
Open Research Online
The Open University’s repository of research publications
and other research outputs

Structural analysis of the neutralising antibody
repertoire to influenza virus Haemagglutinin.
Thesis

How to cite:

Laeeq, Sabahat (1997). Structural analysis of the neutralising antibody repertoire to influenza virus Haemagglutinin.
PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 1997 Sabahat Laeeq

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


Structural analysis of the neutralising antibody repertoire to 
influenza virus Haemagglutinin

SabahatLaeeq

I 1996

Research thesis submitted in partial fulfilment of the requirements of The Open 

University (UK) for the Degree ofDoctor of Philosophy

Division Of Virology,
National Institute for Medical Research, 

The Ridgeway, Mill Hill,
London NW7 lAA, Û K.
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ABSTRACT

Protective immunity to influenza virus correlates with levels of neutralising antibodies 

directed against haemagglutinin (HA), the major membrane glycoprotein of the virus. The 

antibodies exert selective pressure resulting in the recurrent and annual emergence of new 

variant viruses.

Although all five antigenic sites are implicated in antibody recognition, immunodominance is 

evident in the secondary antibody response, following natural Infection of inbred mice as has 

been shown in this laboratory; BALB/c (H-2d) mAbs predominantly recognise HA1 198, and 

CBA/Ca (H-2k) mAbs, HA1 158, as deduced by sequencing the HA genes of X31 laboratory 

variants. Such restriction in the antibody response raises several questions concerning the 

mechanisms involved in repertoire selection and the structural basis of the selection 

process, which this investigation attempted to address using transgenic mice expressing 

human Ig p chains.

The purpose of examining the memory repertoire for influenza HA in transgenic mice was to 

determine whether restricted Vh region gene usage and/or inability to class switch 

(lgM->lgG) with a resultant lack of affinity maturation would restrict the potential antibody 

repertoire. I have demonstrated, by structural analysis of variant virus HA genes, selected 

with mAbs expressing human p, chains, that there is a preferential selection for mutations 

within conserved residues that constitute part of the receptor binding site (HA1 225, HA1 

226) that do not occur in previously documented laboratory variants. Also the majority of 

these variant viruses have amino acid substitutions at twp different positions: (HA1 145,

226) or (HA1 135, 225) or (HA1 135, 158) or (HA1 145, 158).
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In the second part of this study, I have examined the influence of conœmitant immunity to 

X31 on re-challenge with an X31 variant virus in an attempt to mimic the human situation of 

recurrent infection: CBA/Ca mice were infected intranasally with X31 and their neutralising 

antibody repertoire investigated by hemisplenectomy, mAb production, X31 variant selection 

and sequencing of their HA genes. Following a rest period, mice were re-challenged with a 

laboratory variant, A43, differing from X31 at known antigenic sites (HA1 145,158, del 224- 

230) and which was not recognised by the majority of mAbs from the primary challenge.

The mAbs, established after re-infection with A43, showed heteroclitic reactivity forX31 and 

selected laboratory variants thereof, with substitutions at both conserved residues within the 

receptor binding site and at known antigenic sites (HA1 193,198, 226) or HA1 (198, 223).

I have demonstratedjn two different systems (a) human IgH transgenic mice, or (b) 

recurrent infection with a variant virus, that there is preferentiai seiectlon of laboratory 

mutants containing multiple substitutions, including changes in conserved residues that 

constitute part of the receptor-binding pocket (HA1 225 or 226). This has led me to 

conclude that antibody affinity might play a determinant role in the selection of mutations 

that affect receptor binding function. The majority of X31 variants that I have cloned, and 

characterised, do indeed have altered receptor-binding specificity as shown by their 

resistance to horse serum inhibition of haemagglutination and/or altered binding to 

neoglycpproteins containing terminal a  2,3 or a  2,6 sialyl residues.

Reduced affinity of the neutralising Ab response during infection - such as in the 

immunocompromised, or the very young or very old, or due to previous exposure to a 

related virus might skew the antibody repertoire to selection of receptor-binding variants and 

therefore be a further determinant of antigenic drift.
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CHAPTER-1
Introduction



2 0

1. GENERAL INTRODUCTION

1.1. Immune recognition
The binding of foreign antigens to complementary structures on the 

surface of B and T lymphocytes represents the initial step in the sequence of 

events leading to activation of both cellular and humoral arms of the immune 

system which recognise antigen rather differently. Membrane immunoglobulin 

(Ig), first as a receptor molecule on the surface of B lymphocytes and later as a 

soluble molecule, binds antigen in an unprocessed or native state. T cell 

receptors (TcR), on the other hand, bind antigen only in association with major 

histocompatibility complex (MHC) proteins (Zinkemagel and Doherty, 1974), 

and furthermore, the protein antigen is typically processed to a small peptide 

prior to its presentation to TcR.

The primary function of B cells is to produce antibodies against a vast 

array of antigenic substances potentially harmful to the body, whereas, T-cells 

regulate secretion of antibodies and limit the probability of an autoimmune 

response. The strategy evolved to allow higher vertebrates to produce such a 

large spectrum of antibodies is the generation of millions of clonally diverse B 

cells, each of which produces antibody molecules consisting of paired heavy 

and light chains and having unique antigen binding specificity. Once generated, 

B cells bearing their antibody receptors are seeded via the blood stream to 

lymphoid tissues in strategic locations throughout the body, such as the spleen, 

lymph nodes and specialised areas along the intestine. In these 

microenvironments, B cells may encounter the foreign (or self) antigens, which 

they recognise via their cell surface antibody receptor.

1.2. B-cell generation.

Vertebrates can produce a humoral immune response to a large number 

of different foreign antigens because B lymphocytes are able to synthesise
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immunoglobulins having many different antigen binding specificities. The 

generation of B lymphocytes from stem cells occurs through an ordered 

program of immunoglobulin (Ig) variable (V) region gene rearrangement and 

subsequent selection of combinatorial variants. As a result, each newborn B 

cell expresses a particular pair of heavy (H) and light (L, k and A,) chain V 

region (Alt, e ta l, 1987; Tonegawa, 1983) each containing V and constant (C) 

genes. The diversity in structure of variable regions, the antigen binding 

domains of immunoglobulins, results in diversity of antigen binding specificity. 

Each resting B cell in the lymphocyte population expresses an Ig molecule with 

a single V region structure, and thus a single or limited number of binding 

spedficities, as cell surface receptors. A subset of these cells are stimulated to 

grow and secrete antibody at the onset of an immune response partly as a 

result of clonal selection by receptor-bound antigen.

When the haemopoietic stem cells subsequently migrate to the bone 

marrow, this tissue becomes the permanent site of B-cell production (Osmond, 

1986). B-lineage cells can be divided into three general stages of differentiation 

represented by pre-B cells, B cells and plasma cells. As a lymphoid stem cell 

differentiates to a pre-B cell, there is a p H chain gene rearrangement, 

transcription, translation, and expression of cytoplasmic p H chains in 

association with a surrogate light chain (X5+V pre-B) (Karasyuama a l, 

1990). Only after both chains are expressed in the cytoplasm will a complete 

antibody molecule appear on the cell surface. In each antibody forming cell, 

only one heavy chain and one light chain V region are productively rearranged 

and expressed (allelic exclusion). The immature B cell develops to a B cell that 

co-expresses IgM and IgD on the B lymphocyte surface (Coding, 1982). Up to 

this stage, B-lymphocyte development is antigen independent. Maturation 

beyond the B cell stage is thought to require activation by mitogen or an 

appropriate combination of antigen, T cells or T cell factors, and macrophages 

(McKenzie and Potter, 1979). Following encounter with antigen and activated
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T cells, B-cells migrate to B-cell follicles where they interact with follicular 

dendritic cells (FDC). FDC specialise in binding antibody-antigen immune 

complexes and in inducing B-cell proliferation and differentiation. This 

interaction leads to the formation of a finely structured germinal centre. B-cell 

proliferation and differentiation leads to dark zone formation in the germinal 

centre, followed by the formation of the light zone (MàcLennan, et a l, 1992). 

V genes undergo somatic mutation to increase affinity for antigen within days 

of antigenic stimulation and only during germinal centre formation. It was 

suggested (MacLennan and Gray, 1986) that cells are selected in germinal 

centres on the basis of their ability to receive signals dependent on interaction 

with antigen held on FDC. Cells which do not receive signals die by apoptosis. 

The B cell expressing high affinity antibody can follow a number of pathways: 

it can terminally differentiate into an immunoglobulin M (IgM) secreting 

plasma cell, it can switch (Shimizu and Honjo, 1984) its fully assembled V 

region to a downstream C-region gene to express and secrete a new class of 

antibody with a different C region that is associated with a different effector 

function (Winkelhake, 1978), or it can become a memory cell that can 

recognise and be restimulated by the same antigen. The antibodies made by an 

individual plasma cell are of single specificity and a single isotype. To 

appreciate the functional aspects, it is important to understand the basic 

structure of the antibody molecule.

1.3. The antibody molecule
An antibody molecule of the IgG subclass appears as a Y shaped object 

in the electron microscope that consists of two identical heavy (H) and light 

(L) chains that are disulphide-linked to form a bivalent H2L2 molecule (fig 1). 

The two arms of the Y (Fab fi-agments) can be cleaved by proteolysis and 

retain the capacity to interact with antigen. The amino terminal end of each
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H and L chain is encoded by a variable (V) region gene and the carboxy 

terminal end is encoded by a constant (C) region gene. The V-region domain 

contains three areas of exceptional amino acid sequence variability called 

complementarity-determining regions (CDRs) which are the sites for antigen 

contact (Wu and Kabat, 1970). Surrounding the CDRs are areas of less 

sequence variability called framework regions. Because the CDRs are loop 

structures, they are more likely to be regions of high flexibility which may be 

an important feature of antigen binding (Tainer, et a l, 1985).

The V-region domains are encoded by a series of smaller genetic 

elements designated variable (V h), diversity (D h ), and joining (Jh) for the 

heavy chains and Vl and Jl for the light chains. Each genetic element is part of 

a larger linkage group, and those encoding the murine heavy and both light 

chains, kappa (k) and lambda (X) V regions are located on different 

chromosomes (Alzari, et a l, 1988). Each group of genetic elements is 

separated in the germ-line configuration , and for the heavy chain, there are 

100 to 1000 Vh (Tonegawa, 1983), approximately 12 D and 4 J genetic 

elements. In mouse, the k  light chain has more than 100 V and 5 J genetic 

elements, one of which, Jk3, is a pseudogene. The formation of a complete V 

region occurs by a site-specific recombination mechanism (Tonegawa, 1983). 

Before each of the many antibodies can be presented on the surface of 

individual antibody-forming B cells, the V region genes are rearranged and 

brought into close proximity with their respective C-region genes, a process 

that triggers their expression. Processing of pre-mRNA then joins the V and C- 

region genes to produce m-RNA that is translated into the complete 

polypeptide chains. The heavy chain genes rearrange and are expressed first in 

the cytoplasm of the cell along with the Cp-region gene, and this is followed by 

the rearrangement and expression of a light chain. In each antibody-forming 

cell, only one heavy chain and one light chain V region are productively 

rearranged and expressed, a phenomenon called allelic exclusion. Since any V
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can join to any (D), J and C, there are potentially over 800 different kappa 

chains and over 8000 possible heavy chains that can be formed, and with a 

combination of any L to any H chain, a potential 6.4 million different possible 

antibodies (excluding junctional region diversity and somatic mutation) (Alt, et 

a i, 1982; Paige, etal., 1978).

The diversity of antibody specificities is contributed by a variety of 

factors, including the multiplicity of distinct germ-line Vh and Vl sequences 

that encode different primary amino-acid sequences, the combinatorial 

assortment of the multiple V, D, and J segments, mechanisms that modify the 

coding capacity of the regions where these segments are joined (thus, 

modifying CDR 3), somatic mutational mechanisms that modify the coding 

capacity of the fully assembled variable region gene (Rajewsky, et a i, 1987), 

and the combinatorial association of unique heavy and light chains to form the 

complete antibody. Together, these factors permit the generation of a nearly 

limitless variety of different antibody specificities (Tonegawa, 1983).

1.4. Mechanism of Immunoglobulin V-region assembly

The rearrangement of V region genes is a highly regulated process 

V(D)J recombination appears to be directed by sequence information contained 

within the intervening segments that are deleted or displaced during the 

formation of a functional antigen-binding exon. Sequences at the end of these 

gene segments are known as recombination signal sequences (RSS). An RSS 

contains a conserved palindromic heptanucleotide sequence CACAGTG 

separated by a spacer of 12 or 23 bp fi"om a less conserved AT rich nonameric 

sequence ACAAAAACC.

Asymmetry of these spacers guides V gene segment assembly such that 

only segments with different size spacers are juxtaposed (12/23 rule). Twenty- 

three base spacers immediately flanking 5’ of Vh and 3* of Jh genes, and 12 

base spacers of both 5 and 3 of D r ensures D joins to J, then V to DJ. Direct
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V-J joining is not observed at a significant frequency due to 12/32 rule, and 

although V-D (without J) is possible by this rule, this pairing is not found at a 

significant fi'equency relative to V-DJ.

Several years ago, the recombination activating genes, RAGl and 

RAG2, were identified (Oettinger, et a l, 1990). Mice lacking RAG-1 and 

RAG-2 suffered fi*om severe immunodeficiency disease due to their inability to 

initiate VDJ recombination in developing T and B cells (Oettinger, et a i, 

1990). Elimination of either RAG-1 or RAG-2 fi’om the germ line of a mouse 

is sufficient to eliminate completely recombination of both immunoglobulin and 

TcR genes and prevents the development of B and T lymphocytes 

(Mombaens, et a l, 1992). Thus, either RAG-1 and RAG-2 are lymphoid 

specific components of the V(D)J recombinase or induce the expression of 

genes necessary for carrying out V(D)J recombination. Several other gene 

products have also been shown to be involved in V(D)J recombination. These 

include the XRCC5 protein, which also plays a role in DNA repair in response 

to DNA damage (Taccioli, et a l, 1994), and the SCID protein, which has been 

shown to be involved in both double-strand break repair and coding joint 

formation (Fulop and Phillips, 1990).

Once VDJ recombination has occurred, these join to the C region gene, 

initially to the most Jh proximal which is Cp, so during early B-cell 

develoment, the cells always express surface membrane IgM which facilitates 

light chain gene assembly and expression. It was suggested that membrane p (p 

m) expressed by pre B cells in association with surrogate L chains X5 and 

VpreB on the preB cell surface may generate a signal that activates Vk 

rearrangement. This complex in association with Iga and IgP transmembrane 

heterodimers couples surface Ig to signal transduction machinery in the cell. 

Cross-linking the complex induces Ca  ̂ mobilisation and p m generates the
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regulatory signal for suppression of further Vh rearrangement and enhancement 

of Ig K locus rearrangement.

PreB cells synthesise p H chains but not k or A. L chains and therefore 

complete IgM molecules are not expressed, p chains are retained in the 

endoplasmic reticulum (ER) where they bind to the retention protein BiP, a 78 

kDa glucose-regulated protein, and therefore cannot migrate to the Golgi to be 

exported. When L chains are synthesised in sufficient amounts to displace BiP, 

IgM moves to the Golgi and undergoes glycosylation, processing and export to 

the cell surface.

