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Abstract

The time course of release of amino add transmitters was examined 

in slices of IMHV and LPO from day-old chicks that had completed a one-trial 

passive avoidance learning task. Amino adds released into an incubation 

medium were measured using FITC-derivatisation followed by . an adaptation 

of a published method for HPLC analysis. One hour after training chicks to 

avoid a bead covered with the a versant methylanthranilate (MeA), there was 

an increase in the Ca2+-dependent release of glutamate, aspartate and GABA 

from slices of left IMHV compared to chicks trained to peck a similar bead 

covered in water. Thirty minutes after training glutamate only was increased 

in MeA-chicks, but from both IMHVs. Glutamate was also increased at 3 and 

6.5 hours in the right IMHV as was GABA (6.5 hours) and aspartate (3 hours). 

Both left and right LPOs of MeA-trained chicks showed increased GABA and 

glutamate release ac 3, 6.5 and 24 hours. The left only showed enhanced 

release of both at 30 minutes. The release of the neuromodulator adenosine 

was found to be increased in the IMHV of MeA-trained chicks simultaneous 

to the increases in glutamate. The adenosine agonist CHA inhibited 

glutamate release: its actions blocked by the antagonist CPT. An agonist for the 

excitatory adenosine receptor increased glutamate, but decreased GABA, 

release according to concentration applied. Pre-training injections of 

adenosine agonists produced amnesia 30 minutes after training: these effects 

were lateralised such that injections into the left hemisphere only produced 

amnesia, those into the right did not. These results demonstrate for the first 

time increases in amino acid transmitters associated with passive avoidance 

training, and suggest a role for adenosine modulation of these transmitters.
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Chapter 1: A m ino A cids as
Neurotransmitters

Amino acid neuiotransmitters

Amino adds account for the majority of fast synaptic transmission in 

the vertebrate CNS. On the basis of neurophysiological studies, amino adds 

have been separated into two general classes: excitatory amino adds, inducting 

glutamate and perhaps aspartate and the sulphur containing amino adds, 

which depolarise neurons; and inhibitory amino adds (y-aminobutyric acid 

[GABA], glydne) which act to hyperpolarise mammalian neurons.

Glutamate is the major excitatory neurotransmitter in the 

mammalian CNS, with estimates of over 50% of all CNS synapses using 

glutamate as a transmitter i.e. they are glutamatergic (Nicholls, 1994). A 

variety of well-defined pathways in the mammalian brain have been 

identiHed as using glutamate as a neurotransmitter: the lateral olfactory tract 

(Yamamoto and Maisui, 1976), the parallel fibres of the cerebellum (Sandoval 

and Cotman, 1978), the perforant path, the mossy and commisural fibres as 

well as the CA3 pyramidal cell axons m  the hippocampus (e.g. Nadler et al., 

1976), some corticostriatal fibres (Reùbi and Cuenod, 1979) and the cochlear 

nerve (Canzek and Reubi, 1980).

GABA is the main inhibitory transmitter in the higher brain areas, 

being present primarily in intemeurons. It is thought that 25-45% of all nerve 

terminals are GABAergic judged by the occurrence of a spedfic re-uptake
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pathway (Nicholls, 1994). Interneuronal locations for GABA have been 

described in the visual cortex (Ribak, 1978), in the basket cells lying close to the 

pyramidal and granule cell bodies and other intemeurons in the hippocampus 

(Storm-Mathiesen, 1977), and in both the hypothalamus and olfactory bulb 

(Fagg and Foster, 1983). In addition, GABAergic pathways are found in the 

basal ganglia and cerebellum (Fagg and Foster, 1983).

Glycine is the main inhibitory transmitter in the brain stem and 

spinal cord of mammals, where it is released by segmental intemeurons 

(including the Renshaw cell-motor neuron synapse) and propriospinal fibres 

(Fagg and Foster, 1983). Glycinergic transmission is important for the control 

of most motor and sensory functions^ In addition, it was suggested that 

glycine may also mediate transmission in the cortex, cerebellum, striatum and 

in the hypothalamus (Fagg and Foster, 1983), but these data should be treated 

with caution due to the glycine modulatory site on the NMDA receptor (see 

later).

Another potential excitatory amino acid is aspartate, although its 

physiological role in the intact nervous system is in doubt. Evidence for a 

transmitter role for aspartate includes that it is a potent agonist at NMDA 

receptors (though not at non-NMDA receptors) (Verdoorn and Dingeldine, 

1988). In a study by Dickie et al. (1992) NMDA-induced aspartate release was 

found to be tetrodotoxin-sensitive, suggesting a neuronal site of release from 

cerebellar slices. Endogenous and labelled aspartate has been found to be 

released following electrical stimulation (e.g. Corradetti et al., 1983), with this 

release being reduced when Ca2+ is at low levels. Also, aspartate has been 

demonstrated as being present in synaptic vesicles (Villanueva et al., 1990). 

However, the presence of aspartate was postulated to be due to contamination 

due to a lack of both an ATP-dependent uptake and of a temperature sensitive 

efflux (Villanueva et al., 1990), Interpretation of the release studies also suffer 

from the fact that release is induced by pre-synaptic release of an endogenous



excitatory neurotransmitter, which will increase post-synaptic Na+ and will 

therefore increase the efflux of post-synaptic cytoplasmic aspartate (Orrego and 

Villanueva, 1993). In addition, other data suggest that aspartate is not released 

from synaptosomes and that there is no evidence for vesicular uptake 

(Klancnik et al., 1992).

All the studies suggest, that at best, the role of aspartate as a 

neurotransmitter in the brain is uncertain.- Perhaps, as has been suggested by 

Klancnik et al. (1992), non-vesicular release of aspartate may occur as part of an 

exchange process when glutamate is taken up, which may account for the 

stimulation-induced increase in the levels of aspartate, but not of glutamate.

A number of sulphur-containing amino acids have also been 

suggested as potential neurotransmitters. Homocysteate (HCA) has been 

localised in the glia of the cerebellar cortex of rats (Grandes et al., 1991), 

perhaps suggesting a non-neurotransmitter role for the substance, whilst the 

biosynthetic and metabolic enzymes for cysteine sulphinic acid (CSA) have 

been identified in nerve endings (Klancnik et al., 1992). The different patterns 

of release found in that study (Klancnik, et al., 1992), CSA levels being 

increased during electrical stimulation and the levels of HCA increased post 

stimulation, also suggest a differential distribution of the two amino adds. 

The release of HCA may be mediated by a glial receptor or, as discussed in the 

case of aspartate, by an exchange mechanism. The uptake of HCA and other 

sulphur-containing amino acids (SAAs) is thought to share the plasma 

membrane transport system with L-glutamate and L-aspartate (Grieve et al., 

1992). Also, SAAs are active at metabotropic glutamate receptors where they 

are more potent than L-glutamate (Porter, and Roberts, 1993).



Pathways of amino acid synthesis and degradation

Aspartate and glutamate are synthesised from glucose and other 

precursors in the Krebs cycle. This cycle takes place in mitochondria where the 

appropriate enzymes are present. Transaminase action on oxaloacetate or a- 

ketoglutarate produces glutamate and aspartate respectively. In addition, 

glutamate may be synthesised by reduction of 2-oxoglutarate by glutamate 

dehydrogenase and deamination of glutamine by glutaminase (Nicholls, 1994). 

Glutamine is synthesised by glutamine synthetase from glutamate. This 

would allow a recycling of released glutamate following uptake into either the 

glia or presynaptic nerve terminals.

GABA is formed by the a-decarboxylation of glutamate as catalysed by 

glutamate decarboxylase (GAD). The cofactor for this reaction is confined to 

the terminal cytoplasm, which accounts for the high concentrations of GABA 

in these terminals as opposed to the dendrites and cell bodies (Nicholls, 1994). 

GABA is degraded by GABA-a-oxoglutarate transaminase (GABA-T), which 

yields succinic semialdehyde (which is returned to the Krebs cycle as succinic 

add via oxidation by succinate semialdehyde dehydrogenase) and glutamate. 

GABA-T is contained in the mitochondria of all neuronal regions, but appears 

to be concentrated in the terminals of GABAergic neurons and glia and 

dendrites of neurons that are in the vicinity of GABA synapses (Roberts and 

Sherman, 1993). GABA-T and GAD are equi-active (in that both possess the 

same percentage of maximal potential activity) at pH 7.5. Addification of the 

intracellular space produces an increase in GAD activity and thus an increase 

in the amount of GABA, whilst alkalinisation increases GABA-T activity and 

a decrease in GABA available for release (Roberts and Sherman, 1993). Indeed, 

the increased release of GABA that was found during inhibition of GABA-T 

activity indicates that the coupling between uptake and GABA-T, not uptake



alone, is important for removing extrasynaptic GABA (Bakkelund et al., 1993). 

Glycine synthesis requires no specialised metabolic pathways, and is 

synthesised from serine.

Amino Add Release

'^Regulated exocytosis is the process whereby vesicles fuse with the 

plasma membrane, following depolarisation of the neuron and a subsequent 

influx of calcium tlirough voltage sensitive calcium channels, and release 

their contents into the synaptic cleft." (Nicholls, 1994). Two types of synaptic 

signalling can be separated: point-to-point and rapid (m illiseconds) 

transmission of chemicals that are ionotropic (their activity involves the 

gating of an ion channel); and longer term, tonic release of the transmitter 

over a period of seconds to minutes which tends to have a metabotropic action 

involving second messenger systems (Sihra and Nicholls, 1993).

Synaptic vesicles

Amino acids such as GABA and glutamate are stored in small 

e lec tro n -lu c id  syn ap tic  v e s ic le s  (SSVs), as d eterm in ed  by  

immunocytochemistry (Ottersen, 1989), and have been shown to be 

transported into these SSVs in vitro (Fykse and Fonnum, 1988). The release of 

transmitters via SSVs takes place exclusively at the active zone, a specialised 

area of the presynaptic membrane which is in precise register with the 

receptor-enriched area of the postsynaptic membrane. Distinct pools of SSVs 

are involved in transmitter release (Pieribone et al., 1995). A proximal pool, 

without the protein synapsin, appears to be docked to the cytoplasmic side of 

the active zone, whilst a distal pool, containing the important neuronal 

protein synapsin, appears to be a reserve pool.

Calcium and transmitter release

Exocytosis of SSVs is dependent upon the Ca^+ influx resulting from



the depolarisation of the neuron. Ultrastructural evidence from freeze- 

fracture studies indicates that Ca^+ channels are clustered at the active zones 

(Robitaille et al., 1990). It has been calculated that the sub-synaptic Ca^+ 

concentrations achieved on initial channel activation may be as high as 

lOOpM (Smith and Augustine, 1988). This high concentration in the vicinity 

of the calcium channel means that the affinity of the release may be low with 

respect to Ca^+. This would be appropriate for a phasic release event, since 

following activation and release, the Ca2 + channel will close, and owing to the 

low  affinity binding, the Ca^+ will rapidly dissociate from the site ensuring 

rapid termination of release and also a rapid mechanism to reset itself for the 

next action potential (Nicholls, 1994).

Ca^+ channels may be categorised into several types: the N-type (high 

threshold, rapidly inactivating, co-conotoxin sensitive); L-type (high threshold, 

inactivating, dihydropyridine (DHP) sensitive); T-type (low threshold, rapidly 

inactivating); and P-type (high threshold, inactivating, funnel web spider toxin 

sensitive) (Sihra and Nichols, 1993). Ca^+ influx into brain synaptosomes is 

biphasic with a transient, fast component and a slow, sustained component 

(Sihra and Nichols, 1993). The latter, non-inactivating phase of CaZ+ entry is 

the mechanism by which amino acids such as GABA and glutamate are 

released (Verhage et al., 1991). Indeed, a non-inactivating Ca2+-channel is 

thought to be responsible for glutamate release from mossy fibre terminals 

(Nicholls, 1993). The channels responsible for the slow component have not 

been found to be DHP- or co-conotoxin-sensitive and therefore appear to be 

neither N  or L-type channels, and it is not a T-channel as it requires 

depolarisation to beyond -30mV for activation; although it may be that there is 

a subtype of L-type channel which binds DHP without a complete block of the 

Ca2+ channel (Sihra and Nichols, 1993)., A fourth channel, the P-channel, has 

been described that is inhibited by Aga-Gl, a toxin that inhibits the sustained 

phase of KCl-evoked Ca entry and totally blocks the evoked release of 

glutamate (Pocock and Nicholls, 1992).



The in vitro preparation

Brain slices

It is pertinent, at this point, to appreciate the limitations of 

neurochemical preparations, such as the brain slices used in the work 

presented in this thesis, for monitoring amino acid release. If a direct 

postsynaptic response is not measured electrophysiologically, it is not possible 

to determine the release from a single terminal in response to an action 

potential. Instead, the preparation must be depolarised by one of the methods 

discussed below and the total release detected over a time interval. As the 

depolarisation is generally prolonged, compared to normal physiological 

processes, there may be a depletion in avælable transmitter to be released, and 

a requirement for replenishment from a reserve pool of vesicles. This would 

produce a biphasic release of the transmitter that must be distinguished from 

that due to inactivation of presynaptic Ca^+-channels.

Brain slices have been widely used to study the biochemistry of the 

CNS. Incubated slices have been shown to retain many vital functions: they 

respond to electrical stimulation and to chemical stimulation (Jones & 

Mcllwain, 1971); they respire at a high rate for several hours even in grossly 

non-physiological media and at low temperatures (Orrego, 1979). They have 

adequate levels of ATP for amino acid transport and maintain their high 

potassium and low sodium ion concentrations (Orrego, 1979). Important 

advantages of brain slices over in vivo methods of studying CNS are the 

absence of a blood-brain barrier, the lack of extracerebral metabolism and the 

fine control of the extracellular environment. The latter is particularly 

pertinent in the present study, allowing the possibility of uncovering the form 

of transmitter release, e.g. calcium dependency etc.



Three methods of ionic depolarisation are recognised. These are KCl 

elevation, Na+-channel activation and K+-channel inhibition.

Depolarisation by elevated KCl

KCl depolarises the plasma membrane by "clamping" the potassium- 

equilibrium potential to a depolarised level, and decreasing the potassium  

concentration gradient which causes a rapid influx of calcium, producing a 

rapid, transient rise in internal calcium that correlates with the release of 

different transmitters (Adam-Vizi, 1992). The method does have some severe 

limitations however. It has been shown that a high [K+] can also cause the 

release of glial amino acids and the release of inulin and sucrose from brain 

slices (Orrego, 1979). Also, as KCl produces just a single depolarisation it will 

allow transient channels to fire only once before inactivating, even though 

the membrane remains depolarised.  ̂ It is therefore difficult to observe 

processes which rely upon the modulation of such channels, since their effect 

on the clamped membrane will not be apparent.

4-Amino pyridine

The aminopyridines induce transmitter release by what is termed 

chemical potentiation. Freeze-fracture studies on frog motor neurons showed 

an increase in the number of exocytotic sites on the presynaptic membrane at 

the moment of impulse-evoked transmitter releases as a consequence of 4- 

aminopyridine (4-AP) treatment (Heuser et al., 1979). It is thought that 4-AP
•  ■ I  I i.

works by lengthening the action potential by blocking potassium channels 
(Nicholls, 1994). It is possible to induce the firing of spontaneous repetitive 

action potentials by inhibiting the potassium A-channel (the "fast" potassium 

channel). This channel normally operates to stabilise the plasma membrane 

potential by opening rapidly following subthreshold depolarisations and by 

increasing the duration of the after hyperpolarisation(AHP). 4-AP inhibits 

this channel so that the membrane is destabilised, and the terminals fire
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spontaneous, tetrodotoxin-sensitive action potentials (indicating repetitive 

firing of sodium channels). In comp^isph to an elevated potassium level, 4- 

aminopyridine may expose the membrane to conditions more closely  

mimicking repetitive stimulation in vivo:

a. Repetitive activation of transient calcium channels seems to occur;

b. The time course of membrane potential changes is more physiological;

c. The brief depolarising spikes avoid the calcium-independent efflux of 

cytoplasmic amino acid pools as seen during potassium or veratridine 

depolarisation.

Veratridine

Veratridine depolarises membranes that possess voltage-sensitive 

sodium channels (therefore not glial cells). This is probably via the inhibition 

of the inactivation mechanism of these channels, thus allowing a large 

amount of sodium *o enter the axon down its concentration gradient, either 

spontaneously or fo llow ing stim ulation (Adam -Vizi, 1992). This 

depolarisation in turn leads to the opening of voltage-sensitive calcium  

channels and, therefore, to calcium influx. Together there is an enhanced 

release of transmitters, due to the elevated intracellular calcium, and also of 

soluble substances that are actively transported by concentration of sodium. 

The types of release may be distinguished according to their calcium  

dependency. However this agent has the disadvantage of promoting a 

massive release of cytoplasmic amino acids by reversal of the sodium-coupled 

plasma membrane carrier (Nicholls, 1989).
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Amino acid release from tissue

With the previous sections in mind, it has been found that 

endogenous amino acids have been recorded as being released in a caldum- 

dependent manner from brain slice and synaptosomal preparations by several 

different depolarising methods including electrical-field stimulation, high 

potassium concentration and veratridine (Fagg & Foster, 1983). Examples of 

amino add synaptic release after spedfic stimulation of nerve pathways have 

also been carried out in vitro. Exogenously added D-aspartate or L-glutamate 

is released after stimulation of the Schaffer collaterals and of the commisural 

pathway (Skrede and Malthe-Sorensson, 1981), in hippocampal slice 

preparations, or from the lateral septum in slice preparations (Fagg and Foster, 

1983). Endogenous aspartate and glutamate are also released by stimulation of 

the lateral olfactory tract, both directly and by the activation of pyramidal cells 

in the olfactory cortical slice (Fagg & Foster, 1983).

Despite the evidence described above demonstrating the release of 

amino adds from CNS preparations, there is still a lack of consensus as to 

whether they are released exocytotically or directly from the cytoplasm, or 

whether by both mechanisms.

Calcium-dependent release of amino acids

The release of amino acids by KCi . depolarisation is biphasic (Nicholls, 

1994). Detection by fluorometric assay has shown that there is a release 

component of glutamate that is complete within 2-5 seconds from the initial 

stimulation, of approximately 20% of total release (Nicholls et al., 1987). After 

this, prolonged depolarisation results in continued Ca^+-dependent release of 

glutamate until no more can be evoked after 3-5 minutes. In addition it has 

been shown that Ca^+ entry is also biphasic, although it has been noted that, as 

it is the slow, non-inactivating component of Ca2 + entry that is linked to 

glutamate release, the biphasic entry of Ga2 + does not explain the kinetics of
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the release (Nicholls, 1994). From this, it is suggested that the biphasic effect 

may be related to the dual localisation of synaptic vesicles, those that are 

proximal to the presynaptic membrane and those that are distal (Pieribone et 

al., 1995). In most preparations there appears to be a time, 3 to 5 minutes, after 

which there is little or no release (Nicholls, 1989). This time point may well 

represent the time at which the recycling of synaptic vesicles, known to lag 

behind the exocytotic release of the vesicle package, is such that there is a 

depletion of total vesicle number (R y^  and Smith, 1995). The concentration 

of the elevated KCl has a profound effect on the release of amino adds with a 

steep increase found from lOmM K+ to a plateau at 30mM K+ (Verhage et al., 

1989).

Whether the release of amino acids is vesicular or from a cytoplasmic 

pool can be determined by showing that the pool which is released in a Ca^+- 

dependent manner originates from a noncytoplasmic compartment and is 

released without equilibrating with the cytoplasm. The exchange of labelled 

amino add into the vesicle is slower than across the plasma membrane, 

therefore, if the Ca^+ dependent release is of low specific-activity amino add, 

then it can be assumed that exocytotic vesicular release is the mechanism. 

Sihra and Nicholls (1987) exposed synaptosomes to labelled GABA and evoked 

release with KCl. The released GABA had a lower level of label as compared 

to the cytoplasm, thus the data was consistent with the hypothesis that the 

Ca2+-dependent release was from the cytoplasmic compartment of the 

synaptosome. The Ca^+-dependent pool of glutamate released from guinea pig 

cerebral cortical synaptosomes following 60 seconds of depolarisation was only 

50% equilibrated after 15 minutes compared to the cytoplasmic glutamate 

which equilibrated within 3 minutes (Wilkinson and Nicholls, 1988).

Calcium-independent release of amino acids

There is substantial evidence that amino acids are released in a 

caldum-independent manner from physiological preparations (reviewed by
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Adam-Vizi, 1992). They appear to be released in this way due to their 

transporters and uptake carriers coupling the influx of the amino add with 

Na+ ions. Thus, following prolonged stimulation by one of the release 

mechanisms described (KCl, veratridine etc.) there will be a reduction in the 

Na+-electrochemical potential causing an efflux of the transmitter. Indeed, the 

K+-evoked Ca^+-independent release of GABA was found to be abolished in 

Na+-ffee medium suggesting a role for the GABA transporter (Haycock et al., 

1978). In addition, aspartate, which is thought not to be present in the lumen 

of synaptic vesicles (see above), accompanies the release of glutamate 

following depolarisation with KCl (McMahon et al., 1990). The exocytosis of 

the amino add is energy dependent, and any factor that lowers the ATP level 

decreases the KCl-evoked release of transmitter until the plasma membrane 

carrier reverses (Nicholls, 1994). The reversal may lead to an accumulation of 

the amino acid in the extracellular space, and in the case of glutamate, to 

exdtotoxic effects.

The data suggests that the effltix, of Ca2+-independent GABA and 

glutamate, comes from cytoplasmic sources (Adam-Vizi, 1992). The work by 

Haycock et al. (1978) demonstrated that the independent release of GABA 

came from accumulated GABA (assumed to be cytoplasmic in origin), whilst 

the Ca^+-dependent release was found to be both accumulated and endogenous 

GABA; GABA release was found to continue in a preparation that had already 

been depleted of its Ca^+-dependent stores (Szerb, 1979). Also, glutamate is 

observed to be released from two separate pools: the labelled, accumulated 

glutamate could be released without (external Ca^+ whilst the endogenous 

glutamate required external Ca^+ (Nicholls and Sihra, 1986).

The physiological relevance of calcium-independent release is not 

established; Adam Vizi (1992) suggests that a role may be that/ "in the absence 

of axonal firing, a continuous release of transmitters in a Ca2+-independent 

way could be important in maintaining the sensitivity and proper trophic
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function of the postsynaptic region."

Amino Add Receptors

Exdtatory Amino Acid (EAA) Receptors

Glutamate receptors can be divided into two groups: the ionotropic 

glutamate receptors which are coupled to ion channels and mediate fast 

responses (AMPA> NMDA and kainate receptors); and a second group linked 

via G-proteins to a second messenger system and which are responsible for 

slower effects (the metabotropic glutamate receptors).

Non^NMDA glutamate receptors

The non-NMDA receptors comprise two distinct groups of receptors; 

those that are identified as being specifically activated by the agonist AMPA 

and those that have kainate as the agonist, although there is a certain amount 

of overlap in their binding. Non-NMDA receptors mediate fast excitatory 

transmission. L-glutamate is thought to be the main endogenous agonist for 

the receptor (EC50=llp,M) ao L-aspartate does not produce an inward current at 

a concentration up to lOmM (Curras and Dingeldine, 1992).

The AMPA receptors are the most abundant class of excitatory receptor 

in the vertebrate brain. The kinetics of activation suggest that they mediate 

fast excitatory neurotransmission via à fast desensitising component and a 

steady state component, and are permeable to Na+ and K+ but have only a low  

permeability to Ca^+ ions (Seeburg, 1993).; The desensitisation process, which 

determines for how long the receptor is active, is much faster in AMPA 

receptors than for NMDA receptors (Mayer et al., 1991).

The kainate receptor is present in a few specific areas of the vertebrate 

CNS and tends to be more apparent later in development (Monaghan and 

Anderson/ 1991); Ac long as glutamate is present the kainate receptor is not 

inactivated: kainate is associated with exd to toxicity, and dihydrokainate also
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inhibits the re-uptake of glutamate into the presynapse (Nicholls, 1994).

NMDA glutamate receptors

The NMDA receptor is a receptor complex coupled to ion channels 

which show a voltage-dependent blockade by magnesium (Watkins, 1989). In 

order for the magnesium block to be lifted, the membrane must first be 

depolarised, allowing the activation of the NMDA receptor complex and 

further depolarisation. The NMDA receptor activates slowly, and is active for 

several hundred milliseconds in the presence of an agonist at the synapse. 

The endogenous agonist is probably L-glutamate (EC50=2.2pM) although other 

amino acids may have some affect: HCA (EC50=13pM); L-aspartate 

(EC50=13|xM); although quinolinate has an EC50 value of over 7200mM 

(Curras and Dingeldine, 1992). NMDA receptors mediate a low amplitude, 

slow activating and slow decaying current (Mayer et al., 1992). In addition to 

being able to conduct Na+ and K+ ions, the NMDA receptor is also permeable 

to Ca2+ ions (Ascher and Johnson, 1989).

The NMDA receptor complex also contains a number of regulatory 

binding sites in addition to the Mg^+ block. These include a site that binds zinc 

ions, another for polyamines such as spermine, and others for glycine 

(Fletcher et al., 1989). The activation of the glycine site potentiates the 

responses to NMDA via allosteric actions with the NMDA receptor site. Both 

glycine and L-glutamate are thought to have two binding sites on the NMDA 

receptor (Clements and Westbrook, 1991). ; All the regulatory sites allosterically 

potentiate the binding of the others and thus act synergistically to increase the 

NMDA receptor response following activation (Mayer et al., 1992). A a-opiate 

site has also been discovered: this is thought to bind neuropeptide Y in vivo 

(Roman et al., 1991).
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Metabotropic glutamate receptors (mGluRs)

The metabotropic glutamate receptors (mGluRs) comprise a group of 

at least seven sub-types along with alternatively spliced variants that have 

been cloned, sequenced and expressed in oocytes where their pharmacological 

properties have been identified (Tanabe et a l, 1993).

Different classes of mGluRs have been described according to the 

second messenger system employed. mGluRsla, b and mGluRS are linked to a 

phospholipase, PLC, whilst mGluRs2, 3, 4, 6 , and 7 are negatively linked to an 

adenylate cyclase.

mGluR coupling to phosphoinositide hydrolysis

m G luR l (a  and p) and mGluRS were found to activate 

phosphoinositide hydrolysis and Ca^+ mobilisation after stimulation with 

glutamate, ibotenate and quisqualate (Abe et al., 1992). This activation was 

shown to involve G-protein coupling (Sugiyama et al., 1987), and thus it could 

be assumed that mGluRs are linked directly to PLC via a G-protein (Anwyl,

1991).

Presynaptic mGluRs exist. The application of quisqualate to rat 

cerebral cortex synaptosomes mobilises intracellular calcium stores (Adamson 

et al., 1990). Also, quisqualate and 1S,3R-ACPD increase the calcium- 

dependent release of glutamate from synaptosomes (Herrero et al., 1992a). The 

release requires the presence of arachidonic acid (Herrero et al., 1992b): the 

arachidonic add is probably produced via the activation of postsynaptic 

ionotropic receptors and serves as a retrograde messenger (Nicholls, 1992). 

mCluR coupling to cyclic AMP formation

mGluRs2, 3, 4, 6  and 7 are all negatively linked to adenylate cydase and 

inhibit the accumulation of cAMP (Tanabe et al., 1992). In the hippocampus of 

the rat, a mGluR has been found that is negatively linked to adenylate cydase
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via a G-protein (Desai et al., 1992). The forskolin-stimulated formation of 

cAMP is inhibited by t-ACPD, and is picrotoxin- (PTX) sensitive (Manzoni et 

al., 1992).

Presynaptic mGluRs may be present on glutamatergic neurons and 

may thus inhibit further glutamate release (Schoepp, 1994). L-AP3, a mGluR 

receptor antagonist inhibits the the mGluR-mediated release of glutamate 

from synaptosomes (Herrero et al., 1992a and 1992b). In addition these 

receptor subtypes may also inhibit the release of transmitters at inhibitory 

synapses: Hayashi et al. (1993) found that application of the selective mGluR2 

agonist DCG IV reduced the GABA mediated inhibitory postsynaptic currents. 

mGluR7 is also expressed presynaptic^ly and is negatively linked to adenylate 

cyclase (Saugstad et al., 1993). mGluR6  is restricted to the retina, and is 

activated by L-AP4 to reduce adenylate cyclase activity (Nakajima et al., 1993).

GluRla has been found to enhance cAMP accumulation as well as 

activate an adenylate cyclase (Aramori and Nakanishi, 1992). Adenosine 

deaminase abolished 1 S,3R-ACPD-stimulated cAMP accumulation in rat 

hippocampal slices whilst adenosine uptake blockers enhanced the response, 

suggesting that cAMP stimulation by endogenous levels of adenosine is 

potentiated by mGluR activation (Winder and Conn, 1993). The adenosine 

receptor that mediates the cAMP increase is the A2  receptor (Cartmell et al., 

1993).

mGluR coupling to other second messenger systems

Glaum and Miller (1993) found that 1S,3R-ACPD increases AMPA- 

induced currents and suppresses GABAa currents via the activation of 

guanylate cyclase. This action may be mediated by nitric oxide, as 1S,3R-ACPD 

increases cGMP levels through a MO dependent mechanism in rat cerebellar 

slices (Okada, 1992).
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Inhibitory Amino Acid Receptors 

GABA Receptors

GABA is the main inhibitory transmitter in the vertebrate brain, with 

between 20 and 50% of synapses being GABAergic (Young and Chu, 1990). The 

majority of these neurons are thought to be involved in local circuitry as 

intemeurons, although groups of projection neurons are known (Paredes and 

Agmo, 1992). There are at least two, perhaps three, distinct subtypes of GABA 

receptor (Stephenson, 1988). The most studied of these is the GABAa receptor 

of the vertebrate CNS (Olsen and Ventor, 1986).

The GABAa receptor

The GABAa receptor is present both pre- and postsynaptically, 

although it is predominantly postsynaptic (Paredes and Agmo, 1992). It is 

ionotropic and conducts Cl" when an agonist is bound. Activation of the 

G ABAa receptor channel moves the rnembrane potential towards the Cl" 

equilibrium potential, and produces inhibition of neural activity as it 

antagonises any excitatory effect due to hyperpolarisation of the membrane or 

a reduction in membrane resistance (Bormann, 1988). GABAa receptors 

mediate fast EPSPs.

The GABAa receptor has binding sites for benzodiazepines (BDZ), 

barbiturates, steroids and G ABA. (Nicholls, 1994). BDZs increase the 

probability of the Cl channel opening and hence increase the GABAa current, 

but has no effect on the time of channel opening, whilst the barbiturates and 

steroids increase the length of time o f channel opening without directly 

affecting the conductance (Study and Barker, 1981). Other specific agonists for 

the receptor include muscimol and THIP, whilst bicucculine reduces GABA- 

induced membrane currents by inhibiting Cl" channel activation (Bormann, 

1988). The level of intracellular Ca^+ reduces the sensitivity of the receptor



(Inoue et al., 1986). In addition, studies using SCN" and Cl" have 

demonstrated that the GABAa receptor channel has at least two binding sites 

for anions and the rate of ion transport is limited by the binding of these 

anions (Bormann, 1988).

The GABAa receptor can be phosphorylated as there are consensus 

sites for PKA, PKC or tyrosine kinases. Indeed, a basal level of 

phosphorylation appears necessary to maintain GABAa receptor function 

(Chen et al., 1990). PKA-dependent phosphorylation can inhibit, potentiate or 

have no effect on the GABAa current, depending on the subunit composition 

(Swope et al., 1992).

The GABAb Receptor

The GABAb receptor has yet to be cloned, but it is metabotropic and is 

located both pre- and postsynaptically. The GABAb receptor does not bind 

THIP and is insensitive to bicuculline (Paredes and Agmo, 1992). The main 

agonist used to study the receptor is baclofen. Baclofen-induced 

hyperpolarisation is antagonised by phaclofen, although phaclofen has low  

affinity for GABAb receptors (Paredes and Agmo, 1992). GABAb receptors 

mediate the late IPSP.

GABAb receptor activation reduces the duration of Ca^+-dependent

action potentials and affects neuro transmitter release by this mechanism. This
'

suggests that there could be either a direct coupling of the receptor to a G- 

protein or that a second messenger system is involved such as cAMP or PKC 

(Paredes and Agmo, 1992). Incubation of cells containing GABAb receptors 

with pertussis toxin abolishes the GABA-induced inhibition of Ca^+ currents 

(Holz et al., 1986). This G protein coupling is not linked to adenylate cyclase as 

intracellular application of GTP, but not cAMP, reduces the Ca^+ current 

(Dolphin and Scott, 1987), However, PLC is also implicated in the inhibition 

of Ca^+ channels as the effect of GABA is mimicked by a diacylglycerol
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analogue which activates PKC (Rane and Dunlap, 1986), although GABAb 

agonists have no effect on phophatidylinositol turnover (Brown et al., 1984). 

GABAb receptors are thought to activate phospholipase A% activity (Bormann, 

1988), which in turn stimulates the production of arachidonic add activity and 

this in turn activates PKC (Routenberg, 1988). Arachidonic add has been 

described as a retrograde messenger, and therefore allows the possibility that it 

interacts with presynaptic PKC to stimulate GABAb receptor activity and thus 

increase IPSPs.

In addition to their action on Ca^+ channels, GABAb receptors also act 

to increase the K+ current in hippôcàmpal pyramidal cells without affecting 

the conductance of Ca^+ (Borman, 1988); This suggests that there may be two 

spatially distinct GABAb receptor types, the peripheral type affecting the 

conductance of Ca^+, and the CNS t)^e that affects K+ conductance (Paredes and 

Agmo, 1992). The opening of K+ chatiuels by GABAb is inhibited by pertussis 

toxin, suggesting mediation via a G protein (Bormann, 1988). The channel 

itself may be an inwardly rectifying channel, as has been activated by serotonin 

(Gage, 1992). It has been suggested that GABAb agonists may cause an increase 

in K+ conductance by activating PLA2  and liberating arachidonic add.
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Amino add uptake systems

The synaptic actions of amino acid transmitters are terminated by an 

uptake system from the synaptic cleft into the presynaptic cells. The exact 

subcellular sites of uptake appear to vary both with the amino add and the 

CNS tissue preparation that is employed. For example, after injection into the 

CNS in vivo, or incubation with tissue slices or homogenate in vitro, the 

inhibitory amino acids glycine and GABA are accumulated mainly in 

neuronal tissues (synaptosomes and vesicles) with some labelling of glial cells, 

whilst glutamate and aspartate have major uptake sites in glial cells, both in 

v iv o  and in slices: these findings can be correlated w ith the 

compartmentalisation of these amino acids in brain tissue (Wheeler, 1987).

The selectivity of the transport system was demonstrated by Fyske and 

Fonnum (1990), who found that the regional distribution of vesicular GABA 

and glutamate uptake was related to the distribution of GABAergic and 

glutamatergic terminals respectively. A varying ratio of uptake was found 

indicating they are taken up into different vesicle preparations. More recently 

the transporters have been cloned, and it is apparent that the glutamate 

transporters belong to a family distinct from that comprising the biogenic 

amine, GABA, glycine, proline and taurine transporters, which all cotransport 

Na+, Cl’ and the amino acid (Nicholls, 1994). The glutamate transporter is 

thought to exchange 2Na+ and a glutamate for the expulsion of K+ and OH’ 

/H C O 3 ’' Bouvier et al., 1992). The stoichiometry of the system allows sub­

micromolar, and therefore non-neurotoxic, levels of glutamate outside the 

neuron whilst the cytoplasm may contain millimolar concentrations. The 

prediction is that there would be a minimum of 0.6p.M glutamate externally, 

high enough levels to activate presynaptic metabotropic receptors and thereby 

reduce further glutamate release (Bouvier et al., 1992). In addition they 

suggest that there may be some activation of postsynaptic NMDA receptors at 

this concentration.
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Chapter 2: Synaptic Plasticity, 
L earning and M em ory, w ith  
reference to the Dom estic Chick 
Gallus domesticus

Introduction

Learning can be defined as "an experience dependent generation of 

enduring internal representations, and/or experience-dependent lasting 

modifications in such representations. These internal representations may be 

neuronally encoded structural versions of the world which could potentially 

guide behaviour, with brain states corresponding to behavioural states. 

Memory is the retention of such representations over time." (Dudai, 1989). 

Thus, learning is the process of acquiring information and memory is the 

persistence of learning in a state that can be accessed and used at a later time 

(Squire, 1987). It is now known that learning is accompanied by biochemical, 

physiological ^ d  ultimately morphologic^ changes.

Kandel and Spencer (in Squire, 1987) propounded that "... analysis of the 

plastic properties of neurons is a prerequisite for the neurophysiological study 

of learning." Memory is thought to involve a persistent change in the 

relationship between neurons through biochemical events that may lead to 

structural modifications.
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Plasticity within the nervous system

Neurons are not static. Morphological and functional changes occur 

during development. Changes may also occur, particularly at the level of the 

synapse, during the cell’s mature life. Post-synaptic potentials (PSPs) increase 

and decrease in intensity according to recent pre-synaptic activity. At some 

synapses PSPs grow during repetitive stimulation to several times the size of a 

single event. When this growth occurs within a second, and decays equally 

rapidly, it is called facilitation. A more gradual rise of the PSP (in minutes) is 

called potentiation; its slow decay after stimulation is post-tetanic potentiation 

(FTP). Augmentation, i.e. enhanced synaptic transmission, may also occur. 

Other synapses may experience fatigue or depression, whereby sustained pre­

synaptic activity results in a progressive decline of the PSP amplitude.

Most synapses display a mixture of these processes. During a train of 

action potentials, synaptic transmission may rise due to facilitation, in which 

successive spikes evoke PSPs of increasing amplitude. This facilitation is pre­

synaptic in origin, reflecting increasing number of transmitter quanta released 

per spike. A synaptic depression will tend to overwhelm the facilitation 

caused by a reduction in the number of transmitter quanta released due to a 

depletion of the releaseable neurotransihitter store (Zucker, 1973).

If the depression is not too severe, augmentation and potentiation leads 

to a partial recovery of transmission during the tetanus. Such potentiations 

are thought to be caused by intracellular accumulation of calcium and sodium. 

Finally FTP decays, and PSPs return to the same amplitude as that elicited by 

an isolated pre-synaptic spike.
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Learning-related Synaptic Plasticity

In these ways neurons may change their integrative, communicative and, 

hence, computational and representational properties with time. These 

changes will initially depend on neurotransmitter release, modulation of ion 

channels, availability or activity of enzymes and regulatory proteins, alteration 

of availability or sensitivity of receptors and modification of cellular 

components.

Experience-dependent synaptic modifications were proposed as being a 

possible mechanism for learning and memory by Tanzi (1893). In his textbook 

of mental diseases he talks of the formation of mnemonic impressions:-

”...molecular vibrations become more intense and diffuse themselves, 

momentarily altering the form of the dendrites, and thus, if the conditions are 

favourable, new expansions and collaterals, originate and become permanent*', 

also

"..neurons associated in the action ultimately become unified in a stable 

functional solidarity" and the result "..is attained by a progressive process of 

functional hypertrophy, which leads to more or less permanent increase of the 

neurodendrons that connect the nervous elements..*'.

The conditions of these synaptic modifications were suggested by Hebb 

(1949) in a statement known as Hebb's postulate of learning:

"When an axon of cell A is near enough to excite cell B, or repeatedly, or 

consistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells, such that A's efficiency, as one of the cells 

firing B, is increased."

A Hebbian synapse would, therefore, be one in which the post-synaptic 

neuron receives two synapses, one of which is capable of causing the post-
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synaptic cell to fire whilst the other is initially too weak to do so . If however, 

weak inputs occur in close tempord proximity with those from the strong 

synapse, they will be strengthened so as to be capable of causing the post­

synaptic cell to fire in their own right. The Hebbian mechanism described is 

therefore essentially heterosynaptic, with leammg occurring as a postsynaptic 

phenom enon.

The Hebbian formulation appears to translate the known rules of 

associative learning into a cellular model, as the two inputs could be regarded 

as representing the unconditioned and conditioning stimulus, and the 

changed response represented by the cônditioned response.

Long-term potentiation

One neurophysiological phenomenon which can display the properties of 

a Hebbian synapse is long-term potentiation (LTP). LTP is a use-dependent 

and persistent increase in synaptic strength that can be induced by brief trains 

of high-frequency stimulation. LTP was first described in the rabbit 

hippocampus (Bliss and Lomo, 1973) and was subsequently demonstrated to 

occur in numerous excitatory synapses of the central (including the cortex of 

mammals) and peripheral nervous systems of vertebrates and invertebrates 

(Bliss and Collingridge, 1993).

NMDA receptor-dependent LTP

LTP demonstrates input specificity in that it is limited to the synapses that 

have been activated, and other synapses that are not active at the time of the 

tetanus do not share in the potentiation (see Bliss and Collingridge, 1993).

It is an associative process in that a weak input can be potentiated if it is 

active at the same time as is a strong tetanus to a separate but convergent 

input. This associativity provides an ahaloÿie of classical conditioning and is 

an implicit property of the Hebb synapse (see Bliss and Collingridge, 1993).
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The LTP demonstrates cooperativity, or a threshold, that results from 

the presence of a voltage-dependent block on the channels responsible for the 

control of Ca^+ influx. The threshold for inducing LTP is a complex function 

of the intensity and pattern of tetanic stimulation; between 'weak' trains 

which produce only PTP and 'strong' trains that induce LTP, lies an 

intermediate range of activation which engages short-term potentiation (STP) 

(see Bliss and Collingridge, 1993).

LTP is thought to consist of two phases: that of its induction, and the 

maintenance of the potentiation (also known as expression) (Bliss and 

Collingridge, 1993).

