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Abstract.
The focus of this thesis has been to investigate the requirement for the function of 

members of the fibroblast growth factor (FGF) family in early Xenopus 

development both during mesoderm formation in the blastula and later patterning 

events in the gastrula and neurula. In particular, much attention is focused on the 

activities and expression of Xenopus embryonic FGF (eFGF) and how this might 

relate to the perturbations in development which result from the inhibition of the 

FGF signal transduction pathway following overexpression of a dominant negative 

FGF receptor (XFD).

A detailed description of the XFD phenotype is presented and shows that 

inhibition of FGF function leads to a reduction in mesoderm formation and a 

disruption of its normal pattern. Analysis of gene expression in embryos injected 

with XFD mRNA demonstrates that FGF activity is required for the correct 

regulation of a subset of genes within the mesoderm at the start of gastrulation. 

Prominent amongst these is the Xenopus homologue of the Brachyury gene 

(Xbra). A detailed in situ hybridisation analysis shows that eFGF is coexpressed 

with Xbra in the mesoderm of the periblastopore region and notochord during 

neurula and gastrula stages. Later in development they are both expressed in the 

developing tailbud. FGF-3 is also expressed in the nascent mesoderm and tailbud 

but also has complex expression domains in the anterior of the embryo.

Experiments in this thesis show that not only is FGF function required for 

the initial expression of mesodermal genes such as Xbra and XmyoD, but is also 

required to maintain their expression after the period of mesoderm induction. 

Furthermore, experiments suggest that eFGF and Xbra are components of an 

autocatalytic regulatory loop that is important for the development of the 

mesoderm in vertebrates. These data demonstrate a role for FGF activity both 

during the induction of mesoderm in the blastula and its maintenance and 

patterning during gastrula and neurula stages.
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Chapter 1
Introduction and background.



Xenopus as a model for animal development

The use of amphibians in experimental embryology has a long history, dating back 

into the last century. In this period many different species have been used but in 

recent years the amphibian of choice for studies of early development has been 

the South African frog Xenopus laevis. In common with all model organisms used 

in the study of development, Xenopus has its advantages and disadvantages. On 

the plus side for Xenopus, the adults are easy to maintain in large colonies and 

the females can be induced to lay large numbers of eggs on demand following 

hormone injection. The eggs can be artificially fertilised to produce large 

quantities of synchronously developing embryos, which can easily be cultured in

simple salt solutions over a wide range of temperatures from 14° C to 23° C. This 

allows considerable manipulation of the speed at which development occurs. At

23° C the embryos develop rapidly, such that the end of the neurula stage is

reached in about 24 hours. At 14° C this same developmental stage will not be 

reached for several days. The embryos themselves are large enough to allow 

quite discriminating ‘cut and paste' style embryological manipulations.

Perhaps the major disadvantage of Xenopus is the inability to manipulate 

its genome easily. The sophisticated methods for manipulating the genomes of 

genetically tractable organisms, such as Drosophila, C.elegans and Increasingly 

the mouse and zebrafish, are not possible in Xenopus. The reasons for this are 

simple to understand. The long generation time (18 to 24 months) and large size 

of the adults renders the saturation m utagenesis screens that have been 

undertaken for Drosophila and zebrafish impractical. Superimposed upon this is 

the pseudo-tetraploid nature of the Xenopus genome. This means that most



genes are represented by two so-called pseudoallelic variants which differ by up 

to 10% at the amino acid level. The presence of two allelic and two pseudoallelic 

copies of a particular gene in each somatic cell clearly complicates any genetic 

manipulation (Kobel and du Pasquier, 1986), be it through the induction of 

mutations or through some form of directed reverse genetics.

Despite the lack of the powerful genetic techniques, which have provided 

the basis for the understanding of Drosophila development, Xenopus has become 

an increasingly popular system for the analysis of early development. The last 10 

years has seen a huge increase in the understanding of inductive processes in 

vertebrate development and much of this comes from work done in Xenopus. 

Historically, the amenability of amphibians, such as Xenopus, to cut and paste 

embryology means that they have proved particularly useful in the study of the cell 

interactions which are so important in the developing vertebrate embryo. The 

ability to explant groups of cells and allow them to develop in isolation or to 

juxtapose particular groups of cells has helped define inductive processes 

involved in the formation of not only the major body axes and germ layers but 

also individual organs such as the eye and heart (Sater and Jacobson, 1989; 

Henry and Grainger, 1990; Kessler and Melton, 1994). The major advances in 

recent years have come from the identification of purified factors that are able to 

mimic the endogenous inductive processes. Moreover, techniques of molecular 

cloning and analysis of gene expression have actually identified some of these 

factors as candidates for fulfilling the role of endogenous inducers (reviewed by 

Kessler and Melton, 1994; Slack, 1994).



The development of sensitive techniques for the detection of gene 

expression has for the first time provided workers with markers of regional 

specification that has allowed the detailed analysis of the very earliest responses 

to inductive signals during embryogenesis. Molecular biology has also provided 

Xenopus workers with their own form of ‘pseudogenetics’. The large size of 

Xenopus embryos makes possible the simple injection of synthetic mRNAs and 

DNA constructs that allow the ectopic overexpression of particular gene products 

during early development. The imaginative use of these techniques has allowed 

the development of innovative screening strategies, which has not only resulted in 

the identification of novel molecules and activities but has even allowed the 

inhibition of the function of a wide range of gene products, allowing the type of 

analysis that was only previously possible in genetically tractable organisms 

(Amaya etal., 1991; Hemmati-Brivanlou and Melton, 1992; Graff etal., 1994).

The development of more and more sophisticated methods for regulated 

overexpression and inhibition, used in conjunction with classical embryological 

techniques will guarantee an increase in the understanding of inductive processes 

in early Xenopus development. Work in the last decade has served to emphasise 

the large degree of conservation of developmental mechanisms across animal 

groups, making it very likely that much of what is discovered in Xenopus will be 

directly applicable to the understanding of development in the higher vertebrates.

It is not the intention of this introduction to give a detailed account of the 

latest understanding of all the inductive events and candidate molecules involved 

in regional specification in Xenopus, where appropriate this is dealt with in detail in 

the experimental chapters. The introduction will provide a background to this



thesis and include.an overview of the properties of the fibroblast growth factors 

and their receptors.

Background to this thesis

Much work on Xenopus In recent years has concerned the development of the 

mesoderm during blastula stages. Formation of the mesoderm is one of the 

earliest patterning events in the development of Xenopus. It is believed to arise 

as the result of a set of inductive interactions involving signals emanating from the 

unpigmented vegetal hemisphere of the embryo acting upon cells competent to 

respond in the equatorial region of the embryo. The process was originally 

defined by classical embryological methods but the study of this process has 

greatly benefited from the advances in technology described above (reviewed by 

Slack, 1994).

In 1987 members of the fibroblast growth factor (FGF) family of 

polypeptides were shown to be capable of mimicking some aspects of the 

endogenous mesoderm inducing signals (Slack etal., 1987). This demonstration 

not only allowed these factors to be used to investigate the process of mesoderm 

induction but also established them as candidates for the endogenous inducers. 

Thl§ candidacy was strengthened when members of the family were shown to be 

present during the early development of Xenopus, mouse and chick (reviewed by 

Slack, 1994; Yamaguchi and Rossant, 1995). Furthermore, it was shown that the 

inhibition of FGF function during early development by the overexpression of a 

dominant negative receptor (XFD) led to a reduction in the amount of mesoderm 

and a derangement of its pattern (Amaya etal., 1991). The initial interpretations



of how this phenotype arises were strongly influenced by the view that an FGF, in 

particular basic FGF (bFGF), was likely to be one of the vegetal inducers. At the 

time that work on this thesis commenced this was the prevailing view in the 

literature (Gilbert, 1988).

However, in 1992 when work began on this thesis new data 

suggested that this interpretation was overly simple and pointed to the need for 

further work. Firstly, although bFGF was the first purified factor shown to have 

mesoderm inducing activity and to be present in the early embryo (Kimelman et 

al., 1988; Slack and Isaacs, 1989), in common with a number of other FGFs, it 

lacks a recognised secretory signal sequence. Work carried out in this laboratory 

indicated that for this reason bFGF is inefficiently secreted from embryonic 

Xenopus cells making it an unlikely candidate for one of the vegetal signals 

(Thompson and Slack, 1992).

Secondly, in 1992 we reported the presence during early development of 

two new Xenopus FGFs (eFGF and FGF-3 (int-2)) with recognised signal peptides 

(Isaacs etal., 1992; Tannahill etal., 1992). eFGF mRNA is present maternally 

but its expression is not localised to the vegetal hemisphere during blastula 

stages. This argued against the view that eFGF might be one of the maternal, 

vegetal inducers. Interestingly, both eFGF and FGF-3 are expressed zygotically. 

This suggested that certain aspects of the phenotype produced by inhibition of 

FGF function in early development might be due to an interference with FGF 

signalling after the period of mesoderm induction. With these new data in mind it 

was decided to investigate in more detail the requirement for FGF activity during 

early development.



Objectives of this thesis

The focus of this thesis has been to investigate the nature of the requirement for 

FGF function in early development both during mesoderm formation in the 

blastula and later patterning events in the gastrula and neurula. In particular, 

much attentien is focused on the activities and expression of eFGF and how these 

might relate to the perturbations in development which result from the inhibition of 

FGF function.

The main objectives of this work have been:

1 To characterise the biological activities of eFGF.

2 To extend the initial study of the expression pattern of eFGF (Isaacs et al.,

1992) and compare it with that of FGF-3 and the Xenopus homologue of the 

Brachyury transcription factor (Xbra). The work on Xbra was included because 

the analysis of mice and zebrafish carrying mutations in the Brachyury gene 

suggests that its function is important for the formation of the mesoderm in 

vertebrates (reviewed Herrmann and Kispert, 1994).

3 To examine in detail the phenotype of embryos overexpressing a dominant 

negative FGF receptor (XFD), both in relation to morphology and to molecular 

markers.

4 To establish whether FGFs have functions after mesoderm induction. The 

original work of Amaya et al., (1991) using XFD is very important and clearly 

demonstrated a role for FGF function during development. However, given the 

likely persistence of FGF inhibition resulting from mRNA injections through 

blastula, gastrula and neurula stages, it was not clear for what developmental 

processes FGF function was required.



These major objectives have been successfully achieved and experiments 

relevant to this are described within the chapters of this thesis. It is hoped that the 

detailed investigation of the properties of eFGF presented here will provide a 

useful paradigm for FGF function during the development of Xenopus and other 

organisms.

The fibroblast growth factor (FGF) family of ligands

To date nine members of the FGF family of polypeptides have been identified in 

mammals. FGFs have been isolated from many different vertebrate species and 

although FGF ligands have not been cloned from the invertebrates, members of 

the FGF receptor family have been isolated from Drosophila and C.elegans 

(Shishido etal., 1993; DeVore etal., 1994). the  genes of all FGFs share a three 

exon genomic structure, underlining their common ancestry. The FGFs are single 

chain peptides ranging from about 18 KD, for bFGF and aFGF, to over 30 KD for 

an amino terminally extended form of FGF-3 ( int-2). They share between 30 and 

80% amino acid residue identity, most of which lies in a core region of about 100 

amino acids. Unlike other growth factor families, such as the TGFps, there are 

few invariant sequence motifs in the FGFs. The most highly conserved being the 

sequence FLP at the carboxy terminus of the ‘core region’. Although generally 

there is not a high degree of sequence conservation between individual members 

of the family, the cross species conservation for a particular FGF is usually very 

high. For example amino acid identity for bFGF and FGF-9 between Xenopus 

and mouse is 85% and 94% respectively (Kimelman etal., 1988; Song and Slack 

etal., 1996)
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The prototypes of the family are acidic (aFGF) and basic FGF (bFGF).

They were originally purified from a number of sources as mitogens for a wide 

rango of coll typos including mouse 3T3 cells, endothelial colls and chondrocytes. 

In common with all other members of the family they bind to heparin and heparan 

sulphate residues, which has important consequences for the way that these 

factors interact with the extracellular matrix but also provides a convenient means 

of purifying these factors. An important feature of the FGF family is that some 

FGFs (aFGF, bFGF and FGF-9) lack recognised secretory signal peptides. This 

issue will be dealt with in detail in subsequent chapters.

Since the identification of aFGF and bFGF, seven further mammalian FGFs 

have been identified by various means. Keratinocyte growth factor (KGF), 

androgen induced growth factor (AIGF) and glia activating factor (GAF), like bFGF 

and aFGF, were identified and purified as proteins on the basis of biological 

activities (Miyamoto etal., 1993; Ohuchi etal., 1994). hst/ks (kFGF), int-2 and 

FGF-5 were all identified as protooncogenes. Only FGF-6 was cloned by 

homology to a known FGF, in this case kFGF(Yoshida etal., 1987; Maries etal., 

1989; Dickson, 1990). From the above list it can be seen that the nomenclature 

for the FGFs is at best confusing. An attempt has been made to rationalise this 

situation and a table of old and new names is provided below (Baird and 

Klagsburn, 1991).

On the whole this new nomenclature has been successful and has been 

adopted by most workers in the field but in the case of Xenopus eFGF the 

assignment of a direct mammalian homologue has not been possible so in this 

thesis the name embryonic FGF (eFGF) has been retained.



Table 1 The new nomenclature for the FGF family of ligands

Old name New name

acidic FGF FGF-1

basic FGF FGF-2

int-2 FGF-3

ks/hst/kFGF FGF-4

FGF-5 FGF-5

FGF-6 FGF-6

Keratinocyte growth factor (KGF) FGF-7

Androgen induced growth factor (AIGF) FGF-8

Glia activating factor (GAF) FGF-9

Expression and bioiogicai activities of the FGFs in the aduit

The whole issue of embryonic expression and biological activities of FGFs during 

development forms the basis of this thesis and will be dealt extensively in later 

chapters. In the adult the most abundant FGFs are FGF-1 and FGF-2. They are 

almost ubiquitous in their distribution. However, they are most highly expressed in 

the brain and are found in both specific neuron populations and supporting glià 

cells (reviewed by Basilico and Moscatelli, 1993). FGF-5 is also expressed at low 

levels in the adult brain but only in specific subsets of neurons (Guo etal., 1996). 

The FGFs support the survival in culture of neurons from rhany different sites in 

the brain and it has been proposed that an important function of the FGFs in the 

adult is as neurotrophic factors promoting neuron survival and neurite outgrowth. 

There is also some evidence that FGF-5 in skeletal muscle of the adult can act as 

a target derived trophic factor for motor neurons (Hughes et al., 1993).

Of course FGF-1 and FGF-2 lack signal peptides, and it has been 

suggested that the main route of release for these factors is through damage to 

cells. This is in keeping with the finding that the FGFs have potent angiogenic

10



activity and have been shown to improve wound healing in the adult. The role of 

the FGFs in angiogenesis not only extends to stimulation of endothelial cell 

proliferation but FGF-2 has also been shown to induce an invasive phenotype in 

endothelial cells allowing them to penetrate basement membranes through an 

increased production of proteolytic enzymes (reviewed Folkman and Klagsbrun, 

(1987)). Although cell trauma is likely to be an important pathway for FGF release 

in the adult, there is some evidence that FGF-1 can be released from cells by a 

novel mechanism in response to heat shock (Jackson et al., 1992).

Intriguingly, there is accumulating evidence that some of the activities of 

the FGFs do not require release of the ligand from the cell or interaction with cell 

surface receptors but are mediated at the level of the nucleus. N-terminally 

extended isoforms of FGF-1, FGF-2 and FGF-3, which are translated from a CUG 

codon upstream of the normal translation start site, have been shown to 

translocate to the nucleus of certain tissue culture cells. In the case of FGF-1 and 

FGF-2, this not only occurs in cells which are synthesising the protein but 

exogenously added protein will also translocate to the nucleus (reviewed by 

Mason, 1994). Nuclear accumulation of FGF-2 has also been shown to occur in 

the Xenopus blastula and epiblast cells of the chick prior to gastrulation (Riese et 

al., 1995; Song and Slack, 1994). There are also suggestions as to the function 

of the FGFs at the level of the nucleus. The addition of FGF-2 to isolated nuclei 

from ABAE cells results in an increase in transcription of ribosomal RNA genes: It 

has also been shown that targeting of a diphtheria toxin-FGF-1 fusion to the 

cytoplasm and thence to the nucleus, in cells lacking an FGF receptor, stimulates 

the synthesis of DNA in the absence of protein phosphorylation that is normally

11



associated with activation of the cell surface signal transduction pathway 

(Wiedlocha etal., 1994).

Of the known FGFs the properties of FGF 7 (KGF) are perhaps most 

divergent. Unlike the other FGFs it is not a mitogen for endothelial cells. It is a 

potent mitogen for kératinocytes, and in keepirig with this, it is highly expressed in 

the dermis (Mason etal., 1994).

The FGFs as oncogenes

Clearly almost any gene with the mitogenic activity of the FGFs has potential as 

an oncogene and in fact 3 FGFs were originally identified as oncogenes. FGF-3 

(then int-2) was shown to be a gene that was activated by insertion of the mouse 

mammary tumour virus (MMTV). FGF-4 (then hst/ks or kFGF) has also been 

shown to be activated by the MMTV but was originally identified as a DNA 

capable of transforming NIH 3T3 cells from human stomach tumours (hst) and 

Kaposi's sarcoma (ks) cells. FGF-5 was also identified in a similar transformation 

assay. In these cases the mode of activation of these genes appears to be at the 

level of gene regulation rather than the formation of mutant proteins

As has been mentioned FGF-3 and FGF-4 clearly have oncogenic potential 

and furthermore, have both been found to be activated in a number of mouse 

mammary tumours. In humans, although these genes have been shown to be 

amplified in a large number of tumours, including breast tumours, mRNA 

expression is only infrequently detected. It has been suggested that the 

explanation of this lies in the fact that FGF-3 and FGF-4 are closely clustered on 

chromosome 11 and that In the tumours they are coincidentally amplified because

12



of the nearby presence of another gene which is the actual oncogene involved in 

the initiation of these tumours. FGF-2 is commonly expressed at high levels in 

malignant melanomas and is a potent mitogen for melanoma cells. However 

because of the issue of secretion the relevance of this to the progression of 

melanomas is at present unclear (reviewed by Basilico and Moscatelli, 1993).

Despite the caveats described above it does seem likely that the mitogenic 

activity of the FGFs is important for the development of at least some cancers. It 

is also likely that the potent angiogenic activity of the FGFs plays a role in the 

development of a blood supply to certain solid tumours. However, the FGFs are 

just one of many factors which are required in carcinogenesis and the 

development of the malignant phenotype (reviewed by Basilico and Moscatelli,

1993).

The FGF receptor (FGF-R) family

The high affinity cell surface receptors for the FGFs have been identified as 

members of the tyrosine kinase receptor family. Four members of the FGF-R 

family have been identified to date in mammals. The basic structure of an FGF 

receptor is shown in Fig. 1. The extracellular part of the molecule resides in the 

amino terminal half and consists of 3 immunoglobulin-like (Ig) domains, with the 

so-called acid box residing between loops I and II. The acid box which consists of 

8 consecutive acid residues is a unique feature of the FGF-R family, the function 

of which is at present unclear. There is a single membrane spanning domain and 

a characteristically split intracellular tyrosine kinase domain.

13



Fig. 1 A schematic diagram of a generalised fibroblast growth factor receptor

— — M
^  A À A

signal sequence transmembrane tyrosine Idnase
box domain

Each of the FGF-Rs identified, except FGF-R4, exist in a bewildering 

number of alternatively spliced iseforms, the relevance of which is only now 

beginning to be understood. So for example, isoforms of FGF-R1 and FGF-R2 

been identified that lack the 'Ig' loop I. This deletion does not abolish ligand 

binding but does affect the binding affinities and specificity of the ligands for this 

isoform. A secreted form of FGF-R1 lacking all of the transmembrane and kinase 

domain has also been identified. However, the most well characterised 

differences between the various isoforms involves alternative splicing in the 

second half of 'Ig' loop III and it seems that altemative splicing into this loop to a 

large extent determines the binding affinity of the various FGF ligands to the 

receptor isoforms. In FGF-R1 three different exons (a, b and c) have been shown 

to be spliced into the second half of loop III. In FGF-R2 and FGF-R3 11 lb and I He 

isoforms have been identified. At present only the cDNA for the I He isoform of 

FGF-R4 has been isolated. The table shows the available data for the binding of 

the various ligands to the receptor Isoforms. This further complicated by the 

ligands having varying affinities for the different receptors that they have been 

shown to bind (reviewed by Johnson and Williams, 1993).

14



Table 2 Receptor binding specificity of the FGF ligand family.

Ligand FGF-R1 FGF-R2 FGF-R3 FGF-R4

FGF-1 Ilia, b and c lllb and c lllb and c lllc

FGF-2 lllb and c lllc lllc IMc

FGF-3 No lllb and c No No

FGF-4 lllb and lllc lllb and c ? ?

FGF-5 ? ? 7 ?

FGF-6 ? 7 ? ?

FGF-7 No lllb (-Ig loop 1) ? ?

FGF-8 No lllc lllc lllc

FGF-9 No lllc lllb and c ?

Clearly this list is not complete but it does serve to illustrate the huge 

complexity of interactions that are possible between the différent FGFs and the 

various FGF receptor isoforms.

I n common with many growth factor receptors, the FGF-Rs bind their 

ligands as dimers. Dimérisation of the receptor leads to the autophosphorylation 

of receptor components on a number of tyrosine residues. The activated receptor 

complex is then able to bind src homology (SH2) domains within a number of 

intracellular components at these phosphorylated sites. Some of these 

intracellular components are themselves catalytic and can have their enzymic 

activity modified by phosphorylation from the tyrosine kinase of the receptor 

complex (reviewed Egan and Weinberg, 1993). Such enzymic components can 

include phospholipase c-gamma (PLC-y) and the GTPase ras. The signal 

transduction pathway involving ras is of crucial importance in mediating the 

mesoderm inducing activity of the FGF family and this will be dealt with in some 

detail in subsequent chapters. Phosphorylation of PLC-y leads to an Increase in
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its ability to catalyse the hydrolysis of phosphatidylinositol bisphosphate to inositol 

1,4,5 triphosphate (IPJ and diacylglycerol (DAG), which in turn cause the release 

of Ca^ from intracellular stores and the increased activity of protein kinase C. 

However, the increase in phosphinositide hydrolysis does not occur in all FGF 

responsive cells and so the role of PLC-y activation in FGF signal transduction is 

at present unclear (Johnson and Williams, 1993; Clyman etal., 1994; Muslin et 

al., 1994a; Ryan and Gillespie, 1994).

As for down steam target genes of FGF signalling, in systems where the 

FGFs act as mitogens, the transcription of c-myc arid c-fos \s frequently 

stimulated. The down stream target genes of FGF signalling during mesoderm 

induction are discussed in detail in subsequent chapters.

Binding of the FGFs to heparan sulphate residues on proteoglycan low 

affinity receptors in the extracellular matrix greatly increases their affinity for the 

tyrosine kinase signalling receptor. The high affinity receptors also bind heparin 

and it has been suggested that a tripartite interaction of this sort may be a 

prerequisite for the activation of the receptor-ligand complex (for discussion see 

Mason, 1994).

As with the ligands, the FGF-Rs are expressed in complex and overlapping 

expression patterns in the adult. Expression of FGF-R1 is found in bone, kidney, 

skin, lung, heart, muscle and in the neurons of the CNS. FGF-R2 is expressed in 

the skin, lung, liver and in the glia of the CNS. FGF-R3 mRNA is also expressed 

in the brain, kidney, skin and lung (reviewed by Johnson and Williams, 1993).

Given the overlap of expression between the various receptors and ligands 

and the considerable cross reactivity between the ligands and receptors it can be
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seen that the FGF signalling system in the adult is enormously complex. During 

embryonic life the situation is no less complex because all the receptors and 

ligands described above are also expressed in elaborate and dynamic patterns.

In mouse the requirement for the FGF system is being addressed by the 

generation of null mutations for individual components. The results from these 

experiments are summarised in Chapter 8. However, it is clear that in the mouse 

there is a very early requirement for FGF activity to support the growth of the inner 

cell mass (ICM) which complicates the analysis of the role of the FGF in inductive 

and patteming events during early development (Feldman etal., 1995). This 

requirement to support cell proliferation is absent during very early amphibian 

development. This fact combined with the advantages of the amphibian embryo 

for micromanipulation and the study of inductive interactions makes Xenopus an 

ideal system in which to study the role of the FGFs in early patteming events. The 

rest of this thesis is a description of experiments which address this issue.

Published work of the author relevant to this thesis.

My work involved in the cloning and preliminary description of the expression 

pattern of Xenopus eFGF(Isaacs etal., 1992) and the initial description of the 

expression pattern of Xenopus FGF-3 (Tannahill etal., 1992) was undertaken 

prior to registration for this degree. These two papers cannot be considered as 

part of the work contributing to this thesis and for that reason have not been 

included, although a brief description 6f the cloning of eFGF has been included in 

the methods of Chapter 3 for the benefit of the reader.
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Some of the work undertaken in the thesis has been published. The data 

relevant to the role of eFGF in regulating Xbra expression during gastrulation was 

published in Isaacs et al., (1994). All work in this paper is that of the author 

except the plasmid based embryo injections and their analysis, which was 

undertaken by M.E.Pownall. Part of the whole-mount in situ hybridisation analysis 

of eFGF expression has been published (Isaacs, etal. 1995). All work in this 

paper is that of the author except the Xbra in situ data, which was undertaken by 

M.E.Pownall. The Einsteck-procedure analysis of eFGF treated animal caps is 

the work of the author and has been published as part of the study in Slack and 

Isaacs, (1994). Some data from the whole-mount//7 s/ftv analysis of 

anteroposterior markers in embryos injected with dominant negative FGF receptor 

mRNA have been submitted as part of (Pownall et al., submitted).
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Chapter 2
General materials and methods.
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General Embryological methods

Egg production

Egg production is induced by the sub-cutaneous injection of 150-750 iu of human 

chorionic gonadotrophin (Intervet) into wild-type and albino female Xenopus 

laevis. The amount injected is adjusted according size of the individual and 

previous egg production record. Empirically, it has been found that albino females 

require much less hormone to stimulate good egg production. Following injection 

the females are incubated at 20® C overnight (16-20 hours). The following day 

eggs are squeezed from the female by applying gentle pressure to the abdomen. 

The eggs are placed in a petri dish and are then teased into a monolayer and 

fertilised with a sperm suspension, obtained by crushing a piece of fresh testis in a 

small volume of distilled water. 5 minutes after the application of the sperm 

suspension the petri dish is flooded with water. After a further 15 minutes at 23°C 

a successful fertilisation is apparent by the rotation of the zygotes within the 

vitelline membrane such that the pigmented animal hemisphere comes to rest 

uppermost. This procedure allows the production of large quantities of 

synchronously developing embryos.

The jelly coat of the embryos is removed at an appropriate stage by gently 

swirling the embryos in 25-50 ml of 2.5% cysteine hydrochloride pH 7.8 for a few 

minutes. Once it is apparent that the jelly coat has been removed the embryos 

are washed several times in aquarium water. Following the removal of the jelly 

coat the embryos are transferred to NAM/10 in noble agar coated petri dishes 

and cultured at 14° C - 23° C until the required stage of development is reached.
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Normal amphibian medium (NAM) based on an analysis of Xenopus blastocoelic 

fluid (Slack etal., 1973) is the standard amphibian saline use in this study.

Normal amphibian medium (NAM) salts

NaCI 110 mM

KCI 2 mM

Ca(NOj2.4HgO) 1 mM

MgS0,.7H20 1 mM

Na^EDTA 0.1 mM

Dilutions of the NAM salts are used according to application. Whole 

embryo culture is generally carried out in NAM/10 and explant culture in NAM/2. 

NAM solutions are buffered with 0.05 M HEPES buffer pH 7.5 or 0.05 M 

phosphate buffer pH 7.5 with the addition of 10 mM NaHCOg (except NAM/10). 

Overgrowth of micro-organisms in embryo and explant culture is prevented by the 

addition of the antibiotic gentamycin at 25 pg/ml.

Embryo staging and morphology

Embryos are staged according to the morphological criteria of Nieuwkoop and 

Faber, (1967). Hausen and Riebesell, (1991) is used as additional reference on 

embryo morphology and histology. Xenopus embryos can be grown at a wide 

range of temperatures from 14° C to 23° C and manipulation of incubation 

temperature allows considerable control over the rate at which the embryos 

develop.

A number of experiments in this study have relied on being able to 

determine the dorsal side from ventral side of the embryo at the 4-cell stage. At



this stage, as viewed from the animal pole, the two blastomeres on the future 

dorsal side of the embryo are lighter than those on the ventral side and are 

generally smaller. The ability to accurately assess presumptive dorsal and ventral 

sides is very much embryo batch dependent. Only batches of embryos where this 

assessment can be made accurately are used in experiments.

Embryo manipulations 

Animal cap explants and the serial dilution assay

Embryos are cultured in NAM/10 until the stage appropriate to the experiment, 

which is usually in the range of stage 8 to 10 (about 5-10 hours after fertilisation at 

23° C). The embryos are transferred to NAM/2 just prior to operating and the 

vitelline membranes are carefully removed using sharpened watch makers 

forceps. A cap of tissue, subtending about 60 degrees, is removed from the 

animal pole region using an electrolytically sharpened tungsten needle. Care is 

taken not to contaminate the explant with cells from the bottom of the blastocoel 

and the marginal zone. The tissue explant is left to recover for 15 to 30 minutes in 

NAM/2. After this period the explant is gently pipetted up and down to remove 

dead cells. Animal caps are then transferred to the final culture medium and 

allowed to develop until an appropriate stage.

The serial dilution cap assay is essentially as described in Godsave et al., 

(1988). It is generally carried out in the wells of Terasaki niicrotitre plates 

(Sterilin). The bottoms of the wells to be used are coated with 3 pi of 15 molecular 

grade agarose. 10-15 pi of serial dilutions of the test protein solution in NAM/2 + 

5% bovine serum  album in (BSA) are placed into the wells of the m icrotitre  dish.
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Appropriate negative control solutions are always included in such an assay. The 

animal cap explants from stage 8 embryos are then placed in the wells by transfer 

with a blunt ended Gilson pipette tip. Care is taken such that the blastocoel 

surface of the explant is flipped upwards to ensure maximum exposure to the test 

factor solution. Animal caps are taken at stage 8 for this assay because they are 

maximally competent to respond to mesoderm inducing signals at this stage. The 

ability to respond to mesoderm inducing signals falls off rapidly after stage 10.5 

(Jones and Woodland, 1987). The Terasaki dish is placed in a damp chamber 

and the explants cultured are allowed to develop for an appropriate period. The 

explants can be visually scored for mesoderm induction after 24-72 hours of 

culture at 23° C. Altematively they are harvested for molecular or histological 

analysis at an appropriate stage of development. If culture is extended beyond 24 

hours the wells of the dish are topped up with water to make good any losses from 

evaporation. Using this assay the mesoderm inducing activity of a given solution 

is defined as the reciprocal of the last positive dilution per ml. Iri a similar way the 

specific activity of a purified protein is defined in units per mg.

The auto induction assay

The autoinduction assay is a development of the serial dilution assay which is 

used to test the activity of injected synthetic mRNAs, where it is assumed that the 

activity is proportional to the mass of mRNA injected. The animal cap explant 

procedure is slightly modified for animal caps that are removed from embryos 

which have been previously microinjected with RNA samples. This is to ensure 

that the blastocoel does not collapse following injection and exposure to Ficoll
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containing solution. The embryos are injected in NAM + 5% Ficoll solution (see 

below) and allowed to develop until the 64 to 128 cell stage at which time they are 

transferred to NAM + 2.5 % Ficoll. Animal caps are taken from embryos between 

stage 8 and 10 and then cultured in microtitre plates and analysed as in the serial 

dilution assay.