1.5. Affinity maturation 

1.5.1.Somatic hypermutation.
The events leading to the generation of memory B cells occur in the 

germinal centre and include somatic mutation, clonal expansion, Ag-driven 

selection, and isotype switching (Berek, 1993; Berek, et a l, 1991; Kroese, et 

û r / . ,  1987; Nossal, 1992) and are associated with increase in affinity of 

antibodies produced.

After the Ig repertoire is created, following maturation of B 

lymphocytes and Ig gene rearrangement in the germinal centre, B cells undergo 

fiirther diversification of the rearranged V(D)J genes via the process of somatic 

hypermutation followed by the selection of high-afifinity variants (Griffiths, et 

a l, 1984) which are later on expanded. B cells expressing low affinity 

receptors are not selected and die through apoptosis (Liu, et a l, 1989).

Somatic hypermutation plays a central role in antibody affimty 

maturation and is in large part responsible for the production of the secondary 

repertoire. Sequencing of the V genes from hybridomas producing antigen- 

specific antibody revealed two types of changes during the immune response. 

First, immunoglobulin genes are usually expressed in mutated form with the 

degree of mutation increasing during the course of response. For example.
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following immunisation with 2-phenyl-5-oxazolone, there were essentially no 

mutations at day 7 (following primary immunisation), but the extent of 

mutation was such that by day 14, no identical sequences were found (Berek 

and Milsiein, 1987). Second, the repertoire of germline V genes used in the 

response shifted. Thus, at day 7 and to a lesser extent at day 14, a Vh 

O x I/V kO x I gene combination predominated. Following secondary 

immunisation, Vh/Vl gene combinations other than Vh Oxl/VxOxl were 

found with greater frequency.

In the C57 BL/6 antibody response against nitrophenyl (NP), antibodies 

using heavy chain Vh 186.2 and light chain VA.1 genes dominate the early 

primary response. Somatic mutation in clonotypes was observed as early as six 

days after primary NP immunisation (Cumano and Rajewsky, 1986; Yokochi, 

et a l, 1982). The mutational change in hypervariable region CDRl of 

tryptophan at position 33 to leucine increases antibody affinity for NP ten fold. 

This change was found in 75% of late primary and B memory clones. There 

was no further selection after somatic mutation as affinity increasing mutations 

emerged by the end of the second week. Early somatic mutation, in the first 

week (CDR3 usage) is restricted to the germinal centre pathway of 

development, but early ab secreting cells take a different, independent pathway 

of development and a secondary selection event occurs at the bifurcation of 

these two paths in vivo (Berek, et a l, 1991).

Extensive analysis of somatic mutations in antibodies has revealed that 

mutations are largely confined to the variable domains specifically in the CDRs 

(Berek and Milstein, 1987), and rarely found in the constant domains 

(Gearhart and Bogenhagen, 1983). Some residues are frequently targeted (hot 

spots). Mutations largely occur over a region of one to two kilobases, around 

the rearranged V-J segments and the mutation domain extends from a 5’ site 

within the leader intron (Both, et a l, 1990).
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1.5.2. Ig Class Switching.

Antibodies can be classified according to their heavy-chain constant 

regions into eight (for mice) or nine (for humans) classes or serological 

isotypes. Ig class switching can take place at any time during B-cell 

proliferation. At two differentiation stages, however, switching occurs at 

remarkable high fi-equencies, namely, (a) at the formation of naive B cells with 

a particular switch fi-om IgM to IgM+IgD, and (b) at activation of B cells with 

a switch fi-om IgM to IgG, IgA or IgE expression (Esser and Radbruch, 1990) 

because of the expression of a different heavy-chain constant region (C h). Cp 

is the first Ch gene expressed upon generation of a functional V h DJh gene. 

After the assembly of an immunoglobulin light chain, VlJl gene, the complete 

IgM molecule is then presented on the cell surface of the B cell. The next step 

is expression of both Cp and CÔ with the same VhDJh gene and is achieved by 

a combination of differential termination of transcription and differential 

splicing of transcripts of the Vh -D-Jn-Cp-CÔ regions (Tucker, 1985). Upon 

activation by antigen, resting B cells proliferate, differentiate into 

immunoglobulin secreting plasma cells and memory cells, and at a high 

frequency, switch to expression of Gy, Cs, or Ca genes to make IgG, IgE and 

IgA. The IgG class comprises four subclasses, IgGl, IgG2a, IgG2b, and IgG3 

in mouse; IgGl, IgG2, IgG3 and IgG4 in humans.

The isotype pattern varies according to the mode of B-cell activation, 

which is dependent on the antigen, route of immunisation, regulatory cells 

involved and genetic background of the responder (Hocart, et a i, 1989; Slack,

1985). Coutelier et al, in 1987 analysed the isotype distribution in antiviral 

immune responses using a panel of murine DNA and RNA viruses. In most 

cases IgG2a was produced in a 10 to 100 fold excess over IgGl (Coutelier, et 

a l, 1987) and this is now known to be due to the contribution of regulatory 

(ThI type) T cells that preferentially secrete y-interferon (to be discussed later).
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1.6.Cellular Immune Responses

1.6.l.T cell specificity and repertoire.

There are significant differences between B-cell and T-cell recognition 

of antigen. While B cells bind free antigen, T cells bind antigen that has been 

internally processed by proteolysis and re-expressed on the cell surface in 

association with molecules encoded by the major histocompatibility complex 

(MHC). However, it is important to note that T and B lymphocytes are 

complementary parts of a larger defence system, and that in particular, B cells, 

having encountered an antigen appropriate to their surface immunoglobulin, 

usually need T cell signals (in the form of lymphokines) before they can 

differentiate into plasma cells and secrete antibodies. Thus, in at least this way, 

the recognition systems are linked and interdependent.

The genes encoding MHC molecules are highly polymorphic, and in 

general, a T cell will not respond to its antigenic peptide bound by the wrong 

alleie of MHC (MHC restriction). MHC molecules can be subdivided into two 

classes; MHC class I molecules are found on the surface of all somatic cells, 

while MHC class n  molecules are expressed selectively on the surfaces of 

antigen presenting cells (APCs), such as B cells and macrophages. T cells can 

be subdivided into two separate functional categories: cytotoxic T lymphocytes 

(CTLs) bearing CD8 molecules recognise antigen in association with MHC 

class I and T helper cells (Th) bearing CD4 molecules recognise antigen in 

association with class H. Precursor T cells bearing receptors which can bind 

well to self peptides on self MHC alleles die in the thymus, a process called 

negative selection which leads to self tolerance.

T cell recognition of antigen in association with MHC is mediated by a 

single T-cell receptor (TcR) (Yague, et a l, 1985). TcR is a heterodimer made 

of two chains, predominantly a  and P assembled in an antibody-like fashion, 

however, during ontogeny of the immune system, T cell receptors expressing y
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and ô chains are also found. The function of the y:0 heterodimer is unknown, 

whereas TcR a:p appears to be responsible for the specificity of all cytotoxic 

and T helper cells. Each polypeptide consists of seven regions, an N-terminal 

hydrophobic leader region of 18-29 amino acids, a membrane distal V segment 

of 88-98 amino acids, a J region of 14-21 amino acids, C region of 87-133 

amino acids, a connecting peptide of variable length, a transmembrane region 

of 20-24 amino acids and a small cytoplasmic tail of 5-12 amino acids. TcR 

(VDJ) p and (VJ)& are homologous to Ig V regions, and TcR C « and Cp are 

homologous to Ig C regions. Although the exact number of hypervariable 

regions in TcR sequence is controversial, diversity is clearly evident in the 

regions equivalent to the three classic immunoglobulin hypervariable regions.

Like the Ig loci, the TcR genes are divided into an array of 

interchangeable coding segments scattered over large tracts of chromosomal 

DNA These genes are actually composed of two parts: a variable gene and a 

constant gene. The variable gene is composed of either two (V and J) or three 

(V,D and J) gene segments and each gene family has multiple V and J gene 

segments and one to three constant genes. The V,D, and J gene segments are 

separated in the germ line and are brought together by DNA rearrangement 

during T lymphocyte differentiation to form the complete V gene (Chien, et a i,

1984). An interesting feature of T cell receptor gene organisation is the relative 

abundance of J region gene segments in TcR a  and TcR P genes and a relative 

scarcity o f V region. The net result of this is to greatly increase the amount of 

potential diversity in the amino acids encoded by the V-J interface in TcR 

versus the equivalent region in immunoglobulins and to significantly decrease 

the diversity e x p re ss  in the remainder of the V region heterodimer.

Diversity of TcR expression is generated in much the same way as for 

immunoglobulins, through the combinatorial joining of DNA segments and the 

variable addition of nucleotides at junctions (Davis and Bjorkman, 1988).
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Alignment of TcR sequences during T-cell ontogeny in the thymus, leads to 

defined hypervariable regions, much in the same way as with antibodies, with 

one possible major difference: the TcR a  and P sequences display only one 

well-clustered region of hypervariable residues (equivalent to CDR 3) 

(Bougueleret and Claverie, 1987). TcR heterodimers a , P, y ,6 are usually 

found associated with other molecules in the CD3 complex, which includes at 

least four additional membrane-spanning polypeptide chains (Clevers, et a l,

1988). In addition, accessory molecules such as CD4 and CD8 participate in 

the interaction between T cells and APCs and determine restriction to a given 

MHC class with CD4 T cells predominantly recognising MHC class II while 

CDS T cells largely recognise MHC class I.

1.6.2. The structure and function of MHC molecules.

MHC molecules are polymorphic cell surface glycoproteins that occur 

in two distinct forms: class I MHC molecules (H-2 in mice, HLA-A, B, C in 

humans) consist of a glycosylated heavy chain of about 45kDa, which spans 

the cell membrane, associated non-covalently with a non-polymorphic, 

nonglycosylated, 12kDa light chain called P2-microglobulin, MHC Class II (la 

in mice, HLA-D in humans) are made of two covalently linked polymorphic 

chains, a  and P, that both span the cell membrane and associate as a 

heterodimer.

MHC class n  molecules present antigenic peptides to CD4 positive Th 

cells (Unanue, 1984). The peptides bound to class II are derived mainly from 

proteins that have entered the endocytic pathway. MHC class I, on the other 

hand, binds and present those peptides to CD8 positive CTLs that are derived 

by proteolysis in the cytoplasm (Townsend, et a l, 1989). Presentation of 

foreign antigens to helper T cells requires co-ordination of both the 

biosynthetic and endocytic pathways within specialised APCs. The endocytic 

pathway generates and delivers antigenic peptides to the MHC class II
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molecule (Brodsky, 1990). Class H molecules assemble in the endoplasmic 

reticulum with a third protein, invariant chain (li) (Germain, 1986; Long,

1989). li blocks binding of endogenous antigens to the class II molecules and 

stabilises the unoccupied aJ 0 dimers while targeting them through the 

biosynthetic pathway to an endosomal compartment (Townsend, et a i, 1989). 

After removal of li in the acidic and proteolytic environment of the endosomal 

compartment, the class II molecules bind peptides. Peptide-loaded class II 

complexes are then transported to the cell surface for recognition by T cells.

The peptides which bind MHC class I molecules are derived from 

proteins that are expressed within the cell. Peptides of 8-10 residues are 

transported from the cytosol into the endoplasmic reticulum (ER) by the 

MHC-encoded TAP (transporter-associated with antigen processing) proteins, 

TAP-1 and TAP-2 (Schumacher, et a l, 1994). Loosely assembled class I a  

chains and pz-microglobulin are retained in the ER until peptide binding 

induces a conformational alteration, resulting in their rapid transport through 

the Golgi complex to the cell surface.

In addition to determining antigen presentation during an immune 

response, MHC molecules also play an important role in driving thymocyte 

development. MHC molecules on thymus epithelial cells select both positively 

and negatively for maturation and export to the peripheral lymphoid organs for 

T cell bearing receptors that will be able to react to a foreign peptide 

presented by the same MHC molecule (Von Boehmer, 1994).

1.6.3. Functional différences between Thl and Th2 cells.

Activated T cells play a fundamental role in the regulation of humoral 

and cellular immune responses by both cell / cell contact and by secreted 

lymphokines. Differential production of cytokines by helper T cells (Th) during 

an immune response is the basis for distinguishing two subtypes Thl and Th2 

which are functionally different. Thl responses in mice are characterised by
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substantial interleukin 2 (IL-2) and y-interferon (IFN-y) release. Thl responses 

predominate in viral infection resulting in activation of macrophages to kill 

intracellular parasites, in delayed-type hypersensitivity (DTH), and IgG2a, but 

no IgE synthesis, while responses to bacteria and parasites for the most part 

involve Th2 cells and the release of IL-4 and EL-5. The Th2 responses recruit 

IgGl and IgE responses.

Th cell clones do not constitutively secrete lymphokines but are 

dependent upon antigen or mitogenic stimulation to do so (Mosmann and 

Coffinan, 1989). TcR ligation by either anti-TcR abs or antigen/ class II results 

in the induction of lymphokine secretion which in turn induces the proliferation 

and differentiation ofB cells (Lichtman, et a i, 1987).

1.6.4. Cellular Interactions in the Humoral Immune response.

Specific recognition of foreign antigen by cell surface immunoglobulin 

(Ig) and consequent cross-linking induces B cells to proliferate and 

differentiate into either plasma cells, which produce soluble immunoglobulin, 

or into memory B cells which can respond to subsequent encounter with the 

same antigen The proliferation and differentiation of resting B cells requires 

contact dependent, antigen specific, major histocompatibility complex (MHC) 

class n  restricted interaction with Th cells. In contrast, the growth and 

differentiation of activated or large B cells is mainly mediated by lymphokines 

that act in an antigen non-specific, genetically unrestricted fashion (Noelle,

1992). Stimulation of T lymphocytes in turn requires both TcR engagement 

(including the CD4 and CD8 co-receptors) with an antigenic-peptide MHC 

complex and an additional, contact dependent, costimulatory signal delivered 

by an antigen presenting cell (APC) (Schwartz, 1990). Costimulation is 

potentially mediated by a large set of non polymorphic cell surface molecules 

interacting with counter-receptors expressed by T cells.
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CD40 and CD80, both interacting with T cell specific CD40L (gp39), 

CD28 and/or CTLA-4 represent the best characterised costimulatory molecules 

expressed by APC (Fig 2). Once active, the T cells in turn promote B-cell 

activation, both by releasing T-cell-derived cytokines such as IL-2 and IFN-y 

by Thl cells and IL-4 and IL-5 by Th2 cells as well as by direct intercellular 

contact (MacLennan, e ta l, 1992).

CD40, a surface glycoprotein is related to the receptors for tumor 

necrosis factor-a (TNF-a) and is expressed on pre-B cells, mature B cells and 

certain accessory cells. Cross-linking CD40 promotes B cell proliferation 

(Clark and Lane, 1991), prevents apoptosis of germinal centre B cells and 

promotes immunoglobulin class switching (Jabara, et a l, 1990). When the 

CD40-CD40L interaction is blocked in vitro with soluble CD40 or monoclonal 

antibodies to CD40L (gp39), B cells cannot proliferate or produce 

immunoglobulin in response to T-cell signals.

Recently, the gene encoding CD40L has been shown to be defective in 

patients with hyper-IgM syndrome. Although these patients have IgM- 

producing B cells, they do not form germinal centres in response to foreign 

antigen. Their B cells are capable of switching fi-om IgM to IgG or IgE 

production in vitro when exposed to IL-4 and monoclonal antibodies against 

CD40 , but they do not switch immunoglobulin class in vivo (Hill and Chapel, 

1993). T cells and CD40L-CD40 interactions are thus essential.