LTP is induced by the repeated stimulation of afferents leading to the 

synapse under study (Teyler and Grover, 1992). The stimulation may be via a 

tetanic stimulation of the afferents, by altering the chemical environment of 

the synapse or by behavioural techniques involving the training of the animal 

on certain tasks.

In pyramidal cells of the rat hippocampus, stimulation of the input 

pathways generates both excitatory post-synaptic potentials (EPSPs) and 

inhibitory post-synaptic potentials (IPSPs) in the target cells due to the 

existence of inhibitory intemeurons (Massicote and Baudry, 1989). The IPSPs 

generally truncate EPSPs and prevent their temporal summation during the 

course of bursts (3-4 pulses) of high-frequency (100-400 Hz) repeated at the 

‘'theta“ frequency (5-7 Hz) : the major hippocampal EEG pattern when the rat 

is engaged in exploring a novel environment (Eichenbaum et al., 1987).

The IPSPs are produced by GABA. It has been shown that GABAa 

receptor-mediated IPSP A prevents signifient activation of the NMDA receptor 

system during low frequency transmission (Dingeldine et al.,1986). If IPSP A is 

blocked by bicucculine, NMDA receptors contribute a component to the EPSP; 

The importance of the hyperpolarisation produced by the IPSP A has been
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demonstrated in two ways: activation of an NMDA-receptor mediated synaptic 

component can be demonstrated in the presence of intact synaptic inhibition if 

the cell is strongly depolarised by currnt injection or if the hyperpolarisation 

is limited by voltage-clamp techniques (Collingridge et al., 1988). Therefore a 

major role of IPSP A is to prevent activation of the NMDA receptor system  

during low frequency transmission.

The IPSPs recorded from the CAl region of the hippocampus exhibit a 

fast IPSP from the GABAa receptor component and a slow IPSP governed by 

the activation of GABAb receptors. The fast IPSP usually prevents the 

temporal summation of EPSPs following a brief burst of stimulation. The fast 

IPSPs are, however, reduced some 200 msec after the initial stimulation to the 

same inputs (Larson et al., 1986). This is due to the presence of GABAb 

autoreceptors which inhibit the release of GABA from the intemeurons 

(Davies et al., 1991). The inhibition is thought to "prime" the target cell so that 

a second stimulation of the same, or indeed a different, input into the cell 

results in EPS? summation if a burst occurs 200 milliseconds later (Larson and 

Lynch, 1986). Therefore GABA-mediated responses can modulate activity of 

the NMDA receptor channel complex, and this is a potentially important 

mechanism for the regulation of neuronal plasticity.

LTP induction requires Ca^+ influx into the postsynaptic cell. Perfusing 

slices with a reduced Ca^+ medium results in non-sustainable LTP (Dunwiddie 

and Lynch, 1979). Intracellular injections of calcium chelators such as EGTA 

prevents induction of LTP in CAl pyramidal cells (Lynch et al., 1983); this 

effect suggests a postsynaptic site for the action of Ca^+, in addition to a 

presynaptic site. As the ion channel that forms part of the NMDA receptor 

has a significant permeability to Ca2+, it is thought that Ca2+ entering via this 

route has a role in the induction of LTP. Indeed, the tetanic stimulation that 

elevated Ca^+ levels, as found by Muller and Connor (1991), was largely 

dependent on NMDA receptors. The Ca2+ flow is regulated by a voltage-

i-J ’
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sensitive Mg^+ block of the NMDA receptor-gated Ca2+ channel whose relief 

requires a sufficient level of postsynaptic depolarisation (Ascher and Nowak, 

1988). Thus Ca?+ influx tiirough the channel requires a coincident postsynaptic 

depolarisation and the activation of NMDA receptors. Both these events are 

produced by strong, high frequency stimulation of presynaptic fibres, which 

causes sufficient activation of non-NMDA receptor channels to depolarise the 

postsynaptic cell, removing the Mg^+ blockade of the NMDA receptor channels 

and allowing Ca^+ to enter the cell.

Ca^+ influx is thought to lead to the phosphorylation of proteins via a 

group of Ca^+-dependent enzymes. Protein kinase C (PKC) has been suggested 

to be involved: injection of PKC induces an LTP-like potentiation in the 

hippocampal slice (Hu et al., 1987) as does the application of phorbol esters, 

compounds that activate PKC (Muller et àl., 1988). In addition, inhibitors of 

PKC, such as H-7, also reversibly inhibit LTP (Malinow et al., 1988). A 

modulatory role for PKC may be via the phosphorylation of NMDA receptors 

(Massicottc and Baudry/1991). There is evidence that the calcium-calmodulin- 

dependent protein kinase type II (CaM n  kinase) is involved in LTP in the 

hippocampus. Inhibitors of the kinase inWbit LTP formation (Ito et al., 1991). 

The inhibitor KN-62 is effective when present during tetanus, but not if 

applied following the tetanus, and has no effect on LTP in the mossy-fibre 

pathway. These data suggest that the enzyme is activated by Ca^+ entering as a 

result of NMDA receptor activation (Bashir and Collingridge, 1992).

Maintenance

Once induced/ LTP may be maintained depending on the amplitude of 
the postsynaptic depolarisation, which is related to the amount of calcium 
influx. The increase in the postsynaptic response generated at potentiated 
synapses could be due to (1 ) presynaptic modifications which result in an 
increase in the amount of glutamate released, (2 ) postsynaptic modifications 
involving a change in the number or sensitivity of receptors, (3) 
morphological modifications or (4) an extrasynaptic change, such as a 
reduction in the uptake of transmitter (Bliss and Collingridge, 1993).
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Increased transmitter release \  .

Initial evidence for the involvement of amino acids in LTP comes 

from the work of Dolphin et al. (1982). Their investigations involved  

perfusing the end zone of perforant path fibres in rat hippocampus in a 

stimulating environment. They were able to demonstrate an increase in 

newly synthesised (^H) glutamate that was associated with LTP. Subsequent 

work by Bliss et al. (1986) showed an increase in the concentration of both 

glutamate and aspartate following LTP, and their evidence also suggested that 

LTP may be associated with a decrease in the release of G ABA. Lynch et al. 

(1985), however, did not find a significant release of aspartate after LTP. 

Davies et al. (1989) applied glutamate agonists ionophoretically to the 

postsynaptic cell and found no change in receptor responsiveness soon after 

the induction of LTP, but an increase during later stages of LTP, suggesting that 

maintenance is initially presynaptic, and only later postsynaptic. Despite the 

evidence expressed above there are uncertainties as regards the nature and 

localisation of the pool of the sampled glutamate. More recently,however, 

Errington et al. (1994) were able to demonstrate an increase in glutamate 

release follow ing the induction of LTP in vivo, and this increase was 

associated with perforant path terminals and could be blocked by perfusion 

with AP-5. As well as the increased release into the extracellular compartment 

in intact animals, there was also an increase in the ability of slices and 

synaptosomes from the potentiated tissue to release glutamate in response to 

depolarisation: Richter-Levin et al. (1995) demonstrated a persistent increase 

in the concentration of glutamate in the dentate gyrus of a rat in vitro, that 

had LTP induced in this region in vivo.

Retrograde messengers

If the induction of LTP requires post-synaptic activation, and 

maintenance involves a pre-synaptic increase in transmitter release, some
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message may be sent from the post-synaptic to the weak pre-synaptic cell that 

strengthens subsequent signals. This hypothetical signal has been termed a 

retrograde messenger. If this retrograde messenger diffuses widely, it is 

possible that facilitation would occur at synapses onto other, non-associated 

cells, as is found in Aplysia (Hawkins and Kandel, 1983). This result has been 

observed in the visual cortex (Boltz et al., 1990) where it is found that 

induction of LTP in any given cell in the CAl region in the hippocampus (by a 

Hebbian mechanism) leads to the expression of LTP in neighbouring post­

synaptic cells through a non-Hebbian step in which the post-synaptic cell docs 

not fire, but in which others may be induced to do so.

Bliss et al. (1989) suggested that arachidonic add or a related metabolite 

is released by the post-synaptic cell to serve this function. Increased Ca^+ 

concentrations stimulate the activity of phospholipase A% produdng  

hydrolysis of phospholipids and the release of arachidonic acid. In turn 

arachidonic add (ArA) was found to produce a slowly developing increase in 

EPSPs when applied exogenously in the hippocampus in vitro or in vijw 

(Bliss et al., 1990). The PLA2  inhibitor nordihydroguaiaretic add (NDGA) was 

found to prevent the formation of LTP (Williams and Bliss, 1989). The release 

of ArA was found to be elevated 3 hours after the induction of LTP and to be 

PLC dependent (Clements et al., 1991). It has been found that the mGIuR 

receptors linked to a PLC metabolises PIP2  into IP3  and diacylglycerol (DAG). 

The latter can be split by a DAG lipase to release ArA.

More recently nitric oxide (NO) has been proposed as a retrograde 

messenger in both the dentate gyriis and CAl pyramidal cells (Bredt and 

Snyder, 1992; Schuman and Madison, 1991). Inhibitors of nitric oxide synthase 

(NOS) such as T.-nitro-arginine prevent LTP formation in hippocampal slices 

(Schuman and Madison, 1991). Moreover, sodium  nitroprusside and 

hydroxylamine, both of which release NO, induce an LTP-like increase in 

EPSPs which occlude tetanus-induced LTP. Haemoglobin, a scavenger of free
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NO, blocks the induction of LTP, implying that NO is released extracellularly. 

A major problem with the hypothesis of NO as a messenger is that NOS may 

not be present in hippocampal cells and an enzyme with similar properties, 

NADPH diaphorase, is only found in scattered neurons in the CAl (Vincent 

and Kimura, 1992).

Postsynaptic modifications

The increases in the postsynaptic currents found with LTP may be 

explained by modifications to AMPA receptors. Quantitative autoradiography 

has shown that there is an increase in the binding of AMPA agonists 

following LTP induction in the perforant, path (Tocco et al., 1992). LTP may 

involve changes in the ratio of expresision of the 'flip' and 'flop' forms of the 

AMPA receptor or a change in the relative expression of the different subunits 

of the receptor (Bliss and CoUingridge, 1993). In addition there are changes in 

the decay of the synaptic currents (related to the opening time of the receptor 

population; Magelby and Stevens, 1972) with the induction of LTP. Increasing 

the size of the responses by stimulating more synapses or enhancing release 

did not affect the decay, as would be expected for a variable dependent on the 

voltage-independent AMPA receptor ionophore (Baudry and Lynch, 1992).

Structural modifications

M orphological changes in spines have been found to occur in 
association with LTP in the dentate gyrus (Desmond and Levy, 1990). In the 
CAl of the hippocampus, LTP was shown to be associated with an increase in 
the number of synapses on dendritic shafts and a modification of the balance 
of shaft and spine synapses (Chang and Greenough, 1984). Whether the 
increase in synapses results from the transformation of already existing spines 
or the formation of new contacts has not been proven, but the formation of 
new contacts could account for the differential effects of the potentiation on 
AMPA vs. NMDA-receptor mediated response components only if the 
additional synapses were deficient in NMD A receptors (Baudry and Lynch,
1992).
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Non-NMDA receptor-dependent LTP

In contrast to the CAl region, LTP in the mossy-fibre pathway to CA3 

is non-Hebbian and not associative. When weak stimulation of the mossy- 

fibre pathway is associated with strong stimulation of another input into CA3, 

the mossy-fibre input does not undergo LTP (Brown et al., 1990). Moreover 

whereas LTP in the dentate gyrus and CAl is restricted to the tetanised 

pathway, specific, strong stimulation of the mossy fibres can produce 

heterosynaptic LTP of other inputs to the CA3 (Brown et al., 1990). In this 

model calcium influx is through voltagerdependent calcium channels not via 

NMDA receptors (Gamble and Koch, 1987). Indeed, noradrenaline is thought 

to be the major neurotransmitter in this system, as p-receptor antagonists 

block LTP induction in the CA3 pathway (Johnston et al., 1988). In addition 

mossy-fibre LTP has been shown to be blocked by AP3 and induced by trans- 

ACPD.

The involvement of LTP in learning

Evidence implicating LTP in memiory storage comes from studies on 

spatial and context memory, olfactory memory in rodents, trace conditioning 

in rabbits and passive avoidance learning in chicks (see later).

Bames (1979) subjected rats to a spatial memory task. She implanted 

recording electrodes into the dentate gyrus of these animals and stimulated 

the perforant path. A correlation was found in these animals between the 

ability to retain experimentally induced LTP and memory for the task. Further 

evidence implicating LTP in hippocampal spatial memory comes from the 

work of Morris and his associates (Morris et al., 1986, 1990). Chronic 

intraventricular infusion of APV in the hippocampus or lateral ventricle 

impaired the memory for location of a hidden platform in a water maze. 

There was also substantial correlation between impairment in the task and 

impairment in the induction of LTP (Morris et al., 1990). AP-5 impaired
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spatial learning in a dose-dependent mariner correlated with its impairment 

of LTP in vivo and at doses that are equivalent to those that impair LTP in 

vitro  (Davis et al., 1992). In contrast APV did not affect performance in a 

visual discrimination task (Morris et ^ ., 1936).

Enhanced population spike amplitudes were recorded in rats trained 

to retrieve food in an operant conditioning situation compared to those 

animals that were not trained (Skelton et al., 1987). This effect was still 

detectable at least 10 days after the end of training. Sharp et al. (1985) measured 

hippocampal field potentials of rats with implanted electrodes into the 

perforant path and a recording electrode in the dentate gyrus, and transfered 

them from a rearing cage into a rck)m with a variety of different boxes and 

ramps: a 'complex' environment; They found that LTP-like changes were 

found initially in this complex environment, which then subsided, but 

reappeared on transfer to another complex environment.

Data from Richter-Levin et al. (1995) showed that there was an increase 

in glutamate release in the dentate gyrus from intact animals that had 

undergone LTP. A similar increase in glutamate was observed in rats that had 

been trained on a variety of learning tasks including the Morris water maze 

and a classical conditioning task, suggesting that similar presynaptic 

mechanisms are involved in LTP and these learning tasks and that LTP itself 

may be a substrate for learning.

Two categories of LTP have been described: NMDA receptor-dependent 

LTP, which includes associative LTP, and NMDA receptor-independent LTP 

which includes mossy-fibre LTP and paired-pulse facilitation (Bliss and 

CoUingridge, 1993).
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Long-term depression

Like LTP, Long-term Depression (LTD) provides a means for 

regulating the strength of synaptic connections in the mammalian brain. In 

LTD this is via a prolonged inhibitiôh of synaptic transmission. Associative 

LTD was first described in the cerebellum where Purkinje cells (the output of 

the cerebellar cortex) receive two major excitatory inputs: one from up to 

80,000 parallel fibres, and the other from a single climbing fibre (CF). Synaptic 

transmission at both inputs occurs via glutamate receptors. Upon repetitive 

stimulation of both inputs, Ito et al. (1982) found a long-lived associative 

depression of synaptic transmission between the parallel fibres (PFs) and 

Purkinje cells (PCs). Stimulation of either CFs or PFs alone does not produce 

LTD. LTD has been described in thé neocortex and in the hippocampus 

(Artola and Singer, 1994). Both a heterosynaptic LTD, in which there is a 

depression of nonstimulated input systems, and homosynaptic LTD, where 

there is a use-dependent, long-lasting depression affecting the activated 

synapses themselves, have also been described (Artola and Singer, 1994).

Induction of LTD requires a critical level of postsynaptic  

depolarisation. LTD induction can bé blocked by the coactivation of 

GABAergic neurons (Artola et al., 1992) and by directly hyperpolarising the 

postsynaptic cell (Artola et al., 1990). The concomitant activity of the CFs 

required for the induction of LTD in PFs can be substituted by the direct 

depolarisation of PCs (Crepel and Krupa, 1988). These data suggest that CF 

activation is primarily required to obtain a sufficiently strong depolarisation of 

PCs during the interval at which PFs are active (Artola and Singer, 1994).

Evidence suggests that the PFs release glutamate as the major 

transmitter, and as transmission is blocked by CNQX (Hirrano, 1990c) it is 

thought that the site of action is the AMPÀ receptor (Ito, 1994). As it has been 

shown that pairing glutamate application with CF activation leads to a strong
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and lasting decrease of the sensitivity to the applied amino add (Ito et al.,

1982), it was suggested that LTD is due to a sustained desensitisation of AMPA 

facilitated under the influence of CF syiiapses (Ito, 1994). Ito (1989) suggests 

that it is the combined activation of the AMPA receptor channel with the 

elevation of Ca^+ (due to the activation of the ACPD-sensitive mGluR) that is 

responsible for long term desensitisation. Because activation of mGluRs may 

lead to an increase in E?3 and therefore release Ca^+ from internal stores, there 

may be a direct increase in intracellular Ca2 + concentration , or the reduction 

in K+ conductances may contribute to the depolarisation and increase the 

activation of voltage-gated Ca^+ conductances (see Chapter 1). NMDA receptor 

involvement may not be necessary for LTD, since LTD can be induced in the 

presence of AP5 (Artola et al., 1990). However, more recent work by Gean and 

Lin (1993) showed that the pairing of a low frequency synaptic stimulation 

with postsynaptic depolarisation induced an LTD of the NMDA receptor EPSP 

and this LTD is blocked by APV. From this they suggested that LTD required 

an increase in postsynaptic Ca^+ at least in part contributed to by the synaptic 

activation of NM DA receptors during concom itant postsynaptic  

depolarisation. The expression of the NMDA-EPSP LTD is at a higher 

threshold than that for the AMPA EPSP. In addition, Dudek and Bear (1992) 

also found that NM DA receptor antagonists prevented LTD in the 

hippocampus CAl region, and proposed that the depression was triggered by 

prolonged NM DA receptor activation below the threshold that induces 

synaptic potentiation. In contrast to this was the result that in slices of visual 

cortex the same tetanic stimulus which induces LTP will produce LTD when 

the NMDA receptors are blocked (Artola et al., 1990).

The rise in internal Ca^+ may activate a nitric oxide synthetase, as 

blockade of NO synthesis by L-NMMA prevents LTD induction (Ito and 

Karachot, 1990). Sodium nitroprusside induces LTD when combined with PF 

activation (Shibuki and Okada, 1991). Despite this evidence for the 

involvement of NO in LTD it has béën found that LTD can still be induced by
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combined application of AMPA and depolarisation, even in the presence of L- 

NMMA (Linden and Connor, 1992), and there is no evidence to support the 

presence of a NO synthase in CFs or in PFs (Ito, 1994).

From the above, it can be suggested that it is the amplitude of the surge 

in Ca^+ that differentiates between LTP and LTD: LTD requiring less Ca^+ than 

LTP. The mechanism for this may be due to the Ca2+-dependent enzymes 

having differing affinités for Ca^+ (Lisinan, 1989). Low levels of Ca^+ will lead 

to the activation of phosphatases whilst higher levels activate kinases. 

Alternatively, the mechanism may be due to the site of the Ca^+ increase: with 

NMDA receptor-gated increase at greatest effect in the immediate vicinity of 

postsynaptic receptors; close to the endoplasmic reticulum with mGluR 

activation; and at the membrane when voltage^dependent Ca^+ d u ^ e l s  are 

activated (Artola ^ d  Singer, 1994).

Amino adds and learning

Direct evidence that excitatory amino adds are involved in learning 

and subsequent memory formation have mainly come from pharmacological 

applications of spedfic competitive antagonists for their receptor types, before, 

during and after a learning task: i.e. such ^ a t the learning and/or recall of the 

t^ k  is impaired. . ; ;

As has already been described, Morris (1989) carried out experiments in 

which D-AP5 causes a dose-related impairment of both spatial learning and 

hippocam pal LTP in vivo, and an impairment in the storage of new  

information w ithout effect upon the recall of previously established  

memories; the effects of D-AP5 are not due to a sensorimotor disturbance. 

Also Kiedel et al. (1994) showed that pretràiriing application of D-AP5 impairs 

the acquisition and retention of a Y-inazé task employing spatial alternation 

learning via a footshock reinforcement. Walker and Gold (1991) have shown 

that the NMDA antagonist NPC 12626 (which is small enough to diffuse across
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the blood-brain barrier) inhibits LTP and impairs learning and recall of an 

inhibitory avoidance task in mice. Melan et al. (1991) have shown that an 

active avoidance task for mice is impaired by the NMDA antagonist y-LGLA, 

and Ungerer et al. (1991) found that it also blocked a post-training 

improvement in the performance of rats in a Y-shaped-maze avoidance 

learning task. MK-801 (dizocilpine), an antagonist of NMDA, significantly 

impaired the acquisition of a delayed alternation task in a T-maze (Hauber,

1993). From the data described there does seem to be some discrepancy as to 

whether the recall of the learning task is affected by the administration of 

NMDA antagonists, with the type of learning task affecting the outcome: the 

recall of spatial tasks is not affected, but the recall in avoidance and alternation 

tasks is affected by NMDA antagonists.

The glycine site of the NMDA receptor has also been implicated in 

learning tasks in mammals. Milacemide, a glycine agonist, has been found to 

enhance the performance of rodents in avoidance tasks, in the Morris water 

maze, and also improve the performance of humans in word retrieval tasks 

(Finkelstein et al., 1994).

Metabotropic glutamate receptors (mGluRs) have also been found to 

be involved in learning and memory. The effect of tADA (trans-azetidine-2,4- 

dicarboxylic acid), a mGluR agonist, applied intracerebroventricularly 

pretraining in rats was to cause amnesia for the spatial learning task 24 hours 

later (Riedel et al., 1995). Mice that have the gene encoding the mGluRl 

receptor deleted show an impaired conditioned eyeblink response and 

associative LTD (Aiba et al., 1994a) and also show an impairment in an 

associative learning task and LTP (Aiba et al., 1994b). MCPG disrupted the 

performance of rats in this task (Richter-Levin et al„ 1994), and also impaired 

retention in a Y-maze task (Riedel et al„ 1994).

Drugs that attenuate the autodesensitisation of AMPA receptors are 

found to increase the excitatory synaptic strength and also to improve the



performance of rats in both the water maze task and in passive avoidance 

tasks (Zivkovic et al., 1995). The AMPA antagonist 2,3-dihydr6xy-6-nitro-7- 

sulfamoylbenzoquinoxaline impairs the performance of rats in the water 

maze; this impairment is attenuated by! the agonist 7-chloro-3-methyl-3,4- 

dihydro-2H-l,2,4 benzothiadiazine S,S dioxide (IDRA 21) when administered 

orally.

In addition, the inhibitory neurotrahsmitter, G ABA, has been found to 

produce time and dose dependent effects on the retention performance of rats 

and mice in appetitive and aversely motivated tasks (Castellano et al., 1989).

Benzodiazepines induce anterograde (sic) amnesia via effects mediated 

through the GABAa complex by enhancing GABA-induced synaptic 

inhibition. The memory impairing effects of benzodiazepines may 

preferentially involve the basolater^ nucleus of the amygdala. Silva and 

Tomaz (1995) carried out pre-training injections of diazepam into the central 

and basolateral nuclei of rats. When trained on an inhibitory avoidance 

stepdown task 15 minutes post injection> diazepam induced anterograde 

amnesia in those rats that had the drug administered to the basolateral, but 

not the central, amygdaloid nucleus.

Thé full allosteric GABAa modulator triazolam produced dose-related 

decreases in the acquisition and peffprmance of conditional discriminations in 

monkeys' (Auta et al., 1995). Triazolam also eliminated the retention of the 

discrimination task. However, when Combined with Other partial allosteric 

GABAa agonists there is a partial attenuation of the effects of triazolam when 

administered alone, suggesting that the disruptive effects of benzodiazepines 

on leaniing and memory may be a function of the effect of these compounds 

at different GABAa receptor subtypes.

Muscimol was found to induce state-dependent learning in the Morris
j  .

water maze, with an increased latency to reach the submerged platform when
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it was present and with less time spent in j^e area that had previously had the 

platform when it had been removed (Nakagawa et al., 1995).

Picrotoxin and bicuculline enhance retention for passive avoidance 

(Brioni and McGaugh, 1988) and active avoidance (Bovet et al., 1966) tasks and 

also in spatial learning (Brioni and McGaugh, 1988). Breen arid McGaugh 

injected picrotoxin intraperitoneally, post-training. This was found to 

enhance rats' learning of an appetively-motivated multiple T-maze task 

(Breen and McGaugh, 1961).

Diazepam was also found to impair the retention of spatial

information in rats trained on the,Morris maze (Brioni and Arolfo, 1992).
■'

There was no effect of diazepam on retrieval or cue learning.

The effects of stimulation of GABAg receptors on learning suggests 

that agonists may interfere with memory consolidation as post-training 

baclofen disrupts the retention of thei passive avoidance task (Swartzwelder et 

al., 1987).

From the data described it appears that GABA antagonists enhance 

retention in different learning tasks with GABA agonists inhibiting the 

retention.
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Adenosine

The purine adenosine is a key modulator of neuronal activity in the 

central nervous system (for a review see Stone, 1989). It acts via presynaptic 

mechanisms (either by a reduction of calcium influx or the decrease or 

suppression of intracellular calcium av^lability) to inhibit transmitter release, 

and post-synaptically to hyperpolarise neurons; this is achieved by the 

activation of potassium conductances or by enhancing chloride conductances 

(Akhondzadeh and Stone, 1994).

The receptors mediating these effects were initially classified into A% 

and A2 , with the A% receptor decreasing cyclic AMP (cAMP) production and 

the A% receptor increasing levels of this second messenger. Because receptor- 

mediated effects can occur independently of changes in cAMP levels, the 

current receptor classification is now based on the relative orders of potency of 

several selective ligands (Kirk and Richardson, 1995). These criteria, together 

with the advances in molecular cloning, hâve led to the currently accepted 

classification of adenosine receptors into A i, A2 a, A2 b/ and A3  subtypes 

(Fredholm et al., 1994). All adenosine receptor subtypes have seven  

hydrophobic regions: a characteristic of members of the G-protein coupled 

receptor superfamily (Meng et al., 1994).

The release of adenosine and other purines from both peripheral 

and central nervous tissue is well establishiéd (reviewed in Snyder, 1985). ATP 

may be released initially and then converted to adenosine, or the conversion 

may have taken place just prior to release. Since extracellular ATP is rapidly

degraded to 5'-AMP and then to adenosine by the enzyme ecto-5'-nucleotidase
, . , " •. r. V

it was considered that much of the extracellular adenosine was derived from 

the hydrolysis of released ATP (McHwain, 1972). However, work by Lloyd et al.

(1993) showed that 70-85% of released adenosine is formed intracellularly prior 

to its release.
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Adenosine inhibits the release of; acetylcholine (Spignoli et al., 1984), 

noradrenaline and dopamine (Ebstein and Daly, 1982) from the mammalian 

brain. In addition the effect of adenosine and its analogues on the release of 

endogenous amino acids has also been investigated in mammalian brain: 

adenosine (300pM) was found to inhibit the evoked potentials and the release 

of aspartate and glutamate from the CAl region of the hippocampus following 

stimulation of the stratum radiatum, as did the receptor antagonists 1 - 

phenylisopropyladenosine (PIA) and cyclohexyladenosine (CHA: both at IpM) 

(Corradetti et al., 1984). Dolphin and Archer (1983) demonstrated an 

inhibition of potassium-induced glutamate Ç)ut not GABA) release from slices 

of dentate gyrus of the rat fo llow ing, superfusion with the non-selective 

agonist 2-chloroadenosine (2-CADO). The effect of an A 2  agonist was to 

increase glutamate and aspartate release from ischaemic rat cerebral cortex 

(O'Regan et al., 1992). The Ai antagonist 8 -phenyltheophylline (5pM ) 

increased the release of excitatory amino acids, when applied during low- 

frequency stimulation, and antagonised the CHA-induced inhibition of the 

release of these amino acids (Corradetti et al., 1985). At low  ( IpM)
1. I ' ■ -

concentrations of adenosine, EPSCs are facilitated whilst higher concentrations 

inhibit the EPSC in the rat hippocampus (Garaschuk et al., 1992). Low
■ • 'r; y  /  > ' •  I ■ ,  .

concentrations of adenosine produce an increase in the amplitude of the EPSP 

due to an increase in glutamate release (Okada et al., 1992). Quantal analysis 

showed that application of CHA (A% agonist) reduced both the EPSP and m, the 

quantal content, suggesting a pre-synaptic effect of adenosine on amino add  

release (Lupica et al., 1992). Yamamoto et al. (1993) described a suppression of 

the EPSP in the CA3 region. In this way adenosine may contribute to the 

extent of EPSP summation via actions on the release of amino acid 

transmitters. Activation of excitatory, A2 , adenosine receptors is required in 

order to enhance excitatory amino acid release directly. Alternatively, A% 

(inhibitory) receptor activation may serve to inhibit the release of GABA from 

inhibitory interneurons.
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Differential effects of adenosine A% receptor activation have also 

been found to occur according to whether mGluR activation is present. Thus, 

A i receptor activation may enhance IP3  formation induced by mGluR 

activation and also enhance Ca^+ mobilisation from internal stores (Ogata et 

al., 1994). However, in the absence of mGluR activation, A% receptor 

activation may lead to hyperpolarisation, depressing the depolarisation- 

induced increaccc in Ca2+. It has boon demonstrated in the rat hippocampus 

that there is a synergistic interaction between arachidonic add and mGluRs, 

such that PKC activation and inositol phospholipid metabolism were 

enhanced when both agents were present (McGahon and Lynch, 1994). This 

suggests possible mechanisms for adenosine interactions with mGluRs, as 

both presynaptic receptors, mGluR subtype and A%b receptor, can enhance 

inositol phospholipid metabolism, adenylate cyclase activity and PKC activity. 

This would suggest a potential excitatory or inhibitory feedback, as A 2 b 

receptor activation has been demonstrated to enhance glutamate release 

(Simpson et al., 1992), which could interact with presynaptic mGluRs to 

enhance or diminish further glutamate release.

Adenosine also inhibits GABA release from slices of cerebral cortex 

(Hollins and Stone, 1980) and hippocampus (O'Regan et al., 1992) via 

adenosine A i receptor agonists. Higher concentrations of these agonists, 

which would also activate low affinity A2 b receptors, did not affect GABA 

release. In addition, application of the specific A 2  receptor agonist CGS21680 

inhibited release of GABA. Therefore, adenosine acting at A% and high-affinity 

A 2 a receptors appears to block GABA release, whilst co-activation of A2 b (low- 

affinity) and A% receptors results in thé loss of the inhibitory effect of 

adenosine. These findings were substantiated by Kirk and Richardson (1994) 

who described A 2 a receptors present on GABAergic striatal nerve terminals 

that acted to inhibit the release of GABA. The mechanism of this inhibition 

was examined by Akhondzadeh and Stone (1994). They described how
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adenosine was able to potentiate the ability of muscimol (GABAa agonist) to 

inhibit evoked potentials. The chloriile channel blocker DIDS was able to 

reduce the inhibitory action of both mUsdmol and adenosine. This suggests 

that the inhibitory action of adenosine was mediated by enhancing chloride 

fluxes and that this can lead to a potentiation of responses to GABAa receptor 

activation. There is a potentiation of the effects of adenosine with muscimol 

suggesting that two distinct chloride channels are activated. Kirk and 

Richardson (1995) found that the inhibition of GABA release by adenosine is 

mediated by A%a inhibition of PKC activity.

The actions of adenosine are very dependent on the location of the 

receptors, and the receptor types: e.g. it has been demonstrated by Cunha et al.

(1994) that ACh release in the hippocampus is differentially regulated, such 

that in the CAl area only A% receptôfs modulate the release, in CA3 both A% 

and A%a receptors modulate the ACh release, but in the dentate gyrus both 

receptor types are present but are not activated by endogenous adenosine.

Adenosine has been implicated as having a role in long term 

potentiation (LTP). Dolphin (1983) found that a high intensity, high frequency 

train of electrical stimulation, when applied to the perforant path of the 

hippocampus, did not produce LTP when applied in the presence of the 

adenosiite agonist, 2 -chloroadenosine (2-CADO). The EPSPs produced by the 

stimulation were reduced during 2 -CADO perfusion. Specific activation of A%
. . .I - : ’ . - ‘

receptors attenuated LTP (DeMenddnca and Ribeiro, 1990) whilst A% 

antagonists augmert LTP (Hitchcock et al., 1992). The inhibitory effect of 

adenosine was indirect, via a decreased transmitter release at individual 

excitatory synapses (Asztely et al. 1994; and Mitchell et al., 1993) or in unison 

with GABA by a change in chloride conductance (Akhondzadeh and Stone, 

1994).

The involvem ent of adenosine in memory formation has been 

demonstrated using pharmacological manipulations following training on a



behavioural task e.g. Normile and Bafrâdo 0991) described a dose-dependent 

iinpainnent of memory for the retention of an inhibitory avoidance task 

follow ing pre-training injections of N 6 -cyclopentyladenosine (CPA), a 

selective A% agonist. This impairment could be blocked by the selective A% 

receptor antagonist DPCPX (8-cyclopentyl-l,3-dipropylxanthine). The 

acquisition of a passive avoidance task by mice was inhibited by CHA and R- 

PIA (N^-phenylisopropyladenosi.ne), both A% agonists (Zarrindast and 

Shafaghi ,1994). Low doses of Ai Antagonists blocked the CHA and R-PIA- 

mediated amnesia.
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Avian learning

The following sections give à brief outline of models and paradigms of 

avain learning, and their associated learning and memory-related changes in 

synaptic plasticity in the avian brain.

Two paradigms, food storing and song learning, are presented briefly, 

followed by two, more in depth, accounts of models employing the chick as 

the experimental animal.

Song learning

Ontogenesis of song

Song learning is a form of behaviour that is established and refined by 

learning in sensitive periods (see imprinting section). In general, song 

learning is restricted to one or two periods during the first year of life (Slater,

1983). Species such as the zebra finch Taeniopygia guttata and chaffinch 

Fringilla coelebs are "critical period" dr "age-limited" learners: they develop 

an initial sub-song, consisting of a rambling series of notes given at low  

volume, then discrete passages of song resembling the adult, the plastic song, 

and finally full or mature song is "crystallised" by the following spring 

(Nottebohm, 1991). In a few other species (e.g. the canary Serinus canaria and 

the nightingale Luscinia megarhynchos) the male continues to produce new  

songs into adulthood, and these species have been termed "open-ended" or 

"age-independent" learners. The song is used to communicate: to females the 

song may signal the species, the location ^ d  fitness of a potential mate; to a 

male it may describe the owner of the song as a neighbour or a stranger 

(Konishi, 1985).
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Neural substrates for song learning

The song system of birds consists of several nuclei including the high 

vocal centre (HVc) and the robust nucleus of the archistriatum (RA: present in 

the archistriatum). The RA sends afferents to a nucleus (nXn ts) that 

innervates the vocal organ, the syrinx. . The RA itself receives inputs from the 

HVc and the magnocellular nucleus of the anterior neostriatum (MAN) 

(Konishi, 1985). Intracellular recording has shown that neurons in HVc and 

RA receive an auditory input, and the auditory neurons of HVc send their 

axons to another nucleus, area X (Katz 'and Gumey, 1981). Lesions of HVc or 

RA produce a deterioration of adult song (Nottebohm et al., 1976). The HVc, 

RA and nXnts are necessary for the acquisition and expression of learned song 

(Nottebohm, 1991) whilst area X and MAN ̂ are required for song learning but 

not the production of the song (Nottebohm, 1991). Sex differences occur, such 

that the male zebra finch and canary have larger (in volume) nuclei involved 

in song learning, although the sex differences could be eliminated following 

injection of testosterone (Nottebohm, 1991). The volumes of the nuclei of the 

males undergo seasonal changes in size which relate to the level of 

testosterone, the size of the testis and the extent of the song repertoire 

(Nottebohm et al., 1981). During development song nuclei grow rapidly and 

then regress through cell death and loss of connections. It is these processes 

that produce the sexual differences, as regression and cell death is much 

greater in females (Konishi and Akutagawa, 1985).

WallhauPer-Franke et al. (1995) showed that comparing social, song- 

experienced male zebra finches with those that had been isolated showed that 

they had 41% fewer spines in the lateral MAN. This loss in connectivity is 

also demonstrated in auditory imprinting (see below). The concept is 

explained as an elimination of connections inappropriate to the memory. 

WallhauPer-Franke et al. (1995) suggest the following mechanism for song 

acquisition: "proliferating spines of the ...1 IMAN ... may provide a substrate



for encoding the range of song learning shown by the species. Many sounds 

will not activate this network, providing the physical basis for the constraints

on song learning any appropriate song stimulus will activate only a subset

of these connections. Spines that are activated would become stabilised and 

would induce mechanisms that eliminate unstabilised spines." In addition, 

these 'unwanted' connections may provide a method whereby the correct 

connection is always made; if certain, connections fail there will be others to 

replace them.

In the canary, a species in the age-independent group, there is 

continued neurogenesis in the HVc arid RA nuclei (BuUya et al., 1990). These 

neurons are generated, migrate, and become incorporated into existing circuits 

of the adult brain (Goldman and Nottebohm, 1983). As there is no change in 

the size of the HVc from year to year, it is Suggested that some RA-projecting 

neurons are discarded and replaced by new ones, thus indicating 

neuroplastidty in a major motor pathway in birds (BuUya et al., 1990).

Food storing

Some birds, including the corvids (crows) and the parids (chickadees 

and titmice) store food in scattered hoards and recover the cache hours, days or 

even months later. This may be an important part of their foraging 

behaviours, especially in species faced with long, hard winters. The retrieval 

of the food caches involves the retention of memories for the site where the 

food is stored (Shettleworth, 1991).

Research into the neural basis of food storing behaviours has focused 

on the hippocampal formation. This region is thought to be a homologue of 

the mammalian hippocampus by some authors (Shettleworth., 1991). Lesions 

to the hippocampus in birds results in an inability to retrieve their caches 

above chance levels (Sherry and Vaccarino, 1989). Post-storing lesions in this 

area also produced a deficit in the birds' ability to find the store (Clayton and
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Krebs, 1994). Also, there is an impairment of both spatial and working 

memory following lesioning (Sherry and Vaccarino, 1989). Further evidence 

that suggests a role for the hippocampus in food storing comes from data that 

show the hippocampus of food-storing birds has a relatively greater volume 

(compared to the rest of the telencephalon) as compared to their non-storing 

congeners (Krebs , 1990). The hippocampal volume has been shown to vary 

seasonally, with the maximum relative volume found during October in 

Black-capped chickadees: the month at which food storing activity is at its peak 

(Smulders et al., 1995).

In addition to the involvemieitt of the hippocampus, Szekely et al. 

(1992) found that there was an increased immunoreactivity to the immediate 

early gene fos, in the areas of the intermediate medial hyperstriatum ventrale 

(ÏMHV), archistriatum and lobus parolfactorius (LPO) in the marsh tit, 

following food storing.

The domestic chick, Gallus domesticus, as a model system for 
learning and memory-related synaptic plasticity

The day-old chick provides an excellent model for memory formation 

with important advantages over othCT vertebrate models and paradigms. The 

precocial chick has a well developed central nervous system with a well- 

organised behavioural repertoire of predictable behaviours. In contrast, the 

mammalian CNS is developmentally much less advanced until several weeks 

aher birth. The chick's blood-brain barrier is, however, not well developed 

until weeks after hatching, allowing the rapid diffusion of injected agents into 

the brain. Furthermore, the chick's skull is unossified which facilitates 

intracerebral injections into specific brain areas and electrophysiological 

recordings from these areas. Another advantage of using the day-old chick is 

that a single-trial learning event leads to demonstrable changes, "perhaps due 

to the lack of masking effects by the neural correlates of previous experiences 

which create neural 'noise'". (Lowndes, 1992).
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The chick does have some disadvantages as a model for memory 

formation, however. In comparison to the mammalian brain, chick 

neuroanatomy is not as well understood, although work in progress is rapidly 

making this a less valid argument against the chick as an experimental subject. 

Perhaps more importantly, the chick," as a precocial animal, will be learning a 

great number of different facts about itis environment, and very quickly. The 

chick's visual system shows some asymmetry until some days after hatching, 

which appears to be related to the different exposures of the two eyes to light 

whilst the chick is still in the egg (Rogers, 1991). Also, the chick is a rapidly 

developing organism, where all the learning-induced changes in brain 

biochemistry and neuroanatomy (see below) are being super-imposed "upon a 

highly dynamic and plastic situation.'' (Rose, 1991). However, the use of 

suitable controls, both for the behaviour and the biochemistry, may allow  

direct comparisons between groups to. demonstrate changes that are specific to 

the task, and the learning and memory related plasticity asodated with the 

task.

The chick hrain

The two regions of the chick brain that are examined for changes in 

transmitter release in this study are the intermediate medial hyperstriatum 

ventrale (IMHV) and the lobus parolfactorius (LPO).

The IMHV is regarded as being homologous to the mammalian 

striate cortex and receives inputs from different sensory systems (Rose, 1991). 

Bradley et al. (1985) described the afferent inputs into the IMHV using 

retrograde tracers. The results showed that there is a complete range of 

information coming into the IMHV, such that visual, auditory and 

somatosensensory systems have afferents to this region. The auditory 

connections include that from a region in the neostriatum (Field L, the 

auditory receiving area) which receives a projection from the thalamic
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auditory nucleus. Also som atosensory and visual inputs from the 

neostriatum have been shown. Thé IMHV also receives afferents from the 

hippocampus and the archistriatum.

The efferent connections from the IMHV include possible visual 

inputs into the archistriatum, which in turn have projections to the 

hippocampus. This may exist in a circuit: the IMHV projects to the 

archistriatum posterior, which projects to the medial part of the hippocampus, 

which in turn projects to the nucleus septâlis lateralis, which projects to the 

IMHV.