Disaggregated cell culture of gastruia stage expiants

At gastruia stage 10.5 embryos are dissected into dorsal and ventral halves. 

Animal hemisphere tissue is then removed down to the floor of the blastocoel and 

as much as possible of the vegetal core material is dissected away. The marginal 

zone pieces to be disaggregated are then allowed to sit for 20 minutes in agarose 

coated dishes containing Ca^/Mg^ free NAM (CMF-NAM) and are finally 

transferred to agarose coated wells of 4-well tissue culture plates (Sterilin) for 

disaggregation and culture. Explants are disaggregated by gentle pipetting using 

drawn glass Pasteur pipettes. All agarose dishes are extensively pre-washed 

and equilibrated with culture medium, which is generally CMF-NAM + 5% BSA + 

relevant factors.

The Einsteck-procedure

The Einsteck-procedure is any embryo manipulation that involves the placing of a 

tissue explant or pelleted substance into the blastocoel of a developing embryo. 

Generally all tissue explants used in the Einsteck-procedure are taken from 

embryos which have been previously injected with a fluorescein-dextran-amine 

lineage label (Molecular Probes). The lineage labelling of the donor tissue greatly
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enhances the value of this technique and enables the rapid recognition of graft 

and host derived structures during subsequent analysis by fluorescent microscopy 

on whole mount or sectioned material.

Briefly, donor tissue explants are taken from the required stage of labelled 

embryo in MAM/2 using either tungsten needles or a microsurgical knife 

(Microsurgical Products, Inc.). Host embryos are cultured in NAM/10 until the 

dorsal lip is first apparent at stage 10 and are then transferred to NAM/4 prior to 

operating. Hosts are carefully demembranated and a small slit is placed in the 

animal pole region at right angles to the dorsal ventral axis and the donor material 

is placed into the centre of the host blastocoel. Following implantation the 

Einsteck-hosts are placed carefully aside, making sure that they remain animal 

pole up. The blastocoel roof is allowed to heal, which normally takes about 30 

minutes. At this stage the embryos are transferred to NAM/10 for further 

incubation at the required temperature. This procedure ensures a good rate of 

success and minimises the number of embryos that fail to gastrulate following the 

Einsteck-procedure.

Microinjection of embryos

All injections are carried out using a Drummond "Nanojet Variable" automatic 

injector mounted on a Prior micromanipulator. This system provides variable 

injection volumes from 5 nl to 75 nl in 5 nl steps. The system uses oil filled 

needles and a positive displacement plunger system that provides reproducible 

results and does not require frequent recalibration. Needles are pulled from 

Drummond 3.5" inch capillaries using a Scientific Research Instruments vertical
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needle puller. Before use needles are baked overnight at 180^ C to destroy 

RNAases. Sterile light mineral oil (Sigma) is used to back-fill the needles and the 

tips broken off to give an external diameter of approximately 20 pm. Samples are 

loaded into the needle by sucking up from a droplet of sample placed the inside 

surface of a sterile petri dish. Following the loading of the sample to be injected 

the interface between oil and aqueous phases in the needle provides an excellent 

method of monitoring the volume of liquid expelled from the needle during 

injection.

Before injection embryos are dejellied and cultured in NAM/10 until the 

required stage. A few minutes before injection begins the embryos are transferred 

to an agar coated dish containing NAM + 5% Ficoll 400 (Sigma). Ficoll is a high 

molecular weight non-toxic carbohydrate which osmotically removes water from 

the perivitelline space. The presence of Ficoll collapses the vitelline membrane 

down on to the embryo surface and in this way the embryo is no longer able to 

rotate freely within its vitelline membrane. This greatly increase the ease of 

accurate injection and also reduces the amount of cytoplasmic blebbing from the 

injection wound site. The embryos are placed in a trough in the agar dish to 

provide support and are injected using gentle pressure from the micromanipulator. 

The needle is retained in the embryo for several seconds following expulsion of 

liquid to allow dispersion from the site of injection.

Following injection the embryos continue to be cultured in NAM+5% Ficoll 

until the 64-128 cell stage. If the embryos are required for later removal of animal 

cap explants at stage 8 to 11 they are then tranferred to NAM + 2.5% at this 

stage. This is to prevent the collapse of the blastocoel, which can occur at the
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higher Ficoll concentration. For all other purposes the embryos are transferred to 

NAM/10 + 5% Ficoll. The continued presence of Ficoll reduces the amount of 

cytoplasmic blebing from the injection wound and does not adversely effect 

normal development.

Injection of fluorescent lineage labels

Fluorescein dextran amine (FDA) (10,000 mw) from Molecular Probes is prepared 

for injection by dissolving at 25 mg/ml and then dialysing ovemight against water. 

Aliquots are stored at -80° C until required. Complete and reproducible labelling of 

the entire embryo is obtained by injecting 15 nl of stock FDA into the animal pole 

region just after the onset of first cleavage. Following injection all embryos are 

examined under the fluorescent microscope to ensure that they are labelled.

injection of synthetic mRNAs

Particular attention is paid to maintaining RNAase free conditions when handling 

RNA samples for microinjection. Stock aliquots of synthetic mRNAs in 

diethylpyrocarbonate (DEPC) treated water are prepared at 0.2 pg/pl and stored 

at -80° 0 until required. Just before injection the mRNAs are diluted with DEPC 

water to their final concentration. At the 2-cell stage a maximum of 10 

nl/blastomere of sample is injected and a maximum of 5 nl/blastomere at the 4-cell 

stage.

27



General histological methods

Preservation of specimens for whole-mount examination

Specimens are fixed 4% formaldehyde in 70% Dulbeccos's phosphate buffered 

saline 'A' (PBS-A). Specimens are stored in the above fixative in the dark to avoid 

photobleaching of pigment.

Preparation of stained histological sections

Specimens are fixed for at least 4 hours in 4% formaldehyde in 70% PBS-A. They 

are then washed in 70% PBS-A and equilibrated with 35% industrial methylated 

spirits (IMS) before staining overnight with a 10% solution of borax carmine in 

35% IMS. The next day specimens are destained for at least 4 hours with 1% HCI 

in 70% IMS. At this stage specimens are transferred to 70% IMS and can be 

stored like this until required for further processing.

Specimens are taken through a water/IMS/n-butanol series and embedded 

in paraffin wax (Pastillated Fibrowax, BDH). Wax blocks are mounted on wooden 

chucks and 10 pm microtome ribboned sections are taken. Sections are floated 

on warm water to remove wrinkles and dried down onto gelatin subbed glass 

slides. Once dry wax sectioned are briefly melted over a Bunsen bumer flame 

and slides are dewaxed and rehydrated through a Histoclear (National 

Diagnostics)/ IMS/water series. Once sections have been taken to water they are 

then counterstained for 1 minute with a 0.025% aqueous solution of napthalene 

black saturated with picric acid. Excess stain is washed off in water and then



slides are dehydrated through a water/IMS/Histoclear series and mounted in 

DePeX (BDH).

Preparation of fluorescentiy labelled sections

FDA lineage labelled specimens are embedded and sectioned as described 

above. Sections are taken to water and stained with a 1 pg/ml aqueous solution 

of the DNA binding dye DAP I for 10 minutes. Excess DAPI solution is washed off 

with water and slides are taken to Histoclear and mounted in DePeX. The use of 

DAPI causes the nuclei within sections to fluoresce a bright blue when excited in 

the range 365- 376 nm.

General photographic methods

Black and white photographs of whole-mount specimens are taken using Kodak 

Technical Pan film rated at 260 ASA or Kodak TMAX-400 film. Black and white 

photographs of histological specimens are taken using Kodak TMAX-100 and 

TMAX-400 film. Autoradiographs and autofluorographs are illuminated by 

transmitted light and photographed with Kodak Technical Pan film. All films are 

developed as per manufacturers recommendations.

Colour slide photography of specimens are carried out using Kodak 

Professional Ektachrome 160T film and was developed using E6 processing. All 

prints are prepared by electronically scanning colour slides with a Nikon Coolscan 

scanner. Images are processed using Adobe Photoshop and printed on a Kodak 

XLS8600 photo-quality printer.
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General molecular biological methods

Standard protocols for nucleic acid quantification, handling and purification such 

as phenol/chloroform extraction and ethanol precipitation are as per Sambrook et 

al., (1989). All RNA related work requires standard precautions related to the 

maintenance of RNAase free conditions. These include the use of gloves, 

diethylpyrocarbonate (DEPC) treated water, where possible, and the use of baked 

glassware and sterile RNAase free plastics.

Production, analysis and manipulation of DNA 

Restriction enzyme analysis

Carried as per standard methods (Sambrook etal., 1989) and manufacturers 

recommendations (Boehringer, New England Biolabs, Promega and Stratagene).

Gel electrophoresis of DNA

DNA gels are analysed in ethidium bromide stained 0.8% to 2% agarose (Life 

Technologies) horizontal submarine gels using standard protocols (Sambrook et 

al., 1989).

isolation of DNA fragments from agarose gels

Slices containing the required DNA fragment are cut from agarose gels under long 

wave UV illumination to avoid short wave UV damage to the DNA. Purification of 

the DNA is carried out using the glass filter based Glass-Max DNA (Life 

Technologies) isolation kit.
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Ligation of DNA into piasmid based vectors

Digested DNA fragments and vectors are prepared and purified as described 

above. Vectors are generally desphosphorylated with calf intestinal alkaline 

phosphatase (Promega) (Sambrook etal., 1989) to cut down the background of 

religated vector sequence. Ligations reactions using recombinant T4 ligase 

(Promega) are set up using standard protocols (Sambrook etal., 1989). Following

incubation at 16^ C for at least 12 hours. 5 pi aliquots of the ligation reactions are 

used to heat shock transform E.coli (strain JM109 or XII- blue) (Sambrook etal., 

1989). Aliquots of the bacterial transformations are plated on L-agar plates

containing 100 pg/ml ampicillin and incubated at 370 q ovemight. The next day 

antibiotic resistant colonies are screened by plasmid mini-prep for the presence of 

recombinant plasmids.

Preparation of piasmid DNA

Large scale preparation of DNA (100 pg to 1 mg) is carried out using the standard 

alkali lysis method with a final CsCI/ethidium bromide gradient purification 

(Sambrook etal., 1989). Small scale preparation of DNA (1 pg to 20 pg) is carried 

out using the glass resin based Wizard mini-prep kit (Promega) as per 

manufacturers instructions.

Production of synthetic mRNA for microinjection into embryos

All synthetic messages are produced by in vitro transcription from cDNAs cloned 

into the vector pSP64t (Krieg and Melton, 1984). This vector provides a cloned 

cDNA with 5' and 3' untranslated regions of the Xenopus B-globin cDNA and a
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poly AC tail. The effect of these sequences is to increase the in vivo stability and 

translatability of mRNA synthesised from cDNAs cloned into this vector. All 

messages for injection are produced using the Ambion SP6 Megascript kit and a

modified protocol using 0.5 mM GTP and 5 mM m7G(5')Gppp(5')G. A 1 :iO ratio 

of GTP to cap analogue is used to ensure a high percentage of capped transcript 

(Krieg and Melton, 1987). Following DNAase treatment to remove template DNA 

the transcriptions are phenol/chloroform and chloroform extracted.

Unincorporated nucleotides are effectively removed by adding ammonium acetate 

to 0.5 M and precipitating with an equal volume of isopropanol. The integrity of 

the mRNA is checked by running 1/10 of the transcription product on an ethidium 

bromide stained 2% agarose gel. Aliquots of the mRNA at 0.2 pg/pl in DEPC 

treated water are stored at -80° C until required.

Plasmid constructs used in this study to produce synthetic mRNAs

The dominant negative FGF receptor (XFD) and control receptor (d50) constructs 

are those used by Amaya et al., (1991). The pSP64-B-globin plasmid is that of 

Krieg and Melton, (1984). The pSP64-XbFGF plasmid is as described by 

Thompson and Slack, (1992). The pSP64-eFGF plasmid is as described by 

Isaacs etal., (1994) and contains the naturally occurring sequence around the 

ATG initiating codon. The pSP64-eFGF (mod) is as described by Isaacs et al., 

(1994) and has the sequence around the initiating codon optimised for translation 

according to the rules of Kozak, (1986). The pSP64-Xbra plasmid is that of 

Cunliffe and Smith, (1992).
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Analysis of mRNA expression in the embryo 

Purification of totai RNA from embryo material

RNA is extracted by homogenisation of tissues in 0.1 M NaCI, 50 mM Tris (pH 8),

5 mM EDTA and 0.5% SDS followed by phenol/chloroform extraction and ethanol 

precipitation. This is a simple and efficient method for the recovery of total RNA 

from embryos and small pieces of tissue such as animal cap explants, suitable for 

analysis by RNAase protection.

RNAase prolye protection analysis

32P-UTP labelled antisense RNA probes are synthesised using “ P DTP 410 

Ci/mmol (Amersham). The DNA template is removed by DNAsing and, following 

the addition of denaturing sample buffer (95% formamide, 20 mM EDTA, 0.05% 

bromophenol blue, 0.05% xylene cylanol), the whole reaction is electrophoresed 

on a 6% polyacrylamide denaturing urea gel. The major radioactive transcript for a 

given reaction is identified by exposing the gel briefly to X-ray film and the gel 

region containing the band is cut out and the probe is eluted into 300 pi of 0.5M 

ammonium acetate, 10 mM Mg acetate, 1 mM EDTA, 0.1% SDS. The probe is 

ethanol precipitated and redissolved at a final concentration of 25,000 to 100,000 

cpm/pl. RNA samples from test tissues are vacuum dried into the hybridisation 

tubes and the 30 pi hybridisations are set up containing 80% formamide, 0.4 M 

NaCI, 0.04 M PIPES pH 6.4, 1 mM EDTA and 25,000 cpm of each test probe. If 

there is sufficient size differences between the final probe protected fragments up 

to 4 species of mRNA can be reliably analysed simultaneously using this protocol.
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Hybridisations are carried out for 12 to 16 hours at 45° C. After hybridisation 

is complete single stranded RNA and mis-matched RNA hybrids are digested by 

adding 350 pi of digestion buffer (300 mM NaCI, 10 mM Tris-HCI, 5 mM EDTA 

containing 700 u/ml of RNAase T1 (Ambion)) and incubating at 37° C for 30 to 60 

minutes. RNAse T1 is digested away by adding sodium dedecyl sulphate (SDS) to

0.5% and proteinase K to 125 pg/ml. The digestion mixture is incubated at 370 q 

for a further 20 minutes and is phenol/chloroform extracted and ethanol 

precipitated. The ethanol precipitate is resuspended in a small volume of DEPC 

water and denaturing sample buffer and electrophoresed on a 6% denaturing 

polyacrylamide. Following electrophoresis the gel is fixed in 10% methanol, 10% 

acetic acid solution and dried down onto Whatman 3MM paper. Autoradiography 

is by exposure at -80° C to double screened preflashed XAR X-Omat film (Kodak).

RNAase protection probes in this study

In all RNAase protections the ubiquitously expressed ornithine decarboxylase 

(ODC) gene is used as an intemal loading control (Isaacs etal., 1992).

Early general-mesodermal markers:-Xbra is detected as in Smith at a/.,

(1991). eFGF as in Isaacs etal., (1992). Xsna (Essex etal., 1993) is detected as 

in Sargent and Bennett, (1990).

Dorso-ventral mesodermal markers:- Goosecoid (Cho etal., 1991) is 

detected as in Green etal., (1992). A/ogg/nexpression is detected using Noggin 

A. This consists of a 740 bp PCR fragment, containing the whole of the coding 

region of noggin (Smith and Harland, 1992) cloned into the EcoRV site of 

Bluescript II KS+. When linearised with Styl and transcribed with 17 polymerase it
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yields a probe giving a full length protected fragment of 243 bases. MyoDb 

(Harvey, 1991) is used such that only the zygotic expression of XmyoD is 

detected. Xwnt-8 is detected as in Christian and Moon, (1993).

Antero posterior markers:- Xlhboxi (HoxC6)(Carrasco and Malacinski, 

1987) is detected as in Cho etal., (1988) using pRII as a probe. Xhox3(Ruiz i 

Altaba and Melton, 1989a) is detected as in Saha and Grainger, (1992). Xhox36 

(HoxAT) (Condie and Harland, 1987) expression is detected using the probe 

Xhox36.4. This consists of an EcoRI/Pst I fragment of the Xhox36 cDNA cloned 

into pGEM2. When linearised with EcoRI and transcribed with T7 it yields a probe 

giving a protected fragment of 231 bases.

In situ hybridisation

Digoxigenin-11 UTP (DIG) (Boehringer) labelled RNA probes are generated as 

per manufacturer's protocol. DNA template is removed by digestion and the 

probes are precipitated by the addition of LiCI to 2.5 M. Probes are resuspended 

in a small volume of 1 mM EDTA and their integrity is checked on a 2% agarose

gel.^An estimate-of probe concentration is made by reference to a DIG RNA  -----

standard. Aliquots of probes are stored at -80° C until required. Probes are not 

hydrolysed before hybridisation.

The in situ hybridisation protocol used is based on that of Harland, (1991). 

The most important change being that embryos are not RNAase treated following 

hybridisation. This considerably increases the signal strength and generally 

without an increase in background. Albino embryos are demembranated and in 

em bryos up to tailbud stages the body cavities are punctured to reduce
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background due to reagent trapping. Embryos are fixed for 1 hour in MEMFA (0.1 

M MOPS pH 7.4, EGTA 2 mM, MgSO^, 1 mM and formaldehyde 4%) with 

agitation. Embryos are washed for 5 minutes in 100% ethanol and then stored in 

ethanel at -20° C until required.

Embryes are equilibrated with Dulbecce's phesphate buffered saline 'A' + 

0.1% tween (PBS-AT) and are permeabilised by treatment with preteinase K 

(Beehringer) at 10 pg/ml fer 10 te 20 minutes. Wash twice with 0.1 M 

triethanelamine pH 7.8 fer 5 minutes. Acetic anhydride is added to 0.25% to the 

last wash and the embryos are gently swirled for 5 minutes. Wash twice with 

PBSA-T fer 5 minutes and refix embryes fer 20 minutes in PBS-AT + 4% 

fermaldehyde. Wash with several changes ef PBS-AT fer at east 30 minutes. 

Embryes are transferred te 1.5 ml screw cap tubes (Sterilin) and equilibrated with 

hybridisation buffer.

Hybridisation buffer

50% molecular grade formamide (IBI, Kodak-Eastman)

5X SSC ( final=0.75 M NaCI, 0.075 Na3citrate.2H20 pH 7.0)

1 mg/ml total yeast RNA (ICN)

100 pg/mTheparin (Sigma)

IX  Denhardts solution (final/ml=0.1 g ficoll 400, 0.1 g PVP, 0.1 g BSA)

0.1% tween (BDH)

0.1% CHAPS (Sigma)

10 mM EDTA 

in DEPC treated water.

Hybridisation tubes are brought to 60° C and embryes are prehybridised 

with gentle agitation for 2 hours. Hybridisation solution is changed and heat
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denatured probes are added to a final concentration of about 1 pg/ml. 

Hybridisations are incubated with gentle agitation for 16 hours at 60° C.

Probe solution is removed and embryes are washed twice with 

hybridisation solution at 60° C. Embryos are washed 4X 30 minutes with 2X SSC 

+ 0.1% tween at 60° C. Embryos are washed 4X 30 minutes with 0.2X SSC + 

0.1% tween at 60° C. Embryos are equilibrated with MAB-T (100 mM maleic acid, 

150 mM NaCI pH 7.8 and 0.1% tween). The solution is replaced with MAB-T + 2% 

Boehringer DIG blocking reagent and rolled for 30 minutes at room temperature. 

The solution is replaced with MAB-T + 2% blocking agent + 20% heat treated 

sheep serum (Sigma) and blocking is continued for a further 90 minutes. Fresh 

blocking solution is added + 0.05% alkaline phosphatase linked affinity purified 

sheep anti-DIG antibody (Boehringer) and incubated with gentle agitation for at 

least 12 hours at 4° C.

Antibody solution is removed and embryos are transferred to 20 mr vials 

and washed 4X 1 hour with MAB-T. Embryos are equilibrated with fresh alkaline 

phosphatase buffer (100 mM tris, 50 mM MgCI ,̂ 100 mM NaCI pH 9.5 and 0.1% ) 

_tween._Colour_reaction.isdevelopedJn.the.darkat.room_temperature.foiLup.to_18- 

hours in a premixed NBT/X-phosphate solution (BM purple AP substrate, 

Boehringer). After colour development is complete embryos are washed briefly in 

PBS-AT and then stored in MEMFA. A pinkish background colour can develop 

after long development times which can be removed by a brief methanol wash.

Embryos are cut open using a microsurgical blade to reveal staining in 

deep tissue layers. Clearing of embryos to reveal deep tissue staining can be 

achieved using the following protocol. Equilibrate for 5 minutes in methanol.
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followed by 5 minutes in iso-propanol and embryos are finally cleared 

tetrahydronaphthalene (Aldrich). For long term storage specimens must be 

returned though an isoprepanel/methanol series te MEMFA or PBS AT to avoid 

loss of signal.

In situ hybridisation probes used in this study

Xenopus fibroblast growth factors:- eFGF (I) is detected using XeFGF (i) GS 

(Isaacs etal., 1992; Isaacs etal., 1995). It corresponds to 300 bp fragment from 

the 5' end of the coding region of XeFGF (I). FGF-3 {int-2) as in Tannahill et al.,

(1992).

Early general-mesodermal markers:-Xbra (Smith etal., 1991) is 

linearised with Clal and transcribed with T7 polymerase. Xsna (Essex etal.,

1993) as per RNAase protection probe in Sargent and Bennett, (1990).

Dorso-ventral mesodermal markers:- Noggin expression is detected 

using Noggin A. This consists of a 740 bp PCR fragment, containing the whole of 

the coding region of nogg/n (Smith and Harland, 1992) cloned into the EcoRV site 

of Bluescript II KS+. When linearised with Styl and transcribed with T7 

polymerase it yields a probe of 243 bases. Xnot2 as in Gont and De Robertis,

(1993).

Antero-posterior markers:- otx2 is detected as in Pannese et al., (1995). 

En-2 and krox20as in Doniach etal., (1992). HoxB1 is detected as In Godsave 

etal., (1994). Xhox36 (HoxAT) (Condie and Harland, 1987) expression is 

detected using the probe Xhox36.1. This consists of an Eco RI fragment of the
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Xhox36 cDNA cloned into pGEM2. When linearised with Bam HI and transcribed 

with T7 it yields a probe of 1800 bases.

Tissue type specific markers:- Cardiac actin is detected as in Gurdon et 

al., (1985). XmyoD is detected using the RNAase protection probe MyoDb 

(Harvey, 1991). XmyfSls detected as in Hopwood eta!., (1991). NCAM (Krieg at 

a!., 1989) is detected as per RNAase protection probe in SchulteMerker at a!., 

(1994b).
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Chapter 3
The developmental expression of eFGF, FGF-3 and Xbra.
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Introduction

The main theme of this thesis is the role that the secreted factor eFGF has during 

early development. To understand better the nature of this role a detailed study of 

the expression pattem of this factor was undertaken using whole-mount DIG in 

situ hybridisation. The sensitivity and spatial resolution of the DIG in situ protocol 

has provided a much more detailed view of the expression pattem of eFGF than 

radioactive in situ hybridisation on sectioned embryo material and has revealed 

aspects of eFGF expression that were not apparent in the original study (Isaacs et 

al., 1992).

This chapter also contains a detailed study of the expression patterns of 

Xenopus FGF-3 (int-2 ) and Xenopus Brachyury (Xbra). The expression patterns 

of these 2 genes have been previously reported (Smith et ai, 1991; Tannahill et 

al., 1992). However, the FGF-3 in situ study was included as a comparative 

exercise because FGF-3 is the only other known Xenopus FGF with a recognised 

secretory signal sequence. A side by side comparison of the expression pattems 

of eFGF and FGF-3 is helpful in determining the roles that these factors might 

have in common. The Xbra study was also undertaken for the purpose of 

comparison because experiments within this thesis and elsewhere strongly 

suggest a close link between the activities and regulation of the FGFs and Xbra 

(Amaya etal., 1993; Isaacs etal., 1994; Cornell etal., 1995; Schulte-Merker and 

Smith, 1995).

Xenopus eFGF shares about 60% predicted amino acid identity with 

mammalian FGF-4 and FGF-6 . The cloning of eFGF revealed two closely related 

cDNAs which share about 95% predicted amino acid identity (Isaacs etal., 1992).
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It is likely that these 2 closely related cDNAs {eFGF(i) and eFGF(ii)) are derived 

from pseudoallelic genes that arose as the result of a genome duplication event 

which is thought to have occurred in Xenopus about 30 million years ago (Bisbee 

et al., 1977; Kobel and du Pasquier, 1986). The carboxy terminal halves of eFGF 

(i) and eFGF (ii) are almost identical and most divergence has occurred in the 

amino terminus, which includes the secretory signal sequence. However, a 

potential N-linked glycosylation site close to the predicted signal cleavage site has 

been retained in both eFGF isoforms. This site is also conserved in mammalian 

FGF-4 and FGF-6 and indicates that glycosylation has some functional 

significance for this closely related subset of FGFs (Yoshida etal., 1987; Coulier 

et al., 1991). However, glycosylation is not a essential for biological activity of 

these proteins because eFGF and FGF-4 proteins, that have the glycosylation site 

removed by truncation, retain full biological activity in a number of assays (Isaacs 

etal., 1992; Bellosta etal., 1993). The nature of the requirement for glycosylation 

is at present unclear.

The proto-oncogene FGF-3 was first identified in mouse as a site of 

insertion for the mouse mammary tumour virus (MIVITV) (Dickson et al., 1984; ^

Moore etal., 1986) and homologues have since been identified in a number of 

vertebrates including human, chick and Xenopus (Brookes etal., 1989; Tannahill 

etal., 1992; Mahmood etal., 1995b). The predicted amino acid sequence of 

Xenopus FGF-3 is approximately 70% identical to human, mouse and chicken 

FGF-3 sequences. As is the case with eFGF, FGF-3 is glycosylated and has 

been shown to be secreted from at least some cell lines. (Kiefer et al., 1991). In 

fact, the Xenopus FGF-3 appears to be somewhat more efficiently secreted from
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cell lines than does mammalian FGF-3 (Kiefer etal., 1993a). However, unlike 

eFGF only one FGF-3 pseudoallele has been identified.

The mouse deletion mutant Brachyury {Tj was first described several 

decades ago. However, it was not until recently that the Brachyury gene was 

identified by positional cloning from the mouse (Herrmann etal., 1990). Since 

then direct homologues have been identified in Xenopus, chicken and zebrafish 

(Smith etal., 1991; SchulteMerker etal., 1994c; Kispert etal., 1995b). Closely 

related genes have also been identified in the primitive chordates Amphioxus and 

the ascidian, Halocynthia roretzi (Yasuo and Satoh, 1994; Holland ef a/., 1995).

Brachyury is a member of a family of genes which have been identified in 

animal species as divergent as the sea urchin. Drosophila and man (Kispert et 

al., 1994; Bulfpne etal., 1995; Harada and Yasuo, 1995). They are all putative 

transcription factors which are characterised by the presence of a conserved T- 

box' DNA binding domain (Kispert etal., 1995a). The expression pattern of 

Brachyury IS very similar in all vertebrates examined to date (reviewed by 

Herrmann and Kispert, 1994). This suggests a highly conserved role for 

Brachyury \n vertebrate in development. This view is supported by the analysis of 

the naturally occurring Brachyury mutants in mouse (7) and zebrafish (no tail), 

which points to this gene having an important role in the formation of the 

mesoderm and axial structures (Beddington etal., 1992; Herrmann and kispert, 

1994; SchulteMerker etal., 1994c). Functional studies in Xenopus also support 

this view, and furthermore, strongly suggest a close link between the regulation of 

Brachyury and the activity of the FGFs (Cunliffe and Smith, 1992; Isaacs et al.,

1994; Comell et al., 1995; Schulte-Merker and Smith, 1995).
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Materials and methods 

Embryological methods

As per general methods.

The cloning of Xenopus embryonic fibroblast growth factor (eFGF)

Xenopus eFGF was cloned from Xenopus embryo cDNA using the polymerase 

chain reaction (Isaacs etal., 1992). Several pairs of degenerate deoxy- 

oligonucleotide primers were designed from the two mammalian kFGF sequences 

available (Yoshida etal., 1987; Brooks etal., 1989) and a product of the predicted 

size was obtained with this primer pair.

XK(IOD): 5'TA(T/C)TG(T/C)AA(T/C)GT(I/C)GG(I/C)AT(I/C)GGI 3'

XK(14D): 5' (T/C)TC(A/G)TA(I/C)GC(A/G)TT(A/G)TA(A/G)TT(A/G)TT 3'

Sequence analysis revealed a predicted 70% identity with murine kFGF at 

the amino acid level. Using the sequence data obtained from the primary PCR 

clone primers were designed which enabled the 5' and 3' ends of the cDNA to be 

obtained by a modified RACE (Rapid Amplification of £DNA Ends) protocol 

(Frohman, 1990). Sequence analysis of 5' and 3 '-RACE products suggested the 

presence of two closely related cDNA clones. The coding regions of both cDNAs 

were amplified using primers based upon sequence data obtained from the 5' and 

3' RACE products. Several clones of each cDNA, now designated Xenopus 

eFGF(l) and Xenopus eFGF(il) were sequenced on both strands. The nucleotide 

sequences of both cDNAs are in the EMBL data base. Accession numbers are 

X62593 and X62594.

44



In situ hybridisation

Transcriptions and in situ hybridisations were carried out as per general methods. 

eFGF

The radioactive in situ hybridisation study of the spatial expression of eFGF used 

a 250 base probe based on the original product of the degenerate PCR cloning 

strategy (Isaacs et al., 1992). A number of probes were tested for the DIG whole- 

mount in situ study in this thesis (data not shown). The best signal to noise ratio 

was obtained using a probe made from eFGF (i) GS (Isaacs etal., 1992). This 

corresponds to a 300 bp EcoRI/Clal fragment cloned into Bluescript II KS+ 

(Stratagene) which covers the 5' half of the coding region from the eFGF (i) cDNA. 

An antisense probe was made by linearising eFGF (i) GS with EcoRI and 

transcribing with T3 RNA polymerase. A sense control probe was made by 

linearising with Clal and transcribing with T7 RNA polymerase. Colour 

development was allowed to proceed at room temperature for up to 18 hours.

-FGF^3 (/nf-2)------—------ ------------—̂  -------------- _______ __________ ______

The Xenopus FGF-3 probe used in this study is the same as that in Tannahill et 

al„ (1992). It corresponds to a 297 bp EcoRI fragment of the FGF-3 cDNA coding 

region cloned into Bluescript II KS-k (Stratagene) which covers all of exon 2 and 

parts of exon 1 and 3. Antisense probe was made by linearising with BamHI and 

transcribing with T3 RNA polymerase. Colour development was allowed to 

proceed at room temperature for up to 18 hours.
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Xbra

th e  Xbra plasmid is that of Smith etal., (1991). An 1800 base antisense probe 

was made by linearising with Clal and transcribing with T7. Colour development 

was allowed to proceed at room temperature for up to 4 hours.

