset

2 delay XOR 2 2 2 1

Letter in word 

prediction

5 10 10 5

Finite state 

grammar

3 10 10 3

Exchange rate 

prediction

10 10 10 10

Table 4.2: Details of architectures used for the modified RTRL architecture. Portion 1 

and portion 2 refer to the divided RTRL layer. Only portion 1 receives input from the 

outside world. The output subset lies in portion 2. TuUq r ort Au/Vihtrs t f

Each of the architectures was tested ten times to evaluate the effect of initial 

conditions on learning. For all simulations the learning rate was fixed at one. Results 

are shown in table 4.3.

Original RTRL Model Sparse RTRL Model

2-delay XOR 0.240 0.180

Letter in Word Prediction 1.011 1.002

Finite State Grammar 0.816 0.925

Dollar - Swiss Franc 

Exchange Rate

1.129 1.184

Table 4.3: RMS Error scores showing the performance of the sparse RTRL 

architecture described above against the traditional RTRL architecture advocated by 

Williams and Zipser.
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As with the work done in chapter three, these results were then subjected to a 

more thorough statistical analysis. Table 4.4 shows a comparison over the XOR with 

two step delay task. Table 4.5 shows a comparison over the Elman letter in word 

prediction task* Table 4.6 shows a comparison over the finite state grammar. Finally 

table 4.7 shows a comparison over the Dollar / Swiss franc exchange rate data.

Original RTRL Model Sparse RTRL Model

Mean 0.240 0.180

Standard Deviation 0.055 0.013

Range: Min 0.219 0.153

Max 0.403 0.199

Confidence Limits 0.240±0.013 0.180±0.003

e,trof
Table 4.4 Statistical analysis of thej^results of the original and sparse RTRL 

architectures over the XOR with two step delay task.

Analysis of variance showed that there was a significant difference between 

the two networks (p<0.01), with the sparse RTRL outperforming the original fully 

connected model.

Original RTRL Model Sparse RTRL Model

Mean 1.011 1.002

Standard Deviation 0.095 0.063

Range: Min 0.857 0.953

Max 1.215 1.080

Confidence Limits 1.011+0.021 1.002+0.014

Table 4.5 Statistical analysis of the results of the original and sparse RTRL 

architectures over the Elman letter in word prediction task.
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Unlike the XOR with two step delay, analysis of variance showed that there 

were no significant differences between the original and sparse RTRL models on this 

task (  Uttcr-iA

Original RTRL Model Sparse RTRL Model

Mean 0.816 0.925

Standard Deviation 0.009 0.055

Range: Min 0.802 0.879

Max 0.828 0.997

Confidence Limits 0.816+0.002 0.925±0.014

Table 4.6 Statistical analysis of the results of the original and sparse RTRL 

architectures over the finite state grammar task.

Analysis of variance shows that the original RTRL network outperformed the 

sparse RTRL model (p<0.001) for tKe f  .n.te. gro/v»/v*a/'

Original RTRL Model Sparse RTRL Model

Mean 1.129 1.184

Standard Deviation 0.045 0.084

Range: Min 1.095 1.108

Max 1.247 1.314

Confidence Limits 1.129±0.011 1.184+0.019

Table 4.7 Statistical analysis of the results o f the original and sparse RTRL 

architectures over the Dollar /Swiss Franc exchange rate task..

Analysis of variance showed that there were no significant differences

between the original and sparse RTRL models on this task faxcKaAje rote).
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The above analysis shows that the sparse RTRL model does not do 

significantly better than the original fully connected RTRL model apart from the XOR 

with two step delay task, a task which Zipser (1990) describes as being "too simple a 

problem,to provide a meaningful test" (Zipser 1989 pp 556). On this data, a sparsely 

connected RTRL model does httle to bridge the gap between it and other recurrent 

network models such as the simple recurrent network and the gamma model.

Another way to compare these two versions of RTRL is to examine the time 

taken for the networks to converge to a solution. Although of course the most 

important property of a neural network is its abihty to find a solution, it is also 

desirable that such a solution should be found as quickly as possible. Figures 

showing the convergence performance of the original and sparse RTRL architectures 

for the XOR with two step delay are shown in table 4.8. In order to arrive at these 

figures each network was run ten times. Each network had two inputs and four 

RTRL units (one of which was an output unit). The learning rate was set to one.

Original RTRL Model Sparse RTRL Model

Maximum 8599 11715

Minimum 5902 5142

Mean 7395.8 7596.5

Table 4.8 The Maximum, minimum and mean number o f trials needed for the original 

and the sparse RTRL Model to converge for the XOR with two step delay task.

These figures would seem to indicate that although there is little difference in 

mean convergence times, the sparse RTRL architecture seems to have a wider range 

of convergence times than the fully connected RTRL architecture. This may reflect 

the fact that the state space of the sparse RTRL architecture is shghtly more sensitive 

to initial conditions than the fully connected RTRL architecture, though not so much 

as to effect the networks abihty to leam or the time it takes to converge significantly.
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Why does the sparse RTRL architecture perform differently to the original 

RTRL architecture? For a particular task, a network needs to have a mechanism 

which is sufficiently complex to capture the properties of what it is trying to model 

whilst not being so complex as to face excessive numbers of local minima in which 

the network may become trapped during learning. If the sparse RTRL architecture 

outperforms the original RTRL architecture, it may well be the case that the original 

RTRL architecture is too complex for this particular task. This is not to say that the 

original RTRL architecture is incapable of learning the task, rather that a less complex 

architecture (i.e. one with fewer connections or units) could do the job equally well. 

Conversely, if the original RTRL architecture outperforms the sparse RTRL 

architecture, it will be the case that the sparse RTRL architecture is not sufficiently 

complex (i.e. the network has insufficient connections or units) to perform the task in 

question.

The work of Manolios and Franelli shows that sparsely connected small 

recurrent networks are capable of learning complex sequence processing tasks. This 

may partly be due to the fact that the overall set of training strings is small and the 

length of each individual string is quite short (no string had a length greater than 

four). This suggests that whilst fully connected architectures are able to deal with 

problems which require a relatively short term memory mechanism they have 

difficulty in dealing with problems with longer strings or where the length of string 

could vary widely (i.e. all the tasks used in our comparative study except for the two 

step delay XOR). The original network proposed by Manolios and Franelli would 

also cause difficulties over these data sets because of the computational expense of 

the Back Propagation Through Time algorithm (a copy of the network is needed for 

each time step).

The failure of the modified RTRL architecture to match the performance of 

either the Simple Recurrent Network or the Gamma Model suggests two possible 

alternatives: Either the non local nature of the RTRL algorithm is the main obstacle to 

learning and no tampering with the architecture will get round this, or sparse
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connectivity can solve the problem, but the network needs to be sparse in a different 

way. If the second point is to be proven then there needs to be an exhaustive check of 

all the various sparsely connected architectures that exist. Only when this is done can 

the first point be accepted or rejected, Since this would be a long drawn out process, 

it is worth noting that researchers have attempted to automate the process of finding 

the optimum architecture for a given task (see section 4.2.1 and section 6.2).

4.2.3 Randomly Pruning Connections During Learning

The work of Manohos and Franelh (1994) uses an architecture which has 

been pruned before learning takes place. However there is an alternative way to 

reduce the level of connectivity in the network. This alternative examines the 

connections between units at pre-set intervals and removes those connections 

according to some criteria. An example of this type of algorithm was used by Giles 

and Omhn (1994) (see section 4.2.1 for further details). In this section we report on 

the findings of the use of a pruning strategy on an RTRL network attempting to leam 

the finite state machine used in Chapter Three. The pmning critena was as follows: at 

a given point in the learning schedule, a given percentage of connections of smaUest 

absolute magnitude are to be disabled. Three different values of pruning points (once 

per presentation of training data, twice per presentation of training data and once 

every two presentations of training data) and percentage of weights to be pruned 

(1%, 5% and 10%). This creates nine separate conditions.

For each of the above conditions training consisted of ten presentations of the 

training data (thus for the above conditions pmning occurred ten, twenty and five 

times respectively). The learning rate in all conditions was one. The network 

consisted of three input units and twenty RTRL units, three of which served as 

output units. The performance of the networks when trying to predict the test data is 

shown in table 4.9:
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Pmne once every 

two presentations

Pmne once every 

presentation

Pmne twice every 

presentation

Pmne 1% 0.655 0.66 0.657

Pmne 5% 0.663 0.875 0.882

Pmne 10% 0.716 0.788 0.834

Table 4.9 Root Mean Squared Error of Test data for Finite State Machine learning 

task using an RTRL network and a pruning algorithm

Note that the root mean squared error score for the original RTRL algorithm 

over this task was 0.665. On this evidence it would seem that for the best results,, 

pruning should not take place very often and the percentage of connections pruned 

should be small. However none of the combinations of interval between pruning or 

percentage of connections pruned proved capable of significantly improving the 

performance of the RTRL network. Indeed some combinations only lead to inferior 

perfonnance. The probability of such a deterioration seems to increase when the 

interval between pruning is short and the percentage of connections pruned increases.

As with the pruned architecture discussed in section 4.2.2, this method was 

also tested with a view to examining the time taken for the networks to converge to a 

solution. For this the different pmning variables were tested on the XOR with two 

step delay task. All other variables concerning the network were constant: each 

network had two inputs and four RTRL units (one of which was an output unit). The 

learning rate was set to one. The results are shown in table 4.10.
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Pmne once every 

2000 pattems

Pmne once every 

1000 pattems

Pmne twice every 

500 pattems

Pmne 1% Max= 10803 

Min= 5334 

Mean= 7192

Max= 9630 

Min= 5896 

Mean= 8209.375

Max= 10094 

Min= 5672 

Mean= 7485.2

Pmne 5% NL NL NL

Pmne 10% NL NL NL

Table 4.10: Maximum (Max), minimum (Min) and Mean number of trials to 

convergence for dijferent pruning variables, tested on the XOR with two step delay 

task. Note that NL means that the network did not converge on any of the ten trials.

The results summarised in table 4.10 would seem to suggest that the network 

performed best when pruning took place relatively infrequently and the number of 

connections pruned was small. Even so none of the mean convergence times were 

significantly lower the mean convergence time for an unmodified RTRL architecture 

which were 8599, 5902 and 7395.8 for maximum, minimum and mean convergence 

respectively.

Table 4.10 also reveals the difficulties that can result from too much pruning. 

If too many connections are pruned then the network loses the abihty to leam 

completely. This is tme both in terms of the interval between pmning being too short 

or if the percentage of connections pmned is too high.