The LPO, together with thé paiaeostriatum augmenta turn (PA), 

palaeostriatum primitivum (PP) and nucleus accumbens comprise the 

palaeostriatal complex of the chick. They are thought to be equivalent to 

mammalian striatum and are involved in the integration of motor responses, 

and may also play a role in the processing of information involved in taste 

and smell (Rehkamper and Zilles, 1991).

There is no evidence for a . direct connection between the IMHV and 

the LPO. However, two routes may link them. These are the pathways to the 

archistriatum and to the PA. The archistriatum also projects to the LPO in the 

chick (Davies et al., 1991). More recent évidence suggests that the ventral 

archistriatum might act as the bridge between the LPO and IMHV, as both the 

LPO (Szeleky et al., 1994) and the IMHV (Csillag et al., 1994) project to here.

Chick learning paradigms

Two main paradigms are presently used to follow learning and 

memory in the chick: these are passive avoidance learning and imprinting. 

These two paradigms exploit 'innate' behavioural responses shown by chicks 

shortly after hatching: pecking at small objects or approaching imprinting 

objects. These tasks, and the biocheimcal consequences of learning these tasks, 

are described below.
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Imprinting

Imprinting is a learning process through which the subsequent social 

preferences of animals become restricted to a particular stimulus (Bolhuis and 

H orn, 1992). The biological function of imprinting is probably to enable the 

animal to recognise close kin. A distinction is made between filial and sexual 

imprinting: filial imprinting is involved in enabling the young animal to 

form an attachment to, and a preference for, the parent and other members of 

its own species; whilst sexual imprinting is involved in the formation of 

mating preferences enabling the animal to mate with an individual that is 

neither too closely nor too distantly related (Bateson, 1979).

Imprinting of a stimulus is most readily obtained if learning occurs 

during a 'sensitive period' i.e. in a resticted time span of an individual's life. 

Filial imprinting occurs just before the stage when, for its own safety, the 

young animal needs to discriminate between its parents and other members of 

its own species. In precocious species', such as Gallus domesticus, this happens 

shortly after birth or hatching. Chanjges in preferences may however occur; 

since birds learn the characteristics of their siblings at an early age and the 

plumage of the siblings changes with age, it seems likely that they update the 

representation of the sibling (Bateson, 1979).

Sexual imprinting

Sexual preferences develop as a result of a long period of exposure to, 

and social interaction with, the parents as well as siblings. The amount of 

social interaction with the parents and the number of siblings that the young 

bird is reared with may affect later sexual preferences. In zebra finches 

(Taeniopygia castanotis) sexual imprinting occurs until at least 100 days post­

hatch (Inunelmann et al., 1991). A stage of acquisition, and a second, later, 

stage of stabilisation of the object may occur, the latter if the male has courted a 

female of the same species as its parents; and if the courtship female is
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replaced by another suitable object a new preference may emerge, especially if a 

longer exposure to this new cqurtsjiip object is obtained (Kruijt and 

M eeuwissen, 1991). The fact: that the information learned in early 

development has to be verified in a sexual context suggests that sexual 

imprinting m ay be very similar to song learning, but less similar to filial 

imprinting (Immelmann et al., 1991).

Auditory imprinting

Auditory stimuli are thought to play an important role in the 

formation of filial imprinting; for example the sounds inost effective in 

eliciting pursuit of a moving visual object are conspecific maternal calls 

(Gottlieb, 1971). In addition young birds leam the characteristics of auditory 

stimuli played to them shortly after hatching (Gottlieb, 1988); indeed several 

days before hatching a vocal contact between the chick in the egg and the 

parent may be established (Gottlieb, 1965). The paradigm consists of 

imprinting chicks on rhythmic tone bursts of usually either 1.8 kHz or 2.5 kHz, 

the rhythm corresponding to the maternal contact call or "iambus". The 

chicks are tested in a Y-maze with loudspeakers at both branches, one playing 

back the imprinting stimulus, the other a novel stimulus.

Braun (1980) and Maier and Sçheiçh (1983) showed that Guinea fowl 

chicks imprinted on rhythmic auditory stimuli, and were able to recognise 

them and orient towards the sound source Without visual cues. The sensitive 

period of auditory imprinting starts in embryo and ends during the 4th day 

post-hatch according to Maier and Scheich (1983). These authors were able to 

demonstrate differential 2-DG uptake in  the chick forebrain with three regions 

showing increases: the HAD (hyperstfiatum accessorium and dorsale), the 

LNH (lateral neostriatum and hypefstriatum) and the MNH (medial 

neostriatum and hyper striatum ventrale). The HAD and LNH were later 

demonstrated to be connected to . the visual aspects of behaviour while the 

MNH may serve auditory or vocal^motor functions (Scheich, 1987). There
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may be an additional non-auditory ’input from the limbic system and from the 

reticular formation, perhaps activating the three areas together, as the 

labelling of auditory and visual areas are often concomitant. Subsequently it 

was suggested that a tonic (motivational) activation of MNH afferents from 

the dorsomedial thalamic nucleus may prevail after hatching, and, together 

with the first acceptable input arriving through the auditory MNH afferents, 

may lead to a critical level of activity to produce permanent changes in the 

MNH. Golgi analysis showed a 47% lower density of spines on a large neuron 

type (Type I MNH neuron) in auditory-imprinted chicks (Wallhauper and 

Scheich, 1987): this reduction was correlated with a reduction of synapses, the 

imprinting process causing a sélection, amongst initial synaptic contacts 

leading to selective stabilisation of the inputs representing the imprinted 

stimulus until at least day 20 (Wallhauper and Scheich, 1987). With two 

inputs to the MNH cooperativity may be Induced. The main features of LTP 

are also found in the MNH: the EPSP and population spike amplitudes are 

potentiated after tetanus, the spike latency is reduced and a very large 

depolarisation of the membrane potential, is found (Wang et al., 1994). This 

depolarisation and subsequent potentiation is NMDA receptor linked.

Visual imprinting ’ „

Visual imprinting has been extensively employed as a learning 

paradigm in precocial birds. In many of the studies the following procedures 

were used (see McCabe et al. 1982). After hatching, chicks are reared in 

individual compartments in a dark incubator until they are approx. 24 h old. 

The chicks are then placed, individually, in running wheels c. 50 cm from the 

imprinting stimulus, the whole apparatus being contained within a black box. 

The chicks are then exposed to the stimulus for between 1  h to 4 h. A chick's 

preference is then measured by either a sequential or a simultaneous choice 

test. The sequential test involves placing the chick in a running wheel and 

exposing it to the familiar stimulus and a novel stimulus in succession and in
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a balanced order. The ratio of approach counts to the familiar object, to the 

total number of approach counts made in the test, provides a score for the 

chick's preference. In the simultaneous choice test the training and novel 

objects are presented at the same time and the chick expresses its choice by 

attempting to approach one of them (Bateson and Wainwright, 1972).

Training was found to " be associated with an increase in the 

incorporation of radioactive lysine into protein, and of radioactive uracil into 

RNA, in the forebrain roof (Bateson et ah, 1969, 1972). The uracil 

incorporation into RNA was found to be restricted to a part of the 

hyperstriatum ventrale, the IMHV (Horn et ah, 1979). Bilateral lesioning of 

the IMHV before training prevented the acquisition of a preference and 

impaired the retention of an acquired preference (McCabe et al., 1981,1982).

Electrical stimulation of the IMHV at a specific frequency leads to a 

subsequent preference for that frequency when it is delivered from an external 

light source (McCabe et al., 1979). Stimulation of visual areas linked to the 

IMHV did not produce a preference (Bradley et al., 1985).

Morphologically, imprinting was found to be associated with an 

increase in the mean length of the post-synaptic density (PSD) in synapses of 

the left IMHV. The effects were restricted to the axospinous synapses. These 

axospinous synapses are most commonly of the asynunetrical, excitatory form. 

An increase in glutamate binding was also found in trained chicks. McCabe 

and Horn (1988) described a significant increase (59%) in the NMDA-sensitive 

binding in the left, but not right, IMHV of imprinted chicks compared to 

controls. This increase in binding is bought to represent a real increase in the 

number of NMDA receptors. A positive correlation between a preference 

score for the object and NMDA binding in the left IMHV was found. The time 

course suggests that the magnitude of increase in NMDA binding is also 

affected by the length of time that elapses after training; significant differences 

were not found till 6-8.5 h post-training (Horn and McCabe, 1990, McCabe and
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Horn, 1991). In right IMHV-lesibned chicks, injection of a NMDA-receptor 

blocker, AP-5, into the left IMHV significantly impaired imprinting (McCabe et 

al., 1992). A correlation has also been fpiiiid between a behavioural measure 

of imprinting and the spontaneous mean firing rate of neurons in the left 

IMHV of chicks that were anaesthetised after training (Bradford and McCabe, 

1992).

Acetylcholine has been implicated with an increase in cholinergic 

receptor binding in trained chicks (Bradley and Horn, 1981). The
s

noradrenergic system is also implicated, with a depletion agent DSP4 

impairing training onto a red box but not onto a stuffed junglefowl; this also 

suggests that the different stimuli require different neuronal mechanisms 

(Davies et al., 1985).

Brown and Horn (1990) studied changes in protein synthesis following 

imprinting; they found a decrease of a ca. 50 kDa protein and a concurrent 

increase in the synthesis of a 80 kDa protein. An increase in the 

phosphorylation of the protein kinase C substrate MARCKS has also been 

found.

The evidence suggests that the left IMHV serves as a long term store. 

The right IMHV appears to serve as a transfer store, slow ly passing 

information out to another storage system. S'. If the right IMHV is destroyed 

immediately after training, then there is no evidence of storage in S', and 

retention subsequently depends crucially on the left IMHV (McCabe, 1991). In 

addition Johnston et al. (1992) described an increased affinity (but not an 

increase in number) of glutamate receptors in the left lobus parolfactorius 

(LPO); perhaps this is S'.
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Passive-avoidancfî learning

A day-old chick will readily peck at small objects such as arthropods. If 

the object is noxious, the chick will leam not to peck at similar objects again 

and will, in this way, learn to distinguish food from other items such as their 

own faeces. This natural behaviour has been successfully transferred to the 

laboratory in the form of a one trial passive avoidance training task (Gherkin, 

1969). Gherkin (1969) used this paradigm to demonstrate retrograde amnesia 

with flurothyl in order to measure a consolidation time for the task.

In the test, day-old chicks are placed in pens under controlled 

illumination. They are trained by being presented with a small chrome bead 

dipped either in water (W) or a bitter-tasting aversant methyl-anthranilate 

(MeA), which, when pecked and tasted, causes the chick to exhibit an apparent 

"disgust" response. Ghicks pecking at the bead are tested at various times after 

training. On presenting chicks that had pecked at the bead covered with MeA 

with another, uncoated, chrome bead, in àt least 75% of cases the chicks will 

avoid pecking. More than 80% of the chicks presented with the bead covered 

in water will subsequently peck at a dry bead (Rose, 1991).

The main advantage of passive avoidance learning over the other 

avian peiradigms mentioned above, is that memory formation is initiated after 

a single event. Thus, the precision of timing that is possible with a one-trial 

event Cein be unequivocally timed and observed. Other models involving the 

formation of a long-term memory have to be examined following several 

training sessions, or a continual exposure to the training stimulus, in order
I  r l  ,

that a memory can be formed (e.g. the imprinting studies described in the 

preceding section). With the bead training, events that are associated with the 

training experience itself can be more readily dissociated from the extensive 

biochemical processes occurring during memory formation phases when the 

training stimulus is no longer present (Rose, 1991). This is a powerful and
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precise tool for investigating time-dependent processes that are involved in 

the different phases of memory formation (see below).

Disadvantages of the passive avoidance model do, however, also exist. 

The chicks, trained on the bead covered with MeA, that subsequently do not 

peck the dry chrome bead when presented at the testing stage, may not peck for 

a number of reasons that may not be associated with their ability to recall the 

task. For example, an emotional state of arousal or fear at the time of testing 

will interfere with the chick's innate pecking behaviours. However, the use of 

an adequate number of experimental animals and also the experimenter's 

alertness to the emotional state of the chick, or group of chicks, being tested 

will diminish or avoid this complication. .

Stages of memory formation for the passive, avoidance task

Using pharmacological agents that could disrupt memory formation, 

Gibbs and N g (1977) proposed a three stage model for memory formation in 

the chick, for the passive avoidance task. Each of the three stages was found to 

be dependent on different neurocheniical mechanisms. The early stage of 

mem ory formation (STM), lasts about . 10 m inutes and depends on 

hyperpolarisation due to potassium conductance: this stage can be disrupted by 

depolarising agents such as glutamate ^ d  LiCl. A second stage, intermediate 

term memory (ITM), lasts from about 10 to 30 minutes and can be disrupted by
. ; k : .

injection of sodium/potassium ATPase inhibitors such as ouabain. Long term 

memory (LTM) occurs after 30 minutes and requires the synthesis of proteins 

shortly after training. Each stage is considered to be sequential, but inhibition 

of the later stages does not interfere with the earlier ones.
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Location of activity

Kossut and Rose (1984) demonstrated that the chick brain utilises the 

intermediate medial hyperstriatum ventrale (IMHV), the palaeostriatum  

augm entatum  (PA) and the lobus parolfactorius (LPO) during the leanung of 

the task, as shown by increased radioactive 2 -deoxyglucose (2-DG) uptake 30 

minutes following training. 2-DG is taken up by metabolically active cells 

along with the natural substrate, glücose. 2-DG cannot be metabolised by 

glycolysis and is therefore accumulated by active cells. The addition of a 

radiolabel (^^C) to the 2-DG makes it possible for autoradiography to identify 

areas of accumulated 2-DG. These results are taken as indicators of specific 

brain regions that are metabolically active during learning.

Further studies investigating asymmetries between the hemispheres 

have shown the left hemisphere, specifically the left IMHV, to be more active 

than the right, following injections of 2 -DG 1 0  minutes, but not 30 minutes, 

after training (Rose and Csillag, 1985)j arid to be more sensitive to amnestic 

agents (Sieitano et al., 1992). ’

The glucose energy is reqmred for a series of biochemical, physiological 

and morphological events that follow the task, many of which have been 

described (see below).

Lesion studies

. .  i  •

Studies of the behaviour of chicks following the lesioning of specific 

regions of the brain have proved illuminating. Pre-training bilateral lesions 

of the IMHV produced amnesia for the task when the chicks were tested 3 

hours, or more, later (Davies et al., 1988). The chicks still showed the normal 

behaviour associated with pecking the bead including shaking of the head etc. 

(i.e, die disgust response), Lesioning the right IMHV before training did not 

produce amnesia (Patterson et al., 1990). These results were interpreted to
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mean that the left IMHV is required for the acquisition of the task. To 

examine whether the left IMHV was required for the retention of the task, 

lesions were carried out, 1 hour or later after training, of both IMHVs. When 

subsequently tested 1  or 6  hours later,  ̂ the chicks no longer showed amnesia 

for the task (Patterson et al., 1990). .From this it could be concluded that after 

the acquisition of the task, by the left IMHV, the IMHV is no longer necessary 

in the retention of the memory. In this way, the memory, or memories, must 

be either relocated or further distributed to other sites for storage (perhaps the 

S' described in the imprinting paradigm: see above).

As noted in the section on imprinting, the storage site, region S', may 

well be the LPO. Bilateral lesions of the LPO pre-training did not result in 

anmesia for the task, however lesioning the LPOs 1 hour after training did 

produce amnesia in chicks when tested 24 hours afterwards (Gilbert et al., 

1991). These results suggested that loiig term memory for the task is 

dependent on the LPO. Only bilateral lesions proved effective in eliminating 

recall of the task; this might mean that either LPO is sufficient for the recall of 

memory, and that the redistribution of this memory is to both LPOs (Gilbert et 

al., 1991). Pre-training LPO lesions, followed by post-training IMHV lesions, 

produced varied results depending on . which hemisphere's IMHV was 

lesioned. Bilateral lesions and lesions to the right IMHV rendered the chicks 

amnesic. Lesions to the left IMHV, after,training, did not produce amnesia. 

From these results it was considered that a 'flow' of memory occurs from the 

left IMHV to the right IMHV, then to both LPOs. This was confirmed in that 

pre-training lesions to the right IMHV, followed by post-training lesions to 

both LPOs, did not result in amnesia, suggesting that the memory trace 

remained in the left IMHV under these circumstances. However, pre-training 

right IMHV lesions, followed by post-training lesions to the left IMHV, which 

according to the model should produce amnesia, did not. This would suggest 

that there is no simple memory trace model; and that the brain acts as a fully 

interacting, functional system with a distribution of the memory/memories
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throughout the brain. ,

The connections between the LPO and the IMHV, which is thought to 

allow a flow of information from one to the other, are thought to converge on 

the archistriatum (ARCH). Bilateral, pre-training lesions of the ARCH have 

been found to render chicks amnesic for the task (Lowndes and Davies, 1994).

In addition, the avian hippocampus may also play a role in the 

formation of memory for the task. Sandi et al. (1992) looked at the effect of 

lesions of the left hippocam pus. on the recall of the task. These lesions 

produced amnesia when carried out pre-training, but not when given 1  hour 

after training, The left hippocampus was therefore assumed to be required for 

the acquisition of the task (Sandi et al., 1992) indeed, the IMHV has been found 

to receive afferents from the hippocampus (Bradley et al., 1985).

Electrophysiology

Mason and Rose (1987) discovered electrophysiological correlates to 

LTP in the chick brain. They recorded sppntaneous multi-unit activity within 

forebrain structures. There was an overall increase, with almost a four fold 

increase in the IMHV, of high-frequency, lafge-amplitude spikes. The increase 

was not due to the training procedure, as demonstrated by the fact that 

electroshock-amnesic chicks had no such multi-unit firing (Mason and Rose, 

1988).

Also reported in this 1988 paper was work that showed bursting in the 

IMHV was abolished by 2-APV (a NMDA-receptor competitive antagonist),

and the LTP-like effect was also abolished.
. > .

Bradley et al. (1991) have carried out experiments on potentiation in 

chick forebrain slices. They found that long lasting changes in the synaptic 

efficiency could be obtained in the when there was a sufficiently large,

late post-synaptic response during the conditioning. Such changes were not as
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great in either magnitude or duration as LTP, although this may be due to the 

preparation. It was also suggested that as the late postsynaptic response lasts 

longer than a response to a single stimulus, it may be being produced by 

NMDA receptors.

Further data from our laboratories have described the time course of 

the increases in bursting behaviour from the IMHV (Gigg et al., 1993) and the 

LPO (Gigg et al., 1994). In the IMHV, significant increases in the bursting 

activities were recorded at 3-4, 5-6 and 6-7 hours post-testing (testing was 

carried out 1 hour after training) in MeA-trained chicks (Gigg et al., 1993). 

There was also a lateralised effect of this bursting, such that bursting in the 

right IMHV was significantly higher than in the left IMHV of MeA-trained 

chicks 6-7 hours post-testing. This study did not look at any time before 2 

hours after training, which would have been useful in order to compare this 

data with the receptor studies and the transmitter release data from the 

present study. For the LPO, the data werg lumped into 4 hour periods, from 

which it was shown that there was a highly significant increase in bursting 

activity between 4 and 7 hours post-testing comparing MeA-trained chicks to 

the water 'controls' (Gigg et al., 1994). These data were shown to be specific for 

the memory of the task in that electrorshock, which induced amnesia in half 

of the chicks (which then pecked the test bead), showed that there was a 

significant increase in bursting in thé MeA-trained chicks that avoided the 

bead compared to those that pecked the test bead and had been made amnesic 

by the electroshock.

The increases in bursting activity that occur in the IMHV and the LPO 

also describe a double wave of events. Thé increases are apparent in the left 

and right IMHVs initially but are then transposed into the right IMHV and 

both LPOs. This is in line with the lesion data and suggests a redistribution of 

the memory or memories from the left IMHV to the right IMHV and both 

LPOs.
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Receptor activity

•' .-•ir

Excitatory amino acids and their receptors have been implicated in 

passive avoidance learning. NMDA-receptor binding following the task was 

described by Stewart et al. (1992). At 30 minutes NMDA receptor binding 

activity increased by 39% in the left IMHV of MeA birds compared to W 

trained birds, but declined to control levels by 3 hours. The left LPO also 

showed increased binding at this time although in the lateral neostriatum 

there was a decrease. Injections of MK-801 (a non-competitive NMDA  

antagonist) at various times between 1  hour before and 5 minutes after 

training produced amnesia for the, task 3 or 24 hours after training 

(Burchuladze and Rose, 1992). The binding of MK801 was increased 30 

minutes after training in the left and right IMHV and the left LPO (Stewart et 

al., 1992). The increases in receptor binding in the left LPO and left IMHV 

were demonstrated to be specific to the avoidance task itself, as chicks that had 

been trained to avoid the MeA bead and then rendered amnesic by 

electroshock did not show these changes but those chicks given electroshock 

that were subsequently able to recall the task showed equivalent increases in 

receptor binding at 30 minutes post-training as did those trained on the MeA 

bead which were not given the electrqshock treatment (Steele et al., 1995). In

addition, Steele et al. (1993) reported-th^tan antagonist of the NMDA glycine
. - V  . " '

binding site inhibited the retention of niemory for the task.

Steele and Stewart (1995) demonstrated that AMP A receptors are also 

involved in the learning task. They showed an increased affinity (measured 

as a decrease in the Kd value) of ^H-AMPA 6.5 hours following the task in the 

left and right IMHVs and right palaeostriatum augmentatum (PA). Injections

of CNQX 4.5 and 5.5 hours after training into the IMHVs produced amnesia
' ■ ’ •for the task when the chicks were tested at 6.5 hours, indicating that the 

increased affinity of AMP A receptors; in the IMHV at least, is associated with 

longer-term memory for the passive avoidance task.



In our laboratories Holscher carried out a series of experiments that 

suggested a role for mGluRs in memory formation in the chick (Holscher,

1994). Anmesia, caused by the mGluR antagonist MCPG, was not apparent 

until 1 hour following training. This suggests a role for mGluRs in the chick, 

at a time at which protein synthesis may be occurring. This is in agreement 

with a study by Rickard and N g (1995) who found that MCPG induced amnesia 

during the long-term stage of memory formation but did not affect the earlier 

stages.

There have also been some autoradiographic and biochemical studies 

of GABA receptors in the chick brain. Ramirez et al. (1983) studied the 

development of GABA in the chick optic tectum and Meza et al. (1985) 

provided evidence for a role for GABA in the chick vestibule. Stewart and 

Bourne (1987) demonstrated that there were temporal changes in GABA 

binding, with the highest level of binding present one day post-hatch. 

Quantitative analysis was used to investigate the distribution of high-affinity 

GABA receptors (Stewart et al , 1988) J  ̂ The highest levels of GABA- 

immunoreactivity (^H-muscimol binding) were present in the cerebellum, 

HV, PA and LPO of 3 week old chicks (Stewart et al., 1988). GABA receptors 

have also been identified as being increased in number and activity following 

training on the one-trial passive avoidance task (Martijena and Arce, 1994). 

^H-flunitrazepam binding in synaptosomal preparations from forebrains was 

examined in one-day old chicks. An increase in the B-max (indicating an 

increase in receptor number) was fpund 30 minutes after the training task 

(Martijena and Arce, 1994).

In addition to amino acid receptprs, other receptor types have been 

identified as being involved in memory formation in the chick. The 5-opioid  

receptor was found to show increased binding, 30 minutes after the training 

task, in the right PA and both LPOs (Csillag et al., 1993). Also, an increased 

binding to muscarinic acetylcholine (ACh) receptors, and a decreased level of
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binding to nicotinic ACh receptors, was found 30 minutes after training (Rose 

et al., 1980; Aleksidze et al. 1981).

An important event in biochemical signalling processes is the influx 

of Ca2+ into neurons through voltage-gated channels (see also LTP). In the 

chick Ca2+ entry has been described following passive avoidance learning. The 

results described by Clements and Rose (1995) showed an increased uptake of 

45ca2+ into prisms of IMHV 30 minutes after training. This uptake was 

inhibited, in the left IMHV only, b y , the N-type Ca^+-channel blocker ©- 

conotoxin.
• ,..lv

The increased Ca^+-uptake, and effects of channel blockers on the 

retention of the task, suggest that neurotransmitter activity may be changed 

following passive avoidance learning. Rusakov et al. (1993) found a spatial re­

arrangement of vesicles in the synapses in the left IMHV of MeA-trained 

chicks 30 minutes after passive avoidance training. In their study two spatially 

separate pools of vesicles were identified. A rearrangement of the vesicles 

occurred with a greater number of vesicles near the active zone, suggesting an 

altered functional state in the synapSes examined (the data described above 

will be discussed in greater detail in Chapters 4 ,5  and 8 ).

Protein kinases

The increased effectiveness of the presynaptic neuron may be described 

in terms of the enhanced phosphorylation of membrane proteins resulting in 

the opening of Ca^+ channels and triggering intracellul^ second messenger 

systems which may lead to an increase in transmitter release.

The enzymes that phosphorylate membrane proteins have been 

described (see section on LTP). These proteins include protein kinase C and A, 

both of which may be substrates for àfacHidbnic acid and NO activity.

Ali et al. (1988a) demonstrated a decrease in the in vitro
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phosphorylation of a 52 kDa presynaptic plasma membrane phosphoprotein 

after the training task. Bilateral injections of mclittin showed that this protein 

is not required for the short-term phases of memory (minutes to 1  hour after 

training) but is required for long-term memory formation (Ali et al., 1988b). 

This phosphoprotein, considered to be Br50, is a presynaptic substrate of 

protein kinase C (PKC), and is phosphorylated on depolarisation of the 

synaptic membrane under conditions that release neurotransmitters 

(Rodknight and Wofchuk, 1992). Ah increase in the niembraneicytosol ratio 

of PKC in the left IMHV is also found, which is interpreted as indicating 

translocation of the enzyme (Burchuladze et al., 1990). The translocation of 

the a  and P forms of the PKC to the membrane is dependent on Ca^+ 

concentration, and the phosphorylation of B-50 is regulated by the ratio of 

soluble to bound PKC. Therefore presynaptic Ca^+ influx, or mobilisation from 

iiitemal stores, results in PKC translocatioii followed by B-50 phosphorylation, 

and the activation of synapsin which should result in vesicular transmitter 

release.

In addition to PKC, cAMP-dependent protein kinase (PKA) may be 

involved in memory formation in the chick. A significant increase in whole 

forebrain levels of cAMP has been observed between 30 and 60 minutes 

following passive avoidance training in the chick (Brown, 1984). The use of 

PKA inhibitors showed that PKA was involved in the formation of long-term 

memory in the chick (Zhao et al., 1995).

Retrograde messengers . . .

Retrograde messengers (see section on LTP) have also been reported to 

be involved in the training task, suggesting a mechanism for the 

strengthening of synapses.

Phospholipase A 2  (PLA2 ) inhibitors produced amnesia for the passive 

avoidance task (Holscher and Rose, 1994). Arachidonic acid is synthesised via
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PLA 2 - Therefore, it can be assumed that arachidonic acid is necessary for 

memory formation of the passive avoidance task.

Holscher and Rose (1992, 1993) also demonstrated that nitric oxide 

(NO) production is necessary for the formation of memory in the passive 

avoidance task. N-nitro-L-arginine (an inhibitor of NO synthase) injected into 

the IMHV, left or right, before the training task produced amnesia from 30 

minutes to 24 hours later. This suggested that NO production is of importance 

in the first few minutes after the initiation of memory formation rather than 

in the later stages.

It is therefore thought that NO is but the first wave carrier of 

information and forms a first wave of retrograde signalling, reaching a peak of 

synthesis by 30-60 minutes after which NO production starts to decrease and 

arachidonic add release, the presumed second wave, is increased. These 

retrograde messengers are thought to signal to the presynaptic neuron to 

increase its effectiveness "vis-a-vis the postsynaptic neuron at a particular 

synapse or set of synapses." (Rose, 1992).

Immediate early genes

Training also results in the activation of the cell's general protein 

synthetic machinery. A general molecular biological mechanism in the 

switching on of protein synthesis involves the expression of a family of 

inunediate early genes (lEGs). These genes "switch-on" certain late genes, 

which enable or direct protein synthesis. Under quiescent conditions, these 

immediate early genes are not expressed. Following stimulation during a 

novel or stressful situation, the lEGs are activated. lEG activation may occur 

following a rise of intracellular Ca^+ associated w ith NM DA receptor 

activation.

Anokhin and Rose (1991) demonstrated that mRNA encoding the 

lEGs c-jun and c-fos was increased 30 minutes after training in both the left

«



and the right IMHVs and LPOs. In addition to the passive avoidance task, a 

pebble floor discrimination task was carried out in order to prove a specific 

learning-related effect of the increases in lEG production. This is an appetitive 

task in which chicks leam to discriminate between food and non-food items. 

Three groups were used such that one of the groups was learning the task for 

the first time on the second trial (no leammg experience occurred on the first 

trial); the other twc' groups were repeating the previous trial's experience. 

From these experiments the highest JEG; expression occurred in the group 

with the novel experience in the second trial: the conclusion from this is that 

learning a behaviour, as opposed to repeating an already learned behaviour, 

increases lEG expression.

The level of c-fos mRNA was increased by 2 to 2.5 fold in the left and 

right IMHV and the LPO, 30 minutes after the training task (Anokhin et al., 

1991). This increase was not thought to be due to neural activity in visual 

processing, as dark-reared chicks, and chicks maintained in familiar visual 

environments, showed low levels of'c^/oS expression.

The expression of the proteins, fos and jun, was increased following 

the training task at 1 hour in both IMHVs and at 2 hours in the right LPO 

(Freeman, 1994).

Protein synthesis

Two waves of neuronal activity are. thought to occur. This activity has 

been described in terms of the synthesis of glycoproteins. Glycoprotein 

synthesis has been found to be essential for memory in the chick. A precursor 

for glycoprotein synthesis is fucosé; - When radiolabelled fucose was injected 

into the chick brain, an increased incorporation was found hours following 

the passive avoidance task (Rose, 1989). The incorporation of fucose into 

glycoproteins was inhibited by 2-deoxy-galactose (2-Dgal). Intracranial 

injection of 2-Dgal produces amnesia at 24 hours when injected between 2
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hours pre-, and 2 hours post-training (Bullock et al., 1990). The increased 

incorporation of fucose was found to be specific for memory formation, as 

chicks that were electroshocked 1 0  minutes post-training (a time which does 

not produce amnesia) still showed increased fucose incorporation compared to 

untrained but shocked, and trained and immediately shocked, chicks (Rose 

and Harding, 1984).

Crowe et al. (1994) found that the effects of 2-Dgal preceded the effects 

of anisomydn (a protein synthesis inhibitor). This suggested that the initial 

phases of memory formation involved the post-translational modification of 

already present proteins.

The glycoproteins that are increased during the second wave are
4':'' ' -

described as learning-associated glycoproteins (LAGs) (Rose, 1995). These 

LAGs include a presynaptic 50kDa, and postsynaptic 33, 100-120, and 150- 

180kDa proteins found in the LPO (Bullock et al., 1992). These glycoproteins 

are thought to include forms of cell adhesion molecules (N-CAMs). N-CAMs 

are known to be involved in synaptic recognition, selection and subsequent 

stabilisation during development (Edelman, 1985). There are both 120 and 

180kDa forms of N-CAM; the smaller form is thought to be an embryonic 

form and is converted into the mature 180kDa, low  sialylated form. 

Antibodies to N-CAM are thought to interfere with this process. When 

injected 30 minutes pre-training, anti-N-CAM was found to produce amnesia 

between 5.5 and 8  hours after training (Scholey et al., 1994). This time period is 

thought to represent the time for a second wave of neuronal activity. This 

second wave is postulated to take place only if the learning event was 

sufficiently strong (Rose, 1994). This is substantiated by the fact that if chicks 

are trained on a weak aversive substance, such as 10%MeA or quinine, the 

avoidance response on testing declines from 6  to 9 hours after the training 

event (Rose, 1994).

N-CAM is enriched at à sul>cellular site in the chick (Rusakov et al.,
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1995b) and is rearranged following traiiüiig (Rusakov et al., 1994).

The second time window shows the effects of anisomydn precede the 

effects of 2-Dgal (Freeman et al., 1995). This implies that the second wave of 

glycoprotein synthesis takes place on newly synthesised proteins.

In addition to these cell-cell interactive proteins, tubulin, a structural 

component of axonal transport, has been shown to be increased up to 24 hours 

following training (Scholey et al., ̂ 1992).

Morphological changes

The changes in glycoprotein and tubulin synthesis may eventually be 

incorporated into structural modifications. For example, the density of 

asymmetrical spine synapses increased b y ’c.40% at 1 hour post-training in the 

right IMHV of MeA-trained chicks, althoujgh this was reduced to a basal level 

24 hour^ post-training (Doubell and Stewart, 1993). These changes were not 

seen in the left IMHV at this time. The average post-synaptic density was 

smaller (5 7 %) in these chicks, suggesting that the new synapses were formed 

by the splitting of existing synapses: synapse formation followed by selective 

elimination has been suggested as a mechanism for learning (Changeux and 

Danchin, 1976).

In the left IMHV the thickness of pre- and post-synaptic electron 

densities was found to be increased 30 minutes after training (Rusakov et al., 

1995a). In addition the synaptic apposition zone profiles were increased in 

length. Both suggest an increase in synaptic efficacy associated with learning 

the task.

The numerical density of synapses is also increased, initially in the left 

hemisphere (30%) 24 hours after training, and by 48 hours the increase is 

present in both LPOs. Also increased by 24 hours is the density of synaptic 

vesicles and an increase in spine density, both in the left LPO (Stewart et al..
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1984). As synaptic number changes do hot occur until 24 hours and after in 

the LPO, the increase observed is likely to be due to synaptogenesis, rather 

than due to splitting of synapses as suggested to occur at perforated synapses in 

the mammalian brain following a novel experience (Stewart et al., 1992). In 

keeping with this, changes in synaptic density have been found to be reduced 

following the injection of anisomydn 30 minutes before training (Sojka et al.,

1995). This would suggest that de novo protein synthesis is involved in the 

increases seen following training.

At 48 hours there is an increase in synaptic density height (similar to 

PSD length) and dendritic spine volume in the LPO. Spine density changes 

are fouiid 24 hours after training in multipolar projection neurons of the left 

i!p O (Lowndes, 1992).
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Aims

N o direct evidence for enhanced glutamate release or the release of 

other amino adds in the passive avoidance task has so far been demonstrated. 

It had been assumed that glutamate release would be increased but at what 

times after the task? Would these increases, if present, coindde with changes 

in receptor binding and other biochemical changes? The research project 

described in this thesis aims to describe the time course of amino add  

transmitter release from the IMHVs and LPOs of day-old chicks following the 

passive avoidance task. Both hemispheres will be examined to determine if 

latéralisation of release occurs. In addition adenosine, a potential modulator 

of amino add release, will be analysed for its time course of release, effect on 

amino add release, and effect on the retention of the task.
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Chapter 3: The development of a
method of High Performance Liquid 
C h rom atograp h y  (HPLC) for  
analysis of metabolic amino acids in 
the chick brain

General Principles

Chromatography is a separation technique in which mixtures are 

resolved by the differential migration of their constituents during passage 

over a chromatographic substrate. The separation process is determined by 

the distribution of the components between two immiscible phases, which is 

described by the partition or distribution coefficient (Kd). For a compound 

distributing itself between equal volumes of two immiscible solvents A and B, 

the value for this coefficient is a constant at a given temperature and is given 

by the expression:

Kd = [solute] in A / [solute] in B

The distribution of a compound can also be described in terms of its

distribution between two phases. One is a stationary phase; this may be solid,

gel, liquid or a solid/liquid mixture which is immobilised. The second mobile

phase is a liquid or a gas and flows over the stationary phase. The choice of

phases is made so that the compounds to be separated will have different

distribution coefficients. The separation (resolution) also depends on the

distribution of the sample through the chromatographic column, which is

dependent on the number of stages that a separation of compounds can occur

throughout the column, i.e. the number of theoretical plates (N) that the
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com pound m ust pass through. The resolving power of the system increases 

w ith the number of theoretical plates per unit length; as this is related to the 

surface area of the stationary phase it follows that the smaller the particle size 

the better the resolution. Unfortunately, the sm aller the particle size the 

greater the resistance to eluant flow.

This is where high perform ance liquid chrom atography (HPLC) 

comes into its own. By employing stainless steel tubing, high pressure pum ps 

and a solid column packed with stationary phase, a much greater resolution is 

achieved with a reduced time of analysis.

Amino A dd Analysis

The fundam ental problem with the analysis of amino acids is their 

detection. Most amino acids are very weak chromophores in the UV-visible 

region and possess no native fluorescence. To overcome this difficulty, some 

derivative of the amino acid that is a good chromophore or that fluoresces is 

needed. Both postcolum n derivatisation  and precolum n derivatisation  

techniques exist. In the present work precolumn derivatisation was used.

Precolumn derivatisation, followed by the separation of the amino 

acid derivatives by reverse phase (polar solvent, non-polar mobile phase) 

chrom atography, is fast becoming the preferred m ethod of analysis. The 

advantages of this approach include short analysis times, high sensitivity, and 

elim ination of costly and som etim es cum bersom e postcolum n reaction 

systems. These advances have been spurred by rapid improvements in liquid 

chrom atography equipm ent and the w idespread  in troduction  of high 

efficiency chrom atographic packings. Today's small particle (3-5|im) alkyl- 

bonded silica m aterials make it feasible to separate complex m ixtures of 

derivatised amino acids in as short a period of time as 10 minutes. Coupled 

w ith  high sensitivity detectors, these m aterials allow for estim ation of
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picomolar quantities.

The ideal d e riv a tisa tio n  pro toco l w ill have the follow ing 

characteristics: (1) uniform reactivity and quantitative reaction yields, (2) mild 

reaction conditions and short reaction times and (3) stable products.

HPLC of am ino acids after precolum n derivatisation  was first 

described by Bayer et al. (1976) who used dansyl chloride as the derivatising 

agent and resolved about 17 amino acids in both normal and reversed phase 

systems. Dansyl amino acid analysis suffers from variable yields of lysine, low 

yields of all amino acids in the presence of salts and incomplete separation of 

several amino acids (Ebert, 1989).

Precolum n labelling w ith  o -ph thala ldehyde  (OPA) produces 

fluorescent amino acid derivatives (isoindoles) w hich are well resolved in 

several reversed-phase systems (Cohen and Strydom, 1988). The reagent itself 

does not fluoresce, and therefore produces no interfering peaks. In addition, 

its solubility and stability in aqueous solution, along w ith a rapid  reaction 

time w ith the amino acids to produce the derivative, makes it amenable to 

autom ated derivatisation and analysis (Cohen and Strydom , 1988). The 

principal limitations of this m ethod are the inability to derivatise secondary 

amines such as those found in proline and hydroxyproline, and the poor 

stability of the reaction products. However, a significant improvement of the 

m ethod came w hen the O PA -derivates are coupled to electrochem ical 

detection (e.g. Allison et al., 1984). OPA derivatisation can be coupled w ith p- 

mercaptoethanol to produce derivatives that undego oxidation at the anode at 

m oderate potentials. The electrochemical properties of the amino acids are 

less susceptible to change than their fluorescent properties, thus making the 

deriva tives m uch m ore stable. A uthors have used  the O P A /p - 

m ercaptoethanol procedure to analyse postm ortem  hum an brain (Ellinson et 

al., 1987), rat brain homogenate and hum an cerebrospinal fluid (Canevari et 

al., 1992).
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H ein rik son  and  M ered ith  (1984) in tro d u c ed  a su b s tan tia l 

im provem ent for UV analysis of amino acids w ith  the publication of a 

m ethod which utilised the Edman reagent, phenylisothiocyanate (PITC); not 

to synthesise pheny lth io ldan to in  (PTH) am ino acids, b u t to produce 

phenylth iocarbam yl (PTC) derivatives in  a reaction  w hich  proceeds 

quantitatively w ithin minutes at room tem perature (Figure 3.1).

This methodology has been adapted for a w ide range of applications 

including the analysis of food and animal feed samples (e.g. Lanneluc-Sanson 

et al., 1986), purified acid-hydrolysed proteins and peptides (e.g. Strydom et al.,

1985), and analysis of free amino acids present in biological fluids (Cohen et 

al., 1986). Most of the remaining part of this chapter will describe adaptations 

to the p u b lish ed  m ethod , of P IT C -deriva tisa tion  and  sub seq u en t 

chromatography, in order to tailor it to amino acid analysis from chick brain 

slices.

RIXC

N = C = S -+- N H 2 -C H -C O O -

Amlno Acid

9
N H -C -N H -C H -C O O -

IRXC-amino acid
Dry

Dissolve in Mobile 
Phase and inject

Figure 3.1. Production of PTC-amino acids w ith phenylisothiocyanate (PITC) 

using a modification of the Edman degradation reaction.
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Sam ple preparation and derivatisation

A W aters PICO-TAG w orkstation was used in conjunction w ith  a 

vacuum  pum p for pre-column derivatisation of samples.

One hundred microlitres of the m edium  from the release experiments 

(Chapters 4, 5 and 6) were taken and placed into a m arked and num bered vial 

suitable for the WISP auto-sampler. Eight such vials were pu t into a ’reacti- 

v ial', placed into the PICO-TAG w orkstation  and  vacuum  dried  to 65 

m illitorr.

The second step involved redrying the solution to obtain the required 

pH  level for the subsequent reaction. Fifty microlitres of a re-drying solution 

(m ethanolrtetraethylam m onium  (TEA):water, 2:1:1) w ere added  to each 

sample vial and again vacuum  dried to 65 millitorr. Originally ethanol was 

used in place of the m ethanol as this was part of the standard  procedure; 

however, as salts were present in the samples from the buffer solutions used 

and these can affect the reaction yield of glutam ate and aspartate, m ethanol 

was used in its stead as this largely eliminates the deleterious effects of high 

salt concentrations on yield.