Results

Developmental expression of eFGF

eFGF expression in the early gastrula

As discussed above Xenopus is pseudotetraploid and as a result 2 copies of 

eFGF are present in the Xenopus genome. Interestingly the temporal expression 

pattem of both eFGF pseudoalleles show significant differences. eFGF (i) is 

expressed at considerably higher levels than is eFGF(ii) and eFGF(i) is expressed 

both maternally and zygotically, whereas eFGF(ii) mRNA is only expressed 

zygotically. However, both eFGF isoforms are most highly expressed during 

gastrula and neurula stages (stage 10to 19) (Isaacs etal., 1992). It is possible 

that the 2 pseudo alleles not only have different temporal expressions but also 

different spatial expression pattems as has .been reported for..other psedpallelic^ ^ 

genes in Xenopus (Shuldiner etal., 1991). However, the much lower levels of 

eFGF (ii) expression means that it has proved impossible to obtain any in situ data 

using probes specific to this isoform. All the in situ data presented here is 

obtained using a probe which in RNAase protections is specific to eFGF (i).

RNAase protection analysis of dissected pieces from blastulae suggest that 

on a per unit of total RNA basis the maternal eFGF mRNA is rather evenly 

distributed along the animal vegetal axis (Isaacs etal., 1992).
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Fig. 1. Whole-mount in situ hybridisation analysis of Xenopus eFGF expression

during normal development.

Abbreviations: arc=archenteron. bp=blastopore. cnb=chordoneural hinge. dl=dorsal lip. 

dmz=dorsal marginal zone. mly=inidbrain/hindbrain junction. pw=posterior wall of the 

neuroenteric canal. som=somite. tlb=tailbud. vmz=ventral marginal zone.

All embryos are hybridised to a DIG labelled eFGF antisense probe. A is a vegetal view of 

an early gastrula stage 10.5 embryo (dorsal to the top). B is a vegetal view of a cleared 

early gastrula stage 10.5 embryo (dorsal to the top). C shows the cut surface of a stage

10.5 embryo that has been dissected along the dorsoventral midhne (dorsal to the right). D 

is a vegetal view of a gastrula stage 11 embryo (dorsal to the top). E is a vegetal view of a 

gastrula stage 11.5 embryo (dorsal to the top). F shows the cut surface of a gastrula stage

11.5 embryo that has been dissected along the dorsoventral midline (dorsal to the right). G 

is a dorsal view of a late gastrula/early neurula stage 13 embryo (anterior is to the left). H  

shows the cut surface of a stage 13 embryo that has been dissected at right angles to the 

anteroposterior axis (transverse section) (dorsal to the top). I  is a posterior view of a stage 

13 embryo (dorsal to the top). J is a dorsal view of a neurula stage 14 embryo (anterior to 

the left). K  is arpbsteribr View pf a Cleared late neunda s ^  20 embryo (dorsal to the top). 

L is a side view of the head region of a tailbud stage 32 embryo (anterior to the left). M  is 

a side view of the head region of a cleared stage 32 embryo (anterior to the right, dorsal to 

the top). N is a side view of the posterior region of a stage 32 embryo (anterior to the left, 

dorsal to the top). O is a side view of the posterior region of a stage 32 embryo (anterior to 

the left, dorsal to the top).
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Fig. 1. Whole-mount in situ hybridisation analysis of Xenopus eFGF expression

during normal development.
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However, yolky cells of the vegetal hemisphere contain far less mRNA than do the 

animal hemisphere cells. This means that, on a per unit volume basis, there is a 

predominantly animal localisation of the maternal eFGF pool. Unfortunately, using 

the techniques of radioactive and DIG in situ hybridisation it has not been possible 

to visualise the spatial distribution of eFGF mRNA during early cleavage or 

blastula stages. Using whole mount DIG in situ hybridisation eFGF expression is 

first detected following the onset of zygotic transcription in the early gastrula. At 

stage 10.5 eFGF mRNA is present in a complete ring around the blastopore, 

although the signal is considerably stronger on the dorsal side of the embryo (Fig.

1 A, B and 0). Staining for eFGF is stronger in the deep tissue layers and does 

not extend to the dorsal lip (Fig. 10).

As gastrulation proceeds the levels of eFGF expression are maintained at 

similar levels in the lateral and ventral circumblastoporal regions and the highest 

level of expression is to be found in a 45 degree sector centred on the dorsal lip at 

mid-gastrula stage 11 and stage 11.5 (Fig. 1D and E). Thus the highest level of 

eFGF expression is in Spemann's organiser. In Fig. IE  eFGF expression is seen 

in the dorsal mesoderm after it has involuted and has begun to extend along the 

developing axis. This is more clearly shown in Fig. IF , which is a cross section 

through a stage 11.5 embryo along the dorsoventral axis. The forming cavity of 

the archenteron is evident on the dorsal side of the embryo. At this stage eFGF 

is expressed in a posterior to anterior gradient within the involuting dorsal 

mesoderm. The most anterior extent of expression corresponds to the level of the 

anterior tip of the archenteron. Expression is absent from the endodermal lining of
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the archenteron roof and the overlying ectoderm except at the dorsal lip, where 

staining can be seen in the superficial tissue layers as well as in the deep layers.

eFGF expression in the iate gastruia and early neurula

Fig. 1G is a dorsal view of an embryo following closure of the blastopore at stage 

13. The highest level of eFGF expression is still in the posterior of the embryo but 

staining can also be seen in the dorsal midline. Fig. 1H is a transverse section of 

a stage 13 embryo at a level 1/3 of the way along from the posterior tip, which 

shows that this staining is in the developing notochord. At this level in the embryo 

eFGF expression is not seen in the overlying neuroectoderm or underlying 

endoderm of the archenteron roof. In a number of specimens faint staining has 

been seen in the region of the somites that abuts the notochord.

Fig. II is a posterior view of a stage 13 embryo. Strong staining is seen in 

the dorsal midline and in wings of expression which spread laterally away from the 

closed blastopore. A sweep or "smile" of lower level expression can be seen 

ventrally below the blastopore. In contrast to the expression on the dorsal side of 

the blastopore, expression on the ventral side does not extend all the way to 

blastopore. On the dorsal and lateral aspects of the circumblastoporal region 

staining is seen in deep and superficial cells, although the superficial staining 

within the ectoderm appears to be somewhat pepper and salt in character. 

Ventrally the signal is restricted to the deeper cell layers.

The expression of eFGF along the whole length of the notochord is 

transient. Fig 1 J. shows that by stage 14 the notochord staining is quite faint, 

whilst remaining strong in the posterior. This posterior restriction of expression
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Fig. 2. Sense control whole-mount eFGF in situ hybridisations

Abbreviations: dl=dorsal blastopore lip. yp=yolk plug

All embryos are hybridised to a DIG labelled eFGF sense probe. A is a vegetal view of a 

gastrula stage 11 embryo (dorsal to the top). B is a vegetal view of a gastrula stage 12 

embryo (dorsal to the top). C is a dorsal view of a late gastrula stage 13 embryo (anterior 

to the left).
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XFGF-3

FGF-3 expression in the early gastrula

Unlike eFGF which has a low level of maternal expression, Xenopus FGF-3 is only 

expressed zygotically. However, like eFGF, FGF-3 is most highly expressed in 

the gastrula and neurula but the level of FGF-3 expression does not fall off as 

dramatically as eFGF during subsequent development and is maintained at a 

more constant level up to the swimming larva stage 40 (Tannahill ef a/., 1992).

Using whole-mount DIG in situ hybridisation expression is first detected at 

the early gastrula stage 10.5 and is apparent as a faint staining in a complete ring 

around the blastopore (Fig. 3A). At this stage the expression of FGF-3 is very 

similar to that of eFGF and, just as with eFGF, there is a higher level of expression 

seen on the dorsal side of the embryo (Fig 3B). However, unlike eFGF, as 

gastrulation proceeds FGF-3 expression becomes somewhat down regulated on 

the dorsal side of the embryo relative to the lateral and ventral aspects of the 

blastopore (Fig. 30). Also, the staining seen with FGF-3 seems more restricted to 

the superficial layers than is the case with eFGF (Fig. 3D). Later in gastrulation 

another domain of FGF-3 expression is visible as single stripes in the ectoderm 

either side of the dorsal midline about halfway along the embryo length. These 

two stripes of expression are linked by very faint streaky expression in the 

ectoderm either side of the dorsal midline (Fig. 3E). It is important to note that 

unlike eFGF, FGF-3 expression is not detected in the developing notochord.
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Fig. 3. Whole-mount in situ hyhridisation analysis of Xenopus FGF-3 {int-2)

expression during normal development.

Abbreviations: arc=archenteron. bcl= blastocoel. bp=blastopore. hra=branchial arches. 

cnh=chordoneural hinge. dl=dorsal blastopore lip. dmz=dorsal marginal zone. 

mhj=midbrain/hindbrain junction. otv=otic vesicle. pw=posterior wall of the neuroenteric 

canal. som=somite. tlh=tailbud. vmz=ventral marginal zone.

All embryos are hybridised to a DIG labelled FGF-3 {int-2) antisense probe. A is a vegetal 

view of an early gastrula stage 10.5 embryo (dorsal to the top). B shows the cut surface of 

a stage 10.5 embryo that has been dissected along the dorsoventral midline (dorsal to the 

right). C is a dorsovegetal view of a gastrula stage 11.5 embryo (dorsal to the top). D 

shows the cut surface of a stage 11.5 embryo that has been dissected along the dorsoventral 

midline (dorsal to the right). E is a dorsovegetal view of a late gastrula stage 12.5 embryo. 

Black arrow indicates faint ectodermal midline staining. White arrow indicates anterior 

ectodermal stripe of expression (dorsoanterior to the top). F is a dorsal view of late 

gastrula/early neurula stage 13 embryo (anterior is to the left). Black arrow indicates faint 

ectodermal midline staining. G shows the cut surface of a stage 13 embryo that has been 

dissected at right angles to the anteroposterior axis at the level of the FGF-3 anterior 

ectodermal stripe of expression (transverse section) (dorsal to the top, anterior into the 

page). H is a posterior view of a stage 13 embryo (dorsal to the top). I is a dorsal view of 

a cleared neurula stage 14 embryo (anterior to the left). J is a dorsal view of a cleared late 

neurula stage 20 embryo (anterior to the left). K  is a posterior view of a stage 20 embryo 

(dorsal to the top). L is a side view of the head region of a cleared tailbud stage 32 embryo 

(anterior to the right, dorsal to the top). Black arrow indicates the otic vesicle. M is a side 

view of the posterior region of a stage 32 embryo (anterior to the left, dorsal to the top). N 

is a side view of the posterior region of a cleared stage 32 embryo (anterior to the left, 

dorsal to the top).
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Fig. 3. Whole-mount in situ hybridisation analysis of Xenopus FGF-3 {int-2)

expression during normal development
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FG FS expression in the late gastrula stage and early neurula 

Fig. 3F is dorsal view of a stage 13 embryo following the closure of the blastopore 

and shows that FG FS  expression is highly expressed in the posterior of the 

embryo around the closed blastopore. The level of expression of FG FS  is still 

somewhat reduced in the dorsal midline of the posterior, although there is still 

some faint staining in the superficial layers either side of the midline running up to 

the level of the prominent anterior stripes of expression. A comparison with the 

fate map of Eagleson and Harris, (1990) suggests that at this stage the cells from 

the anterior domain of FG FS  expression will contribute to both midbrain and 

hindbrain. Fig. 3G shows that the anterior stripes of expression are restricted to 

the ectoderm of the embryo. Fig. 3H is a posterior view of a stage 13 embryo that 

shows FG FS  expression around the closed blastopore. Note in common with 

eFGF there is a ventral "smile" of expression that does not go right up to the 

blastopore. Fig. 31 is a cleared early neurula stage 14 embryo, and shows that 

FG FS  expression is absent from the developing notochord.

The dorsal view of a cleared stage 20 embryo at the end of the neurula 

stage (Fig. 3J) shows that the anterior stripes of expression are now much 

narrower and closure of the neural folds has brought the anterior stripes of FG FS  

expression close together so that they are almost touching in the dorsal mid-line.

A comparison of the expression of FGFS  with that of krox20, which is expressed 

in rhombomeres 3 and 5, (Bradley et al., 1992) and en-2 (Hemmati-Brivanlou and 

Harland, 1989), which is a marker of the midbrain/hindbrain junction (data not 

shown) suggests that at this stage the FGFS  stripe lies within the hindbrain, at 

about the level of rhombomere 5. A posterior view of an embryo from stage 20
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(Fig. 3K) shows strong FGF-3 expression in regions lateral to the closed 

blastopore. This expression extends for some distance along the developing axis 

but expression remains absent from the dorsal midline.

FGF-3 expression during later development

Fig. 3L is a cleared specimen of a tailbud embryo stage 31 and shows the 

expression of FGF-3 within the developing head. High levels of expression can 

be seen in the lining of all three pharyngeal pouches and in the region of the otic 

vesicle. There is also a prominent stripe of expression anterior to the otic vesicle 

at the level of the midbrain/hindbrain junction. It is likely that this represents a de 

novo site of expression and is not an elaboration of the hindbrain expression seen 

during neurula stages. In the posterior of the embryo Fig. 3M and Fig. 3N show 

that FGF-3 is expressed in the developing tailbud in both the chordoneural hinge 

and the posterior wall of the neuroenteric canal.

Xbra

The expression pattern of Xbra has been widely reported elsewhere (Smith et al.,

1991 ; Ruiz i Altaba and Jessell, 1992; Isaacs et ai., 1995; Vodicka and Gerhart, 

1995). However, an examination of the close relationship between certain of the 

FGFs and Xbra is a major theme of this thesis. It was therefore decided to include 

a number of in situs to aid in the comparison of expression patterns of the FGFs 

and Xbra.
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Fig. 4. Whole-mount in situ hybridisation analysis of Xenopus Xbra expression

during normal development.

iLrS

Abbreviations: dl=dorsal blastopore lip. dmz=dorsal marginal zone. vmz=ventral 

marginal zone.

A ll embryos are hybridised to a DIG labelled Xbra antisense probe. A is a vegetal view of 

a very early gastrula stage 10 embryo. B is a vegetal view of a gastrula stage 10.5 embryo. 

C shows the cut surface of a stage 10.5 embryo that has been dissected along the 

dorsoventral midline (dorsal to the right). D is a dorsovegetal view of a gastrula stage 11 

embryo (dorsal to the top). E is a dorsal view of a late gastrula stage 13 embryo (anterior 

to the left). F is a dorsal view of a neurula stage 14 embryo (anterior to the left). G is a 

side view of a tailbud stage 32 embryo (anterior to the left, dorsal to the top).

58



Xbra expression during development

In the very early gastrula stage 10 Xbra expression is detected in a complete ring 

around the forming blastopore and, as is the case with eFG F, this expression is in 

a dorsal to ventral gradient (Fig. 4A). By gastrula stage 10.5 the levels of Xbra 

expression have risen considerably and a dorsal to ventral gradient is less 

apparent, although is possible that a gradient pattern is obscured due to the high 

level of expression which may lead to saturated staining (Fig. 4B). The stage 10.5 

embryo in Fig. 4C has been cut open along the future dorsoventral axis and 

shows strong Xbra staining within the dorsal and ventral marginal zone. On the 

dorsal side of the embryo Xbra expression is seen within both the deep and 

superficial tissue layers. The superficial tissue layer is fated to form the lining of 

the archenteron roof and indicates that Xbra expression is found not only in 

mesoderm but also within endodermal precursors. At this stage Xbra expression is 

not present in the deepest cell layers and does not yet extend all the way to the 

blastopore lip. This non-expressing population of cells corresponds to the anterior 

mesendodermal cells which contribute to the mesoderm of the head and the 

pharyngeal endoderm. It is this cell population which as been shown to express 

the transcription factor goosecoid and it is significant that there is no appreciable 

overlap of goosecoid and Xbra expression domains (Vodicka and Gerhart, 1995).

By mid-gastrula stage 11 (Fig. 4D) Xbra expression extends all the way to 

the dorsal blastopore lip and expression can be seen in the involuting dorsal 

mesoderm as it begins to extend along the developing anteroposterior axis. By 

the end of gastrulation (Fig. 4E and F) Xbra expression is seen in the whole length 

of the notochord and in a ring around the closed blastopore in a pattern that is
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very reminiscent of the eFGF expression pattern. At this stage Vodicka and 

Gerhart, (1995) report that Xbra is expressed in both deep and superficial layers 

in the posterior. In later development Xbra expression is lost from the mature 

notochord but continues to be expressed in the same regions of the tailbud as 

eFGF (Fig. 4G)

Discussion 

The expression patterns o f eFGF, FGF-4 and FGF-6

The predicted amino acid sequence of Xenopus eFGF is equally related to that of 

mammalian FGF-4 and FGF-6 (Isaacs et al., 1992). The exact nature of the 

evolutionary relationship of these molecules is at present unclear, however a 

number of possibilities present themselves. Firstly, it is possible that eFGF does 

in fact represent a direct homologue of FGF-4 or FGF-6. However, simple 

sequence analysis is not conclusive in this matter. Alternatively, it is possible that 

eFGF represents a gene that is ancestral to both FGF-4 and FGF-6 that 

underwent a duplication event following the divergence of the amphibian and 

mammalian lines. A third possibility is that eFGF actually represents a new 

member of the FGF family with an as yet undiscovered direct homologue in the 

higher vertebrates. This is supported by the fact that eFGF only shares 60% 

amino acid identity with its putative mammalian homologues FGF-4/FGF-6. This 

is somewhat lower than the other Xenopus FGFs to their mammalian homologues 

(bFGF=83%, FGF-3=71%, FGF9=93%). This means that the identity between 

eFGF and FGF-4/FGF-6 (60%) is less than the identity between FGF-4 and FGF-
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6 (70%). Certain aspects of the expression pattern of eFGF are also suggestive 

that the latter proposal might be the case.

Judging from expression pattern alone eFGF is more closely related to 

FGF-4 than FGF-6. The expression of FGF-6 is restricted to the developing 

muscle lineages and in the mouse expression is not detected until quite late in 

development (day 9.5 post-conceptus) (De Lapeyriere et al., 1993). FGF-4 is 

expressed in the embryonic ectoderm before the start of gastrulation and its 

expression then becomes localised to the migrating mesoderm cells within the 

primitive streak and later in the tailbud region (Niswander and Martin, 1992; 

Drucker and Goldfarb, 1993). This is directly comparable to the early expression 

of eFGF in the animal hemisphere during blastula stages and within the 

mesoderm around the blastopore during gastrulation and later within the tailbud 

(Isaacs et al., 1992). However, there are significant differences, most importantly 

FGF-4 expression has not been detected in the notochord. eFGF is the only 

member of the FGF family which has been shown to be expressed in the 

developing notochord. Furthermore, unlike eFGF, FGF-4 expression is not 

detected within the developing central nervous system at the midbrain/hindbrain 

junction. These data provide some support for the view that there is a direct 

homologue of eFGF in the higher vertebrates that is distinct from FGF-4 and FGF- 

6 .

The expression of FGF-3 in Xenopus and higher vertebrates

The initial expression of mouse FGF-3 Is detected in the extraembryonic parietal 

endoderm. However, the first expression that is detected in the embryo proper is
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within the early migrating mesoderm of the primitive streak (Wilkinson et al.,

1988). This is similar to the onset of FGF-3 expression within the mesoderm of 

the periblastoporal region in Xenopus and recently reported findings that show 

FGF-3 expression in the early primitive streak of the chick (Tannahill et al., 1992; 

Mahmood et al., 1995b). Similarly, in both Xenopus and chick FGF-3 is not 

expressed within the developing notochord but is expressed at low levels in the 

dorsal midline ectoderm, possibly in cells which will later contribute to the floor 

plate of the neural tube.

In mouse FGF-3 expression is detected in the region of rhombomeres 4 

and 5 (r4 and r5) of the hindbrain adjacent to the developing otocyst (Wilkinson et 

al., 1988). As expression within the hindbrain falls, expression within the 

developing otocyst increases. This apparent close relationship between FGF-3 

expression and the development of the otocyst has led to much speculation that 

FGF-3 may be involved in the induction of the otic vesicle (Wilkinson et al., 1988; 

Represa et al., 1991). Recent data obtained from mouse null mutants for FGF-3 

cast doubt on this notion (Mansour et al., 1993; Mansour, 1994). These studies 

indicate that FGF-3 is not required for the induction of the otocyst but is required 

for the subsequent development of the ear. In chick and Xenopus the expression 

of FGF-3 within the central nervous system (ONS) is complex and dynamic. In the 

chick FGF-3 the initial expression within the ONS is detected as two patches 

either side of the dorsal midline in a region of the unsegmented prospective 

hindbrain. When rhombomere boundaries are first apparent expression becomes 

restricted to r4 and r5 and then r6. Finally its expression becomes restricted to 

rhombomere boundaries. The initial neural expression domain of FGF-3 in
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Xenopus is rather broader than is the case in chick or mouse and probably fate 

maps to regions of prospective midbrain and hindbrain. However, in the early 

tailbud expression is restricted to the region of r5. Later in development 

expression of Xenopus FGF-3 is not detected within the rhombomeres but a new 

domain of expression is seen at the midbrain/hindbrain junction. This domain of 

expression is also detected in the chick.

During later development the expression pattern of FGF-3 becomes 

increasingly complex, particularly in the head, and makes the comparison of 

expression in different species difficult. However, certain features are conserved, 

for example, in all 3 species examined FGF-3 continues to be expressed in the 

posterior of the embryo in the tailbud region and in the anterior is expressed in the 

pharyngeal pouches. In Xenopus and mouse FGF-3 is expressed in the 

developing eye and in Xenopus and chick expression is found in the region where 

the stomodeal opening will form.

Brachyury in development

Brachyury homologues in the mouse (7), chick (CH-7), zebrafish (no tail, ntf) and 

Xenopus (Xbra) not only share a high degree of amino acid sequence identity (78- 

91%) but also have very similar patterns of expression. The details of Xbra 

expression in Xenopus are directly comparable to the expression of Brachyury 

within the developing mesoderm and endoderm of other vertebrates (Wilkinson et 

al., 1990; Smith etal., 1991 ; SchulteMerker etal., 1994c; Kispert et al., 1995b)

In Xenopus there is a very low level of maternal Xbra expression and 

zygotic expression is first detected soon after the mid-blastula transition (MBT)
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(Smith et al., 1991). At the start of gastrulation Xbra is expressed in the marginal 

zone of the embryo including the most superficial layer of cells which forms the 

endodermal lining of the archenteron. However, expression of Xbra is absent 

from the very deepest layers of cells which contribute to the head mesoderm and 

pharyngeal endoderm. As gastrulation proceeds, and cells of the mesoderm 

involute, expression is rapidly down regulated in all cells except the notochord and 

cells around the closed blastopore, where expression persists through neurula 

stages. Expression of Xbra becomes increasingly localised to the posterior of the 

embryo and is found in the tailbud during tail extension.

The phenotype of the T  mutant mice and no fa/7 mutant zebrafish is also 

strikingly similar. In both naturally occurring mutations anterior development is 

rather normal. However, in no tail zebrafish trunk structures posterior of somite 

11-13 are lost (SchulteMerker ef a/., 1994c) and in homozygous T mice 

development of the trunk and tail posterior to somite number 7 is lost (Beddington 

et al., 1992). Furthermore in both mutants there is a failure of the notochord to 

differentiate. In mouse there is also abnormal development of the allantois, which 

contributes to the placenta. This leads to reduced supply of nutrition to the 

embryo and ultimately to the lethality of this mutation at mid-gestation.

From these data it is apparent that there is a high degree of conservation of 

both expression and function for Brachyury anb furthermore suggest that 

Brachyury is likely to play similar roles in the development of the notochord and 

posterior mesoderm in all vertebrates. Additional support for this view is provided 

by data in Xenopus that shows that the overexpression of Xbra in animal cap
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expiants results in the formation of mesodermal tissue types (Cunliffe and Smith, 

1992).

There is further recent evidence that the role of Brachyury in the 

development of the mesoderm, and in particular the notochord, may extend to the 

primitive chordate ancestors of the vertebrates. Brachyu/y homologues {A s-Tand 

As-T2) have been cloned from the urochordate ascidian Halocynthia roretzi 

(Yasuo and Satoh, 1994). Interestingly As-T is only expressed in notochord and 

not in the mesenchyme. As-T2, on the other hand, is expressed in the involuting 

muscle cells of the gastrula and the tail tip of the neurula (Yasuo et al., 1995).

This may suggest that the function of Brachyury \s split between 2 genes in the 

ascidians. However, the sequence of the As-T2 T-box’ domain is divergent from 

other chordate Brachyu/y homologues and (Yasuo et al., 1995) indicates that the 

expression of As-T  exclusively in the notochord represents the expression domain 

of the ancestral Brachyury gene. The expression of pattern of two Brachyury 

homologues {AmBra) in the cephalochordate amphioxus {Branchicstcma ficridae) 

is remarkably similar to that of the vertebrates and expression is detected in both 

the notochord and the mesoderm around the closing blastopore (Holland et al., 

1995). The presence of homologues in the 3 chordate sub-phyla (vertebrates, 

cephalochordates and urochordates) argues that the function of Brachyury \n the 

formation of the mesoderm is very ancient.

Brachyury and the FGFs

Further details of the close relationship between the regulation of Xbra 

expression, its activities and FGF signalling will be discussed in subsequent
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chapters. However, data in this chapter show that there is considerable overlap of 

expression between Xbra and the known secreted Xenopus FGFs, in particular 

eFGF. During gastrula and neurula stages eFGF and Xbra are expressed in very 

similar domains in the developing mesoderm including the notochord. During later 

development both are localised to the chordoneural hinge and posterior wall of the 

neuroenteric canal of the tailbud (Gont and De Robertis, 1993; Isaacs et al., 1995; 

Tucker and Slack, 1995). There is less overlap of expression between Xbra and 

FGF-3, however, both genes are expressed early in the periblastoporal region and 

later in the tailbud.

The other known Xenopus FGFs, bFGFand FGF-9, do not have highly 

restricted patterns of expression and are much more widely expressed during 

development (Song and Slack, 1994; Song and Slack, in press). At no stage do 

bFGF and FGF-9 share the tight co-localisation of expression with Xbra that is the 

case with eFGF and FGF-3.

In higher vertebrates, again it can be seen that a number of the FGFs have 

expression patterns which overlap that of Brachyury. In the mouse, FGF-3, FGF-4 

and FGF-8 expression is found within the nascent mesoderm of the primitive 

streak during gastrulation and later in the tailbud (Wilkinson et al., 1988;

Niswander and Martin, 1992; Crossley and Martin, 1995). Significantly, however, 

no mammalian FGF has yet been shown to be expressed within the cells of the 

notochord.
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FGFs and mesoderm induction

Much of the background to the study of the function of the FGFs in Xenopus 

development is influenced by the observation that these factors have potent 

mesoderm inducing activity and have been considered as candidates for one of 

the in vivo, maternal, vegetally localised mesoderm inducing factors. This now 

seems unlikely because the available data shows that the maternal FGFs are not 

localised to the vegetal hemisphere. Furthermore, the zygotic expression of eFGF 

and FGF-3 within the nascent mesoderm during gastrula stages indicates that 

they have roles during the subsequent development of the mesoderm.

The FGF receptors in Xenopus

Three members of the receptor family have been cloned in Xenopus. Studies of 

the distribution of FGF-R1 mRNA indicate that it is present thoughout the early 

stages of development (Musci et a!., 1990). As with the FGF ligand mRNA, on a 

per unit volume basis, FGF-R1 mRNA is more abundant in the marginal zone and 

animal hemisphere. Western blot data confirm that the receptor protein also has a 

predominantly animal localisation (Cornell et a!., 1995). In the late gastrula stage 

immunohistochemical data shows that the receptor is most abundant in the 

blastopore region (Ding et a!., 1992). FGF-R2 is not expressed in the blastula but 

is first detected in the anterior neural plate during gastrulation (Freisel and Brown, 

1992). The expression of FGF-R2 suggests that it is not involved in the 

establishment of the mesoderm. However, FGF-3 has an anterior domain of 

expression within the ectoderm of the gastrula and it is possible that FGF-R2 is 

involved in transducing the FGF-3 signal. This idea is further supported by recent
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evidence that shows that Xenopus FGF-3 protein can bind with high affinity to the 

11 lb and II Ic isoforms of FGF-R2 (Mathieu et al., 1995). FGF-R4 has also recently 

been cloned in Xenopus and is expressed throughout early development. At 

present there is no report of its localisation (Shiozaki et a!., 1995).

The whole-mount in situ study in this chapter confirms previous findings 

that, both during gastrula and neurula stages, there is considerable overlap in the 

expression patterns of the eFGF, FGF-3 and Xbra within the newly formed 

mesoderm. However, it unexpectedly reveals that later in gastrulation eFGF is 

most highly expressed in the dorsal mesoderm and continues to be expressed 

within the developing notochord during the neurula stage. In contrast, the 

expression of FGF-3 becomes somewhat down regulated within the dorsal 

mesoderm as gastrulation proceeds and is not expressed within the notochord. 

These data demonstrate a very close correlation between the expression patterns 

of eFGF and Xbra during early development. Moreover, the expression pattern of 

FGF-3 suggests that it likely to have roles in common with eFGF, particularly in 

the posterior, but also has distinct roles during anterior development.
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Chapter 4
Mesoderm induction by eFGF.
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Introduction

The mesoderm of amphibians arises in a ring around the equator of the embryo in 

the so-called marginal zone (MZ). If explants taken from the prospective MZ of 

the newt Triturus prior to the 64-cell stage are cultured in isolation they form only 

epidermis. If they are taken at a later stage they will form both epidermis and 

mesoderm (reviewed by Smith, 1989). This suggests that during normal 

development the formation of mesoderm in the MZ requires the presence of 

factors which are absent from the explant before the 64-cell stage. Such a 

difference between what a group of cells forms in isolation (specification) and 

what they give rise to in normal development (fate) indicates that an inductive 

process is involved in their normal development. Induction can be defined as any 

process in development which involves a group of cells in one part of the embryo 

producing a signal that can redirect the developmental fate of another group of 

cells within the embryo.

The work of Nieuwkoop in the axolotl (Nieuwkoop, 1969) and Xenopus 

(Sudarwati and Nieuwkoop, 1971) indicates that the source of the mesoderm 

induction signal is the yolky cells of the vegetal hemisphere. If explants taken 

from the animal pole region and the vegetal pole region are cultured in isolation 

they form only epidermis and endoderm respectively. If however, they are 

cultured in combination mesodermal tissue forms as well. The use of lineage 

labels demonstrates that the mesoderm in such combinations arises from the 

animal pole tissue (Sudarwati and Nieuwkoop, 1971; Dale et al., 1985). This 

indicates that the source of the mesoderm inducing signal is the vegetal 

hemisphere and further demonstrates that it is not only the cells of the MZ which
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can respond to these signals but that the whole of the animal hemisphere is 

competent to respond.

Experiments of this sort have further shown that the vegetal hemisphere 

can be divided into 2 regions based upon the type of mesoderm that it induces in 

such 'Nieuwkoop' combinations (Boterenbrood and Nieuwkoop, 1973; Dale and 

Slack, 1987b). Most of the vegetal hemisphere will induce extreme ventral-type 

mesoderm such as blood, mésothélium and loosely packed mesenchyme and is 

termed the ventrovegetal (VV) region. A rather smaller region of the vegetal 

hemisphere has the ability to induce dorsal-type mesoderm such as notochord 

and muscle and is termed the dorsovegetal (DV) region or the 'Nieuwkoop centre' 

as it has been called in honour of the great man. There also appears to be some 

dorsoventral p re pattern in the animal hemisphere so that animal hemisphere 

explants from the dorsal side are more likely to form dorsal structures in response 

to a given factor than is a similar explant from the ventral half of the animal 

hemisphere (Sokol and Melton, 1991).