Whereas the CD40-CD40L interaction enables the B cell to respond to 

an activated T cell, the interaction between CD80 and CD28 allows peripheral 

T cells to respond to an activated B cell by dividing and producing cytokines 

required for T cell differentiation. Of the ligands for the CD80 family, CD28 is 

found on resting and activated T cells whereas, CTLA-4 is found only on 

activated T cells. The binding of CD80 to CD28 on T cells previously 

stimulated through their antigen receptors increases IL-2 production and T-cell
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proliferation (Linsley, et a l, 1991). Interference with this signal in vitro can 

block T-cell proliferation and B cell maturation induced by T-cell cytokines. 

CD80 expression is induced or stimulated after cross-linking MHC class II 

with monoclonal antibodies or during autoreactive T-cell interaction with B 

cells (Nabavi, et a i, 1992). This cross-linking may thus induce CD80 

expression in B cells so that CD80 can, in turn, signal to the T cell via CD28. It 

has been shown that simultaneous signalling through TcR and CD28 results in 

the synergistic activation of two mitogen-activated protein kinases, JNKl and 

JNK2(Su,e/a/., 1994).

The CD40L-CD40 and CD28/CTLA-4-CD80 ligand pairs are not the 

only means by which T cells and B cells interact. The CDl la/18-CD54 ligand 

pair is also likely to play a part; an active form of CDl la/18 is rapidly induced 

on crosslinking the T cell receptor complex (Dustin and Springer, 1989). 

Antigen-specific T-cell activation rapidly induces a CDlla/18-CD54- 

dependent signal to the antigen presenting B cells and crosslinking CD40 on B 

cells promotes allogeneic T cell proliferation via CDlla/18-CD54-dependent 

interactions (Barrett, e ta l, 1991).

Patients with leukocyte adhesion defects do not express CDl la/18 on 

their T or B cells. They make both IgM and IgG antibodies in response to 

specific antigen, but have depressed antibody titres, indicating that their 

production of memory B cells may be impaired (Ochs, et a l, 1993).

A number of surface molecules (e.g. CD 19 and CD22) are associated 

with cell-surface IgM and are rapidly phosphorylated on tyrosine residues after 

they become cross-linked (Clark, 1993). CD22 may be required for normal 

signalling, as intracellular calcium is not elevated from cross-linking surface 

immunoglobulin in CD22-negative B cells. CD 19 is expressed on B cells 

throughout their maturation. It interacts with various molecules on other B 

cells, including the receptor for Cd3 component of complement, CD21/Cd2,



38

indicating that it may facilitate a complement-mediated signalling pathway. 

When cross-linked, CD 19 induces calcium mobilisation in both pre-B and 

mature B cells.

Antigen specific T-cell activation is dependent on interactions between 

T cells and APCs, specifically B cells. Once active, the T cells in turn promote 

B-cell activation, both by releasing T-cell-derived cytokines such as IL-2 and 

IFN-y (by Thl cells) and IL-4 and IL-5 (by Th 2) and by direct intercellular 

contact (MacLennan, et a l, 1992). T cells play an essential role not only in the 

activation of resting B cells, but also in isotype switching (Kong and Morse, 

1976) and affinity maturation of the antibody response; The more T- 

independent the response, the poorer the qffinity maturation (a particularly 

relevant feature for the subject matter of this thesis). T cells also play a major 

role in generating memory B cells which can respond more effectively to 

subsequent challenge with antigen (Feldbush, et a l, 1986). Once B cells have 

been activated by first T cells and later by follicular dendritic cells, they express 

an array of surface receptors, specifically CD40 and CD80, and can present 

antigen to T cells effectively.
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1.7. Viral Immune Evasion Strategies

Latent and / or persistent infections are part of the life style of many 

viruses. This capacity to maintain a long-term relationship with the host 

presupposes viral mechanisms for circumventing antiviral defences. Viruses 

that infect vertebrate hosts achieve sustained host-to-host transmission by 

using specific strategies that evade or subvert the consolidated activities of the 

anti-viral immune and inflammatory responses.

Certain RNA viruses, including influenza virus and human 

immunodeficiency virus, escape humoral or cellular immunity by mutating their 

cell surface glycoproteins as a consequence of the error-prone RNA 

polymerase. A strategy particularly common among DNA viruses, which are 

less capable of fi-equent and rapid mutations, is to synthesise proteins that 

modify host immune attack. The larger DNA viruses are of particular interest 

because they encode proteins that are not required for virus replication in 

tissue culture, but instead allow for virus propagation in host tissues that are 

normally visible to the immune and inflammatory systems of the host. Several 

mechanisms have been reported of virus modulation of the host response to 

infection which can be divided into the following categories;

I.7.I. Latency.

Latency is defined as a type of persistent infection in which the viral 

genome is present in the host but infectious virus is not produced except during 

intermittent episodes of reactivation. Viruses that are considered latent evade 

immune responses by hiding in privileged sites or changing patterns of 

cytopathogenicity, growth kinetics or tissue tropism. It is a common feature of 

herpesviruses especially Herpes Simplex virus type 1 (HSV-1),

Cytomegalovirus (CMV), and Epstein-Barr virus (EBV) that acute infection is 

not terminated by clearance of infectious virus and the viral genome but is
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followed by a phase of persistent virus replication which is often confined to a 

particular tissue site.

HSV is a common neurotropic virus which in humans and experimental 

animals establishes latent infection of sensory ganglion neurons. Following 

entry into the host, virus undergoes primary replication in the skin or mucosae. 

The virus then gains access to the distal axon terminals of sensory neurons and 

travels by axonal transport to neuronal cell bodies in sensory ganglia, where 

limited replication may occur and viral gene expression is repressed, leading to 

a latent state. The host immune response curtails viral replication in the ganglia 

and potentially lethal spread to the brain. A primary immune response, 

however, is unable to prevent establishment of latent HSV infection in 

ganglionic neurons. Latent viral genomes existing in a non replicating state are 

reactivated by unknown mechanisms and depending on conditions of local 

immunity, reactivation may result in recurrent skin lesions (Roizman and Sears, 

1987).

Recovery from acute HSV infections requires T cell responses and it 

has been shown that MHC class Il-restricted CD4 T cells are pnmanly 

responsible for clearing HSV from skin, whereas MHC class I restricted 

cytotoxic T cells control HSV replication in the nervous system (Nash, et a i,

1987).

Reactivation of infectious virus fi-om latent viral genomes is the 

initiating event in the pathogenesis of CMV disease during immunodeficiency, 

bone marrow and/ or organ transplantation including liver, kidney, heart and 

lung transplantation (Ho, 1991). In a murine model of CMV latency, the lungs 

were identified as a major site of latent infection, since a high-copy of viral 

genome was detectable in lung tissue even after it was cleared to an 

undetectable level in blood and bone marrow (Balthesen, et a l, 1993). A 

comparison of lungs and the spleen, the previously most thoroughly
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investigated site of murine CMV latency, revealed a 10-fold-higher burden of 

latent viral genome for the lungs.

Activation of B cells causes a switch from latent to lytic EBV infection. 

In latently infected B lymphocytes a specific origin of viral DNA synthesis and 

a set of viral proteins (EBNAs) without known DNA polymerase activity 

appear to be responsible for the limited amplification and maintenance of the 

EBV genome in an episomal state (Yates, et a i, 1985). Two EBV latent 

membr^e proteins (LMP-1 and LMP-2) influence B cell activation and hence 

virus replication. Crosslinking of the B cell surface antigens, such as IgM, 

MHC class II or CD 19, causes signal transduction and an intracellular calcium 

flux that leads to cell activation. This process is downregulated by I.MP-2A, 

probably because of its association with cytoplasmic tyrosine kinases, and 

hence cell activation and progression into lytic replication is restricted. This 

may be an advantage to the virus in the presence of a vigorous antibody 

response that may neutralise the virus infectivity.

Current opinion on AIDS pathogenesis divides the clinical course of 

HIV infection into a latent phase, in which the virus is silent, and a progressive 

phase, in which HIV replication is induced with a rapid loss of CD4 + T cells. 

During this latent or subclinical phase of infection, HIV continues to replicate 

at low levels despite an often vigorous but ineffective host immune response. 

When an individual is infected with HTV, a mixture of related HTV clones is 

transmitted. Cells infected with virulent, high expressing HIV variants are 

selectively eliminated by the uncompromised host imriiune system (Asjo, et a l,

1988). Low virulence variWs may escape immune response because of their 

low-level expression or their monocytotropism (Popovic and Gartner, 1987). It 

has been shown that monocytes, macrophages and dendritic cells can be 

infected with HIV and support HIV replication in vitro and in vivo (Plata, 

1987). First, monocytes-macrophages may be persistently infected and function 

as a reservoir for virus dissemination to lungs and brain (Koenig, et a l, 1988)].
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Second, HIV infection may induce severe defects in the accessory functions of 

monocytes and peripheral blood-derived dendritic cells from symptomatic and 

asymptomatic HTV individuals. Shearer and co workers demonstrated a 

selective loss of T-cell reactivity in asymptomatic HIV-infected individuals 

with respect to both proliferation and generation of cytotoxic T-lymphocytes in 

response to nominal antigen presented by self MHC molecules (Shearer, et a l,

1986).

1.7.2. Immunosupression.

Viruses can perturb the host immune system in general by one of the 

two basic mechanisms: disordered immune regulation may be a direct 

consequence of viral replication in immunocompetent cells. For e x a m p l e ,  c e l l  

dysfunction due to infection of helper T lymphocytes could lead to 

immunosuppression or the establishment of persistent virus infection could 

involve virus-specific cytotoxic T lymphocytes (CTL). The majority of the 

viruses, e.g. measles virus, undergo restricted infection in unstimulated 

lymphocytes. Productive infection frequently follows mitogenic stimulation. 

With other viruses, e.g. lymphocytic choriomeningitis virus (LCMV), 

r e p l i c a t i o n  is restricted SO that recovery of infectious virus requires 

cocultivation with permissive cells.

As mentioned above, measles virus infection is associated with 

suppression of immune functions both in vivo and in vitro. Infection with 

measles virus (MV) is accompanied by marked and prolonged abnormalities of 

cell mediated immunity (CMI), which contributes to increased susceptibility to 

secondary infections. Destruction of cells infected by measles virus is due to 

positioning in the cell membrane of cleaved fusion protein of the virus. Infected 

adjacent cells form syncytia that cannot survive. Dunng acute infection, 

measles virus replicates in lymphoid tissues. In vivo, sensitisation and
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expression of delayed-type hypersensitivity (DTH) responses are inhibited for 

several weeks after acute measles virus infection.

The loss of delayed cutaneous hypersensitivity (DCH) to tuberculin 

antigen during measles virus infection was first described in 1908 by Von 

Pirque and has been shown both during natural infection and after live 

attenuated measles virus immunisation. It was observed that the tuberculin skin 

test response of immune individuals was depressed during the time course of 

acute measles virus infection (von Pirquet, 1908).

The effect of measles virus on phytohaemagglutinin (PHA) induced 

stimulation of human peripheral blood mononuclear cells was investigated by 

Sullivan et al. It was noted that medium which had several days contact with 

uninfected monolayers as well as unpurified MV preparations produced 

significant inhibition of ^-thymidine incorporation by PHA-stimulated 

lymphocytes. When partially purified MV preparation was used, marked 

inhibition was observed. Both T and B lymphocytes taken fi-om the peripheral 

blood during natural infection express viral antigen after mitogenic stimulation 

in vitro (Sullivan, et al, 1975).

As with other viruses that disturb CMI such as HIV, monocytes and 

macrophages are prime targets of MV in natural infection (Esolen, et a l,

1993), which are thought to be principal IL-12 producing cells in vivo. IL-12 is 

crucial to the development of CMI, being a potent inducer of IFN-y fi-om T 

and NK cells, required for the development of Thl responses and necessary for 

DTH responses. It was proposed that one of the mechanisms of 

immunosuppression by MV might be down regulation of IL-12 production 

(Karp, et a l, 1996). This was demonstrated by infecting human moncytes with 

MV, followed by stimulation with bacterial antigens which resulted in down- 

regulation of IL-12 induction.
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Retroviruses of murine, avian, feline and human origin are 

immunosuppressive as well as oncogenic in their hosts. In several experimental 

models with C-type retroviruses, virions cause immunosuppression as well as 

neoplasms in a dose dependent manner Since immune mechanisms may limit 

the development or spread of cancer, clinically apparent tumours may develop 

when transformed cells acquire the means to escape host immunological 

defence mechanisms. Studies in the murine and feline retrovirus systems 

suggest that the 15,000-dalton envelope protein (pl5E) of the virion may 

contribute to immune suppression by interfering with normal lymphocyte 

function. It was reported that a partially purified 15-kd structural protein of 

FeLV inhibited the proliferation of feline lymphocytes induced by concanavalin 

A (Con A) (Mathes, et a i, 1978). The inhibition was dose dependent and 

occurred when the protein was added as late as day 3 of a 4 day culture. In 

contrast, another structural protein of the virus, p27, was not inhibitory. The 

same group also demonstrated that both UV inactivated FeLV and plSE 

suppressed the proliferation of human lymphocytes to Con A (Copelan, et a l, 

1983). Suppression Was not mediated by monocytes, as pre-treated monocytes 

were able to secrete IL-1 and serve as accessory cells when cultured with 

untreated T lymphocytes.

Although the selective loss of CD4+ helper T cells in the relatively later 

stages of HTV infection, is the main mechanism by which HTV induces 

immunodeficiency, it has been claimed that the deficient antigen responsiveness 

of CD4+ lymphocytes from HTV-infected individuals is due in part to gp 120- 

induced inhibition of CD4 function (Diamond, et a l, 1988). gpl20 binds to 

CD4 (the receptor for HTV-l) with high affinity thereby facilitating entry of 

the virus into the cell and syncytium formation between infected and uninfected 

cells.
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1.7.3. Down-rcgulation of MHC expression.

Viral peptides from within infected cells are presented on the cell 

surface in association with MHC class I Cells bearing such complexes are 

recognised and lysed by cytotoxic T cells (CTL). CD8+ T cells that recognise 

peptides derived from the viral proteins synthesised in the cytoplasm of the 

infected cells are considered, in certain quarters, to play an important role in 

antiviral defence. However, viruses like adenoviruses, CMV and HSV have 

found means to interfere with immune recognition by down-regulation of MHC 

class I.

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that 

persists in the host and can cause severe disease in immunocompromised 

individuals or the foetus. Analysis of the nucleotide sequence of the virus 

genome has revealed the presence of an open reading frame whose translated 

product has homology with the heavy chain of MHC class I molecules of 

higher eukaryotes (Beck and Barrell, 1988). The observed sequence homology 

was given additional significance by another observation that HCMV virions 

can bind 02 microglobulin (02m), the light chain of MHC class I (McKeating, 

et a l, 1987). Browne, in 1990 did a notable experiment by expressing both the 

HCMV class I homologue and the human 02m gene in recombinant vaccinia 

virus and showed that in recombinant-vaccinia-infected cells, no synthesis of 

mature cellular class I occurred, while. mRNA levels were unaltered (Browne, 

et a l, 1990). Thus, HCMV may evade immune recognition by preventing the 

maturatiori of host class I molecules and rendering the infected cells 

unrecognisable by cytotoxic T cells.