The instability caused by too much pruning becomes even more apparent 

when one considers the fact that under only one set of conditions (pmne 1% of 

connections once every 2(XX) pattems) did the network converge every time. When 

1% of connections were pmned once every 10(X) pattems the network failed to 

converge on two occasions. When 1% of connections were pmned once every 500 

pattems the network failed to converge on five occasions.
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4.3 Modifying the RTRL Algorithm

The architecture of an RTRL network has a large number of non local 

connections. These are used by the RTRL learning rule in that a change in one 

weight is a function of all the other weights in the network. This algorithm is 

computationally expensive, particularly when the number of RTRL units is large. But 

according to Williams and Zipser (1989) this algorithm has the benefits of great 

power and generality, which, if it were true, would be well worth the computational 

expense.

One way to preserve this power and generahty in the face of the problems of 

local minima described in section 4.2 is to zero the Pÿk variable after a set number of 

input pattems have been presented to the network. If the interval is set to a value of 

five for example, Pijk is calculated in the normal way for the first four inputs and is 

set to zero on the fifth input. The process is then repeated until the desired number of 

pattem presentations have been reached. Note that whilst Pijk values may be lost as 

the result of this resetting, the weight changes are preserved.

This method was first pruposcd by Gatfolis (1993). Schematics of the 

original RTRL algorithm proposed by Williams and Zipser and the modification 

proposed by Catfolis are shown in figures 4.3 and 4.4. In the schematic of the 

Catfohs version of RTRL, Pijk is reset to zero after x presentations to the network. 

The effect of periodic resetting of Pijk values is to "jolt" the network out of local 

minima. This works because resetting Pijk causes a significantly different 

modification to connection strengths within the network than would otherwise be the 

case. The idea of somehow restricting the network during learning is one which has 

been discussed elsewhere in the literature, the detailed mechanics of this process is 

discussed in section 5.4. and by Elman (1993).
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Epoch 1 Epoch2

W=0 
5W = 0
Pijk = 0

5W = 0 
Pijk = 0

Initialisations

e e e e e e e e
Tîme

ÔW ÔW ÔW ôw  ÔW ôw  ÔW ÔW Calculations

j II n  I H
§W* SW* SW* SW* 5W* 5W* 5W* 6W*

W W

Figure 4.3 The Original form of calculating the Pÿk portion of the RTRL algorithm 

proposed by Williams and Zipser (1989).
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Figure 4.4 A Modified form of calculating the Pÿk portion of the RTRL algorithm 

proposed by Ca foils (1993).

Does this method of avoiding local minima lead to an improvement in 

learning? Comparative results of the original and modified RTRL algorithms are 

shown in table 4.11. In all of the tests described below the reset interval x for the

modified RTRL algorithm is set to four. In all other respects the two networks are 

identical.

Original RTRL Algorithm Modified RTRL Algorithm

2-delay XOR 0.240 0.123

Letter in Word Prediction 1.011 0.903
Finite State Grammar 0.816 0.840

Dollar - Swiss Franc 

Exchange Rate

1.129 1.114

Table4.11 Comparative results of the original and modified RTRL algorithms (RMS).
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As in section 4.1, these figures were subjected to a more detailed statistical 

analysis.

Original RTRL Algorithm Modified RTRL Algorithm

Mean 0.240 0.123

Standard Deviation 0.055 0.032

Range: Min 0.219 0.085

Max 0.403 0.183

3̂ % Confidence Limits 0.240±0.039 0.123+0.023

Table 4.12 Statistical analysis of the original and modified RTRL learning algorithm 

over the two step delay XOR task.

An analysis of variance on the above results showed that the RTRL network 

with the modified learning algorithm did significantly better that the original RTRL 

algorithm (p<0.01).

Original RTRL Algorithm Modified RTRL Algorithm

Mean K MS tm r 1.011 0.903

Standard Deviation 0.095 0.021

Range: Min 0.857 0.883

Max 1.215 0.940

Confidence Limits 1.011±0.021 0.903±0.005

Table 4.13: Statistical analysis of the original and modified RTRL learning algorithm 

over the Elman letter in word prediction task.
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As in the case of the XOR with two step delay task, the modified version of 

the RTRL algorithm performed significantly better than the original RTRL algorithm

(p<0.01).

Original RTRL Algorithm Modified RTRL Algorithm

Mean RMS error 0.816 0.840

Standard Deviation 0.003 0.006

Range: Min 0.802 0.832

Max 0.828 0.849

Confidence Limits 0.816+0.002 0.840±0.001

Table 4.14: Statistical analysis of the original and modified RTRL learning algorithm 

over finite state grammar task.

In this case analysis of variance showed that there was no significant 

difference between the two forms of the RTRL algorithm.

Original RTRL Algorithm Modified RTRL Algorithm

Meank^^ er/or 1.129 1.114

Standard Deviation 0.044 0.010

Range: Min 1.095 1.099

Max 1.247 1.133

Confidence Limits 1.129+0.011 1.114±0.002

Table 4.15: Statistical analysis of the original and modified RTRL learning algorithm 

over the Dollar to Swiss Franc exchange rate prediction task.

As was the case with the finite state grammar task, there was no significant 

differences between the original and modified RTRL algorithms over this data set.
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Thus modification of the learning algorithm would seem to lead to a greater 

improvement than modification of the architecture, giving rise to significant 

improvements over two tasks (XOR with two step delay and Elman's letter in word

prediction task).

4.3.1 Different Reset intervals for different tasks?

One additional factor to be considered when examining the learning 

capabilities of the modified RTRL algorithm is that the interval between resetting the 

Pijk variable is of critical importance: too short an interval renders the short term 

memory mechanism ineffective, since the network will not be able to hold all the 

information it needs to perform a particular task. Conversely too long an interval 

causes the network to more closely resemble the original RTRL model and any 

advantage that might be gained by using this method is lost. Thus there exists a range 

of reset values which will affect learning in some way. What is more, since different 

tasks require the network to process sequences of varying length, this critical range 

will differ for different tasks.

The effect of different x values on the learning abihty of the network is also 

supported by Catfolis (1993), who concluded that the x value needs to be as close as 

possible to the temporal requirement of the problem. If the x value is significantly 

higher than the temporal requirement of the problem, then the network will receive ah 

the information it needs "but the weights wih change too much. The direction of the 

weight change wih not follow the true gradient of the total error" (Catfohs 1993 

pp815). Conversely, if the x value is significantly lower than the temporal 

requirement of the problem, the network will not receive all the information it needs 

and generahsation will be poor.

An illustration of this can be found when we consider the four data sets used 

in this comparative study. The XOR with two step delay problem requires the 

network to recall inputs from a fixed point in the past (i.e. two time steps
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previously). In contrast the letter in word prediction and finite state grammar tasks 

require the network to process sequences of differing lengths. Prediction of the 

Dollar / Swiss Franc exchange rate is more complex still: each market movement 

being a combination of short and long term factors.

An example of this can be found when training the network on the XOR task 

with two step delay. If the T value is set to three the network performs less well than 

the original RTRL algorithm over ten presentations of the data set. If however the 

network is given another ten presentations of the data set then the RMS error score 

over the test data is as good as the original RTRL algorithm. Indeed performance is 

slightly improved after twenty presentations. This is shown in table 4.16.

Original RTRL algorithm 

after ten presentations of 

data

Modified RTRL after ten 

presentations of data

Modified RTRL after 

twenty presentations of 

data

0.240 0.501 0.144

Table 4.16 Comparative RMS error scores over the XOR with two step delay task 

between the original RTRL algorithm and the modified RTRL algorithm, when the 

Pijk value is set to zero after every three presentations.

One possible explanation for this is that resetting Pÿk values at such a 

relatively short interval hampers the network in its attempts to converge, but not 

sufficiently as to stop the learning process altogether. Resetting Pÿk after every three 

presentations may well reset Pÿk before the information held in memory can be used 

to correctly solve the problem at a particular time step. Therefore the collection of 

"uncut" strings will take longer to build up, resulting in slower convergence. 

Interestingly this problem requires a memory of fixed length, since the desired output 

at time t is always the solution to the input at time t-2, whilst the interval between 

resets is larger than the required memory length. This suggests that Pÿk values from
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one string of data  ̂can assist in the learning of another string of data. Of course if the 

strings are of variable length resetting of the networks' Pÿk values will take place in 

the middle of data strings as well as at their beginning or end. This handicap may be 

overcome by increasing the learning rate (see section 4.3.2). Another factor to take 

into consideration is that XOR with two step delay is a continuous problem, unlike 

the finite state grammar or the Elman letter in word prediction task.

The effect of reset interval on network performance can also be seen when 

examining the results of a pattem set on which RTRL did less well such as the finite 

state grammar, as shown by the results in table 4.17

Original RTRL 

Algorithm

Reset =2 Reset =3 Reset =4 Reset =5

0.665 0.738 0.667 0.705 0.657

Table 4.17 Comparative RMS error scores over the finite state grammar task between 

the original RTRL algorithm and the modified RTRL algorithm with different reset 

values.

The results in table 4.17 seem to show that the error scores fluctuate, rather 

than a smooth decrease followed by an increase as one moves through the range of 

critical reset values. Accordingly the search for an optimal T value must be fairly 

exhaustive. It may not always be enough to start with one value and increment by one 

so long as the mean RMS error across the test data is lower than tlic previous reset 

value. Although the search space for the optimal t value is fairly rich, the cost is that 

finding the optimal value may well be a long drawn out process.

Ifu this context the term "string of data" or "data string" refers to a grammatical string 

of inputs and desired outputs within a pattem set, such as whole word for the letter in 

word prediction task or one complete traversal of the finite state grammar.
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Are there any heuristics that could be used by researchers to find the optimal T 

value for a particular task? Obviously the nature of the sequence processing task is of 

considerable importance. Catfolis (1993) suggests that the optimal x value is a

function of the number o f RTRL units;

"When the number of RTRL nodes is small (i.e. the net has a low memory capacity), 

the best nets will be those which are able to extract the most information from a 

minimal amount of time. Nets trained with a [x] that is related to that (small) piece of 

time will show the best results. The smaller the number of nodes the smaller the 

optimal X value will need to be" (Catfolis 1993 pp 816).

However Catfolis goes on to suggest that there is not an optimal x value, but rather 

there is a range of values which give better results. This supports the interpretation 

made in connection with the results shown in table 4.7, which does not support the 

idea that there exists an optimum reset value with less ideal reset values either side. 

Indeed setting a reset value of r as opposed to r+1 can often make a significant 

difference. Catfohs demonstrates that zeroing Pÿk at different places in the training 

epoch means that the network gains a richer information sample, which facihtates 

better learning.

4.3.2 Does Resetting Pijk Allow Increased Learning Rates?

On the face of it, when training a neural network large learning rates would 

always seem to be a good thing, since the larger the learning rate the faster the 

network leams a task. However the reality is much more complex.
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Figure 4.5: A simplified state space showing the problems that too high a learning 

rate can cause.

The problem is illustrated in figure 4.5. The diagram depicts a state space 

where the global minimum G is surrounded by local minima (L1,L2)2. The state of 

the network is such that whilst the network lies somewhere within LI, the learning 

rule (3 is large enough to escape it, moving the network in the direction of G. 