The exact nature of how the dorsoventral axis is established in Xenopus is 

something of a mystery. Within the first 45 minutes following fertilisation there is a 

rotation of the cortical cytoplasm relative to the deep cytoplasm towards the site of 

sperm entry. The direction of this rotation is towards the future ventral side away 

from the future dorsal side of the embryo (Gerhart et al., 1989). Thus the 

dorsovegetal signalling centre, and the dorsal region of the animal hemisphere 

with a dorsal bias in response to inducing factors, is set up in the region of the 

embryo where there is a net movement of vegetal tissue into the animal 

hemisphere. At the moment the mechanism by which the dorsal signalling and

71



responding properties are established in this shear zone is unclear but it must 

involve some activation, by translational or post-translational modification, of pre

existing maternal components on the dorsal side. The presence of an exclusive 

maternal dorsal determinant is unlikely because prior to fertilisation eggs are 

radially symmetrical and the future dorsoventral axis can be established along any 

of the radial planes of symmetry by natural or artificial stimulation of the cortical 

rotation (Gerhart et al., 1989). Therefore the components necessary for the 

formation of the dorsal signalling centre are also likely to be distributed in a 

radially symmetrical fashion.

The use of heterochronic animal and vegetal ‘Nieuwkoop’ combinations has 

established that mesoderm induction probably begins during the early blastula 

stage before the onset of zygotic transcription at the midblastula transition (MBT) 

(Jones and Woodland, 1987). This is an important consideration because it 

means that at least the initial components necessary for mesoderm induction must 

be present maternally. The competence of the animal hemisphere to respond to 

the vegetal signals is lost at the start of gastrulation. At this stage the 

specification of the marginal zone closely reflects the size and inducing qualities of 

the underlying vegetal tissue (Dale and Slack, 1987b). However, the dorsoventral 

specification of the MZ at this stage is quite different from the normal fate map 

projection, indicating that further interactions take place within the mesoderm 

during gastrula stages. For example, during gastrula stages a signal from the 

dorsal mesoderm results in the ventrally specified regions of the MZ adopting a 

more lateral character. The processes has become known as ‘dorsalisation’ and
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has received considerable attention in recent years (Smith and Slack, 1983; Dale 

and Slack, 1987b; Lattice and Slack, 1993).

An important development of "Nieuwkoop combinations" has been the 

animal cap serial dilution assay. Using this assay the mesoderm inducing activity 

of a given factor can be quantified. Briefly, mid-blastula stage animal cap explants 

are exposed to serial dilutions of the factor and cultured for up 3 days after which 

they are analysed histologically or with molecular markers for mesoderm 

formation. The animal cap assay has also been extended to test the autoinducing 

activity of injected mRNAs, where it is assumed that the effective quantities of 

active proteins produced is proportional to the injected amounts of mRNA. It is 

the development of this assay system which in recent years has allowed a major 

step forward in the understanding of the process of mesoderm induction and 

importantly the identification of purified factors capable of mimicking the 

endogenous mesoderm inducing signals.

Much work has concentrated on the inducing activities of the fibroblast 

growth factors (FGF) and members of the transforming growth factor B (TGFB) 

family, in particular the activins and bone morphogenetic proteins (BMP). The 

demonstration that FGFs induce ventral-type mesoderm and the activins induce 

dorsal-type mesoderm in the animal cap assay quickly established them as 

candidates for the endogenous inducing signals. This candidacy was further 

strengthened when members of both families were shown to be present in the 

early embryo (reviewed by Kessler and Melton, 1994; Slack, 1994). However, as 

knowledge of these molecules has increased the views on their functions in 

development have been modified. The complete absence of mesoderm in
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embryos in which the activin signal transduction pathway is inhibited (Hemmati- 

Brivanlou and Melton, 1992), and the recent demonstration that an activin 

responsive reporter construct is activated in the whole of the vegetal hemisphere 

still indicate that an activin-like molecule is part of the vegetal inducer (Watabe et 

al., 1995). Expression data however, indicate that this is unlikely to be activin 

itself (Dohrmann et al., 1993). The best candidate at present is vg l, which has 

the requisite vegetal localisation and has now been shown to have mesoderm 

inducing activity (Weeks and Melton, 1987; Dale et al., 1993; Thomsen and 

Melton, 1993). In this view however, vgl represents a general mesoderm 

inducing signal that is active throughout the vegetal hemisphere in both the VV 

and DV regions. The DV inducing signal is qualitatively different from the VV 

signal, as judged by its ability to induce mesoderm with the properties of the 

organiser. Evidence from overexpression of members of the wnt secreted 

molecule family and overexpression or inhibition of down stream elements of the 

wnt signal transduction pathway support the view that signalling from a member of 

the wnt family contributes to the DV signal from the 'Nieuwkoop centre' (Sokol et 

al., 1991; Heasman et al., 1994; He et al., 1995).

The interactions between the various candidate signalling molecules is 

extremely complex, and studies of these interactions have provided evidence that 

the secreted molecules noggin, chordin and Xnr form the molecular basis of 

dorsalisation (Smith et al., 1993; Holley et al., 1995; Jones et al., 1995). 

Dorsalisation as a process was identified by cut and paste embryology but the 

dawn of the molecular era has provided insights into processes which were 

unsuspected from classical embryology. For example, BMP4 has a potent ventral
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mesoderm inducing activity on animal cap explants (Dale et al., 1992; Jones et al.,

1992), but the best data at present has it playing an important role during 

gastrulation as a ventralising signal that counters the dorsalising influence of the 

organiser (Maeno et al., 1994; Hawley etal., 1995; Ishikawa et al., 1995; Suzuki 

et al., 1995; Jones et al., 1996). In this way competing dorsal and ventral signals 

establish the relative sizes of the dorsal and ventral mesodermal territories during 

gastrulation.

Similarly the role that is emerging for the FGFs is quite different from that 

originally envisaged. Maternal expression of the known Xenopus FGFs is 

predominately to the animal rather than the vegetal hemisphere making them 

unlikely candidates for the vegetal inducer (this thesis; Song and Slack, 1994). 

However, it is the demonstration that the FGFs have potent mesoderm inducing 

activity in the animal cap assay that has paved the way for the understanding of 

what the FGFs do during normal development. This chapter examines the 

properties of eFGF as a mesoderm inducing factor in a number of animal cap 

based assays. These data show that eFGF is a secreted factor with potent 

mesoderm inducing activity and that the type of mesoderm that it induces, in 

common with other FGFs, is of a ventrolateral character.

Materials and methods 

Embryo injections and manipulations

Embryos were prepared and cultured as per general methods. Capped synthetic 

mRNAs for injection were transcribed as per general methods. The pSP64-eFGF 

plasmid is as described by Isaacs et al., (1994) and contains the naturally
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occurring sequence around the initiator codon. The pSP64-XbFGF plasmid is as 

described by Thompson and Slack, (1992) and also contains the natural initiator 

sequence. Embryos for animal caps were injected into both blastomeres in the 

animal pole region following first cleavage. Animal caps were taken at stage 9 as 

per general methods and cultured until the required control stage. For the 

Einsteck-procedures animal caps from FDA injected embryos were explanted at 

stage 8 and treated with 100 ng/ml eFGF. At control stage 10 animal caps were 

grafted into the blastocoel of unlabeled hosts as per general methods.

Production o f recombinant eFGF protein.

Recombinant eFGF protein used in this study was produced as part of a 

collaborative project in the laboratory of Arnold Coffer (ICRF, Lincoln’s Inn Fields) 

using the pET T7 expression system (Rosenberg et al., 1987) and a modification 

of the methods of Isaacs et al., (1992). Briefly, a Ncol/BamHI fragment of 

XeFGF(i) was cloned into the pET8c translation vector. Cutting with Nco I has the 

effect of truncating the protein by 44 amino acids at its amino terminus and has 

previously been shown to be biologically active in the mesoderm inducing assay 

(Isaacs et al., 1992).

BL21(DE3) pLys S bacteria transformed with the XeFGF(i)-pET construct, 

are grown in liquid culture (L. broth + chloramphenicol 25 mg/ml +ampicillin 200

mg/ml) with vigorous shaking at 37° C until O.D eoo reaches 0.6. Protein 

production is induced following the methods of (Rosenberg et al., 1987) by the 

addition of IPTG to 0.4 mM. The bacteria are pelleted and resuspended in a 

small volume of ice cold 50 mM tris pH 8.0 +1 mM EDTA + 1 mM PMSF + 0.1
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mg/ml pepstatin A and then lysed by sonication on ice. Bacterial debris is 

removed by ultracentrifugation. The clear supernatant is then loaded onto a 

heparin sepharose column and washed with 50 mM tris pH 8.0 +1 mM EDTA + 

0.5 M NaCI. The column is eluted with a 0.5 M to 2.0 NaCI gradient at 0.5 ml/ 

minute over a 30 minute period collecting 1 minute fractions. Fractions from 

around the O.D. peak, giving a single band as determined by SDS-PAGE 

electrophoresis, are pooled. Glycerol is added to 50 % and aliquots frozen down

at -70° 0. Yields of up to 10 mg of purified eFGF protein/ litre of bacterial culture 

can be prepared in this way.

In vitro translation of proteins

Synthetic eFGF (I) mRNA was transcribed as per general methods using the 

pSP64-eFGF (mod) plasmid (Isaacs et al., 1992). The sequence around the 

initiator ATG of this construct has been modified using a PGR based approach to 

optimise translation in vitro and in vivo. The synthetic eFGF mRNA was 

translated in vitro along with relevant control mRNAs. Canine pancreatic 

microsomes were included to test core post-translational processing of 

radioactivity labelled synthetic proteins.

1 to 3 pg of heat denatured mRNA was added to a 25 to 50 pi mixture 

containing 70% rabbit reticulocyte lysate (Promega), 1 mM amino acids

(-methionine, (Promega)) and 1 pCi/pl of labelling grade 35s-methionine 

(Amersham). Canine microsomes (Promega) were added at 1 pl/50 pi of reaction

mixture. The reactions were incubated at 30^ C for 50 minutes and then 5 pi of 

the products were analysed by SDS-PAGE and autofluorography.
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Polyacrylamide gel electrophoresis

SDS-PAGE gels were run using standard protocols (Sambrook et al., 1989). 

Protein gels were fixed in 40% methanol and 10% acetic acid and impregnated 

with fluors using Amplify (Amersham) as per manufactures instructions. Gels 

were dried down on to filter paper and autofluorography was performed using 

XAR X-Omat film (Kodak).

Histology

Carried out as per general methods 

RNAase protection analysis

As per general methods. The expression of ornithine decarboxylase {ODC) gene 

was used as an internal loading control (Isaacs et al., 1992). Xbra was detected 

as in Smith et al., (1991). eFGF as in Isaacs et al., (1992). Noggin expression 

was deteteced as in Isaacs et al., (1992). Xwnf-8 expression was detected as in 

Christian and Moon, (1993).

Results 

The secreted nature of eFGF

Sequence analysis eFGF (i) using the rules of von Fleijne, (1986) predicts that 

eFGF is a secreted protein with a cleavable signal peptide and that cleavage is 

likely to occur at either position 23 or 29 (Isaacs et al., 1992). In addition the 

sequence Asn.Asp.Thr (amino acids 30.31.32) conforms to the consensus N-

78



linked glycosylation acceptor site sequence, suggesting that eFGF may be 

glycosylated in vivo . In wYm translation of synthetic eFGF mRNA in the presence 

of canine pancreatic microsomes demonstrates that these predictions are likely to 

be correct and eFGF enters the secretory pathway by translocation into the lumen 

of the endoplasmic reticulum (ER). Fig. 1 shows the results of translating eFGF in 

rabbit reticulocyte lysate in absence or presence of microsomes. Lane 1 shows 

the primary translation product of eFGF which corresponds to the predicted 

molecular weight of 21000. The inclusion of microsomes leads to 2 more bands 

appearing about 2000 smaller and 2000 larger than the primary product. These 

probably represent processing products following the cleavage of the signal 

peptide and the sequential addition of N-linked glycosylation following 

translocation into the lumen of the microsome.

The specific activity of eFGF and bFGF proteins are similar. However, 

injection of eFGF mRNA is at least 100 times more effective than bFGF mRNA at 

causing autoinduction of animal caps (Table 1). It is presumed that this difference 

is due to the possession by eFGF of a signal for secretion, as it has previously 

been shown that the presence of a signal sequence substantially increases the 

inducing activity of FGF mRNAs (Thompson and Slack, 1992).

Mesoderm induction by eFGF

The specific activity of recombinant eFGF was determined by the serial dilution

animal cap assay. Typical results are in the range of 10^ to 10° units/mg of 

purified protein, which is very similar to that of bacterially produced Xenopus 

bFGF protein (Kimelman etal., 1988; Green etal., 1990). In common with other
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Fig. 1. In vitro translation of eFGF.
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16K

Autoradiograph showing the products of translating synthetic eFGF mRNA in a rabbit 

reticulocyte lysate system. 5 |il of a 25 pi methionine labelled reaction was run on a 

15% PAGE gel. Lane 1 shows the product of translating eFGF mRNA in the absence of 

canine pancreatic microsomes. Lane 2 shows the products of translating eFGF mRNA in 

the presence of canine pancreatic microsomes and shows the presence of additional bands 

from sequential signal cleavage and glycosylation.

Table 1 Autoinduction of mesoderm in animal caps injected with eFGF

and bFGF mRNA

Injection Uninduced Induced n

Water 14 0 14

bPGF m RNA
5 Pg 14 0 14
50 pg 11 0 11
500 pg 3 8 11

eFGF m RNA
5pg 0 12 12

RNA was injected into both blastomeres of 2-cell stage embryos. Animal caps were 

removed at stage 9 and were cultured for 3 days. At this stage the presence of fluid-filled 

vesicles indicates the formation of mesoderm.
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members of the FGF family the type of induction elicited by eFGF is ventrolateral 

in character. After 3 days of incubation the typical appearance of an eFGF 

induction is of a translucent fluid filled balloon-like vesicle. Fig. 2A shows 

uninduced control caps. Fig. 2B and 0  show inductions by bFGF and eFGF 

protein at about 10 units/ml. Histology of animal caps treated with eFGF shows 

that at low doses induction are extreme ventral in character, containing 

mésothélium and loose mesenchyme (Fig. 3B). At higher doses the inductions 

are more lateral in character containing increasing amounts of muscle (Fig. 30). 

This has also been shown to be the case with increasing concentration of acidic 

FGF and basic FGF (Slack et al., 1988).The formation of notochord is not 

detected in eFGF treated animal caps.

On a number of separate occasions the presence of darkened ring-like 

structures has been detected on the surface of eFGF induced vesicles (Fig. 2D). 

This has generally, but not always, been associated with higher doses of eFGF 

protein (up to 100 units/ml). Histology of these organised ectodermal structures 

bears similarities to the structure of the proctodeum (Fig. 3D, E and F). The 

proctodeum is an ectodermal derivative which has been shown to be enlarged 

and sometimes duplicated in embryos overexpressing eFGF after the midblastula 

transition (MBT) (Isaacs etal., 1994; Pownall et al., submitted).

The ventrolateral character of the mesoderm induced by eFGF has been 

confirmed with molecular markers. Fig. 4 shows that overexpression of eFGF 

mRNA in animal caps activates the expression of the early pan-mesodermal 

marker gene Xbra, and the ventrolateral mesoderm marker Xwnt-8 but not the 

dorsal marker noggin.
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Fig. 2. The appearance of animals cap explants following treatment with

recombinant eFGF protein.

# #
# #

#

All animal caps were explanted at blastula stage 8 and cultured in either NAM/2 or NAM/2 

+ recombinant proteins for 3 days at 24° C until about control stage 40. A shows negative 

control uninduced animal caps cultured in NAM/2. B shows typical fluid filled vesicles 

formed following treatment with 10 units/ml of bFGF protein in NAM/2. C shows typical 

fluid filled vesicles formed following treatment with 10 units/ml of eFGF protein in 

NAM/2. D shows the appearance of vesicles formed following treatment with a high dose 

of eFGF protein (100 to 200 units/ml). White arrows indicate proctodeum-like stmctures 

which are frequently seen in animal caps treated with higher doses of eFGF protein.
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Fig. 3. Histology of animals cap explants following treatment with recombinant eFGF

protein.

Abbreviations: epi=epidermis. me=mesenchyme. mst=mesothelium. mus=muscle. 

pcd=proctodeum.

All animal caps were explanted at blastula stage 8 and cultured in either NAM/2 or NAM/2 

+ recombinant proteins for 3 days at 24° C until about control stage 40. A is a section from 

a negative control uninduced animal cap explant showing a mass of atypical epidermis. B 

is a section through an animal cap explant, treated with 10 units of eFGF protein, showing 

extreme ventral character of induction. C is a section through an animal cap explant, 

treated with 50 units/ml of eFGF protein, showing the presence of a large muscle block. D 

is a section through an animal cap explant, treated with 100 units/ml of eFGF protein, 

showing the typical appearance of the proctodeum-like ectodermal structures commonly 

found in animal caps treated with high doses of eFGF protein. The inset shows a section 

through the proctodeum of a stage 41 control embryo for comparison.
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Fig. 3. Histology of animals cap explants following treatment with recombinant eFGF

protein.
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Fig. 4. RNAase protection analysis of mesodermal marker gene expression in animal 

cap explants taken from embryos injected witb eFGF mRNA.
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Animal cap explants were taken from embryos injected with 10 pg of p-globin control 

mRNA or 10 pg of eFGF mRNA and analysed by RNAase protection at stage 11. 

Hybridisation were carried out using 5 |ig of total RNA for Xbra and 1 pg of total RNA for 

noggin and Xwnt-8. eFGF does not induce the expression of dorsal mesodermal markers 

such as noggin.
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eFGF caps and the Einsteck-procedure

The Einsteck -procedure has an old pedigree in experimental embryology and has 

been used in the study of inductive interactions for many decades. More recently 

(Ruiz i Altaba and Melton, 1989b) showed that ventral-type implants such as 

bFGF-treated animal caps give rise to ‘tail-like’ protrusions containing segmented 

muscle blocks. The behaviour of fluorescently labelled eFGF treated caps has 

been investigated in the context of the ‘Einsteck-procedure’ and confirms that 

eFGF treated caps also behave as other a ventral character tissues in this assay. 

Fig. 5A and B show the resulting embryos following the Einsteck-grafting of an 

uninduced and eFGF treated animal cap. The posteriorally located tail-like 

protrusion is very similar to that produced by bFGF treated animal cap and ventral 

marginal zone (VMZ) Einsteck-grafts (Ruiz i Altaba and Melton, 1989b; Slack and 

Isaacs, 1994). Fig. 50 and D are sections through one of these protrusions and 

shows both graft (labelled) and host (unlabelled) tissues contribute to this 

structure. Note the presence of graft derived segmented muscle blocks in the 

protrusion (4/8 cases). Although muscle is commonly found in eFGF treated cap 

explants cultured in isolation it never has this segmented appearance. There is 

evidence that the segmented muscle in these protrusions requires a dorsalising 

influence from the host axis because DV ventralisation of the host eliminates 

segmented muscle in protrusions formed by Einsteck-grafts with VMZ implants 

(Slack and Isaacs, 1994).
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Fig. 5. eFGF treated animal caps and the Einsteck-procedure

Stage 10 FDA labelled animal cap explants were implanted into the blastocoel of 

unlabelled host embryos and grown until stage 41. A shows a stage 41 control embryo that 

was implanted with an uninduced control animal cap. B shows a stage 41 embryo that 

results from implanting an animal cap that was treated with 20 units/ml of eFGF protein. 

Note the resulting tail-like protrusion. C is a fluorescence image of a section through the 

protrusion stained with DAPI to reveal cell nuclei. D is an image of a section through the 

protrusion. Tissue contribution from the graft is fluorescent. The protrusion contains both 

host and graft derived cells. Note the presence of a mass of graft derived segmented 

muscle.
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Discussion 

FGFs and secretion

Acidic FGF, basic FGF and FGF-9 lack a recognised secretory signal peptide. All 

other FGFs possess a classical hydrophobic amino terminal signal sequence and 

have been shown to enter the secretory pathway (Basilico and Moscatelli, 1992). 

The issue of secretion by the FGFs lacking a classical signal peptide is 

contentious. Mammalian FGF-9 appears to be secreted to some degree from 

COS cells and protein detected in the medium conditioned by these cells is 

glycosylated (Miyamoto et al., 1993). This indicates that FGF-9 does in fact 

translocate to the endoplasmic reticulum (ER) and trans-golgi, suggesting the 

presence of a non-classical cryptic signal for secretion in its primary sequence. 

Furthermore, there is increasing evidence that acidic FGF, at least, can be 

released by certain cell-types by a novel mechanism, which does not involve the 

normal ER route for secretion (Jackson et a!., 1992).

Clearly the issue of secretion has to be taken into account when 

considering the role that the FGFs may play during early development. The data 

in this thesis strongly suggests that Xenopus eFGF is more efficiently secreted 

than Xenopus bFGF in early embryonic cells. Furthermore, in vitro translation 

indicates that eFGF enters the ER trans-golgi pathway undergoing sequential 

signal peptide cleavage and N-linked glycosylation. Xenopus FGF-3, which 

possesses a signal peptide, has been shown to be secreted from COS cells but 

this has not been tested in the embryo (Kiefer et ai., 1993a) The results for 

Xenopus FGF-9 are somewhat equivocal. Although FGF-9 enters the secretory
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pathway, as judged by translocation into the pancreatic microsomes and core 

glycosylation, its mRNA has autoinducing activity intermediate between that of 

bFGFand eFGF(Song and Slack, 1996). This may indicate that although FGF-9 

enters the secretory pathway it is not presented efficiently at the cell surface. A 

similar phenomenon has been shown for mammalian FGF-3, which is retained 

within the trans-golgi and is only slowly released at the cell surface (Kiefer et al., 

1993b).

eFGF and mesoderm induction.

In common with all other FGFs examined, the character of mesoderm induced by 

eFGF is of a ventrolateral character. Treatment with FGFs over a 100-fold range 

of concentrations shows that animal caps exhibit an extended dose response to 

these factors (Slack et al., 1987; Slack et a!., 1988). At low doses of FGF, 

inductions are of an extreme ventral character. Such animal caps form vesicles 

consisting of an outer jacket of epidermis surrounding loosely packed 

mesenchyme and a layer of mésothélium. At higher doses the inductions are of a 

more lateral character with increasing quantities of muscle being found. However, 

even at the highest doses, explants taken from the animal pole region never form 

notochord in response to FGF treatment. Analysis of molecular markers indicates 

that in contrast to activin-like molecules, the FGFs are unable to induce the 

expression of goosecoid, noggin and LIM (Oho eta!., 1991; Smith and Harland, 

1992; Taira et al., 1992). These are genes expressed in the region of Spemann's 

organiser and considered to be markers of the most dorsal mesoderm. 

Furthermore in the Einsteck-procedure eFGF treated caps behave very much like 

other ventral character explants.
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However, mesoderm induction by FGF can be modified to a more dorsal- 

type in number of ways. For example, it has been shown that the injection of 

Xwnt-8 mRNA into animal caps results in a more dorsal-type induction following 

FGF treatment (Christian et al., 1992). This raises the possibility the FGFs may 

not only be involved in the formation of ventral-type but also dorsal-type 

mesoderm.

Of course the background to this whole discussion must be that the spatial 

expression data for the known Xenopus FGFs suggests that they are not likely to 

be part of the maternal vegetally localised mesoderm inducing signal (see Chapter 

3). The low level of maternal FGF expression is predominantly in the animal 

hemisphere and, as will be discussed in later chapters, there is building evidence 

to support the view that this maternal FGF is a determinant of animal hemisphere 

competence to respond to the vegetal inducers.

The mesoderm inducing activity of Xenopus FGF-3 has not yet been tested 

but previously it has been shown that in vitro synthesised mammalian FGF-3 

protein has weak mesoderm inducing activity in the animal cap assay (Paterno et 

ai., 1989). The receptor binding specificity of Xenopus and mammalian FGF-3 is 

very similar (Mathieu et ai., 1995), so it is likely that Xenopus FGF-3 is also active 

as a mesoderm inducing factor.

As has been discussed, zygotic expression of eFGF and FGF-3 is activated 

in the marginal zone of the late blastula soon after the MBT. If the zygotic FGFs 

are mesoderm inducers in v/Vo they must be considered as secondary inducers to 

the primary inducers emitted by the vegetal hemisphere. Whether eFGF and 

FGF-3 accumulate to sufficient levels necessary to contribute to a secondary
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phase of mesoderm induction in the late blastula before competence of the animal 

cells disappears is a moot point.

This chapter shows that eFGF has a potent activities in a number of in vitro 

assays. The following 2 chapters consist of an analysis of embryos in which the 

function of the FGF signalling pathway has been compromised and provides 

support for the view that FGFs are indeed required for the formation of both dorsal 

and ventral mesoderm during blastula stages. In keeping with the presented 

expression data it also indicates additional roles for the zygotically expressed 

FGFs in the gastrula and subsequent development.
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Chapter 5
The phenotype of embryos overexpressing a dominant negative 

FGF receptor.
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Introduction

The animal cap assay has provided much useful information on the properties of 

the FGFs as mesoderm inducing factors. However, definitive proof that the FGFs 

have an important role in early development must necessarily rely on experiments 

in which the action of the FGFs is inhibited in vivo. In developmental systems that 

are amenable to genetic manipulation, such as the mouse and Drosophila, this 

may be achieved by mutational and "gene knockout" procedures. Unfortunately 

this approach is not yet feasible in Xenopus. However, an increasing range of 

technologies are being developed which will allow the inhibition of a particular 

molecule or group of molecules.

One approach to inhibition, which has been used to great effect in 

Xenopus, is the construction of "dominant negative" forms of growth factor 

receptors. This approach relies on the fact that the receptors of many growth 

factors bind their ligands as dimers. Binding of ligand to the receptor complex 

leads to the activation of their intracellular kinase domains and cross 

phosphorlyation of the receptor components. In the case of the EGF, PDGF and 

FGF tyrosine kinase receptors, phosphorylation on specific tyrosine residues is a 

prerequisite for the activation of the downstream signal transduction pathway 

(Ullrich and Schlessinger, 1990; Egan and Weinberg, 1993; Johnson and 

Williams, 1993). Similar phosphorylation events are involved in signal 

transduction from members of the TGF3 receptor family, but in this case the 

receptors have intracellular serine/threonine kinase activity. Dominant negative 

forms of the FGF, activin and BMP receptors have been constructed that lack their 

intracellular kinase domains. When synthetic mRNAs coding for these mutant
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forms are injected into the early embryo they are translated, and the resulting 

mutant proteins are able to form unproductive dimers with the endogenous wild- 

type receptor. If the mutant receptors are present in excess it can be shown that, 

in the case of the FGF, activin and BMP mutant receptors, animal caps are 

refractory to induction by the respective ligands (Amaya et al., 1991; Graff et al., 

1994; Hemmati-Brivanlou and Melton, 1992). The dominant negative receptor 

approach has the advantage that, due to the cross reactivity of ligands and their 

receptors, it is likely that a given inhibitory mutant will block the activity of a whole 

group of ligands and possibly closely related receptors, as has been shown to be 

the case for a dominant negative form of the FGF-R1 (Ueno et al., 1992). As 

such, it will serve to highlight those processes which require the activity of that 

group of signalling molecules. Of course the downside of this is that the use of a 

dominant negative receptor will not necessarily give any information as to the 

identity of the specific ligands that are important. In this way, it can be seen that 

the complete absence of mesoderm in embryos overexpressing the dominant 

negative activin receptor indictes a crucial role for an activin-like molecule in 

mesoderm induction, however the identity of this molecule is at present unclear 

(Hemmati-Brivanlou and Melton, 1992; SchulteMerker et al., 1994b).

The signal transduction pathway used by tyrosine kinase growth factor 

receptors such as the FGF-receptor is now very well characterised (reviewed by 

Egan and Weinberg, 1993). The treatment of cells with FGF leads to a number of 

alterations in the intracellular environment including an increase pH, Ca^* levels, 

turnover of phosphoinositides and increase in the phosphorylation of a number of 

proteins (reviewed by Johnson and Williams, 1993). Overexpression of
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constitutively active and inhibitory forms of key downstream components of this 

pathway have helped define those components which are not only necessary but 

sufficient for FGF mediated mesoderm induction. Experiments of this type have 

shown that the ras, raf, MEK, MAP kinase pathway is of paramount importance in 

mesoderm induction by the FGFs. However, the polyphosphoinositide metabolic 

pathway appears to be less important. Phospholipase c-gamma, which is a key 

enzyme involved in inositol phosphate metabolism, has been shown to associate 

with the FGF receptor in response to FGF treatment in a number of cell types 

including animal caps cells (Ryan and Gillespie, 1994). However, this association 

or the activity of phosphatidylinositol 3-kinase is not required for FGF mediated 

mesoderm induction (Muslin et al., 1994b; Umbhauer etal., 1995).

The dominant negative FGF-receptor used in this study is that of (Amaya et 

al., 1991). They constructed several deletion mutant form of the Xenopus FGF 

receptor 1 (Fig. 1) and showed that one of them (XFD), which lacks its intracellular 

tyrosine kinase domain, is capable of acting as a dominant inhibitor of FGF 

activity. Injection of RNA coding for this mutant receptor blocks FGF signalling in 

a number of assays including the animal cap assay and a calcium ion release 

assay in oocytes. Furthermore, the specificity of this effect was demonstrated by 

the rescue of receptor function by the coinjection of an excess of wild-type 

receptor RNA. A control mutant (d50), with an additional 50 amino acid deletion 

of a region between IgG domain 1 and 2 containing the so-called 'acid box', does 

not block FGF signalling (Fig. 1). One important issue with any overexpression 

study using injected synthetic mRNA is the stability of the message and protein 

translated from it. Protein produced from injected XFD mRNA (Amaya et al..
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1993) and the mRNA of a myc epitope tagged dominant negative FGF receptor 

(Pownall, personal communication) persists until at least the end of the neurula 

stage. This means that this reagent is an effective way of blocking FGF signalling 

through blastula, gastrula and neurula stages.

Fig. 1 Xenopus FGF receptor constructs

TM tyrosine kinaseacid box

acid box

d 5 0  — -----------------------------------------  m i ss TM

Schematic diagram showing the structure of the wild-type FGF receptor 1 (XFR), the 
dominant negative FGF receptor (XFD), lacking an intracellular tyrosine kinase domain, 
and the control non-functional receptor (d50), lacking both the acid box and intracellular 
tyrosine kinase domain.

Extensive use of the XFD dominant negative mutant form of the FGF 

receptor has been made in this thesis and elsewhere (Amaya et al., 1993; Cornell 

and Kimelman, 1994; Cornell etal., 1995; Isaacs etal., 1994; Schulte-Merkerand 

Smith, 1995). However, the description of the phenotype of XFD mRNA injected 

embryos in the original study by (Amaya et al., 1991) was not very detailed. In 

order to gain a better understanding of the requirement for FGF signalling during 

early development it was decided to undertake a detailed study of the morphology 

and histology of XFD injected embryos. This chapter contains the results of this 

study.
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Injection of XFD mRNA into the early embryo leads to a characteristic 

phenotype in which anterior structures are relatively unaffected but in which there 

is a complete loss of trunk and tail development. Dorsal and ventral injections of 

XFD show that much of the XFD phenotype can be accounted for by a sensitive 

requirement for FGF signalling on the dorsal side of the embryo. Inhibition of FGF 

signalling on the dorsal side results in the failure of the dorsal mesoderm to 

involute and extend along the developing anteroposterior axis. Instead, dorsal 

tissues spread laterally and ventrally around the blastopore resulting in its failure 

to close during gastrulation.