A similar mechanism of decrease in MHC class I expression is used by 

adenovirus 2; the E3-gene-encoded 19kDa protein of Ad2 binds to class I 

heavy chains and prevents transport to the cell surface, which in turn results in



46

reduced recognition and reduced lysis of infected cells by CTLs (Andersson, et 

a i, 1987). Andersson et al., examined the biosynthesis of the complex between 

class I and Ad-2 glycoprotein E19 in adenovirus-infected HeLa cells by 

immunoprécipitation and SDS-gel electrophoresis. At 2 hours after infection, 

small amounts of E19 were already co-precipitated with MHC class I heavy 

chains and 02 microglobulin. Later on larger amounts of the E19 were found 

bound to class I, as evidenced by the antibodies against class I, whereas, 

antibodies against E19 protein bound only minor amounts of class I heavy 

chains. The rate of class I synthesis did not vary significantly, but while the 

electrophoretic migration of 02 microglobulin remained the same, the mobility 

of the heavy chain increased such that it became identical to that of core

glycosylated heavy chains derived fi-om infected HeLa cells suggesting that the 

heavy chains, on complex formation with E19 fail to become terminally 

glycosylated. Thus, interference with antigen presentation by means of direct 

protein-protein interaction with MHC is another strategy by which some 

viruses evade immune surveillance.

Herpes Simplex Virus (HSV) also blocks presentation of viral peptides 

to MHC class I restricted T cells. Antigenic peptides are generated in the 

cytoplasm by proteosomes (Rock, et al., 1994) and translocated into the lumen 

of the endoplasmic reticulum (ER) by TAPI and TAP-2 (Townsend and 

Trowsdale, 1993). HSV expresses an immediate early protein, ICP47 which 

lacks a recognisable signal sequence. ICP47 binds to TAP and prevents peptide 

translocation into the ER. By expressing ICP47 in HeLa cells, Fruh et al 

showed that ICP47 efficiently inhibits peptide transport such that nascent class 

I molecules fail to acquire antigenic peptides. Furthermore, ICP47 colocalises 

and physically associates with TAP within the cell (Fruh, et a i, 1995). Thus, 

interference with peptide translocation into the ER is a further mechanism by 

which yiruMS may evade immune recognition.
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1.7.4. Inhibition of Cytokine function.

Cytokines play a fundamental role in the inflammatory and immune 

response to infection and may directly destroy virus-infected cells. Viruses 

have devised an array of strategies to abrogate cytokine fimction. A strategy 

used by some herpes viruses and poxviruses is to encode cytokine receptor (s) 

that bind and sequester the cognate cytokine and prevent it from reaching the 

natural receptor and triggering signal transduction. Poxviruses express 

receptors for interleukin-10 (IL-10), TNF and interferon-y. In each case, the 

protein is secreted from the infected cells and is homologous only to the 

external cytokine-binding domain of the cellular receptor, lacking the 

transmembrane domain and cytoplasmic region.

An EL-10 receptor has been detected in cowpox and many strains of 

vaccinia virus. IL-1 is produced in response to infection and tissue injury. It is 

involved in the regulation of the inflammatory and immune responses and in the 

activation of a broad spectrum of systemic effects that contribute to host 

defence (Dinarello, 1988). Two classes of EL-l receptors have been identified 

that bind both IL -la  and IL-10 with similar affinity (Dower and Urdal, 1987). 

The 80kDa typel IL-1 receptor is found on T cells and fibroblasts, while the 

type n  IL-1 receptor is present on B cells and macrophages. It was reported 

that vaccinia virus BRI5 ORF (open reading frame) is actively transcribed, 

translated, and encodes secretory glycoprotein in the supernatants of vaccinia- 

virus infected cells that functions as a soluble IL-1 receptor. Unlike the 

membranerbound cellular IL-1 receptors (type I and II), which bind IL-1 a, IL- 

10 and the IL-1 receptor antagonist protein, the virus IL-1 receptor binds only 

EL-10, emphasising the importance of this cytokine in poxvius infections and 

suggesting that it can interfere with the immune responses by blocking the 

effects of this cytokine. This was shown in binding experiments to 

radioiodinated ILs and was corroborated in competition assays with unlabeled
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cytokines and by blocking the interaction of the ILs with the natural receptors 

on cells (Alcami and Smith, 1992).

Similarly other poxviruses, notably shope fibroma virus (SFV), 

myxoma virus, and malignant rabbit virus (MRV) encode proteins with 

homologies to cellular receptors for tumor necrosis factor (TNF). TNF is a 

potent cytokine produced mainly by activated macrophages and plays an 

important role in inflammatory, immunoregulatory, proliferative and antiviral 

responses and also synergises with interferons to augment the antiviral state 

(Beutler and Cerami, 1988). The T2 open reading frame of both SFV and 

myxoma virus possesses significant homology to the ligand binding domains of 

the murine and human TNF (a, 0) receptors (Upton, et a l, 1991). TNF- 

binding protein T2 competitively inhibits TNF binding to its cell surface 

receptor. Targeted disruption of both copies of the myxoma T2 gene revealed 

that the absence of T2 expression caused significant attenuation of 

myxomatosis in rabbits (Upton, et a l, 1991). To characterise the T2-TNF 

interaction, myxoma T2 protein and rabbit, mouse and human TNF-a were 

expressed independently fi-om vaccinia virus vectors. Growth of the TNF-a 

expressing cells was significantly attenuated in TNF-hypersensitive cells (L929- 

8 cells), and these cells were rapidly lysed by all three TNF-as. When the 

ability of the myxoma T2 protein to inhibit biological activities of TNF-a was 

assayed, T2 protein protected L929-8 cells were lysed by rabbit but not human 

or mouse TNF-a.

Myxoma virus also expresses an IFN-y receptor that can protect cells 

from the anti-viral effects of IFN. IFN-y is a potent immunomodulatory 

cytokine produced by activated T lymphocytes and functions to combat viral 

infections by inducing anti-viral pathways and by modulating cellular immune 

responses to viral challenge. It also possess the ability to enhance expression of 

MHC class I and II, resulting in an increase of viral antigen presentation, and
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furthermore, IFN-y induces the secretion of the ligand binding domain of the 

low density lipoprotein receptor, which interferes with assembly and budding 

of certain enveloped viruses. Poxviruses were the first viruses found to be 

capable of interrupting the extracellular ligand-dependent triggering of the 

IFN-y receptors, thus preventing signal transduction from an extracellular 

location. M-T7, the most abundantly secreted protein from myxoma virus- 

infected cells, was shown to be expressed in significant amounts as a typical 

poxvirus early gene product, efficiently secreted at early times of infection, and 

to function as a stable inhibitory protein in infected cell supernatants until later 

times of infection. It contains significant sequence similarity to the ligand 

binding domain of the mammalian IFN-y receptors and functions as a soluble 

homologue which can specifically bind and inhibit the biological activities of 

rabbit IFN-y but not human or murine IFN-y (Mossman, et al, 1995).

1.7.5. Intracellular blockade of cytokine synthesis and function.

As well as expressing cytokine receptors, some viruses have also 

developed measures to block the production of mature cytokines and to modify 

the consequences of cytokine-binding to the receptors. Recently, seven distinct 

serine proteinase inhibitor genes have been discovered in the poxvirus genome 

all of which encode proteins belon^g to the superfamily of serine proteinase 

inhibitors (serpins) (Turner, et a i, 1995). Viruses such as vaccinia, cowpox 

and rabbitpox, each encode three known serpins that have been designated 

SPI-1,-2, and-3. Cowpox virus expresses a 38kDa intracellular protein (crmA) 

with sequence similarity to SPI-1 which inhibits the pro-IL-10 converting 

enzyme (ICE) that cleaves the intracellular 30kDa IL-10 precursor into the 

17kDa mature secreted form.

Recombinant BCRFl protein of Epstein Barr virus (EBV) mimics the 

activity of another cytokine Interleukin-10 (IL-10) suggesting its role in the 

interaction with the immune system. IL-10 is produced by Th2 cells and
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inhibits synthesis of cytokines, specifically IFN-y by activated Th-clones. 

Because Thl cells preferentially mediate delayed-type hypersensitivity (DTH) 

and macrophage activation, whereas Th2 cells provide help for B cells, IL-10 

may represent a mechanism whereby Th2 cells can inhibit the effector 

functions of Thl cells. It has been shown that the mature, secreted IL-10 

polypeptide has approximately 70% homology to BCRFl (Baer, et a l, 1984). 

Hsu et al cloned and expressed the BCRFl gene, and demonstrated that the 

expressed BCRFl protein, like IL-10, inhibits IFN-y synthesis by activated 

lymphocytes (Hsu, et a i, 1990).

Human adenoviruses encode three proteins, E3-14.7K, E3-10.4K/ 

14.5, and E1B-19K, that protect virus-infected cells fi"om cytolysis by TNF 

(Wold and Gooding, 1991). Little is known about the mechanism of action of 

these adenoproteins, except that all three act at steps subsequent to TNF 

binding to its receptor

1.7.6. Inhibition of complement cascade.

The complement system consists of more than twenty plasma proteins 

that participate in host defences against infectious agents and may be activated 

in two ways: the classical pathway requires a specific antibody-antigen 

interaction, while the alternative pathway may be activated in the absence of 

antibody by certain antigens, such as bacterial cell wall polysaccharides. Each 

pathway contains a cascade of enzymatic reactions that greatly amplifies the 

original signal and leads to the formation of a membrane attack complex that 

damages the surface membrane of envelope viruses or infected cells. Several 

poxviruses and herpes viruses have evolved defences against it by encoding 

proteins that have amino acid similarity with proteins of the complement 

system.

Inhibition of both classical and alternative pathways of complement 

activation is mediated by the enveloped glycoprotein gC-1 of herpes simplex
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virus. Glycoprotein C-1 binds the C3b fragment of complement component C3 

which is central to both classical and alternative pathways, thus preventing 

both complement-mediated virus neutralisation and cytolysis of virus-infected 

cells (Harris, e ta l, 1990).

Herpes viruses have adopted an additional mechanism to counter 

antibody dependent complement-mediated attack by encoding a pair of 

proteins, gE and gl. These proteins bind the Fc region of IgG by bipolar 

bridging i.e. antibody binding by its Fab end to HSV antigen and by its Fc end 

to the viral Fc receptor. This bipolar bridging of antibody modifies effector 

functions mediated by the Fc region, including antibody-dependent cellular 

cytotoxicity, binding of Clq, and antibody mediated complement-enhanced 

virus neutralisation (Dubin, et al, 1991)...

Vaccinia virus evades the consequences of complement activation by 

encoding two proteins that have four copies of the 60-70 amino acid motif 

called the consensus sequence (SCR) that is typical of complement control 

protein. One of these is a 35-kDa protein (VCP) that is secreted from the 

infected cell and has closest sequence similarity with a human protein C4b. It 

binds to C3b and C4b fragments of the third and fourth complement 

components, blocks activation of both the alternative and classical pathways, 

and protects intracellular virus from complement-mediated neutralisation of 

infectivity (Kotwal, e ta l,  1990). The second protein is present on the surface 

of the virus infected cells and extracellular virus particles.

The immune system, in conjunction with all its effector mechanisms 

aims to recognise and eliminate viruses and virally infected cells. However, the 

above mentioned examples give a clear picture of an array of strategies by 

which viruses perturb immune mechanisms and ensure their survival.

Antigenic variation, a common strategy of immune evasion by RNA 

viruses, has been most extensively studied for influenza virus. Since this is the
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major subject of interest in this thesis, it will be dealt with in the following 

introductory section.

1.8. Influenza Virus

The study of influenza viruses is important because of the mortality 

and widespread morbidity that occurs during an epidemic. It is an enveloped 

animal virus which belongs to the family Orthomyxoviridae and is classified 

into types A, B and C on the basis of the type-specific nucleoprotein and 

matrix protein (Pereria, 1969; Schild, 1972). Type A viruses have been isolated 

fi’om man, birds and a variety of animals, whereas types B and C have only 

been isolated fi’om humans (Easterday, 1975); with the exception of a type C 

isolate fi’om swine (Guo, et a l, 1983).

The antigenic properties of the surface glycoproteins haemagglutinin 

(HA) and neuraminidase (NA) provide a basis for the further classification of 

influenza A viruses: fourteen to fifteen distinct HA and nine NA subtypes have 

been characterised, all of which occur in avian isolates (WHO, 1980). In 

human, there are only three subtypes, H lNl, H2N2 and H3N2. The current 

circulating human strain is HlNl and H3N2. H3N2 was preceded by H2N2, 

prevalent between 1957 and 1968, and the H lNl before that, first isolated 

from humans in 1933 (Laver and Kilboume, 1966; Laver and Webster, 1966).

1.8.1. Structure of the genome.

The genetic information of influenza virus is contained in eight 

segments of single-stranded RNA of negative polarity (Lamb, 1989) all of 

which are needed for infectious virus. The eight RNA segments encode ten 

polypeptides. Segments 1-6 each encode a single structural protein: the 

polymerases (PB2, PBl and PA), HA, nucleoprotein (NP) and NA Two 

polypeptide species are transcribed from each of segments 7 and 8 using
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Fig 3: Diagram of the influenza virus.

Adapted from Oxford and Hockley, 1987.

The viral segmented genome consists of eight strands of negative polarity 

RNA which encode ten different viral proteins including the antigenic 

surface glycoproteins haemagglutinin and neuraminidase. Haemajgglutinin is 

present on the surface as a trimer and neuraminidase as a tetramer. M2 is a 

membrane protein which forms ion channels (Oxford and Hockley, 1987).
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differential splicing to generate transcripts for the structural proteins Ml and 

M2, and the non-structural proteins NSl and NS2, respectively (Lamb and 

Choppin, 1983; Brand and Skehel, 1972) (fig 3).Viral mRNA synthesis is 

catalysed by viral nucleocapsids (Inglis, et a l, 1976) (Plotch, et a l, 1981), 

which consist of individual vRNAs associated with four viral proteins: the 

nucleocapsid (NP) protein and the three P (PBl, PB2, and PA) proteins 

(Inglis, et a l, 1976; Ulmanen, et a l, 1981). The P proteins are responsible for 

viral mRNA synthesis and appear in the form of a complex that start at 3’ ends 

of the vRNA templates and moves down the templates in association with the 

elongating mRNAs during transcription (Braam, et a l, 1983).

1.8.2. Influenza virus replication.

Influenza viruses bind to cells by interacting with membrane receptor 

molecules containing sialic acid (Gottschalk, 1959). Viral entry and membrane 

fusion is mediated through haemagglutinin. Binding of virus particles to their 

receptors is followed by endocytosis after which fusion of virus and endosomal 

membranes at acidic pH occur. The transcription complex released into the cell 

as a result of membrane fusion is transferred to the nucleus by cellular 

processes which recognise signals on the virus proteins similar to those on the 

nuclear proteins o f the cell. The complex consists of five virus proteins PA, 

PBl, NP and MP and eight RNA molecules of the virus genome. The 

transcription complex has two functions; to synthesise the early virus 

messenger RNAs required for virus replication to begin, and to produce the 

complementary RNAs involved as templates in the replication of virus genome 

RNAs.

1.8.3, Influenza vims budding.

Influenza virus contains a lipid membrane that it obtains during 

maturation by budding fi'om the plasma membrane of an infected cell (Wiley,

1985). In early microscopic studies of the maturation of influenza virus in the 

chorioallantoic membrane of infected chicken embryos (Murphy and Bang,
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1952), it was observed that virus budding occurred at the free luminal cell 

surfaces. Similar polarity in enveloped virus maturation has been observed in 

epithelial cells grown in vitro (Rodriguez, Boulan and Sabatini, 1978). 