Unfortunately the movement is large enough to miss G completely and land 

somewhere in L2. On the next training cycle the network moves in the direction of G, 

but only succeeds in landing back in LI. However with a smaller learning rate such 

as a , the network is able to escape LI and lands somewhere within G.

^Given the complexity of the real state space that an RTRL network would have to 

traverse, it could be argued that this simplification is not a realistic situation. 

However since parts of the regions around a global minimum would represent some 

of the connection strengths found in tlie global minimum but not others (i.e. they 

would be local minima) this simplified example seems to be justified.
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Because the act of resetting Pÿk values allows the network to escape local 

minima (by giving the system a "jolt"), one possibility of using this method is that we 

can increase the learning rate of the network without increasing the probability that 

the network will fail to leam at all, thus increasing the speed at which the network 

leams a particular pattem set. The effect of increasing the teaming rate on the network 

is shown in table 4.18. In the experiments described below, the Pÿk values are reset 

after every four pattem presentations.

Original RTRL 

Algorithm

Reset RTRL K=1 Reset RTRL K=4

2-delay XOR 0.240 0.123 0.121

Letter in Word 

Prediction

1.011 0.903 1.098

Finite State 

Grammar

0.816 0.840 0.833

Dollar - Swiss 

Franc Exchange 

Rate

1.129 1.114 1.231

Table 4.18 RMS Error for different RTRL networks, showing the effect of 

increasing the learning rate (K). For all reset RTRL networks the reset interval was 

set to four, apart from the 2-delay when K=4, where the reset interval was set to 

three.

Again, a more detailed statistical analysis of these results was carried out. The 

results are shown in the following tables:

Table 4.19 gives an analysis for the XOR with two step delay task.

Table 4.20 gives an analysis for the Elman letter in word prediction task.
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Table 4.21 gives an analysis for the finite state grammar task.

Table 4.22 gives an analysis for the Dollar to Swiss Franc exchange rate task.

Original RTRL Reset L=1 Reset L=4

Mean 0.240 0.123 0.121

Standard Deviation 0.055 0.032 0.005

Range: Min 0.219 0.085 0.112

Max 0.403 0.183 0.131

Confidence Limits 0.240±0.393 0.123+0.008 0.121±0.001

Figure 4.19 Statistical analysis of the original RTRL algorithm together with the 

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm 

with a learning rate o f four over the XOR with two step delay task.

For xoR.̂  Analysis of variance showed that increasing the learning rate did not effect the 

performance of the modified RTRL algorithm. Both significantly outperformed the 

original RTRL algorithm (p<0.01) but there was no significant difference between 

either of the two modified algorithms.

Original RTRL Reset L=1 Reset L=4

Mean 1.011 0.903 1.098

Standard Deviation 0.095 0.021 0.045

Range: Min 0.857 0.883 1.033

Max 1.215 0.940 1.189

Confidence Limits 1.011±0.021 0.903+0.005 1.098±0.009

Figure 4.20 Statistical analysis of the original RTRL algorithm together with the 

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm 

with a learning rate of four over the Elman letter in word prediction task.
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Analysis of variance showed that over this task increasing the learning rate led 

to a significantly worse performance for the modified RTRL algorithm than both the 

other two networks (p<0.01) ( Iefcfcfr- ;<n-^o©r<().

Original RTRL Reset L=1 Reset L=4

Mean 0.816 0.840 0.833

Standard Deviation 0.009 0.006 0.045

Range: Min 0.802 0.832 0.744

Max 0.828 0.849 0.934

Confidence Limits 0.816+0.001 0.840+0.001 0.833±0.010

Figure 4.21 Statistical analysis of the original RTRL algorithm together with the 

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm 

with a learning rate of four over the finite state grammar task.

Analysis of variance showed that increasing the learning rate of the modified 

RTRL algorithm did not lead to a significant improvement in overall performance. 

Although it did bring about a greater variability in performance, as indicated by a

Original RTRL Reset L=1 Reset L=4

Mean 1.129 1.114 1.231

Standard Deviation 0.044 0.010 0.063

Range; Min 1.095 1.099 1.166

Max 1.247 1.133 1.327

Confidence Limits 1.129+0.011 1.114db0.002 1.231+0.014

Figure 4.22: Statistical analysis of the onginal RTRL algorithm together with the 

modified RTRL algorithm with a learning rate of one and a modified RTRL algorithm 

with a learning rate of four over the Dollar to Swiss Franc exchange rate task.
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Analysis of variance showed that increasing the learning rate brought about a 

significantly worse performance than either the original or modified RTRL networks 

with a smaller learning rate.

The most dramatic improvement brought about by an increase in learning rate 

is when the network is faced with the two step delay problem. The rate of error is 

lower than the original RTRL score whilst the reset interval used caused a slower 

convergence time when the learning rate was set to one (see table 4.18). The reason 

for this improvement may well be that the more coarse grained movement round the 

state space which occurs when the learning rate is increased is better able to take 

advantage of the "jolts" which occur when the Pÿk values are reset. When the 

learning rate was set to four, the network did not always succeed in learning the data 

and consequently performed poorly on the test data, whereas when the learning rate 

was set to one the network always succeeded in learning the data. However in the 

former case the network failed to learn the data on one occasion only.

As with the RTRL model with a modified architecture, the improvements that 

were reported were still not sufficient to give the RTRL network the same ability as 

the Simple Recurrent Network or the Gamma model.

The other reason for increasing the learning rate is to reduce the time that the 

network takes to learn the data. In order to investigate this property the performance 

of the RTRL network over the XOR with two step delay task was examined. The 

following parameters were used: Learning rate had a constant value of either one, two 

or four. The Pÿk reset value was either three, four, five or not at all. Each 

combination was repeated ten times and the number of presentations required for 

convergence was noted. The results are shown in table 4.23. Each network had an 

identical architecture of two input units and four RTRL units (one of which served as 

the output unit).
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None x=3 X=4 t=5

L=1 7203.3 12567.5 9965.8 8877.5

L=2 3507.7 6494.8 5401.5 5242.6

L=4 2328.3* 3296.5 3312.3 3312.1

Table 4.23 Mean convergence times (in number of trials) for different combinations 

o f reset value (t) and different learning rates (L) over the XOR with two step delay 

task. A * indicates that the network did not converge over all ten trials.

As we can see from table 4.23 increasing the learning rate does lead to a 

reduction of the time that the network needs to learn the task. Indeed the fastest times 

are achieved with the original RTRL algorithm and Pÿk is never reset. This does not 

mean however that the modified RTRL algorithm devised by Catfolis is of no use. 

The speed of the original RTRL algorithm with a learning rate of four is at the cost of 

stability, since the network failed to converge during three out of ten trials, as 

opposed to all other combinations, which converged every time.

Thus it would appear that resetting the Pijk values serves to suppress the

tendency of the network to become trapped in local minima when the learning rate is 

large. So prone is the RTRL algorithm to this problem that Catfolis used a learning 

rate of 0.00001, far smaller than any of the learning rates used in this research. This 

is borne out by findings which were reported in Chapter Three, where increasing the 

learning coefficient was shown to lead to increased instability in some cases, notably 

with the gamma model. However since resetting Pijk values allows the network to 

escape local minima then the learning rate can be increased without much loss of 

speed of convergence.

Overall it is clear that both changing the learning rate and the reset interval has 

an effect on learning. Although none of the various combinations of learning rules 

and reset intervals tried has significantly improved the RTRL algorithm to the extent
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that they perform as well as either the Simple Recurrent Network or the Gamma 

Model.

4.4 Summary

In this chapter we describe and replicate two attempts to improve the 

performance of the RTRL algorithm by modifications to the architecture and the 

learning rule. Overall the results are disappointing since none of the modifications 

suggested brought the RTRL network up to the standard of either the Simple 

Recurrent Network or the Gamma Model. What they do reveal however is the rich 

nature of the RTRL networks behaviour and that it is best suited to tasks where the 

memory requirement is known and the data set sihall.
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Chapter Five. Summary and Conclusion

5.1 The Effect of Architecture on Learning

Of the three architectures examined in chapters three and four, the networks 

which have an RTRL architecture perform the most poorly, even when we consider 

the performance of the "improved" RTRL models discussed in chapter four. This 

finding is at odds with the claims of Williams and Zipser (1989) who state that the 

RTRL algorithm has great power and generality. One reason for this apparent 

contradiction is the way in which the RTRL algorithm traverses the search space. The 

reason for this becomes apparent when one considers the observations of Dayhoff et ' 

al (1994):

"Unlike feed-forward networks, which are static, networks with recurrent 

connections can exhibit periodic oscillations, quasi-periodic oscillations, and chaotic 

attractors as well as fixed point attractors...[Recurrent networks]...offer a wide 

repertoire of differing basins of attraction with complex boundaries".

Examples of these different types of attractor are shown in figure 5.1. Graph 

(a) represents a fixed point attractor where the activity of the system tends towards a 

single state a  over time. Graph (b) represents a periodic attractor where the activity of 

the system tends towards oscillating between two states a  and p over time. This idea 

is extended in graph (c) where activity oscillates within the region bounded by a  and 

P between more than two states but does so in a regular fashion. This is known as a 

quasi-periodic attractor. Still more complex is graph (d) which as in the case of the 

quasi-periodic attractor oscillates within the region bounded by a  and p but does so 

in an unpredictable manner. This is known as a chaotic attractor.
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Figure 5.1: Four different kinds of attractor (a) a fixed point attractor, (b) a periodic 

attractor, (c) a quasi - periodic attractor, (d) a chaotic attractor.

Note that in a neural network, whilst die state space is defined by the number 

of connections, the attractors in this system are defined by the desired outputs of this
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network since the global minimum will represent the matrix of connection strengths 

which produce the desired outputs of a data set.

Dayhoff et al (1994) were concerned with the ability of recurrent networks to 

form attractors under different conditions (size of network, different learning rates 

etc.) and the robustness of this ability to perturbations in the system (for example the 

presence of noise). But although the above remarks were made in a different context, 

their observation that the search space which is traversed during learning in a 

recurrent network is much more complex than that of a feed-forward network is still 

useful and important to the examination of the ability of recurrent networks to 

perform sequence processing tasks. If we consider the landscape metaphor for 

describing the processes that underlie dynamical systems, attractors are often far 

more complex than simple fixed points. Given that local minima are a problem in 

traditional feed-forward networks, the complexity of recurrent network state spaces 

and the variety of attractors that lie within them would make the journey to the 

optimum solution much more difficult.

Simplifying the state space by having a sparsely connected architecture does 

little to improve the performance of the KTRL network. A sparsely connected 

architecture has fewer degrees of freedom than a fully connected RTRL architecture. 