Histology of XFD injected embryos and gastrula stage explants from XFD 

injected embryos shows that inhibition of FGF signalling results in a great 

reduction in the amount of the dorsal mesodermal tissue types notochord and 

muscle. More ventral tissue types, such as kidney, mesenchyme and 

mésothélium, are also similarly affected. Interestingly, the amount of the most 

ventral mesodermal tissue type blood is not reduced, and is in fact somewhat 

increased in lateral explants from XFD embryos. There is some reduction of the 

amount of neural tissue in XFD injected embryos but it is never completely absent. 

Even in the most severely affected embryos anterior neural tissue is present, 

although its pattern is deranged. Einsteck and grafting experiments with dorsal 

marginal zone explants from XFD embryos suggest that the activity of the 

Spemann organiser is compromised by the inhibition of FGF signalling.
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Materials and Methods 

Embryo injections and manipulations

The dominant negative FGF receptor (XFD) and control receptor (d50) constructs 

are those used by Amaya et al., (1991). The pSP64-eFGF plasmid is as described 

by Isaacs et al., (1994). Embryos for animal caps were injected into both 

blastomeres in the animal pole region following first cleavage. Animal caps were 

taken at stage 9 as per general methods and scored for vesicle formation after 3 

days of culture. All XFD and d50 injections for phenotype and tissue 

differentiation experiments were targeted to the pigment boundary of blastomeres 

in the 4-cell stage embryo. Embryos were cultured until control stage 40-41 for 

scoring by phenotype and histology.

Gastrula stage explants were made by dissecting stage 10.5 embryos in 

NAM into dorsal, lateral and ventral quadrants using a microsurgical knife.

Explants were allowed to heal and then cultured in NAM/2 until control stage 41. 

For the Einsteck-procedures and organiser graft, embryos were injected into all 4 

blastomeres at the 4 cell stage with 1 ng of XFD mRNA in 5 nl of DEPC treated

water. Einsteck-grafts were 60° wedges of tissue from either the dorsal or ventral 

marginal zone of stage 10.5 embryos. Explants extended from the blastopore lip 

to the floor of the blastocoel and care was taken to remove as much vegetal core 

material as possible. The explants were grafted into the blastocoel of unlabelled 

hosts as per general methods. Organiser grafts were carried out by implanting 

dorsal explants from XFD and control embryos into a slit cut into the ventral 

marginal zone of hosts at stage 10.5. Embryos were allowed to heal in NAM/2 

and then cultured until control stage 40 in NAM/4.
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Results 

The phenotype of the dominant FGF receptor injected embryo

Fig. 2A, B and C show the typical appearance, after 3 days of development, of 

control embryos and embryos that have been injected with 1 ng of dominant 

negative FGF receptor (XFD) mRNA into each blastomere at the 4-cell stage. 

Compared to controls there is a massive reduction in the development of trunk 

and tail structures. A striking feature of these embryos is that the blastopore fails 

to close. Anterior development is relatively unaffected and cement glands and 

eyes are generally present in these embryos. The originally mooted function of 

the FGFs in early Xenopus development was as ventral mesoderm inducing 

agents. However, as has already been discussed in Chapter 2 the expression of 

the known Xenopus FGFs is not restricted to the ventral side of the embryo. 

Furthermore, the pronounced reductions in axial structures in XFD injected 

embryos strongly suggests that the FGFs must be intimately involved in dorsal 

development. A number of experiments have been performed in order to 

understand better the requirement for FGF signalling on the dorsal and ventral 

side of the embryo.

Morphology o f embryos resulting from dorsal and ventral injections o f XFD

The effects on gross embryo morphology resulting from high (1 ng) and low (0.1 

ng) dose injections of XFD mRNA into both blastomeres on the dorsal or ventral 

side of embryos at the 4-cell stage was examined at different developmental 

stages.
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Fig. 2. The phenotype of Xenopus embryos injected with mRNA coding for a 

dominant negative FGF receptor (XFD).

Embryos were injected with 1 ng of XFD mRNA or control d50 mRNA into each 

blastomere of the 4-cell stage embryo and cultured until the swimming larva stage 41. A is 

side view of a d50 mRNA injected control embryo (anterior to the left, dorsal to the top). 

B is a side view of an XFD mRNA injected embryo. Note the quite normal head and 

vestigial tail and trunk structures. C is a view from above down on to the open blastopore 

of an XFD mRNA injected embryo. Note the exposed yolk mass and formation of head 

close to the open blastopore.
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The gastrula stage

The initial stages of gastrulation in control and XFD embryos are very similar. The 

formation of the dorsal blastopore lip is not delayed in XFD embryos. However, as 

gastrulation proceeds it is apparent that the closure of the blastopore is inhibited 

in embryos that have been injected with even a low dose (2x 100 pg) of XFD 

mRNA on the dorsal side. A dorsal view of control uninjected embryos at late 

gastrula stage 13 shows the outlines of the forming neural plate and closed 

blastopore at the posterior of the embryo (Fig. 3A). The appearance of embryos 

injected with a low dose of XFD on the ventral side is identical to that of control 

embryos (Fig. 3B ). In contrast to ventrally injected embryos. Fig. 3C is a vegetal 

view of low dose dorsal injected XFD embryos at stage 13. Note the open 

blastopore and exposed yolk mass. There is a characteristic ‘doughnut-like’ 

thickening of tissue around the margin of the blastopore. This thickening appears 

to result from a net movement of tissue around the lateral and ventral margins of 

the blastopore from the dorsal lip region. The ventral limit of the extension around 

the blastopore is marked by a furrow or constriction close to the ventral midline of 

the blastopore. These data indicate that the open blastopore aspect of the XFD 

phenotype arises from a sensitive effect on FGF signalling on the dorsal side of 

the embryo.

The neurula stage

Fig. 3D shows the appearance of control embryos at the end of the neurula stage 

20 following the fusion of the neural folds. As is the case at the end of the gastrula 

stage, embryos that have been injected with a low dose of XFD mRNA on the
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Fig. 3. The development of the dominant negative FGF receptor phenotype through 

gastrula and neurula stages.

Embryos were injected with low (100 pg) or high (1 ng) doses of XFD mRNA into either 

both ventral or dorsal blastomeres at the 4-cell stage and cultured to the relevant stages. A 

is a dorsal view of uninjected control embryos at late gastrula/early neurula stage 13 

embryos (anterior to the left). B is a dorsal view of stage 13 embryos injected into the 

ventral side with a low dose of XFD mRNA. C is a vegetal view of stage 13 embryos 

injected into the dorsal side with a low dose of XFD mRNA showing the open blastopore. 

Black arrows indicate the dorsal lip. White arrows indicate the constriction furrow on the 

ventral side of the blastopore. D is a dorsal view of control uninjected late neurula stage 20 

embryos. E are stage 20 embryos injected with a high dose of XFD mRNA into the ventral 

side, (i) is a side view (anterior to the left, dorsal to the top), (ii) is a posterior view. Note 

normal axial development and the gaping appearance of the ventral blastopore lip (white 

arrows). F is vegetal view of stage 20 embryos injected into the dorsal side with a high 

dose of XFD mRNA showing the pronounced open blastopore and exposed vegetal yolk 

mass (black arrows) (dorsal to the top).
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ventral side are quite normal (data not shown). Although the developing axis of 

embryos that have received a high dose (2x 1 ng) injection of XFD mRNA on the 

ventral side appears quite normal, a close examination of the blastopore of these 

embryos (Fig. 3E) reveals that the ventral lip has failed to close and has a 

somewhat gaping appearance. In embryos injected with XFD mRNA on the 

dorsal side the open blastopore is even more pronounced than at the end of 

gastrulation (Fig. 3F). These data suggest that the failure of the blastopore to 

close results in XFD embryos mainly results from a sensitive effect on FGF 

signalling on the dorsal side of the embryo. However, the gaping appearance of 

the ventral blastopore lip in high dose ventrally injected embryos also suggest a 

role for FGF signalling during ventral development.

The swimming iarva stage

The type of effects obtained from dorsal versus ventral injections of XFD and the 

resulting phenotypes at swimming larva stage 40 were classified according to the 

following criteria. A class 3 embryo is defined as having a completely open 

blastopore. The head forms very close to the dorsal blastopore lip and is 

relatively normal in appearance but there is a tendency towards cyclopia and even 

loss of eyes in the more extreme examples. The trunk and posterior axis is split 

and very much reduced in length and volume, forming two characteristic small 

"wings" of tissue along the margins of the lateral blastopore lip. This phenotype is 

characteristic of both low and high dose XFD injections (Fig. 4A and B). A class 2 

embryo shows varying degrees of splitting of the trunk and tail, and consequent 

reductions in these structures, caused by incomplete closure of the blastopore.
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Fig 4. The phenotypes of swimming larva stage emhryos resulting from dorsal and 

ventral injections of XFD mRNA.

Embryos were injected with low (100 pg) or high (1 ng) doses of XFD mRNA into either 

both ventral or dorsal blastomeres at the 4-cell stage and cultured to the swimming larva 

stage 41. A and B are typical class 3 embryos resulting from the dorsal injection of low 

(A) and high (B) doses of XFD mRNA. C are quite normal class 0 embryos resulting from 

the low dose ventral injection of XFD mRNA. D are typical class 1 embryos resulting 

from the high dose ventral injection of XFD mRNA. E are quite normal class 0 embryos 

resulting from the high dose injection of d50 control mRNA into all blastomeres of the 4- 

cell stage.
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In a class 1 embryo, which is typical of high dose ventral injections of XFD, there 

is complete closure of the blastopore dorsally and laterally. However, ventrally the 

blastopore lip of the class 1 embryo has a slightly gaping appearance, especially 

at earlier stages. In class 1 embryos there are varying degrees of reduction in the 

number and volume of trunk and tail somites (Fig. 4D). The remaining axis tends 

to be bent ventrally. On this scale class 0 represent embryos with normal 

appearance as is typical with low dose ventral injections of XFD and control (d50) 

injected embryos (Fig. 4C and 4E).

Table 1 further illustrates the dramatic difference in the phenotype 

produced by dorsal versus ventral injections. In addition, as judged by effects on 

morphology, the dorsal side of the embryo is much more sensitive to FGF 

inhibition than is the ventral side. Even low doses of XFD mRNA injected into 

dorsal blastomeres give rise to a high proportion of class 3 embryos. The same 

dose injected ventrally has no obvious effect on the embryos. However, high 

dose ventral injections give rise to a high proportion of class 1 embryos.

Table 1 Phenotype produced by dorsal and ventral injections of dominant negative
FGF receptor (X FD ) mRNA.

Injection Class 0 Class 1 Class 2 Class 3 Other n

None 43 3 0 0 2x double axis 48

2x 1 ng d50 mRNA
Dorsal 11 1 0 1 Ix pcephalic 14
Ventral 15 1 0 0 0 16

2x 0.1 ng XFD mRNA
Dorsal 6 2 0 13 0 21
Ventral 14 1 0 0 Ix pcephalic 16

2x 1 ng XFD mRNA
Dorsal 0 0 0 23 0 23
Ventral 0 13 6 0 Ix  runt 20
Dorsal+V entrai 0 0 0 11 0 11

XFD  is the dominant negative FGF receptor and d50 is a control non-functional mutant receptor. Dorsal 
blastomeres were injected with the relevant mRNAs at the 4-cell stage. They were scored at stage 40 
according to the criteria described in the text.
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Cell movements in XFD injected embryos

The first abnormality that is apparent in embryos injected with the dominant 

negative FGF receptor on the dorsal side is the failure of the blastopore to close at 

the end of gastrulation. From this it is clear that inhibition of FGF signalling must 

affect cell movements on the dorsal side of the embryo during gastrulation. The 

nature of this effect on the behaviour of cells on the dorsal side of XFD embryos 

has been examined by coinjecting a fluorescent dextran lineage label and XFD 

mRNA into both dorsal blastomeres at the 4-cell stage. This protocol enables the 

cell movements on the dorsal side of the embryo to be followed in vivo during 

gastrulation. Fig. 5E shows a whole-mount fluorescent microscope vegetal view of 

such an embryo at early gastrula stage 10 with only the dorsal half labelled. The 

incident light image shown in Fig. 5B shows complete closure of the blastopore in 

a control embryo at late gastrula (stage 13). Figure 5F shows the pattern of 

labelling in such a control embryo in which the dorsal mesoderm has involuted 

and extended along the forming antero-posterior axis. In contrast, Figure 50 and 

G show that, in embryos injected dorsally with XFD mRNA the blastopore fails to 

close and the dorsal mesoderm does not extend to form a normal axis but instead 

spreads laterally around the blastopore and pushes as two horns of axial tissue 

onto the ventral side of the embryo. Therefore it would seem likely that in such 

embryos the axial mesoderm instead of extending along the anteroposterior axis, 

extends and drives around the margin of the blastopore, resulting in the failure of 

blastopore closure seen in class 3 embryos. The animal view of an XFD injected 

embryo in Fig. 5D and H shows that there are some labelled cells on the dorsal 

side of the animal hemisphere but there is clearly no
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Fig. 5. Cell movements in embryos injected with dominant negative FGF receptor 
(XFD) mRNA.

(A and E) show incident and fluorescent light images of the vegetal view of an early 
gastrula embryo (stage 10) that was coinjected with 250 pg of d50 control mRNA and 10 nl 
of FDA lineage label (12.5 mg/ml) into the dorsal blastomeres at the 4-cell stage. Note the 
fluorescent marker is confined to region of the dorsal lip.

(B and F) show the dorsal view of similarly injected a late gastrula stage 13 control 
embryo. Note that in (B) the blastopore is closed and that in (F) the labelled dorsal 
mesoderm has extended along the antero-posterior axis.

(C and G) show a vegetal view of a late gastrula stage 13 embryo that was 
coinjected with 250 pg XFD mRNA and 10 nl of FDA lineage label (12.5 mg/ml) into the 
dorsal blastomeres at the 4-cell stage. Note that in (C) the blastopore has failed to close 
leaving the yolk mass exposed and that in (D) the labelled mesoderm has split and 
extended laterally around the blastopore towards the ventral side of the embryo.

(D and H) show an animal view of the same embryo in (C and G). Note that there 
is no axial extension towards the animal pole region but there is some migration of anterior 
mesendodermal cells on the dorsal side of embryo (top).
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axial extension towards the animal pole region. It is likely that this dorsal labelling 

is due to the involution of anterior mesendodermal cells which do not undergo 

convergent extension but rather exhibit active crawling behaviour. These cells 

contribute to the well formed anterior structures of FGF dominant negative 

embryos and do not appear to be as sensitive to the effects of FGF inhibition as 

the axial mesoderm.

In normal development the extension of the dorsal mesoderm along the 

developing anteroposterior axis is driven by mediolateral cellular intercalation that 

leads to a narrowing of the cell array at the dorsal midline (Keller et al., 1992a). 

Cells in the neural plate also exhibit similar behaviour, which accounts for the 

elongation and narrowing of this structure during development (Keller et a!., 

1992b). In XFD injected embryos the dorsal mesodermal cells and perhaps dorsal 

ectoderm cells still undergo extension movements but instead of the dorsal cell 

array narrowing at the dorsal midline the cellular array would appear to narrow 

along the animal vegetal axis driving extension movements around the open 

blastopore. A simplistic view of this phenomenon might suggest that the cells of 

the dorsal axis are still undergoing cellular intercalation resulting in a narrowing 

and extension of the cell array but inhibition of FGF signalling results in this 

occurring in the wrong direction.

Histology o f XFD injected embryos

In order to gain a better idea of the effects which lead to the formation of the 

typical dorsal and ventral phenotypes, histology was carried out on embryos that

108



have been injected with high doses (1 ng) of XFD mRNA either into all 4 

blastomeres at the 4-cell stage or just the ventral or dorsal blastomeres.

Histology of control embryos

As a comparison for the XFD injected embryos transverse sections from stage 40 

control embryos are shown. Fig. 6A shows a section through the head at the level 

of the eyes. Fig. 6B shows a section through anterior trunk region. Fig 6C shows 

a section through the mid trunk.

Histology of embryos injected into both dorsal and ventral blastomeres 

Embryos were injected into all blastomeres at the 4-cell stage and cultured until 

control stage 40. The phenotype of these embryos is generally similar to the class 

3 embryo described above but in extreme cases, in addition to loss of trunk and 

tail structures, there can be loss of anterior structure such as eyes. Fig. 6D is a 

section through the anterior of an extreme case following injection of 1 ng of XFD 

mRNA into all 4 blastomeres and shows the complete absence of axial structures 

such as somites and notochord. In this particular case the eyes were absent but 

note the presence of a large block of disorganised neural tissue. In these 

embryos there is obviously a large reduction in the amount of mesodermal 

differentiation. This includes most mesodermal tissue-types such as notochord, 

muscle, kidney and mesenchyme. Blood, however, seems to be less severely 

affected and a sizeable blood island can be seen in Fig. 6D. Fig. 6E is a section 

through the region of the open blastopore from the same embryo (the exposed 

yolk mass is to the left), note the absence of any differentiated mesodermal tissue 

types. The presence of large amounts of wrinkled atypically thickened epidermis
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Fig. 6. Histology of embryos injected with dominant negative FGF receptor (XFD) 

mRNA.

Abbreviations; bld=blood. epi=epidermis. hme=head mesenchyme. kid=pronephric 

kidney tubule. mbv=midbrain ventricle. nt=neural tube. ntc=notochord. 

phx=pharyngeal cavity. som=somitic muscle. ym=yolk mass

Embryos were injected with 1 ng of XFD mRNA into either all 4 blastomeres or both 

ventral blastomeres or both dorsal blastomeres at the 4-cell stage and cultured until stage 

41. A is a transverse section through the head of an uninjected control embryo at the level 

of the eyes. B is transverse section through the anterior trunk region of an uninjected 

control embryo. C is a transverse section through the mid trunk region of an uninjected 

control embryo. D is a transverse section through the anterior of an extreme XFD 

phenotype embryo produced by injecting all 4 blastomeres at the 4-cell stage with XFD 

mRNA. E i sa  section through the region of the open blastopore of the same embryo. The 

exposed vegetal yolk mass is to the left (black arrow). F i sa  transverse section through the 

head of a typical class 3 embryo resulting from the dorsal injection of XFD mRNA. G, H 

and I  are transverse sections through class 1 embryos resulting from the ventral injection of 

XFD mRNA. G is at the level of the anterior trunk. H is at the level of the mid trunk. I is 

at the level of the posterior trunk.
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Fig. 6. Histology of embryos injected with dominant negative FGF receptor (XFD) 
mRNA.
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in these embryos suggests a failure in mesoderm induction resulting in abnormal 

production of ectodermal derivatives.

Histology of XFD dorsal Injected embryos

Embryos were injected into both dorsal blastomeres at the 4-cell stage and 

cultured until control stage 40. The phenotype of these embryos is typical of the 

class 3 embryo described previously. Fig. 6F shows a section of through the head 

of a typical class 3 embryo just anterior to the region where the vestigial axis splits 

around the open blastopore. A small amount of notochord can be seen in this 

section but it is frequently absent in such embryos. Unlike embryos receiving 4 

cell injections some somitic muscle is usually present, although the total amount is 

very much reduced. In this section it can also be seen that the pattern of the 

somites is disturbed. Unlike in control embryos the somites do not abut the 

notochord in the mid line but are split and are found in a more lateral position.

Also note the presence of a well formed eye and large amounts of neural tissue. 

Although the external morphology of the 4 cell injected embryos and the dorsally 

injected embryos is generally similar, histology reveals that effect on mesodermal 

tissue differentiation is more severe in the 4 cell injected embryos.

Histology of XFD ventral injected embryos

Embryos were injected into both ventral blastomeres at the 4-cell stage and 

cultured until control stage 40. As might be expected from external morphology 

the effects on tissue differentiation and pattern are much less severe in ventrally 

injected embryos. Fig. 6G is section through a typical class 1 embryo at the level
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of the anterior trunk and shows a somewhat normal appearance apart from a 

unilateral reduction in the amount of pronephric tubules. In mid trunk regions (Fig. 

6H), although the amount of notochord and neural tissue is quite normal there is a 

large reduction in the amount of somite. Again differentiation of blood, which is 

the most ventral tissue-type, is not greatly affected and well defined blood islands 

can be seen in Fig. 6H. The reduction in somite development is even more 

dramatic in the posterior trunk region, where, even in the presence of large 

amounts of notochord, somitic muscle is almost completely absent (Fig. 61). These 

data again highlight that the differentiation of somitic muscle is very sensitive to 

FGF inhibition. In the case of ventrally injected embryos the effect on the 

differentiation trunk somites is very much in keeping with fate map projections, 

which show that much of the prospective muscle forming region is derived from 

the ventral half of the embryo (Dale and Slack, 1987a). Just as with the 4-cell and 

dorsally injected embryos there appears to an abnormally thickened epidermis, 

particularly in posterior regions, which is suggestive of there being a failure in 

mesoderm induction in ventral regions and a shift towards the differentiation of 

more ectodermal derivatives.

The specification of dorsal, lateral and ventral explants from early gastrula XFD 

Injected embryos

The data above would seem to indicate a role for FGF signalling in the 

differentiation and patterning of the mesoderm in Xenopus. However, the 

aberrant cell movements in XFD embryos must result in the abnormal 

juxtapositioning of tissues during gastrulation. It is known that during normal
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Fig. 7. Histology of dorsal, lateral and ventral explants taken from gastrula stage

embryos injected with dominant negative FGF receptor (XFD) mRNA.

Abbreviations: bld=blood. cg=cement gland. epi=epidermis. kid=pronephric kidney 

tubule. me=mesenchyme. mst=mesothelium. mus=muscle. nt=neural tissue. 

ntc=notochord. ym=yolk mass.

Dorsal, lateral and ventral embryo quarters were explanted at gastrula stage 10.5 from 

un injected controls and embryos injected with 1 ng of XFD mRNA into each blastomere at 

the 4-cell stage. Explants were cultured in isolation until control stage 41. A shows a 

section through a control dorsal quadrant explant. B shows a section through a dorsal 

explant from an XFD mRNA injected embryo. C shows a section through a control lateral 

quadrant explant. D shows a section through a lateral explant from an XFD mRNA 

injected embryo. E shows a section through a control ventral quadrant explant. F shows a 

section through a ventral explant from an XFD mRNA injected embryo.
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Fig. 7. Histology of dorsal, lateral and ventral explants taken from gastrula stage

embryos injected with dominant negative FGF receptor (XFD) mRNA.

 ̂ • '''/A '

mus

me

D

V ' - . '

M m  St

T it'i
.  •• yp-:'..

115



gastrulation there are a great many patterning events occurring that involve 

signals produced by cells on both the dorsal and ventral sides of the embryos 

(reviewed by Kimelman et a i, 1992; Sive, 1993; Slack, 1994). Therefore the 

characteristic whole embryo phenotype of XFD embryos may in part be due to 

atypical tissue interactions that are brought about by these aberrant cell 

movements. This must necessarily complicate the issue of interpreting the effects 

of inhibiting FGF activity on the formation of particular tissue types in the intact 

embryo. In order to circumvent this problem a comparison of the specification of 

dorsal, lateral and ventral embryo quarters from early gastrulae was undertaken. 

Embryos were injected into all blastomeres at the 4-cell stage and cultured until 

control stage 10.5. Explants were taken early in gastrulation before the aberrant 

dorsal cell movements drive extension around the lateral and ventral margins of 

the blastopore. Explants were cultured until control stage 41 and scored for the 

presence or absence of a particular tissue type. Therefore the figures presented 

in Table 2 represent the percentage of explants containing a given tissue type and 

therefore gives no indication of the volumes of each type in an explant. However, 

the figures do give an indication of the change in specification that results from 

inhibition of the FGF signalling pathway.

In dorsal explants there is only a small effect on the occurrence of cement 

gland and neural tissue. This is in keeping with rather normal anterior 

development in the whole embryo XFD phenotype. However, there is a dramatic 

reduction on both the frequency and volumes of notochord and muscle (Table 2, 

Fig. 7A and B). At the same time the presence of kidney, trunk mesenchyme and 

mésothélium was detected in a small number of XFD injected explants indicating
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that there is a shift to more ventral-type specification. This ventralisation is also 

apparent in lateral explants from XFD injected embryos. It can be seen that there 

is a reduction in the occurrence of neural tissue, notochord, muscle and kidney 

(Table 2, Fig. 7C and D). Whereas there is an increase in the occurrence of the 

more ventral-type tissues mésothélium and blood. In ventral explants there is a 

reduction in the frequency of trunk mesenchyme and mésothélium. However, 

interestingly there does not seem to be much effect of FGF inhibition on either the 

frequency or amounts of the blood formed (Table 2, Fig. 7E and F).

An examination of the dominant negative FGF receptor phenotype clearly 

shows that there is a reduction in the total amount of mesoderm formed. The 

results on the specification of gastrula stage explants from XFD injected embryos 

are in keeping with those obtained by examining the whole embryo phenotype and 

further indicate that there is not only a reduction in the amount of mesoderm but 

also an alteration in its pattern. Thus much of the aberrant mesodermal pattern in 

the whole embryo can be accounted for by an effect on the specification of the 

mesoderm at the start of gastrulation.
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Properties of the organiser from XFD injected embryos

As has already been discussed the inhibition of FGF signalling clearly has a 

potent effect on the behaviour and differentiation of cells derived from the dorsal 

marginal zone. It is this region of the embryo that has the properties of the 

‘organiser’. Spemann and co-workers demonstrated that the dorsal lip of gastrula 

stage amphibian embryos when transplanted into an ectopic site of a host embryo 

has the ability to ’organiser’ the formation of a secondary axis. Importantly it has 

been shown that the secondary axis contains tissues that have been recruited 

from the host embryo (Smith et al., 1985). It is conceivable that interference with 

the properties of the organiser underlies some aspects of the XFD phenotype.

This possibility has been investigated by ventral grafting and Einsteck-grafting of 

dorsal lip explants from XFD injected embryos into uninjected host embryos. The 

results from this experiment are shown in Table 3.

Table 3 Induction of secondary axes by dorsal lip grafts from embryos injected with
dominant negative FGF receptor (XFD) mRNA.

Graft Phenotype n

Uninjected D M Z 7x twinned embryos with separate well formed heads 
5x secondary anterior structures fused ventrally with host head

12

X FD  injected D M Z 2x twinned embryos with separate well formed heads 
5x secondary anterior structures fused ventrally with host head 
2x posterior protrusion 
Ix  no visible secondary axis

11

Gastrula stage 10.5 dorsal lip explants from un injected control embryos or from embryos 
injected with 0.5 ng of XFD mRNA into all blastomeres at the 4-cell stage were either 
grafted into the blastocoel or on to the ventral side of stage 10.5 host embryos. Embryos 
were cultured until tailbud stage 35 and scored.
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Fig. 8A and B show the results of organiser grafts. The grafts from normal 

embryos have produced very good secondary axes with well formed head and 

trunk structures. In contrast the secondary axes produced by the XFD grafts are 

much less complete. The head is less well formed and trunk structures are 

absent. These results suggests that the organising activity of the dorsal marginal 

zone is compromised by the inhibition of FGF signalling.
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Fig. 8. Organiser grafts from embryos injected with dominant negative FGF receptor 

(XFD) mRNA.

Dorsal lip explants were taken at gastrula stage 10 from uninjected controls and embryos 

injected with 1 ng of XFD mRNA into each blastomere of the 4-cell stage. Explants were 

grafted into the ventral marginal zone of stage 10 uninjected host embryos and cultured 

until tailbud stage 35. A shows embryos resulting from control dorsal lip grafts. B shows 

embryos resulting from dorsal lip grafts from XFD mRNA injected embryos.
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Discussion

The dominant negative FGF receptor (XFD) phenotype

Data in this chapter confirms the previous findings of (Amaya et al., 1991 ; 

MacNicol et al., 1993) and show that the phenotype of embryos, in which the FGF 

signal transduction pathway has been inhibited, is characterised by the complete 

absence of tail development. Trunk structures are either severely reduced or 

completely absent. Generally the morphology of anterior structures is much less 

severely affected. Essentially the whole of this phenotype can be recapitulated by 

injections of XFD mRNA into the dorsal half of the embryo. The phenotype 

produced by injection of XFD mRNA into the ventral half of the embryo is much 

less severe. In these embryos head and trunk structure are relatively normal.

The development of the tail however, is greatly inhibited.

Cell movements in XFD embryos

Data in this chapter reveals that there is a sensitive requirement for FGF signalling 

on the dorsal side of the embryo. In XFD injected embryos, although there is 

some mesodermal ingression at the dorsal lip, which contributes to the relatively 

normal anterior structures seen in most XFD embryos, much of the dorsal tissues, 

which normally contribute to axial structures, fail to involute and extend along the 

developing axis. It appears that the characteristic open blastopore of XFD 

embryos results from the aberrant movement of these dorsal tissues into more 

lateral and ventral positions. The cellular basis for this phenomenon is unclear, 

but it is perhaps significant that the cells which contribute to the mesendoderm of 

the head in normal development and the head of XFD embryos, exhibit an active
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crawling-type behaviour. This is quite different from the bipolar protrusive activity 

of axial mesoderm and neurectoderm cells, which drives mediolateral cellular 

intercalation and extension of dorsal midline structures along the developing 

anteroposterior axis (Keller et al., 1992a; Keller et al., 1992b). In XFD embryos 

there is a net movement of tissue from the dorsal side to more lateral and ventral 

positions. It is possible that the dorsal axial tissue is still undergoing cellular 

intercalation but, in contrast to normal development, leads to the narrowing and 

extension of dorsal tissues but in the wrong direction. In this view FGF signalling 

in the dorsal midline might be required as some kind of chemotactic agent 

influencing the direction in which extension normally occurs. It will require further 

work to determine the exact nature for the requirement of FGF signalling directing 

cell movement within the dorsal axis.

Effects o f FGF inhibition on mesodermal differentiation

The demonstration of these abnormal cell movements is significant because it 

suggests that at least some of the XFD phenotype might result from the abnormal 

juxtapositioning of cell types. This might cause a failure of normal cellular 

interactions resulting in the loss of specific tissue types. Thus the loss of dorsal 

mesodermal tissues, such as the notochord and somite, in XFD injected embryos 

might result from an inhibitory effect from ventral and lateral tissues acting on the 

dorsal tissues which have moved into more lateral positions. Such inhibitory 

influences on dorsal development have been proposed to be important in 

determining the relative sizes of the dorsal and ventral territories during normal 

development (Kimelman et al., 1992; Jones, 1996)
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A comparison of the histology of whole embryos injected with XFD mRNA 

and explants, that were removed from XFD embryos at the start of gastrulation 

before the aberrant cell movements take place, is useful in determining the 

relative importance of cell movements in the development of the XFD phenotype. 

The results obtained from whole embryos and explant culture are in quite good 

agreement and suggest that there is a requirement for FGF signalling in the 

development of most mesodermal tissue types including both dorsal tissues, such 

as notochord and muscle, and more ventral tissue-types such as kidney, trunk 

mesenchyme and mésothélium. The one exception to this is blood, which, to a 

large extent, appears not to require a functional FGF signalling pathway for its 

differentiation. The broad similarity in results obtained in whole embryo and 

explant culture suggests that much of the effect on tissue differentiation following 

FGF is largely independent of aberrant cell movements.