Monolayers of the epithelial Madin-Darby canine kidney (MDCK) line form 

tight junctions between adjacent cells and exhibit an electrical potential 

between the upper and lower surfaces (Cereijido, et a i, 1978; Leighton, et a l, 

1970; Nfisfeld, et a l, 1976). It has been reported (Rodriguez Boulan and 

Sabatini, 1978) that vesicular stomatitis virus (VSV) buds exclusively from the 

basolateral membranes in these cells, whereas influenza and parainfluenza 

viruses bud exclusively from the free apical surface.

1.8.4. Structure, function, and antigenicity of the Haemagglutinin of 

influenza.

Haemagglutinin is one of the major surface glycoproteins of the 

influenza virus that interacts with neutralising antibodies; alterations in the 

molecule enable the virus to escape immune surveillance and cause epidemics 

of the disease. HA has two functions in virus replication; it binds virus to cell- 

surfece glycoconjugates by recognising terminal sialic acid residues of 

carbohydrate side chains, and, following endocytosis of bound virus, it 

mediates the fusion of the virus and endosomal membranes required for 

transfer of the virus genome-transcriptase complex into the cell (Wiley and 

Skehel, 1987). To better understand why this virus has eluded our control 

efforts, it is necessary to understand the three-dimensional structure and 

function of the HA molecule and the immune responses to this protein.

1.8.5. Structure of Haemagglutinin.

Haemagglutinin (HA) is a horaotrimcr (Wiley, et a l, 1977) and is 

synthesised in the rough endoplasmic reticulum of infected cells as a single 

polypeptide chain (HAO) of around 550 amino acids. During passage to the 

plasma membrane, the molecule is glycosylated in several positions and is 

subsequently cleaved into two disulphide-linked subunits, HAl and HA2 by
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host cell proteases. Bromelain digestion cleaves HA on virus membranes at 

HA2 175 and results in the release of the entire ectodomain (BHA) as a soluble 

trimer (Brand and Skehel, 1972).

The three dimensional structure of X31 B-HA has been determined to 

3Â by X-ray crystallography (Wilson, et a l, 1981). Basically, each monomer 

consists of a globular membrane distal region consisting of HAl on top of an 

elongated stem consisting of all of HA2 and parts of HAl. Residues 63-305 

form the distal globular domain, which contains an eight stranded anti-parallel 

P-sheet and two short a-helices. This framework supports the receptor-binding 

site present in this region. The receptor binding site is a shallow concave 

pocket of highly conserved amino acid residues surrounded by regions that 

vary with changes in antigenicity. The major forces stabilising the 

haemagglutinin's trimeric subunit interactions arise from a triple-stranded 

coiled-coil in the fibrous region of the molecule.

1.8.6. Antibody recognition sites of Influenza HA.

As mentioned earlier, the conserved receptor binding pocket is 

surrounded by highly antigenic regions against which neutralising antibodies 

are directed and resistance to infection correlates with the levels of serum anti- 

HA antibodies (and secretory IgA) which are subtype specific (Dowdle, et a l, 

1973; Hobson, et a l , 1972). The antibody recognition sites have been deduced 

from structural analysis of laboratory escape mutants, selected with 

neutralising monoclonal antibodies in ovo, and differing from the immunising 

virus by one or occasionally two amino acid substitutions in HA molecule 

(Gerhard, et a l, 1981; Laver, et a l, 1979). The molecular locations of these 

substitutions define five antigenically important sites designated as A-E (fig 4) 

corresponding to most surface exposed regions (Caton, et a l, 1982; Gerhard, 

et a l, 1981; Lubeck and Gerhard, 1981; Underwood, 1982; Wiley, et a l, 

1981). Each one of the proposed antigenic sites A, B, C, D and E has
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Fig 4: Schematic representation of an H3 HA monomer, showing major 

antibody binding regions.

Adapted from Skehel et al., 1984 and after Wharton et al., 1989.

The HA monomer consists of disulphide linked HAl (blue) and HA2 (red) 

subunits, both encoded by the HA gene as HAO, and cleaved to HAl and 

HÀ2. The HA spike consists of a globular head region supported on a 

fibrous stem (containing only HA2 residues) anchored to the viral 

membrane at the base of the molecule. The globular head region, consisting 

mainly of HAl residues, houses the receptor binding site at the trimer 

interface, to the right of the molecule (antigenic site D) and the major 

antigenic sites A-E. Carbohydrate is shown in green (Skehel et al., 1984; 

Wharton, etal, 1989).
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Fig 5: Structure of the receptor binding pocket of the HA molecule (Weis, 

e ia l, 1988).
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1.8.7. Structure of the receptor-binding pocket

The HA of the influenza virus is responsible for binding the virus to 

cell-surface sialic acid receptors during infection. The region of the 

haemagglutinin involved in receptor binding has been deduced from 

crystallographic studies to involve a shallow, concave pocket of several highly 

conserved amino acid residues at its membrane distal surface (Weis, et a i, 

1988).While changes have occurred all around the receptor binding site, the 

pocket itself has not changed since 1968, although receptor-binding variant 

viruses have been selected in the laboratory (Rogers and Paulson, 1982; 

Temoltzin-Palacois and Thomas, 1994). Sialic acid occupies the entire pocket, 

indicating that it is the dominant component of the influenza virus cellular 

receptor.

The binding site is a depression, the bottom of which is formed by Tyr 

98 and Trp 153. Glu 190 and Leu 194 project down from the short a-helix to 

define the rear of the site with His 183 and Thr 155. Residues 134-138 form 

the right side of the site, and residues 224-228 form the left side (Weis, et al., 

1988) (Fig 5). Comparison of receptor specificities of influenza viruses of the 

H3 subtype has revealed at least three distinct specificities based on preferential 

binding to either one or both of the sialylated oligosaccharides containing SA 

a,2-6Gal or SA 0,2-3 Gal, and showed sensitivity to inhibition by 02 - 

macroglobulin present in the horse serum. Avian and equine H3 isolates, on the 

other hand, preferentially bind SA a , 2-3 Gal and are resistant to horse serum 

inhibition.(Rogers and Paulson, 1983; Rogers, et al., 1983a; Rogers, et al., 

1983b). Virus specificity for these different sialylated receptors was identified 

by selecting variants of H3 strains with different binding specificities.

1.8.8. Antigenic Variation

One of the hallmarks of influenza virus is its ability to undergo 

unpredictable and rapid antigenic variation. Both of the surface glycoproteins 

HA and NA are protective antigens that undergo amino acid substitutions to
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evade immune recognition. Although, antibodies can be, and are, made against 

any structural protein of the influenza virus, it is antibodies that are directed 

against HA that neutralise virus infectivity. These neutralising antibodies focus 

on sites that are clustered around the receptor binding pocket, thus preventing 

att^hm ent of the virus to the host cell sialic acid receptors (Wilson, et al., 

1981).

Antigenic variation alters the nature of the surface proteins such that 

they cannot be recognised by host defence systems but without altering their 

structure enough to affect other essential functions of these proteins: Antigenic 

variation in HA involves two separate processes, antigenic shift and antigenic 

drift.

Antigenic shift occurs only for type A influenza viruses, when a virus 

HA of a novel subtype is newly introduced into the human population resulting 

in new epidemic or pandemic. These are thought to arise by recombination 

between isolates o f different species e.g. avian and porcine (Webster, et al., 

1971) in either one or both of the glycoproteins with up to 80% sequence 

change (Webster, et a l,  1982). Large segments of the population have no 

immunity to these new viruses, because there is little or no serologic relation 

between the haemagglutinin of the new viruses and those of their predecessors. 

Perhaps the best example of an influenza pandemic caused by reassortment 

occurred in 1968, when the H2N2 viruses were displaced by the H3N2 Hong 

Kong subtype. As determined by molecular analysis, the new H3N2 virus 

contained seven of eight genes fi'om the preceding H2N2 strain. Only the H3 

haemagglutinin W2W different (Nakajima, et a l, 1982).

Antigenic drift is less drastic and occurs continually. It results, from 

accumulation of amino acid substitutions primarily in the HAl chain. Changes 

within subtypes are caused by mutations in the RNA genome at sites coding for 

amino acids in exposed areas of either haemagglutinins or of neuraminidases. 

Such changes result in alterations of a subtype’s antigenicity, and they can give
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the new, altered strain a selective growth advantage over the parent strain, 

evading antibody neutralisation during interpandemic years. Gradual 

accumulation of these subtle changes in antigenicity, however, sporadically 

yield epidemic strains.

The molecular location of antigenic variation has been investigated 

using HA-specific monoclonal antibody (mAb) selected variant viruses, and 

single amino acid substitution differences to wild type viruses have identified 

key residues in the 3D structure confirmed by electron microscopy of antibody- 

HA complexes (Wrigley, et a l, 1983). An antibody that recognises any of the 

five antigenic regions is sufficient for virus neutralisation. These mAb-selected 

variants have single amino acid substitutions corresponding to the residues that 

fi'equently change in natural variants, confirming the importance of antibody 

selection in antigenic variation (Underwood, 1982). The fi-equency of selection 

of antigenic variants by monoclonal antibodies is 10"̂  -10'̂  (Yewdell, et al., 

1979).

1.8.9. Antibody recognition of influenza HA.

There have been some conflicting reports in the literature concerning 

the antibody repertoire for influenza HA. Initial studies on antibody recognition 

of influenza HA were persued by immunisation of BALB/c mice with PR8 

(H lN l) virus, and specificity assigned by haemagglutination inhibition 

reactivity patterns with natural variants. In such studies, extreme diversity in 

the secondary antibody response to influenza . HA was found (Staudt and 

Gerhard, 1983).

Clarke and colleagues also reported highly diverse specificities in the 

secondary antibody response to influenza HA site Sb (equivalent of H3 site B) 

in contrast to the primary antibody responses that were structurally and 

functionally similar (Clarke, et a l, 1985). The secondary antibody repertoire 

reflects the expansion of clones present in the primary repertoire (Cancro, et 

al, 1978), and it has been suggested that the increase in diversity is due to the
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use of both larger repertoire of antibody V-region genes and somatic mutation 

(McKeaa et a i, 1984).

Underwood, studying the secondary response of BALB/c mice 

immunised i.p. with H3N2 virus, showed the highest proportion of antibodies 

were directed against the top of the HA molecule (site B) and the second most 

common site was the trimer interface, suggesting that the antibody repertoire 

of individual mice might be restricted to one or two target areas .

1.8.10. Immunodominance in the antibody response against influenza 

HA.

Previous studies from this laboratory have shown the secondary 

antibody response to be unexpectedly limited following natural infection with 

X31 virus (H3N2). It was shown that there was striking immunodomincmce in 

the neutralising antibody response of CBA/Ca mice (H-2  ̂haplotype) (Smith, et 

a i, 1991; Temoltzin-Palacois and Thomas, 1994), BALB/c mice (H-2‘* 

haplotype) and BALB/k congenic mice (Patera, et a l, 1995) following natural 

intranasal infection with influenza virus; a majority of neutralising mAbs, 

established from individual donors focused on a single antigenic site. This was 

deduced by sequencing the HA genes of mAh selected laboratory mutants 

which were found to differ from wild type X31 virus by the same single amino 

acid change, HAl 158 G->E in the H-2*̂  haplotype and HAl 198 A->E in the 

H-2** haplotype. Interestingly, in a further analysis of antibody recognition 

specificities for MHC congenic BALB/k mice, there was codominance in the 

selection of laboratory variants, with single residue changes at either HAl 158 

or HAl 198, dependent on the donor origin of the selecting mAb. Sequence 

analysis o f heavy and light chain gene usage indicated that despite 

immunodominance of the two residues, there was extensive progenitor B cell 

diversity contributing to the memory response. Such immunodominance is not 

evident in the neutralising antibody response following inimunisation with 

inactivated virus.
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In a further analysis of immunodominance, it was demonstrated that the 

introduction of a few mutations in the globular head region of the HAl 

subunit, previously shown to be immunodominant, provided structural 

constraints on further antigenic change in influenza under immune pressure of 

neutralising antibodies (Temoltzin-Palacois and Thomas, 1994). It is interesting 

to note that such constraints resulted in the selection of a receptor-binding 

variant virus (HAl 190 G->D, 226 L->Q); similar amino acid change has also 

been shown in the recent human isolates of the H3 subtype (A/Beijing/92) 

which might indicate similar pressures for immune evasion.

1.8.11. Commonality of B-cell and T-cell recognition site.

The neutralising antibody response to influenza is a thymus-dependent 

event that requires cognate B-cell and T-cell recognition. Initial studies in this 

area indicated that T cells recognise relatively conserved regions of the 

molecule distinct from the antibody binding sites however, immunodominance 

is also observed in the BALB/c and CBA/Ca T-cell response to influenza virus 

HA after natural infection. Despite the potential diversity of the responses, the 

BALB/c (H-2‘*) Th cells recognise predominantly HAl 177-199 (Barnett, et 

a i, 1989) corresponding to site B, or 56-76 (Graham, et a l, 1989), and the 

CBA/Ca (H-2*̂ ) Th cells recognise HAl 118-138, or 226-245 or 54-63 (Burt, 

et a l, 1989). HA specific and class H restricted T cell clones elicited by natural 

infection recognise regions of the HAl subunit that have featured in antigenic 

drift. This extensive commonality between antibody and T cell recognition 

specificities may be a consequence of events following natural infection in 

which the memory B cell plays a selective role in the presentation of antigenic 

peptides to T cells. The antigenic properties of HA have been extensively 

analysed using natural variants and mAb-selected mutants to determine the 

location o f antibody binding sites. The CD4+ Th cell recogmtion patterns have 

also been studied and shown to coincide with antibody binding sites (Burt, et 

a l, 1989; Graham, et a l, 1989; Mills, et a l, 1986; Thomas, et a l, 1987), thus
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amino acid changes within these antigenic sites abrogate both T-cell and B-cell 

recognition.

1.8.12. The aim of this investigation.

The main objective of the present studies was to extend the previous 

findings of immunodominance by using two different stratèges: Firstly, 

analysing the memory antibody repertoire using a transgenic murine system in 

which an IgM to IgG class switch, and concomitant affinity maturation, was 

absent and in which the Vh gene usage was restricted. The transgenic mouse 

contained a HuIgH minilocus with human Vh (Vh 26), Dh (Dqs), all of the Jh 

and secretory C|i elements in association an additional Vh (mouse Vh 186.2) 

with targeted disruption of mouse Cp. The question I addressed was how 

diverse or restricted is the memory response? Since IgM antibodies are 

potentially low affmity antibodies compared to moderate affinity IgG 

antibodies, the next question was to whether inability to class switch would 

make any difference to their recognition specificity.

Secondly, an analysis of memory repertoire was made in CBA/Ca mice 

that were infected with X31 virus, underwent hemisplenectomy, and 

rechdlenged with a variant of X31 virus that had amino acid substitutions both 

at known antigenic region and at a Th cell recognition site. The purpose of this 

study was to see a shift, if any, in the memory repertoire. This model system 

was particularly useful because it is possibly closer to the human situation 

where individuals are exposed to recurrent virus infection.
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Chapter-2 

Materials and Methods
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2. Materials and Methods

2.1. Mice
CBA/Ca mice were bred under specific-pathogen-free conditions at the 

National Institute for Medical Research (NIMR), and were infected intranasally 

with virus at 3-4 months of age.