This would suggest that the reduction in the dimensionality of the state space does not 

reduce its complexity sufficiently in terms of the density of local minima, different 

type of attractors etc. so as to enable learning to take place. This would suggest that 

the Simple Recurrent Network is better suited to the classification of test data than the 

RTRL network. It is much more reliable at the task of learning and is able to 

generalise what it has learned to test data. The Simple Recurrent Network is derived 

from the standard three layer back propagation network, which it is claimed, is also 

capable of great power and generality.

The Simple Recurrent Network, although it has full interconnectedness from 

one layer to the next (with the exception of connections which run from the hidden 

layer to the context layer), has far fewer connections than an RTRL model. A Simple
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Recurrent Network with two input units, three hidden units, three context units and 

one output unit will have a total of twenty one connections, compared to a RTRL 

network consisting of two units in the input layer and seven units in the RTRL layer 

which has sixty one connections.

This would suggest that, in order to be effective, recurrent networks should 

be as sparsely connected as possible. Each additional connection adds one more 

dimension to the state space which the network traverses whilst attempting to find a 

solution. As a state space increases in dimensionality, the number of possible 

network states increases, thus making the "search" for the state (or states) which 

produce the desired behaviour more complex. This leaves the question of how sparse 

the connectivity can get before the network is incapable of solving the problem (see 

section 5.3). Note that a successful use of the RTRL algorithm (Catfolis 1993) did so 

using networks with relatively few units and a modified form of the algorithm. The 

only successful use of an RTRL model in the simulations described in chapters three 

and four used a network with four RTRL units, whereas other tasks used twenty 

RTRL units. Reducing the number of RTRL units to a similarly low value (five) did 

not improve network performance, which suggests that overfitting was not the 

problem, rather the short term memory requirements of the task and the state space it 

created were too complex for the RTRL algorithm.

The Gamma Model achieves roughly the same rate of success as the Simple 

Recurrent Network, but with a radically different architecture which allows the 

network to develop a short term memory mechanism tailored to the task in question. 

As we saw with the modification of the RTRL algorithm suggested by Catfolis, 

changing the parameters of the memory mechanism can lead to significant differences 

in the behaviour of the network and can often mean the difference between success 

and failure. Thus either the memory mechanism itself finds the optimum parameters 

for a particular task or some external method is found, such as those suggested in 

section 5.3.
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5.2 The Effect of The Learning Algorithm on Learning

On this evidence the RTRL learning algorithm would seem to be a poor 

choice. It only proved to be able to perform one task (XOR with two step delay) 

with any sort of consistency, and performed significantly worse than either the 

Simple Recurrent Network or the Gamma Model on the other three tasks. Some of 

the reasons for these failings were discussed in chapter four, centring on the idea that 

the RTRL algorithm does not develop a short term memory mechanism capable of 

handling sequences of different lengths.

What the RTRL algorithm did demonstrate however is the sensitivity of the 

learning ability of recurrent networks with regard to changes in certain parameters. If 

one considers the resetting of Pÿk values discussed in section 4.3 and the effect that 

this has on the choice of learning rate it is clear that, for a given sequence processing 

task, there will be a range of Pijk reset values which allow the use of higher learning 

rates (see figure 5.2)

Reset Value

R2

R1

Learning Rate
LI L2 L3

Fig 5.2: Graph showing the relationship between learning rate and Pijk reset values
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In Figure 5.2 testing the two different parameters over a hypothetical 

sequence processing task has shown that if the Pijk values are never reset, the 

network is able to learn the sequence for values of the learning coefficient K such that 

K is less than L2. However, if Pijk is reset after a number of trials such that the reset 

value r has a value between R1 and R2 the network is able to learn, furthermore the 

learning may well be faster between the coefficient values L2 and L3, where learning 

would have been less reliable when periodic Pijk resetting had not been in place. 

Unfortunately this did not increase the learning ability of the RTRL network so that it 

would be on a par with the other two models tested.

One way to improve learning in neural networks generally is by the use of 

noise. Amit (1992) makes the point that if the level of noise in a system is too high, 

there is more chance of the network "stepping in the wrong direction". However, 

some levels of noise may aid learning:

"At higher levels of noise [the network] may hop across barriers between adjacent 

minima. In this way noise may be an agent for eliminating the effect of spurious 

states while preserving the retrieval in the stored memories...the barrier for crossing 

from a local minimum to a global one is lower than the barrier for the reverse 

process. This promises that there be a window in noise values for which spurious 

states be de stabilised, while the stored memories remain good attractors." (Amit 

1992 pp 86-87)

In other words, noise allows the network to leave local minima (what Amit refers to

as "spurious states"). However, it is also possible that too much noise could cause

the network to jump out of either the global minimum or a local minimum which

represents a tolerably low error score.

The method of resetting Pijk values as examined in section 4.3 would appear

to fit into this pattern. Similarly, Elman (1993) uses periodic zeroing of the context
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unit outputs to improve learning. In a word in sentence prediction task (the network 

was given a sentence one word at a time and had to predict the next word in the 

sentence) learning was divided into a number of phases:

i) Zero the output of the context layer randomly after either every third or every fourth 

word.

ii) Increase the interval between resets to four or five words (again the exact value 

was chosen at random).

iii) Increase the interval between resets to five or six words

iv) Increase the interval between resets to six or seven words

v) Do not reset at all.

Elman found that by using this method the network was able to learn sequences that it 

was unable to if learning had taken place without zeroing of context unit outputs. It 

was claimed that this approach was analogous to learning with graded data sets (see 

section 5.4). Note however that the period between setting of context layer outputs to 

zero is not fixed and is increased during learning before finally doing away with the 

process altogether.

The reason for this flexibility is due to the nature of the activation function 

used in neural networks. In figure 5.3 we can see that the range of greatest sensitivity 

is when the input to a unit is around zero.
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Figure 5.3: A typical logistic function used to determine neuronal activation. Note 

how the same difference between two sets of inputs can lead to much greater 

differences in output. The difference in output between an input ofO and 5 is much 

greater than between inputs of 5 and 10. (T k f  fvmcfcioÂ  is sKgjoo),

At the start of a typical learning regime, connections are randomly determined 

between a small range. Thus the net input to a unit will tend to be close to zero, with 

the result that at the start of its journey through the state space the network will be in 

the region of greatest sensitivity. As the network learns and connection strengths 

become more strongly excitatory or inhibitory the net input may well move away 

from this sensitive region and changes in the level of activation become harder to 

achieve. A unit will start to receive inputs which are much more strongly excitatory or 

inhibitory, with the result that unit outputs will be pushed towards less sensitive 

regions of the curve. Thus it is much more difficult to cause radical changes in the 

outputs of a network during the later stages of the learning process.

The periodic resetting of unit activations in the context layer to zero (or 

resetting Pijk values in the case of the RTRL model) will also serve to move the 

network towards this more sensitive region of the state space, since resetting causes a 

reduction in net input to units in the hidden layer. This means that there is an
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increased level of flexibility in the system and that the loss of plasticity that occurs 

during the later stages of learning is reduced. Note that the nodes in an RTRL 

network will not be moved towards this sensitive region since the Pyk variable does 

not play a part in determining the activation or output of a node.

5.3 What does this mean for efficient Learning?

The discussion in sections 5.1 and 5.2 above might well be summarised as 

follows: whether or not we succeed, or get trapped in a local minimum depends on a 

number of factors, including how big the steps are through the weight space which 

we allow ourselves, as well as what the shape of the error surface looks like "because 

the error surface is a joint function of the network architecture and the problem at 

hand" (Elman 1993 pp91).

In the above quote, Elman takes the word "architecture" to mean both the 

physical layout of the network (number of layers, number of units per layer etc.) as 

well as the learning algorithm. The physical layout of the network determines the 

dimensionality of the state space, whilst the learning algorithm determines the way in 

which the network moves through the state space.

Thus changing the parameters of the learning rule and modification of the 

network architecture can significantly effect the ability of a neural network to perform 

sequence processing tasks. The picture is further complicated by the fact that one set 

of network parameters may work well on one task, but not on others. If we wish to 

use a neural network to perform such a task one would ideally like a way to search 

through the various network configurations without having to laboriously wade 

through them by hand i.e. testing lots of different types of network parameters until 

you find the best one. Techniques to automate this process have been developed, one 

of which will be described below.
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5.3.1 Adaptive Memory Mechanisms

The main way in which recurrent networks differ from feed forward 

networks is their ability to develop a short term memory mechanism which allows 

them to perform sequence processing tasks. Different tasks require different types of 

memory: some sequences wül be of fixed length, others will be of variable length. 

The output at a certain time may depend on short or long term factors, or a 

combination of the two. It is because of this variability that an adaptive memory 

mechanism is desirable, since it can modify its internal parameters to suit the 

particular task in question.

The limitations of static memory mechanisms were set out by Mozer (1993): 

"Static memory models can be a reasonable approach if there is adequate domain 

knowledge to constrain the type of information that should be preserved in the 

memory". However many problem domains may not have sufficient knowledge 

known about them for this to take place. This means that adaptive memory 

mechanisms are more desirable since they can overcome the lack of knowledge by 

building a tailored short term memory mechanism during learning.

This class of short term memory mechanisms is under exploited by 

researchers. At present the most popular type of adaptive memory mechanism is de 

Vries and Principe's gamma model, which was described (along with modifications 

suggested by other researchers) in chapter two (see section 2.1.8 for further details). 

An area which is relatively unexplored however is the use of Gamma Memory 

structures with different types of content. Mozer (1993) describes six different types 

of memory content (see chapter two section 2.3 for further details). Gamma memory 

networks to date have contained the activations from within the memory structure 

from the previous time step. However it is possible to use a non linear transformation 

function on either the current input to the network or the contents of the short term 

memory mechanism.
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Furthermore the memory could hold a completely different type of content 

such as the output of the network from the previous time step. Mozer states that the 

latter type of memory content would be particularly useful for auto predictive tasks 

i.e. one where the network is given an input at time t and the desired output is the 

input at time t+1. Given that all but one of the tasks used in this comparative study 

are of this type^ (and this type of prediction task is quite a common one in general) it 

would seem that this type of memory mechanism would be particularly useful.

5.4 Can we improve Learning without changing the network?

In the above sections we have looked at various means of improving the 

ability of recurrent neural networks to perform sequence processing tasks. This has 

been attempted by modifying some aspect of a particular network architecture or 

learning algorithm. However, it is worth noting that there is another possibility for 

improving network performance: by paying closer attention to the data sets on which 

the network is trained and tested.

One such method was proposed by Elman (1993). In the same study in which 

he examined the effect of periodically zeroing the outputs of the context layer he also 

looked at the effect of grading data sets on learning performance. The Simple 

Recurrent Network model used proved to be a poor performer on a data set which 

consisted of simple and complex sentences all mixed together. A new training method 

was developed. This consisted of live separate databases containing different

iThe obvious exception is the two step delay XOR problem, where the desired 

output of the network at time t is the solution to the input pair shown to the network 

at time t-2.
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proportions of simple and complex sentences^. Each database was presented to the 

network five times and was then discarded. The contents of each database were as 

follows:

i) 10,000 simple sentences.

ii) 7,500 simple sentences and 2,500 complex sentences.

iii) Simple and complex examples in equal measure.

iv) 2,500 simple sentences and 7,500 complex sentences.

v) 10,000 complex sentences.