D erivatisation was carried out using 50pl of a derivatising solution 

(methanol:water:TEA:PITC, 7:1:1:1) added to each sample tube. This was left to 

stand for 20 minutes at room tem perature for the derivatisation to take place. 

The reacti-vial was put into the PICO-TAG system and again vacuum  dried to 

65 millitorr to remove all traces of PITC.

The derivatised sam ple w as then re-suspended in  lOOp.1 of sample 

d iluent (710m g/l N a2H P 0 4 , 5% ACN at pH  7.40 w ith 10% H 3P O 4) and a 

fraction injected into the HPLC.

It was possible to store the samples in a -40*C freezer at any stage 

after vacuum  drying, for future analysis.
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The Hardware

The HPLC system used was a W aters PICO-TAG amino acid analysis 

apparatus: consisting of a model 600 m ultisolvent delivery system, a model 

441B UV detector set at 254nm and a model 712 W aters intelligent sample 

processor (WISP). A N ovapak C-18 colum n (15cm x 3.5mm,W aters) was 

m aintained at 37“C using the W aters 600 controller and a column heater. A 

W aters 740 data m odule was used for plotting chrom atograms and for peak 

analysis, a discussion of which will follow.

A gradient elution was carried out for the analysis of amino acids. In 

the analysis of m ixtures it is not always possible to obtain a satisfactory 

separation using only one solvent (an isocratic elution). There is often 

insufficient reten tion  of the early em erging com pounds and excessive 

retention times of late-eluting peaks. This can be solved by a gradual change 

in the composition of the mobile phase during the course of the separation: a 

g rad ien t elu tion. G radients can be e ither stepw ise or continuous. 

T hroughout the separation the solvent com position and flow rate can be 

described in terms of an appropriate gradient curve shape that can be selected 

to control the transition between two time points (Figure 3.2).

The published m ethod on which the adjustm ents were m ade was 

that of Rogers et al. (1987). The separation of PTC amino acids was generated 

w ith  a g rad ien t using sodium  acetate buffer and  acetonitrile as the 

predom inant organic solvent. Two mobile phases were used. Eluent A was 

com posed of 6% acetonitrile, 14mM sodium  acetate, 0.05% TEA in Milli-Q 

w ater (double-d istilled , deionised), and  ad justed  to pH  6.6 at room  

tem perature w ith glacial acetic acid. Eluent B consisted of 60% acetonitrile and 

40% Milli-Q water. Initial conditions of the gradient were 100% eluent A @ 

l.lm l/m in . At 1 min eluent B was stepped to 5% and at 10 mins to 6%. 

Eluent B was then increased to 100% via a linear program , and the flow rate
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flushed with eluent B at this flow rate for at least 4 minutes to eliminate 

hydrophobic impurities present in eluent A, or in the sample. Re­

equilibration time took a further 1 0  minutes, resulting in a tum-around time 

of 35 minutes.

FINAL
CONDITIONS

SOLVENT
COM POSITION

INITIAL
CONDITIONS

START
SEGMENT TIME

END
SEGMENT

Figure 3.2. Gradient curve shapes used to describe the rate of eluent flow and 

mobile phase composition between two identified time-points. This diagram 

and Figures3.3, 3.4, 3.5, 3.6 and 3.8 were taken and adapted, with permission, 

from a Millipore "Liquid Chromatography School" document.
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M ethods D evelopm ent

Even w ith in  the published m ethods there was still scope for 

improvement. The methodologies of both the sample preparation and the 

chromatography itself were developed, producing more effective separations. 

This was one of the key laboratory activities that enabled the work described in 

this thesis to be carried out, and therefore this will be discussed in some detail. 

The param eters that can be varied  are described below ; the m ethod 

developments that were carried out are also outlined.

In order for two peaks from solutes of different chemical types to be 

separated, their bands of elution m ust be sufficiently apart during  their 

passage through the column. In addition, band widths m ust rem ain narrow if 

compounds are to be eluted as discrete peaks. The resolving power of the 

system depends on three parameters: selectivity, efficiency, and capacity, each 

of which can be m anipulated. The desired m ethod of chromatography is one 

that achieves a satisfactory resolution of solutes in the m inim um  am ount of 

time. Resolution (Rs) describes the degree of separation of one component 

from another and is defined as the difference in retention volumes (V rs) of 

the two solutes divided by their average peak w idth (w). The equation below 

describes the resolution of the separation.

Rs = (Vr2 " Vri)/0.5 X (wj + W2)
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Figure 3.3 (below) describes how the resolution can be m easured 

from a chromatogram. The values of V and w can be m easured in volume, 

time or chart length (from the point of injection) as long as the uiiit is kept 

constant to allow subsequent comparisons.

Vri

VR2

Inject

w2w1

Figure 3.3. The m easurem ent of Resolution (Rs). V r i  and Vr2 are the 

retention volum es of the first and second eluting components respectively 

and w l and w2 are the peak widths of the first and second eluting components 

respectively. See text for further explanation.
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D eveloping a Separation

In order to produce a m ethod from scratch or to develop an existing 

method, certain chromatographic parameters can be used and adjusted so as to 

yield a m ethod tailored to the particular assay that one requires. A flow 

diagram that represents the steps in developing a viable m ethod is described.

G ather Information J
CMake a  Plan

Ç Optimise N ^

Incomplete
Resolution

C hange a
Incomplete
Resolution

Optimise k' ^

 Incomplete
Resolution

Complete
Resolution

Complete
Resolution

Complete
Resolutionc Validate Qualitation

FAIL

FAIL
cValidate Quantitation

< P A S 0 -

E v m lk o m W  m W  im W D m d l  Itexr
inaxuittllous)

Figure 3.4. This flow chart represents a step by step m ethod developm ent 
strategy. The factors N, a  and k' are explained in detail below and following 
the description of each are the procedures carried out in order to improve the 
technique.

For a desired degree of resolution three conditions have to be met: 1) 

the peaks have to be retained on the column (as described by the capacity 

factor, k'); 2) the peaks have to be separated from each other (the selectivity 

f a c t o r ,  a); and 3) the colum n m ust have a m inim um  num ber of 

plates/num ber of separations that occur in the column (column efficiency, N).
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shown diagrammatically in Figure 3.5.

or, k ', N -  H O W  THEY C O N T R O L  RESO LU TIO N

IN ITIA L

V
LW

INCREASE k '

INCREASE N

u

INCREASE a

Figure 3.5. The control of resolution of a separation using capacity (k'), 

selectivity (a)-and column efficiency (N).

A decrease in the k values of the original bands will cause a decrease m
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Figure 3.5. The control of resolution of a separation using capacity (k'), 

selectivity (a) and column efficiency (N).

A decrease in the k' values of the original bands will cause a decrease in 

resolution and a concomitant increase in analysis time and a decrease in peak 

heights. Improved efficiency (N) results in an improved separation of the two 

bands and narrower peak widths. If selectivity is increased, the resolution will 

be improved w ithout changes in analysis time or peak heights.

C olu m n  E fficiency (N)

The dispersion of the com pound th rough  the colum n can be 

m easured by the num ber or height of theoretical plates of the column (N), 

which determines the extent of bandspreading in a peak, and can be given by 

the following expression:

N = 25 (VR/ W5d) 2

where W 5a is the width of the peak, see Figure 3.6. (Other w idth values can 

be used but W 5a shows up the tailing of peaks which other m easures may 

miss).

In addition the plate height (FI) can be measured

H = L / N where L = the column length.

Commercially produced hplc columns have more than 50 000 plates 

m"^ w hen packed w ith 5pm particles. In this way a 15cm column as used in 

the present chromatography would have a plate num ber N of about 7500 and 

a plate height of 2pm. An acceptable chromatogram will probably be produced 

with c. 5000 plates or so.
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Figure 3.6. M ethod for determ ining colum n efficiency using the 5 sigma 

m ethod (see text for details).

O ptim ising N

Initially, a run of amino acid standards (Pierce, UK Ltd) was carried 

out using the method of Rogers et al. (1987) (see above). The results were less 

than satisfactory w ith band broadening occurring, causing peaks to run  into 

each other and not achieving a separation. The appearance of band  

broadening suggested a deficiency of the resolving power of the set-up rather 

than sometfiing intrinsic in the methodology. As the column was at least 4 or 

5 years old, and had had unknow n previous usage, it w as decided to 

determine the column's efficiency using the equation outlined above. A 5a 

m ethod was employed, using the band w idth @ 4.4% peak height. Therefore 

N  = 25 ( V r / W ) 2 .  The N  value was calculated at 3454 plates. This is a 

som ew hat low num ber (5000 plus is usually considered necessary for 

reasonable separations: Millipore technical advice to me) and it was decided to 

replace this column with a new C-18 JNIovapack column. On receiving this N 

was again calculated using the 5a method and tfiis time was found to be 10805 

plates. The amino acid standards were run  using the same gradient set-up, 

and as expected the new colum n gave considerably better results: band
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broadening was considerably reduced and the separation of most amino acids 

was achieved.

The separation was not complete, however, as co-eluting and close 

eluting peaks were found in the incubation media.

In order to improve resolution by changing N, flow rate may in 

addition be changed. The most practical way is to decrease the flow rate which 

will be accompanied by a concomitant increase in separation time. However, 

by increasing the flow rate during times where no close eluting peaks are 

present but decreasing flow rate when close eluting peaks are present, total 

run  time or turn-around time was kept down. Thus the initial flow rate was 

reduced from 1.1 m l/m in  to Im l/m in  and then to 0.75m l/m in of eluent A. 

This increased the separation of the early-eluting peaks, to the extent where 

most peaks were visible, but co-elution, particularly of glycine and glutamine, 

was still occurring even at 0.5 m ls/m in. Therefore, as no better separation 

could be achieved using just a change in N  the next stage was evaluated i.e. a 

change in k', the capacity factor.

Capacity (k')

A peak on a chrom atogram  is identified by some m easure of 

retention. The degree of retention of a particular com pound in a mixture is 

often expressed quantitatively in terms of the retention time (tR) or the 

retention volum e (Vr). A useful quantity to identify a peak is the capacity 

factor (k') w hich describes where the peaks elute relative to to or Vq (the 

retention volume or time of a non-retained solute).
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Figure 3.7. Measurements of capacity factor, k'. Vo is the void volume and is 
the m easure of the retention of an unretained compound. Vr is the retention 
volum e of the solute. tO and tR are the void times and retention times 
respectively. See text for further details.

The ratio, the capacity factor (k') is given the following expression: 

k ’= (Vr - Vo) / Vo

For low values of k' resolution increases very rapidly w ith increasing 

k'. At high values of k' there is a much dim inished return  of resolution for 

increasing k'. The optimal values of k' are in the range of 1 < k' < 10.

To achieve an optimal k ' value the retention time of a component

can be altered by a change in the chemical nature of the two chromatographic

phases, such that the solute concentration ratio is changed. This is usually

carried out by altering the solvent strength of interaction w ith the solute: an

increase in mobile phase polarity will lead to an increase in the k ' values^ as

the strongest solvent is the least polar in a reverse phase separation. To

determine the effect of a solvent on the chromatography, a 'scale of polarity'
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table can be consulted. This shows the adsorption energies (the Snyder 

param eter) and a summation of the different intermolecular interactions (the 

solvent polarity parameter) present in the solvent (see Table 3.1).

Alternatively, instead of changing the actual solvents, the volumes 

of the solvents in the mixture may be changed, as the given solvent polarity 

param eter for a m ixture is roughly equal to the volume fraction of each 

solvent multiplied by the solvent polarity P' such that

R  = (|)a Pa + (J)b Pb

where (j)a and (t)b are the fraction volumes of solvents A and B in the mixture 

and Pa and Pb refer to the P' values of the pure solvents.

Thus the values of k' are characteristic of individual solutes. By 

choosing a certain combination of the mobile and stationary phases, the k ’ 

values will be different for each component in a given mixture.

Solvent Snyder Parameter Solvent Param eter 

F

trichlorom ethane 0.40 4.4

acetonitrile 0.65 6.2

methanol 0.95 6.6

water 1.00 10.2

Table 3.1. An elutropic series of commonly used solvents. The Snyder 
param eter refers to the adsorption energies of the solvents and the solvent 
param eter refers to the intermolecular interactions present in the solvents 
(e.g. hydrogen-bonding. Van der Waal forces, Coulombic forces, dipole 
interactions). The higher the param eter number the more polar the solvent.
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Optimising k'

From table 3.1 it can be seen that the solvent param eter for eluent A 

in the Rogers method is 0.94 x 10.2 (94% water) and 0.06 x 6.2 (6% ACN) = 9.96. 

Eluent B is therefore 0.6 x 6.2 and 0.4 x 10.2 = 7.8. Thus there is a decrease in P 

value from eluent A to B. In this way the more polar and smaller amino acids 

elute at the beginning of the run, w ith the larger amino acids that will have a 

smaller amount of charge per unit mass eluting at the end of the series. In 

order to increase the k ' values it was decided to increase the water content of 

the mobile phases. Eluent A 's acetonitrile content was dropped to 4%, so that 

the solvent param eter was now 10.04, and the separation was carried out 

again. There was a much improved separation of the early-eluting peaks, but 

glutam ine and glycine still appeared to be co-eluting. Therefore eluent B's 

water content was increased to 50'%,, and in a subsequent run  to 60%, to see if 

there was any increase in the glycine /  glutam ine separation. There was no 

noticeable improvement in the separation. It was decided at this juncture to 

try a different approach, and to effect a change in the selectivity factor, a.

S e lec tiv ity  or sep aration  factor (a)

The selectivity factor (a) is a m easure of the separation of two 

adjacent components. It is the ratio of capacity factors in the mixture such that

a  = k '2 / k ’l ^ (V r2-Vo)/(Vki-Vo>

(k'2 is the capacity of the component with the longer retention time).

If a  = 1 the bands are not resolved as the capacities are equivalent. If 

a  > 1 the points of m axim um  concentrations of the two peaks are not 

coincident. However, if the bands are not contained in a small volume of 

mobile phase, poor separation may result in spite of favourable a  values, as a
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does not take into account any overlapping of the peak areas. The value of a  

should be as large as possible given all factors being equal. This is a powerful 

tool for im proving resolution as Rs can be increased at the same time as 

decreasing the separation time t.

The separation factor may be varied by one or more of the following 

m echanism s (the follow ing list is in decreasing order of effect on the 

resolution)

- a change of the mobile phase solvent;

- a change of the mobile phase pH; and

- a change of the stationary phase.

C hanging the m obile phase solvent w ill give variable and 

sometimes quite unexpected results and although a powerful tool, may not be 

practicable on occasion (e.g. miscibility of solvent, solubility of the sample).

The second most popular means of varying the selectivity is by 

changing the pH of the solutes. In practice the pH  of the mobile phase is 

varied, and the resulting changes in the capacity, k', and a  are m easured from 

the chromatogram; this technique is restricted to samples of ionisable acids or

bases allowing changes in the pK values. W hen a change of pH  gives optimal

a  values bu t k' values are not betw een 1 and 10 then a change of solvent 

strength by varying the proportions of components in the mobile phase can be 

carried out (see previous section).

A change of stationary phase is usually im practical b u t if used 

requires further adjustments to be made to the capacity k' values.
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op tim ising  a

a  is directly related to the solute-solvent interactions. The change in 

the thermodynamics of the system can be brought about by varying the phase 

ratio (Vs/Vm), by using different phase gradients, by changing the solvent 

com position and pH , and by m eans of secondary equilibria. The m ost 

effective and easiest option of m aintaining k' values whilst changing a , is a 

change in the gradient run. By retaining a low level of organic solvent 

(acetonitrile) for a longer period, and by reducing the rate of total acetonitrile 

content in the mobile phase over time, it is possible to vary the phase ratio so 

that m ore subtle distinctions betw een the. polarities of the different PTC- 

amino acids are used. Thus by reducing the total concentration of eluent B in 

the system for as long as possible, and by reducing the initial flow rate, much 

im proved separations could now be carried out. In addition the level of TEA 

in eluent A was increased to 0.1%, because Ebert had found this to be effective 

at separating ammonia from threonine and phenylalanine (Ebert, 1986).

The pH of eluent A was also varied to see if there was an increase in 

resolution of the system. Runs w ith the eluents at pH  6.0, 6.8 and also at pH 

7.0 were carried out. These suggested that a pH  of 6.8 was probably optimal, 

although there was little difference in the separation of any of the amino acids 

between the three pH  values.
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C hrom atographic co n d itio n s

The new chrom atographic conditions are described in full below, and 

are shown in Figure 3.8.

Eluent A was now composed of 4% acetonitrile, 14mM sodium  acetate, 

0.1% TEA in Milli-Q water, and adjusted to pH  6.8 at room tem perature with 

glacial acetic acid. Eluent B still consisted of 60% acetonitrile and 40% Milli-Q 

water. Initial conditions of the gradient were 100% eluent A @ 1.5m l/m in. 

After 1 minute eluent B was stepped to 2% but dow n to 1.Im l/m in , and at 10 

minutes eluent B was stepped to 5%. Eluent B was then increased to 50% by 12 

minutes via a linear program, and to 100% by 14 minutes. At 14.5 minutes the 

flow rate was increased to 1.5 m is/m inutes. The column was flushed with 

eluent B at this flow rate, until 19 m inutes, to elim inate hydrophobic 

im purities present in eluent A, or in the sample. From 18 to 19 m inutes, a 

linear program  pushed eluent A to 100%, and from 19 to 27 minutes the flow 

rate was dropped to 1.Im l/m in . Injections of a new sample, or a repeat 

injection, could proceed from ca. 30 m inutes after the first. If no further 

injections occurred then the program  w ould run  dow n to O.lOmls/min of 

100% eluent B by 45 minutes.
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Figure 3.8. A) Table showing the gradient run  param eters used in the present 
investigation; and B) a chromatogram of Pierce amino acid standards. The 
ammo acids are: D=aspartate, E=glutamate, S=serine, G—glycine, H=histidine, 
R =argin ine, T = th reon ine, A =alanine, P = pro line, Y =lysine, V =valine, 
M =methionine, L=leucine and K=hydroxyproline (GABA was not contained 
within the Pierce standards).

93



Q u a lita tiv e  C h rom atograph y

Qualitative chromatography refers to identifying the components of 

the chromatogram. One m ethod is to refer retention times or volumes to 

standard values, i.e. comparing the retention volumes of the standard Pierce 

amino acids to those of the sample chromatogram. This technique may not 

provide convincing accuracy, and identification is best confirmed by "spiking' 

the peaks of the sample with additional amino acid. Therefore if there is a 

peak on the chromatogram that elutes at the same time as the glutam ate in 

the standard sample, to identify the peak further one could add a glutamate 

standard to the sample and re-inject. If the peak was indeed glutam ate it 

w ould now be considerably larger than before due to the added standard. 

Ideally, the spiked sample should be run  changing several chrom atographic 

parameters; in all cases the standard and the sample peak should elute at the 

same time as the amino acid (see Figure 3.9).

Spiking of sam ples was carried out at regular intervals during 

analyses, particularly at times following the replacem ent of mobile phases. 

Renewal of the mobile phase tended to cause significant changes in the HPLC 

analysis due to slight changes in pH (due mainly to faulty pH-meter readings) 

and possibly changes in ACN content.
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Figure 3.9. Chrom atogram  of a sam ple m edium  (A) without, and (B) w ith, 

am ino acid s tandards added to the derivatised  sam ple to dem onstra te  

coelution of the peaks. Peaks D, E and G as defined in Figure 3.8B; 

4=glutamine, 6=y-aminobutyric acid.
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Q u a n tita tiv e  C h rom atograph y

Q uantitative analysis of chrom atogram s w as carried out using a 

W aters 740 Data-m odule. Both peak height and peak areas could be 

determ ined by m athem atical integration. Peak height m easurem ents are 

more accurate than peak areas as they are less subject to interference by 

adjacent overlapping peaks. However peak height is more prone to variations 

in the experimental conditions, as a slight increase in elution time will affect 

the height. Peak areas are not affected by elution times, although aberrations 

in the chromatogram such as tailing, shoulder and leading peaks and baseline 

drift may severely alter the area calculation. Fortunately the W aters Data 

m odule has a variety of commands that enable these peaks to be integrated 

accurately (see Figure 3.10).

Inject ^ 432

inject

Figure 3.10. a). The diagram  above shows an example chrom atogram  w ith 

tailing (1), shoulder (2) and leading (3) peaks and baseline drift (4) before 

integration b) Shows the sample chromatogram after integration.
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The quantity of compound present was printed out as either area or 

height in the number of absorbance units adjacent to the retention time of the 

compound allowing identification of all peaks.

Calibration Methods

External Standardisation

This m ethod involves the construction of a calibration plot using 

standards made up from a known stock of the amino acid. Pierce produce a 

solution containing a range of amino acids of know n concentration which 

was diluted with 0.1 N HCl to produce a suitable range of concentrations. A 

fixed volum e of each s tandard  was then  injected, and the resulting  

chromatogram integrated to produce peak heights and areas for each injection. 

A calibration plot of the resu ltan t peak height or area vs. standard  

concentration is carried out for each amino acid. In general the calibration 

plot is alm ost linear and extrapolates through the origin, although at the 

highest concentrations a tailing-off becomes apparent. A possible problem 

w ith standardisation curves is that, even when m easuring peak areas, there 

may be a significant variance from the curve due to changes in the sample 

injection volum e as even autom atic sam pling volum es may vary. The 

W aters 712 automatic sam pler can be program m ed for increased accuracy 

w hen carrying out injections, which was generally employed w hen injecting 

small sample volumes (5 to 20|il) and standards to minimise the possible 

variance. In addition, standards were injected after every change in mobile 

phase and before any prolonged group of injections (although this was not on 

a daily basis).
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Internal Standardisation

An additional m ethod of determ in ing  relative concentrations 

betw een differing chrom atogram s is by the add ition  of an equivalent 

concentration of a compound, that is not itself contained in the sample, to 

each sample under investigation. From this a ratio of each sample peak to the 

internal standard peak can be found. In addition, separate chromatograms can 

be com pared w hen the levels of internal standard  should be equal bu t for 

some reason (e.g. injection volume may have changed) are different.

The criteria for a suitable internal standard include: that it should be 

of similar structure to the component of interest, it should be completely 

resolved from other components in the sample and that it should be stable 

and of high purity.

For amino acid analysis the internal standard  should be a non- 

physiological amino acid. Both 1-homoarginine and 1-norleucine were used 

in this thesis as the internal standards. All data in the release experiments 

were determined relative to the internal standard used.

By using standarisation techniques it was possible to calculate the 

am ount of amino acid present in the injected sample and to extrapolate this to 

find the total am ount of amino acid present in the original sample. For 

example if 50pl of the total lOOpl of the sample diluant is injected, and the 

derivatised sample was 50pl of the medium (from lOOOpl original incubation 

m edium ), then this is equivalent to analysing 25pi of the original (50 x 

50/100|il). The total amino acid released from the tissue into the m edium  is 

40 times (i.e. 1000/25) the level found in the chromatogram.
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GABA analysis

The pH  is of particular importance as regards the separation of 

GABA. If the pH  is too low the GABA peak is poorly resolved from that of 

citrulline (Cohen and Strydom, 1988). The current methodology, w ith a pH  of 

6.8, allows a good separation of GABA (see Figure 3.9).

A problem  encountered w ith the analysis of GABA w hen using a 

different derivatisation procedure, most notably OPA-derivatisation, is the 

lack of stability of the derivatised amino acid. OP A produces derivatives that 

are chem ically unstable and this technique, therefore, requires rap id  

production of the derivative and reproducible tim ing to obtain accurate 

results (Reynolds and Pearson, 1993). According to Lasley et al. (1984) the 

speed of derivatisation process was vital for GABA and glycine derivatives 

since both exhibited a half-life of 4 m inutes only, which w ould inevitably 

result in the degradation of the derivative on the column. PITC-derivatives 

of GABA on the other hand, are very stable and show similar characteristics to 

the other amino acid derivatives and will produce reproducible results even 1 

week following storage in a freezer (Cohen and Strydom, 1988).

In addition, problems have been found in the yield of the amino acid 

follow ing filtra tion  w ith certain  k inds of m em brane. The presen t 

methodology did not employ the use of any filtration w ith centrifugation 

being the only method for removing unwanted particulates, and the amounts 

of GABA found following the chromatography used in the present study were 

in general agreem ent with others (e.g. Ghisjen et al., 1992, Levi and Morisi, 

1979) in both the actual levels and levels relative to the other amino acids. -
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Adenosine analysis

D uring the course of the thesis it w as found necessary and 

appropriate to analyse the levels of the nucleoside adenosine from the chick 

brain media. The methodology used for amino acid analysis, as described 

above, allowed satisfactory detection of adenosine. However, problems were 

found due to some co-elution of the purine w ith  derivatised amino acids, 

specifically glutamine and glycine. Therefore, it was decided to use a different 

chromatography.

N ucleosides can be separa ted  using reversed-phase  system s 

employed w ith a m ethanol/buffer gradient (Hartwick and Brown, 1976). Since 

they lack the charged phosphates of the nucleotides, nucleosides such as 

adenosine can be separated on C18 packings, such as the Novapak system used 

for the analysis of amino acids in the present study.

Nucleosides are strong chrom ophores, absorbing light in the u.v. 

spectrum  between 240 and 270nm (Perrett, 1986). The u.v. detector used for 

the analysis of amino acids had a w avelength that coincided w ith  this 

frequency at 254nm and could therefore be readily applied to adenosine 

analysis.

A suitable chromatography was described by Chen et al. (1992) and 

was used as follow^. A mobile phase of O.OIM NaH 2P0 4  w ith  6% methanol 

(pH 6.1) was prepared and de-gassed with helium. The eluant was pum ped at 

a flow rate of 0.8 m l/m in  and was used as an isocratic system (i.e. no change in 

buffer or flow rate was carried out in the analysis). No sample preparation was 

carried out other than centrifugation (8000rpm for 4 minutes) of the medium. 

The limit of sensitivity of the system for adenosine was 5 picomoles. Figure 

3.11. shows a typical chrom atogram  of an adenosine standard  using this 

methodology. A peak that had a retention time equivalent to the adenosine 

standard was found to elute at ca. 6.8 minutes after injection in to the HPLC.
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Subsequent 'spiking' of the sample with adenosine standard demonstrated 

that this peak was indeed adenosine. Quantification was carried out using an 

external standardisation procedure (calibration of adenosine standards).

IT

Figure 3.11. Chromatogram of an adenosine standard using the method for 

adenosine analysis described in the text.
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Chapter 4: The Release and Uptake 
of Amino acid Transmitters from 
the IMHV of the day-old Chick 
following a Passive Avoidance Task

Introduction

The IMHV of the day-old chick, as has been outlined in the Chapter 2, is a 

site of neuronal activity and change following the passive avoidance task. In 

this region there are a range of synaptic events associated in the biochemical 

cascade following passive avoidance learning. Amongst the early necessary 

steps tow ards the form ation  of m em ory and  its recall is th a t of 

neurotransm itter release. It was decided to look at the release of putative 

amino acid transmitters from areas of the chick brain thought to be involved 

in  learn ing  and m em ory, nam ely the IMHV (C hapter 4) and  lobus 

parolfactorius (LPO; Chapter 5). A role for the amino acid neurotransm itters, 

glutam ate and GABA, and their receptors has been suggested in  passive 

avoidance training (e.g. Bullock et al., 1993; and Clements and Bourne, 1995).

The experiments were carried out as a longitudinal study in order to look 

at the time course of release of amino acids from the chick IMHV. A time 

course approach was taken as previous evidence from  other biochemical 

studies had suggested that the biochemical events m ay occur in waves' (see 

Chapter 2), and a study at specific time points w ould allow comparison and 

correlation w ith other events at the time points taken.
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M ateria ls an d  M eth o d s

Ross Chunky chicks of both sexes were held in a communal incubator 

on a 12-hr light/12-hr dark cycle at 38-40°C until they were 24 (±-6) hrs old. 

The chicks were then rem oved and placed in pairs in m etal pens (size: 

20x25x20 cm) each illuminated w ith a 25-W red light. They were allowed to 

acclimatise to this experimental environm ent at 28-30°C. Sixty minutes later 

the chicks were exposed to a pre-training trial w ith a small white bead (2mm 

in diameter) attached to a perspex rod. The bead was introduced into the pen 

for up to 20 seconds. During this time the bead was presented to each chick, 

and whether or not the chick pecked at the bead was recorded.

This pre-training trial was followed by two similar pre-training trials, 

each approximately five minutes apart. Chicks that did not peck on at least 

tw o of the three presentations were no t trained . The train ing  trial 

commenced at least 10 minutes after the third presentation. A chrome bead 

(4mm in diameter) was presented to each chick for 10 seconds. This bead was, 

according to the test conditions, d ipped in either w ater (denoted W) or 

methylanthranilate solution (MeA). Again the pecking response of the chicks 

was noted. Those that peck at the MeA bead generally exhibited a strong 

disgust response; they usually closed their eyes, shook their heads and wiped 

their beaks on the ground in an effort to remove remaining MeA. Those that 

d id  not peck on training (generally < 10%) w ere elim inated from  the 

experiment and did not contribute to the data or analyses at the end of the 

experim ent.

A test for recall of the task was carried out after training, at times 

betw een 10 m inutes and 24 hours. The test consisted of a 10 second 

presentation of a dry chrome bead identical to that used in training. It was 

noted w hether the chick pecked or not, and the latency to first peck. The 

num ber of pecks made at the bead was also noted in some cases. Chicks that
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did not peck were called "'avoid" and chicks that did were called "peck". This 

classification is useful for behavioural pharmacology, where due to the large 

num ber of chicks that have to be used and the statistics that have to be carried 

out, they are by necessity classified into just these two groups; however for the 

biochemical w ork the MeA chicks that avoided the chrome test bead were 

used only if they perform ed a "head shake" or "beak-w ipe" response as 

exhibited w hen they trained on the MeA bead itself. This elim inated those 

chicks that, although they avoided the bead, may not actually have learned the 

task: many groups of chicks became extremely anxious due to noise or other 

disturbance over the experimental period and w ould avoid the bead without 

perhaps having learned the task.

Dissection procedure

All chicks were killed swiftly by decapitation using heavy scissors. 

The feathers and tissue on the crown were then trim m ed away w ith a lighter 

pair of scissors to expose the skull. One blade of the scissors, which was 

directed upwards, was inserted beneath the skull just above a suture line near 

the orbital socket. A cut was made along this suture line anteriorly to the 

right orbital socket, then posteriorly to the foramen m agnum  and back to the 

left orbital so that an oval of bone could be removed w ith tweezers to expose 

the brain. Next a spatula was inserted anteriorly between the eye sockets and 

the brain itself and shifted under the forebrain. The forebrain, including optic 

tecta, could be extracted from the skull. For dissection of specific forebrain 

areas the brain was placed in a specialised brain m ould (Figure 4.1). The areas 

required were selected by slicing the brain in the m ould at points A and B (for 

IMHV) and for points B and C (for LPO). The brain area was then dissected 

out by scalpel and placed into a vial containing pre-incubation m edium  until 

used for the experiment.
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B

Figuré 4.1. Schematic draw ings of coronal slices of day-old chick brains 

prepared  using a brain m ould. The position and angle of cu ts axe show n in 

the sagittal scheme. The first slice, A (taken at level "a") was used  for 

dissecting LPO and the second, B (taken at level "h") was used for dissecting 

PA and MHV (after Bullock et al., 1987).
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Release procedure

Tissues were prepared on a Mcllwain chopper, w ith  slices produced 

by a single cut of 350^im. The tissue was collected in 95% 02-5% CO2 gassed 

Krebs-Henseleit buffer. Com position of buffer in  mM: NaCl 118, KCl 4.7, 

CaCl2.2H20 1.3, MgS0 4 .7H 2 0  1.2, NaHCOg 25, glucose 10 and KH2PO4 12, at 

pH  7.4 and a temperature of 37°C.

The slices were then pre-incubated in this gassed m edium  for 60 

m inutes whilst being shaken at 100 strokes per m inute in a w ater bath: the 

pre-incubation buffer was replaced at 20 and 40 m inutes w ith fresh Krebs- 

Henseleit: the IMHVs were combined from 3 or 4 chicks according to the 

treatm ent and the hemisphere, such that 3 or 4 left IMHVs of M eA-trained 

chicks were incubated together, left IMHVs of water-trained chicks were also 

incubated together etc.. Following preincubation, the slices were then 

separated such that roughly equal quantities of the combined tissue were 

placed in vials containing 1ml of one of four media, measuring: the total basal 

release (Krebs-Henseleit buffer); calcium -independent basal release (a Krebs- 

H enseleit buffer w ith the CaCh  replaced by 2mM EGTA), the calcium- 

independent potassium  stim ulated release (a Krebs-Henseleit buffer w ith  

50mM KCl and an equim olar reduction in NaCl concentration and 2mM 

EGTA); and the total stimulated release (a Krebs-Henseleit buffer containing 

CaCl2 and 50mM KCl).

The tissues w ere incubated in 1ml of these m edia for 2 m inutes, 

following w hich 200pl of the media from each vial were collected and frozen 

immediately, w ith protein determinations taken of the tissue.
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Protein Determinations

A  Biorad-protein assay (Bradford, 1976) was used to measure protein 

levels in the tissues assayed. For this lOOmg Coomassie brilliant blue G-250 

was dissolved in 50ml of 95% ethanol. To this 100ml of 65% (w /v) phosphoric 

acid was added. This solution was then diluted to 1 litre w ith distilled water 

to give a final concentration of the reagents: Coomassie blue (0.01%), ethanol 

(47%) and phosphoric acid (8.5%), all v /v .

Samples were prepared by centrifugation (8,000 rpm  for 5 m inutes), 

followed by the removal of the supernatant and subsequent addition of a 

known amount of distilled water to dilute the sample such that the lOpl taken 

for analysis w ould contain a level of protein w ithin a range of prepared 

standards. Following addition of water, the sample was hom ogenised and 

then sonicated at medium power for 20 seconds; the sample was now ready for 

protein analysis. The microprotein assay consisted of the following: 30pl O.IM 

NaOH was transferred to each well on a micro protein plate. To this was 

added lOpl of the standard solution or the prepared sample. Finally 250pl of 

the Bradford dye was added to each well and after 10-15 m inutes the 

absorbance at 595nm was measured and compared w ith a range of standards of 

bovine serum albumin. All analyses were carried out on the HPLC following 

pre-colum n derivatisation w ith phenylisothiocyanate (see Chapter 3). Both 

hemispheres were measured to provide data on any latéralisation effects.

Statistical treüfment of data

HPLC analysis was carried out on each sample at least 4 times in order to 

determ ine the variance in the sam ple, and betw een each sam ple. This 

provided data for nested-ANOVAs (carried out on Statview). The statistical 

significance of the differences between the release values from MeA-trained 

and w ater-trained chicks was calculated. Data were expressed as means ± 

S.E.M. values of n  experiments. The significance level was set at p < 0.05.
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E xp erim en t 4.1. T he tim e  course o f  th e  re lease  o f  a m in o  ac id s from  

th e  in term ed ia te  m ed ia l h yp erstr ia tu m  ven tra le  (IM H V ) o f  the day- 

o ld  ch ick  fo llo w in g  a one-trial p a ssiv e  avo id an ce task

R esu lts

Basal release of amino acids

The basal release of glutamate, aspartate, glycine and GABA from the left 

and right IMHVs of day-old chicks, as m easured follow ing a 2 m inute 

incubation in Krebs-Henseleit buffer only, was determined 10, 30 minutes, 1, 3 

and 6.5 hours following training on the passive avoidance task (n= for MeA- 

trained chicks 8,7,6,6,9 at these times respectively), and compared w ith that for 

birds trained on the water bead (n= 7,7,7,7,8 respectively).

No differences were found in the basal release of any of the four amino 

acids m easured between the combined data of the two groups (MeA v W; 

ANOVA, all p>0.2). The results shown in Figure 4.2 are the combined data of 

left and right IMHVs.

Calcium dependency of release

The calcium -independent (K+-stimulated Ca2+-free m inus norm al K+, 

Ca2+-free medium ) data are described in Figures 4.3 for left IMHV and in 

Figure 4.4. for the right IMHV. The numbers of chicks used at each time point 

and for each hem isphere are as follows: for the left IMHV n= for MeA, 

7,8,7,9,6; for water-trained, 8,7,9,11,7; at 10 and 30 m inutes and 1, 3 and 6.5 

hours post-training respectively: in the right IMFTV, n= for MeA, 7,7,8,8,8, for 

w ater-trained, 7,7,9,8,7 at these times respectively. No differences were noted 

betw een the groups in the calcium -independent com ponent of release of 

glutamate, aspartate or GABA in the left or right IMHVs (p>0.20). There was, 

however, a significant increase in glycine release in the left IMHV of MeA- 

tra in ed  b ird s  30 m inu tes after tra in in g  (F=5.924 p=0.032 df=13).
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Figure 4.2. The effect of a passive avoidance task on the basal release of (A) 
glutamate, (B) aspartate, (C) GABA and (D) glycine from the combined left and 
right IMHVs of day-old chicks, 10 and 30 m inutes, 1, 3 and 6.5 hours after 
training: picomoles amino acid released per 2 m inutes per m g protein. The 
sam ple sizes for each group are the same as those indicated in  the bars 
showing glutamate release. Error bars are means ± S.E.M.
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Figure 4.4. The effect of a passive avoidance task on the calcium-independent 
release of (A) glutamate, (B) aspartate, (C) CABA and (D) glycine from the right 
IMHVs of day-old chicks, 10 and 30 minutes, 1, 3 and 6.5 hours after training: 
picomoles amino acid released per 2 minutes per mg protein. The sample 
sizes for each group are the same as those indicated in the bars showing 
glutamate release. Error bars are means ± S.E.M.
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The K+-induced Ca2+-dependent release com ponent w as estim ated by 

subtracting the Ca^+-independent release values from the total K+-induced 

release in the presence of Ca2+; the final figure being the calcium -dependent 

release.

Thirty m inutes after training there was a significant increase in the 

calcium -dependent release of g lu ta m ate  in the left IMHV of M eA-trained 

compared to w ater-trained chicks (Figure 4.5, F=5.78 p=0.033 df=13). The 

elevated glutam ate release was still apparent at 1 hour in the left IMHV 

(F=7.05 p=0.019 df=14). The 3 and 6.5 hour sam ples d id  not show any 

differences in release of the amino acid as compared to the controls in the left 

IMHV (p > 0.05).

The right IMHVs of M eA-trained chicks show ed increased calcium- 

dependent increases in glutam ate release at 30 m inutes (F=4.891 p=0.046 

df=12), 3 hours (F=8.448 p=0.013 df=14) and at 6.5 hours (F=10.294 p=0.0075 

df=12) after training, compared to the water controls, but not at 10 minutes or 

at one hour post-training.

Significant differences were also found between the hemispheres: 1 hour 

post-training there was an increase in the release of glutam ate in the left 

compared to the right IMFTVs of MeA-trained chicks (F=8.433 p=0.013 df=13), 

and at 3 hours the right hem isphere show ed an increase in the release of 

glutamate compared to the left (F=5.039 p=0.0441 df=14).

Calcium -dependent aspartate release showed an increase in MeA-trained 

chicks at the 1 hour point in the left IMHV (Figure 4.6, F=7.121 p=0.018 df=13). 

Aspartate release was significantly higher in the right IMHV than the left of 

MeA-trained birds 3 hours after training (F=6.433 p=0.0211 df=15). Also at 3 

hours there was an increase in aspartate release in trained birds compared to 

water controls in the right IMHV (F=6.016 p=0.0269 df=14). No differences 

were found in water-trained chicks (p>0.05).
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One hour after training there was also an increase in GABA release from 

the left IMHV of MeA-trained chicks compared to W-trained birds (Figure 4.7; 

F=15.577 p=0.0017 df=13). This increase was also evident when comparing the 

left and right IMHVs of MeA-trained chicks with a significantly greater release 

(186 %) in the left at one hour (F=15.590 p=0.0017 df=13). GABA release was 

also increased in MeA birds at 6.5 hours in the right IMHV as compared to the 

water controls (F=8.478 p=0.0121 df=13).

Calcium-dependent release of glycine was also measured; no changes at 

any time in the left or right IMHV of either group were demonstrated (p >

0.05; see Figure 4.8).
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Figure 4.5. The effect of a passive avoidance task on the calcium-dependent 
release of glutamate from the left (A) and right (B) IMHVs of MeA-trained and 
water controls; and a comparison between the release from the left and right 
IMHVs of MeA-trained (C) and water control (D) chicks over time: picomoles 
amino acid released per 2 minutes per mg protein. The sample sizes for each 
group are indicated in the bars. An asterisk * indicates a significant difference 
between MeA and water-trained or left v. right IMHV(P<0.05, ANOVA). Error 
bars are means ± S.E.M.
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Figure 4.6. The effect of a passive avoidance task on the calcium-dependent 
release of aspartate from the left (A) and right (B) IMHVs of MeA-trained and 
water controls; and a comparison between the release from the left and right 
IMHVs of MeA-trained (C) and water control (D) chicks over time: picomoles 
amino acid released per 2 minutes per mg protein. The sample sizes for each 
group are as Figure 4.5. An asterisk * indicates a significant difference between 
MeA and water-trained or left v. right IMFrV(P<0.05, ANOVA). Error bars are 
means ± S.E.M.
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Figure 4.7. The effect of a passive avoidance task on the calcium-dependent 
release of GABA from the left (A) and right (B) IMHVs of M eA-trained and 
w ater controls; and a comparison between the release from the left and right 
IMHVs of MeA-trained (C) and water control (D) chicks over time: picomoles 
amino acid released per 2 minutes per mg protein. The sample sizes for each 
group are as Figure 4.5. An asterisk * indicates a significant difference between 
MeA and water-trained.or left v. right IMHV (p<0.05, ANOVA). Error bars are 
means ± S.E.M.