Human Ig p-chain transgenic mice were kindly provided by Dr. Simon 

Wagner (LMB Cambridge) and were immunised with virus >6 months of age.

CBA/Ca X BALB/c (FI) and nude mice were bred at the NIMR, and were 

used for production, of ascitic fluid.

2.2. Viruses

All influenza viruses were grown in the allantoic cavity of 10-day-old 

embryonated hen eggs at 33®C, the allantoic fluid was harvested after 2 days and 

stored at -70X (Beveridge, 1946 ; Hirst, 1962). Virus titres were determined in 

haemagglutination assays (Salk, 1944). Doubling dilutions of allantoic fluid were 

made in PBS (see appendix I) and 50pl of each dilution was mixed with 50pl of a 

1% TRBC suspenaon. This was incubated at room temperature for 30 minutes. 

The hipest dilution which showed haemagglutination activity was deemed to 

contain IHAU/SOpl thus allowing determination of HA titre of the allantoic fluid.

The X31 virus is a recombinant between A/Aichi/2/68 and A/PR/8/34 

which expresses surface glycoproteins  ̂of the H3N2 subtype and PR8 internal 

proteins (Kilboume, 1969).

Natural variants were mainly isolated from the major influenza outbreaks 

between 1968 annd 1984, provided by The World Influenza Centre at NIMR

mAb-selected mutants were produced by growing X31 in the presence of 

neutralising antibody (HI positive) in eggs. Mutants were cloned by limiting 

dilution in ovo and the allantoic fluid was stored at -70°C (further details outlined 

in section 2.11)
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23. Generation of B-cell hybridomas and definition of antibody binding

specificities

2.3.1. Culture media

B cell hybridomas and myelomas were allowed to proliferate in RPMI 

1640 medium (Flow Laboratories), supplemented with Heat inactivated FCS (foetal 

calf serum; Flow Laboratories), 2mM Glutamine (Flow Laboratories), 5x10'̂  M P- 

mercaptoethanol (Sigma), 100 U/ml Penicillin, 100 pg/ml Streptomycin (Flow 

Laboratories).

RPMI 1640 (Flow Laboratories) medium was converted to selective HAT 

(hypoxanthine-aminopterin-thyriiidme) medium by addition of hypoxanthine, 

Aminopterin and thymidine solution (all reagents from Flow Laboratories) at a final 

concentration of 100 pM, 0.4 pM, and 16 pM respectively. The HT 

(hypoxanthine-thymidine) medium was prepared in the same way, but without 

aminopterin.

2.4. Production of mAbs.

CBA/Ca mice were infected intranasally and /or immunised with 5 HAU of 

X31, allowed to recover for six to ten weeks. Following intraperitoneal boost with 

2000 HAU three days prior to hybridoma fusion, half spleens were removed 

surgically under general anaesthesia (kindly performed by Ms V. Attenburrow) and 

used to generate B cell hybridomas. Splenic lymphocytes from individual donors 

were fused with the BALB/C derived myeloma line JK-AgS (P3-X63-Ag8653) 

(Kearney, et cd., 1979; Kohler and Milstein, 1975) following the Fazekas de St. 

Groth and Scheidegger (1980) protocol. After 8-10 weeks, mice were infected 

with 2000 HAU of a variant virus A43 (HAl 158, HAl 145 and del HAl 224- 

230), boosted intraperitoneally with 5000 HAU and the other half spleens used to 

generate B cell hybridomas.
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Human Ig p-chain transgenic mice were immunised intraperitoneally with 

inactivated X31 and whole spleen was used to generate B-cell l^ridomas.

Equal number of washed spleen cells and myeloma cells were fiised in 1ml 

of a 50% solution of PEG (polyethylene glycol mol. wt. 1,300-1,500; Sigma) in 

RPMI 1640 and 50 pi of DMSO (dimethyl sulphoxide; BDH). After gentle 

Rhflking for 5 min. at 37° C, the cells were washed and resuspended in medium 

with 20% FCS and HAT. 50 pi aliquots of fused cdls were added to 150 pi of 

PECs (peritoneal exudated cells) in selective medium, in flat-bottom-96-well- 

microtitre plates, and cultured at 37°C in 6% COz: 2x10^ spleen cells and PECs 

from one mouse, were dispensed onto each plate. On day 5,100 pi of medium was 

removed fiom the cultures and replaced with lOOpl of HAT medium containing 

20% FCS. On day 14 , this procedure was repeated but this time 100 pi HT 

medium was added. Subsequently, fresh standard culture medium containing 10% 

FCS was added when required.

Hybridomas were screened for anti-HA activity by haemagglutination 

inhibition assays* andmAb isotypes determined by ELISA (Ishiguro, et aL, 1983). 

mAbs bound to X31 were detected using biotinylated goat anti-mouse Ig isotype 

specific antibodies (Southern Biotech) and Streptavidin-alkaline phosphatase 

conjugate (Southern Biotedi) developed with p-nhrophenyl phosphate at 1 mg/ml 

in diethanolamine buffer (see appendix I) and the absorbance at 405 nm was 

measured. For transgenic mice, anti-K or anti-X light chain antibodies (Sigma) were 

used.

23.Haemagglutmation Inhibition (HI) Assay.

Culture supernatants were screened for HA-spedfic neutralising antibody 

in a haemagglutinm inhibition (HI) assay (WHO e?q>ert committee on influenza,

1953) from day 10. Two-fold serial dilutions in PBS of 50pl antibody samples 

were made in round bottom 96 well mlŒOtitre plates. Eight HAU of virus in 25pl
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volumes was added to eadi well and the plates incubated at room ten:4>erature for 

30 minutes. 25 pi of a 2% turkey RBC suspension was added to each well and 

incubated for a further 30 min at room temperature to allow agghitinatioa Positive 

hybrids were allowed to attain confluency and then transferred to a 24 well plate 

(Costar) containing PECs and 2 ml of standard medium supplemented with 10% 

FCS per well.

2.6. Cloning and expansion of HA specific hybridomas.

Once confluent in the Costar plates, HA specific hybridomas were doned 

by limiting dilution. Briefly, flat bottom 96 well microtitre plates were seeded with 

lOOpl of a PECs suspension in RPNfl 1640 medium containing 20% FCS. The 

hybridoma cells were diluted to a final concentration of 3 cell/ml (équivalut to 0.3 

cell /well) and then lOOpl/well were added to the 96 well plates. After 10-14 days 

the wells were screened for HA spedfic antibodies in HI assays. The positive 

clones were expanded in 24 well plates and wdien confluent, transferred to 25 cm  ̂

flasks (Falcon). Large amounts of HA specific mAbs w ae generated by growing 

l^bridomas as asdtic tumours in mice. Briefly, (CBA/Ca x BALB/c) FI mice were 

given a sih^e 0.5 ml intraperitoneal ngecdon of Pristane (2,6,10,14 tetramethyl 

pentadecane; Koch light) one week before the intrtqperitoneal iigection of at least 

1x10® hybridoma cells per mouse in 1.5 ml of PBS. Each mAb was used to sdect 

a neutralising escape mutant.

2.7. mAb isotype determination.

The mAb isotype determination was performed uâng standard indirect 

ELISA techniques (Ishiguro, et cd., 1983). Briefly, plastic 96 well microELISA 

plates (Nunc) were coated with Ipg/well BHA or 100 HAU of whole virus in 

borate buffered saline saline pH 8.6 (BBS, see appendix I) for 2 hours at 37°C and 

washed three times with PBS-Tween 20 (0.05%; Sigma) allowing a 1 min soak
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between washes. 50pl hybridoma culture medium supernatant or asdtic fluid was 

added to each well, and a negative control of PBS-Tween set up. The plates were 

incubated at room tenq)erature for 1 hour and then washed again (3x). mAbs 

bound to BHA were detected by adding SOpJAvell 1:1000 dilution in PBS-Tween 

of biotinylated goat anti-mouse Ig isotype specific antibodies (Southern Biotech) 

for 2 hours at room temperature. The plates were washed as before and then 

SOplAveU of strq3tavidin-alkaline phosphatase corrugate (1:1000 dilution in PBS- 

Tween) (Southern Biotech) was added for 1 hour at room temperature. Plates 

were then developed with SOplAvell p-nitrophenyl phosphate (Sigma) in IM 

diethanolamine buffer pH 9.8 (Sigma), the reaction stopped by addition of 50pl of 

5 M NaOH (BDH) and the absorbance at 405iun was measured.

IgM mAbs were detected with alkaline phoq>hatase-coiyugated goat 

antibodies specific for mouse k  or A. light chain (Sera-lab) used at a dilution of 

1:1000 in PBS-Tween.

23. Virus spedfidty for neo-glycoprotdns.

Substrates a , 2-3 sialyUactosarninyl-BSA (Dextra Laboratories) and a , 2-6 

sialyllactosaminyl-BSA (Prepared in the laboratory by enzymatic modification of 

N-acetyllactosaminyl-BSA using a , 2-6 specific neuraminyl transferase and CMP- 

N-acetyllactosaminidate, (as recomended by the manufecturer Boehringer, 

Mannheim Biochemica) were coated on ELISA plates at 30 pg/ml respectively. 

The plates were incubated overnight at 4°C, washed x4 and blocked with 2.5% 

BSA The plates were washed as before and X31 and variant viruses were added at 

50 and 100 HAU/lOOpl, and incubated for one hour at room tenq)erature. The 

plates were washed and blocked again with BSA followed by addition of 50|j1 of 

rabbit anti-HA Ab at 1:3,200 dilution Çm PBS-Tween) and incubated for an hour at 

room tenq)erature. Plates were washed again as before and 50pl of Goat anti

rabbit IgG-alkaline phosphatase cogugate (Sigma) was added at 1:1000 dilution
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for an hour at room temperature. Plates were then devdoped with SOpl/well p- 

nitrophenyl phosphate (Sigma) in IM diethanolamine buffer pH 9.8 (Sigma), the 

reaction stopped with 5 M NaOH (BDH) and the absorbance at 405nm was 

measured.

2.9. Neuraminidase treatment of IgM mAbs.

Neuraminidase purified fi'om Vibrio cholerae (Boehringer Mannheim) used 

at 1 unit/ml was mixed with IgM mAb containing ascitic fluid and incubated 

overnight at 37°C followed by a 2 hour incubation at 56°C to inactivate 

neuraminidase.

2.10. Neutralisation assay.

MDCK cells were grown in DMEM (Dulbecco Modified Eagle’s medium: 

Gibco BRL) supplemented with heat inactivated FCS (foetal calf serum; Flow 

Laboratories), 100 U/ml Penicillin, 100 pg/ml Streptomycin (Flow Laboratories) in 

small petri plates (Nunc).

Virus-mAb was mixed and left for one hour at room temperature. 

Confluent MDCK cells were washed with DMEM, the virus-mAb mix was added 

and incubated for 30 minutes at 37°C. DMEM at 4°C (supplemented with 

glutamine, trypsin: 0.25%, non-essential amino add and antibiotics) was mixed 

with hot agar (70° C) and added to the plate and incubated at 37°C for a further 48 

hours. Plates w ^e assayed for plaque forming units (PFU) following fixation with 

0.25% (v/v) ghitaraldehyde for 20-30 minutes after whidi plates were stained with 

1% (w/v) crystal violet for 10 minutes. Colonies were counted manually following 

destaining.

2.11. Selection of mAh neutralisation escape mutant viruses.
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Monoclonal antibody selected mutants were produced by growing X31 in 

the presence of neutralising antibody in %gs. Allantoic fluid, containing 2000 

HAU/ lOOpl of X31, was mixed with an equal volume of neat ascitic fluid and 

incubated at room temperature for 30 minutes. SOOpl aliquots were iiyected into 

ten-day-old-embryonated hen eggs. Allantoic fluid was harvested on day three and 

tested for mutant virus by haemagghitination inhibition (HI) assay (World Health 

Organisation Expert Committee on influenza, 153). Escape mutants were cloned 

by limiting dilution.

2.12. Purification of viruses.

X31 and mAh selected variants were purifled fl*om allantoic fluid 

using the method described by Skehel and Schild, 1971. Briefly, the allantoic fluid 

was clarified by spinning at x 500 g for 20 min at 4°C (using a Beckman JS-4.2 

swinging buricet rotor). The virus was then pelleted by spinning at x 23,000 g for 

two hours at 4°Ç (using a Beckman T19 fixed angle rotor). The pellet obtained 

was resuspended in 3-4 mis Tris/saline (see appendix I), homogenised or sonicated 

for 5 minutes in a water bath sonicator (Camlab Transonic T310). The resulting 

suspension was then loaded onto a continuous gradient of 15% - 40% sucrose w/v 

in Tris/saline and uhracentrifliged at x80,000g for 45 min at 4°C (using a Beckman 

SW28 swinging bucket rotor). The virus band, clearly visible about half way down 

the gradient was harvested, diluted to 30 ml in Tiis/saline. The virus was pelleted 

by spinning at x 80,000g for 90 minutes 4°C (SW28 rotor) and resuspended in 0.5 

ml Tris/saline. (Skehel and Schild, 1971).

2.13. Bromelain digestion of influenza virus to produce BHA.

X31 and variant virus haemaggtutinins were cleaved by digestion with 

bromelain. lOmg of purified virus was mixed with 5mg of bromelain (Sigma) in 

3mls of digestion buffer (Tris/saline with 50mM p-mercaptoethanol, 0.1% sodium
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azide) and incubated at 37°C for 2 hours. The reaction mix was then spun at 

xllO,OOOg for 30 minutes at 4°C (in a Beckman SW41 swinging-bucket rotor). 

The pellet was resuspended in 3mls of digestion buffer containing 5mg of 

bromelain and incubated at 37®C for 3 hours. The reaction mix was spun as before. 

The supernatant was collected and the pellet was resuspended in 3mls of digestion 

buffer containing 5mg bromdain and incubated at 37°C overnight. The reaction 

mix was spun as before and the supernatant collected. The supernatant was layered 

onto continuous gradients of 5-25% sucrose w/v (1.5ml of supernatant/ gradient) 

and sçsm at xl50,000g for 15 hours at 4°C (SW41 rotor). The gradients were 

harvested by collecting 1ml factions fom  the bottom of the tube using a peristaltic 

pump. The absorbance at 280nm was measured and those factions which 

contained protein were pooled.

The BHA solution, generally in a volume of around 12mls, was 

concentrated down to a volume of 3 mis using an Amicon Ultrafiltration Stirred 

Cell System with a 10,000 mol.wt filter cut off Protein concentration was 

determined by measuring the absorbance at 280nm and the purity of preparation 

was checked by gel electrophoresis (see section 2.14).

2.14. Cd Electrophoresis of Proteins.
The purity of BHA preparation was assessed by SDS-polyacrylamide gel 

electrophoresis. Samples were electrophoresed through a stacking gel containing 

4% acrylamide, 0.25% Bisaoylamide, 0.1% SDS (all fom  BDH) in 60mM Tri&- 

HCl pH 6.7 and a separating gel containing 12.5% acrylamide, 0.25% 

Bisacrylamide, 0.1% SDS in 0.4 M Tris-HCl pH 8.9. The electrophoresis buffer 

was Tris/Glydne buffer pH 8.3 (see ̂ pendix I).

10 pi of sample was mixed with 10 pi of either a redudng or non-redudng 

loading buffer (see appendix I), boiled for two minutes and loaded onto the gel. 