Whereas in the first training regime the network failed to learn the task, 

presenting graded data sets allowed the network to leam. This finding was 

independent of learning rate, initial conditions, number of hidden units etc.

F.iman attributes the success of what he refers to as incremental learning to the 

fact that grading data sets allows the network to organise its state space. As we have 

seen, learning in neural networks involves the journey through a state space of n 

dimensions (where n is the number of connections in the network) from a random 

starting point to a point where the network can perform a task perfectly or within 

some margin of error. When the network starts learning simple sentences the portion 

of the state space which yields a satisfactory solution is much smaller than in non 

incremental learning, since only three of the four sources of variance are present^. 

This method of state space restriction also applies when the short term memory

2ln this problem, complexity stems from the fact that sentences sometimes contained 

"multiple embeddings in the form of relative clauses (in which the head could either 

be the subject or object of the relative clause). Complex sentences contained relative 

clauses, simple ones did not" (Elman 1993).

^Grammatical category, number of words in sentence and verb argument type are 

present. Long distance dependencies are only found in complex sentences.
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mechanism is restricted (see section 5.2). Either way the network learns a set of 

subgoals which can then help to guide it towards the final goal later in learning, 

avoiding local minima at the same time. In learning with non graded data sets, the 

solution space is very large and may contain lots of different types of attractor, many 

of which will be local minima.

Elman's findings also lead to questions about the problem of selecting data 

sets in general. Whilst a small sample size increases the risk that the sample will not 

be a good representation of the population as a whole, larger data sets may increase 

the risk that the network will have a restricted ability to generalise (since ambiguity 

decreases as sample size increases). Elman also proposes that neural networks are at 

their most flexible during the early stages of learning because of this ambiguity.

5.5 Summary

In this chapter an attempt has been made to draw together the results of the 

experiments described in chapters three and four, together with the aims of the thesis 

set out in section 1.4. The conclusions drawn are as follows:

• Architectures which are more sparsely connected are better than those which are 

more fully connected. The fully connected RTRL network is the poorest 

performer in the comparative study described in chapter three, learning and 

generalisation in this model was significantly worse than either the Simple 

Recurrent Network or the Gamma Model.

• At the same time the network needs to be of sufficient complexity to be able to 

capture the properties of the data it is trying to leam. Because of this a fully 

connected RTRL network is sometimes able to outperform a sparsely connected 

RTRL network. For example see the comparison between a fully connected and
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sparse RTRL network over the finite state grammar task (Chapter Four Table 

4.6).

• Once the network is able to leam a data set, increasing its complexity does not 

improve learning further. If anything increasing architectural complexity will lead 

to a poorer performance. For example see the comparison between a fully 

connected and sparse RTRL network over the XOR with two step delay task 

(Chapter Four Table 4.4).

• Learning rules which are non-local perform worse than those leaming mles 

which change according to local values only. For example the RTRL algorithm 

which is non-local is outperformed by the Simple Recurrent Network and the 

Gamma Model, whose leaming mles are more local (see chapter three).

• Restricting the memory capacity of a leaming mle (by periodic resetting of the 

Pijk values of the RTRL algorithm for example) can lead to an improvement in 

performance over the same architecture. For example the superior performance of 

the Catfolis implementation of the RTRL algorithm against the original RTRL 

algorithm described in chapter four section 4.3.

• Evidence from sections 4.2 and 4.3 would seem to suggest that the leaming mle 

has the greater effect oh network performance. The improvements in the 

performance of the RTRL algorithm were greater when the learning mle was 

modified than when the architecture was modified. The modified leaming mle 

performed significantly better over two data sets (see Chapter Four tables 4.12 

and 4.13) as against one for the RTRL network with modified architecture 

(Chapter Four Tabic 4.4). Moreover, at no time did the original RTRL algorithm 

outperform the modified leaming algorithm. This was not the case with the 

modified architecture (see third point above).

• The fact that modification of the RTRL networks architecture or leaming mle 

alone does not raise the level to that of the Simple Recurrent Network or the 

Gamma Model suggests that recurrent networks should be relatively sparsely 

connected and have a non local leaming mle to be most effective.
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Chapter Six. Further Work

6.1 An Aside on Genetic Algorithms

Neural networks are not the only type of computer program which adapt 

themselves to perform a particular task. There exists another class of programs called 

Genetic Algorithms which do this as well. Just as neural networks can be said to 

"leam" to perform a particular task, genetic algorithms can be said to "evolve" to 

perform a particular task. Genetic algorithms can be defined as follows:

"Genetic algorithms are search algorithms based on the mechanics of natural selection 

and natural genetics. They combine survival of the fittest among string stmctures 

with a stmctured yet randomised information exchange to form a search algorithm 

with some of the irmovative flair of human search." (Goldberg 1989 ppl)

What does this mean in practice? Assuming that we want to perform a 

particular task, the first step is to create a set of "creatures" (in our case computer 

programs) to perform the task. The characteristics of each creature can be encoded in 

a binary string, analogous to human DNA. When using genetic algorithms, each 

string can be viewed as a single approach to tackling a particular probleriL Each bit 

within the string represents various objects which are important to the approach 

represented across the string as a whole. Let us take as a simplified example^ a 

population of four strings:

1, 01101 

2,11000 

3, 01000

iThis example is taken from Goldberg (1989)
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4, 10011

Each string then attempts to perform the task set. Its success (or otherwise) in doing 

this is quantified by a fitness function, as shown in table 6.1

String Number String Fitness % of Total

1 OlIOl 169 14.4

2 11000 576 49.2

3 01000 64 5.5

4 10011 361 30.9

Total 1170 100.0

Table 6.1 Sample strings and fitness values

Assuming that none of the strings above represent a satisfactory solution, a new 

generation of creatures are needed. These are created by using the following 

operators:

Reproduction: Strings become involved in the reproduction process by means of their 

fitness score. Sufficient numbers of strings are chosen until there are enough of them 

to breed a new generation. The probability of a string being chosen is equal to the 

percentage of total fitness it achieved. In our example, string 2 would have a 

probability of .492 of becoming involved in this process.

Crossover: This is the means by which new strings are created. A point along the 

string length is randomly chosen. If we have a string population of length 1, 

partitioned at point p, the first new string will contain its original code up to point p 

and the portion of the second string between p+1 and 1. If in the above example
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strings 2 and 4 were chosen for crossover, with the partition between the third and 

fourth bit the process would look like this

Old Strings New Strings

2 =  110100  2 ’ =  11011

4=100111 4' = 10000

Mutation: This is a simple operation involving random "flipping" of bits. If mutation 

were to be applied to string 4' for example (and the third bit was randomly selected 

for mutation) the result would be as follows:

Before Mutation After Mutation

4' = 10000 4' = 10100

There is much debate in the genetic algorithm hterature concerning the 

usefulness of different evolutionary processes, the contribution of mutation to the 

evolutionary process and so on. The point here is to illustrate the general principles of 

genetic algorithms and their operation.

6.1.1 Genetic Algorithms and Recurrent Networks

There has been much crossover between research into genetic algorithms and 

neural networks, using the former to improve the performance of the latter. This has 

been attempted in two ways: firstly by using a genetic algorithm as leaming mle. 

Secondly by using a genetic algorithm as a means of modifying the network 

architecture. An example of these methods is the GNARL^ algorithm created by 

Angeline, Sanders and Pollack (1994).

^The acronym stands for GeNeralised Acquisition of Recurrent Links.
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The algorithm works as follows: a population of networks are randonily 

generated and tested. The fittest 50% are selected to breed the next generation (see 

section 5.3.1). The fitness function is some error score when the actual output of the 

network is compared against the desired output. Angeline, Sanders and Pollack quote 

three different error scores: sum of square errors, sum of absolute errors and sum of 

exponential absolute errors. However they claim that the choice of fitness function 

does not effect the mechanics of the algorithm. During the breeding process, the 

level of mutation is determined by how close the parents are to being a solution to the 

task. Networks which are far away from a solution are more likely to undergo severe 

mutation. Conversely, networks which are close to a solution are more likely to 

undergo slight mutation. Thus the search undertaken by the algorithm is coarse 

grained to begin with, but becomes more fine grained as it gets closer to a solution. 

This is defined by a variable called the temperature of the parent T(T|):

r(T/) = i - ^
J  max (6.1)

Where f(T|) is the fitness level of the parent and fmax is the maximum fimess for the 

task.

Weight updates are accomplished on a method based on perturbation of 

connection strengths with gaussian noise. However GNARL's update algorithm 

compensates for the tendency of this method to inhibit the offspring's ability to 

outperform its parent. Firstly the instantaneous temperature of the network is 

computed:

f(T7) = C/(0,1)1(77) (6.2)

Where U(0,1) is a uniform random variable between 0 and 1. This term is then 

substituted into the following weight update rule:
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w = w + N{0,aT{rf)) Vw e 77 (6.3)

Where a  is constant and N() is a gaussian random variable.

Structural changes are concerned with changing the number of hidden units 

and the level of connectivity between all nodes. In order to avoid radical changes to 

the network new connections have an initial value of zero and new units have no 

incoming or outgoing connections. These features are added in future generations.

^m in  + I / [ 0 ,1 ] T ( 7 7 ) ( A ^ - A ^ „ ) (6.4)

Where Amax is the maximum number of nodes or links added or deleted and Amin is 

the minimum number of nodes or links added or deleted.

This system was trained on a set of regular languages (See table 6.2). Each 

language was shown to the network as a series of positive and negative examples.

Language Description

1 1*

2 (1,0)

3 No odd length 0 strings anytime after an odd length 1 string

4 No more than two G's in a row

5 An even number of IQ's and OTs pairwise

6 (Number of I's - number of G's) mod 3 = G

7 0*1*G*1*

Table 6.2. Languages learned by the GNARL algorithm. * indicates that a character 

can be either aOoral .
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Two sets of experiment were performed. One using sum of absolute errors as a 

fitness measure, the other using sum of square errors as a fitness measure. The 

results are shown in table 6.3.

Language Evaluations 

(SAE) .

% Accuracy 

(SAE)

Evaluations

(SSE)

% Accuracy 

(SSE)

1 3975 100.00 5300 99.27

2 5400 96.34 13975 73.33

3 25050 58.87 18650 68.00

4 15775 92.57 21850 57.15

5 25050 49.39 22325 51.25

6 21475 55.59 25050 44.11

7 12200 71.37 25050 31.46

Table 6.3: Speed (Number of generalisations) and accuracy of the GNARL method 

over the languages described in table 6.2

Unsurprisingly, the algorithm was most efficient at leaming the simplest 

grammar from the set (number one). This was the case both in terms of the number 

of generations needed to evolve to an optimum solution and the percentage accuracy 

of said network on the task.