116



A)

B
2 125
CL
CD 1 00 

1  75

i .50-

10 min 30 min 1 h

□  MeA
B  Water

3 h
time post-training

6.5 h

B)

io  100
C l

O) 80

1

f
1
■q .

60-
40-

2 0 -

C)

T j ;

10 min 30 min 1 h 3 h 6.5 h
time post-training

□  Left 
■  Right

2  125-

CD 100

10 min 6.5 h
time post-training

D)

2 125

CD 100

30 min10 min 6.5 h
time post-training

Figure 4.8. The effect of a passive avoidance task on the calcium-dependent 
release of glycine from the left (A) and right (B) IMHVs of MeA-trained and 
water , controls; and a comparison between the release from the left and right 
IMHVs of MeA-trained (C) and water control (D) chicks over time: picomoles 
amino acid released per 2  minutes per mg protein. The sample sizes for each 
group are as Figure 4.5. Error bars are means ± S.E.M.
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Experiment 4.2. The uptake of glutamate in the IMHV of the day-old 
chick following a passive avoidance task 

Introduction

In section 4.1 the release of glutamate was found to be increased 30 

minutes after training in the left and right IMHVs of MeA chicks and one 

hour after training in the left IMHV. It was decided to look at the uptake of 

glutamate at these time points and also at 15 minutes post-training. Uptake, 

as has already been described in Chapter 1, is an essential requirement to 

terminate the effect of amino acid transmitters and, in the case of glutamate, 

to keep the extracellular concentration below neurotoxic levels (Bouvier et al., 

1992). It is proposed that as the release was increased following training, a 

concomittant increase in the uptake might occur to compensate for this. 

Increased glutamate uptake would, therefore, be hypothesised to occur in the 

left IMHV at 30 and 60 minutes and at 30 minutes in the right IMHV, and the 

following experiments were carried out to test this.

The present study used slices of chick IMHV, allowing both the glial 

and neuronal uptake systems to contribute, but did not allow any analysis of 

their relative efficacies.

Methods

Following dissection, prisms of chick IMHVs were incubated in 4.5 

ml of an oxygenated Krebs-Henseleit buffer at 37°C in a water bath with a 

shaking rate of 100 strokes per min. After 10 minutes incubation, 0.5 ml of a 

solution of Krebs-Henseleit-buffered medium containing ^H -labelled  

glutamate (250nM) was added to the medium (final volume 5 ml). Five 

minutes later, the uptake reaction was stopped by dilution with 5ml ice-cold 

Krebs-Henseleit buffer and the medium filtered through Whatman No. 54 

(cellulose acetate) filter paper under vacuum. The prisms were then digested
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with 0.2 ml NaOH (IM), and 5ml of a scintillation fluid (Packard emulsifier) 

was added. A count of disintegrations per minute (dpm) was then determined 

using a Beckman LS 7500 liquid scintillation counter and the Bradford method 

was used to estimate the amount of protein.

Uptake of glutamate was determined in the left IMHV at 15, 30 and 60 

minutes after training (n= for MeA-trained, 7,8,7; for water-trained, 7,8,7 

respectively) and in the right IMHV at these times (n= for MeA-trained, 8,9,7; 

for water-trained, 7,8,8 respectively).

Statistical analysis was carried out using a two-tailed Student's t test 

(Statview)r Data were expressed as means ± S.E.M. values of n experiments. 

The significant level was set at p < 0.05.

Results

The results are shown in Figure 4.9. The left and right IMFTVs of 

both MeA-trained chicks that avoided the test bead and water controls which 

pecked the test bead were used at 15 minutes, 30 minutes and one hour 

following training. An increase in dpm /m g protein, and therefore an increase 

in the level of uptake, was found 30 minutes (t=3.719 p=0.0012 df=14) and one 

hour (t=5.653 p=0.00005 df=12) after training in the left IMHVs of MeA-trained 

chicks. No differences in glutamate uptake were found 15 minutes after 

training.

The uptake of glutamate from the right IMHV was increased in 

MeA-trained chicks 30 minutes following training (t=4.751 p=0.00015 df=15). 

No changes were seen 15 minutes or one hour after training (both p>0.60).
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Discussion

This study shows the effect of passive avoidance learning on transmitter 

release and uptake from slices of the IMHV of day-old chicks.

No changes in transm itter release were found 10 m inutes after passive 

avoidance training in either hemisphere. By 30 minutes, a rise occurred in the 

K+-induced Ca^+-dependent release of glutamate in both IMHVs. This increase 

appeared specific in its calcium dependency as no change in the basal release or 

Ca2+-independent release was observed. The enhanced release of glutamate 

was still present in the left IMHV at one hour post-training bu t not in the 

right. At this time aspartate and GABA release were also enhanced in the left 

IMHV. Beyond one hour, no differences betw een M eA-trained and water- 

trained chicks were apparent in the left IMHV. Changes in the release were 

now removed to the right IMHV: at 3 hours glutam ate and aspartate release 

were increased, at 6.5 hours glutamate and GABA release were now enhanced.

Glutamate uptake was also found to be increased at the same times, and 

in the same hem ispheres, as these early increases in release. The results 

described in Experim ent 4.2 dem onstrate an increased up take of the 

neurotransm itter glutam ate from the left IMHVs of chicks both 30 minutes 

and one hour following the training task. The results show a 54% increase at 

30 minutes and 74% after one hour. This increase had not become apparent at 

15 minutes, and the time course of the experiments does not allow assessment 

of the. persistence of the response. In the right IMHV there is an increase 

(59%) in glutam ate uptake at 30 m inutes, bu t not at 15 or 60 m inutes, 

following the task. All these increases are consistent w ith  the increased 

neuronal activity shown in the release study at the equivalent time points and 

hemispheres. As has already been stated (Chapter 1) the reuptake system is the 

m echanism  by w hich synaptically released excitatory am ino acids are 

inactivated and kept below toxic levels in the extracellular space. The
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reuptake also allows rapid neuronal recycling of glutam ate so that internal 

stores can be replenished. In this way, activity at the synapse can be 

maintained. The data from the uptake experiments supports the release data 

demonstrating a significant increase in glutamate transm itter activity.

The K+-induced Ca^+-dependent com ponent of release is thought to 

represent the release of endogenous amino acid from the vesicular transmitter 

pool (reviewed in Nicholls and Sihra^ 1986). Therefore, the increase in this 

com ponent of release observed in this study m ay indicate a long-term  

enhanced recruitm ent of the vesicular transm itter pool of amino acids 30 

m inutes to 6.5 hours after training. Rusakov et al. (1993) found a spatial re­

arrangement of vesicles in synapses in the left IMHV of MeA-trained cfiicks 30 

minutes after passive avoidance training. In their study, two spatially separate 

pools of vesicles were identified. Thirty minutes after training they found that 

a rearrangem ent of these two vesicle pools had occurred, w ith  a greater 

num ber of vesicles near the active zone, suggesting an altered state of 

activation in the synapses examined. They did not, however, differentiate 

betw een synapses containing asym m etrical (excitatory) or sym m etrical 

(inhibitory) vesicles. Therefore, there is a possibility that the two pools may 

correspond to two different populations of synapses, and that the changes 

follow ing train ing  m ay reflect relative changes in  the sizes of these 

populations (Rusakov et al., 1993). Tfiis is interesting in the light of the 

increases of glutamate release found at 30 minutes post-training in the present 

study. Does the increase in active zones correlate w ith an increase in vesicular 

glutamate release? Tfiis seems possible, although there is no specific evidence 

from the ultrastructural study to corroborate tfiis. More recently Rusakov et 

al. (1995) reported that an increase in the w idth  and tfiickness of synaptic 

apposition zones (SAZs) occurred in IMHVs 30 m inutes after the task. They 

also demonstrated that there was an enlarged pool of synaptic vesicles adjacent 

to the SAZ in the left IMHV. They suggested that tfiis may reflect enhanced 

synaptic vesicle exocytosis, and therefore an increased release of transmitter.
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These data support the release studies presented in this chapter and suggest 

m orphological correlates of the increased  tran sm itte r release. The 

arrangem ent of synaptic vesicles reported in the right IMHV show ed an 

increased num ber of vesicles in both  proxim al and  d istal populations 

(Rusakov et al., 1995). This was thought to correspond with a mobilisation of 

vesicles from outside the active terminals: this observation m ight explain the 

increased glutamate release in the right IMHV at 30 minutes.

A long lasting change in presynaptic activity is suggested by the increased 

release. Such a persistent increase in glutam ate release could lead to 

modifications of excitatory amino acid receptors. As noted in  Chapter 2, 

Stewart et al. (1992) demonstrated increases in the binding to NMDA-sensitive 

glutamate receptors in chick forebrain 30 minutes after training in the left, but 

not the right, IMHV of MeA-trained birds compared to chicks trained on the 

w ater bead. The increased binding may be due, either to an increase in the 

num ber of receptors due to neosynthesis or the freeing of previously occluded 

receptors. The latter mechanism is suggested, as no increase in the num ber of 

synapses has been found up to 1 hr after training (Doubell and Stewart, 1993),

The absence of an elevated glutam ate release at an early tim e (10 

minutes) after training is in agreement w ith a study by Bullock et al. (1993) 

which show ed no differences betw een the glutam ate-stim ulated inositol 

phosphate accumulation in MeA-trained and w ater-trained chicks 5 minutes 

after the training task. This result suggested that NMDA receptors m ight not 

be active at this time; however, it does not rule out the activation of other, 

excitatory amino acid receptors.

Bullock et aTs (1993) study did describe NMDA receptor activation 30 

m inutes following the task. A decreased level of IP accumulation was found 

following the task suggesting the involvem ent of the NMDA receptor in 

learning the task. IP turnover is reduced because it is the activation of the 

NMDA receptor which is thought to reduce the availability of glutam ate for
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in teraction w ith  m etabotropic receptors. By injecting MK801 (a non­

com petitive NM DA antagonist) p rio r to the train ing , the g lutam ate- 

stimulated decrease in IPs is abolished (Bullock et al., 1993), again indicating a 

role for this receptor type in memory formation.

The results show an increase in the release of glutam ate from the right 

IMHV 6.5 hours after training. Previously it has been shown that 6.5 h  post­

training there is a bilateral decrease in the num ber of NMDA receptors in both 

left and right IMHVs of the chick (Steele, 1995). This was suggested to be due 

to a decrease in the number of synapses in a selective stabilisation, leading to 

an increased synaptic specificity.

In contrast to the data for NMDA receptor activation there is an increase 

(in the affinity) of AMPA receptors at 6.5 hours, but not at the earlier times of 

30 m inutes and 3 hours, after training (Steele and Stewart, 1995). This 

correlates well w ith the evidence that these receptors have been found to be 

active at time points from 3-4 hours (Tocco et al., 1991) and up until 48 hours 

(Tocco et al., 1992) after train ing  on a n ictita ting m em brane classical 

conditioning paradigm  in the rabbit. Steele and Stewart (1995) showed that 

injections of an AMPA receptor antagonist CNQX 5.5 hours post-training, 

resulted in amnesia for the task w hen chicks were tested 1 hour later. This 

again suggests that the increase in glutamate shown at 6.5 hours in the present 

study may be m ediated by AMPA receptor activation. However, the increase 

dem onstrated in the present study occurred in the right IMHV only, Steele 

and Stewart's (1995) results indicated that both  left and right IMHVs were 

requ ired  for the m aintenance of longer term  m em ory, and that AMPA 

receptors played a role in both hemispheres. This disparity is difficult to 

explain, but may reflect a loss in synapse num ber in the left IMHV of MeA- 

trained chicks such that, although the rem aining synapses showed increased 

efficacy, the total glutam ate release was no longer significantly enhanced 

com pared to w ater-trained chicks that had  retained a larger num ber of
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synapses. The results from  the au to rad iograph ica l and  behavioural 

pharmacological experiments appear to suggest that AMPA receptors are not 

involved in the early stages of memory formation but are involved during the 

long term  form ation of the m em ory for the passive avoidance task. In 

contrast, Rickard et al. (1994) showed that antagonism of non-NMDA receptors 

as early as 90 minutes post-training produced amnesia for the task. The task 

employed by this group did differ from the paradigm  used in our laboratories, 

in that coloured beads were presented to the chicks; also the antagonist, 

DNQX, shows low selectivity for AMPA receptors and may be activating 

kainate receptors and not AMPA receptors (Steele, 1995).

M etabotropic glutam ate receptors are thought to play a role in the 

initiation of PKC activity. B-50 or GAP-43 is a presynaptic substrate of protein 

kinase C (PKC), and is phosphorylated on depolarisation of the synaptic 

membrane under conditions that release neurotransm itters: phosphorylation 

w ill release calm odulin  and m ay increase its availab ility  for the 

ca lc ium /ca lm odu lin -dependen t kinase Il-catalysed  phosphory la tion  of 

synapsin I (Rodknight and W ofchuk, 1992). The 30 m inute time point 

dem onstrating enhanced glutamate release coincides w ith an increase in the 

membraneicytosol ratio of PKC in the left IMHV (interpreted as indicating 

translocation of the enzyme; Burchuladze et al., 1990). The translocation of 

the a  and p forms of the PKC to the m em brane is dependent on Ca^ + 

concentration, and the phosphorylation of B-50 is regulated by the ratio of 

soluble to bound PKC. Therefore, presynaptic Ca^+ influx, or m obilisation 

from  in ternal stores, resu lts in PKC translocation  follow ed by B-50 

phosphory la tion  and the activation of synapsin  resu lting  in vesicular 

transm itter release. Why then is no amnesia apparent at 30 minutes, a time 

point at which there is a demonstrated increase in glutamate release from the 

left and  right IMHVs in this study? This suggests that PKC-regulated 

phosphorylation of the B-50 substrate is not involved in the initial stages of 

memory formation, bu t is an enabling mechanism for a long term memory
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formation, occurring in  parallel w ith the shorter term  m em ory phases. Thus, 

although the transm itter release at 30 m inutes is im portan t for memory 

processes, the phosphorylation of B-50 is necessary for subsequent events.

The results described by Clements and Rose (1995) show ed an 

increased uptake of 45Ca2+ into prism s of IMHV 30 m inutes, bu t not at 5 

minutes or 24 hours, post-training. This uptake was inhibited by the N-type 

Ca2+-channel blocker co-conotoxin in the left, b u t not the right, IMHV 

(Clements and Rose, 1995). These results dem onstrate, therefore, an increase 

in Ca2+-uptake at a time (30 m inutes) show ing an increase in NMDA 

receptors, increased translocation of PKC and increased glutamate release (this 

study). The fact that the NMDA receptor subtypes that are increased in 

expression in the left and right IMHVs are different (cNMDA-right; nNMDA- 

left: Steele, 1995) may, possibly, explain the differences in  the Ca2+-chahnels 

that appear to be activated in the left and right IMHVs (N-type in the left; not 

N-type, or N-type and others in the right) as described by the co-conotoxin 

selectivity. Further to this, the type of subtype activated may also affect the 

time course of release: as glutam ate has a higher affinity for the nNMDA 

subtype, this m ight lead to a higher level of excitation in the neuronal 

environm ent of the left IMHV w hich persists for some time, w hilst the 

cNMDA activity in the right IMHV does not: the results in the present 

experiment (4.1) shows enhanced glutam ate release after 1 hour in the left 

IMHV but not the right.

Thirty minutes after training there is an elevation in a tubulin-enriched 

fraction of proteins as determ ined by colchicine b inding  in the anterior 

forebrain roof (Mileusnic et al., 1980). M icrotubules are necessary for the 

axonal transport of materials from the neuronal cell body to the synapses in 

the form of secretory vesicles from Golgi bodies containing glycoproteins and, 

more im portantly as regards this study, neurotransm itters and the enzymes 

required for neurotransm itter metabolism in the nerve terminal. Increased
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tubulin  production in the chick forebrain m ight lead to an increase in 

microtubule formation and allows a stabilised or increased transmitter release 

at synapses. It is not known, however, whether the increase in tubulin at 30 

m inutes could account for the increased glutam ate release per se at this time, 

or whether the tubulin and subsequent microtubule formation is required for 

the replacem ent or replenishm ent of neurotransm itters and their enzymes 

used in the early stages of memory formation.

The role of aspartate as a neurotransm itter has been debated and still 

remains uncertain (see Chapter 1). Aspartate is a potent agonist at NMDA 

receptors, as has been demonstrated by altering the glutam ate/aspartate ratio 

which altered the short and long components of the joint EPSP: the long, 

NMDA, com ponent was significantly increased w hen the ratio favoured 

aspartate. The increase in aspartate release m ight therefore reflect NMDA 

receptor activation in these areas, although no increases in NMDA receptor 

binding have been found at the time points in question (1 hour in the left and 

3 hours in the right IMHV). The discussion in Chapter 8 puts forward the 

proposal that aspartate is being released w ith glutam ate following peptidase 

action on released N-acetylaspartylglutamate.

In the present study GABA release was enhanced in the left hemisphere 

at 1 hour, and in the right IMHV 6.5 hours, after training in M eA-trained 

chicks. The increases in GABA release that were found in this study are not 

unprecedented. Following LTP in rat hippocampal slices, Ghijsen et al.(1992) 

also found an increase in the in vitro release of this inhibitory transm itter. 

The timing of the increases suggests that GABA release may produce sufficient 

inhibition to reduce glutamate release after 1 hour, such that there is a pulse of 

glutamate release which is turned-off 60 minutes post-training. Alternatively, 

the increase in GABA release may inhibit further GABA release by action on 

pre-synaptic autoreceptors. This w ould lead to there being no longer the 

necessity for increased glutamate release, as the GABA released would serve to
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prevent further inhibition. The neuronal set-up m ay also now be refined 

either due to initial synapse elimination, or to the selection and stabilising of 

only a certain number of synapses such that increased glutamate release is not 

dem onstrably higher than control chicks as it w ould be confined to the 

synapses "representing" the memory. The increase in GABA release found by 

Ghijsen et al. (1992) could be explained in that it may allow a reduction in the 

GABA-mediated inhibition in the hippocam pus by action on GABAb- 

receptors localised on GABA-ergic terminals (e.g. Davies et al., 1991). Another 

possibility was that a sustained increase in GABA release may lead to 

postsynaptic GABA receptor desensitisation, resu lting  in a decrease of 

inhibition(see Chapter 8).

One might expect from this evidence an initial decrease in the release of 

GABA following training, to enable NMDA activation to allow sufficient EPSP 

summation to produce a biochemical cascade. GABA release would only have 

to be reduced for a very short period to allow NMDA receptor activation. 

From the time points sam pled, however, no decrease was found in GABA 

release; thus a time before 10 m inutes or betw een 10 and 30 m inutes may 

show a decrease in GABA release and may have been overlooked due to there 

being no continual sampling. Indeed, a recent study from our laboratories 

(Clements and Bourne, 1995) dem onstrated that the retention of the passive 

avoidance task could be m odulated by GABA. They showed that pretraining 

injections of muscimol produced amnesia for the task as early as 10 minutes 

post-training. This suggests that GABA-receptor m ediated  events are 

im portant at a very early time following training. These events m ight or 

might not include an increase in the release of the transm itter. In addition, 

Martijena and Arce (1994) showed an increase in the b inding of a GABAa 

receptor agonist following passive avoidance training in the day-old chick. 

This increase was apparent at 30 minutes post-training, bu t not at 10 or 60 

minutes. These results are not consistent w ith either the release data or the 

pharmacological data. The technique used in Martijena and Arce's study
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involved binding of the analogue to hom ogenates of whole forebrain. This 

may suggest that increases in GABAa receptor num ber do not occur in most 

areas of the forebrain at 10 and 60 minutes, but does not exclude the possibility 

that receptor num bers are increased in the IMHV at these times, and also it 

does not preclude an increased number of GABAg receptors at any time.

The increase in glycine release at 30 m inutes after training could be 

expected: the binding of glutam ate to the NMDA receptor is allosterically 

potentiated by glycine (Bliss and Collingridge, 1993, also see Chapter 1), and 

evidence now suggests that glycine may play an im portant m odulatory role in 

NM DA-receptor activation and LTP induction (Thom pson et al., 1992). 

Moreover, Steele et al. (1993) have recently reported from our laboratories that 

an antagonist of the NMDA glycine binding site, 7-chlorokynurenate (7-ClK), 

' inhibits the retention of memory for the task. 7-ClK produced a block on the 

recall of the memory, 30 minutes, 1 and 3 hours after training, w hen injected 

before, bu t not after, training into the left IMHV of day-old chicks. Thus 

glycine, acting at the NMDA receptor, is clearly im plicated in the passive 

avoidance task. The increase in glycine efflux at 30 m inutes will act to 

potentiate the receptors: an increased num ber of NMDA receptors would call 

for an increase in synaptic glycine to bind to them. No effect of 7-ClK was 

found w hen injected into the right IMHV (Steele et al., 1993). This may be 

because the number of cNMDA (antagonist preferring) receptors was found to 

be increased in the right, in  the left the num ber of nNM DA (agonist 

preferring) receptors was increased in number. It could be suggested that the 

two receptor subtypes are differently sensitive to glycine, thus explaining the 

effect of 7-ClK in the different hemispheres.

Vesicular glycine release is unlikely as glycine is described as being a 

neurotransm itter of the lower part of the CNS (e.g. spinal cord and medulla, 

Aprison and Nadi, 1978). The K+-induced Ca2+-independent component of the 

release of glycine more likely reflects the activity of the respective uptake
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carriers, acting in a reversed mode to expel glycine due to the severe (50mM) 

K+ depolarisation applied to the prisms (Verhage et al., 1989). Therefore the 

increased K+-induced Ca2+-independent glycine release from M eA-trained 

chicks may indicate a reversal of the uptake carrier for this amino acid.

A possible consequence/role of the increases in amino acid release in 

synaptic transm ission efficacy may be in neuronal "bursting" activity in the 

IMHV. [Bursting is defined here as "a high frequency train of action potentials 

superim posed on slow m em brane depolarisations". (Schneiderm an and 

MacDonald, 1991)]. Following passive avoidance learning in the chick, Gigg et 

al. (1993 and 1994) and Mason and Rose (1987 and 1988) found that elevated 

bursting in the chick was associated w ith the memory formation. There is a 

significant increase in neuronal bursting at 3 hours post-testing (4 hours post­

training) in MeA-trained birds compared to w ater-trained birds (Gigg et al., 

1993). It is thought that excitatory amino acid transm itters play an im portant 

role in the initiation and spread of synchronous bursting because EAAs can 

produce seizures (Neum an et al., 1989) and antagonists of EAAs act as 

anticonvulsants (Meldrum, 1984). The generation of bursting is dependent on 

the activation of the NMDA glutam ate receptor by cellular depolarisation 

produced by excitatory input or by disinhibition. The depolarisation releases 

the Mg2+ voltage-dependent block of NM DA-activated calcium channels. 

Non-NMDA receptors are largely responsible for the bursts in the presence of 

Mg2+ and provide the initial depolarisation which triggers bursts by activation 

of NMDA and other voltage-dependent channels. NMDA receptors play a 

dom inant role only w hen the extracellular Mg2+ is lowered sufficiently to 

relieve the calcium-channel blockade. It is therefore surprising that there is 

no increase in number or affinity of the NMDA receptor subtype in the IMHV 

at this time point, although an increase was found at 30 m inutes (Stewart et 

al., 1992). Bursting in the presence of Mg2+ may be initiated by non-NMDA 

receptors, such as AMPA receptors, which may explain this anomaly as AMPA 

receptors show increased affinity following the task (although not until 6.5
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hours post-training; Steele and Stewart, 1995). In the present work an increase 

in the release of glutam ate is found only in the right IMHV after 3 hours, 

whilst the electrophysiological data described by Gigg et al. (1993) does not 

show a lateralised effect at this time w ith a bilateral increase in bursting. 

C hanges in bursting  behaviour im plies a change in the function and 

connectivity of synapses. Evidence that no increase in bursting behaviour is 

observed at the earlier times suggests that increased glutam ate release and an 

increased num ber of NMDA receptors are enabling events that precede 

bursting in neurons, which may be concomitant w ith an increased synaptic 

efficacy.

Between seven and eight hours after training, neuronal bursting in the 

IMHV of MeA-trained chicks is at its greatest. This bursting is lateralised, with 

the right IMHV showing a significant increase in bursting compared to the left 

(Gigg et al., 1993). The burst-frequency at this time point is w ithin the theta 

range, which points to LTP-like biochemical activity in the IMHV.

The data presented here also show evidence of a lateralised effect at 

(approximately) this time (6.5 hours), w ith no increase in glutam ate release 

from the left IMHV but significantly higher levels of release found in the right 

IMHV of MeA-trained chicks compared to both water control chicks and the 

left IMHVs of the MeA birds. This im plicates g lu tam ate in bursting 

behaviour, which is also lateralised at 6.5 hours. A role for GABA also seems 

likely as evidenced by increased release of this amino acid at 6.5 hours (see 

Chapter 8).

Bursting and glutamate release are coincident w ith the second wave of 

glycoprotein synthesis. A second wave of glycoprotein activity occurs 

approxim ately 5.5 to 8 hours following training, as dem onstrated using 

injections of the metabolic inhibitor 2-deoxygalactose (Scholey et al., 1993). 

This second wave is anisomycin-sensitive, suggesting that it involves de novo 

synthesis of proteins, w hich alm ost certainly include the cell-adhesion
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molecules NCAM and LI (Scholey et al., 1993 and Scholey et al., 1994). The 

increase in glutamate release at these times may be appropriate to reinforce the 

connections betw een cells and to make sure that specific and selective 

stabilisation of synapses occurs at the vital time w hen the long term  memories 

have been established.

As noted above, it is thought that inhibitory m echanism s limit 

excitation w ithin networks of neurons (Schneiderman and MacDonald, 1991). 

Synchronous bursting may therefore require a decrease in the inhibitory tone 

produced by the release of GABA at usual physiological levels. In line w ith 

this, p icrotoxin  and bicuculline (both GABAergic antagonists) induce 

spontaneous bursting by blocking GABA^-mediated IPSPs, thus allowing 

excitatory activity to spread through neural circuits (Schneiderm an and 

M acDonald, 1991). Also, following repetitive stim ulation of hippocam pal 

slices (CAl) there is a decrease in the GABA-mediated inhibition (Kamphuis 

et al., 1990). The decrease in GABAergic inhib ition  m ay lead to an 

enhancem ent of NMDA responses:. The desensitisation of GABA receptors 

may be enhanced by an increase in GABA release; the prolonged activation of 

the receptor-linked CL channel by the endogenous agonist m ay lead to 

depression caused by intracellular chloride accumulation, following repetitive 

IPSPs, leading to a change in the chloride gradient and equilibrium  potential 

(Tehrani and Barnes, 1988). In the hippocam pus it has been found that there 

is a decrease in the paired pulse depression in the CA l bu t there is also an 

increase in the exocytotic release of GABA (e.g. Kamphuis et al., 1990).

GA BAg-m ediated events have also been im plicated in  bursting. 

GABA b receptor-m ediated events m ay produce significant suppression of 

inhibitory output to enhance signal transmission in the hippocam pus (Mott et 

al., 1993). The GABAg receptor-mediated depression of the IPSC occurs only 

during  the synchronised activation of a netw ork (Otis and  M ody, 1992). 

Synchronised neural activity has been found to occur in the theta rhythm
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found in exploring rats (the theta rhythm , 3-12 Hz is thought to be im portant 

in certain learning tasks: W inson, 1978), and also in hippocam pal sharp 

waves, which are thought to be involved in memory consolidation (Buzsaki, 

1989); and the generation of this synchronised activity is thought to involve a 

suppression of inhibition (Buzsaki, 1989). The disiiiliibition of the GABAg 

receptors is such that the transmission of the signal is enhanced only between 

2.5 and 10 Hz (Mott et al., 1993). Thus, there is a filtering of signals allowing 

selective enhancement during repetitive activation at frequencies in the range 

of the theta rhythm . LTP is induced by repetitive, synchronised activity 

(McNaughton et al., 1978), and as such the production of the theta rhythm  or 

sharp waves may induce LTP (Buzsaki, 1989). Following on from this it has 

been found that the induction of LTP is dependent on GABAg receptor- 

m ediated disinhibition which relieves the Mg2+ block of the NMDA receptors 

and allows the expression of the EPSPnmda arid LTP. The slow IPSC produced 

by GABAg receptor activation w ould be able to counter the slow EPSCs 

produced by NMDA receptors, and thus potentially inhibit NMDA receptor- 

m ediated events (Ling and Benardo, 1994). Davies et al. (1991) suggest that an 

autoreceptor system is in operation, so that the fatigue of the IPSPs required 

for EPSP sum m ation is due to GABA feeding back and inhibiting its own 

release through an action on GABAg receptors. Stim ulation of GABAg 

receptors inhibits the major excitatory and inhibitory afferent systems w ithin 

the neostriatum , and is proposed as a local feedback m echanism  w ith 

presynaptic receptors inhibiting either excitation or inhibition: a similar 

mechanism is proposed for the liippocam pus (Nisenbaum et al., 1992). The 

slow IPSCs produced by GABAg-receptor activation are decreased by blockade 

of ionotropic glutamate receptor antagonists and GABAa receptors, suggesting 

tha t bo th  g lu tam ate and GABAa -m ediated  events partic ipa te  in the 

recruitm ent of GABAg IPSCs. Moreover, GABAA-mediated events have been 

shown to cause excitation of interneurons, which in turn  trigger GABAg IPSCs 

(Michelson and Wong, 1991). The depression of the fast GABAa IPSCs will
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reduce the GABAg IPSC.

The latéralisation effects seen in this study, as alluded to above, are not 

unprecedented. L eft/righ t asymmetries have been found previously in the 

chick IMHV: IP accumulation was reduced in the left not right IMHV (Bullock 

et al., 1993), increased NMDA binding in left IMHV only (Stewart et al., 1992) 

etc. (see Chapter 2 for further examples). These hemispheric differences may 

be accounted for by having two modes of analysis of an experience. The mode 

of analysis fed by the left eye of the chick is suggested to record detailed and 

specific properties of the stim ulus and is m ainly responsible for spatial 

orientation, whilst the right eye feeds a system used to select cues which allow 

the stimulus to be categorised and to be responded to appropriately (including 

the identification of food items) (Andrew, 1991). "W hen both  hemispheres 

are involved in  learning the task the differences betw een them  in the 

predom inant type of analysis may result in different structures being active in 

learning and memory formation." This suggests that the IMHV, changes of 

which are predom inantly found in the left, may be im portant in processes 

involving the selection of cues and their association w ith  the subsequent 

reinforcem ent (Andrew, 1991). These differences in visual learning ability 

may be due in part to a structural asymmetry in the visual projections from 

the thalam us to the visual area of the brain, the W ulst (Rogers, 1991). The left 

side of the thalam us has a larger num ber of projections to the right 

hyperstriatum  than does the right side to the left hyperstriatum . This 

demonstrates that the right eye connects to both hyperstriata, the left connects 

alm ost only to the right, as the thalam us receives projections from the 

contralateral eye only (Rogers and Sink, 1987). Therefore transm itter release 

and activation of NMDA receptors occurs predom inantly in the right eye 

system initially, suggesting a categorisation and the adoption of a necessary 

response (avoiding the bead), whilst at a later time point the more detailed 

specifics about the bead may be internalised. Lesion studies from our 

laboratories have suggested that if the chick uses a num ber of different
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categorisation or classification cues then lesions of one specific area may 

eliminate one of these cues but still allow for the recall and use of the others, 

assum ing that different brain  regions 'ho ld ' different cues. According to 

Vallortigara et al. (1990) such categories include colour, shape, position and 

possibly pattern and brightness. Patterson and Rose (1992) suggest that the 

processing and storing of the association of colour and aversion occurs in the 

left IMHV, lesions of which will produce a deficit in learning such that chicks 

will avoid all beads of the similar shape and colour of the aversive bead and 

will not be able to discriminate betw een colours. This w ould explain why 

there are alterations in the biochem istry of the left IMHV although post 

training lesions in this region are not amnestic, as these cellular modifications 

will be involved w ith forming a representation of the colour-specific aspect of 

the bead (Patterson and Rose, 1992). Representations, based on the different 

classifications described above, are m ultiple and m ay be held in w idely 

different brain  regions following dispersal from perhaps the left IMHV, as 

suggested from m ost lesion data. However, difficulties in the explanation 

arise as there is no effect of left IMHV lesions under monocular conditions as 

described by Sandi et al. (1993). This could be interpreted as the right IMHV 

being involved in learning the task, or at least having the capacity to take over 

some of the left IMHV's processes. This is in agreement w ith the release data 

in that the transient increase in right IMHV activation (30 minutes only) may 

reflect an involvement of the right in the learning process or a prim ing effect, 

necessary if additional essential information were to arrive for processing in 

the left IMHV, allowing the area to prioritise the new information whilst still 

being able to hold the details of the bead in the right IMHV.
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Chapter 5: The time course of the 
release of Amino Acids from the 
Lobus Parolfactorius (LPO) of the 
day-old Chick fo llow in g  Passive  
Avoidance Training

Introduction

In Chapter 4 an increase in the release of amino acid transm itters from 

the IMHV of the day-old chick was dem onstrated following the one-trial 

training task. It has been show n previously that there is also increased 

neuronal activity in the LPO (see Chapter 2). This region has been shown to be 

metabolically active following training (Rose and Csillag, 1985). This activity 

has since been show n to include an increase in the num ber of a glutam ate 

receptor subtype (Steele, 1995), increased neuronal bursting (Gigg et al., 1994), 

and an increase in synaptic membrane glycoproteins (Bullock et al., 1992).

The LPO is one of the nuclei of the palaeostriatal complex, a basal 

forebrain structure. The complex is thought to control motor function, spatial 

o rien ta tion  and  a tten tiona l behaviours (B rauth et al., 1978). The 

palaeostriatum  augm entatum -lobus parolfactorius-nucleus accumbens region 

of the avian brain  is considered homologous w ith the m am m alian striatal 

complex (caudate nucleus, putam en and nucleus accumbens; Reiner et al., 

1983). The LPO has been suggested to be involved in the integration of 

emotional behaviours (Kuenzel and Blaehser, 1989).

The experiments described in this section describe the timecourse, and
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the latéralisation, of glutamate and GABA release from the LPO following the 

training task. The results found in this study are then related w ith those that 

have previously dem onstrated changes in this region following training.

Materials and M ethods

The procedures were carried out as described in Chapter 4. These can be 

sum m arised as follows: pairs of day-old chicks were housed in pens and 

trained either on a bitter-tasting MeA-covered bead or on one that had been 

dipped in water. Chicks that had trained successfully were tested at various 

times after training with a similar but dry bead. MeA-trained birds that pecked 

the dry bead and water-trained chicks that avoided the test bead were not used 

any further in the experiment as this result suggested that they did not train 

successfully or did not remember their training. Immediately after testing, the 

chicks were decapitated and their forebrains were removed. The left and right 

LPOs were then dissected out, and combined as described in Chapter 4. The 

tissue regions were prepared either as slices or prisms and placed in 95% O2- 

5% CO2 gassed Krebs-Henseleit buffer. Following preincubation, the tissues 

were separated such that roughly equal quantities were placed in one of four 

media, measuring: the total basal release; calcium -independent basal release; 

the calcium -independent po tassium  stim ula ted  release and  the total 

stim ulated release. The tissues were incubated in these m edia for 2 minutes 

and the media collected and frozen immediately, w ith protein determinations 

taken of the tissue.

All analyses were carried out following pre-column derivatisation with 

phenylisothiocyanate on the HPLC (see Chapter 3). Both hemispheres were 

m easured to provide data on any latéralisation effects.
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Statistical treatment of data

The statistical significance of the differences betw een the release values 

from M eA-trained and w ater-trained chicks was calculated using a nested- 

ANOVA as described in Chapter 4. Data were expressed as m ean ± S.E.M. 

values of n experiments.

Results

Basal release of amino acids

The basal release of glutamate and GABA from the left and right LPOs of 

day-old chicks is described in Figures 5.1 and 5.2. No differences in the levels 

of release were found at any of the time points or in either hem isphere 

(ANOVA, p > 0.2). The sample sizes are n=7 for all conditions i.e. 7 groups of 

combined LPOs (3 or 4) for each group.

Calcium-independent release

The calcium -independent data are described in Figures 5.1C and D 

(glutamate), and 5.2C and D (GABA). No differences were noted between the 

groups in the calcium-independent component of release of either glutamate 

or GABA in either the left or right LPOs (p > 0.2).

Calcium-dependent release

The calcium -dependent release was derived from the total stim ulated 

release from which the calcium-independent release was subtracted.

Thirty m inutes after training there was a significant increase in the 

calcium -dependent release of glutam ate in the left LPO of M eA-trained 

compared to water control chicks (F=10.80, p=0.0155, df=12. Figure 5.3A). There 

was no difference between the trained and control chicks at 3 hours. By 6.5
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hours there was an increase in glutamate release from the left LPO of MeA- 

trained chicks (F=14.073, p=0.0028, df=12). An increase was also apparent at 24 

hours (F=11.12, p=0.0082, df=12).

The right LPO showed no differences in calcium -dependent glutam ate 

release between the two groups, at either 30 minutes or 3 hours post-training 

(p > 0.2, Figure 5.3B). By 6.5 hours however, there was a significant increase in 

release shown by MeA-trained birds (F=10.412, p=0.0128, df=12). As in the left 

LPO, the increase was also apparent 24 hours after training (F=9.45, p=0.0100, 

df=12).

The increase in glutamate release seen at 30 minutes post-training in the 

left LPO of MeA-trained chicks is greater than that found in the right LPO at 

this tim e (F=14.157, p=0.0027, df=12. Figure 5.3C). No other differences 

betw een the hemispheres of trained birds were found (p > 15). Also, no 

changes were seen in the chicks trained on a water bead (p > 0.3, Figure 5.3D).

GABA release was also assessed for its calcium dependency (see Figure 

5.4) . Increased GABA release was found 30 minutes after the training task in 

the left LPO of M eA-trained chicks (F=6.263, p=0.028, df=12. Figure 5.4A). 

Again no changes were found at 3 hours post-training, but by 6.5 hours, and 

also at 24 hours, an increase in GABA release was found in the left LPO in 

M eA-trained birds (F=4.899 and 4.944 respectively, p=0.0477 and 0.0464 

respectively, df=12).

GABA release was increased in the right LPO at the same times as 

glutam ate (Figure 5.4B). Hence, increases were found at 6.5 hours (F=5.01, 

p=0.045, df=12) and 24 hours (F=6.04, p=0.0289, df=12). Also, the training- 

induced increase in GABA was lateralised only at the 30 m inute time point of 

MeA-trained birds, when there was an increase in the left LPO compared to 

the right (F=4.944, p=0.0463, df=12. Figure 5.4C). No latéralisation in release 

was seen in water control birds at any time point (Figure 5.4D).
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Figure 5.1 The effect of a passive avoidance task on the basal release, and 
calcium-independent release, of glutamate from the LPO of the day-old chick. 
Basal release was measured from A) the left and B) the right LPO, and calcium- 
independent release was also measured from C) the left and D) the right LPO 
The sample size, n, is 7 for all conditions. Error bars are means ± S.E.M.
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Figure 5.2. The effect of a passive avoidance task on the basal release, and 
calcium-independent release, of GABA from the LPO of the day-old chick. 
Basal release was measured from A) the left and B) the right LPO, and calcium- 
independent release was also measured from C) the left and D) the right LPO. 
The sample size, n, is 7 for all conditions. Error bars are means ± S.E.M.
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Figure 5.4. The calcium-dependent release of GABA from (A) the left and (B) 
the right LPO of MeA-trained and water control chicks. The latéralisation of 
the increases of glutamate in the LPO is shown in (C) MeA-trained chicks and 
(D) water controls. The sample size, n, is 7 in all conditions. An asterisk * 
indicates a significant difference from control levels (p < 0.05, ANOVA). Error 
bars are means ± S.E.M.
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D iscu ssion

These results indicate train ing-induced  increases in  the calcium- 

dependent release of glutamate and GABA from slices of LPOs from the day- 

old chick. The increases occurred at specific tim es post-train ing in both 

hemispheres (i.e. at 6.5 and 24 hours), and were show n to be lateralised to the 

left LPO 30 minutes after the task. Glutamate and GABA were increased at the 

same times and in the same hemispheres of the chick LPO as one another.

The data show that the different hem ispheres, and the different 

structures (LPO and IMHV), undergo changes at specific times post-training, 

suggesting that they are linked to stages a n d /o r  processes in the acquisition 

a n d /o r  retention of the memories for the task. The left IMHV appears to be 

active during a ''time w indow " of roughly 30-60 m inutes post-training, after 

w hich time it appears to fall silent, as far as any changes in amino acid 

transm itter release are concerned. The left LPO is also active at around this 

time (30 minutes only, was examined in this study), but it undergoes a "second 

wave" of activity which is seen at 6.5 and 24 hours. The right hemisphere 

shows a more synchronous increase in activity; both the IMHV and LPO are 

active at 30 minutes (as in the left hemisphere), bu t the right IMHV is also 

active after this time, unlike the left IMHV, w ith  an increase in glutam ate 

release found at 3 hours (before increased activity is found in the LPO), and 

activity continuing at 6.5 hours (at which time the LPO becomes active in 

amino acid transmitter release again).