200 volts was applied across the gel for 50 minutes. Gels were stained in 40% 

methanol, 10% acetic add, 0.5% coomassie blue for 10-30 minutes and then de

stained in 40% methanol, 10% acetic add.
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2.15. Horse Serum Inhibition Assay.

Two-fold serial dilutions in PBS of horse serum were made in round 

bottom 96- well microtitre plates. Eight HAU of X31 or variant virus in SOpl 

volumes was added to each well and the plates incubated at room tenq>erature for 

1 hour. 50 pi of a 1% TRBC suspension was added to each well and incubated for 

a further 30 min at room temperature to allow agglutination.

2.16. RNA extraction from purified virus.

Viral RNA was extracted according to Hay et al., 1977. 2-10 mg/ml 

purified virus was solubilised in 60 mM sodium acetate pH 5.0 (BDH), 6 mM 

ethylene diamine tetracetic add pH 7.0 (EDTA BDH) and 1% sodium dodecyl 

sulphate (SDS: Sigma). The RNA was extracted 2-3 times with an equal volume of 

phenol/chloroform/isoamjd alcohol (25:24:1). RNA was predpitated from the 

aqueous phase with 20 mM NaCl (BDH) and twice the volume of absolute ethanol 

on dry ice for 1-2 hours. The pellet was collected by centrifuging at 13,000g for 10 

minutes at 4°C, dried, redissolved in sterile doifole distilled water and the 

concentration was calculated from the A 26o value and the A 26o • A 2so ratio was 

determined. RNA sangles were stored at -20X.

2.17. Viral RNA extraction from allantoic fluid.

200 ml of the allantoic fluid was mixed with 200 pi TES buflèr (see 

appendix I). RNA was extracted 2-3 times with an equal volume of 

phenol/chloroform, aqueous phase recovered and the RNA predpitated with 

1/10th of the volume of 2 M NaCl and double the volume of chilled absolute 

ethanol on dry ice for 1-2 hours. The pdlet was collected by cmtrifoging at 13000
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g for 10 min, 4°C, dried, dissolved in sterile double distilled water and used for RT- 

PCR amplification.

2.18. cDNA synthesis from viral RNA.

cDNA was synthesised fix>m viral RNA in a 20 pi volume of buffer 

containing 100 mM Tris-HCl pH 8.3,10 mM MgClz, 800 mM 200 mM KCl, with 

40U of AMV Reverse Transcriptase (Boehringer Mannhdm), 25U RNAsin 

(Amersham), 0.67 mM FHA (see 2.21) and 40mM dNTP. This was incubated at 

42°C for 1 hr. Samples were then boiled at 100°C for 3 minutes, then qumched 

immediately on dry ice.

Samples wa*e then thawed and spun for 10 min in a microfiige. The 

cDNA containing supernatant was used in PGR. Each reaction was set up in 100 pi 

volume containing 10 mM Tris pH 8.8, 1.5 mM 50 mM KCl, 2.5%

glycerol v/v, primers FHA and RHA2 (see 2.21) at 0.5 pM, each dNTP at a 

concentration of 250 pM, 2.5 U Taq polymerase (Pharmacia Biotechnology) and 

20 pi of cDNA template. Each tube was then overlaid with a drop of mineral oil 

(Sigma). Once amplified, PCR products were visualised by running a 5 pi sample 

together with 1 pi sucrose gel dye (45% sucrose, 0.25% bromophenol blue) on a 

1% agarose gel in 1 x TBE (100 mM Tris-base, 100 mM boric add, 5 mM EDTA 

pH 8, 0.5 mg/ml ethidium bromide) at lOOV. The amplification cycle was 1 x 

(95°/3 min, 50V1 min,70° /1.5 min), 40 x (95° /I min, 50°/ Imin, 70° /1.5 min), Ix 

(70°/5min).

2.19. Purification of PCR products for sequencing.

A 40 pi sample of the anq)lified product mixed with 5 pi sucrose dye was 

loaded equally into two adjacent wells of a 1% low melting point agarose (PMC 

Sea Plaque: Sigma) gel in TBE (see appendix I) with ethidium bromide. Molecular
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weight marker was also loaded onto the gel which was run at lOOV. The gel was 

then viewed on a low intensity UV light box and bands of correct size cut and 

placed in eppendorf tubes. DNA was recovered from gel slices by melting the 

agarose at 75°C for 30 minutes fi)llowed by purification uang Wizard PCR Prep 

(Promega) following the manu&cturer's instructions. A 2 pi sangle of the purified 

DNA was run on a 1% agarose gel in TBE together with a known concentration of 

DNA molecular weight mark^ to estimate the concentration of DNA in the sample 

for sequencing.

2.20. Direct sequencing of PCR products.

the PCR product was determined using a modified chain terminating method 

(Sanger, et aL, 1977). Purified PCR product was mixed with primer to a template; 

primer molar ratio of between 1:35 and 1:70 in 3 pi. This was added to 3 pi of 

annealing mix (125 mM Tris-HCL pH 7.5, 50mM MgClz, lOOmM NaCl, 20% 

DMSO). Different primers used were FHA, DP, CCP2, CCP4, RHAl and RHA2 

(see 2.21).

Samples were incubated at 100°C for 3 minutes, immediately quenched on 

dry ice, thawed afi^ 5 min, briefly centrifiiged and then 4 pi of labelling mix (25 

mM DTT, 2.6 u sequenase and 10 pCi ^^S-dATP) was added to each reaction 

tube. 2.5 pi of template/ primer mix was added to 2pl of each of the 4 dNTP/ 

ddNTP mixes. These nuxes contained dGTP/ CTP/ TIP at 80pM and one ddNTP 

at either 8pM (ddG/C/T) or 0.16pM (ddATP) in 20% DMSO. This was incubated 

at 37°C for 5 min, followed by 2 pi of (base mbc (0.25 pM of each dNTP, 50 mM 

NaCl, 10% DMSO) and then incubated again for further five minutes before the 

reaction was stopped by addition of 6 pi per well of formamide dye. This reaction 

mix was boiled for 3 minutes and run immediately on denaturing 8% 

polyacrylamide gel containing 8 M Urea in TBE Gels were dried for 1% hours at 

85°C under vacuum on a gel drier (Biorad model 583) before autoradiography
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(Kodak film) for 24-72 hours at room temperature. Autoradiogr^hs were read 

and sequences recorded .

2.21. Primers used in amplification and sequencing of the HAl gene of

influenza virus.

FHA TGAAGACCATCATTGCTTTGAGC

DP TGCTACTGAGCT

CCP2 GAGACATGGGACCTTTTCTT

CCP3 TCACTTGGACTGGGGTCACT

CCP4 CAGTAGACTGAACTGGTTGA

m iA i TCGAAGGTAAAGCTGACTACGT

RHA2 AGATAGTAAGGGAGGGITGGTAA
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CHAPTERS

transgenic mice expressing a hunumTgH ntini^ene
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3.1. Introduction

The recognition sites for neutralising antibodies have been previously 

located to five regions (A->E) on the membrane distal ectodomain of the HAl 

subunit (Caton, et a l, 1982; Gerhard, et a l, 1981; Lubeck and Gerhard, 1981; 

Underwood, 1982; Wiley, et a l, 1981). All of these exposed regions, proximal 

to the receptor-binding pocket are potential recognition sites for neutralising 

Abs. However, recent studies from this laboratory have shown the secondary 

antibody response to be unexpectedly restricted in specificity following natural 

infection with X31. It has been shown that there is striking immunodominance 

in the neutralising antibody response in different strains of mice. As deduced by 

sequencing the HA genes, mAh selected laboratory mutants were found to 

differ from wild type X31 virus by a single amino acid change, HAl 158 G->E 

in the H-2^ haplotype, (Smith, et a l, 1991; Temoltzin-Palacois and Thomas, 

1994) HAl 198 A-^E in the H-2‘* haplotype and there was co-dominance in 

MHO congenic BALB/k mice with a single residue change at either HAl 158 

or HAl 198, depending on the donor origin of the selecting mAh (Patera, et 

a l, 1995). This contrasts with the diversity of antibody specificities seen 

following i.p. immunisation of BALB/c mice with inactivated virus (e.g. HAl 

63, 135, 143, 144, 145, 156, 189, 198, 199, 205).

There is considerable knowledge of antibody responses in CBA/ Ca, 

BALB/c and BALB/ k mice to virus infection as well as heavy and light chain 

gene usage. Patera et al. (1995) have shown recently that, despite 

immunodominance of the above two residues, there was extensive progenitor 

B cell diversity contributing to the memory response; the individual’s response 

to a single antigenic site was derived from a minimum of 3-6 progenitor cells. I 

wished to extend these findings to an analysis of the memory repertoire of 

transgenic mice expressing human p chains in the absence of endogenous 

murine p chains, following immunisation with X31 virus. These mice were 

made by crossing transgenic mice carrying a human Ig H chain gene with mice 

that had been rendered deficient in endogenous immunoglobulin production by
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gene targeting (Wagner, et a/.,1994). The DNA construct used for integration 

is shown in figure 6 (Bruggemann, et a l, 1991).

This transgenic model provides a unique opportunity to investigate the 

neutralising antibody response under conditions in which (a) there is no class 

switching fi’om IgM to IgG, and affinity maturation due to somatic 

hypermutation and (b) highly restricted Vh region gene usage.

I wished to determine whether a low affinity IgM antibody response 

would be similarly focused on a limited region(s) of the HAl subunit.



82

Fig 6: Structure ofhumanig H cosmid.

Cos 25 contains the subcloned Vh 26, D segments ( D21/ 10, D3, 

D21/ 9, DQ 52), the functional J segments, the intron enhancer (E) 

the p constant region of the human IgH gene, and an additional 

mouse Vh 186 gene with disruption of mouse membrane p.

(C p ) and the membrane p ( M p ).



HuIgH
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1 kb



3.2. RESULTS
3.2.1. Generation of HA specific B-celi hybridomas from Hulg-p chain 

transgenic mice.

In an investigation of the neutralising antibody response to HA in 

transgenic mice (Tg) expressing human Ig heavy chains, the following 

strategy was employed (Fig 7): Tg mice were immunised intraperitoneally 

with 1000 units of UV inactivated X31 virus and boosted 3 days before 

spleens were taken for B-cell hybridoma production. B-cell hybridomas 

secreting HA-specific neutralising antibodies, were screened for by 

inhibition of viral haemagglutination (HI) of turk^ erythrocytes.

Thirty out of sixty hybridomas (the TgM series) were cloned by 

limiting dilution. These antibodies were eloned in 96 well microtitre plates 

at about 0.3 cell/ well and considered clonal if ten to twelve wells/plate 

were HI positive. A total of four HA-specific hybridomas were obtained 

from one donor and high titer mAb-bearing ascitic fluid was obtained by 

further expansion in r|u/ T|u mice (table 1). Equivalent HI titers were 

obtained for each of the selected mAb.

3.2.2. mAh recognition specificity for variant viruses.

In an initial attempt to determine their fine specificity, mAbs were 

tested by HI assay against a panel of laboratory variant viruses with known 

single amino acid substitutions within the HAl subumt (table 2). The 

results, however, did not provide a definitive assignment of amino acid 

residues in the HAl subunit that constituted part of the antibody 

recognition site. For instance mAbs 7.1 and 21.2 recognised all variants in 

the HI assays with the singular exception of the mutant M l-9 (HAl 226 

L-K), 135 G ^V ). However, the variants containing the corresponding 

single substitutions HAl 226 L->Q or HAl 135 G->R/ D were recognised. 

Hence, the structural basis for recognition specificity could not be



Fig 7: Schematic representation to show generation of mAbs
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Table 1: HI reactivity of anti-HA mAb containing ascitic fluid against

X31.

HI titre expressed as the reciprocal of the dilutions required

to inhibit agglutination of turkey erythrocytes by 100%.



mAb ( ascites ) -HI titers (X31)

1.1 51200

4.1 12800

7.1 25600

21.2 51200
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Table 2: Values indicate HI titres for mAb-containing ascitic fluid, in

the agglutination of turkey erythrocytes by X31 or its laboratory variants.

HI titre expressed as the reciprocal of the dilutions required to

inhibit agglutination o f turkey erythrocytes by 100%.
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Table 3 : Haemagglutinin inhibition specificity of TgM-mAbs for

natural isolates of the HI, H2 or H3 subtype.

HI titre expressed as the reciprocal o f the dilutions required to

inhibit agglutination o f turkey erythrocytes by 100%.

NR; not recognised.
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Table 4; Haemagglutinin inhibition specificity of TgM-mAbs for 

natural isolates of the HI subtype.

HI titre expressed as the reciprocal of the dilutions required to

inhibit agglutination of turkey erythrocytes by 100%.

< HI titre below 100.
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Table 5: Haemagglutinin inhibition specificity of TgM-mAbs for

natural isolates of the H2 subtype.

HI titre expressed as the reciprocal o f the dilutions required to

inhibit agglutination o f turk^ erythroeytes by 100%;

< HI titre below 100.
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established. In contrast, the remaining mAbs 1.1 and 4.1 fixiled to recognise 

HAl 135 G->R. There was some considerable degree of variation in HI 

reactivity for the panel of variant viruses as illustrated by heteroclitic 

reactivity of mAb 7.1 for 158 or reduced reactivity for 135 or 145. The 

reactivity of mAbs 1.1 or 4.1 was sensitive to HAl 135 G->R change.

Since each of these mAbs was cross-reactive in the above HI assay, 

there was some concern as to whether mAbs were indeed specific for X31. 

The serological assays against a panel of HI, H2 and H3 subtype viruses 

(table 3, 4, 5) do indicate fine specificity since none of the mAbs 

recognised either HI, or H2 subtype viruses.

3.2.3. Selection and sequence analysis of X31 laboratory variants.

To obtain a definitive assignment of neutralising antibody binding 

sites, the above mAbs were used to select laboratory mutants of X31. The 

HA gene of each cloned laboratory mutant was sequenced and the amino 

acid substitution was deduced fi*om the nucleotide sequence data. Four 

mutants were selected and characterised using TgM antibodies and named 

the TgMm series (table 6). Three out of four mutants had amino acid 

S u b s t i t u t i o n s  a t  t w o  different positions on the HAl subunit. A common 

change, residue HAl 135 G—>R was present in majority of the mutants and 

the other changes were either proximal to, or within the receptor binding 

site as shown in table 6.

3.2.4. Novel feature of TgM mutants.

One of the interesting features of the TgM mutants was the 

occurrence of double mutations: one of the amino acid substitutions was 

present in a conserved residue that constitutes part of receptor binding 

pocket, and the other amino acid substitution in a region of known 

antigenic change: Mutant 7.1, selected by mAb T ^ -7 .1 , had substitutions
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Table 6: Recognition specificities of mAb as deduced by sequencing

of the HA genes of mAb- selected X31 mutants.
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at positions HAl 226 L->P, and 145 S->N. HAl 226 has been shown to be 

crucial in host-range restriction and thus change at this position alters the 

receptor binding characteristics of the virus. The other two antibodies 1.1 and 

21.2 also selected double mutants. Antibody 21.2 selected a variant with a 

substitution at HAl 225 and a further amino acid change at HAl 135 

G->R. HAl 225 is also a conserved residue located within the receptor- 

binding pocket. Antibody 1.1 selected a variant with changes at HAl 135 

G->R and HAl 158 G->E. Residue 158 has been implicated in receptor 

binding specificity and both HAl 145, and HAl 158 occupy positions in close 

proximity to the receptor binding site (Underwood, et a l, 1987).