Histology indicates that inhibition of FGF function during early development 

does result in a reduction in the amount of mesoderm formation. The presence of 

thickened patches of atypical epidermis in XFD embryos suggests that there is a 

corresponding increase in the the amount of ectodermal derivatives. These 

results are consistent with the view that the FGFs are required for the initial stages 

of mesoderm formation but are by no means conclusive. The terminal 

differentiation of specific tissue types occurs long after the initial events required 

for their specification. It is possible that the failure of mesoderm formation caused 

by injection of XFD mRNA may result from an interference with subsequent 

differentiation events.
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Effects of FGF intiibition on anteroposterior (AP) and dorsoventrai (DV) 

patterning

It can be said with some certainty that the FGFs are not required for specification 

of anterior structures because they are relatively unaffected in XFD embryos. A 

striking feature of the XFD phenotype is the loss of posterior structures. As 

already discussed above, the interpretation of how the loss of structures arises is 

complicated by the possible involvement of the FGFs in cell differentiation.

The Spemann organiser is intimately involved in the development of the 

anteroposterior axis (reviewed by Slack and Tannahill, 1992). Data in this chapter 

shows that the Spemann organiser from XFD embryos is compromised in its 

ability to induce a secondary axis in a normal host embryo. This effect on the 

activity of the organiser is likely to account for at least some of the effects on AP 

pattern in XFD embryos. Furthermore, the increase in ventral tissues in dorsal 

and lateral explants from XFD embryos may be due to an interference with the 

dorsalising activity of the organiser (reviewed by Sive, 1993).

Experiments in this chapter clearly demonstrate that the activity of the 

FGFs is in some way required for the formation of the mesoderm. Experiments in 

the next chapter seek to address the issue of when during development the 

activity of the FGFs is required.
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Chapter 6
Gene expression in dominant negative FGF receptor injected 

embryos.

126



Introduction

As has already been discussed, injection of mRNA coding for the dominant 

negative FGF receptor (XFD) provides a powerful tool for the analysis of the role 

that FGF signalling has during the early development of Xenopus laevis. The 

injection of XFD mRNA has a number of consequences. The previous chapter 

showed that the inhibition of the FGF signal transduction pathway in early 

development of results in specific phenotype that is characterised by a pertubation 

of normal morphogenetic movements during gastrulation and a derangement of 

the normal pattern of both the dorsoventrai and anteroposterior axes. Most 

dramatically there is an almost complete loss of trunk and posterior structures. 

However, an examination of the gross phenotypic changes provides very little 

information on the underlying molecular processes which require the activity of the 

FGFs. Moreover, the differentiation of specific tissue types is likely to involve 

many cellular interactions subsequent to the initial specification event. Hence the 

characteristic effects on tissue differentiation seen in XFD injected embryos give 

very little indication as to the period in which FGF signalling is required.

In recent years a large number of both regional and tissue specific 

molecular markers from Xenopus have become available. This chapter contains a 

detailed analysis of the effects of inhibiting the FGF signal transduction pathway 

on the expression a wide range of regional and tissue specific markers by 

RNAase protection and in situ hybridisation through gastrula and neurula stages. 

RNAase protection provides a quantitative assessment on the effects on gene 

expression, whereas in situ hybridisation allows the analysis of effects on gene 

expression within particular regions of the developing embryo. Attention was
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focused on the examination of gene expression within the gastruia/neurula period 

because it was thought that this would provide useful information not only on the 

role that the FGFs might have in mesoderm induction during the blastula period 

but also on the involvement of FGF signalling in subsequent patterning events that 

lead to the establishment of the major body axes (Slack et al., 1992; Sive, 1993).

Data in this chapter indicate that the FGFs are not only required for 

mesoderm induction but are also likely to be involved in regulating gene 

expression within the mesoderm in the gastruia/neurula period. These 

experiments help define a subset of genes, whose expression requires FGF 

signalling. Prominent amongst the genes expressed in the mesoderm that require 

the activity of the FGFs are Xbra and the myogenic basic helix-loop-helix (bHLH) 

XmyoD and Xmyf5.

Interestingly the onset of transcription from HoxA7 (Xhox36) and HoxCG 

{X lhboxi) is delayed in XFD injected embryos. The Hex genes are expressed in 

both mesoderm and ectoderm lineages, indicating an additional requirement for 

FGF activity in patterning of the ectoderm.

Materials and methods 

RNAase protection analysis o f gene expression in XFD injected embryos

RNA injections, RNA isolation and RNAase protection analyses were carried out 

as per general methods. Autoradiography exposures were from 1 to 10 days. 

Embryos were injected with 1 ng of each mRNA into each blastomere at the 4-cell 

stage and allowed to develop until the required stage. The data presented here 

represents the results from one experiment on the same batch of embryos. For
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each experimental group (uninjected, d50 injected and XFD injected) 10 embryos 

were collected for each time point (stage 10,13 and 17).

In situ hybridisation analysis of gene expression in XFD injected embryos

In situ hybridisations were carried out on albino embryos as described in general 

methods. For each stage and probe at least 10 embryos were processed. 

Photographs are of typical embryos for a particular marker analysed. Embryos 

were injected with 1 ng of XFD mRNA into each blastomere at the 4-cell stage 

and allowed to develop until the required stage.

Results 

Analysis o f mesodermal gene expression in XFD injected embryos

Embryos in which the FGF signal transduction pathway has been inhibited show 

abnormalities in both the quantity and pattern of the mesoderm. In order to gain a 

better understanding of the requirement for FGF signalling in formation of the 

mesoderm the expression of a number of molecular markers in XFD injected 

embryos was analysed by both RNAase protection and In situ hybridisation

The general mesodermal markers, Xbra, Xsna and eFGF 

Fig. 1 shows that in XFD injected embryos expression of the general mesodermal 

marker Xbra is greatly down regulated compared to controls at the start of 

gastrulation. This level of expression continues to fall through gastrula and 

neurula stages. Fig. 2 A and B are In situs of gastrula stage 11 embryos showing 

the almost complete absence of Xbra expression in an XFD injected embryo.
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Fig. 1. RNAase protection analysis of mesodermal marker gene expression in

embryos injected with dominant negative FGF receptor (XFD) mRNA.

Control uninjected embryos and embryos injected with either 1 ng of receptor control (d50) 

mRNA or 1 ng of dominant negative FGF (XFD) receptor mRNA into each blastomere at 

the 4-cell stage were cultured until early gastrula stage 10, late gastrula stage 13 and late 

neurula stage 17. 5 pg of total RNA from each stage was analysed by RNAase protection 

for expression of the above panel of marker genes. All assays shown were carried out on 

RNA from the same experiment. The ODC loading control shown is a representative 

example.
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Fig. 1. RNAase protection analysis of mesodermal marker gene expression in

embryos injected with dominant negative FGF receptor (XFD) mRNA.
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The zinc finger transcription factor Xsna is also expressed in the mesoderm 

of the blastopore at the start of gastrulation (Essex etal., 1993) but unlike Xbra 

the overall levels of Xsna expression is not significantly affected by inhibition of 

the FGF signalling pathway (Fig. 1). This is confirmed by in situ hybridisation (Fig. 

20 and D). However, later in gastrulation Xsna expression is detected in the 

presumptive neural crest forming region of the ectoderm (see Fig. 2E) (Essex et 

al., 1993). This ectodermal expression of Xsna is completely eliminated in XFD 

injected embryos (Fig. 2F).

At the start of gastrulation the level of eFGF expression is not greatly 

affected by the inhibition of FGF signalling. However, in the late gastrula and 

neurula the level of eFGF expression in XFD embryos is depressed relative to 

controls (Fig. 1). Fig. 2G and H. show eFGF expression is still present in the 

periblastopore region of XFD injected embryos at stage 11.5, although at a 

somewhat lower level than in controls.

The dorsal mesodermai markers, goosecoid and noggin 

Goosecoid is a homeobox containing gene which has been implicated in the 

formation and activity of the Spemann organiser (Cho et ai., 1991 ). It is 

expressed in the deep mesendodermal tissue layer of the dorsal blastopore lip at 

the start of gastrulation in cells which are fated to form pharyngeal endoderm, 

head mesoderm and possibly some anterior notochord (De Robertis et al., 1992; 

Vodicka and Gerhart, 1995). The expression of goosecoid \s not significantly 

affected in XFD injected embryos (Fig. 1).
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Noggin encodes a secreted factor that has also been implicated in the 

activity of the organiser. It is able to induce neural tissue in ectoderm and to 

dorsalise ventral mesoderm (Lamb et al., 1993; Smith et ai., 1993). Noggin is 

initially expressed at the start of gastrulation in the dorsal lip and later along the 

length of the notochord (Smith and Harland, 1992). The overall level of noggin 

expression is somewhat down regulated in XFD embryos throughout the 

gastruia/neurula period (Fig.1). Fig 21 and J show in situ hybridisations of noggin 

in gastrula stage 11.5 embryos. Noggin expression can be seen in the developing 

notochord of the control embryo. Consistent with the RNAase protection data, the 

level of noggin expression is lower in XFD embryos. The expression seen in 

these embryos is very diffuse and is barely detectable in the region of the dorsal 

lip.

The ventrolateral mesodermal marker Xwnt-8

Xwnt-8 is a member of the Wnt family of secreted proteins. Several wnts have are 

expressed in the early development of Xenopus (Christian et al., 1991a; Christian 

et al., 1991b; Ku and Melton, 1993) and have been shown to have a number of 

biological activities including the ability to rescue axial development in UV 

ventralised embryos (Smith and Harland, 1991). Indeed there is a considerable 

body of evidence that suggests that a wnt family member is involved in the 

induction and subsequent activities of the Spemann organiser (Heasman et al., 

1994; Dominguez et al., 1995; He et al., 1995; Pierce and Kimelman, 1995).

While Xwnt-8 does exhibit axis rescuing activity it is very unlikely to be required for 

normal axial development because during normal development it is not expressed
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Fig. 2. Whole-mount in situ hybridisation analysis of mesodermal marker gene
expression in embryos injected with dominant negative FGF receptor (XFD)
mRNA.

Abbreviations: dl=dorsal blastopore lip. ntc=notochord.

Control uninjected embryos and embryos injected with either 1 ng of dominant negative 
FGF (XFD) receptor mRNA into each blastomere at the 4-cell stage were cultured until the 
relevant stage.

A shows a vegetal view of a control gastrula stage 11 embryo hybridised with a
DIG labelled Xbra antisense probe (dorsal to the top). B shows a vegetal view of an XFD
mRNA injected gastrula stage 11 embryo hybridised with a DIG labelled Xbra antisense
probe (dorsal to the top).

C shows a vegetal view of a control gastrula stage 11.5 embryo hybridised with a

DIG labelled Xsna antisense probe (dorsal to the top). D shows a vegetal view of an XFD

mRNA injected gastrula stage 11.5 embryo hybridised with a DIG labelled Xsna antisense

probe (dorsal to the top). E shows an animal view of a control gastrula stage 11.5 embryo

hybridised with a DIG labelled Xsna antisense probe (dorsal to the top). White arrows

indicate staining in the presumptive neural crest forming regions. F shows an animal view

of an XFD mRNA injected stage 11.5 embryo hybridised with a DIG labelled Xsna

antisense probe (dorsal to the top).

G shows a dorsovegetal view of a control gastrula stage 11.5 embryo hybridised

with a DIG labelled eFGF antisense probe (dorsal to the top). H shows a vegetal view of

an XFD mRNA injected gastrula stage 11.5 embryo hybridised with a DIG labelled eFGF

antisense probe (dorsal to the top).

I shows a dorsovegetal view of a control gastrula stage 11.5 embryo hybridised

with a DIG labelled noggin antisense probe (dorsal to the top). J shows a vegetal view of

an XFD mRNA injected gastrula stage 11.5 embryo hybridised with a DIG labelled noggin

antisense probe (dorsal to the top).
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Fig. 2. Whole-mount in situ hybridisation analysis of mesodermal marker gene
expression in embryos injected with dominant negative FGF receptor (XFD)
mRNA.
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in dorsal regions and is only expressed in the mesoderm and endoderm of the 

lateral and ventral marginal zone and vegetal hemisphere during gastrula stages 

(Smith and Harland, 1991; Lemaire and Gurdon, 1994). Fig. 1 shows that there is 

very little effect on the expression of Xwnt-8 in XFD injected embryos.

The myogenic markers, XmyoD, Xmyf5 and muscle actin 

The basic helix-loop-helix (bHLH) proteins XmyoD has been implicated in the 

development of muscle lineages in a wide range of organisms from C.elegansXo 

mouse (Weintraub, 1993; Rudnicki and Jaenisch, 1995). In Xenopus the 

development of XmyoD expression is rather complex. At the MBT there is a low 

level ubiquitous activation of expression. During gastrula stages expression 

increases enormously and becomes localised to the region of the embryo that will 

contribute to the muscle lineages (Frank and Harland, 1991; Harvey, 1991). The 

expression of XmyoD and XmyfS is specifically excluded from region of the dorsal 

organiser (Fig. 3A and 0) (Hopwood et al., 1989). Interestingly there is no effect 

in XFD embryos on the initial low level of XmyoD expression detected at the start 

of gastrulation. However, later in gastrulation and neurula stages there is an 

enormous reduction in the levels of XmyoD expression compared to controls (Fig. 

1).

Inhibition of FGF function clearly has a dramatic effect on the expression of 

XmyoD, therefore it was decided to examine the effects of XFD injection on the 

expression of another myogenic bHLH gene XmyfS (Hopwood et al., 1991) and 

cardiac actin, which is a marker of muscle terminal differentiation (Mohun et al.,

1984). At mid-gastrula stage 11 the expression of XmyoD and XmyfS is not
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Fig. 3. Whole-mount in situ hybridisation analysis of myogenic gene expression in
embryos injected with dominant negative FGF receptor (XFD) mRNA.

r
L

Abbreviations: dl=dorsal blastopore lip. ntc=notochord. vym=vegetal yolk mass.

Control uninjected embryos and embryos injected with either 1 ng of dominant negative 
FGF (XFD) receptor mRNA into each blastomere at the 4-cell stage were cultured until the 
relevant stage.

A shows a vegetal view of a control gastrula stage 11 embryo hybridised with a 
DIG labelled XmyoD antisense probe (dorsal to the top). B shows a vegetal view of an 
XFD mRNA injected gastrula stage 11 embryo hybridised with a DIG labelled XmyoD 
antisense probe (dorsal to the top).

C shows a vegetal view of a control gastrula stage 11 embryo hybridised with a 
DIG labelled XmyfS antisense probe (dorsal to the top). D shows a vegetal view of an XFD 
mRNA injected gastrula stage 11 embryo hybridised with a DIG labelled XmyfS antisense 
probe (dorsal to the top).

E shows a dorsal view of a control late neurula stage 20 embryo hybridised with a 
DIG labelled XmyoD antisense probe (anterior to the left). F shows a vegetal view of an 
XFD mRNA injected gastrula stage 20 embryo hybridised with a DIG labelled XmyoD 
antisense probe.

G shows a dorsal view of a control late neurula stage 20 embryo hybridised with a 
DIG labelled actin antisense probe (anterior to the left). H shows a vegetal view of an XFD 
mRNA injected gastrula stage 20 embryo hybridised with a DIG labelled actin antisense 
probe.
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detectable by in situ hybridisation in XFD injected embryos (Fig. 3B and D). 

Expression of XmyoD is still completely suppressed in XFD embryos at stage 20 

(Fig. 3E and F). Furthermore, Fig. 3G and H show that at stage 20 there is no 

detectable staining for cardiac actin in XFD embryos, indicating that the complete 

absence of differentiated skeletal muscle.

Analysis of anteroposterior marker gene expression in XFD injected 

embryos

Embryos overexpressing XFD show marked reductions in posterior structures. In 

order to understand better the requirement for FGF activity in posterior 

development the expression of a number of genes which are thought to be 

involved in anteroposterior specification was examined in XFD injected embryos.

The anteroposterior markers HoxB1, HoxC6, HoxA7 and Xhox3 

It is now well established that genes of the vertebrate Flox clusters are directly 

involved in specification of antero-posterior levels along the body axis and so it is 

significant that activation of expression of the Hox cluster genes HoxC6 {XIHboxI) 

and HoxA7 (Xhox36) is delayed and greatly reduced in such embryos (Fig 4.). 

HoxCS has an anterior limit of expression in the spinal cord but is also expressed 

in the posterior mesoderm (Carrasco and Malacinski, 1987). HoxA7 \s also 

expressed in posterior ectoderm and mesoderm (Condie and Harland, 1987). 

These data suggest that the activity of the FGFs is required for the regulation of 

gene expression not only in the mesoderm but also in the ectoderm. Unlike the 

situation with Xbra and the myogenic genes it can be seen that the expression of
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Fig. 4. RNAase protection analysis of anteroposterior marker gene expression in

embryos injected with dominant negative FGF receptor (XFD) mRNA.
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Control uninjected embryos and embryos injected with either 1 ng of receptor control (d50) 

mRNA or 1 ng of dominant negative FGF (XFD) receptor mRNA into each blastomere at 

the 4-cell stage were cultured until early gastrula stage 10, late gastrula stage 13 and late 

neurula stage 17. 5 pg of total RNA from each stage was analysed by RNAase protection 

for expression of the above panel of marker genes. A ll assays shown were carried out on 

RNA from the same experiment. The ODC loading control shown is a representative 

example.
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the Hox genes begins to recover somewhat during neurula stages. This indicates 

that although in normal development Hox gene expression is activated during 

gastrula stages the factors that are responsible for this are present through 

neurula stages and continue to be able to activate de novo Hox gene. By the late 

neurula stage XFD mRNA is being degraded and it is to be expected that some 

FGF signalling will have recovered. It is possible that this accounts for the 

recovery of Hox gene expression at this stage.

The homeobox containing gene Xhox3, which is the Xenopus homologue 

of the murine Evx 1 gene, has been implicated in the specification of posterior 

structures in Xenopus and zebrafish (Ruiz i Altaba and Melton, 1989c; Barro et al.,

1994). Moreover, animal caps treated with FGF strongly express Xhox3 and in 

normal development Xhox3 is expressed in a posterior to anterior gradient within 

the mesoderm during gastrula stages (Ruiz i Altaba and Melton, 1989a; Ruiz i 

Altaba and Melton, 1989b). Therefore it is perhaps surprising to find that in XFD 

embryos, which exhibit a massive reduction in posterior development, there is no 

effect on the expression of Xhox3 (Fig. 4).

The effects of FGF inhibition on Hox gene expression have been 

investigated further using in situ hybridisation to HoxA7and HoxBt. Fig. 5A 

shows the normal expression of HoxA7\r\ this dorsal view of a late gastrula stage 

13 embryo. Staining is seen in the posterior of the embryo around the closed 

blastopore and at this stage is absent from the dorsal midline. Fig. 5B confirms 

that at this stage HoxA7 expression is completely abolished in XFD embryos. 

However, in the late neurula stage 20 there is some recovery of expression 

around the open blastopore of XFD embryos (Fig. 50 and D).
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Fig. 5. Whole-mount in situ hybridisation analysis of anteroposterior marker gene

expression in embryos injected with dominant negative FGF receptor (XFD)

mRNA.

Abbreviations: dl=dorsal lip. vym=vegetal yolk mass

Control uninjected embryos and embryos injected with either 1 ng of dominant negative 

FGF (XFD) receptor mRNA into each blastomere at the 4-cell stage were cultured until the 

relevant stage.

A shows a dorsal view of a control late gastrula/early neurula stage 13 embryo 

hybridised with a DIG labelled HoxA7 antisense probe (anterior to the left). B shows a 

vegetal view of an XFD mRNA injected gastrula stage 13 embryo hybridised with a DIG 

labelled HoxA7 antisense probe (dorsal to the top). C shows a dorsal view of a control 

stage 20 embryo hybridised with a DIG labelled HoxA7 antisense probe (anterior to the 

left). D shows a vegetal view of an XFD mRNA injected stage 20 embryo hybridised with 

a DIG labelled HoxA7 antisense probe (dorsal to the top).

E shows a dorsal view of a control stage 13 embryo hybridised with a DIG labelled 

HoxBl antisense probe (anterior to the left). F shows a vegetal view of an XFD mRNA 

injected stage 13 embryo hybridised with a DIG labelled HoxBl antisense probe (dorsal to 

the top). White arrows indicate expression domain split around the open blastopore. G 

shows a dorsal view of a control stage 20 embryo hybridised with a DIG labelled HoxBl 

antisense probe (anterior to the left). H shows a vegetal view of an XFD mRNA injected 

stage 20 embryo hybridised with a DIG labelled HoxBl antisense probe (dorsal to the top. 

White arrow indicates expression in neural crest streaming out of the hindbrain.
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Fig. 5. Whole-mount in situ hybridisation analysis of anteroposterior marker gene

expression in embryos injected with dominant negative FGF receptor (XFD)
mRNA.
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HoxBl is one of the most anteriorally expressed Hox genes, which is 

expressed as a stripe in the developing hindbrain (Godsave et al., 1994) and as 

such provides a useful comparison to the more posteriorally expressed HoxAT. 

Fig. 5E shows the normal expression pattern of HoxBt in this dorsal view of a 

stage 13 embryo. The vegetal view of an XFD embryo from the same stage 

shows that HoxBl is still expressed but the aberrant dorsal cell movements of the 

XFD embryo have resulted in the normal single stripe of expression being spread 

laterally around the open blastopore. In the late neurula stage 20 the H oxB l 

domain in control embryos is restricted to a narrow stripe in the hindbrain and 

neural crest emerging from the hindbrain (Fig. 5G). In XFD embryos the 2 H oxB l 

stripes are still present in their lateral position around the open blastopore but 

unlike the wild-type stripes are very much more diffuse (Fig. 5H). These results 

indicate that the signals required for the activation of the anteriorally expressed 

HoxBl gene are still present in XFD embryos. These data suggest that there are 

2 subgoups of Hox genes which can be classified according their sensitivity to the 

inhibition of FGF signalling. The normal activation of expression from the 

posterior Hox genes, such as HoxA7and HoxC6, is FGF dependent, whereas 

activation of the anterior Hox genes such as HoxBl is not FGF dependent. This 

result may be significant given the dramatic posterior reductions and relatively 

normal anterior development which characterises the dominant negative FGF 

receptor phenotype.
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Analysis of anterior neural gene expression in XFD injected embryos

Although the spatial expression of the anterior neural marker HoxB l is somewhat 

abnormal in XFD embryos the overall level of expression is not dramatically 

affected. This is in contrast with the effect on more posterior Hox genes, such as 

HoxA7and HoxCS, in XFD injected embryos. The rather normal anterior 

development in XFD embryos might suggest that this likely to be the case for most 

anteriorally expressed genes. This has been investigated with using the markers 

otx2, en-2 and krox20, which are markers of the forebrain, midbrain/hindbrain 

junction and hindbrain respectively (Hemmati-Brivanlou and Harland, 1989; 

Bradley et al., 1992; Pannese eta!., 1995).

The general neural marker NOAM

The spatial extent of neural development was examined in XFD injected embryos 

by looking at the expression of the neural adhesion molecule NOAM (Krieg et al., 

1989). The In situ hybridisations in Fig. 6 and B show that the overall levels of 

A/CA/W expression are considerably reduced in XFD injected late neurula stage 20 

embryos. NOAM expression is seen on the dorsal side of the embryo close to the 

blastopore where the head will form. However, interestingly there is also some 

NCAM staining around the margin of the open blastopore indicating that the 

aberrantly spread dorsal mesoderm still retains the ability to induce the expression 

of, at least some, neural markers.
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Fig. 6. Whole-mount in situ hybridisation analysis of anterior neural marker gene

expression in embryos injected with XFD mRNA.

Abbreviations: dl=dorsal lip. vym=vegetal yolk mass.

Control uninjected embryos and embryos injected with either 1 ng of dominant negative 

FGF (XFD) receptor mRNA into each blastomere at the 4-cell stage were cultured until the 

relevant stage.

A shows a dorsal view of a control stage 20 embryo hybridised with a DIG labelled 

NCAM antisense probe (anterior to the left). B shows a side view of an XFD mRNA 

injected stage 20 embryo hybridised with a DIG labelled NCAM antisense probe (vegetal to 

the top, dorsal lip to the left). White arrow indicates the exposed vegetal yolk mass.

C shows an dorsovegetal view of a control gastrula stage 11.5 embryo hybridised 

with a DIG labelled otx2 antisense probe (dorsal to the top). D shows an vegetal view of an 

XFD mRNA injected stage 11.5 embryo hybridised with a DIG labelled otx2 antisense 

probe (dorsal to the top). E shows a side view of a control stage 20 embryo hybridised 

with a DIG labelled otx2 antisense probe (anterior to the left, dorsal to the top). F shows 

an animal view of an XFD mRNA injected stage 20 embryo hybridised with a DIG labelled 

otx2 antisense probe (dorsal to the top, exposed yolk mass into the page.

G shows a dorsal view of a control stage 20 embryo hybridised with a DIG labelled 

en-2 antisense probe (anterior to the left). H shows a vegetal view of an XFD mRNA 

injected stage 20 embryo hybridised with a DIG labelled en-2 antisense probe (dorsal to the 

top).

I  shows a dorsal view of a control late gastrula/early neurula stage 13 embryo 

hybridised with a DIG labelled krox20 antisense probe (anterior to the left). Black arrows 

indicate faint stripe of expression in neural plate. J shows a vegetal view of an XFD 

mRNA injected gastrula stage 13 embryo hybridised with a DIG labelled krox20 antisense 

probe (dorsal to the top). White arrows indicate stripes of expression split around the open 

blastopore. K shows a dorsal view of a control stage 20 embryo hybridised with a DIG 

labelled krox20 antisense probe (anterior to the left). L  shows a vegetal view of an XFD 

mRNA injected stage 20 embryo hybridised with a DIG labelled krox20 antisense probe.
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Fig. 6. Whole-mount in situ hybridisation analysis of anterior neural marker gene

expression in embryos injected with XFDmRNA.
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The anterior neural markers otx2, en-2 and krox 20

Otx2 is a Xenopus homologue of the orthodenticle gene, which is involved in the 

development of head structures in Drosophila and has been widely implicated, 

along with the emx class of genes, in a having a similar role in the vertebrates 

(Holland et al., 1992; Pannese et al., 1995). At the start of gastrulation the initial 

expression of otx2 is in the region of the organiser and as gastrulation proceeds 

the expression of otx2 moves away from the region of the blastopore toward the 

future anterior of the embryo. At mid-gastrula stage 11.5 Fig. 6C shows that otx2 

expression is prominent in the anterior neural plate although expression is also 

found in the anterior mesendoderm. Fig. 6D shows that in XFD embryos of the 

same stage the levels of ofx2 expression appear to be quite normal but in keeping 

with previous results the domain expression remains close to the blastopore.

Even at the late neurula stage 20, the anterior domain of otx2 is comparable in 

XFD and control embryos (Fig. 6E and F).

The homeobox gene en-2 is a homologue of the Drosophila segment 

polarity gene engrailed \ha\ provides a useful marker for the midbrain/hindbrain 

junction, en-2 expression is not detectable by In situ hybridisation until the late 

neural stage when it is first apparent as single stripes either side of the dorsal 

midline in the anterior neural plate (Brivanlou and Harland, 1989). Fig. 6G shows 

the normal expression of en-2 in a control embryo at stage 20. Fig. 6H shows en- 

2  expression in an XFD embryo from the same stage. Note the high level of en-2 

expression close to blastopore at the dorsal midline and a spot of lower level 

expression some distance around the margin of the blastopore. This pattern is 

quite reproducible and may indicate that the en-2 domain lies very close to the
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anteroposterior level at which the axis splits in XFD embryos. This is further 

supported by the observation that the expression of the more posterior genes 

HoxB l and, as will now be discussed, krox20 is characteristically split around the 

open blastopore in XFD embryos.

krox20 is a zinc finger gene which is believed to be involved in the 

assignment of rhombomere identity in the developing hindbrain. Fig. 61 shows that 

in control embryos krox20 expression is first apparent at the early neurula stage 

14 as a single stripe either side of the dorsal midline of the neural plate. Later in 

development two stripes of krox20 expression are seen in the hindbrain in 

rhombomeres 3 and 5 (r3 and r5) and in the neural crest streaming out of r5 (Fig. 

6K). As with HoxBl, the krox20 stripes of expression are split around the open 

blastopore in XFD embryos suggesting the basic mechanism for the establishment 

of their expression is unaffected by FGF inhibition (Fig. 6J and L).

Discussion 

The FGFs and mesoderm induction.

A number of genes have been identified which are activated in the newly induced 

mesoderm of the marginal zone (MZ) of the late blastula stage Xenopus embryo. 

The activation of expression from Xbra is an immediate early response to 

mesoderm induction by FGF-like and activin-like mesoderm inducing factors 

(Smith et al., 1991). The induction of expression of the homeobox gene 

goosecold, is also an immediate early response, but only to activin-like mesoderm 

inducing factors (Blumberg et al., 1991). By definition this means that activation of 

their expression does not require protein synthesis. Therefore anything that

148



interferes with mesoderm induction by the maternal inducers, prior to the onset of 

zygotic transcription, should affect the expression of these immediate early 

markers. Data in this chapter and elsewhere shows that Xbra expression is down 

regulated in very late blastula/early gastrula stage embryos that have been 

injected with the dominant negative FGF receptor (XFD) mRNA (Amaya et al., 

1993; Isaacs et al., 1994). This indicates that FGF function is required for 

mesoderm induction and that part of this requirement is likely to be maternal. 

However, as has already been discussed the known maternal FGFs are not 

vegetally localised as would be expected for one of the maternal inducers. The 

explanation of this is complex and reveals a previously unexpected link between 

the FGF and activin-like molecule signal transduction pathways.

The enzyme MAP kinase is a down stream element of the, now well 

characterised FGF tyrosine kinase signal transduction pathway. Treatment of 

blastula stage animal caps with FGF leads to a rapid phosphorylation and 

activation of MAP kinase (LaBonne and Whitman, 1994). The details of signal 

transduction from activin-like molecules is not as clearly understood as is the case 

for the FGFs. Unlike the FGF receptor, the activin receptor complex has 

serine/threonine kinase activity and treatment of animal caps with activin does not 

lead to a rapid phosphorylation of MAP kinase (LaBonne and Whitman, 1994). 

This strongly suggest that activin signalling does not use any of the elements of 

the FGFs signalling pathway upstream of MAP kinase. Paradoxically however, 

overexpression of inhibitory forms of these upstream elements, such as the FGF 

receptor (XFD), ras, raf or inhibition of MAP kinase itself by overexpression of a 

MAP kinase phosphatase blocks mesoderm induction and the immediate early
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activation of Xbra by activin treatment (Whitman and Melton, 1992; LaBonne and 

Whitman, 1994; LaBonne et al., 1995). In some way there is a concurrent 

requirement for activity of the FGF tyrosine kinase signal transduction pathway in 

animal caps that is necessary to allow activin to induce the expression of Xbra in 

the absence of protein synthesis.