An additional feature of networks evolved using the GNARL algorithm is that 

the complexity of the networks increased as they evolved. An example of this can be 

found when GNARL was used to perform what was termed an "Enable-Trigger 

Task". This task involves the following rule. For two inputs (a,b) and a starting state 

SI, the network switches to state S2 when a=l and remains in this state until it is 

triggered by b=l, when the network has a desired output of 1 and reverts to state SI. 

For example the input stream [(0,0) (0,1) (1,1) (0,1)] will have the desired output [0, 

0,0, 1]. The fittest members of two generations are shown in figure 6.1.
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(a) (b)

o

o
Figure 6.1: Architectures of two networks evolved by the GNARL algorithm to solve 

the "enable-trigger task”. Black circles represent bias units, shaded circles represent 

units which have feedback connections to themselves.

In the above diagram (a) represents the fittest architecture of generation I. (b) 

represents the fittest architecture of generation 765. This network solves the task for 

all strings of length eight. Note that even at generation 765 the network is still 

evolving since we can see that two units have no connectivity. This is because one of 

the rules for breeding new offspring states that units which are added at generation g 

may not be connected until generation g+1 at the earliest.

6.2 Some Guiding Principles for Recurrent Network Development

In terms of the recurrent networks themselves, leaming rules where the 

change in one weight is affected only by local considerations gives a learning and 

generalisation performance at least as good as non local leaming rules such as RTRL,
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and has the added advantage of being less computationally expensive. Following on 

from that this thesis has shown what has been stated elsewhere in the literature, that 

recurrent networks whose architectures are complex (lots of units, full 

interconnectivity etc.) are less efficient than their more sparsely connected relatives.

The key to the complexity of a recurrent network appears to lie in its hidden 

layer where, during learning, the network attempts to develop an internal 

representation of some particular task. If the hidden layer is too small then the 

network will not be able to develop this internal representation. If the hidden layer is 

too large then although the network will theoretically be able to develop this internal 

representation, the state space generated will be very complex, with a much higher 

probability that the network will get stuck in a local minimum during learning.

It would appear that if there is a single thread running through this thesis it is 

the relationship in successful learning systems between simplicity and complexity. 

Given an identical size in terms of the number of hidden units, the networks 

examined in chapters three and four differ considerably in terms of the complexity of 

their state spaces. Let us take two hypothetical recurrent networks N1 and N2, where 

the state space of N1 is less complex than the state space of N2. If N1 and N2 both 

have state spaces that are rich enough to learn a given set of input - output relations, 

then N1 is more likely to be successful at actually learning this set of relations. This 

is because the more complex state space of N2 means that the network is more likely 

to encounter local minima during learning.

Thus the failure of the RTRL network to perform as well as the Simple 

Rccuiient Network or the Gamma Model is not because its state space is 

insufficiently complex. Indeed so great is the problem of having an overly complex 

state space that improved methods of state space traversal (i.e. using more powerful 

learning algorithms) are not sufficient to overcome this handicap.

Similarly Elman's (1993) set of experiments concerning the Simple Recurrent 

Network demonstrated how learning of simple concepts enabled the network to learn 

more complex concepts which might have otherwise been beyond its comprehension
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had the order of learning stayed random as in most neural network learning regimes. 

Similarly Angeline, Saunders and Pollack (1994) showed that the recurrent networks 

evolved by their genetic algorithm system started as simple networks, but became 

iiioit: complex as tlieir evolution progressed. When during the evolutionary process 

complex and more simple architectures fought it out the simpler architecture always 

came out on top.

Comparative studies described here and elsewhere show that recurrent 

networks which use adaptive memory mechanisms (e.g. deVries and Principe's 

Gamma Model) are perhaps the most promising avenue of research, since they give 

rise to networks which are biologically plausible (Bressloff 1993) and satisfy the 

problem of attempting to develop an appropriate short term memory mechanism for a 

particular task (since the network does this for us). When using the gamma memory 

structure, an interesting question might be just what should the outputs of the 

memory structure feed forward to? The search for biological plausibility and the 

results of the comparative studies carried out would suggest that such a structure 

would be sparsely connected and perhaps modular in design, such as the CALM 

algorithm developed by Murre (1992). Associated with such architectures are 

learning rules where weight changes in one particular part of the network are the 

function of local information only.

Although these guiding principles will be useful rules of thumb for 

researchers to create new recurrent network models or improve on old ones, the sheer 

diversity of recurrent network types means that the search space to be explored is still 

very large. However new techniques, particularly genetic algorithms, can be used to 

automate the process. Accordingly, when neural networks are being developed, it is 

no longer sufficient to talk of training as being the change in connection strengths by 

a predetermined learning rule between units in an otherwise fixed architecture as 

being the whole picture.

The two approaches outlined above represent processes where the system 

starts simple and goes complex. Of course it is possible that starting from a position
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of complexity and moving towards simplicity will give rise to a satisfactory solution. 

This route is represented by learning algorithms which represent pruning strategies. 

However, the first approach (from simplicity to complexity) is superior since with a 

pruning algorithm learning may not succeed because the State space of tlie existing 

network is too complex or because the state space is not complex enough (i.e. there 

are too few hidden units). Thus the guiding principle for recurrent network 

development would appear to be this: Start simple, then get as complex as you need 

to be, but no more.

6.3 Speculations (:): A New metaphor for Recurrent Network Training

All neural networks attempt to solve a particular problem by learning i.e. by 

forming an internal representation of the data with which they have been presented. 

Neural networks have proved to be a powerful technique for solving many different 

types of non-trivial problem. However this study has shown that the parameters of 

the network can often determine if learning has been successful or not. A given 

application may fail, not because a neural network is unable to perform a particular 

task, but because the wrong parameters were chosen. Furthermore the nature of the 

data set used can also increase or decrease the probability of success or failure.

It therefore seems appropriate to take on board these results and integrate 

them into a new metaphor for developing neural networks, whereas previously the 

metaphor has been one based on learning, die proposed metaphor is based on a 

notion of agency. The definitions of agency are many and varied. Here an agent is 

deemed to be an object, operating in an environment such that it can understand 

aspects of its environment and can generalise these to novel situations. Agent is a 

broad term which can include both natural (e.g. humans, animals) and artificial 

objects (e.g. robots).
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Instead of speaking of a neural network learning a given task the agent 

metaphor instead speaks of development. This can be broken into three connected 

stages:

1. Evolution: In the real world no agent starts from scratch. Almost all animals have 

non-leamed behaviours (instincts) which are encoded in its genes and are the result of 

the evolutionary process. The same could also be said for the form of its body, which 

is adapted so that an agent is best able to move around the environment, spot dangers 

and exploit whatever resources are available. In the same way genetic algorithms 

could be used to determine the architecture (and/or the connection strengths) of a 

neural network. Research has shown that genetic algorithms can be used to get round 

some of the problems found when using recurrent networks (Angeline, Saunders and 

Pollack 1994) and are an elegant way of finding the optimum parameters of a 

network.

2. Tuition: In a world of intelligent agents, it is rare for a new agent to be left to find 

its way in the world without help from more experienced peers. Humans learn 

complex concepts with the help of others, starting with relatively simple concepts, 

then progress to more complex ones, using the learned simple concepts as building 

blocks. The work of Elman (1993) shows that this approach can also be extended to 

recurrent networks, where a network that was presented with graded training data 

was able to learn a task in which it was unable to learn the same, ungraded, data.

3. Training: This is the traditional learning rule based part of the process. This may or 

may not include restricting the short term memory mechanism. As Elman (1993) 

noted, presenting graded training data has the same effect as restricting the short term 

memory mechanism. The precise choice will largely depend on the "gradability" of 

the data set. If the data is easily gradable ( for example in Elman's study, complexity 

was judged by the presence or otherwise of embedded clauses in a sequence of
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words) then this is an option. However the alternative method of restricting the short 

term memory mechanism is more attractive for two reasons: not all data is easily 

classified in this way, and restricting the short term memory mechanism offers a way 

of using this technique on data whose complexity is both easily or not so easily 

defined. Furthermore restricting the short term memory mechanism can be seen to be 

analogous to the modifications to real brains in the formative stages of their 

development, and is therefore more plausible from a physiological perspective.

This new metaphor gives rise to the development cycle displayed in figure

6 .2 :
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Does one of the 
networks learn?

No

Yes

Breed a new generation 
of networks from 
existing population

Train networks using 
graded data OR 

increase short term 
memory size

Stop

Start with a population 
of networks

Figure 6.2: A new development cycle for recurrent neural networks based on Agent 

Theory.

Note that although the agent theory metaphor may apply there are in fact a 

number of different development cycles that could be tried (see section 6.5). 

According to the agent metaphor the recurrent network is a creature attempting to 

perform a particular task. The ability of the network to perform the task is a measure
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of its evolutionary fitness. Furthermore the short term memory mechanism of the 

network grows more powerful during learning.

6.3.1 The New Metaphor and Amit's Criteria

In chapter one, a shopping list of the desirable properties of a recurrent 

network was set out by Amit (1992). How does the agent theory metaphor stand up 

to some of these demands?

Biologwal Plausibility: The agent metaphor is a much more holistic approach than 

traditional neural network learning paradigms. Taking into account evolution (the use 

of genetic algorithms) and allowing expert knowledge to facilitate development 

(grading of data sets), Happel and Murre (1994) showed that neural networks 

evolved using genetic algorithms often give rise to architectures which resemble some 

aspect of real brains, in their case "The best performing network architectures seem to 

have reproduced some of the overall characteristics of the visual nervous system". 

Also the use of genetic algorithms seems to lead to better performance (see the 

"Emergent Behaviour" section below) and is cited by Happel and Murre as to why 

"for many vital learning tasks in organisms only a minimal exposure to relevant 

stimuli is necessary" (Happel and Murre 1994 p 985).

Emergent Behaviour and Potential for Abstraction: These two categories have been 

linked together because of the high degree of overlap. A key aspect of the emergent 

behaviour of a neural network is the ability of the network to successfully perform a 

task on novel data (i.e. its potential for abstraction). The guidelines suggested for 

developing networks in the future (sparsely connected networks, local learning rules, 

adaptive short term memory mechanisms) give rise to better generalisation abilities. 

Furthermore, using genetic algorithms to develop network architectures "can not only 

enhance learning and recognition performance, but can also induce a system to better
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generalise its learned behaviour to instances never encountered before" (Happel and 

Murre 1994 p 985).

Freedom From Homunculi: This criterion is concerned with the need for the system 

to adapt itself to a particular task without the need for some kind of overseer. It could 

be argued that using genetic algorithms, grading data sets and restricting the short 

term memory mechanism during the early stages of learning are forms of homunculi. 