In general, the increased activity in the LPO is temporally correlated with 

changes in the IMHV, suggesting that one structure is influencing the other. 

Indeed, it has been found that there is a connection from the IMHV to 'the 

ventral archistriatum (Csillag et al., 1994), to which the IMHV has an efferent 

projection, and that there is a substantial projection from  the ventral 

archistriatum  to the LPO (Szekely et al., 1994). Thus, the data presented by
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Gilbert et al. (1991) suggests that following passive avoidance learning, 

information is transferred from the IMHV to long-term storage in the LPO via 

the archistriatum . A possible mode of action for the LPO w ould be the 

inhibition of pecking behaviour, as the LPO may play a role in the regulation 

of motor output.

M orphological changes were not found until 24 hours post-training in 

the LPO (Stewart et al., 1992). All the changes seen at this time suggest a 

facilitation of neurotransm ission in the LPO. The num erical density of 

synapses is increased bilaterally 24 hours after training (Stewart et al., 1987). 

Also increased by 24 hours is the density of synaptic vesicles and an increase in 

spine density, both  in the left LPO. The latter m ight be related to an 

enlargem ent of the surface area of the neurons' receptive field and therefore 

the facilitation of the transmission of the impulse to the cell body. The former 

is likely to be related to the enhancement of transmission; the high density of 

vesicles w ould enhance the electrical field potential in the vicinity of the 

synaptic membrane (Jack et al., 1975). In the robustus archistrialis of canaries 

there is an increase in synaptic vesicle number associated with the acquisition 

of a new behaviour (DeVoogd et al., 1985). Spine density changes are found 24 

hours after train ing  in m ultipolar projection neurons of the left LPO 

(Lowndes, 1992).

Recent results described by Rusakov et al. (1995) showed that the synaptic 

apposition zones (SAZs) in the left LPO became rounder, or more regular, in 

shape, and the distances betw een the "transm ission zones increases. They 

interpret the data as indicating the sprouting of synapses: transm itter release 

may be enhanced (as seen in the present study) in order to establish these new 

synapses, or, the transm itter release m ay be enhanced because of new 

connections. In the right LPO the distances between the SAZs are decreased. 

These data are related to the increase in the expression of a -tubu lin  in the 

right, but not the left, LPO 24 hours after training (Scholey et al., 1992).
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As synaptic number changes do not occur until 24 hours and after in the 

LPO, the increase observed is likely to be due to synaptogenesis, rather than 

due to splitting of synapses as suggested to occur at synapses in the 

mammalian brain following a novel experience (Stewart et al., 1992).

Dendritic spines have been suggested to contain indiv idual calcium 

com partm ents, and are thus thought of as the basic functional units of 

neuronal integration, w ith  a single spine able to use its internal calcium 

concentration to register the temporal coincidence of the input and the output 

of the neuron (Yuste & Denk, 1995). The chemical com partm entalisation is 

thought to be as a result of the spine geometry, such that diffusional exchange 

between the spine head and the dendritic shaft is limited (Yuste & Denk, 1995). 

The Type U Ca^+Z calmodulin-dependent protein kinase (Type II CaM kinase) is 

concentrated in regions of the mammalian brain where long term plasticity is 

found (Erondu & Kennedy, 1985). The CaM kinase is involved in regulating 

neurotransm itter release (Llinas et al., 1985). Therefore, it is possible that the 

increase in spine density seen in the LPO at 24 hours allows an upregulation of 

the CaM kinase, which acts to increase the level of transm itter release from 

the neurons by phosphory la ting  the tail reg ion  of synapsin  I (the 

phosphorylation of which leads to a reduction in the strength of its association 

w ith the surface membrane of synaptic vesicles, Rodknight & Wofchuk, 1992). 

Calcium influx is required initially, but CaM kinase II has the ability to then be 

able to autophosphorylate its substrates independent of calcium levels (Miller 

& Kennedy, 1986). There is therefore the possibility that once phosphorylated 

as a result of an influx of calcium, the CaM kinase remains activated for long 

periods of time, and by phosphorylating new enzyme copies m aintains the 

cascade beyond the time course of protein turnover. Kinases could potentially 

enhance synaptic responses by a direct or indirect action on AMPA receptors 

(Greengard et al., 1991). In addition, PLA] activity is subjected to inhibition by 

CaM II kinase (Piomelli, 1991), forming a biochemical link between the kinase
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and AMPA receptors. The GluRl subunit of the AMPA channel is heavily 

phosphorylated by CaM II kinase, and this phosphorylation increases the 

current through these channels. This is suggested to serve as a mechanism by 

which inform ation stored by CaM II kinase in the PSD can affect synaptic 

strength (Lisman, 1994).

As stated above, the increases in morphological attributes appear to be 

confined mainly to the left LPO at 24 hours after training. However, in this 

study, transmitter release was found to be raised at the same times in the right 

LPO as in the left at the later times, 6.5 and 24 hours, looked at. (Stewart et al. 

[1987] did find an increase in synaptic number at this time in the right LPO, but 

this increase was not considered as statistically significant by H unter[1991j). 

addition, the increases in release of both glutam ate and GABA were of the 

same order in both hem ispheres at these times. If this is the case, and 

transm itter release is required at some point in order that morphological 

plasticity can be expressed, why are there no equivalent structural changes 

found in the right LPO as in the left at 24 hours? The answer may lie in the 

fact that no increase in activity, as determ ined by amino acid transm itter 

release, occurs 30 minutes after training in the right LPO as is seen in the left. 

The increases seen at 30 minutes may possibly act as an initial trigger or "first 

wave" of neuronal activity. It has been found that 1 hour after training, there 

is an increase in the immunoreactivity of a-tubulin  (49%) in the left LPO, but 

not the right. At 6 hours after training there is now an increase in the 

immunoreactivity to a-tubulin in both hemispheres. Lowndes (1992) suggests 

that if levels of tubulin are related to an increased potential for dendritic 

plasticity, it is possible that the hemispheric asymmetries in spine density may 

be related to the timing of glycoprotein synthesis. The changes seen in the left 

LPO may be initiated in the first wave of synthesis and increased by the second 

wave. The spine changes seen in the right may be related to the second wave 

of biochemical activity only, and are thus produced to a lesser degree, e.g. a 

smaller increase in spine density. Thus, the data found in the study of tubulin
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synthesis ties in very well w ith the transm itter release results found here; 

w hether an increase in transm itter release precedes the increase in tubiilin 

production or vice versa cannot be said, as tubulin synthesis was not analysed 

in the LPO before the 1 hour time point.

At 30 minutes, in addition to an increase in  the release of transmitters, 

there is an increase in the number of NMDA receptors in the left LPO, but not 

the right, of MeA-trained chicks (Steele et al., 1995). This increase is not seen 

at any subsequent time. This again suggests a distinct and discrete increase in 

activity in this region which is related to synaptic plasticity and precedes the 

structural changes seen later.

Bullock et al. (1992) found an increase in the levels of a presynaptic 50kDa 

and postsynaptic 33, 100-120, and 150-180kDa protein species in the LPO at 24 

hours post-training. The former may well be the B50 protein alluded to in the 

last chapter. The post-synaptic proteins may well include two forms of 

NCAM, the highly sialylated embryonic form (120kDa) and the low sialylated, 

m ature 180kDa form. When antibodies to NCAM are injected at 6 hours post­

training, they produced amnesia for the task (Scholey et al., 1993). This is 

similar to that found by Doyle and Regan (1993) in rats trained on a step-down 

passive avoidance task. They suggested  tha t there is a transien t 

overproduction of synapses followed by selection and stabilisation in which 

there is a conversion of the 120kDa form of the NCAM into the 180kDa form; 

the NCAM antibodies presumably interfere w ith this conversion process.

No changes in receptor num ber (NMDA or AMPA) were found at either 

3 or 6.5 hours after training (Steele et al., 1995). In the present study, increases 

in both glutam ate and GABA release are found at 6.5 hours. In addition, in 

the study of neuronal bursting in the LPO carried out by Gigg et al. (1993), 

increased bursting was found 5 to 8 hours after training. This increase was not 

found to be lateralised to either hemisphere; indeed a non-significant trend for 

increased bursting in the right LPO was seen in both water-control and MeA-
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trained chicks. Steele (1995) suggested that the lack of any changes in receptor 

binding in the LPO, other than at 30 m inutes, m ay be due to the fact that 

processes involved in the second wave of m em ory form ation in the LPO 

involve a different receptor mechanism , e.g. the m etabotropic glutam ate 

receptors. Also there are moderate amounts of GABAergic fibres in the chick 

brain (Dietl et al., 1988b), and as has been stated before in this thesis, GABA 

and GABAergic interneurons are a very pow erful com ponent in  synaptic 

plasticity, allowing inhibition via direct effects on excitatory synapses, and 

excitation by modulation of its own release via autoreceptors and inhibition of 

other GABAergic neurons. Hence, the increases in GABA release allow 

further possibilités for memory form ation and subsequent m orphological 

changes. The LPO is also rich in cholinergic (Horn, 1985 & Dietl et al., 1988a) 

and dopaminergic (Dietl & Palacios, 1988) fibres; the release of either of these 

two transm itters is not examined in this thesis, bu t may be im portant for 

reducing the inhibitory tone in the LPO.
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Chapter 6: Adenosine release from 
the IMHV of the day-old chick, and 
its effects on the release of amino 
acids

Introduction

A candidate that may play a vital role in m odulating the release of 

amino acid neurotransm itters following the task, is the purine adenosine (see 

Chapter 1).

Adenosine has been found to decrease, or increase, glutam ate release 

depending on the receptor type activated and the area of the brain involved 

e.g. it has been dem onstrated by Cunha et al. (1994) that ACh release in the 

hippocam pus is differentially regulated, such that in the CAl area only Ai 

receptors m odulate the release, in CA3 both Ai and A2a receptors m odulate 

the ACh release, but in the dentate gyrus both receptor types are present but 

are not activated by endogenous adenosine. Adenosine release and its actions 

at different receptor subtypes would prove a powerful mechanism to increase 

or decrease the likelihood of a learning experience being assim ilated, 

assuming the release of glutamate (dem onstrated in Chapters 4 and 5) and 

receptor activation (see Steele, 1995) are involved in memory formation.

This chapter describes the release of adenosine following passive 

avoidance training; its effects on the release of amino acids; and the NMDA 

and KCl stimulation of its release.
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Experiment 6.1. The release of adenosine from the IM HV of the day- 

old chick follow ing a passive avoidance task 

Introduction

An increase in amino acid transm itter release was dem onstrated at 

various time points following the training task in the IMHV and LPO of the 

day-old chick (Chapters 4 and 5). Previous w ork has also dem onstrated that 

amino acids, specifically glutam ate, and their receptors are required in the 

acquisition of passive avoidance learning in the chick, as well as other 

learning tasks (see Chapter 2). Adenosine may play an im portant role in the 

m odulation of synaptic transm ission, specifically amino acid transm itter 

release, and thus in the acquisition, retention or recall of the task itself. 

Therefore, it was decided to examine the release of adenosine from the IMHV 

following a one-trial passive avoidance task, at sim ilar times to those 

analysed for amino acid transmitter release.

Materials and M ethods

The methodology has been described in Chapter 4. In short: pairs of day- 

old chicks were housed in pens and trained (following 3 pre-training trials) 

either on a bitter-tasting methylanthranilate- (MeA) covered bead or on one 

that had been dipped in water (W). Chicks that had trained successfully were 

tested at various times after training with a similar but dry bead. Immediately 

after testing, the chicks were decapitated and their forebrains removed. The 

left and right IMHVs were then dissected out, prepared as slices (350mM) and 

placed in 95% 02-5% CO2 gassed Krebs-Henseleit buffer: the IMHVs were 

combined from 3 or 4 chicks according to the treatm ent and the hemisphere. 

Following preincubation (60 minutes), the tissues were separated such that 

roughly equal quantities were placed in one of four m edia, measuring: the 

total basal release; calcium -independent basal release; the calcium - 

independent potassium stimulated release; and the total stimulated release of
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adenosine. The tissues were incubated for 2 m inutes, after which the media 

were collected and frozen immediately for HPLC analysis, and the IMHV 

slices were taken for protein determinations. Adenosine could be measured 

using the same chromatographic conditions as used for amino acid analysis.

Statistical treatment of data

The statistical significance of the differences between the release values 

from MeA-trained chicks and their W -trained chicks were calculated using a 

nested-ANOVA as described in Chapter 4. Data were expressed as mean ± 

S.E.M. values of n experiments.

Results

Basal release of adenosine

The basal release of adenosine was examined, 30 minutes, and 1, 3 and 

6.5 hours, following training on the passive avoidance task, in the left and 

right IMHVs of day-old chicks following incubation in a norm al Krebs- 

Henseleit buffer (the num ber of samples, n= 7 at all time points for both 

hemispheres and treatments).

No differences were found betw een the M eA-trained chicks and the 

water controls (p >0.3). Indeed, the values of released adenosine changed very 

little from one time point, treatm ent and hemisphere to another (see Figure 

6.1). The average level of basal release was 18 ± 2.7 pM per milligram in the 2 

iiiinules that the incubations lasted.
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Figure 6.1. The effect of a passive avoidance task on the basal release of 

adenosine from. A) the left and, B) the right IMHVs of day-old chicks, 30 

minutes, 1, 3 and 6.5 hours following training on a MeA-covered bead (MeA) 

or a water bead (W) (n=7 at each time point). Error bars are means ± S.E.M..
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Potassium-stimulated release

Figure 6.2 shows the total potassium -stim ulated release (50mM KCl 

w ith 1.3mM CaCl]: Medium C) of adenosine from slice preparations of the left 

and right IMHVs of MeA-trained chicks and water controls.

In the left IMHV there was an increase in adenosine release 30 minutes 

after training compared to the controls (t=2.546, p=0.0257, df=12). There was 

also an increase in release from the left IMHVs of MeA-trained chicks seen at 

the 1 hour time point (t=2.458, p=0.032, df=12). At the later times sampled, 3 

and 6.5 hours, there were no differences between the two groups (p > 0.4).

The right IMHV also shows a training-induced increase in  adenosine 

release 30 minutes after training (t=3.803, p=0.0025, df=12). No difference was 

found between MeA and water birds after 1 hour (t=0.525, p=0.609, df=12), but 

by 3 hours post-training, the right IMHVs of M eA-trained chicks showed 

enhanced adenosine release (t=2.331, p=0.038, df=12) and an increase was also 

found at the last time point analysed, 6.5 hours (t=3.385, p=0.0054, df=12).
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Figure 6.2. The effect of a passive avoidance task on the total potassium- 
stim ulated (50mM KC l; 1.3mM CaCh) release of adenosine from, A), the left 
and, B) the right IMHVs of day-old chicks, 30 m inutes, 1, 3 and 6.5 hours 
following training on a MeA-covered bead (MeA) or a water bead (W) (n=7 at 
each time point). An asterisk * indicates a significant difference between the 
two groups (p < 0.05, t-test). Error bars are means ± S.E.M..

Calcium-dependency of release

The calcium-independent release of adenosine from the IMHVs of day- 

old chicks, following training on a passive avoidance task, is shown in Figure 

6.3. Thirty minutes after training there were increases in adenosine release in 

both left and right IMHVs of M eA-trained chicks com pared to W -trained 

birds (t's=2.400 and 2.487 respectively, p's=0.0335 and 0.0286 respectively, both 

df's=12). An increase in release was found in the left IMHV 1 hour post­

training (t=2.187 p=0.0492, df=12), but not the right (p>0.2). At 3 and 6.5 hours 

the right IMHV of MeA chicks showed increased release com pared to W- 

chicks (t=2.774 and 3.368, p=0.00168 and 0.0056, d f  s=12).
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Figure 6.3. The effect of a passive avoidance task on the calcium-independent 
release of adenosine from A) the left IMHV and B) the righ t IMHVs of day- 
old chicks, 30 minutes, and 1, 3 and 6.5 hours after training on a MeA-covered 
bead (MeA) or a water bead (W). The sample size for each group is 7. An 
asterisk * indicates a significant difference between the two groups (p < 0.05, t- 
test). Error bars are means ± S.E.M..

The calcium-dependent release of adenosine is described in Figure 6.4. 

As can be seen, increases in calcium -dependent release occurred at similar 

tim es follow ing the task to those w hich show ed increased calcium- 

independent release. Thirty m inutes after training there were significant 

increases in the release of adenosine in both the left (t=0.0224, p=2.62, df=12) 

and the right (t=4.196, p=0.0012, df=12) IMHVs. One hour following the task 

there was an increase in calcium-dependent adenosine release from the left 

IMHV only (t=2.382, p=0.0346, df=12). Increases were again found in the right 

IMHV at 3 hours and 6.5 hours post-training (t's=2.71 and 2.23, p's=0.019 and 

0.0221 respectively, both df's=12)
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Figure 6.4. The effect of a passive avoidance task on the calcium-dependent 
release of adenosine from A) the left and B) the right IMHV of day-old chicks, 
30 m inutes, and 1, 3 and 6 5 hours after training on a MeA-covered bead 
(MeA) or a water bead (W). The sample size for each group is 7. An asterisk * 
indicates a significant difference betw een the two groups (p < 0.05, t-test). 
Error bars are means ± S.E.M..
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Experiment 6.2. The effect of adenosine analogues on the release of 

amino acids from slices of the IMHVs of day-old chicks 

Introduction

This section describes a series of experiments that were carried out to 

determine if adenosine has an effect on the release of amino acids in the chick 

IMHV. Experiment 6.1 showed concomitant increases in the release of 

adenosine with glutamate, but no conclusions as to the effect of the enhanced 

purine release on the release of any of the amino acids can be drawn without 

first demonstrating an effect in the chick slice preparation.

The effect of adenosine and its analogues on the release of endogenous 

amino acids has been investigated extensively in mammalian systems: 

adenosine (300mM) was found to inhibit the evoked potentials and the 

release of aspartate and glutamate from the CAl region of the hippocampus 

following stimulation of the stratum radiatum (CA3/CA2 region), as also did 

the receptor agon ists 1 -p h en y lisop rop y lad en osin e  (PIA) and  

cyclohexyladenosine (CHA @ ImM) (Corradetti et al., 1984): calcium- 

dependent stimulation of this region had previously been shown to produce 

an increase in the release and synthesis of these amino acids (Corradetti et al., 

1983b). Dolphin and Archer (1983) also demonstrated inhibition of 

potassium-induced glutamate release (but not GABA) from slices of the 

dentate gyrus of rat, following superfusion with the non-selective agonist 2 - 

chloroadenosine (2-CADO). The effect of an A 2  agonist was to increase 

glutamate and aspartate release from ischaemic rat cerebral cortex, although it 

did not alter basal release (O'Regan et al., 1992). The Ai antagonist 8 - 

phenyltheophylline (5 mM) increased the release of aspartate and glutamate, 

when applied during low-frequency stimulation, and antagonised the CHA- 

induced inhibition of the release of these amino acids (Corradetti et al., 1984).

In addition, histochemical (Goodman et al., 1983) and neurochemical
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(Lee et al., 1983) studies have suggested that a large percentage of adenosine 

receptors are located on the terminals of neurons releasing excitatory amino 

acids, and regional differences in the density of the receptors may confer 

differential sensitivity to adenosine modulation.

The following experiments investigated the effect of adenosine and 

adenosine analogues, on the release of the four amino acids investigated in 

the last two chapters.

Materials and M ethods

Release procedure

To determine the effect of adenosine and adenosine analogues on the 

release of amino acids from chick IMHV slices, two batches of tissue were 

prepared; both derived from the left IMHVs of untrained day-old chicks. 

Slices (350mM) were placed in a pre-incubation buffer for 60 minutes, with 

replacement of buffer as described in Chapter 4. After this period the slices 

were divided into two randomly assigned groups; 'control' slices were 

incubated in Krebs-Henseleit buffer; 'test' slices were incubated in a Krebs- 

Henseleit buffer containing the drug at the desired concentration. After 2 

minutes the incubations were halted by placing the incubation vials on ice, 

and the media were removed to storage (at -40°C) for subsequent analysis by 

HPLC, with the slices collected for subsequent protein estimations.
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R esults

The effect of adenosine on the calcium-dependent release of amino acids

The concentration of adenosine applied  to the incubation buffer 

should determine which receptor systems are activated in the slices; lower 

concentrations will activate Ai inhibitory receptors and higher concentrations 

probably activating both Ai and A] types, producing opposing effects on 

transm itter release. Therefore it was deem ed necessary to vary  the 

concentration of the adenosine applied to the preparation in order to describe 

its effects fully : three concentrations of adenosine were used in the present 

study, 10, 100 and 500mM, which were considered (from the literature) to 

cover a range of possible responses.

Adenosine at lOmM had no effect on the release of any of the amino 

acids m easured (Figure 6.5, p > 0.1). The higher concentration of lOOmM 

selectively inhibited the release of glutamate from chick IMHV slices (F=9.972, 

p=0.0081, df=12). The release of aspartate, GABA and glycine were all 

unaffected by this concentration of adenosine (p > 0.25). No differences were 

found for any of the amino acids following 500mM adenosine treatm ent, 

although there appeared to be a slight tendency (non-significant, p=0.11) for a 

decrease in the release of glutamate.

The calcium -independent, and basal, release of the amino acids was 

not affected by the addition of adenosine to the incubation m edium  (data not 

shown graphically; all p values > 0.2).
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Figure 6.5. The effect of adenosine on the calcium-dependent release of 
amino acids from slices of the IMHV of the day-old chick. Media containing 
adenosine were added to slices of chick IMHV following a pre-incubation in a 
Krebs-Henseleit buffer at the following concentrations; A) lOmM; B) lOOmM; 
and C) 500mM. Following a 2 minute incubation the media were removed 
and analysed by HPLC for amino acid content. Protein estimations were 
carried out on the slices and values of picomoles release per minute were 
computed. Values are means ± 5.E.M. for 7 experiments at each 
concentration. An asterisk * indicates a significant difference between the two 
groups (p < 0.05, ANOVA). GLU =glutamate, GABA =g-aminobutyric acid, 
ASP =aspartate and GLY =glycine
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The effect of the specific adenosine A \ agonist, cyclohexyladenosine (CHA), 

on the release of amino acids

The methodology was similar to that used for determining the effect of 

adenosine on amino acid release, but w ith CHA (lOmM) replacing the added 

adenosine. CHA, at this concentration, w ould be expected to activate A% 

receptors only, and therefore was expected, on the basis of results obtained in 

mammals, to inhibit amino acid release.

The results are described in Figure 6.6 A (sample size, n=7). A selective 

decrease in the release of glutam ate, and not of the other amino acids 

analysed (aspartate, GABA or glycine), was indicated (F=7.93, p=0.0159, df=12) 

from slices of chick IMHV treated w ith CHA .

The effect of the adenosine A j recep to r-se lec tive  an ta g o n is t  

cyclopentyltheophylline (CPT) on the basal and CHA-affected release of 

amino acids from the IMHV of the day-old chick

CPT is a selective antagonist for the Ai receptor site. Its affinity (Kd) is 

approxim ately ten times that of CHA (CHA=1.2nM, CPT=11 nM). These 

experiments were intended to determine whether the actions of CHA found 

in the last experiment were strictly of A] receptor-regulated events or whether 

the agonist was having non-receptor linked indirect effects on amino acid 

release. To determine which was applicable, the competitive antagonist CPT 

was used in order to attenuate the inhibitory effect of CHA. If the CHA- 

induced decrease in glutamate release was abolished w ith  CPT it w ould be 

possible to say that the A% receptor system was being inhibited.

In the initial experiment CPT (lOOmM) was added to the incubation 

media in place of adenosine. The concentration used allows for the lower 

affinity of this molecule compared to CHA. The results are shown in Figure 

6.6B (sample size, n=7 for all conditions). CPT (lOOmM) was found to increase
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the calcium-dependent release of glutamate (F=5.11, p=0.046, df=12). None of 

the other amino acids measured were altered in their release (p > 0 .1 ).

The second experiment involved the joint addition of CPT (lOOmM) 

and CHA (lOmM), concentrations that allowed for competitive interactions at 

the receptor site. The results are shown in Figure 6 .6 C (sample size, n=7 for 

all conditions). No change in the release of glutamate (F=3.72, p=0.071, df=12) 

or aspartate, GABA and glycine from the control levels was now found.
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Figure 6 .6 . The effect of adenosine Ai receptor activation on the calcium- 
dependent release of amino acids. A ) The specific A% agonist 
cyclohexylad en osine (CHA; lOmM, n=7); B) the Ai antagonist 
cyclopentyltheophylline (CPT; lOOmM, n=7) ; and C) both CHA (lOmM) and 
CPT (lOOmM) (n=7), were added to slices of chick IMHV following pre- 
incubation in a Krebs-Henseleit buffer. Following 2  minutes incubation, the 
media were removed and analysed by HPLC for the amino acid content. 
Protein estimations were carried out on the slices, and values of picomoles 
release per minute were computed. Values are means ± S.E.M.. An asterisk * 
indicates a significant difference from control levels (p < 0.05, ANOVA). GLU 
=glutamate, GABA =g-aminobutyric acid, ASP =aspartate and GLY =glycine.
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The effect of the adenosine A 2 receptor agonist, CGS 21680, on the calcium- 

dependent release of amino acids

The highly specific A] receptor agonist, 2-p-(2-carboxyethyl) 

phenethyiamino-5'-N-ethylcarboxamido adenosine hydroch lo ride  (CGS 

21680) (affinity for A2=19nM; A2/Ai=0.03), was added to the incubation media, 

and samples were taken for analysis after 2 minutes. Two concentrations of 

the drug were used, because O'Regan et al. (1992a and 1992b) have previously 

demonstrated concentration-dependent effects of the CGS compound.

The results of the amino acid analyses are shown in Figures 6.7A and B 

(sample size, n=7 for all conditions). There is a selective, and significant, 

increase in the calcium-dependent release of glutamate (F=5.111, p=0.0433, 

df=12) with 5 mM CGS 21680. This increase was greater than that with the Ai 

antagonist CPT (133% and 120% respectively). The lower concentration 

(lOnM) produced a significant decrease in the release of GABA (F=5.6, p=0.037, 

df=12). It had no effect on the release of the other amino acids (p > 0.35).
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Figure 6.7. The effect of the adenosine A; receptor agonist, CGS21680, on the 
calcium-dependent release of amino acids. A) 5mM or B) lOnM CGS 21680 
was added to slices of chick IMHV following pre-incubation in a Krebs- 
Henseleit buffer. Following 2 minutes incubation, the media were removed 
and analysed by HPLC for the amino acid content (n=7). Protein estimations 
were carried out on the slices and values of picomoles release per minute 
were computed. Values are means ± S.E.M.. An asterisk * indicates 
significant difference from control levels (p < 0.05, ANOVA). GLU 
=glutamate, GABA =g-aminobutyric acid, ASP =aspartate and GLY =glycine.
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Experiment 6.3. Endogenous release o f adenosine evoked  b y  KCl 

and NM D A  

Introduction

Adenosine release from depolarised brain slices has been well 

characterised (Pull and Mcllwain 1977). Release can be obtained with 

electrical stimuli, potassium, ouabain or veratridine. Also glutamate has 

been found to release radiolabelled adenosine derivatives and adenosine 

itself from slices (Hoehn and White, 1990) in vivo (Perkins and Stone, 1983), 

and from synaptosomal preparations (Hoehn and White, 1990). It has also 

been demonstrated that potassium depolarisation releases endogenous 

adenosine from cortical slices (Hollins and Stone, 1980; Hoehn and White, 

1990), and from synaptosomal preparations (Hoehn and White,1990; White 

and Macdonald, 1990).

We have shown simultaneous increases in adenosine release with the 

increases in glutamate found following passive avoidance training in the 

IMHVs of day-old chicks (see Section 6.1). This investigation was carried out 

in order to determine whether the increases in adenosine release were 

mediated by the NMDA glutamate receptor and to determine the effects of 

. potassium stimulation on release.
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Materials and m ethods

Release procedure

Slices (350mM) were prepared (see Chapter 4) from the IMHVs of 

untrained day-old chicks and placed in a pre-incubation buffer for 60 minutes, 

during which time the buffer was replaced twice. As described previously 

(Chapter 4) the IMHVs of 3 or 4 chicks were combined in a vial. Following 

the first replacement of buffer, the combined IMHVs were separated into two 

roughly  equal portions. One portion  was used for the experim ental 

treatm ent, the other as the control: this allowed paired t-tests (using the 

statistical package Statview) to be carried out on the data. Two minutes after 

the second replacement, a sam ple (100ml of 1ml) of the 'pre-stim ulation ' 

buffer was taken (see Figure 6.8). Following the next 20 m inutes pre­

incubation, the buffer was then replaced with an incubation m edium  (Krebs- 

Henseleit buffer, oxygenated and at 37‘̂ C: see Chapter 4) containing either the 

desired concentration of NMDA (200mM), D-AP5 (200mM) or 50 mM KCl. 

Controls were incubated in normal Krebs-Henseleit buffer only. After a 2 

m inute incubation, a sample of the m edium  was rem oved (the 'incubation' 

sample, sample 2). Eight m inutes later the remaining media was replaced 

w ith a normal Krebs-Henseleit buffer to remove the NM DA/D-AP5 or 50mM 

KCl, from which a sample was again taken 2 minutes after the replacement of 

the buffer (sample 3). This was repeated two more times (samples 4 and 5) 

following buffer renewal (with a Krebs-Henseleit buffer) after which the slices 

were rem oved and prepared for protein estimations (Bradford method, see 

Chapter 4). These post-stimulation samples were taken because of the post­

stimulation effects that had been found by Hollins and Stone (1980), discussed 

at the end of this section.
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Figure 6 .8 . Diagram showing the time course over which sampling of the 

reaction media took place. The horizontal line represents time, with the 'pre­

stimulation' and numbers (2-5) indicating the sampling points. Samples 

(1 0 0 ml) were removed 2  minutes after renewal of each incubation buffer, and 

buffer renewal was every 10 minutes. (See release procedure for further 

details).

HPLC analysis

Adenosine was analysed using the procedure described in Chapter 3 .
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Results

Endogenous release of adenosine evoked by NM DA and KCl

Sam ples of the m edia w ere taken 2 m inutes after the second 

replacem ent of the pre-incubation m edium  as a level of pre-stim ulation 

release of adenosine (sample 1), after 2 minutes of replacing the buffer with 

m edium  containing 200mM NMDA (the stimulated release; sample 2: sample 

size, n=8 for both NM DA-treated and controls) and subsequently following 

the next three replacem ents of Krebs-Henseleit buffer, each time after 2 

minutes of incubation in the m edium  (samples 3-5) (see Figure 6.7).

A denosine release w as significantly  h igher than  control levels 

following NM DA-stimulation of the slices at collection points 3 and 4 (see 

Figure 6.9 and Table 6.1). There was almost a 250% increase in the level of 

release in sample 3. This result was highly significant (paired t-test, t=7.618, 

p=0.0001, all df's=13). The 4th sample also produced significantly higher 

levels of adenosine (t=4.8431, p=0.0004). The final sample, taken 22 minutes 

following stimulation w ith NMDA, did not show elevated adenosine release, 

nor did the 2nd sample (p> 0.05).

The K+-stimulated release of adenosine is presented in Figure 6.10 and 

table 6.2. KCl (50mM) was used to stimulate the slice preparation (sample 

size n=8 for KCl-stimulated slices and controls). The results show an increase 

in the release of K+-stimulated adenosine release com pared to controls at 

collection periods 3 (t=2.621, p=0.0223, df=13) and 4 (t=2.311, p=0.03, df=13). No 

differences occurred between the other samples (p>0.2).
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Figure 6.9. The effect of NMDA (200mM) on the release of adenosine from 

slices of the IMHV of day-old chicks. Adenosine release was m easured 

(picomoles/ 2 m in collection period / mg protein) at 5 collection points (n=8): 

1) pre-stimulation, 2) during stimulation w ith 200mM NMDA and 3-5) post­

stimulation (see text for further details). An asterisk * indicates a significant 

difference between stimulated and control values (p < 0.05, paired t-test).

1 2 3 4 5

NM DA 22±4.3 38±5.8 62.6±7.7’*‘ 48±6.8^^ 41.7±5.7

Control 23±3.8 25±4.4 21.8±4.0 22±4.1 20±5.1

Table 6.1. The release of adenosine (picom oles/ 2 m in /  mg protein) at 5 
collection points (n=8): 1) pre-stimulation, 2) during stimulation w ith 200mM 
NMDA (or norm al KHB buffer for controls) and 3-5) post-stim ulation (see
text for further details). An asterisk ^  indicates p < 0.05, paired t-test.
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Figure 6.10. The effect of 50mM KCl on the release of adenosine from slices of 
the IMHV of day-old chicks. Adenosine was m easured (picom oles/ 2 m in /  
m g protein) at 5 collection points (n=8): 1) pre-stim ulation, 2) during 
stim ulation w ith 50mM KCl (or norm al KHB buffer for controls) and 3-5) 
post-stim ulation (see text for further details). An asterisk * indicates a 
significant difference between stimulated and control values

collection periods

1 2 3 4 5

KCl 22±4.1 35.7±4.9 49.8±7.0* 44.5±7.1^ 36.2±4.9

Control 24±4. 27.3±5.1 26±5.7 23±4.3 25±5.0

Table 6.2. The release of adenosine (picom oles/ 2 m in /  mg protein) at 5 
collection points (n=8): 1) pre-stimulation, 2) during stim ulation w ith 50mM 
KCl (or normal KHB buffer for controls) and 3-5) post-stimulation (see text for 
further details). An asterisk indicates p < 0.05, paired t-test.
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N M D A -recep tor  mediated release of adenosine

To determ ine w hether the NMDA-evoked release of adenosine was 

m ediated specifically by NMDA receptors, the competitive NMDA receptor 

antagonist, 2-amino-5-phosphopentanoic acid (D-AP5, 200mM), was used to 

antagonise the effects of NMDA and KCl stimulation. The experiment was 

similar to that described above, although chick IMHVs were now combined 

three ways, w ith D-AP5 being present at the same time as the NMDA or 

50mM KCl buffer: ANOVAs were carried out on the data.

The results are presented in figure 6.11 and table 6.3 (n=8 for both AP-5- 

treated samples and controls). The effect of D-AP5 was to significantly reduce 

the NMDA-evoked release of adenosine during periods 3 (t=5.9647, p=0.0001, 

df=12) and 4 (t=3.672, p's=0.0032, df=12: this is comparing these data with those 

of NMDA and KCl stim ulations shown previously). There was now no 

difference in the release of adenosine, at any of the sam pling points, as 

compared to unstim ulated, Krebs-Henseleit buffer-only controls (ANOVA, p 

> 0.50).

The 50mM KCl-evoked release of adenosine was decreased by the 

add ition  of D-AP5 (t=2.379, p=0.0348, df=12), although there were no 

differences after this time (p > 0.3). Again, there were no differences as 

compared to control values (ANOVA, p > 0.4).

The experim ent was repeated, w ith only the first post-stim ulation 
media (collection point 3) being taken for analysis in this instance. Both the 
stim ulation m edia were used and both had AP-5 added to them  in two 
separate experiments: combined IMHVs were divided into two sets in each 
experiment, one undergoing AP-5 inhibition the other stim ulated by KCl 
(one experiment), the other undergoing AP-5 inhibition the other stimulated 
by NMDA (a separate experiment). The results are show n in Figure 6.12. 
There were significant differences between both AP-5-containing media and 
their controls: KCl (paired t-test, t=3.842, p=0.0130, df=13); NMDA (t=6.783, 
p=0.0003, df=13) (sample sizes, n=8 in all groups).
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Figure 6.11. The effect of the NMDA antagonist AP-5 on the release of 
NMDA-, and K-stimulated, adenosine from slices of chick IMHV. Adenosine 
release was measured (picomoles/ 2 min /  mg protein) at 5 collection points: 
1) pre-stimulation, 2) during stimulation w ith either 200mM AP-5 and 50mM 
KCl or 200mM AP-5 and 200mM NMDA (or normal KHB buffer for controls) 
and 3-5) post-stimulation.

Release protocol collection periods

1 2 3 4 5

NMDA-f

AP5

23±4.3 26±5.8 38±5.3 33±4.3 27±4.2

KCl + AP5 21+3.8 25±4.4 28±4.1 28±4.1 28±5.1

Control 22±3.4 22±4.0 21±4.2 20±4.8 19±3.1

Table 6.3. The release of adenosine (p icom oles/2 m in /m g  protein) at 5 
collection points: 1) pre-stim ulation, 2) during  stim ulation  w ith either 
200mM AP-5 and 50mM KCl or 200mM AP-5 and 200mM NMDA (or normal 
KHB buffer for controls) and 3-5) post-stimulation (see text for further details).
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Figure 6.12. The effect of the NMDA antagonist, AP-5, on the release of 

NMDA-, and K+-stimulated, adenosine from slices of the IMHV of day-old 

chicks. AP-5 (200mM) was added to Krebs-Henseleit media containing either 

NMDA (200mM) or a 50mM KCl-Krebs-Henseleit media (all sample sizes 

n=8 ). Slices of chick IMHVs were incubated for 10 minutes in the stimulation 

media. Samples were taken 2  minutes after replacing the stimulation media 

with a Krebs-Henseleit buffer. Values are the means ± S.E.M. from seven 

experiments. An asterisk * indicates a significant difference between 

stimulated and control levels (p < 0.05, paired t-tests).
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Discussion

Calcium -dependent and Ca^+dndependent adenosine release was 

increased in both left and right IMHVs of day-old chicks following training on 

a passive avoidance task (Experim ent 6.1); the time points coincided markedly 

w ith concomitant increases in the release of glutamate as found in Chapter 4. 

Hence, 30 m inutes and 1 hour following training on the task, there were 

calcium -dependent increases in adenosine release from the left IMHV, and 

there were increases in adenosine release 30 minutes, 3 and 6.5 hours after the 

training task in the right IMHV, as per glutamate release.

Calcium-independent release of the purine from IMHV slices was also 

found. This suggests that two mechanisms may be in operation following 

stim ulation w ith  high levels of KCl: a vesicular or transm itter-like release, 

and the operation of the bidirectional nucleoside transporter.

The following conclusions may be draw n from the results described in 

Experiment 6.2. Firstly, that adenosine acts in a concentration-independent 

m anner to inhibit, selectively, the calcium-dependent release of the excitatory 

amino acid glutam ate. The relatively low dose of lOmM produced no 

significant effects on release, nor did the highest concentration (500mM) used. 

The intermediate dose of lOOmM, however, did selectively inhibit the release 

of glutamate from the slice preparation. Previously it has been found that, in 

the rat, free adenosine content in brain tissue was betw een 5 and lOmM 

(Rubio et al., 1978). In the hippocam pus a significant depression (25 %) on 

population spikes recorded from CAl neurons was found in the presence of 

only 2.5mM adenosine, w ith 100% depression found w hen the slices were 

superfused w ith 20mM adenosine (Schubert and Mitzdorf, 1979). In addition 

EPSPs were also reduced in a concentration-dependent manner. These results 

suggest that endogenous adenosine levels m ay tonically inhibit synaptic 

activity. Corradetti et al. (1984) dem onstrated a decrease in the release of
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aspartate and glutamate from rat hippocampal slices following the inclusion 

of adenosine in the incubation medium. In their study adenosine inhibited 

the am plitude of both  the C A l EPSPs and the population spike in the 

pyram idal cell layer; effects were found at concentrations as low as 10-20mM, 

w ith  complete inhibition of the evoked potentials betw een 100-300mM. 

Okada et al. (1992) also found that lOOmM adenosine significantly reduced the 

release of glutamate. In marked contrast, however, was their finding that a 

small concentration (O.lmM) produced excitatory effects in the CA3 region of 

the hippocampus, and they describe a biphasic, concentration dependent effect 

in the hippocampus, with excitatory effects w ith concentrations ranging from 

lOnM to Im M  and inhibitory effects at lOmM to ImM. From this, it is 

suggested here, that the different effects of adenosine, and its receptor-subtype 

agonists and antagonists, which have been found, appear to depend upon the 

tissue source being used. For example, Okada et al. (1992) have described 

excitatory, but not inhibitory, actions of both receptor subtype agonists in the 

superior colliculus of the rat, whilst they found both excitatory and inhibitory 

effects in the hippocampal slice preparation. From these results, they have 

suggested that two broad receptor types occur in the brain; inhibitory (Ai) and 

excitatory (Ae) receptors (as defined by Ishikawa et al., 1994). The two receptor 

subtypes w ould also have differing affinities for the endogenous purine, 

suggested to be a high affinity (Ae) and a low affinity (Aj) receptor type. 

Hence, it was thought that the superior colliculus w ould lack the inhibitory 

receptor subtype as adenosine inhibitory effects were not noted bu t that the 

hippocampus would have both types of receptor.

The selective inhibition of calcium -dependent glutam ate release was 

found to be m ediated by the addition of adenosine to the IMHV slice 

preparation. In Experiment 6.2, an Ai receptor agonist, cyclohexyladenosine 

(CHA), inhibited  glutam ate release. This effect was blocked w hen an 

equivalent concentration of the Ai antagonist CPT was used to compete for 

receptor binding. This demonstrates that the adenosine A% receptor acts to
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inhibit glutamate release in this preparation. CPT alone produced an increase 

in the release of glutamate, suggesting that endogenous adenosine levels of 

adenosine in the IMHV slice are at levels at w hich there is a 'n a tu ra l' 

inhibition of glutam ate release which is being controlled by adenosine A% 

receptors.