These data suggest a role for the maternal FGFs which is consistent with 

their expression patterns. There is now good evidence that in the early blastula 

the FGFs do not act as vegetally localised mesoderm inducing factors but rather 

they provide a sub-threshold stimulation of the tyrosine kinase signal transduction 

pathway in the cells of the animal hemisphere. This is further supported by the 

demonstration that there is low level MAP kinase activity in the animal hemisphere 

and much of this can be inhibited by overexpression of XFD (LaBonne et al., 

1995). This low level of FGF activity in the cells of the animal hemisphere is 

required for the full repertoire of responses to induction by activin-like molecules, 

including vg l (SchulteMerker et a!., 1994b), and as such the FGFs can be 

considered as competence factors necessary for mesoderm induction. The view 

that the vegetal hemisphere is not a major source of FGF signalling is further 

supported by recent evidence which demonstrates that, like the cells of the animal 

hemisphere, vegetal hemisphere cells can express the mesodermal markers Xbra 

and XmyoD in response to treatment with FGF. However, unlike animal cells, 

vegetal cells do not express Xbra and XmyoD in response to activin treatment.

The fact that Xbra and XmyoD expression is normally excluded from the vegetal 

hemisphere indicates that an FGF is not a major component of the endogenous 

vegetal signal (Cornell et a!., 1995).
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Not all mesodermal genes however, require FGF activity for their initial 

activation in the mesoderm. These include the other general mesodermal 

markers Xsna and eFGF itself. Also the expression of the dorsoanterior markers 

goosecoid and otx2 are not significantly reduced in XFD embryos. It is significant 

that the expression of goosecoid \s unaffected in XFD embryos, goosecoid 

expression does not overlap that of either eFGF or Xbra and at the start of 

gastrulation is restricted to the deep layers of the dorsal lip in cells which 

contribute to the head, which is relatively normal in XFD embryos.

Although it can be seen that there is some regional restriction to the 

requirement for FGF activity, it is important to note that this requrement is not 

restricted to the ventral mesoderm. For example, noggin which is co-expressed 

with Xbra in the notochord, is somewhat down regulated in XFD injected embryos.

FGF and muscle formation

In the previous chapter we saw that muscle formation is very much reduced in 

XFD embryos. This is reflected in absence of XmyoD, XmyfS and cardiac actin 

expression detectable by in situ hybridisation. However, RNAase protection 

analysis shows that the initial low level expression of XmyoD at the start of 

gastrulation is unaffected in XFD embryos. This indicates that the requirement for 

FGF activity is for the amplification and maintenance of XmyoD , and possibly 

XmyfS, expression during gastrula stages. This is in keeping with previous results 

that show the activation of high levels of XmyoD by mesoderm inducing factors 

requires protein synthesis (Harvey, 1991) and indicates that it is likely to be
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zygotic FGF expression which is involved in the elaboration of muscle gene 

expression.

FGFs and anteroposterior gene expression

A wide range of anteroposterior marker genes which are expressed in the 

mesoderm and ectoderm were examined in XFD embryos. The expression of 

otx2, which is a marker of anterior development in all three germ layers, is 

relatively unaffected in XFD embryos. This is in keeping with the morphology of 

XFD embryos and further indicates that the FGFs are not required for the 

specification of the most anterior body parts up to about the level of the 

forebrain/midbrain junction. The effects on genes expressed in the midbrain and 

hind brain are more complex. The expression of the midbrain/hindbrain junction 

marker en-2 and the hindbrain markers krox20 and HoxBl is still detected by in 

situ hybridisation in XFD embryos at levels comparable to that seen in uninjected 

embryos. However, the domains of expression for these genes become spilt 

around the open blastopore by the abnormal morphogenetic movements. This 

shows that the mechanism for the establishment of the expression of these genes 

probably does not involve FGF signalling. The expression these genes is not 

detected until after the spreading of dorsal tissue around the blastopore is 

apparent. Therefore it is not possible to say if their domains of expression 

become split subsequent to their initial specification or whether this pattern 

reflects a split in the inducing tissue prior to specification.

The activation of expression from HoxCS and A 7, which are normally 

expressed in the spinal cord and mesoderm of the trunk, is late and at reduced
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levels compared to controls. The expression of these genes is not initiated until 

quite late in gastrulation, therefore it is not clear if the effects on the expression of 

these Hox genes is due to some earlier effect on FGF dependent patterning or 

whether FGF is directly involved in the regulation of Hox gene activity in the 

gastrula. However, recent data in this lab, obtained using eFGF loaded beads, 

indicates that the FGFs can activate the expression of the same Hox genes, in 

both the ectoderm and mesoderm of gastrula stage embryos, which suggests that 

the FGFs are involved in establishing the expression of a subset of Hox genes in 

the trunk and posterior (Pownall et al., submitted). These results are significant 

because it is now widely accepted that genes of the vertebrate Hox clusters are 

directly involved in the specification of anteroposterior levels along the body axis 

(McGinnis and Krumlauf, 1992).

Gene expression and the XFD phenotype

The activity of the FGFs is required for the correct regulation of a subset of genes 

within both the mesoderm and the ectoderm. A number of the FGF sensitive 

genes such as Xbra, XmyoD and the Hox genes are known to be intimately 

involved in specification and patterning during vertebrate development. Data in 

this and the previous chapter show that to a large extent the final phenotype of 

XFD embryos can be traced back to effects on gene expression that are apparent 

during gastrula stages. For example, genes which are known to be involved in the 

specification and patterning of the most anterior structures are relatively little 

effected in XFD embryos. Whereas the expression of XmyoD and some of the
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Hox genes is greatly down regulated during gastrula stages and probably 

accounts for loss of trunk and tail structures in these embryos.

There is now good evidence that the maternal FGFs are required during 

the initial stages of mesoderm induction. In the blastula stage there is widespread 

expression of eFGF, FGF-9 and bFGF\n the animal hemisphere that is necessary 

for the full range of competence to respond to the vegetal inducers. However, 

during gastrula and neurula stages eFGF and FGF-3 are expressed in discrete 

domains in the marginal zone, notochord and posterior. This is very similar to the 

expression pattern of Xbra and suggests that, in addition to a requirement for 

maternal FGF function to activate the immediate early expression of Xbra, there is 

a continued requirement for the zygotic activity of the FGFs to maintain Xbra 

expression.

Data in this chapter also suggests a role for the zygotic FGFs in regulating 

the expression of other genes during gastrula and neurula stages. Unlike Xbra, 

the expression of the myogenic and Hox genes is not an immediate early 

response to mesoderm induction, so it seems unlikely that maternal FGF function 

has any role in their activation. However, there is considerable overlap between 

the zygotic expression of the FGFs and the initial expression domains of these 

genes in the marginal zone and posterior of the embryo. The next chapter 

provides further support for the view that eFGF is involved in the regulation Xbra 

and XmyoD expression within the newly formed mesoderm in the gastrula and 

neurula.
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Chapter 7
eFGF and gene regulation within the mesoderm.
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Introduction

The in vivo inhibition of FGF function reveals that the activity of the FGFs is 

required for the normal development of the mesoderm. Recent work in other labs 

strongly suggests that at least part of the requirement for the FGFs is maternal 

(Cornell et al., 1995; LaBonne et al., 1995). However, the expression data for 

eFGF makes it likely that there is a continuing requirement for FGF activity within 

the developing mesoderm in later stages. Data in the last chapter shows that 

Xbra and the myogenic genes are very sensitive FGF inhibition. This chapter 

examines in more detail the potential role for eFGF in regulating the expression of 

Xbra and XmyoD within the nascent mesoderm.

As discussed in Chapter 3, the Xenopus homologue of the Brachyury gene 

{Xbra) belongs to an increasingly large family of related T-box’ genes. In all 

vertebrates examined the expression of Brachyury is essentially identical. It is 

expressed in the nascent endomesoderm at the start of gastrulation. As 

gastrulation proceeds its expression is rapidly down regulated in all involuted 

mesoderm apart from the notochord . Brachyury expression persists in the tailbud 

region of vertebrate embryos throughout the period of tail extension. Mutations in 

the Brachyury gene have been identified in the zebrafish and mouse and analysis 

of the phenotype of these mutants reveals that Brachyury function is required for 

formation of trunk and tail structures and for the differentiation, but not initial 

specification, of the notochord (Herrmann and Kispert, 1994). The identification of 

closely related T-box’ genes expressed in the mesoderm of primitive 

cephalochordate, urochordates and hemichordates indicates that function of 

Brachyury in the formation of the mesoderm is extremely ancient (Yasuo et al..
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1995). The recent identification of a Brachyury homologue, which is expressed in 

the hind gut of Drosophila, has further stimulated discussion over the evolutionary 

origin and possibly endodermal nature of the notochord (Kispert et al., 1994).

The mouse Brachyury protein is a transcription factor which has now been 

analysed in some detail. The 436 amino acid protein is almost exclusively 

localised to the nucleus and the nuclear localisation signal has been narrowed 

down to a region encompassing amino acids 137 to 320. The amino terminal half 

of Brachyury is most highly conserved across species and it is this region that 

contains the DNA binding T-box’ domain. A consensus 12-mer recognition site 

has been identified which can bind Brachyury either as a repeat or inverted 

repeat. Reporter constructs carrying tandem repeats of this sequence have been 

shown to be activated in the presence of Brachyury protein. Deletion analysis has 

revealed that in common with many transcription factors Brachyury has a modular 

organisation and the carboxy terminal contains 2 activation and repression 

domains. This is in keeping with the reduced conservation of sequence in this 

region because there are fewer constraints on the primary sequence of an 

activation domain, where the major requirement is for acidic amino acids, 

compared to the steric constraints imposed by interaction of a DNA binding 

domain with specific target sequence (Kispert, 1995).

Inhibition of the FGF signal transduction pathway by the injection of mRNA 

coding for the dominant negative FGF receptor (XFD) results in embryos in which 

the trunk and tail are vestigial (Amaya et al., 1991 ; Isaacs et al., 1994). This 

phenotype, of trunk and posterior deficiency, failure of notochord differentiation 

and relatively normal anterior development, bears similarities to that caused by
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naturally occurring mutations in the Brachyury (T) gene of the mouse (Beddington 

et al., 1992) and the no fa//mutation in zebrafish (SchulteMerker et al., 1994c). 

These are mutations in the direct homologues of the Xenopus Xbra gene. There 

is now considerable evidence linking the activity of the FGFs with the regulation of 

the expression of the Xbra gene. Inhibition of the FGF signal transduction pathway 

leads to a dramatic reduction of Xbra expression through gastrula stages (Amaya 

et al., 1991; Isaacs et al., 1994). The expression pattern of eFGF in the 

periblastoporal region, notochord and later in the tailbud is also strikingly similar to 

that of Xbra (Isaacs et al., 1995; Smith et al., 1991). It is tempting to speculate 

that the underlying mechanism involved in the formation of the phenotype of 

Brac/7yL//y mutants and FGF dominant negative embryos is similar.

The development of muscle lineages is greatly reduced in XFD injected 

embryos with a concomitant reduction in muscle gene expression, including the 

basic helix-loop-helix (bHLH) transcription factors XmyoD and Xmyf5 (Amaya et 

al., 1991, Chapter 6). These factors have been shown to be capable of acting as 

dominant activators of muscle specific gene expression in number of systems 

including Xenopus (Weintraub, 1993; Rudnicki and Jaenisch, 1995). The 

demonstration of the complete lack of skeletal muscle development in mice 

carrying double null mutations for XmyoD and XmyfS further emphasises the vital 

role that they have in the development of the muscle lineages (Rudnicki et al., 

1993).

This chapter contains experiments which further elucidate the role of eFGF 

in regulating mesodermal gene expression. Data show that cell-cell signalling is 

required to maintain the expression of Xbra and XmyoD in the cells of the
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periblastoporal region during gastrula stages and that eFGF can replace that 

requirement in a novel cell culture system. Further complexities to the 

relationship between eFGF and Xbra are indicated by data showing that they can 

each activate the expression of the other. This suggests that an autoregulatory 

loop of Xbra and eFGF is involved in the development of the mesoderm.

Materials and methods 

Embryological methods

Embryo production was as per general methods. Animal caps explants taken as 

per general methods. The specific activity of the mesoderm inducing factors was 

determined by the serial dilution assay (Godsave and Slack, 1988). Recombinant 

Xenopus bFGF was prepared as per Kimelman et al., (1988). Recombinant 

Xenopus eFGF was prepared as per Chapter 4. Recombinant bovine activin A 

was a gift from Innogenetics (Belgium). Disaggregated marginal zone cell cultures 

were prepared by dissecting gastrula stage 10.5 to stage 11 embryos into either 

dorsal and ventral 1/2s or dorsal 1/4s and lateroventral 3/4s. Animal hemisphere 

tissue was then removed down to the floor of the blastocoel and as much as 

possible of the vegetal core material dissected away. Disaggregation and factor 

treatment was as per general methods.

RNA injections

RNA injections were carried out as per general methods. The dominant negative 

FGF receptor (XFD) and control receptor (d50) constructs are those used by 

Amaya et al., (1991). The pSP64-3-globin plasmid is that of Krieg and Melton,
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(1984). The pSP64-XbFGF plasmid is as used by Thompson and Slack, (1992). 

The pSP64-eFGF plasmid is as used by Isaacs et al., (1994). The pSP64-Xbra is 

as used by Cunliffe and Smith, (1992).

RNAase protections

As per general methods

Results 

Inhibition of eFGF activity by the dominant negative receptor (XFD)

The main focus of this thesis is the role and activities of eFGF during early 

Xenopus development. It is therefore important to show that XFD is able to inhibit 

the activity of eFGF. Table 1 demonstrates the usefulness of this reagent as an 

inhibitor of eFGF function. Goinjection of eFGF with the dominant negative FGF 

receptor leads to a marked reduction in the autoinducing activity of eFGF mRNA. 

This means that inhibition of eFGF activity will in part be responsible for the effects 

seen in XFD injected embryos. This experiment raises the issue of the specificity 

of the block on FGF signalling produced from the dominant negative FGF 

receptor. The dominant negative approach works because of the ligand 

dependant dimérisation of the mutant receptor with wild-type receptor (Ueno et al., 

1992). This implies that signalling will be blocked from any ligand that can bind to 

a receptor complex which contains the dominant negative receptor. All members 

of the FGF ligand family have been shown to bind to at least one isoform of FGF- 

R1, FGF-R2 or FGF-R3 (Johnson and Williams, 1993). Furthermore, it has been 

shown that a similarly truncated mouse FGF-R1 will act as a dominant inhibitor of
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signalling from FGF-R1, FGF-R2 and FGF-R3, presumably through the formation 

of FGF-R heterodimers (Ueno et al., 1992). However, the dominant negative FGF 

receptor is the R1 lllc isoform and FGF-3, KGF, FGF-8 will not bind to 

homodimers of R3 lllc. The problem is that it is not known if these ligands will 

bind to heterodimers containing the R1 lllc isoform. The story is complex and it is 

likely that the inhibitory activity of XFD should be tested empirically for each 

ligand. On this basis it can be said with confidence that XFD blocks the activity of 

bFGF, eFGF and FGF-9 (Amaya et al., 1991; Isaacs et al., 1994; Song and Slack,

1996).

Table 1 Inhibition of mesoderm induction in animal caps by injection of dominant
negative FGF receptor (XFD) mRNA.

Injection Uninduced Induced n
Water 10 0 10

20 pg eFGF mRNA 0 10 10
+4 ng d50 mRNA 0 7 7

+4 ng XFD mRNA 8 2 10

RNA was injected into both blastomeres of 2-cell stage embryos. d50 is a non-functional 
receptor control. XFD is the dominant negative FGF receptor. Animal caps were removed 
at stage 9 and were cultured for 3 days. At this stage the presence of fluid-filled vesicles 
indicates the formation of mesoderm.

The induction of eFGF expression by FGF, activin and Xbra

Although eFGF is expressed at low levels maternally, it is most highly expressed 

in the periblastoporal region during gastrula stages (Isaacs et al., 1992; Isaacs et 

al., 1995). This suggests that its zygotic expression might be activated by 

mesoderm inducing factors. Fig. 1 is the result of an RNAase protection assay 

that shows treatment of animal cap explants with the dorsal-type inducer activin 

and the ventral-type inducer bFGF leads to the activation of eFGF expression.
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Fig. 1. RNAase protection analysis of eFGF expression in animal caps by treatment

with mesoderm inducing factors.

Î Î  È
l i  I f
c o cc cc 
LÜ U  U  Ü

eFGF

ODC » # a #

Animal cap explants were taken at stage 8 and cultured until stage 11. 6 pg of total RNA 

from untreated control caps, activin treated caps(10u/ml) and bFGF treated caps (10 u/ml) 

were analysed by RNAase protection for eFGF and ODC expression.

Fig. 2. RNAase protection analysis of eFGF expression in animal caps following 

injection of Xhra mRNA.
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Animal caps were taken from water injected control embryos and embryos injected with 4 

ng of Xbra mRNA. 5 pg of total RNA from caps at stage 11 were analysed by RNAase 

protection for eFGF and ODC expression.
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Thus the zygotic expression of eFGF is a property of both dorsal and ventral type 

mesoderm.

Cunliffe and Smith, (1992) have demonstrated that the injection of mRNA 

coding for Xbra leads to autoinduction of ventral-type mesoderm in animal caps. 

The mesoderm that is induced is very similar in character to that induced by the 

treatment of animal caps with members of the FGF family. This raises the 

possibility that Xbra will also be able to induce the zygotic expression eFGF. 

RNAase protection analysis of animal caps taken from embryos that have been 

injected with Xbra mRNA shows that this is indeed the case (Fig. 2). In common 

with other mesoderm inducing factors (Smith et al., 1991), eFGF is able to 

strongly induce the expression of Xbra in animal caps (see Fig. 4, Chapter 4). As 

has already been discussed, zygotic expression both eFGF and Xbra is activated 

in very similar domains within the nascent mesoderm of the marginal zone. 

Therefore, it is possible that this cross activation of each others expression may 

actually occur during normal development and that a positive feedback loop of this 

kind may be involved in the elaboration the expression of both Xbra and eFGF. 

Further support for this is provided by gene expression data from dominant 

negative FGF receptor injected embryos that show that Xbra expression is greatly 

reduced from the start of gastrulation (Amaya et a!., 1993; Isaacs et a!., 1994). 

Interestingly, the initial expression of eFGF at the start of gastrulation is not down 

regulated in XFD embryos even at a time when Xbra expression is much reduced. 

However, as gastrulation proceeds the level of eFGF expression falls in XFD 

embryos (Isaacs et a!., 1994). This indicates that the activation of Xbra 

expression requires a functional FGF signal transduction pathway, whereas the
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activation of eFGF expression does not and that it is only during gastrula stages 

that Xbra is required to maintain eFGF expression. Furthermore, it seems likely 

that not only does the initial activation of Xbra expression require a functional FGF 

signal transduction pathway but there is also a continued requirement for FGF 

activity to maintain Xbra expression during gastrula stages.

Xbra expression In disaggregated marginal zone expiants

The notion that eFGF continues to be required for the expression of Xbra in the 

mesoderm of the blastopore during gastrula and neurula stages has been directly 

tested. The approach was to desegregate the cells of blastopore region explants 

from gastrula stage 10.5 embryos and culture in the presence of various factors 

until the mid-neurula stage 15. At this stage the cells were harvested and 

analysed for the expression of Xbra and eFGF. The object of the cell 

disaggregation protocol is to remove any autocrine secreted factors from the 

environment of the cells by massive dilution into the bulk medium.

Fig. 3 shows that the dorsal and ventral blastopore pieces from stage 10.5 

express Xbra and eFGF. These same pieces, when cultured intact until stage 15, 

continue to express all three genes. However, when the explants are 

disaggregated before culture, the expression of Xbra is completely extinguished 

both in the dorsal and ventral derived cells. If however eFGF protein is included in 

the medium, Xbra continues to be expressed in both dorsal and ventral derived 

cell cultures. eFGF maintains Xbra expression at levels comparable to the ventral 

control pieces but at a somewhat lower level than the dorsal control. Activin also 

has Xbra maintenance activity but, with the concentration of factors used in this
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Fig. 3. RNAase protection analysis of eFGF and Xbra expression in disaggregated

gastrula dorsal and ventral marginal zone explants.
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3 pg of total RNA from each of the cultures were analysed by RNAase protection for the 

expression of Xbra, eFGF and ODC . Whole dorsal and ventral explant controls were 

analysed at gastrula stage 10.5 and after culturing to neurula stage 15. Disaggregated 

untreated control cells, and eFGF treated (4 u/ml), and activin treated (16 u/ml) cells were 

analysed after culturing from stage 10.5 to stage 15.
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experiment (eFGF at 4 u/ml and activin at 16 u/ml), is less effective than eFGF. 

Note, that although the total amounts of RNA analysed in each lane is the same, 

the expression of the ornithine decarboxylase (ODC) loading control is 

significantly down regulated in disaggregated cell culture samples. ODC is an 

enzyme that is involved in the synthesis of polyamines and is ubiquitously 

expressed in Xenopus embryos and explants. However, in tissue culture the 

ODC has been shown to be highly regulated at the level of transcription and 

translation in response to a large number of stimuli including hypotonic shock and 

even substrate independent growth (Morrison and Seidel, 1995; Wallon et aL, 

1995). The down regulation of ODC expression may simply reflect the altered 

metabolic state of cells under disaggregated culture conditions. However, all 

disaggregated cultures are similarly affected and therefore this phenomenon does 

not compromise within group comparisons.

It can be concluded that eFGF is able to maintain Xbra expression in cells 

of dorsal and ventral blastopore regions during gastrula and neurula stages. This 

maintenance function is distinct from primary mesoderm induction and constitutes 

a novel activity for eFGF during gastrulation. This result has also been reported 

by (Schulte-Merker and Smith, 1995)

eFGF and XmyoD expression

Expression of the myogenic basic helix-loop-helix transcription factor XmyoD is 

also greatly down regulated in XFD injected embryos as is the subsequent 

expression of the muscle differentiation marker actin. There is a considerable 

body of literature that indicates intercelluar signalling is required during gastrula
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Fig. 4. RNAase protection analysis of myogenic gene expression in disaggregated

gastrula lateroventral marginal zone explants.
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5 pg of total RNA from each of the cultures were analysed by RNAase protection for the 

expression of XmyoD, cardiac actin, Xbra and ODC.

A: Whole ventrolateral marginal zone explant controls were analysed at gastrula 

stage 10 and after culturing to neurula stage 14. Untreated disaggregated control cells and 

eFGF treated (10 units/ml) disaggregated cells were analysed after culturing from stage 10 

to stage 14.

B: Whole ventrolateral marginal zone explant controls were analysed at gastrula 

stage 11 and after culturing to mid neurula stage 16. Untreated disaggregated control cells 

and eFGF treated (10 units/ml) disaggregated cells were analysed after culturing from stage 

11 to stage 16.
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stages for the subsequent differentiation of muscle lineages (Gurdon, 1988; 

Gurdon et a i, 1992; Gurdon et a i, 1993). During gastrula stages XmyoD  is 

expressed in the periblastoporal region, although unlike eFGF and Xbra its 

expression is excluded from the region of the organiser. These data raise the 

possibility that eFGF may be involved in the amplification of the initial low level 

XmyoD expression at the start of gastrulation and its maintenance during the 

development of the muscle lineages. This has been tested using a similar 

disaggregation protocol to that described above.

At the start of gastrulation there is only a very low level XmyoD expression 

but levels greatly increases as gastrulation proceeds (see Fig. 1, Chapter 5). In 

order to test if eFGF is also able to activate XmyoD expression in disaggregated 

cell culture the lateroventral 3/4 of the marginal zone was explanted at stage 10 

and then cultured either intact or disaggregated (plus or minus eFGF) until neurula 

stage 14 and then assayed for the expression of XmyoD {Xbra has been included 

as a positive control). Fig. 4A shows that there is only a very low level of XmyoD 

expression in early gastrula explants. If these explants are cultured intact until 

neurula stage 14 there is a considerable increase in XmyoD expression. On the 

other hand, in disaggregated cell culture there is very little increase in the 

expression of XmyoD between stage 10 and 14. However, the inclusion of eFGF 

in the medium of the disaggregated cell cultures results in a significant increase in 

XmyoD expression.

In order to test if eFGF is also able to maintain XmyoD expression and 

activate the expression of muscle differentiation markers in disaggregated cell 

culture the periblastoporal region from gastrula stage 11 embryos was dissected
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into dorsal 1/4s and lateroventral 3/4s and then cultured either intact or 

disaggregated (plus or minus eFGF) until neurula stage 16. The ventrolateral 

cultures were then assayed for the expression of XmyoD, cardiac actin and Xbra. 

Figure 4B shows that at stage 11 the lateroventral region is strongly expressing 

XmyoD. If this explant is cultured intact until stage 16 the XmyoD expression has 

increased considerably and has begun to express muscle actin, indicating that at 

least some muscle differentiation is taking place in the explant. Again it can be 

seen that that the expression of XmyoD is greatly down regulated following 

disaggregation and there is no cardiac actin expression. This confirms previous 

findings that myogenic precursors do not become committed to form muscle in 

isolation until late gastrula stages. If however eFGF protein is included in the 

culture medium the level of XmyoD expression is elevated and significantly the 

cells also express cardiac actin. The ability of eFGF to rescue the expression of 

XmyoD in disaggregated cell culture is perhaps less dramatic than is the case for 

the rescue of Xbra expression. However, these preliminary results, in a particular 

the ability of eFGF to allow the expression of cardiac actin in disaggregated cell 

culture indicate that the activity of the FGFs might be involved in the amplification 

and maintenance of XmyoD expression in normal development and that eFGF in 

particular may in part mediate the ‘community effect’ for muscle differentiation 

(Gurdon, 1988).

eFGF and Xnot expression

The dorsal quarters from the above experiment were assayed for the expression 

of Xnot, which is a homeobox gene isolated independently by two groups (Gont
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Fig. 5  RNAase protection analysis of Xnot expression in disaggregated gastrula

dorsal marginal zone explants.
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5 pg of total RNA from each of the cultures were analysed by RNAase protection for the 

expression of Xnot and ODC. Whole dorsal marginal zone explant controls were analysed 

at gastrula stage 11 and after culturing to mid neurula stage 16. Untreated disaggregated 

control cells and eFGF treated (10 units/ml) disaggregated cells were analysed after 

culturing from stage 11 to stage 16.
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and De Robertis, 1993; Von Dassow et a i, 1993a). Xnot is expressed in the 

periblastoporal region and developing notochord during gastrula stages and has 

been shown to be down regulated at the start of gastrulation in XFD injected 

embryos (Von Dassow et a i, 1993a). The result obtained with Xnot expression in 

disaggregated dorsal explants was somewhat unexpected (Fig. 5). Xnot 

expression is not down regulated in disaggregated cell culture and is not up 

regulated by the inclusion of eFGF in the culture medium. This indicates that by 

stage 11 the expression of Xnot in the dorsal mesoderm has become cell 

autonomous and not sensitive to FGF signalling. This is in contrast to the 

activation of Xnof expression within the organiser, which is dependent upon FGF 

signalling (Von Dassow et a i, 1993b).

Attempted rescue of the dominant negative FGF receptor phenotype

Much of the XFD phenotype in Xenopus can be accounted for by a sensitive effect 

on dorsal cell movements during gastrulation that leads to the failure of the 

blastopore to close. It is possible that the underlying cause of the XFD and 

Brachyury mutant phenotypes is the same, and that this is the lack of Brachyury 

function. A naive view suggests that it might be possible to rescue the XFD 

phenotype by simply returning Brachyury function. This has been attempted by 

coinjecting Xbra and XFD mRNA at the pigment boundary of all blastomeres or 

just the 2 dorsal blastomeres in the 4-cell embryo.

In order to sensitise this assay a preliminary study was carried out to find a 

threshold concentration of XFD that would just produce the open blastopore 

phenotype. This value was found to be 50 pg/ dorsal blastomere at the 4-cell
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stage. A further complication is that overexpression of Xbra also leads to a 

phenotype of arrested gastrulation, due to the formation of ectopic mesoderm in 

the animal hemisphere (Cunliffe and Smith, 1992). Such embryos 

characteristically have animal hemispheres with a wrinkled thickened appearance. 

The amount of Xbra mRNA injected (200-400 pg/blastomere at 4-cell stage) was 

an amount that just caused failure of the blastopore to close when injected on its 

own. The results of this experiment are shown in Table 2. Coinjection of the wild- 

type receptor was included as a control for rescue. It can be seen that a 2-fold 

excess of wild-type receptor mRNA over that of XFD mRNA is sufficient to 

completely rescue the open blastopore phenotype in most embryos. By contrast 

coinjection of Xbra mRNA does not show any signs of rescuing closure of the 

blastopore.

Table 2 Attempted rescue of the XFD phenotype by Xbra and the wild-type FGF
receptor (XFR)

Injection Open
blastopore

Closed
blastopore

Other n

Xbra mRNA
4x 400 pg 12x thickened animal cap 0 12

XFD mRNA
4x 50 pg 
2x 50 pg dorsal

42x typical XFD  phenotype 
8x typical X FD  phenotype

1X normal 
3x normal

3x sick 46
11

XFD+XFR mRNA
4x 50 pg+100 pg 4x XFD  phenotype 32x normal 4x sick 40

XFD+Xbra mRNA
4x 50 pg+400pg 
2x 50 pg+200 pg dorsal

20x some thickening of animal cap 
12x X FD  phenotype

0
0

2x sick 
1X sick

22
13

Embryos were injected with specified amounts of mRNA at the 4-cell stage. They were 
scored for blastopore closure between late gastrula stage 13 and neurula stage 16.
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This is clearly a technically difficult experiment with a great many variables. 

An experiment of this sort with a negative results cannot be conclusive but it does 

provide some evidence that the open blastopore phenotype is not due only to an 

interference with the regulation of Xbra expression.

Discussion 

Mesoderm formation

Data obtained using the dominant negative activin receptor suggest that this 

signalling pathway is required for the expression of all mesodermal genes (Cornell 

et al., 1995). Hence the blocking of the activin signalling pathway in the embryo 

results in a complete absence of all mesodermal structures (Hemmati-Brivanlou et 

al., 1992). This is in contrast to data obtained using the dominant negative FGF 

receptor which indicates that FGF function is only required for the correct 

regulation of a subset of genes that are expressed in the newly formed mesoderm 

(Cornell and Kimelman, 1994; Isaacs et al., 1994; LaBonne and Whitman, 1994).

It is likely that the FGFs have multiple and possibly independent roles in regulating 

gene expression within the nascent mesoderm. However, at present the best 

characterised role of FGF is in regulating the expression of the gene Xbra.

FGF and the regulation of Xbra expression

Xbra is the Xenopus homologue of the transcription factor Brachyury \Nh\ch has 

been shown to have an important role in the formation of the mesoderm in a 

number of vertebrates (reviewed by Herrmann and Kispert, 1994). Data indicate 

that Xbra plays a similar role in the development of Xenopus. Xbra expression is
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activated in response to mesoderm induction by activin and the FGFs (Smith et 

al., 1991), including eFGF (Isaacs etal., 1994). Furthermore, overexpression of 

Xbra in animal caps leads to the activation of a number of mesodermal marker 

genes and induces the formation of ventral-type mesoderm (Cunliffe and Smith, 

1992). Just as with FGF the response to mesoderm induction by Xbra can be 

modified to a more dorsal type. For example the coinjection of Xbra mRNA with 

noggin or Pintaliavis mRNA results in the formation of notochord (Cunliffe and 

Smith, 1994; OReilly et al., 1995). Interestingly the induction of mesoderm and 

Xbra expression in animal caps in response to injection of Brachyury mRNA 

requires a functional FGF signal transduction pathway (Cornell and Kimelman, 

1994; LaBonne and Whitman, 1994; Schulte-Merker and Smith, 1995). The 

explanation for this may well rest with the observation that Xbra activates the 

expression of eFGF and that subsequent FGF signalling is required for the full 

development and maintenance of the mesodermal state (Isaacs et al., 1994). The 

ability of Xbra and eFGF to activate the expression of each other suggests that 

they may be components of an autocatalytic loop involved in the formation of the 

mesoderm in the late blastula.