However, in developing a neural network in these fashions, the parameters of the 

network are set implicitly, not explicitly. It may well be that an architecture evolved 

through the use of a genetic algorithm will be sparsely connected, but this is because 

the dynamical properties of the network mean that such an architecture is best suited 

to the particular task, not because it has been explicitly programmed to do so. 

Similarly it is because of the network dynamics that restricting short term memory 

and grading the data set gives rise to improved performance. There may be problems 

where such an approach is less necessary.

Parallel Processing Hardware: A  neural network will need to have a high degree of 

parallel processing if it is not to take up an unreasonably large amount of computing 

time to perform a particular task. Furthermore the ability of real brains to perform non 

trivial tasks very quickly means that this is an important requirement if we are 

particularly interested in making the network as physiologically plausible as possible.

Associativity : This refers to the ability of a network to combine similar inputs into a 

single representation for the purposes of cognition. Taking an example from visual 

processing, an individual object may look different when viewed from different 

angles, but it is the same individual and needs to be recognised as such. As with 

parallel processing, a neural network will need to have this ability if it is to be used to 

perform non trivial tasks. Again it is an important ingredient of physiological and 

psychological plausibility.
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6.4 Speculations (il): Future Research

The most obvious avenue of future research is to use the theoretical 

framework in section 6.2 in a system for creating recurrent networks. Attempting to 

do so immediately creates questions: for example the relationship between the 

evolution of network architecture and the presentation of graded data sets. One way 

to do this is shown in figure 6.2. However other combinations are possible, as 

shown in figure 6.3. Here network fitness is judged at each level of difficulty, so that 

a random sample of networks are the starting population at the first level of difficulty, 

the fittest networks at the first level of difficulty are the starting population at the 

second level of difficulty and so on. This cycle continues until all data sets have been 

successfully learned. Thus the philosophy of starting with simple problems is also 

applied to the evolution of the network architecture as well as connection strengths.
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Does a 
network learn?

No

Yes

Move to data
 with next level

of difficulty
last data set 

hardest?

Yes

Finish

Start with a population 
of networks

move to next level of 
difficulty

Breed New generation 
of networks

Train networks with a 
dataset

Figure 6.3 An alternative development cycle for recurrent neural networks based on 

Agent Theory.

153



An additional area of research would be to examine the extent to which the 

state of a recurrent network is determined by the genetic algorithm or by the learning 

rule. Is the genetic algorithm simply to be used to create the architecture with no role 

in determining connection strengths, does the genetic algorithm determine connection 

strengths alone or is a more hybrid approach required? Another question is concerned 

with the overall plasticity of the system: is the whole network modifiable by genetic 

algorithm or is it only part modifiable (for example we might wish to use a particular 

type of memory structure, but the rest can be created by the evolution of the 

network)?

What these questions do demonstrate is that recurrent neural networks 

represent a powerful tool for sequence processing tasks and that their limits have not 

yet been discovered. It is clear that much research stiU needs to be done.
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Appendices

Although the research described in this thesis was performed using the 

Neuralworks simulator, some source code still had to be written in order to create 

RTRL and Gamma networks. The learning and summation functions created are 

presented here. All code was written in C and uses structures found in the package 

used in conjunction with Neuralworks, called User Defined Neuro Dynamics. 

Comments about the code can be found within the body of code itself and are 

bracketed with /* */ in the standard C format.
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Appendix 1: The Gamma Model Learning Rule

The following code implements the gamma learning rule described in 

equations 2.49 and 2.50

/* this is the learning rule for the Gamma memory algorithm */

#if defmed(ANSI_HEADER)

NINT um_l_gamma( USR_PE *upep, USR_CN_HDR *uchp, USR_LYR *ulp) 

#else

NINT um_l_gamma(upep, uchp, ulp) 
USR_PE *upep;
USR_CN_HDR *uchp;
USR_LYR *ulp;
*/

/* pointer to current PE */
/* pointer to connection header */
/* pointer to current layer i.e one above

/* gamma layer */

#endif

{
USR_PE *firsti;
USR_PE *curpe;
USR.PE *kpe;
USR_PE *ppe; 
USR_CONN *connection; 
USR_CONN *ct;

USR_CN_HDR *header;

/* pointer to first PE of i group */
/* pointer to offset to conn table for first i */
/* pointer to PE for alpha calculation */

/* pointer to previous PE for alpha calculation */
/* pointer to connection(s) from gamma layer */

/* pointer to connection table (for backprop */ 
/♦calculation) */
/* pointer to connection header at gamma + 1 */

REAL totsum, ksum, alpha, oldalpha, deltai, Icoef, wv;
NINT gape, ker, connoff, outnodes, k, i, inp, inputs, sizewts, wx;

if(IS_POSTLYR) { 
return (0);

}

if ( IS_INIT ) return (0); 
*/

if(IS_PRELYR) { 

first_time_flag = 1;

/* do little on postlayer call */
/* end of if (IS_POSTLYR) statement */

/* do nothing on init (handled by Neuralware) 

/* IS_PRELYR does all the work! */

/* set first_time_flag to TRUE to force */ 
/♦PRELYRcall */

inputs = ulp->l_prev->l_prev->num_pes;
k = (ulp->l_prev->num_pes / inputs) -1; /* calculates kernel size */
firsti = ulp->l_prev->l_ep; /* first node in gamma layer */
sizewts = ulp->functions.size_wts; /♦ size to skip connections in hidden layer ♦/
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/* this is the i loop, which loops through the input lines */ 

for (i=0; i < inputs; i++){

totsum = 0; /* accumilator for total error (output layer) refers to m loop */
curpe = ulp->l_ep; /* initialise pointer to first PE in hidden layer */
connoff = i * (k-Hl); /* offset to comi table for flrsti */

/* we are now at the m loop, which loops through the nodes in the output layer */

for (outnodes = 0; outnodes < ulp->num_pes; outnodes++, curpe = curpe- 
>pe_next) {

kpe = firsti; /* pick up first node in ith kernel */
ksum = 0; /* accumulator for delta mu calculation */
header = curpe->io_wtoff; /* connection header for current (m) hidden layer*/

/* node */
connection = &header->conn_table[0]; /* first connection for this npde */

UPDWXP(connection, sizewts); /* to skip bias MAKE SURE IT'S
/* CONNECTED!!! */

/* the following loop skips through the gamma layer connections of the current */
/* (m) node skipping connections to previous gamma kernels */

for (wx = 0; wx < connoff; UPDWXP(connection, sizewts), wx++);

/* now we start the k loop, which calculates a separate value for all m */
/* note that gape = 1 is starting point because alpha of first PE in kernel */
/* is always = 0 so we skip connections and alpha for k=0 */

for (gape = 1 ; gape <= k; gape++) { , . * /
UPDWXP(connection, sizewts); /* step through k connections */
kpe = kpe->pe_next; /* skip to next node in kernel */
ksum += connection->weight * kpe->des_val;
} /* end of k loop */

totsum += curpe->err_val * ksum; /* e * f  taken from err_val via control 
strategy

} /* end of m loop */

deltai = LC0EF3 * totsum;

/* now we can do the alpha calculation for each PE in the gamma layer */
/* checking where each kernel begins, this value is to be used in the */
/* next pass, i he alpha for the first unit in a kernel = 0 remember to */
/* store kernel size in L0CEF3 mu is stored in kpe->errfac alpha is stored */
/* in kpe->des_val */

oldalpha = 0.0; /* set up for kernel calculation */
ppe = firsti; /* first node in kernel */
kpe = ppe->pe_next; /* second node in kernel */

for (inp = 0; inp <= k; inp++) { , , */
firsti->err_fac += deltai; /* update mu, stored for each umt in */

/* gamma layer */ 
if (firsti->crr_fac < 0.0) firsti->crr__fac = 0.0; 
if (firsti->err_fac > 2.0) firsti->err_fac = 2.0;
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firsti = firsti->pe_next; /* skip first i on, leave pointing at first */
/* node of next kernel */

} /* end of inp loop */

for (ker = 1 ; ker <= k; ker++) {
alpha = (((1 - kpe->err_fac) * kpe->des_val) + (kpe->err_fac * oldalpha)) + 

(ppe->out_val - kpe->out_val); 
oldalpha = kpe->des_val;

kpe->des_val = alpha; /* store for next set of calculations */
ppe = kpe; /* move along to next units in kernel */
k ^  = kpe->pe_next;
} /* end of k loop */

} /* end of i loop */
retum(O);
} /* end of PRELYR processing */

/* the following is done for every PE! This is normal processing */ 

if (first_time_flag) {
ulp->pe_kcur = upep; /* this forces a postlayer call (needed for updates!) */ 

first_time_flag = 0;
} /* end of if (first_time_flag) statement */

/* This code calculates the backprop learn and weight update for the hidden layer */
/* and has been lifted directly from usermath.c */

Icoef = LCOEFl * upep->err_val;

sizewts = ulp->functions.size_wts;

for ( wx = 0, ct = &uchp->conn_table[0];
wx < uchp->num_conns; wx+h-, UPDWXP(ct,sizewts) ) { 

if ( (ct->flag & (CN_DISABLEDICN_WT_MASK)) != CN_VAR ) 
continue; /* Not a variable weight */

/* compute the weight change */ 
wv = Icoef * ct->src_pe->out_val + LC0EF2 * ct->last_dw; 
ct->last_dw = wv; 
ct-> weight += wv;

}

/* end of normal processing */ 
retum(O);
}
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Appendix 2: The Summation Function for Gamma Kernels

This code is to simulate the summation function for units in a gamma kernel 

described in equations 2.47 and 2.48

/* this is the summation function for the gamma layer */
/* it is largely based on the sununation function given in usermath.c */
/* with the addition of an additional if / else if function at the */
/* end of the code, which represents equations 41 and 42 in the */
/* De Varies and Principe paper */

#if defmed(ANSLHEADER)

NINT um_s_gamma( USR_PE *upep, USR_CN_HDR *uchp, USR_LYR *ulp) 

#else

NINT um_s_gamma(upep, uchp, ulp) 
USR_PE *upep;
USR_CN_HDR *uchp;
USR_LYR *ulp;

#endif

/* pointer to current PE */
/* pointer to connection header */

/* pointer to current layer */

/* connection table for current PR */

NINT wx, wf, sizewts;
REAL accum;
USR.CONN *ct;

if(IS_INIT) 
return (0);

if (IS_PRE_POST) 
return (0);

if (uchp->num_conns == 1) { 
ct = &uchp->conn_table[0]; 
upep->sum_val = ct->src_pe->out_val;

} else { 
accum = 0.0;
sizewts = ulp->functions.size__wls; 
for (wx = 0, ct = &uchp->conn_table[0];

wx < uchp->num_conns; wx++, UPDWXP(ct,sizewts) ) { 
wf = ct->flag;
if ( (wf & CN.DISABLED) != 0) continue; 
if (upep == ct->src_pe)

accum += (ct->src_pe->tm_val * (1 - upep->err_fac)) ; 
else

accum += (ct->src_pe->tm_val * upep->err_fac); 

upep->sum_val = accum;

}
retum(O);

/* end of if (uchp->num_conns ==1) statement */
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Appendix 3: The Original RTRL Algorithm

The following piece of code impliments the original form of the RTRL 

algorithm as devised by Williams and Zipser (1989) and as described in section 2.1.7 

of the literature review.