At concentrations which w ould probably activate only A% receptors, 

Simpson et al’ (1992) showed that the adenosine analogues, CPA and NECA, 

significantly depressed ischaemia-evoked aspartate and glutamate release. At 

higher concentrations, concentrations at which both the inhibitory A%̂ and 

excitatory A2, receptor subtypes w ould be activated, no inhibition of release 

was now seen. This is similar to the results found in the chick slice 

preparation w ith the application of adenosine only; the higher (500mM) 

concentration of adenosine probably activates both receptor subtypes and the 

inhibitory effects are not found at this concentration. Ameri and Jurna (1991) 

have suggested that A2-mediated effects will prevail over the effects mediated 

by Ai receptors. Also Burke and N adler (1988) found  tha t higher 

concentrations of NECA were less potent than expected (Ebstein and Daly,

1982)y again suggesting that its actions at Ag receptors may offset its inhibitory 

actions.

The specific activation of the A2 excitatory adenosine receptors w ith the 

agonist CGS 21680 produced an increase in the release of glutam ate from 

chick IMHV slices w hen the agonist is app lied  at a relatively  high 

concentration (5mM). The lower concentration (lOnM) did not produce this 

effect but instead inhibited the release of GABA from the chick IMHV slice 

preparation. In the rat brain, two adenosine receptor sites are labelled by CGS 

21680, the higher affinity site representing the A2a receptor. As it is the lower 

concentration (lOnM), only, of the agonist that inhibits the release of GABA, 

it is the higher affinity site, i.e. the A2a receptor, that is im plicated in the 

selective inhibition of the amino acid. The effect of adenosine analogues on
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GABA release remains unclear; in the ischaemic rat preparation the selective 

activation of either A% or A]^ receptors resulted in an inhibition of the release 

(O'Regan et a l ,  1992a). When, however, the drugs were applied at higher 

concentrations, i.e. at a dose that w ould activate both Ai and A] receptors, 

there was no change in GABA release (O'Regan et al., 1992). The inhibitory  

effect of adenosine may be linked to the activation of DIDS-sensitive chloride 

channels on hippocampal CAl pyram idal neurons, which in turn  can lead to 

a potentiation of responses to GABAa receptor activation (Akhondzadeh and 

Stone, 1994). O 'Regan et al. (1992) suggested that it was the lower affinity 

excitatory A2b receptor that may mediate the increase in the excitatory amino 

acids.

The in teraction  of adenosine on GABA release w as in itially  

investigated by Hollins and Stone (1980). They described an inhibition of 

GABA release, from slices of cerebral cortex, following the application of 

adenosine. However, Dolphin and Archer (1983) and Limberger et al. (1986) 

did not find any inhibition of release of GABA by 2-CADO. This latter study 

m easured release of GABA synthesised from  glutam ine: the GABA is, 

therefo re , m uch m ore likely to be re leased  from  vesicles as a 

neurotransm itter. O pposed to this, O 'Regan et al. (1992) did dem onstrate 

adenosine inhibition of GABA release. The application of adenosine receptor 

agonists at concentrations allowing the specific activation of Ai receptors 

inhibited GABA release. H igher concentrations of these agonists, which 

would also activate A2b receptors, did not affect GABA release. In the present 

study, application of CGS 21680, the specific A2 receptor agonist, inhibited the 

release of GABA at concentrations implicating the high affinity A2a receptor. 

Therefore it could be concluded that Ai and high-affinity A2a receptors block 

both inhibitory amino acid release, whilst the co-activation of A2b (low- 

affinity) and A% receptors results in the loss of the inhibitory effect of 

adenosine. These findings are in agreem ent w ith those found by Kirk and 

Richardson (1994) who described A2n receptors present on GABAergic striatal

179



nerve terminals that acted to inhibit the release of GABA (this action m ay be 

m ediated by A2a inhibition of PKC activity; Kirk and Richardson, 1995). The 

mechanism of this inhibition has been examined by A khondzadeh and Stone 

(1994). They show ed that adenosine was able to potentiate the ability of 

m uscim ol (G A B A a  agonist) to inhibit evoked potentials. The chloride 

channel blocker DIDS reduced the inhibitory action of both  muscimol and 

adenosine. This suggested that the inhibitory action of adenosine was 

m ediated in postsynaptic neurones by enhancing chloride fluxes and that this 

can lead to a potentiation of responses to GABAa receptor activation. The fact 

that they found a potentiation of the effects of adenosine w ith muscimol, also 

suggests that two distinct chloride channels may be being activated.

The results in Experiment 6.3 described the NMDA and KCl-evoked 

release of adenosine from the in vitro slice preparation of the chick IMHV. 

The K+-evoked release data found in this study are in agreement w ith those 

noted by Hollins and Stone (1980), who found that increasing the potassium 

concentra tion  to 54mM d id  not im m ediate ly  evoke an increase in  

radiolabcllod adenosine, which they took to indicate that adenosine was not 

released in  a transm itter-like m anner, how ever, there was an increase 

immediately following potassium  stim ulation which possibly suggests that 

another pool of adenosine is being released initially, perhaps being followed 

by the radiolabelled pool, or that the release is indeed delayed following 

stimulation. K+-evoked release of adenosine from cortical slices has been 

shown to be partially m ediated, indirectly, by the release of an excitatory 

amino acid, which in tu rn  acts at NMDA receptors to prom ote adenosine 

release (Hoehn and White, 1990). The results described in experiment 6.3 

would tend to agree w ith this, as the action of AP-5 is not selective just for the 

NMDA-evoked adenosine release, but also inhibits the K+-stimulated release 

of adenosine, suggesting that the K+-stimulation involves NMDA receptor 

interactions to produce the release of the purine.
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Potassium depolarisation is weaker in eliciting release than ouabain 

or veratridine (Shimizu et al.,1970); this would suggest that purine release is 

associated w ith  the influx of sodium  ions or of calcium  ions m oving 

specifically through sodium  channels. Indeed a Na'"'-dependent transport 

system may exist in central neurons which m ay release adenosine w hen the 

Na■'■-electrochemical gradient is reversed. However, m uch of the release has 

been suggested to arise from  intracellular adenosine exiting cells via a 

bidirectional nucleoside transporter which acts by facilitated-diffusion w hen 

the intracellular concentration exceeds the extracellular level (White and 

MacDonald, 1991)..

NMDA application to the incubation m edia increased the release of 

adenosine in a sim ilar m anner to K +-stim ulation. The NM DA-evoked 

release of adenosine was abolished when the selective NMDA-antagonist AP- 

5 was applied w ith NMDA to the slices. The fact that AP-5 blocked NMDA- 

evoked adenosine release indicates the release was m ediated through NMDA 

receptors. This is in agreement with studies in other preparations: Chen et al. 

(1992) showed the release of endogenous adenosine from the hippocampus of 

the rat to be mediated by NMDA receptors. In rat cortical slices, at least 50% of 

the glutamate-evoked release of adenosine was determined to be regulated by 

the NMDA receptor system, although a further 66% of the rem aining release 

was dim inished by a non-NMDA receptor antagonist, suggesting that both 

NMDA and non-NM DA receptors were involved in  the release in  this 

p reparation  (H oehn and W hite, 1990). Studies w ith  non-com petitive 

antagonists such as Mg2+ and MK-801 suggest that only a small fraction of the 

available NMDA receptors m ust be activated for adenosine release from 

cortical slices to be maximal (Hoehn et al., 1990). Therefore it seems unlikely 

that adenosine is released to act as a neuroprotective device in cases of over­

stim ulation bu t more likely as a fine tuning control, inhibiting the further 

release of glutam ate a n d /o r  diminishing post-synaptic responses providing
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another inhibitory threshold (as well as the Mg2+-block of the NMDA 

receptor) which m ust be overcome in order for NMDA receptor-m ediated 

processes to be carried out. Thus adenosine may m aintain processes such as 

synaptic plasticity , learn ing  and m em ory (H oehn and W hite, 1990). 

Adenosine release during low levels of EAA receptor activation could iiiliibit 

the further release of glutamate if the adenosine was released in nanomolar 

quantities, or actually stimulate further glutam ate release, if the adenosine 

released was at a micromolar level. Released adenosine may provide, at least 

initially, an inhibitory threshold which m ust be overcom e in order for 

NM DA-mediated transm ission to be able to proceed; and once over this 

threshold, adenosine actions at A; receptors may allow a positive feedback 

system to evolve such that maximal adenosine release will produce effects 

that override the A% inhibitory system and stimulate the release of excitatory 

(and inhibitory?) transmitters.

NMDA has been found to cause a reduction in the sensitivity of 

adenosine: if AP-5 is present before removing the Mg2+, thus preventing any 

transient activation of NMDA receptors, the adenosine responses remain 

unaffected (Bartrup and Stone, 1990). These results may be explained as being 

due to the activation of excitatory adenosine receptors, which w ould have 

actions similar to suppressing the inhibitory action of adenosine. .

Since NMDA receptors show an increased num ber and activity shortly 

after the training task (Steele, 1995), their activation might increase adenosine 

levels in the active synapses to a level that activates A2 receptors, which 

according to the results presented in Experiment 6.2, w ould lead to either a 

decrease in GABA release (and thus a reduction in the inhibitory tone of the 

neuronal environm ent) or m ight increase glutam ate release and thereby 

increase the excitation in the neural population subjected to NMDA-receptor 

activation. This w ould allow an explanation for the results described in 

Experiments 6.1 and Experim ent 4.1 show ing a concom itant increase ,in
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glutam ate release and adenosine release 30 m inutes after training in both 

IMHVs.

The proposed neuroprotective effect of adenosine may, yet, also 

explain the results. It has been shown that glutamate and aspartate enhance 

the release of adenosine from rat hippocam pal synaptosom es (Poli et al., 

1991). As adenosine decreases the evoked release of these amino acids a 

feedback w ould exist, whereby adenosine acting presynaptically will reduce 

excitatory amino acid release, and post-synaptically it may inhibit the NMDA 

receptor-mediated glutamate response.
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Chapter 7: The Effect of Adenosine 
Receptor Agonists and Antagonists 
on Memory Formation fo llow ing a 
Passive Avoidance Task

Introduction

Increases in the release of glutamate, GABA and aspartate occurred in 

the IMHVs and LPOs of the chicks at specific times following training on a 

one-trial passive avoidance task (Chapters 4 and 5). T raining-induced 

increases of adenosine were also found that coincided tem porally w ith the 

increased glutamate release (Chapter 6). In addition adenosine analogues were 

show n to inhibit or elevate the release of glutam ate or GABA from chick 

IMHV, depending on the adenosine receptor subtype activated, and it was also 

shown that NMDA stimulated the release of endogenous adenosine from the 

slice preparation.

The following experiments were carried out to dem onstrate whether 

adenosine has an effect on the acquisition or retention of the learning task.
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Materials and M ethods

Training procedure

The training procedure was as described previously (Chapter 4). 

Statistical treatment of data

The statistical significance of the differences betw een treated  and 

control chicks was calculated using the %2 test (Statview).

Drug concentrations and injection procedure

For adm inistration of intra-cranial (i.e.) injections, anim als were 

placed in a stereotaxic plexiglass headholder (as described in Davis et al. 1979) 

w hich contains boreholes that guide the injection cannula to defined 

stereotaxic coordinates and which allows fast and precise injections into the 

IMHVs. The chemical under test was injected into the forebrain using a 

Hamilton syringe, fitted with a plastic sleeve as a stop for the depth coordinate 

(4mm) for the IMHV. Since chicks have an unossified skull, such injections 

took only a few seconds for each bird, and no anaesthetic was required.

2-chloroadenosine (2-CADO), cyclohexyladenosine (CHA) and 

cyclopentyltheophylline (CPT), all from Sigma (Poole, England), and CGS 

21680 from Research Biochemicals Int., were dissolved by sonication in saline 

(0.9%) prior to injection. Solutions were freshly prepared on the day of use. 

For i.e. injections, 5 pi of a stock solution was injected in each hem isphere in 

each experim ent. For the dose-response tests, fresh solutions of the 

appropriate concentrations were prepared. Sterile saline solution (0.9%) was 

injected into the IMHVs of control chicks.

For all drugs used in the study, the dosage that would prove effective

at inhibiting memory formation, whilst at the same time not interfering with

any other of the chicks' behaviours, was determined. Chicks were pre-trained
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in  the usual m anner (see Chapter 4); those chicks that did not peck the bead 

were discarded from the experiment. Chicks were then injected bilaterally 

(5ml per hemisphere) w ith a range of concentrations of the drug being tested. 

The chicks were then tested 30 m inutes or 1 hour later w ith a dry chrome 

bead. The behaviour of the chicks was then noted: they should peck the bead 

and show no side effects on their locomotor activity. If the chicks did not 

show normal behaviours, then the dose which the chicks had been given was 

considered to be too great for the effect of the drug on memory form ation to 

be distinguished. In general, the m axim um  dose used for behavioural 

experiments was half of the highest dose that did not cause an inhibition of 

pecking or other behaviours.
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Experiment 7.1. The effect of the non-selective adenosine analogue 

2-ch loroad en osin e (2-CADO ) on recall o f a one-trial p assive  

avoidance task 

Introduction

2-CADO is a non-selective A% and A2 receptor agonist (Bruns et al., 

1986). The behavioural investigations using this substance were carried out 

prior to the in vitro slice w ork on adenosine release, and  therefore 

represented a 'look and see w hat happens' approach. It was hypothesised that 

2-CADO w ould produce amnesia for the task by inhibiting transm itter 

(glutamate) release, but at the time of the study no direct evidence of an effect 

on amino acid release had been found (this was provided subsequently as 

described in Chapter 6).

M ethods

Dose dependency of 2-CADO

To determine the dose-response for 2-chloroadenosine (2-CADO), four 

concentrations of the drug were used: 20, 50 and 200pM and 2mM. Thirty 

m inutes before the training procedure, each group of chicks received a 

bilateral injection (5pl) of one of the four concentrations of 2-CADO in 0.9% 

sterile saline, whilst a control group of chicks received bilateral injections 

(5ml per hemisphere) of 0.9% saline only (n = for 2-CADO, 15, 17, 17, 15 for 

each dose; for saline, 21, 19, 20, 21 respectively). Chicks were tested for recall 

of the task 1 hour later.

Time-dependency of 2-CADO

To determ ine the time of the onset of amnesia following 2-CADO 

injections, four groups of chicks received a bilateral 5pl injection of 50pM 2- 

CADO in 0.9% sterile saline 30 minutes before training, whilst a control group
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of chicks received bilateral injections (5p.l per hem isphere) of 0.9% saline 

only. Groups of chicks were tested for recall of the task at one of four time 

points later, each group being tested at one time point only. Thus one group 

of chicks was tested at 15 minutes and other groups at 30 minutes, 45 minutes 

or at 1 hour (n = for 2-CADO, 13, 12, 15, 15; for saline, 14, 15, 15, 12 

respectively).

To determ ine w hether the onset of am nesia described in this 

experiment was due to a time point in the acquisition of the task, as opposed 

to a diffusional effect or the fact that the drug may take a certain num ber of 

minutes to act, two further experiments were carried out in which the time of 

injection was varied. In the first instance, the time of injection was increased 

to 1 hour pre-training: bilateral injections of 5pl of either 50pM 2-CADO of 

5pl 0.9% saline, w ith testing at 15, 30, 45 and 60 minutes post-training (n = for 

2-CADO, 14, 12, 15, 13; for saline, 11, 12, 12, 11 respectively). A second 

experiment was carried out w ith injections 5 m inutes pre-training. Again 

these were bilateral injections, of either 50pM 2-CADO or 0.9% saline, w ith 

the chicks tested at 15, 30, 45 and 60 minutes post-training (n = for 2-CADO, 14, 

14,13,15; for saline, 13,15,11,12 respectively).

Results

The low est concentration used, 20pM, failed to produce amnesia 

(%2=i .71, p=0.2206; data presented graphically in Figure 7.1). The next highest 

concentration  (50p.M) produced amnesia 1 hour after training (%2=7.65, 

p=0.0057), as did 200pM (%2=i2.67, p=0.0004) and 2mM (%2=6.05, p=0.0161).

As show n in Figure 7.2A amnesia had  not set in by 15 m inutes 

(^2=0 p=0.3586), but by 30 minutes after training it had (%2=n.40, p=0.0009),

w ith  30 m inutes pre-training injections of 2-CADO. Those chicks injected 

either at 1 hour or at 5 minutes pre-training (Figure 7.2B and C) also showed 

amnesia when tested from 30 (p<0.05), but not at 15 (x^=0.77, p=0.43) minutes.
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Figure 7.1. Dose-response effect of 2-chloroadenosine (2-CADO) on recall for 

the passive avoidance task. % avoidance of chicks injected (i.e.) bilaterally 

(5|il per hemisphere) 30 minutes pre-training, with 20, 50, 200|iM and 2mM 2- 

CADO or 0.9% sterile saline only (controls). The chicks were tested 1 hour 

after training. An asterisk indicates significant differences betw een saline- 

and drug-injected chicks (%̂ , p < 0.05).
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Figure 7.2. T im e-dependency of 2-chloroadenosine (2-CADO) on the 

retention of the passive avoidance task. % avoidance of chicks injected (i.e.) 

bilaterally w ith 50fiM 2-CADO (5|il per hemisphere), "(A) 30 minutes, (B) 1 

hour or (C) 5 m inutes pre-training, and tested 15 m inutes to 1 hour after 

training. An asterisk * indicates significant differences betw een saline-, and 

drug-injected chicks (%̂ , p < 0.05).
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E x p e r im e n t 7.2. T h e  e f f e c t  o f  th e  a d e n o s in e  A i  a g o n is t  

cycloh exy lad en osin e  (CHA) on  recall o f  the p a ssiv e  avo id an ce  task  

Introduction

CHA is a member of the N^-cycioalkyladenosines which is a group of 

highly selective Ai agonists in the m am m alian brain  (Moos et al., 1985; 

affinity for Ai = 1.2nM for A] = 500nM). The effects of CHA on the release of 

amino acids from the chick IMHV slice preparation have been described in 

C hapter 6. The decrease in glutam ate release observed m ay be highly 

detrim ental to the acquisition of the task, as it has been show n previously 

that glutamate release is increased following the task (Chapter 4 and 5); that 

antagonists of glutamate NMDA receptors produce amnesia for the task (e.g. 

Burchuladze and Rose, 1992); and that there is an increase in the num ber and 

affinity of glutamate receptors following training (Steele, 1995). Injections of 

an agonist for the Ai receptor may, therefore, be expected to produce amnesia 

for the task.

M eth o d s

Dose dependency of CHA

To determine the dose-response for CHA, four concentrations of the 

drug were used: 2, 10, 50 and lOOpM. Thirty m inutes before the training 

procedure, each group of chicks received a bilateral 5}il injection of one of the 

four concentrations of CHA in 0.9'%» sterile saline, whilst a control group of 

chicks received bilateral injections (5pil per hemisphere) of 0.9% saline only (n 

= for CHA, 13, 15, 15, 12; for saline, 18, 16, 17, 15 respectively). Chicks were 

tested for recall of the task 1 hour later.

191



Time-dependency of  CHA

To determ ine the time of the onset of am nesia follow ing CHA 

injections, groups of chicks received a bilateral 5ml injection of lOmM 2-CHA 

in 0.9% sterile saline either 1 hour, 30, 15 or 5 minutes before training, whilst 

a control group of chicks received bilateral injections (5pl per hemisphere) of 

0.9% saline only. Groups of chicks were tested for recall of the task 1 hour 

post-training.

R esu lts

The dose dependency of CHA is described graphically in Figure 7.3. 

The lowest concentration used, 2pM, did not produce amnesia w hen injected 

30 m inutes pre-training and tested 1 hour post-training (x2=i.oi, p=0.28). 

CFIA at 10, 50 and lOOjiM all produced amnesia for the task all p<0.05).

In Figure 7.4 lOp-M CHA was found to produce amnesia w hen injected 

at any time betw een 5 minutes and 1 hour before training, and tested at 1 

hour post-training (x^, all p<0.05).

192



#  S a l in e
□  C H A

100-1

I i ll §7i.k.§]
10  5 0

Cy cloliexy ] a d c n o s Lne
100

Figure 7.3. Dose response effect of cyclohexyladenosine (CHA) on recall for 
the passive avoidance task. % avoidance of chicks injected (i.e.) bilaterally 
(5pl per hemisphere) 30 minutes pre-training, w ith 2, 10, 50 or lOOpM CHA. or 
0.9% sterile saline only (controls). The chicks w ere tested 1 hour after 
training. An asterisk * indicates significant differences betw een saline- and 
drug-injected chicks (x^, p < 0.05).
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Figure 7.4. Tim e-dependency of CHA on the retention of the passive 
avoidance task. % avoidance of chicks injected (i.e.) bilaterally (5pl per 
hemisphere), 1 hour, 30, 15 or 5 minutes pre-training, and tested 1 hour after 
training. An asterisk * indicates significant differences betw een saline- and 
drug-injected chicks (x^, p < 0 05)
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E x p er im e n t 7.3. Is th e  e f fe c t  o f  C H A  la te r a lis e d  to  e ith e r  

hem isphere?  

Introduction

The left IMHV has been show n to be of major im portance for the 

acquisition of the one-trial passive avoidance task by the day-old chick in 

various studies. Lesioning the IMHV, for example, did not produce amnesia 

if the right IMHV only was lesioned. If the left IMHV was lesioned alone 

before training, amnesia occurred (Patterson and Rose 1992, and see Chapter 

2).

M eth o d s

CHA (5|il; lOpM) was injected into the left (n=15) or right (n=13) 

IMHV only, or bilaterally (n=15), (5pl per hemisphere) in order to test if the 

lesion study results can be reproduced w ith a pharm acological blocking 

technique that leaves the neuronal tissue intact. Control chicks for the 

experiments were injected w ith 0.9'%» saline into either the left (n=13) or right 

(n=13) IMHV only, or bilaterally (n=17). Injections were perform ed 30 

minutes before training; testing was 1 hour after training in all cases.

R esults

As expected the chicks that were injected in both hemispheres showed 

amnesia for the task (Figure 7.5; %^=6.036, p= 0.0140). Those injected with 

CHA into the left IMHV only also did not show recall for the task (x2=4.092, 

p=0.0431). However, when the chicks were injected at the same dose and 

volume into the right IMHV only, they did not display amnesia, and avoided 

the MeA-covered bead (x^=0, p=l).
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Figure 7.5. Latéralisation of the effect of cyclohexyladenosine (CHA) on the 

retention of the passive avoidance task. % avoidance of chicks injected (i.e.) 

w ith IOm-M CHA, either bilaterally (5pl per hemisphere), left hemisphere only 

(5pl) or right hemisphere only (5pl) 30 minutes pre-training and tested 1 hour 

post-training. An asterisk * indicates significant differences betw een saline- 

and drug-injected chicks (%2, p < 0.05)..
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Experiment 7.4. Is the effect of CHA due to the depression of 
locomotor activity? 

Introduction

A potential problem  encountered in in vivo adenosine work is the 

depressant effects on locomotor activity produced by adenosine and its 

agonists (Barraco et aL, 1993) as well as respiratory and cardiovascular effects 

(Ribeiro, 1991).

To control for any potential locomotory effects of the drugs two tests 

were carried out, to determ ine the time it takes treated  chicks to peck 

compared to their controls, and to find out w hether chicks trained on the 

water bead were inhibited behaviourally so that they did not peck the bead.

Methods

Peck latency for CHA

Chicks were injected bilaterally (5m,1 per hem isphere), w ith  either 

lOpM CHA (n=12) or 0.9% saline (n= ll), 30 minutes before training. Training 

was carried out using a water bead in place of the MeA covered bead; testing 

was carried out 30 minutes later. The time from the presentation of the water 

bead to the time at which each chick pecked the bead was recorded at both 

training and testing. No chicks failed to peck the bead on both occasions.

Motor l e a r n i n g  f o l l o i u i n g  i . e .  CHA injections

Another test for determ ining w hether the specific task has been 

learned, or w hether any effects noted have been due to a locomotor 

disturbance, is to change the task so that chicks are trained on a water bead 

and to see how many do not peck subsequently at the bead during the second 

presentation. The num bers that avoid the bead should be as low as in the 

control chicks injected w ith saline if there are no locomotor effects of the
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drug.

Chicks were injected bilaterally (5pl per hem isphere), w ith  either 

lOp-M CHA (n=15) or 0.9% saline (n=15), 30 m inutes pre-training. Training 

was carried out using a water bead in place of the MeA covered bead; testing 

for recall of the task was carried out 1 hour later.

Results

The average peck latency for CHA-injected chicks was 2.6 ± 1.6 seconds 

(Figure 7.6A). The saline controls pecked on average 2 ± 1.62 sec after testing. 

The results were tested by a Mami Whitney U test and were not significantly 

different (p > 0.05).

Chicks injected with 10|iM CHA showed 20% avoidance towards the 

water bead (Figure 7.6B). 26.67% of those injected w ith saline avoided the 

bead. The difference between the recall of the two groups was again non­

significant (p>0.05, x^)-
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Figure 7.6. The effect of CHA on locomotor behaviour in the chick. (A) The 

peck latency of chicks injected bilaterally (Spl per hemisphere) w ith 10p.M 

CHA compared to those injected w ith saline (± S.E.M.) and (B) the effect of 

bilateral injections of lOmM CHA on chicks pecking at the w ater bead 

compared to saline controls. Time of injection 30 m inutes pre-training in all 

groups: trained on water bead and tested 1 hour after training.
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Experiment 7.5. The effect of the adenosine A i receptor antagonist 

cyclopentyltheophylline (CPT) when injected together w ith CHA  

Introduction

The adenosine A% receptor agonist CHA was found to inhibit the 

release of glutamate from the IMHV slice preparation (Chapter 6), and also to 

cause amnesia for the passive avoidance task w ithout affecting the locomotor 

behaviour of the chick (Experiments 7.2 and 7.4). Cyclopentyltheophylline 

(CPT) had been shown to inhibit the CHA-induced decrease in glutam ate 

release (Chapter 6). Hence, it was decided to examine w hether CPT could 

arrest the CHA-induced amnesia shown in Experiment 7.2.

M ethods

To determine the specificity of the effect of CHA on learning the task, 

the specific A% antagonist CPT was injected along w ith CHA. CPT is a 

competitive antagonist at the A% site, although of lower affinity ( l ln m  cf. 

1.2nm for CHA). Therefore, the effect of injections 30 minutes pre-training 

w ith 10|i.M CHA only (n=17) was compared to injections of 10|iM CHA with 

IGOmM CPT (n=14) and with 0.9% saline (n=15). In addition, later injections of 

CPT only (lOOp-M; n=14 for CPT; for saline n=15) were perform ed to find if 

CPT itself had any affect on acquisition. All chicks were tested 1 hour after 

training. The results were analysed using ANOVA (Statview).

R esults

Figure 7.7 shows the effect of CPT com petition w ith  CHA at A^ 

binding sites. CHA by itself produced significantly different results compared 

to saline (F=4.686, p<0.05) and CPT+CHA (F=4.328, p<0.05). No difference was 

found betw een CPT/CHA-chicks and those injected w ith saline (F=0.0018, 

p>0.05). CPT itself did not affect the acquisition of the task (data not presented 

graphically; p>0.05).
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Figure 7.7. The effect of the A% antagonist CPT on the CHA-induced amnesia 

for the passive avoidance task. Chicks were injected bilaterally (5jil per 

hemisphere) w ith  either lOpM CHA-only, lOpM CHA and lOOfiM CPT, or 

0.9% saline, 30 minutes pre-training and tested 1 hour post-training. Controls 

for each group consisted of chicks injected w ith 0.9% saline. An asterisk * 

indicates significant differences between groups (p < 0.05, ANOVA).
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D iscu ssion

The results described in this Chapter suggest the involvement, or at 

least the potential for involvem ent, of adenosine receptors in chicks 

following a one-trial passive avoidance task.

2-chloroadenosine (2-CADO) significantly im paired the recall of the 

passive avoidance task w hen injected at concentrations of 50mM and above. 

If it is assumed that the chick brain is of roughly 1ml in volume, the bilateral 

(5ml) injections w ould produce a concentration of 500nM if the d rug  

dispersed throughout the entire brain. The highest concentration, 2mM, 

w ould represent 200mM if dispersed evenly through the whole brain. As 2- 

CADO is equipotent at Ai and A] receptors, it could be expected that, certainly 

at the higher concentration, both receptor types are activated. As discussed in 

Chapter 6, it is thought that the actions of the A2 receptor subtype is dominant 

to the Ai receptor w hen higher concentrations of adenosine or adenosine 

agonists are applied to the tissue (Ameri and Juma, 1991). The results 

showing amnesia in chicks that had been given the higher dose of 2-CADO 

may be explained by either a direct action of A] receptor subtypes on memory 

formation, or by an effect of the receptor on locomotor activity (see below).

Cyclohexyladenosine (CHA) is a selective agonist of the adenosine Ai 

receptor. Experim ent 7.2 describes CH A -induced am nesia in the chick. 

Amnesia for the task was produced by a dose of lOmM or more (which would 

be equivalent to lOOiiM if dispersed throughout the whole brain). In a similar 

study in the mouse, Normile and Barraco (1991) described the effects of N6- 

cyclopentyladenosine (CPA), a selective A% agonist, on the retention of an 

inhibitory avoidance task. They showed that pre-training injections of CPA 

produced a dose-dependent impairment in memory for the task which could 

be blocked by a selective Ai receptor antagonist DPCPX (8-cyclopentyl-l,3- 

dipropylxanthine). From these results, they suggested that the activation of
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Al receptors impairs the retention performance and inform ation processing 

in the mouse. A later study (Normile et al., 1994) showed that injections of 

Ai agonists into the nucleus accumbens impaired memory for the inhibitory 

avoidance task. The memory impairment was blocked by DPCPX. Therefore, 

the Ai receptors in the nucleus accumbens were implicated in the processes 

u n derly ing  learn ing  and  m em ory, pe rh ap s via m odu la tion  of the 

dopaminergic system that has been described in this area. The chick LPO has 

been suggested as being analogous to the nucleus accumbens (Reiner et al.,

1983). This area is also rich in dopam inergic term inals. Therefore it is 

possible that CHA is acting to modulate dopamine release in this area, either 

directly or indirectly via other transmitters (amino acids or acetylcholine), to 

inhibit the acquisition of the task.

In a study by Zarrindast and Shafaghi (1994) the acquisition of a 

passive avoidance task in the mouse was inhibited by CHA and R-PIA (N^- 

phenylisopropyladenosine), both Ai agonists. The adm inistration of NECA 

(non-selective agonist) had no effect on the acquisition of the task. Low doses 

of Ai antagonists blocked the CHA and R-PIA-mediated amnesia. These 

results are in agreem ent with the effects of CHA in the one-trial passive 

avoidance task paradigm  used in this study on chicks, and again suggest the 

involvement of adenosine receptors in the acquisition of the task.

The results in Experiment 7.4 show that the locomotor activities of the 

chicks were not disturbed following injection w ith the specific adenosine A% 

receptor agonist, CPIA. The latency to the first peck was found not to have 

been affected, and the ability of the chicks to learn a task did not differ from 

those injected w ith saline. This suggests that the results obtained w ith  the 

chicks trained on MeA to avoid the bead w hen presented at test were not 

influenced by any potential motor dysfunction, and were due to the specific 

effect of the d rug  on the learning of the task. Barraco et al. (1993) 

dem onstrated that CPA, also an Ai agonist, had no effect on the locomotor
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activity of mice when injected into the nucleus accumbens (also see Barraco et 

a l ,  1994). However, previously it has been shown that bilateral injections of 

the A2 agonist CGS 21680 into the nucleus accumbens in the mouse impaired 

locomotor activity in a dose-dependent m anner (Barraco et al., 1993). In 

a d d itio n , the  n o n -se lec tiv e  a d e n o s in e  re c e p to r  a g o n is t 5 '-N - 

ethylcarboxam idoadenosine (NECA) also reduced the locom otor activity. 

Barraco et al. (1993) found that the depression in locomotor activity that 

accompanied the activation of the A2 receptor when stimulated by these drugs 

was significantly antagonised by treatm ent w ith an adenosine A2 receptor 

antagonist.

In addition, Suzuki et al. (1993) tested a variety of adenosine receptor 

antagonists on scopolamine and R-PIA-induced amnesias. They found that 

some of the selective Ai antagonists attenuated these amnesias at doses that 

did not induce an increase in spontaneous locomotor activity.

The effect of CHA was lateralised, such that pre-training injections, 

into the right IMHV only, did not produce amnesia for the task, but those to 

the left IMHV and bilateral injections did (Experiment 7.3). These results are 

in agreem ent w ith the lesion data: chicks that received a sham  left IMHV 

lesion whilst receiving a lesion to the right showed avoidance levels similar 

to those usually associated w ith saline-injected chicks (Patterson et al., 1990). 

In their study, chicks receiving true unilateral left IMHV lesions show ed 

amnesia for the task. These results were later corroborated by Gilbert et al. 

(1991), who also showed that pre-training lesions of the right IMHV do not 

produce amnesia. Injections of CHA before train ing interfere w ith  the 

succesful acquisition of the task when they are applied to the left IMHV, but 

injections to the right IMHV do not, suggesting that the right IMHV is not 

necessary for succesful acquisition, even though it is thought that the right 

IMHV is generally required for distributing information to the LPO (Gilbert et 

al., 1991). It can be postulated that the action of CHA is to inhibit the release
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of transm itters via the Aj receptor system  or to produce post-synaptic 

hyperpolarisations, both of which disturb the biochem istry of the IMHV 

sufficiently to inhibit acquisition. No latéralisation w as found in  either 

adenosine or glutam ate release at the 30 m inute time point however, w ith 

increases in both transmitters following the training task (see Chapters 4 and 

6).

The results described in this chapter dem onstrated that adenosine 

analogues interfered w ith memory formation, specifically at 30 m inutes after 

training on the task. This would suggest that adenosine receptor activation 

occurs at this time. Adenosine receptor activation may m odulate the release 

of amino acids, as demonstrated in Chapter 6, leading to either an enhanced 

efficacy or a loss in synaptic efficacy.

The results of Chapter 6 and 7 are discussed further, and in relation to 

the increases in transmitter release, in the General Discussion (Chapter 8).
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Chapter 8: General D iscussion and 
Future Directions

The initial aim of this thesis was to describe glutamate release from areas 

of the chick brain  know n to be biochemically active following a passive 

avoidance task (the lobus parolfactorius (LPO) and the interm ediate medial 

hyperstriatum  ventrale (IMHV), and to determine if glutam ate release was 

changed at times that biochemical activity had been show n to be altered in 

previous studies. The extent to which these aims have been completed has 

been described in Chapters 4 and 5.

In addition to the release of glutam ate, other pu tative  amino acid 

neurotransm itters (aspartate, glycine and GABA) w ere also analysed to 

determ ine if increases in these occurred post-training. Also, a role for 

adenosine, a neurom odulator in  m am m alian brain, was investigated. The 

following briefly describes the m ain results from the work presented here, and 

the role of the three m ain neurotransm itters and adenosine, in memory 

formation, is explored in greater detail.

Chapter 3 described the background to amino acid analysis by high 

perform ance liquid  chrom atography (HPLC). The separa tion  of the 

constituents of physiological media is dependent on their distribution between 

two phases or substrates. The detection of amino acids by UV absorbance 

requires PITC derivatisation. A methodology for HPLC amino acid analysis is 

described. The published m ethod did  not suffice to effect a complete 

separation of certain amino acids thought to be of im portance as putative 

transm itters/m odulators, notably the separation of glycine from glutamine. 

An outline of the factors that were altered to produce a more viable separation 

(k% a  and N) was given. The qualitative and quantitative aspects of amino
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acid analysis by HPLC were examined briefly, showing that internal standards 

allow equivalent quantification between samples and that the amino acids can 

(generally) be identified according to their retention times and the addition of 

standards to ''spike" the sample. In addition, slight modifications to the PITC 

deriva tisa tion  technique w ere described; the presence of am ino acid 

contam ination on glassware and the presence of salts present in the buffers 

used in the stimulated release of the amino acids produced m any and diverse 

problem s throughout the work. Also, the use of 4-am inopyridine, a very 

useful depolarisation agent, w as not possible w ith  the p resen t HPLC 

methodology due to coelution of the molecule w ith glutam ate and aspartate. 

Chapter 3 finished w ith a description of a refined HPLC m ethodology that 

could be used for amino acid analysis using a K+-stimulation paradigm.

In Chapter 4 slice incubations were used to investigate the release of 

amino acids from the intermediate medial hyperstriatum  ventrale (IMHV) of 

the day-old chick following passive avoidance training. Release of amino 

acids was m easured in media such that the Ca2+-dependency of the release 

could be determined. No differences in the basal release of the aniino acids 

betw een MeA-trained chicks and chicks that had pecked the w ater bead was 

found. However, an increase in the K'"'-stimulated Ca^^-dependent release of 

amino acids was found at times after training in those chicks that had pecked 

at the MeA-covered bead and had subsequently remembered to avoid the bead. 

Glutamate release was found increased 30 minutes and 1 hour after training in 

the left IMHV, arid 30 m inutes, 3 and 6.5 hours post-training in the right 

IMHV; GABA and aspartate release were dem onstrated in the left IMHV at 1 

hour post-training and in the right at 3 hours (aspartate) and 6.5 hours 

(GABA) post-training. In addition, the Ca^-^-independent com ponent of 

glycine release was found to be increased 30 minutes after training in the left 

IMHV in MeA chicks. The results were discussed in the light of other 

biochemical data that have been described in the IMHV following training.

C hapter 5 looked at the release of amino acids follow ing passive
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avoidance training in the lobus parolfactorus (LPO), an area of the chick brain 

thought to be equivalent to m am m alian basal ganglia and involved in the 

integration of emotional behaviours (see Chapter 5). An additional time point 

of 24 hours was incorporated into the analysis, as changes in m orphology are 

found at this time that may represent an increase in activity related to 

transm itter release (e.g. Stewart et al., 1992). Increased GABA and glutamate 

release were found at similar time points; at 30 minutes, 6.5 and 24 hours in 

the left hemisphere; and at 6.5 and 24 hours in the right LPO. Again, the 

results were discussed in relation to previous work that had shown this region 

to be involved in memory formation.

A potential neurom odulator in the chick b rain  is adenosine. The 

investigations carried out in Chapter 6 looked at the release of the purine from 

slices of IMHV tissue from both untrained chicks, in order to investigate some 

of the underlying pharmacological interactions betw een adenosine and the 

amino acids, and also from trained chicks in order to investigate any changes 

in release and to relate them to the changes described in Chapter 4 in the 

release of amino acids. The investigation was initiated as it had been found 

that the HPLC m ethodology em ployed to analyse amino acids was also 

applicable to analysis of some nucleotides, and that during the collection of 

data for the experiments performed in Chapter 4, it had been noted that there 

appeared to be a concomitant increase in adenosine at the same time as the 

glutam ate. The experim ents carried  out as described in C hapter 6 

substantiated these initial observations; there was a K+-stimulated release of 

adenosine from the left IMHV at 30 minutes and 1 hour post-training, and at 

30 minutes, 3 and 6.5 hours post-training in the right IMHV of MeA-trained 

chicks as compared to water controls. The release was found to be both Ca^+- 

dependent and Ca^+-independent.

The effect of adenosine and its analogues on amino acid release was also 

investigated in Chapter 6. It was found that adenosine itself (at lOOpM only) 

and the A% receptor-specific agonist cyclohexyladenosine (CHA) reduced the
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release of glutamate from IMHV slices. The effect of CHA was eliminated by 

addition of an A i antagonist (CPT) to the m edia. No effects on the other 

amino acids analysed were observed. CGS 21680, a potent A2 ('excitatory' 

adenosine receptor) agonist, increased glutam ate release at a low dose (5pM). 

When the dose was increased in the media the effect on glutamate release was 

now abolished, but a decrease in GABA release was established by then.

NMDA and KCl both stimulated the release of adenosine. The effects of 

both were only noted in the collection periods after the stimulatory agent had 

been removed from the media, suggesting a delay in the processes involved in 

the release.

Behavioural pharm acological m anipu lations w ere carried  out and 

described in Chapter 7. These investigations were in order to determine the 

effects, if any, of chemicals that act at the Ai receptors in the chick. The drugs 

used did indeed produce amnesia, as predicted, in the day-old chicks for the 

task. The effect of the drug 2-CADO appeared to have set in by 30 minutes 

post-training, but not by 15 minutes. The amnesic effects were still apparent 

after 1 hour. A more specifc A% agonist, CHA, was amnestic w hen injected at 

any time between 5 m inutes and 1 hour before training. The effects of CHA 

were lateralised, such that no amnesia was observed w hen the compound was 

injected into the right only, and were not due to the inhibition of the natural 

pecking behaviour. W hen injected with the A% antagonist CPT the effect of 

CHA was no longer apparent, thus implicating the A% adenosine receptor in 

the formation of amnesia for the task.

The following sections deal w ith the release of the three amino acids 

(aspartate, glutamate and GABA), and of adenosine, from the chick forebrain 

after the passive avoidance task, and their relationships as regards one another 

and their role in memory for the task.
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Bursting, G A B A  release and neuronal circuitry in the chick

GABA release was enhanced in MeA-trained chicks at various times 

post-training in a Ca^+-dependent manner (see chapters 4 and 5, and section 1 

of this Chapter). Evidence for a role of GABA in the chick brain comes from 

several sources. pH] muscimol binding was examined in 3-week-old birds by 

Stewart et al. (1988) who described high levels of binding in the IMHV and the 

LPO, although no latéralisation of binding was found in day-old chicks 

(Stewart and Bourne, 1987). Meza et al. (1985) found that GABA binding to 

membranes of the chick inner ear were at levels suggesting that receptors were 

present, and that GABA was a transm itter in this system. Clements and 

Bourne (1995) have recently carried out a behavioural pharmacological study 

of the effects of muscimol and bicuculline on the retention and acquisition of 

the passive avoidance task. Pre-training, bilateral injections of muscimol 

(GABAa antagonist) produced amnesia for the task in chicks tested 10 and 30 

m inutes and 24 hours after training. These data are in agreement with those 

of Martijena and Arce (1994) who showed an increase in the binding (B-max: 

i.e. an increase in the num ber of receptors) of [^H] flunitriazepam  (a GABA 

receptor agonist) follow ing tra in in g  on the passive avoidance task as 

compared to chicks trained on the water bead. This increase was apparent at 30 

m inutes post-training, bu t not at 10 or 60 minutes, and the increase was also 

seen in w ater-trained chicks w hen comparing their 30 m inute values w ith 

those at 10 and 60 minutes. This suggests that the GABA receptor increase is 

associated w ith  early stages of memory form ation. Both these lines of 

evidence are in agreement w ith the data found in the work presented in this 

thesis; that there is an increase in GABA-related activity shortly (in this study, 

at 1 hour) following training on the task. How can the increase in GABA be 

interpreted, and how does it relate to the increases seen in the release of 

glutam ate?