At the start of gastrulation eFGF and Xbra are expressed in the mesoderm 

of the blastopore region. When explants are taken from this region, and the cells 

are dissociated in divalent cation free medium, the expression of Xbra is rapidly 

down regulated. This indicates a requirement for cell-cell signalling in the 

maintenance of Xbra expression in the blastopore region. Experiments in this 

thesis and elsewhere show that the addition of eFGF and bFGF to the culture 

medium maintains the expression of Xbra in these dissociated cell cultures
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(Isaacs etal., 1994; Schulte-Merker and Smith, 1995). Given their coexpression in 

the blastopore region, it is likely that eFGF contributes to the Xbra maintenance 

activity in the embryo and that interference with this function in the gastrula 

underlies at least some aspects of the dominant negative FGF receptor 

phenotype. The notion that eFGF is involved in maintaining Xbra expression 

during gastrula stages further supported by the demonstration that ectopic 

expression of Xbra results from injection of a plasmid which drives eFGF 

expression after the MBT (Isaacs et al., 1994). Data in this thesis show that eFGF 

is also coexpressed with Xbra in the notochord in the late gastrula and neurula 

stages, suggesting that eFGF may also be involved in the regulation of Xbra 

expression in the dorsal midline .

Brachyury mutants In other organisms

A number of naturally occurring mutations in the homologues of the Xbra gene 

have been identified in other organisms. The phenotypes of T mutant mice and 

no tail mutant zebrafish exhibit a deficiency in trunk and posterior structures 

(reviewed by Herrmann, 1995; Herrmann and Kispert, 1994). This has similarities 

to the phenotype of Xenopus embryos in which the activity of the FGFs has been 

inhibited. At present the extact role of Brachyury \n mesoderm formation is 

unclear. Certainly its function is not required for the formation of the mesoderm 

perse  because in mouse and zebrafish Brachyury mutants the development of 

anterior mesodermal structures, including anterior somites is relatively normal. 

Furthermore, Brachyury is not required for the initial specification of the notochord 

in zebrafish no tail mutants because the dorsal midline cells still retain the ability to
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induce floor plate in the overlying neural keel. However, no fa/7 function is 

required for the terminal differentiation of the notochord (reviewed Schulte-Merker, 

(1995)). It is likely that the absence of differentiated notochord in Xenopus 

embryos injected with the dominant negative FGF receptor is due to an 

interference with the regulation of Xbra function in the dorsal midline.

FGF, brachyury and cell movements

It has been suggested that in T mutant mice abnormal cell movements within the 

primitive streak lead to the characteristic posterior truncation (Beddington et al., 

1992). Gastrulation movements are also disturbed in Xenopus embryos injected 

dorsally with the dominant negative FGF receptor. Instead of involuting and 

extending along the anteroposterior axis, as in normal development, the dorsal 

mesoderm spreads laterally and ventrally around the open blastopore (Isaacs et 

al., 1994). Given the close link between FGF and Xbra activity and the intimate 

relationship between morphogenesis and patterning during gastrulation, it is 

tempting to suggest that the reduction of posterior structures in both Brachyury 

mutant organisms and FGF dominant negative receptor embryos results primarily 

from abnormal cell movements in the dorsal mesoderm. Certainly there is 

evidence from studies in the mouse which indicates that the extracellular matrix of 

Brachyury mutant derived cells is very much reduced in quantity from that of wild- 

type cells (Hashimoto et al., 1987). However, the coinjection of Xbra mRNA fails 

to rescue the open blastopore phenotype of XFD injected embryos suggesting 

that the aberrant cell movements caused by inhibition of FGF activity is not simply 

due to an interference with Xbra function.
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Clearly there are many other potential down stream targets of the FGF 

signal transduction pathway, such as matrix molecules and their receptors, that 

might be account for the aberrant cell movements seen in XFD injected embryos. 

However, it is possible that the alteration in cell movements seen in XFD injected 

embryos are due to a direct effect on cell behaviour that does not necessarily 

involve regulation of gene activity at the level of the nucleus. It has been 

demonstrated that signalling from polypeptide growth factors such as the FGFs 

can have profound effects on the organisation of the cytoskeleton and motility of 

cells acting through the ras related small GTPases rho and rac (Nobes and Hall, 

1995). Given the fact that ras has been shown to play a pivotal role in transducing 

the mesoderm inducing activity of the FGFs, it is conceivable that signal 

transduction through rho and rac is involved in regulating cell motility during 

gastrulation. Interestingly, targeted disruption of the FGF-R1 in mouse leads to 

abnormality of cell movement through the primitive streak without a concomitant 

reduction in the expression of Brachyury.

In the mammals FGFs have been shown to be capable of stimulating the 

migration of endothelial cells during angiogenesis (reviewed Basilico and 

Moscatelli, (1993)). FGF activity has also been shown to be important in 

controlling cell movement in Drosophila and C.elegans. In Drosophila a mutation 

in the breathless gene, which is an FGF receptor homologue, inhibits migration of 

tracheal cells and a population of cells in ovary (Murphy et al., 1995;

Reichmanfried etal., 1994 ; Reichmanfried and Shilo, 1995 ). In C.elegans the 

egl-15 gene also codes for an FGF receptor which is involved in directing 

migration of sex myoblasts during development (DeVore et al., 1994).
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The autoregulatory loop

The evidence for an autoregulatory loop involving eFGF and Xbra is quite strong. 

However, there are still many unanswered questions as to the nature of this loop 

and at what stage in development does the regulatory loop become important. 

Does the available data from Brachyury mutant organisms support the existence 

of such a loop? Examination of gene expression in mouse and zebrafish 

Brachyury mutants can help cast light on these matters.

In both mouse and zebrafish, Brachyury alleles have been identified which 

are transcribed but when translated are presumed to produce non-functional 

proteins. The examination of no tail and T mutants shows that the initial 

expression of Brachyury is present in the germ ring and primitive streak 

(Herrmann, 1991; SchulteMerker et al., 1994a); although in the zebrafish the germ 

ring expression is somewhat reduced. This is in contrast to the expression of 

Brachyury in XFD injected Xenopus embryos where Xbra expression is almost 

completely absent. However, in both zebrafish and mouse no expression of 

Brachyury is found in cells of the presumptive notochord.

Unfortunately we do not know the expression of eFGF homologues in 

Brachyury mutants. However, the data in Chapter 4 shows that at the start of 

gastrulation in XFD Xenopus embryos, even though Xbra expression is almost 

absent, there is very little effect on the initial expression of eFGF. But later in 

gastrulation the level of eFGF expression is reduced in XFD embryos suggesting 

that Xbra is required for the maintenance of some element of eFGF expression at 

this stage. The requirement for Xbra to maintain eFGF expression is never as 

complete as is the reverse case because eFGF expression is never totally lost
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from XFD embryos or in disaggregated cell culture where Xbra expression is 

absent.

Clearly this is still an incomplete data set but it is possible to draw some 

conclusions. The issue over the initial activation of zygotic Xbra and eFGF is 

somewhat contentious. As has been previously discussed, there is a 

considerable body of data indicating that there is a requirement for maternal FGF 

signalling to allow the activation of Xbra expression by the presumed activin-like 

vegetal inducer. However, it has been argued that the requirement for FGF 

signalling is purely zygotic and that even in the absence of a functional FGF signal 

transduction pathway activin can induce a transient ‘spike’ of Xbra expression 

which then in turn activates the zygotic expression of eFGF (Schulte-Merker and 

Smith, 1995).

If we just focus on the issue of maintenance, it is clear that within the 

nascent mesoderm of the embryo there is an absolute requirement for FGF 

function to maintain expression of Brachyury. It is only in later gastrula stages 

that Brachyury contnbuXes to the maintenance of eFGF expression and it is during 

these stages that that a positive feedback regulatory loop exists between eFGF 

and Brachyury. In the absence of functional Brachyury protein there is still 

persistent Brachyury rr\RNA expression in the germ ring of no tail mutants. 

However, this level of expression is lower than in wild-type embryos and argues 

that in this region of the embryo the feedback loop functions to maintain and 

possibly amplify the initial level of Brachyury expression activated by the maternal 

inducers. The complete absence of Brachyury expression in the notochord of T 

and no tail mutants argues that the terminal differentiation of and the normal

179



expression of Brachyury \NWh\r\ the notochord is completely dependent upon the 

feedback loop. The chordoneural hinge of the tailbud is related by lineage to the 

late dorsal lip so it seems likely that the expression of Brachyury in this region is 

also dependant upon the feedback loop.

This model allows a number of predictions to be made about gene 

expression in a hypothetical Xenopus mutant in which a non-functional Xbra 

protein is produced. At the start of gastrulation both eFGF and Xbra mRNA will be 

expressed in the circumblastoporal region although Xbra expression will be at a 

somewhat lower level than normal. During later gastrulation the levels of both 

eFGF and Xbra will persist but at reduced levels around the lateral and ventral 

aspects of the closing blastopore. Xbra and eFGF transcripts will be absent from 

presumptive notochord cells of the dorsal midline and chordoneural hinge of the 

developing tailbud.

FGF and the development of muscle lineages

Although the phenotype of embryos lacking a functional FGF signalling pathway is 

similar to Brachyury mutant embryos there are differences and these differences 

serve to highlight additional processes for which FGF function is required. Most 

notably a number of anterior somites are present in both mouse and zebrafish 

Brachyury mutants whereas there is a complete absence of somites in Xenopus 

embryos in which FGF function is inhibited. This indicates that the FGFs are 

required for the development of the somites and in particular the muscle lineages 

in Xenopus and that this function is independent of the FGF role in regulating 

Brachyury expression.
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It has previously been shown that cell-cell signalling is required for the 

expression of muscle cell specific gene expression (Gurdon, 1988; Gurdon et al.,

1992). Data in this chapter confirm this by showing that in disaggregated cell 

culture the expression of XmyoD is greatly reduced and muscle actin fails to be 

expressed. However, the inclusion of eFGF in the culture medium considerably 

rescues XmyoD expression and even allows the expression of some muscle actin. 

This work is still at an early stage so it is not yet possible to say if the inclusion of 

eFGF is sufficient to allow full muscle differentiation but it is at least suggestive 

that eFGF may contribute to the ‘community effect’ in muscle differentiation 

proposed by Gurdon and co-workers.

eFGF and Xbra are expressed in the same tissues during gastrula and 

neurula stages and therefore eFGF can be considered as an autocrine signal in 

regulating Xbra expression. During gastrulation, unlike eFGF, XmyoD expression 

is strongest in cells which have already involuted, and is excluded from the dorsal 

midline (Hopwood et ai., 1992). This suggests that eFGF provides a paracrine 

signal involved in muscle development, initially from an adjacent cell layer in the 

circumblastoporal region and possibly later from the notochord. This is in keeping 

with recent work in avians suggesting that signals from the dorsal midline are 

required for the stabilisation and maintenance of the myogenic lineages (Pownall 

et ai., 1996), given that eFGF is also expressed in the notochord it is possible that 

it may contribute to this midline signal.

Again there are suggestions from Drosophiia that the association of FGF 

with the development of muscle lineages is ancient. The expression of a second 

Drosophila FGF-receptor homologue (DFR2) is restricted to the mesoderm of the
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ventral furrow. The expression of DmyoD {nautilus) and muscle fibre formation is 

greatly reduced in embryos carrying a deletion which spans DFR2 (Shishido etal.,

1993).

In conclusion there is now good evidence to suggest that the FGFs play an 

important role in regulating mesodermal gene expression, both during the period 

of primary mesoderm induction in the blastula, and subsequently in gastrula and 

neurula stages of Xenopus laevis.
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Chapter 8

Overview: Perspectives on the role of the FGFs in early 

development.
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The objective of this chapter is to integrate the experimental evidence presented 

in this thesis with data that has not already been directly discussed. A model for 

the role of the fibroblast growth factor family in the early development of Xenopus 

is presented. This is discussed in the context of data obtained form mutational 

analysis of FGF signalling components in the mouse.

The FGFs and anteroposterior development

The inhibition of the FGF signal transduction pathway in vivo has provided much 

information concerning the role of these factors in early development. Another 

approach that has proved useful in the analysis of FGF function has been the 

overexpression of the FGF ligands in the embryo. Injection of synthetic mRNA 

coding for secreted FGFs, such as eFGF, into the zygote or early cleavage stage 

embryo demonstrates the potent mesoderm inducing activity of these factors 

(Isaacs et ai., 1994; Thompson and Slack, 1992). However, the formation of large 

quantities of ectopic mesoderm in the animal hemisphere of such embryos blocks 

normal gastrulation movements, making this an unsatisfactory approach for the 

analysis of FGF function during later development. These problems associated 

with mRNA injection can be overcome by the use of DNA constructs that drive 

expression after the MBT. Several studies show that large quantities of mRNA 

transcribed from injected DNA plasmids of this type do not accumulate until the 

late blastula or early gastrula stage, by which time the competence of the animal 

hemisphere to respond to mesoderm inducing factors is fading (Christian et ai., 

1992; Smith et ai., 1993). When such a construct, which drives eFGF expression 

under the control of a cytoskeletal actin promoter, is injected into the two cell
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embryo the majority of embryos gastrulate normally. During later development, 

however, these embryos exhibit reductions in the development of anterior 

structures and a gross enlargement of the posterior, particularly the proctodeum.

A similar phenotype has been reported when eFGF mRNA is injected into 

zebrafish embryos (Griffin et al., 1995).

The anterior reductions and over development of posterior structures 

caused by the late overexpression of eFGF is in many ways the converse of the 

dominant negative FGF receptor phenotype and suggests that the FGF system 

has an important role in establishing the anteroposterior (A-P) pattern of the 

embryo during gastrula and later stages. There is a body of embryological data 

that suggests that during A-P specification of the nervous system the default state 

is anterior and that the acquirement of posterior fate requires the action of a 

putative "posteriorising" influence (reviewed by Slack and Tannahill, 1992). The 

presence of FGFs in the posterior of the embryo and the posteriorised phenotype 

of embryos overexpressing eFGF make the FGFs good candidates for such a 

posteriorising agent.

There is now a considerable amount of data that support this view. Cox and 

Hemmati-Brivanlou, (1995) have recently showed that posterior axial tissue can 

induce the expression of midbrain and hindbrain markers in prospective forebrain 

tissue, confirming the idea of a dominant posteriorising influence. They further 

showed that this influence can be mimicked by bFGF. However, the non-secreted 

nature of bFGF and its rather widespread expression pattern during gastrula stage 

make it an unlikely candidate to fulfil this role. Clearly based upon expression 

data alone eFGF and FGF-3 are the best candidates amongst the known
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Xenopus FGFs to be involved in this process. Pownall et al., (submitted) have 

shown that eFGF supplied on heparin beads can activate the expression of a 

subset of posterior Hox genes, including HoxCG, in both the neuroectoderm and 

mesoderm during gastrula stages. Importantly HoxC6 is also down regulated in 

XFD injected embryos. Thus the loss of anterior structures in embryos caused by 

the overexpression of eFGF after the MBT probably results from ectopic activation 

of the Hox genes in anterior regions. It has also been reported that FGFs can act 

as direct inducers of posterior neural tissue in gastrula ectoderm following brief 

disaggregation (Kengaku and Okamoto, 1995) or culture in low Ca^^ and Mg^^ 

medium (Lamb and Harland, 1995). Interpretation of these studies showing direct 

neuralisation by FGF is however, complicated by the fact that it has been shown 

that disaggregation of Xenopus ectoderm can directly lead to neural 

differentiation (Godsave and Slack, 1989; Grunz and Tacke, 1989). It is therefore 

possible that in these studies that there is some sub-threshold neuralisation 

caused by the culture conditions and that the basic phenomenon is still a 

posteriorisation of anterior neural tissue.

Interestingly the neural tissue induced by the noggin and follistatin proteins 

is of an anterior character (Lamb et al., 1993; Hemmati-Brivanlou et al., 1994). 

However, noggin-type neural inductions can be made more posterior in character 

by treatment with FGF during gastrula stages (Cox and Hemmati-Brivanlou, 1995; 

Lamb and Harland, 1995). Thus noggin may be likened to the activating principle 

and FGF to the transforming principle in Nieuwkoop's "activation-transformation" 

model of neural development (Nieuwkoop et al., 1985). In recent years that has 

been much discussion as to the relative importance of "planar" versus
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"appositional" signals involved in the induction and patterning of the nervous 

system. Further work will required to determine if the posteriorising influence of 

the FGFs in vivo is transmitted through the plane of the neural plate or through 

vertical signals from the underlying axial mesoderm. The expression pattern of 

eFGF is consistent with both possibilities.

The close relationship between the FGFs and Brachyury iuncWon raises the 

issue of what is the role of Brachyury in anteroposterior development? In the 

vertebrates Brachyury \s expressed in 2 different domains in the posterior of the 

embryo and in the notochord. It has been suggested that the notochord domain 

corresponds to the Brac/iyury expression found in the common ancestor of the 

chordates (Reuter, 1995; Yasuo et al., 1995). If so the expression of Brachyury \n 

the posterior of vertebrate embryo would represent a novel domain. Analysis of 

the no tail mutant shows that trunk development is rather normal apart from the 

failure of the notochord to differentiate. However, there is a complete absence of 

tail development in no fa/7 mutants. Therefore in terms of anteroposterior 

specification Brachyury is not required for the development of the trunk and head 

but is required for the development of the tail. On the other hand, FGF function is 

required for the development of the whole of the trunk and tail but not the head 

anterior of the midbrain. This strongly suggests that the requirement for FGF in 

formation of trunk somites and nervous system is independent of Brachyury. 

However, it seems likely that both FGF and Brachyury are required for the 

differentiation of the notochord. FGF is required for the formation of somites, 

nervous system and notochord during tail extension. However, in the tail this also 

requires the function of Brachyury. Data support the view that an important
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function of Brachyury in the vertebrate tailbud is to maintain FGF expression and 

thus allow the production of the additional somites, notochord and posterior 

nervous system, which characterise the vertebrate tail. The existence of a 

positive feedback loop involving Brachyury and FGF complicates interpretation of 

the available data. Clearly both are required for normal tail development but is the 

only function of Brachyury to activate and maintain eFGF expression, probably by 

direct interaction with the eFGF promoter? It seems unlikely that eFGF is the only 

target of Xbra, however at present, there is no data showing that Brachyury can 

induce mesoderm or activate gene expression in the absence of a functional and 

perhaps downstream FGF signal transduction pathway. However, there is 

evidence that some of the changes in morphogenesis seen in zebrafish embryos 

that have been injected with eFGF mRNA take place in both wild-type and no tail 

embryos and are therefore independent of 8rac/7yury function (Griffin et al., 1995).

The FGFs and midllne signalling

The presence of eFGF within the notochord also has implications for the signalling 

pathways involved in the development of other dorsal midline structures. Of 

particular interest is the fact that the signalling molecule sonic hedgehog (s /7 /7 )  has 

also been shown to be expressed in the notochord of Xenopus. Shh homologues 

have been identified in a number of vertebrate species and it has been implicated 

in several patterning processes in early development including the formation of 

feather buds, patterning of the limb and the induction of the floor plate and motor 

neurons in the ventral neural tube (Nohno et al., 1995; reviewed by Pownall, 1994; 

Smith, 1994).
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There is a considerable body of evidence which suggest that during limb 

development the activity of members of the FGF family in the apical ectodermal 

ridge (AER) is required to maintain the expression of Shh in the posterior 

mesenchyme of the limb bud. The candidate FGFs for this activity include FGF-4 

and FGF-8 both of which are expressed in the AER and are able to maintain shh 

expression in the absence of the AER (Mahmood et al., 1995a; Niswander et al.,

1994; Vogel et al., 1995). Given the fact that eFGF is closely related to FGF-4 it 

is interesting to speculate that eFGF and shh may interact in a similar way during 

the induction of dorsal midline structures. The two situations are not directly 

comparable because in the dorsal mid line, unlike the limb, eFGF and shh are 

initially expressed in the same tissue. Although FGF-3 is not expressed in the 

notochord, it is expressed at low levels in the dorsal midline of the neural plate in 

cells which will contribute to the floor plate. It is therefore possible that FGF-3 is 

also involved in the induction and patterning of dorsal midline structures.

A model for the role of the FGFs in amphibian development

It is now possible to outline a model for the role of FGFs during amphibian 

development. Much of the discussion in this thesis has concerned the activities of 

eFGF in development but it is quite likely that in vivo more than one FGF 

contributes to the processes described below. However, eFGF does provide a 

useful paradigm for secreted FGFs (such as FGF-3), which are expressed in 

overlapping domains of expression during early development. The scheme below 

relies heavily on data that highlight those processes in the embryo for which the 

activity of the FGF signalling pathway is necessary; clearly the involvement of
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other factors in these processes cannot be excluded and indeed is to be 

expected. In particular, it has recently been shown that two novel ligands, 

unrelated to other members of the FGF family, can activate signal transduction by 

FGF-R1 and are expressed during early Xenopus development (Kinoshita et al., 

1996). Furthermore, demonstration that cell adhesion molecules can specifically 

interact with FGF receptors suggests that direct cell-cell contacts are likely to be 

important in regulating the activity of the FGF pathway (Williams et al., 1994). The 

activities of the FGFs can also be modified by other growth factor-like molecules, 

which are known to be present in the developing embryo. So it is to be expected 

that the FGF signal transduction pathway interacts in a complex fashion with that 

of members of the TGFB, Wnt, chordin and noggin families of secreted factors 

(reviewed by Kimelman et al., 1992; Slack, 1994; Holley et al., 1995).

Early models of FGF function during development suggested that they may 

act as vegetally localised mesoderm inducing molecules. This now seems 

unlikely because the known FGFs in Xenopus are more abundant in the animal 

hemisphere. However, experiments with the dominant negative FGF receptor 

indicate that FGF activity is required during blastula stages for certain aspects of 

mesoderm formation. Current data support the notion that the maternal pool of 

FGFs is required to provide sub-threshold stimulation of the tyrosine kinase signal 

transduction pathway in the animal hemisphere. The maternal FGFs may be 

viewed as competence factors which need to be present for the full range of 

responses to the vegetally localised inducing molecules. It is likely that a major 

component of the vegetal signal is an activin-like molecule such as vg l (Dale et 

al., 1993; Thomsen and Melton, 1993), perhaps acting in combination with a
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member of the Wnt family (Heasman et al., 1994; He et al., 1995). Cornell and 

Kimelman have proposed that the mesoderm forms in the marginal zone because 

it is only here that cells are exposed to both an FGF and an activin-like signal 

(Cornell et al., 1995). Absence of FGF “competence” activity from the vegetal 

hemisphere explains why the whole of the vegetal hemisphere does not 

mesodermalise in response to the endogenous inducing signals and at the same 

time explains why inhibition of the activin signalling pathway blocks the formation 

of all mesoderm.

Of particular importance is that a low level of maternal FGF activity is 

required for the transcription of Xbra in the marginal zone of the late blastula. The 

zygotic expression of eFGF is also activated in the marginal zone. At present it is 

not known if the expression of eFGF is an immediate early response to the 

vegetal inducer, as is the case for Xbra, or whether the zygotic expression is only 

activated by Xbra. During this phase eFGF may function as a secondary 

mesoderm inducing factor which amplifies and spreads the effect of the primary 

vegetal inducers, resulting in activation and maintenance of gene expression, 

including Xbra, within the marginal zone, and in this way contributing to the 

stability of the mesoderm. In the gastrula a positive feedback loop operates 

between eFGF and Xbra, which helps maintain their normal levels of expression. 

The expression of both of these genes is activated in response to activin and the 

proposed positive feedback loop would provide one mechanism for the generation 

of the sharp thresholds of Xbra activation seen in animal cap cells treated with 

activin (Green et al., 1992). In gastrula and neurula stages the feedback loop 

continues to regulate the expression of Xbra and eFGF in the blastopore region
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and possibly also in the notochord. A summary of the proposed model for the role 

of the FGFs in regulating the expression of Xbra is shown in Fig. 1.

Fig. 1 FGFs and the regulation of Xbra expression during early Xenopus development

Blastula Early gastrula Gastrula/neurula
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The activity of the FGFs is also required for the correct regulation of other 

genes expressed in the mesoderm, most likely on parallel pathways to that of 

Xbra. FGF function is necessary for the correct development of XmyoD 

expression, which indicates a role in the development of the myogenic lineages.

In addition to activities within the early mesoderm there is evidence that the FGFs 

have a number of activities in the ectoderm. Xsna expression in the gastrula 

ectoderm is an early marker of neural crest. In XFD injected embryos the 

ectodermal expression of Xsna is absent indicating that FGF activity is required for 

crest formation.

Furthermore there is now good evidence that the FGFs function as 

posteriorising agents involved in the anteroposterior specification of the 

neuroectoderm acting through the activation of a subset of posterior Hox genes.
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During tailbud extension FGF activity continues to be required for the formation of 

the posterior nervous system, notochord and somites.

Origins of the dominant negative phenotype

In embryos injected with the dominant negative FGF receptor there are 

characteristic effects on tissue specification, gene expression and cell 

movements. Can the phenotype of XFD injected Xenopus embryos be accounted 

for solely by an interference with the gene regulatory pathways outlined above?

Or does the loss of trunk and tail structures mainly result from aberrant dorsal cell 

movements? At present this is a very hard question to answer given the intimate 

link between specification, patterning and morphogenesis in vertebrate 

development. However, the involvement of the FGFs in the gene regulatory 

pathways described above is well supported both by examination of gene 

expression in embryos lacking a functional FGF signal transduction pathway and 

biochemical data from a number of in vitro assays. It is likely that an interference 

with these pathways can to a large extent account for the alteration in tissue 

specification and phenotype seen in XFD injected embryos.

Lessons from the mouse knockouts

Close homologues of the molecules discussed in this account are present in other 

organisms and, given the high conservation of developmental mechanisms 

between vertebrate species, it is likely that much of what has been learnt 

concerning the targets and regulation of FGF activity in Xenopus will be generally 

applicable. In mouse targeted gene disruption has been carried out for KGF
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(FGF-7), FGF-3 (int-2), FGF-4 and FGF-5. The latter 3 ligands are expressed in 

the primitive streak and therefore likely to be involved in the processes outlined for 

the FGFs in Xenopus .

FGF-5 knockout mice are viable have abnormally long coat hair and it is 

believed that the mouse mutant angora results from a naturally occurring mutation 

in the FGF-5 gene (Hebert et al., 1994). FGF-7 {KGF) null mutant mice are also 

viable and also show abnormalities in hair growth. Over time their coats become 

very matted and are similar in appearance to the rough mutant mouse. Perhaps 

unexpectantly given the potent activity of KGF as a mitogen for kératinocytes 

these mice show no abnormalities in epidermal growth or wound healing (Guo et 

a!., 1996). Mice embryos homozygous for a null mutation in the FGF-3 gene are 

viable but do not survive until adulthood. Interestingly in context of the likely role 

of FGF in posterior development homozygous FGF-3 null mice have abnormally 

short and curved tails. FGF-4 is the murine FGF most closely related to eFGF. 

However, homozygous FGF-4 null mutant mice are early embryonic lethals and do 

not even reach primitive streak formation. It is therefore not possible to tell if FGF- 

4 has similar function to that proposed for eFGF during amphibian gastrulation. 

Lethality appears to be due to a reduction in cell proliferation in the cells of the 

inner cell mass (IGM). This emphasises an important difference between the early 

development of the amphibia and the amniotes. During the early development of 

the amphibia there is no growth in size but early tissue specification and 

patterning in the higher vertebrates is accompanied by substantial growth. The 

data from the FGF-4 knockout strongly suggest that there is a requirement for 

FGF activity to stimulate growth of the inner cell mass before the onset of
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gastrulation and the homologous patterning events described in this thesis 

(Feldman et al., 1995). Such early growth requirements will necessarily 

complicate the analysis of FGF function in the amniotes and makes it likely that 

the amphibian model will continue to provide useful insights into the role of the 

FGFs in vertebrate development.

The phenotype of FGF-R1 null mutants is somewhat different to that seen 

with the XFD injections in Xenopus, because, in addition to frequent posterior 

truncations, development of the head structures is also often reduced. Again the 

interpretation of the phenotype is complicated by the requirement for FGFs in cell 

proliferation during mouse embryogenesis. However, significantly, the expression 

of Brachyury \s not reduced in FGF-R1 null mutants and if anything there is an 

expansion of the 8rac/?yury notochord domain of expression. Clearly the potential 

for redundancy of gene function in the multigene FGF ligand and receptor families 

complicates matters greatly. Thus it is likely that FGF-R2, which is also expressed 

during gastrulation, is able to mediate FGF regulation of Brachyury \n FGF-R1 null 

mutants. The effects produced by the overexpression of the dominant negative 

FGF receptor in Xenopus are very dramatic because it is likely that this approach 

inhibits the function of many if not all members of the FGF family.

The phenotype of mice homozygous for a null mutation in the FGF-R3 has 

also been recently reported (Deng et a!., 1996). FGF-R3 is expressed at high 

levels in the cartilage during the development of a wide range of bones in the 

mouse (Peters et a i, 1993). FGF-R3 mutants are viable but consistent with this 

expression pattern null mutants show a overgrowth of skeletal structures, 

including the vertebrae and the long bones. This apparently arises from an over
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proliferation of chondrocytes suggesting that signalling from FGF-R3 acts as a 

negative regulator of bone growth. Interestingly a number of mutations have been 

identified in the human FGF-R3 gene which are associated with dominantly acting 

skeletal dysplasias in humans, achondroplasia and hypochondroplasias (reviewed 

by Muenke and Scell, 1995). The dwarf phenotype of patients carrying these 

mutations, which can be in several different regions of the receptor, including the 

extracellular domain and kinase domains, is the opposite of bone overgrowth seen 

in the FGF-R3 null mice. This suggests that these mutations are probably gain of 

function and involve some form of ligand independent activation of FGF-R3. 

Mutations in FGF-R1 and FGF-R2 have also been shown to be associated with 

other human dominant skeletal dysplasias, including Pfeiffer, Crouzon and Apert's 

syndromes (Muenke etal., 1994; Reardon et al., 1994; Wilkie et al., 1995). These 

clearly indicate a role for the FGF family in skeletal development but give no 

indication of the role of FGF signalling during early development.

The knockout of the FGF-4 gene is an early embryonic lethal and this 

suggests that generalised transgenic overexpression of a dominant negative FGF 

receptor during early mouse development is also likely to be an early embryonic 

lethal. In order to overcome this problem a number of transgenic studies have 

been carried out using a dominant negative receptor driven off a strong region 

specific promoter. Using this approach it has been shown that FGF function is 

required for branching morphogenesis in the developing lung (Peters et al., 1994) 

and for the normal pattern of keratinocyte differentiation in the skin (Werner et a!., 

1993).
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At present the results obtained from single gene knockouts have not been 

particularly illuminating as to the conservation of the roles of the FGFs between 

Xenopus and the higher vertebrates, during the very early patterning processes of 

development. It is to be hoped that this situation will improve with the generation 

of multiple ligand and receptor null mutants and conditional knockouts, which will 

allow improved temporal and regional control over the disruption of gene function 

during development.

However, despite the insights that will be gained from the study of 

transgenic mice, the many of advantages of the amphibian embryo, for the study 

of early events in regional specification, will guarantee that work in Xenopus will 

continue to contribute to our understanding of the requirement for FGF signalling 

during development.
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