/* this is the learning mle for the RTRL algorithm */

#if defmed( ANSI_HE ADER)

NINT umj_rtrl( USR_PE *upep, USR_CN_HDR *uchp, USR_LYR *ulp)

#else

NINT um_l_rtrl(upep, uchp, ulp) 
USR_PE *upep;
USR_CN_HDR *uchp; 
USR_LYR *ulp;

/* pointer to current PE */ 
/* pointer to connection header */

/* pointer to current layer */

#endif

{
USR_PE *pel; 
USR_CN_HDR *wap2; 
USR_CONN *ctw; 
USR_CONN *ctp;

/* pointer to other nodes for P(i j,k) reference */
/* pointer to weights table for above node */
/* pointer to connections table in above Header */ 
/* pointer to incoming connections for this node */

NINT sizewts, wx, othems, iw, rtrlwts; /* mainly counters except sizewts */ 
REAL sum, errsum; /* accumulators, one for P(i j,k) calculation, other for weight */

if(IS_PRELYR) { 
first_time_flag = 1 ; /* set first_time_flag to TRUE to force POSTLYR call */ 
return (0); /* do little on prelayer call */

} /* end of if (IS_PRELYR) statement */

if ( IS_INIT ) return (0); /* do nothing on init (handled by Neuralware) */

/* IS_POSTLYR updates the P(ijk) with the newly calculated ones */

sizewts = ulp->functions.size_wts; /* for UPDWXP (moves pointer over */
/* connections) */

if(IS_POSTLYR) { 
pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) */

for (othems = 0; othems < ulp >num_pes; othems++, pel = pel->pe_next) { 
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */

for (wx = 0 ;
wx < wap2->num_conns; wx-H-, UPDWXP(ctw, sizewts)) {
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ctw->weights[0] += ctw->weights[l]; /* update weights */
for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts++) { 

ctw->weights[2 + (rtrlwts * 2)] = ctw->weights[3 + (rtrlwts * 2)];
} /* end of rtrlwts (P(i j,k) loop */

} /* end of wx (connections) loop */
} /* end of othems (nodes in RTRL layer) loop */

retum (0);
} /* end of if IS_POSTL YR statement */

if (first_time_flag) {
ulp->pe_kcur = upep; /* this forces a postlayer call (needed for updates!) */

first_time_flag = 0;
} /* end of if (first_time_flag) statement */

/* START OF MAIN CODE (but note sizewts set up above)
/* Neuralware provides the i-loop, looping over all RTRL nodes calling this routine*/ 
/* once for each one */

/* j-loop, loop over all incoming connections to this PE (node)-recurrent */
/* and upwards */
/* ctp points to the connections */

for (wx = 0, ctp = &uchp > conn_table[0];
wx < uchp->num_conns; wx++, UPDWXP(ctp, sizewts)) {

pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) */
errsum = 0; /* accumulator for weight u^ate  sum (at end of j loop) */

/* k-loop, loop over all other RTRL nodes, pel starts at the first and */
/* skips down through the linked list (pe_next) */

for (othems = 0; othems < ulp->num_pes; othems++, pel = pel->pe _next) { 
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */
sum = 0; /* accumulator for P(ijk) calculation */

/* skip the input weights (1-loop is over RTRL nodes only) */
/* skipping by looking for a connection FROM a node in the same layer */

while ( ctw->src_pe->io_layerx != ulp->l_selfx) UPDWXP(ctw, sizewts);

/* 1-loop, over RTRL nodes, sum of weights(k,l) * P(i j,l) */
/* P ( i j i)  are stored after weight and delta-weight (->weights[0] and [1]) */
/* Old P(i j,k) are in even no:s (2,4,6) and New P(ij,k) in odd no:s (3,5,7) */

for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts-H-) {
sum += ctw->weights[0] * ctp->weights[2 + (rtrlwts * 2)];
UPDWXP(ctw, sizewts);
} /* end of rtrlwts 1-loop */

/* out_val should be the old y (output) value: make sure the control file agrees! */

if (pel==upep) /* if i = j */
sum += ctp->src_pe-X)ut_val; /* kronecka's delta calculation */

/* Final calculation of New P(ij,k) into odd no: wts */
/* tm_val is NEW y (y(t4-l)) */
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ctp->weights[3 + (othems * 2)] = pel->tm_val * (1 - pel->tm_val) * sum;

/* LEARNING CALCULATION */
/* This is the weight update summation calculation: doesn't have anything to */
/* do with the above calculation for P(i j,k), but USES New P(ij,k) */
/* We are accumulating eirors(k) * OLDP(i j,k) */
/* pel refers to PE(k), ctp->weights to OldP(iJ) (and index in for k) */

errsum += pel->err_val * ctp->weights[2 + (othems * 2)];

} /* end of othems k-loop */

ctp->weights[l] = LCOEFl * errsum; /* Delta weights (ij) final calculation */

} /* end of wx (j) loop */

retum(O);
}
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Appendix 4: A Modified form of the RTRL algorithm, for use with 

networks with sparse connectivity.

The following piece of code was used for the experiments descirbed in 

chapter four in section 4.1

/* this is the learning rule for the RTRL algorithm used in chapter four */

#if defmed(ANSI_HEADER)

NINT umj_rtrl( USR_PE *upep, USR_CN_HDR *uchp, USR.LYR *ulp)

#else

NINT um_l_rtrl(upep, uchp, ulp)
USR_PE *upep; /* pointer to current PE */
USR_CN_HDR *uchp; /* pointer to connection header */
USR_LYR *ulp; /* pointer to current layer */

#endif

{
USR_PE *pel; /* pointer to other nodes for P(ij,k) reference
*/
USR_CN_HDR *wap2; /* pointer to weights table for above node */
USR_CONN *ctw; /* pointer to connections table in above Header */
USR_CONN *ctp; /* pointer to incoming connections for this node */

NINT sizewts, wx, othems, iw, rtrlwts; /* mainly counters except sizewts */
REAL sum, errsum; /* accumulators, one for P(i j,k) calculation, other for weight 
* /

if(IS_PRELYR) { 
first_time_flag = 1; /* set first_time_flag to TRUE to force POSTLYR call */ 
retum (0); /* do little on prelayer call */

} /* end of if (IS_PREL YR) statement */

if ( IS_INIT ) retum (0); /* do nothing on init (handled by Neuralware) */

/* IS_POSTLYR updates the P(ijk) with the newly calculated ones */

sizewts = ulp->functions.size_wts; /* for UPDWXP (moves pointer over
connections) */

if (IS_POSTLYR) { 
pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) *l

for (othems = 0; othems < ulp->num_pes; othems++, pel = pel->pe_next) { 
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */

for (wx = 0 ;

170



wx < wap2->num_conns; wx++, UPDWXP(ctw, sizewts)) {

ctw->weights[0] += ctw->weights[l]; /* update weights */ 
for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts++) { 

ctw->weights[2 + (rtrlwts * 2)] = ctw->weights[3 + (rtrlwts * 2)];
} /* end of rtrlwts (P(iJ,k) loop */

} /* end of wx (connections) loop */
} /* end of othems (nodes in RTRL layer) loop */

first_time_flag = 0; 
retum (0);
} /* end of if IS_POSTL YR statement */

if (first_time_flag == 2) retum(O); 
if (first_time_flag ==!){ 

ulp->pe_kcur = upep; /* this forces a postlayer call (needed for updates!) */ 
first_time_flag = 0;

} /* end of if (first_time_flag) statement */

/* START OF MAIN CODE (but note sizewts set up above) */
/*Neuralware provides the i-loop, looping over all RTRL nodes calling this routine */ 
/* once for each one */

/* j-loop, loop over all incoming connections to this PE (node)-recurrent and 
upwar(6 */
/* ctp points to the connections */

for (wx = 0, ctp = &uchp > conn_table[0];
wx < uchp->num_conns; wx++, UPDWXP(ctp, sizewts)) {

pel = ulp->l_ep; /* first PE (node) in layer ulp (this RTRL layer) */
errsum = 0; /* accumulator for weight update sum (at end of j loop) */

I* k-loop, loop over all other RTRL nodes, pel starts at the first and */
/* skips down through the linked list (pe_next) */

for (othems = 0; othems < ulp->num_pes; othems++, pel = pel->pe_next) { 
wap2 = pel->io_wtoff; /* collect CN_HDR of the other node */
ctw = &wap2->conn_table[0]; /* ctw points to its connections */
sum = 0; /* accumulator for P(ijk) calculation */

/* skip the input weights (1-loop is over RTRL nodes only) */
/* skipping by looking for a connection FROM a node in the same layer */

while ( ctw->src_pe->io_layerx != ulp->l_selfx) UPDWXP(ctw, sizewts);

/* 1-loop, over RTRL nodes, sum of weights(k,l) * P(ij,l) */
/* P(ij j:) are stored after weight and delta-weight (->weights[0] and [1]) */
/* Old P(i,j,k) are in even no:s (2,4,6) and New P(ij,k) in odd no:s (3,5,7) */

for (rtrlwts = 0; rtrlwts < ulp->num_pes; rtrlwts++) { 
sum += ctw->weights[0] * ctp->weights[2 + (rtrlwts * 2)];
UPDWXP(ctw, sizewts);
} /* end of rtrlwts 1-loop */

/* out_val should be the old y (output) value: make sure the control file agrees! */

if (pel==upep) /* if i = j */
sum += ctp->src_pe->out_val; /* kronecka's delta calculation */
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/* Final calculation of New P(i j  Je) into odd no: wts */
/* tm_val is NEW y (y(t+l)) */

ctp->weights[3 + (othems * 2)] = pel->tm_val * (1 - pel->tm_val) * sum;

/* LEARNING CALCULATION */
/* This is the weight update summation calculation: doesn't have anything to */
/* do with the above calculation for P(ij,k), but USES New P(ij,k) */
/* We are accumulating errors(k) * OLDP(ij,k) */
/* pel refers to PE(k), ctp->weights to 01dP(i j) (and index in for k) */

errsum += pel->err_val * ctp->weights[2 + (othems * 2)];

} /* end of othems k-loop */

ctp->weights[l] = LCOEFl * errsum; /* Delta weights (ij) final calculation */

} /* end of wx (j) loop */

retum(O);
}
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