A possible role for GABA in synaptic transm ission efficacy in the 

formation of memory for the task may be in bursting activity in the IMHV and
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LPO. [Bursting is defined here as "a high frequency train of action potentials 

superim posed  on slow m em brane depolarisations". (Schneiderm an and 

MacDonald, 1991)]. Following passive avoidance learning in the chick, Gigg et 

al. (1993 and 1994) and Mason and Rose (1987 and 1988) found that elevated 

bursting in the chick was associated with the memory formation. Bursting has 

several consequences for synaptic transmission: firstly, the likelihood of 

transmission of the impulse is enhanced, as single spikes m ay not generate an 

EPSP. Secondly, temporal sum m ation will occur more readily as the interval 

betw een spikes may be shorter than the time course of a single EPSP, and 

thirdly, facilitation may occur reflecting an increased calcium concentration in 

the presynapse (Gigg, 1991).

It is thought that excitatory am ino acid transm itters play an 

im portant role in the initiation and spread of synchronous bursting because 

EAAs can produce seizures (Neuman et al., 1989) and antagonists of EAAs act 

as anticonvulsants (Meldrum, 1984). The generation of bursting is dependent 

on the activation of the NMDA glutamate receptor by cellular depolarisation 

produced by excitatory input or by disinhibition. The depolarisation releases 

the Mg '̂*' voltage-dependent block of NM DA-activated calcium channels. 

Non-NMDA receptors are largely responsible for the bursts in the presence of 

M g2+ and provide the initial depolarisation which triggers bursts by activation 

of NMDA and other voltage-dependent channels. NMDA receptors play a 

dom inant role only w hen the extracellular Mg2+ is lowered sufficiently to 

relieve the calcium-channel blockade. The bursts generated are term inated by 

the activation of a calcium dependent outw ard K+ current which sustains a 

slowly decaying after-hyperpolarisation.

Bradley et al. (1990) investigated the local circuitry common to the 

IMHV of the chick. Following a single stimulus, a biphasic response is seen. 

The second phase, of longer duration (15ms), is thought to be m ediated by 

NMDA receptor responses. An im portant contribution to the duration of the 

response is thought to be the presence of positive feedback circuits in the
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amino acid synapses, many of which are sensitive to N M PA .!'(% adley et al.,
. . .  ■ • •• " =  f. * ï4 r

1990; see Figure 8.1). This system may therefore provide th e  substrate for thevht.v
synchronous bursting behaviour that is found in  the IMHV accbinpanymg the 

passive avoidance task. Indeed, it is though t by Schneiderm an and 

M acD onald (1991) "that netw orks of neurons m ay produce bursts as a 

consequence of the architecture of their synaptic connectivity, particularly if 

the connections involve positive feedback."

stimulus

inhibitory excitatory

EAA 'EAA
EAA,

y EAA K/QGABA

GABA EAA

ACh

Figure 8.1. The diagram  describes a neural circuit in the IMHV that satisfies 

the requirem ents of the results described by Bradley et al. (1990). See text for 

details. (•), excitatory synapses; # ,  inhibitory synapses; EAA, excitatory amino 

acid; GABA, y-am inobutyric acid; ACh, acetylcholine; N, NMDA receptor; 

K /Q , AMPA receptor, (taken from Bradley et al., 1990).

Bradley et al. (1990) dem onstrated that the addition of bicuculline 

(GABAa antagonist) made it apparent that the excitatory connections exposed

are under powerful inhibitory influences.

As noted above, it is though t th a t inhibitory m echanism s lim it 

excitation w ithin networks of neurons (Schneiderman and MacDonald, 1991). 

Synchronous bursting may therefore require a decrease in the inhibitory tone 

produced by the release of GABA at usual physiological levels. In line w ith 

this, p icro tox in  and bicuculline (both  GABAergic antagonists) induce
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produced by the release of GABA at usual physiological levels. In line w ith 

this, picrotoxin  and bicuculline (both GABAergic antagonists) induce 

spontaneous bursting by blocking GABA^-niediated IPSPs, thus allowing 

excitatory activity to spread through neural circuits (Schneiderm an and 

M acDonald, 1991). Also, following repetitive stim ulation of hippocam pal 

slices (CAl) there is a decrease in the GABA-mediated inhibition (Kamphuis 

et ah, 1990). The decrease in GABAergic inhib ition  m ay lead to an 

enhancem ent of NMDA responses: in the kindling m odel paired pulsed 

depression is also reduced; the underlying mechanism may be GABA receptor 

dow n-regulation (Kamphuis et al., 1991). The desensitisation of GABA 

receptors may be enhanced by an increase in GABA release: the prolonged 

activation of the receptor-linked CT channel by the endogenous agonist may 

lead to depression caused by intracellular chloride accumulation, following 

repetitive IPSPs, leading to a change in the chloride gradient and equilibrium 

potential (Tehrani and Barnes, 1988). In the hippocam pus it has been found 

that there is a decrease in the paired pulse depression in the CAl but there is 

also an increase in the exocytotic release of GABA (e.g. Kamphuis et al., 1990).

G A BA s-m ediated events have also been im plicated in bursting. 

GA BA b receptor-m ediated events may produce significant suppression of 

inhibitory output to enhance signal transmission in the hippocam pus (Mott et 

al., 1993). The GABAb receptor-mediated depression of the IPSC occurs only 

during  the synchronised activation of a netw ork (Otis and Mody, 1992). 

Synchronised neural activity has been found to occur in the theta rhythm  

found in exploring rats (the theta rhythm, 3-12 Hz is thought to be important 

in  certain learning tasks: W inson, 1978), and also in hippocam pal sharp 

waves, which are thought to be involved in memory consolidation (Buzsaki, 

1989); and the generation of this synchronised activity is thought to involve a 

suppression of inhibition (Buzsaki, 1989). The disinhibition of the GABAb 

receptors is such that the transmission of the signal is enhanced only between

2.5 and 10 Hz (Mott et al., 1993). Thus, there is a filtering of signals allowing
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selective enhancement during repetitive activation at frequencies in the range 

of the theta rhythm . LTP is induced by repetitive, synchronised activity 

(McNaughton et al., 1978), and as such the production of the theta rhythm  or 

sharp waves may induce LTP (Buzsaki, 1989). Following on from this it has 

been found that the induction of LTP is dependent on GABAb receptor- 

m ediated disinhibition which relieves, the Mg^+ block of the NMDA receptors 

and allows the expression of the EPSPnmda and LTP. The slow IPSC produced 

by GABAb receptor activation would be able to counter the slow EPSCs 

produced by NMDA receptors, and thus potentially inhibit NMDA receptor- 

m ediated events (Ling and Benardo, 1994). Davies et al. (1991) suggest that an 

autoreceptor system is in operation, so that the fatigue of the IPSPs required 

for EPSP sum m ation is due to GABA feeding back and inhibiting its own 

release through an action on GABAb receptors. Stim ulation of GABAb 

receptors inhibits the major excitatory and inhibitory afferent systems within 

the neostriatum , and is proposed as a local feedback m echanism  w ith  

presynaptic receptors inhibiting either excitation or inhibition: a similar 

mechanism is proposed for the hippocam pus (Nisenbaum et al., 1992). The 

slow IPSCs produced by GABAg-receptor activation are decreased by blockade 

of ionotropic glutamate receptor antagonists and GABAa receptors, suggesting 

tha t bo th  g lu tam ate and GABAa -m ediated  events partic ipa te  in the 

recruitm ent of GABAb IPSCs. Moreover, GABAA-mediated events have been 

shown to cause excitation of interneurons, which in turn  trigger GABAb IPSCs 

(Michelson and Wong, 1991). The depression of the fast GABAa IPSCs will 

reduce the GABAg IPSC.

As has already been alluded to above, the mechanisms responsible 

for GABA disinhibition m ight involve one of three processes: diffusion of 

transm itter out of the synaptic cleft, uptake of transm itter, and a change in 

transm itter release. The first is unlikely as it is a purely passive process. 

GABA uptake inhibitors have been found to prolong the IPSC decay 

(Thompson and Gahwiler, 1992). However, activity-dependent expression of
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the slow IPSC was found to be associated with a decreased conductance, but the 

kinetics of the current were not changed, suggesting that there was no change 

in GABA uptake (Ling and Behardo, 1994). Ling and Benardo (1994) suggested 

that a decrease in GABA release may mediate the IPSC depression. It has also 

been found that the depression of GABAa IPSCs may involve the presynaptic 

inhibition of GABA release because the repetitive stim ulation does not affect 

conductances activated by GABA agonists. Interaction w ith GABAa receptors 

may produce presynaptic inhibition and leads to a decrease in GABA release.

GABA release, therefore, plays an im portant role in m aintaining the 

inhibitory tone of the neural environment. A reduction of the inhibitory tone 

can occur, which allows EPSP summation and a positive feedback mechanism 

to be employed. Increased release may act to produce a disinhibition of the 

pathw ay described by Bradley et al. (1990), via GABAA-receptor desensitisation 

or via an increase in GABAb slow IPSPs acting presynaptically on inhibitory 

interneurons. The increase in GABAa receptors as described by Martijena and 

Arce (1994) appears to be contradictory to the model proposed by Bradley et al. 

(1990). However, it should be noted that the increases they found were for the 

whole forebrain, as specific areas were not exam ined individually. It is 

possible, therefore, that the increase in A-type receptors m ay be on the 

postsynaptic membranes of inhibitory interneurons. These receptors may be 

present, bu t hidden, during norm al synaptic transm ission, bu t following 

bu rsting  activity or transien t d isinhib ition  are expressed subsequently  

following postsynaptic phosphorylation/kinase events.
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G lu tam ate  release

The increase in GABA release may underpin a decrease in inhibitory 

tone that allows cells to fire bursts of action potentials in response to a single 

synaptic input (Gigg, 1991). This bursting may allow LTP induction (and 

therefore m em ory form ation in the chick?). In the chick IMHV, inhibitory 

inputs control excitation: an increase in GABA release may produce receptor 

desensitisation in the neural circuit. An increase in release of GABA 

following passive avoidance training was found in the chick IMHV and LPO 

(see Chapters 4 and 5). In addition to the increases in GABA release found in 

this work, there is also an increase in glutam ate and aspartate following 

passive avoidance training. In order to produce changes that lead to memory 

formation, it appears that long term enhancement of excitatory transmission 

is required. Is there any evidence from LTP that suggests such a long-term 

enhancem ent, and w hat is the m echanism  that m ay be involved in this 

enhancem ent?

Some of the quantal aspects of transm itter release in LTP have been 

referred to in Chapter 2 (e.g. Bekkers and Stevens, 1990). Evidence for an 

increase in presynaptic transm itter release accompanying LTP have mainly 

been determ ined by neurophysiological techniques investigating EPSCs or 

EPSPs evoked by paired pulses of electrical stimulation. Different statistical 

analyses are em ployed to determ ine w hether a presynaptic com ponent is 

responsible for LTP m aintenance and w hether the m echanism  of the 

component is an increase in mean quantal content, m (the m ean num ber of 

released quanta), or an increase in the response to each released quantum , cj 

(mean quantal size).

Work by Xiang et al. (1994) evaluated three lines of evidence, based 

on different analyses (a graphical variance m ethod, num ber of failures, and 

the relationship between paired-pulse facilitation and LTP). They concluded 

that there was indeed an underlying presynaptic com ponent, in this case 

mossy-fibre, LTP. The mechanism appears to be an increase in m, the number
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of quanta of transm itter released. The transm itter described is certainly 

glutamate, e.g. Weisskopf and Nicoll (1995) showed that antagonism of either 

NMDA or AMPA receptors w ould inhibit LTP m aintenance. They also 

suggest that there is an increase in the probability of transmitter release during 

expression of LTP in the mossy-fibre pathway. These data are in agreement 

w ith Bekkers and Stevens (1990). In addition, Kamiya et al. (1991) also found 

an increase in transmitter release, and the increase persisted for up to 4 hours

after tetanic stimulation.

Endogenous amino acid release has been looked at in vitro and in 

vivo. Bliss et al. (1986) and Lynch et al. (1985) showed that there is an increase 

in the release of glutamate between 1 and 2 hours after the induction of LTP. 

Direct m onitoring of changes in glutam ate levels using push-pull cannulae 

also suggest a causal rela tionship  betw een LTP and the increase in 

neuro transm itter (Bliss et al., 1986). Ghisjen et al. (1992) investigated 

glutam ate and GABA release from slices of C A l in the hippocam pus, 60 

m inutes post-induction of LTP. Using a similar release technique as has been 

applied to the work described in this thesis, they uncovered an increase in the 

K+-induced, Ca^+-dependent release of both glutam ate and GABA. These 

increases were found 60 minutes after the induction of LTP, again suggesting a 

long-lasting change in presynaptic activity producing a persistent increase in 

glutamate (and GABA) release.

From the above, it is evident that there is indeed an increase in 

p resynap tic  transm itte r (g lu tam a te /a sp a ra te  and  GABA) release that 

accompanies LTP in the hippocam pus of mammals, and that this release has 

been found to persist for at least 2 hours after the initiation of the stimulatory 

event. The results discussed in Chapters 4 and 5 can, therefore, be explained as 

a persistent enhancem ent of glutamate release required for the maintenance 

of a potentiation required for memory formation. A persistent increase in 

GABA release may also be required for continued disinhibition.

The NMDA receptor complex has been im plicated in the study by
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Burchuladze and Rose (1992). MK-801 (a non-competitive NMDA antagonist) 

was injected intraperitoneally at various times betw een 1 hour pre- and five 

m inutes after training. Amnesia for the task occurred w hen the chicks were 

tested between 3 and 24 hours subsequently. However, if administered one or 

more hours after training there is no amnesia, implying that, as is the case in 

LTP, NMDA receptors are required only for initial phases of m em ory 

form ation.

Following these initial investigations Steele (1995) carried out a series of 

experiments looking at the time course of glutamate receptor activation in the 

chick following the passive avoidance task. He found an increase in NMDA 

num ber in the left and right IMHVs, and the left LPO, 30 minutes, bu t not 3 or

6.5 hours, after training. AMPA receptors were found to be changed (in 

affinity) only at 6.5 hours after training.

These results suggest the involvement of NMDA receptors in the 

initial form ation of m em ory for the task, w hilst the AMPA receptors are 

crucial for the long term memory effects, since CNQX injections resulted in 

amnesia at 6.5 hours. This latter result is also analogous to LTP where 

increased AMPA receptor affinity is required for its long-term  maintenance 

(Bliss and Collingridge, 1993).

In the chick it has previously been found that an LTP-like effect can 

be induced in the IMHV in vitro (Bradley et al., 1993). This effect, term ed 

persistent potentiation, was eliminated by NMDA antagonists indicating that 

NMDA receptors mediate the potentiation. This suggests that NMDA receptor 

activation, required for m em ory formation in the chick, mediates potentiation 

and bursting in the chick and that enhanced glutamate release may initiate,or 

be produced by, these events.

A sp a r ta te  release

Changes in the Ca^+-dependent release of aspartate were recorded. 

No recent studies have shown aspartate to be involved in memory acquisition
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or LTP (e.g. Ghijsen et al. (1992). Most authors no longer propose a 

transmitter-type role for aspartate in the mam m alian CNS, and those that do 

may be recording a lack of specific uptake as opposed to a transmitter-like 

release (see Chapter 1). So why is there an increase in aspartate release found 

in the present study? A possible reason may be that aspartate is indeed a 

transm itter in the avian brain. More likely, I believe, is that the increase in 

aspartate release detected by the HPLC is actually due to the release of a 

chemical that co-elutes w ith  aspartate, or that is initially released as a 

compound that subsequently degrades to aspartate. The potential identity of 

this com pound may be N -acetylaspartylglutam ate (NAAG). NAAG is a 

dipeptide that has been identified in synaptic vesicles and is released from 

neurons. Potassium -stim ulated Ca2+-dependent release of NAAG from a 

subset of putatively glutam atergic neurons, follow ed by degradation  to 

glutam ate (which will interact with EAA receptors), provides a possible 

m echanism /role for the peptide (Zollinger et al., 1994). The dipeptide exhibits 

a high affinity and specificity for NMDA rcccptorc> and w hen injected into rat 

hippocam pus it produced seizures (Zaczek et al., 1983). NAAG, and another 

possible candidate for the apparent increase in the release on aspartate, N- 

acetylaspartate (NAA), are found in the rat forebrain at sites that suggest that 

they may act to m odulate the release of GABA by presynaptic autoreceptors 

(NMDA or mGluR-type receptors are suggested) (Moffett and Namboodiri, 

1995). It is interesting to note that NAAG also has excitatory effects on 

(cultured) chick cerebellar neurons (Mori-Okamoto et al., 1987).

During work for this thesis, NAAG release from the chick brain was 

investigated (data not shown). NAAG was found, bu t in very small amounts 

(<10 pmol /  100 m l/ IMHV), and using a different HPLC m ethod that also 

required UV absorbance at 210nm (the preparation for amino acid analysis 

appeared to break the dipeptide down into its constituent amino acids, such 

that even the standard  NAAG prepared was detected as two peaks that 

coeluted with aspartate and glutamate, as suggested above). A major factor for
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the small amounts analysed, assuming that the peptide is present in sufficient 

am ounts originally, may be the m em brane-bound peptidase activity that 

converts NAAG to glutamate and N-acetylaspartate.

From the above, it seems quite possible therefore that the aspartate 

found to be released following training was derived from a peptide, which also 

suggests that the glutamate found to be released at these times may also be 

derived from the peptide. No specific receptors appear to exist, (or rather, 

have not been described) for the products of the dipeptide, suggesting that if 

NAAG is released it is in the form of a "pretransm itter" (Zollinger et al., 1994) 

from w hich glutam ate is cleaved. It could be postu lated  that, because 

aspartate , or the com pound that coelutes w ith  asparta te  in the HPLC 

separation, is not increased in release until the later tim es of glutam ate 

activation (at 1 hour in the left IMHV cf. the enhanced release of glutamate 

from the same region at this time but also earlier, at 30 m inutes post-training), 

NAAG is released as well as glutamate, and the mechanisms of NAAG release 

or of its peptidase's activity is not expressed until activated (by the increased 

glutamate release?). Further work in this area is suggested at the end of this 

chapter.
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R etrograde  m essengers

The m echanism s underly ing  the long-term  enhancem ent of 

glutamate and GABA transmitter release are not clear. Arachidonic acid and 

nitric oxide have both been proposed as possible retrograde messengers that 

may enhance pre-synaptic release after its induction by receptor-mediated Ca^+ 

elevation. Arachidonic acid has been found to increase endogenous glutamate 

release in hippocam pal nerve term inals (Lynch and Voss, 1990). As 

arachidonic acid enhances glutam ate release, it m ay contribute to the 

maintenance of LTP by stimulating neurotransm itter release from presynaptic 

term inals.

A role for arachidonic acid in memory form ation in the chick has 

been suggested by Holscher and Rose (1994). Phospholipase A] (PLA]) 

inhibitors produce amnesia for the passive avoidance task. Arachidonic ad d  

is synthesised via PLA2. In this way, it can be assumed that arachidonic acid is 

necessary for memory form ation of the passive avoidance task. The time 

course of the experim ents suggest that d isrup tion  of arachidonic acid 

production does not occur until 1.25 hours after training, and from this it can 

be implied that arachidonic acid may be involved as a retrograde messenger 

during the later stages of memory formation. Enhanced transm itter release 

(glutamate, aspartate and GABA) is seen in both IMHVs and LPOs 1 hour, and 

at subsequent times, post-training (see Chapters 4and 5). This persistent 

increase may therefore be mediated by arachidonic acid production release 

from the postsynaptic membrane as a retrograde messenger.

Arachidonic acid stim ulated PK C-dependent phosphorylation of 

GAP-43 was apparent after 5 minutes following the induction of LTP. From 

these data Luo and Vallano (1995) concluded that the proposed stim ulated 

release of neurotransm itter that accompanies the phosphorylation of GAP-43 

occurs during the early maintenance phase of LTP. This conclusion is in 

contrast to that of Holscher and Rose (1994): an explanation m ay be a 

difference in the retrograde messenger activation, and source, following LTP
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as compared to passive avoidance learning.

The substrate that is thought to regulate arachidonic acid activity is 

p ro tein  kinase C (PKC). Evidence for arachidonic acid-m ediated PKC 

involvem ent include, that arachidonic acid enhances the phosphorylation of 

the PKC substrate GAP-43: GAP-43 phosphorylation has been correlated with 

an increase in transmitter release in hippocampal slices (Dekker et al., 1989). 

Also, activation of PKC and phosphorylation of GAP-43 have been associated 

w ith  the persistence of LTP in the dentate gyrus and area C A l of the 

h ippocam pus (from Luo and Vallano, 1995). Thus, arachidonic acid 

co n trib u tes  to the m ain tenance  of LTP by m ed ia tin g  increased  

neurotransm itter release via activation of presynaptic PKC and subsequent 

phosphorylation of GAP-43 (Luo and Vallano, 1995; also see Chapter 1)

Phorbol esters, activators of PKC, potentiate the sustained release of 

glutamate. A ddition of phorbol esters before stim ulation w ith KCl produces 

an increase in Ca^+-dependent glutam ate release (Terrian and Ways, 1995). 

This increase in release was only apparent following at least 10 m inutes 

exposure to the phorbol ester (Terrian, 1995). Again this suggests that PKC 

activation is apparent after stim ulation, but that this activation, and the 

enhanced glutam ate release that may accompany this activation, is delayed. 

Terrian and Ways (1995) suggested that CaM kinase is not involved in  the 

evoked release of glutamate. The fact that PKC activity does not require CaM 

kinase activation could suggest that no CaM kinase activity is required for 

memory formation. However, Zhao et al. (1995) suggested that CaM kinase 

may be necessary for the initiation processes of LTP (and memory formation?) 

whilst PKC is required for the maintenance of the generated LTP.

PKC has been found to be necessary for memory form ation in the 

chick (Burchuladze et al., 1990). Inhibitors of PKC produced amnesia for the 

task 3 hours post-training, and an increase in synaptic-membrane bound PKC 

at 30 m inutes in the left IMHV. There is also a change in  the level of 

phosphorylation of B-50 (GAP-43) in the left IMHV of M eA-trained chicks 30
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m inutes post-training (Bullock et al., 1990; also noted in Zhao et al., 1995). 

These results are consistent w ith the release of neurotransm itter seen at 30 

minutes in the left IMHV in the present study, but does not explain the release 

seen in the right IMHV of MeA-trained chicks compared to w ater controls: 

though the levels of PKC appear to be roughly equivalent in the left and right 

IMHV of MeA-trained chicks at 30 minutes post-training, suggesting a similar 

level of transmitter release (Burchuladze et al., 1990). Also, Zhao et al. (1994) 

demonstrated that melittin (a PKC inhibitor) affected the second stage (ITM) of 

the p roposed  three-stage sequence in m em ory form ation  in the chick 

following passive avoidance learning (Ng and Gibbs, 1991). In addition, 

Bradley et al. (1992) showed that a persistent potentiation in the IMHV is 

enhanced following addition of phorbol esters; a protein kinase C inhibitor, H- 

7, prevented the induction of the potentiation.

In addition to PKC, cAM P-dependent protein kinase (PKA) may be 

involved in m em ory form ation in the chick. PKA is involved in  the 

activation of non-NMDA glutamate receptors which have been found to be 

associated w ith  the m aintenance of LTP (Wang et al. 1991). Cyclic AMP is 

increased under conditions that produce LTP (Stanton and Starvey, 1985). 

Also, a significant increase in whole forebrain levels of cAMP has been 

observed between 30 and 60 minutes following passive avoidance training in 

the chick (Brown, 1984). The use of PKA inhibitors show ed that PKA was 

involved in the formation of long-term memory in the chick: the actions of 

the inhibitors d id  not occur until ca. 60 m inutes post-training, and were 

apparent until 3 hours post-training, suggesting involvem ent of PKA in the 

establishment of the protein synthesis-dependent stage of memory formation, 

and a post-synaptic role for PKA (Zhao et al., 1995). A role for AMPA 

receptors in the consolidation of the passive avoidance task has been 

identified, because AMPA receptors increase in affinity at 6.5 hours post­

training (Steele, 1995). At this time point there is an increase in glutamate 

release from the right IMHV of chicks, not seen in the left, suggesting an
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increase in transmitter activity related to a second wave of protein synthesis.

In our laboratories Holscher and Rose (1993) demonstrated that nitric 

oxide (NO) production is necessary for the form ation of m em ory in the 

passive avoidance task. N-nitro-L-arginine (an inhibitor of NO synthase) 

injected into the IMHV, left or right, before the training task produced 

amnesia from 30 minutes to 24 hours later. This suggested that NO is of 

importance in the first few minutes after the initiation of memory formation 

rather than in the later stages. Indeed it was thought that NO is bu t the first 

wave carrier of information and forms a first wave of retrograde signalling, 

reaching a peak of synthesis by 30-60 minutes after which NO production starts
■I ,

to decrease and arachidonic acid release, the presum ed second wave, is 

increased.

NO was dem onstrated to be of im portance in the initiation of 

memory formation rather than in the later stages of memory consolidation in 

this study, which related well to the theory, as NO is rapidly produced after 

neuronal activation and destroyed after a few seconds (Bredt and Snyder,

1992). A form of long-lasting potentiation in the IMHV can be blocked by the 

NO scavenger, haemoglobin, which again suggests a role for NO in the IMHV

(Bradley et al., 1992).

It has previously been shown that a correlation exists betw een the 

release of glutamate and NO after NMDA stim ulation in rats (Rowley et al.,

1993), and in slice work, glutamate and aspartate (Dickie et al., 1992) have been 

found to be released in a NO -dependent m anner. As has previously been 

show n in this thesis, glutam ate release was found to be elevated 30 minutes 

following the training task. NO production is elicited by joint stimulation of 

AMPA and mGluRs (Ito and Karachot, 1990) w hilst NO release and cGMP 

production is NMDA dependent (Garthwaite, 1991). All these results suggest 

that presynaptic glutamate release and the postsynaptic activation of NMDA 

receptors are required for the increase in NO synthesis and the subsequent 

"induction" and maintenance of synaptic strengthening. NO, as has already
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been outlined, is thought to be a retrograde messenger in LTP. Inhibition of 

NO synthesis can prevent LTP in hippocampal slices and dentate gyrus and in 

cortical slices (Nowicky and Bindman, 1993). NO diffuses through the cytosol 

and is absorbed by the haem group of a NO sensitive guanylate cyclase. 

Increase in cGMP activity then evokes an increase in glutamate release via an 

unknow n mechanism. Glutamate uptake is also increased via an astrocytic 

based NO sensitive guanylate cyclase activated uptake mechanism: this may 

account for the increased glutamate uptake described in Chapter 4.

M odulation  of amino acid release by adenosine

A  role for adenosine in memory formation for the task was proposed 

in Chapters 6 and 7. Adenosine release was found to be elevated at the same 

times and in the same hemispheres where enhanced glutam ate release was 

found.

The release of glutamate was affected by adenosine interactions. A% 

agonists inhibited release, w hilst activation of A2 receptors produced an 

enhanced release of excitatory neurotransm itter (this is in agreem ent w ith 

other studies in the mammalian system, e.g. O 'Regan et al., 1992).

Adenosine has been im plicated in long term  potentiation (LTP). 

Dolphin (1983) found that a high intensity, high frequency train of electrical 

stimulation, w hen applied to the perforant path of the hippocampus, did not 

produce LTP w hen applied in the presence of the adenosine agonist, 2- 

chloroadenosine (2-CADO). The EPSPs produced by the stim ulation were 

reduced by betw een 30 and 50% during 2-CADO perfusion. Extracellular 

application of adenosine will prevent LTP if applied after 1 m inute, bu t not 5 

m inutes, after high frequency stim ulation (Arai et al., 1990). The post­

stim ulation application of adenosine, suggests that changes in intracellular 

control systems linked to adenosine receptors can, during  a brief period, 

interrupt the biochemical processes leading to the expression of LTP. Further 

to this, DeM endonca and Ribeiro (1990) found that the activation of A%
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receptors attenuated LTP.

At mossy-fibre-CA3 synapses, NMDA receptor activation is not 

required for LTP induction (see Chapter 2). The locus of both induction and 

maintenance is thought to be presynaptic. Alzheimer et al. (1991) described 

adenosine depression of the induction of LTP. This suggested that adenosine's 

presynaptic action is sufficient to interfere w ith  synaptic transm ission. 

Subsequent work (Asztely et al. 1994), has dem onstrated that the inhibitory 

effect of adenosine was indeed indirect, via a decreased transm itter release at 

individual excitatory synapses, but that this action may not be potent enough, 

or may be present at only a relatively few synapses, such that LTP induction 

was not blocked. However, DeMendonca and Ribeiro (1994) described the 

actions of adenosine analogues on LTP in the hippocam pus, and found, in 

agreement w ith previous data (e.g. Dolphin, 1983; Arai et al. 1983), that A% 

activation a ttenuated  LTP, but that A] receptor agonists enhanced LTP 

induction. The discrepencies in these results m ight be due to GABA 

activation: in the studies that did not show a blocking effect of adenosine on 

LTP, GABA antagonists were used to reduce the inhibitory effect in the 

hippocampal synapses. This would suggest that adenosine acts in unison with 

GABA to produce the effect of LTP reduction seen w ith the application of 

adenosine and A% agonists. This is further substantiated by data that shows 

th a t adenosine po tentiates the ability of m uscim ol to inh ib it evoked 

potentials, and that these effects were m ediated by a change in chloride 

conductance (Akhondzadeh and Stone, 1994). This interaction would provide 

a potent m echanism of inhibition if both were in action at the same time 

o r/an d  in the same neurons/synapses.

Adenosine released during low levels of NM DA-receptor activity 

could inhibit the further release of glutamate a n d /o r  dim inish postsynaptic 

responses (Burke and N adler, 1988). Adenosine m ay provide a futher 

inhibitory threshold for NM DA-receptor activation. Indeed, W hite and 

Hoehn (1991) suggest that released adenosine may serve to m aintain the
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selectivity of NM DA-m ediated processes such as m em ory, learning and 

synaptic plasticity. Burke and Nadler (1988) suggested that, from their 

findings (80% reduction in the release of aspartate/g lu tam ate following A% 

receptor activation), there may be not a decrease at each synapse by 80% but 

perhaps a suppression of release from 80% of terminals leaving the other 20% 

unaffected. This w ould lead to a selective deactivation of synapses and may 

play a role in the stabilisation of synapses required for the acquisition and 

retention of the memories.

As regards the formation of postsynaptic potentials, adenosine may 

play a vital role. At low (IpM ) concentrations of adenosine, EPSCs are 

facilitated in the rat hippocam pus whilst higher concentrations inhibited the 

EPSC (Garaschuk et al., 1992). Both NMDA and non-NM DA receptor- 

components of the EPSC were facilitated simultaneously. Also the application 

of this low concentration of adenosine was found to produce an increase in 

the am plitude of the EPSP, and this was due to an increase in glutam ate 

release (Okada et al., 1992). A presynaptic action for adenosine was found by 

Lupica et al. (1992). Quantal analysis showed that application of CHA (Ai 

agonist) reduced both the EPSP and m, the quantal content. Similar results 

were also described by Yamamoto et al. (1993) who described a suppression of 

the EPSP in the CA3 region. Such a suppression m ay be m ediated by 

adenosine actions at P-type Ca^'''-channels (Mogul et al., 1993). Thus, in this 

way adenosine may contribute to the extent of EPSP summation. Activation 

of excitatory, A2, adenosine receptors is required in order to enhance excitatory 

amino acid release directly. Alternatively, Ai (inhibitory) receptor activation 

may serve to inhibit the release of GABA from inhibitory inter neurons: the 

actions are very dependent on the location of the receptors, and the receptor 

types: e.g. it has been demonstrated by Cunha et al. (1994) that ACh release in 

the hippocampus is differentially regulated, such that in the CA l area only A% 

receptors modulate the release, in CA3 both Ai and A2a receptors modulate the 

ACh release, bu t in the dentate gyrus both receptor types are present but are
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not activated by endogenous adenosine

Adenosine receptor agonists (both of the A% and A2a type) have been 

found to inhibit the release of GABA in the rat cortex (Oregan et al., 1992). 

These findings w ere substantiated  by Kirk and R ichardson (1994) who 

described A2a receptors present on GABAergic striatal nerve term inals that 

acted to inhibit the release of GABA. In addition, it has been suggested by Kirk 

and Richardson (1995) that the inhibition of GABA may be m ediated by A2a 

inhibition of PKC activity.

Adenosine was found to depress both EPSPs and IPSPs in the CA3 

region of the hippocam pus (Hasuo et al., 1992). However, the glutam ate- 

induced  hyperpolarising  po ten tial m ediated  by GABA released  from 

interneurons was not affected: this suggests that adenosine did not directly 

inhibit the release of GABA from these cells.
I

Adenosine receptor-mediated events are also apparent in the second 

messenger systems. Adenosine interacts with mGluRs via an interaction with 

cAMP. DeLapp and Eckols (1992) found that forskolin-stim ulated cAMP 

accum ulation in ra t cortex slices was in synergism  w ith  endogenous 

adenosine. The effect of caffeine and 8-phenyltheophylline, adenosine 

receptor blockers, and adenosine deam inase was to inhibit this forskolin- 

stim ulated cAMP accumulation. Stim ulation of cAMP in cortex slices by 

adenosine occurs through the low-affinity adenosine A2b receptor (Mante and 

M innem an, 1990b). Hence, blockade of the adenosine A2b receptor by 

adenosine receptor antagonists is im plicated in  the inhib ition  of cAMP 

accumulation (DeLapp and Eckols, 1992). The A2b receptor-stim ulated cAMP 

response can be potentiated in the presence of 1S,3R-ACPD, m ost notably 

when there is also an adenosine receptor antagonist present (Cartmell et al., 

1992b), and this response is m ediated through the same ACPD receptor that is 

coupled to phosphoinositide turnover (Alexander et al., 1992). In addition, 

1S,3-R-ACFD also inh ib ited  fo rsko lin -stim ulated  cAMP accum ulation 

(Cartmell et al., 1993). This inhibition is thought to be m ediated via the
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presynaptic mGluR2 receptor, although the effects have been found to be the 

opposite when applied to cAMP activation by adenosine A2 receptors (Winder 

and Conn, 1993). The mGluR2 agonist DCG-IV reduced the release of 

adenosine induced by forskolin and cAMP formation (Casabona, 1994).

There appear^ therefore/ to be two opposing actions of metabotropic 

glutam ate receptors w ith regard to the forskolin-stim ulated accumulation of 

cAMP. These actions are probably associated w ith the interaction of glutamate 

w ith mGluR subtypes associated with inhibition (mGluRs2, 3, 4, 6 a n d /o r  7; 

Casabona et al., 1994) and augm entation (mGluRla) of cAMP accumulation 

(Cartmell et al., 1993).

Differential effects of adenosine Ai receptor activation have been 

found to occur according to whether mGluR activation is present. Thus, Ai 

receptor activation may enhance IP3 formation induced by mGluR activation 

and also enhance Ca^+ mobilisation from internal stores (Ogata et al., 1994). 

However, in the absence of mGluR activation Ai receptor activation may lead 

to hyperpolarisation, depressing the depolarisation-induced increases in Ca^+. 

It has been dem onstrated in the rat hippocampus that there is a synergistic 

interaction between arachadonic acid and mGluRs, such that PKC activation 

and inositol phospholipid metabolism were enhanced w hen both agents were 

present (McGahon and Lynch, 1994). This suggests possible mechanisms for 

adenosine interactions with mGluRs, as both presynaptic receptors, mGluR 

subtype and A2b receptor, can enhance inositol phospholipid  m etabolism, 

adenylate cyclase activity and PKC activity. This w ould suggest a potential 

excitatory or inhibitory feedback, as A2b receptor activation has been 

demonstrated to enhance glutamate release (Simpson et al., 1992), which could 

interact w ith presynaptic mGluRs to enhance or dim inish further glutamate 

release.

From these lines of evidence, it could be suggested that the increases 

in adenosine release described in the present w ork are consistent w ith  the 

hypothesis that mGluRs are involved in m em ory form ation for the task.
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Increases in glutam ate have been described at time points that show no 

increases in affinity or in num ber for NMDA or AMPA receptors in the 

IMHV. This suggests that mGluRs may be being expressed at these times, and 

that these mGluRs, acting synergistically w ith  adenosine, act to enhance 

glutamate release via a system involving cAMP and adenylate cyclase activity. 

PKA may thus be activated (as has been discussed above), postsynaptically, 

perhaps to phosphorylate AMPA receptors and thus enhance their affinity at a 

later time (6.5 hours, Steele, 1995).

The effect of the increases of adenosine release on GABA are not 

clear. Evidence from other studies (e.g. Kirk and Richardson, 1994 and 1995) 

w ould suggest that adenosine m ight act to inhibit GABA release. However, 

evidence from the present w ork does not indicate that this is the case: 

enhanced release of GABA is found at times that are subsequent and 

sim ultaneous to increased adenosine release. Obviously the milieu of other 

transm itter interactions, the different messenger systems em ployed by the 

same transmitters at different neurons and the receptor systems involved will 

lead to a complex set of interactions that can only be guessed at using this 

release paradigm.

In conclusion, the data described in the present w ork suggest that 

glutam ate and aspartate (or NAAG) and GABA show an enhanced and 

persistent release from the IMHV and LPO, following training on the task. 

Their release and interactions with pre- and post-synaptic receptors is vital for 

memory form ation for the task. Adenosine also interacts w ith  these amino 

acid transmitters and might act to modulate their actions in such a way as to be 

a filter that may determine the extent to which the internal representations 

are expressed.
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Future D irections

1) Amino acid transm itter release has been m easured following the task. ' In 

addition to the changes involving glutam ate and G ABA, and the amino acid 

system described by Bradley et al. (1990), other transm itter species m ay be 

involved in the form ation of memory for passive avoidance training. The 

cholinergic system may be involved (e.g. the release of ACh is implicated in 

the Bradley et al. (1990) model). For example, 2 hours after training increases 

in  the MHV in both anti-p65 and anti-SV2 are found, most notably in the right 

MHV (Bullock et al.,1987). These changes may be related to the changes found 

in neuronal bursting at this time point and it has been suggested that there is a 

cholinergic basis for this (M ason and Rose, 1987). Raised levels of 

acetylcholine have been found following training (Bullock et al., 1987), and the 

m odel described by Bradley et al. (1990) also describes a possible cholinergic 

input in the IMHV. In addition the adrenergic system may also be involved. 

Therefore, it is suggested that release of other, putative, neurotransm itters 

from the chick IMHV and LPO could be carried out to investigate a role for 

them in the task.

2) The neuropeptide N-acetylaspartylglutamate (NAAG) may be released from 

regions of the chick brain following the task. As has been discussed above, 

NAAG has been found to be released following depolarisation and is degraded 

to glutamate which will act at excitatory amino acid receptors (Zollinger et al.,

1994). Therefore, it is suggested that initial immunohistological/ cytochemical 

identification of NAAG in the chick forebrain is attempted. If the dipeptide is 

found, it is suggested that release of NAAG should be examined following 

passive avoidance training.

3) A very im portant set of experiments that could be carried out, is the in vivo 

microdialysis of transm itters (including adenosine) during passive avoidance 

training. This w ould allow real-time m easurem ents to be taken, and w ith 

sam pling carried out from a relatively small area (as compared to the gross 

studies using the brain slices) the timing of release can be directly compared:
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does the release of one amino acid/purine precede another?

4) The experiments carried out for this thesis involved brain  slices. Brain 

slices provide good experimental material because they contain mostly intact 

sets of neurons and glial cells, and thus should allow changes in transmitter 

release etc. that may be apparent in the intact animal. However, a potential 

drawback is that one cannot distinguish the relative contributions of glia and 

neurons to the biochemical changes. Thus, if possible, one could separate the 

glial m aterial from the neuronal (neurosom es/synaptosom es) and m easure 

changes in both. Discarding non-neuronal m aterial may well end up in the 

discarding of im portant data (as regards receptor binding, uptake, and even 

transm itter release).

5) The work described in this thesis has show n the action of adenosine on 

memory formation in the chick followijig a passive avoidance task.

a) ''Endogenous adenosine as well as uptake sites and A i receptors 

display localisations consistent with a neurom odulatory role in the avian 

retina" (Moffett et al., 1992): it may be possible to examine the distribution of 

adenosine receptors in the chick brain either via au to rad iography  or 

im m unocytochem istry and the effect of the train ing  paradigm  on their 

distribution .

b) A2 antagonists/agonists could be looked at for their effect on 

memory formation in the chick (e.g. using the weak aversive 10% Me A and 

an A] agonist m ight "im prove" mem ory; A2 antagonists should  cause 

amnesia).
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