3.2.5. HI reactivity of TgM mAbs for their own mutants.

Table 7 shows the reactivity of the TgM mAbs with mutants that they 

had selected as well as relevant single mutants. mAb 7.1 and 21.2 do not 

recognise their “own” mutants HAl 145 S-»N, 226 L-»P and HAl 135 G—>R, 

225 G—>D respectively. However, variants with single residue changes at these 

positions, 135 G—>R or 226 L—>Q or 145 S ^ N  or 158 G—>E were all 

recognised. Similarly, mAb 1.1 and 4.1 failed to recognise their selected 

variants HAl 135 G->R, 158 G ^E  and HAl 135 G->R respectively but were 

found to be sensitive to changes in m-21.2. The HAl 226 L->Q variant virus 

was used in all above assays since laboratory variants with single residue 

change at 226 L->P or 225 G-^D have not been reported. It was not possible 

to establish whether failure to recognise the selected virus required either (a) 

amino acid changes at both positions or (b) the same critical residue change at 

HAl 226 L->P or HAl 225 G-^D. Also different amino acid substitutions at 

the same position are known to affect antibody recognition and specificity.

3.2.6. mAb reactivity for variant viruses in ELISA.

Since all the mutations had occurred either proximal to or within the 

receptor binding pocket, and might affect receptor binding, it was necessary to
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Table 7: HI reactivity of TgM antibodies

with TgM mutants compared to X31.

<:  <100

HI titre expressed as the reciprocal of the dilutions required to 

inhibit agglutination of turkey erythrocytes by 100%.
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Pig 8: mAb recognition specificity for variant viruses by ELISA.

(a) Reactivity of mAb 21.2 ( • ) ;  or mAb 7.1 (A) or mAb 4.1 (■) with 

variant virus m-21.2.

(b) Reactivity of mAb 1.1 with variant virus m-l.l(#% or mr7.1 (A ) or 

m-4'jl(H)>-

Procedures as described inMethods section 2 7  for ELIS A. .
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Fig 9: mAb 7.1 recognition of variant viruses by ELISA.

(□) 145 S^N; (A) X31; (0) 226 L^Q; (#)m-7.1 (HAl 145 S->N, 226 

L-^P).
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Fig 10: mAb 21.2 recognition of variant viruses by ELISA.

( • )  X31; (□) m-7.1 (HAl 145 S^N , 226 L->P); (A) m-1.1 (HAl 135 

G-^R, 158G-^E);

(A)m-4.1 (HAl 135 G-^R);

(■) X31-HS (HAl 226 L->Q).
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establish whether the laboratory variant viruses containing these substitutions 

were antigenic or receptor binding-variants. Each mAh was tested by ELISA 

assay for its ability to bind to the mutant virus which it had selected. Antibody

7.1, that had selected a variant HAl 145 226, recognised and bound to variant 

viruses with single amino acid substitution either at position 145 S—>N or HAl 

226 L—>Q but failed to recognise its selected variant. A heteroclitic response 

was seen to variant 145 S—>N as compared to X31 (Fig 9).

Antibody 1.1, that had selected HAl 135 G-^R, 158 G->E also failed 

to bind to its selected mutant. This effect might be due to the substitution at 

position 135 G->R which is not recognised by the antibody either in ELISA as 

shown in fig 8b or in HI (table 7). These viruses therefore qualify as antigenic 

variants.

3.2.7. mAb 21.2 still binds to its variant (HAl 135, 225) in ELISA.

mAb 21.2, that had selected a variant with changes at positions HAl 

135 G->R and HAl 225 G->D, still recognised its selected mutant in ELISA 

And although antibody binding was reduced (as compared to X31; fig 10), it 

qualifies as a receptor-binding rather than antigenic variant. mAb 21.2 also 

bound well to HAl 135 G->R or HAl 226 L—>Q.

It should be emphasised that neutralising antibodies do not usually 

recognise conserved regions of HAl resulting in the selection of variant viruses 

with changes in the receptor-binding pocket.

3.2.8. Is terminal Sialic acid, a selective determinant ?

IgM antibodies are glycoproteins containing terminal sialic acid and all 

the mutants selected had substitutions either in the receptor binding pocket, or 

of residues proximal to the pocket. The question therefore arose as to whether 

terminal sialic acid (SA), present on the mAbs, was playing a role in the 

selection process. For this reason, mAb-containing ascitic fluid were incubated
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Fig 11: PNA ( peanut agglutinin) binding to NANAse treated IgM

mAb (0) or untreated mAb.(D) in ELISA

Wells coated with mAbs (used at 400 ng/ ml) were incubated with 

biotin-conjugated PNA, followed after washing by alkaline phosphatase 

conjugated Streptavidin, followed by substrate addition, as described in 

Methods, section 2.7.



Ec
If)o

*c3
0)
üc
05

JD&_
O
co

<

0 .51

.2 5 -

2 3 4

PNA conc.

Thomas 9 7/11/96 NP



99

overnight with neuraminidase to remove SA. To monitor the removal of 

SA, binding assays were performed with two different lectins, as shown 

(fig 11). Peanut agglutinin (PNA) binds to terminal galactose residues of 

glycoproteins whereas Elderberry bark lectin has specificity for terminal 

SA. Following enzymatic digestion, the binding of Elderberry bark lectin to 

neuraminidase (NANA) treated antibodies was reduced to base line, with a 

reciprocal increase in binding of PNA, thereby confirming the efficacy of 

NANAse treatment.

3.2.9. Selection of mutants with NANAse treated mAbs.

mAbs, 7.1, 21.2 and 1.1 that had previously selected HAl 145 

S->N, 226 L->P; HAl 135 G->R, 225 G->D, and HAl 135 G-^R , 158 

G—>E respectively were used to select mutants of X31 after treatment with 

NANAse. Several rounds of selection were done with different dilutions of 

both mAb and virus before mutants were obtained: table 8 shows the 

mutants that I have characterised: mAb 21.2 was again found to select 

HAl 135 and 225, mAb 7.1 selected variant 135/ 225 or 145/ 226 in two 

different selections.

It is therefore reasonable to conclude that SA was not responsible 

for the selection and this is consistent with the failure of the mAbs to bind 

viruses of different subtypes.

3.2.10. Neutralisation assays with NANAse-treated and untreated 

TgM antibodies.

HI is usually considered a reliable index of virus neutralisation: 

antibody inhibits haemagglutination by blocking t h e  r e c e p t o r  binding site. I 

wished to confirm that the antibodies not only prevented attachment of 

virus host cell receptors but also neutralised virus infectivity. Briefly, X31, 

or the TgM mutants or other natural virus isolates were incubated with 

different dilutions of mAbs for an hour, layered on trypsinised MDCK cells



100

and incubated for three days at 37° C. All mAbs failed to neutralise their 

own mutants as well as the natural isolates as was seen by the appearance 

OÎplaques. X31, however, was recognised by both treated and untreated 
mAbs and hence no colonies were observed.
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Table 8 : Recognition specificities of NANAse treated mAbs as

deduced by sequencing the HA genes of mAb selected X31 mutants.
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3.2.11. Summary

A panel of neutralising IgM mAbs was established from transgenic 

mice, expressing a human Ig H minigene, following immunisation with X31 

virus. Their recognition specificities for HA were determined by the selection 

and sequencing of X31 laboratory variants. The majority of variant viruses 

differed from wild type by two amino acid residue changes, including 

substitutions in conserved residues that constitute part of the receptor binding 

pocket.
First, consider the receptor specificity of mAb 7.1 that initially selected 

a laboratory variant (HAl 145 S—>N, 226 L—>P). These residue changes 

represent small polar (S) to small polar (N), or large non-polar (L) to small 

non-polar (P) changes within the HAl subunit. HAl 145 is a known antigenic 

site that has featured in the residue changes of both natural variant viruses 

(S^N ; VIC/75 or TEX/ 77) and laboratory variants (S^N , S->R, S->K). 

HAl 226, however, has been a conserved residue for all of H3 natural isolates 

obtained between 1969 and 1990 and has not been selected for, hitherto, by 

neutralising mAbs. It is part of the receptor binding pocket and variant viruses 

at this position can be selected for by glycoprotein inhibitors. Following 

NANAse treatment of mAb 7.1, a further laboratory variant (7. IN) was 

selected containing residue changes 135 G—>R (small polar to large polar) and 

225 G->D (small polar to small polar). Here again HAl 135 has been 

demonstrated to be an antigenic site and laboratory variants of X31, containing 

this single residue change, have been selected for by neutralising mAbs of the 

IgG class. However, HAl 225 is a highly conserved residue in H3 subtype 

viruses and, once again constitutes part of the receptor binding pocket.

It should be emphasised here that a majority of previously reported 

laboratory variants differ from the wild type by a single residue change within 

one of the five major antigenic sites.
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CHAPTER-4

Receptor-binding characteristics of mAb-selected variants
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4.1. Introduction

Haemagglutinin is responsible for the attachment of the virus to cell 

surface glycoconjugates by binding to terminal sialic acid (SA) residues (Wiley 

and Skehel, 1987). Binding to SA involves a shallow pocket of conserved 

amino acid residues near the membrane-distal tip of each subunit as defined by 

crystallographic studies of oligosaccharide-HA complexes (Weis, et a l, 1988). 

Sequence analyses of the receptor variants e.g. X31-HS, selected with non- 

immune horse serum, indicated that differences in receptor specificity could be 

accounted for by a single amino acid residue change HAl 226 L->Q, which is 

located in the receptor-binding pocket (Rogers, et a l, 1983a; Rogers, et a l, 

1983b). While X31 preferentially binds to the Neu Ac a, 2->6 Gal linkage and 

shows sensitivity to inhibition by y-inhibitors present in non-immune horse 

serum, receptor-binding variant viruses show increased affinity for 

oligosaccharides containing the a , 2 ^ 3  Gal linkage and are resistant to 

inhibition by horse serum.

Neutralising mAbs do not usually select for mutations in conserved 

residues that constitute part of the receptor binding site. In the present 

investigation, however, a majority of mAbs selected variant viruses that had 

amino acid substitutions within or proximal to the receptor-binding pocket. 

The question therefore arose as to whether these variant viruses also exhibited 

altered receptor-binding specificity.
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4.2. Results

4.2.1. Horse-senim inhibition assay.

In an initial attempt to determine the receptor-binding specificity of the 

valiant viruses, horse serum inhibition assays were performed with the TgM 

mutants. X31 and two laboratory variant viruses X31-HS (HAl 226 L->Q), 

and M l-9 (HAl 226 L->Q, 135 G->V) were used as controls. The results in 

table 9 show that variant m4.1 (HAl 135 G->R) behaved as wild type and was 

sensitive to inhibition by horse serum. X31-HS, M l-9 and TgM mutant m7.1 

(HAl 226 L->P, 145 S->N) showed complete resistance to inhibition whereas 

m l.l (HAl 135 G->R, 158 G->E) and m21.2 (HAl 135 G->R, 225 G-^D) 

showed partial resistance to inhibition by horse serum.

4.2.2. Binding Specificity for a,2->3 or a,2->6 Sialyllactosaminyl-BSA.

ELISA assays were performed with neoglycoconjugates and the 

specificity of the TgM mutants was compared with binding of X31 or X31-HS 

to o,2->3 or a,2->6 Sialyllactosaihinyl-BSA Bound virus was detected with 

biotinylated rabbit and/ or goat a-HA Ab and streptavidin-aUcaline phosphatase 

conjugate.

Figure 12 indicates that, X31 binds more effectively to the o,2->6 

substrate as compared to X31-HS for which there were base line values. 

However, X31 and X31-HS bound to the a,2->3 substrate equally well. With 

the exception of m21.2 (HAl 135 G->R, 225 G->D) showing preferential 

binding to a,2->6 Sialyllactosaminyl-BSA, the remaining TgM variant viruses 

m7.1 (226 L->P, 145 S->N) and mi l (HAl 135 G->R, 158 G->E) showed 

no significant difference in binding to either 0,2—>3 or 0,2—>6
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Table 9: Horse serum inhibition assay with

TgM mutants,

X31,

X31-HS (226 L->Q)

Ml-9 (226 135 G->V)

<  =  <20

Values indicate the reciprocal of horse serum dilution required to inhibit 

virus haemagglutination, as described in Methods, section 2.15.



Virus Horse Serum

X31 1280

226, 145 <

135,225 <

135,158 160

135 1280

Ml-9 <

X31-HS <
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Fig 12: Receptor-binding specificity of X31 and its variants for

sialyl 0-2,6 (a) or sialyl o-2,3 (b) N-acetyllactosaminyl-BSA in ELISA.

e  X31; ■  m-7.1 (145 S->N, 226 L-»P); ▲ m-21.2 (135 G->R, 225 

G-^D); T X31-HS (226 L ^ ) .

The procedures employed in this assay are described in detail, in Methods 

section 2.8.
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4.2.3. Summary

The receptor-binding specificities of the laboratory variants isolated 

in the study were investigated in parallel with X31-HS (HAl 226 L->Q), a 

variant selected by horse serum treatment. Variant m-7.1 (HAl 145, 226) 

and m-21.2 (HAl 135, 225) exhibited a similar specificity, to X31-HS, in 

their resistance to horse serum inhibition of agglutination, whereas partial 

resistance was seen for m-1.1 (HAl 135, 158), thereby confirming altered 
receptor fimction.

Then, I extended these studies to binding assays of variant viruses 

with ELISA plates coated with neoglycoconjugates either a, 2-3 (0-30 

jig/ml) or a , 2-6 (0-15 pg/ml) sialyllactosaminyl-BSA. Clear cut 

differences were found in the binding specificities for X31-HS, with base

line values using the a , 2-6 substrate and wild type values for the a , 2-3 

substrate. X31 bound optimally to both substrates at approximately 

equivalent substrate concentrations (Fig 12; 10-15 pg/ml) suggesting that 

the binding assay was not sufficiently discriminating, although there was a 

two-fold difference in absorbance (for bound virus) between the two 

substrates.

In comparison with X31, variants m-7.1 and m-21.2 bound at 

significantly reduced levels to both a, 2-3 and a , 2-6 substrates. This 

reduction was most pronounced for m-7.1 (HAl 145, 226) in its binding to 

the a , 2-6 neoglycoprotein; and this is consistent with the known critical 

role of HAl 226 in conferring receptor-substrate specificity.

In previous reports, receptor-binding variants of influenza were still 

recognised by their selecting mAh in ELISA. Variant 21.2 exhibits such a 

phenotype and therefore qualifies as a receptor binding variant. 

Paradoxically, whereas m-7.1 was not recognised by its selecting mAb (in
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either HI or ELISA), it was negative by HI but positive in ELISA with 

mAh 21.2- (a receptor-binding variant phenotype).

Altered receptor-binding specificity was also indicated by the horse 

serum inhibition assays and mAb-selected variant viruses were resistant to 

inhibition with the exception of variant, HAl 135 G->R.

In the binding assay with 0,2-3 or 0,2-6 sialylglycoconjugates, 

binding of all variants was much reduced compared to X31. Thus, these 

assays indicate altered receptor binding specificity of the selected variant
viruses.
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CHAPTER'S

The neutralising antibody response to a variant viral antigen 
in the face of concomitant immunity



112

5.1. Introduction

The recurrence of influenza virus infection is attributed primarily to 

changes occurring in the antigenic structure of the virus surface glycoproteins, 

especially of the haemagglutinin (HA) molecule (Gerhard, et a l, 1981). The 

human population is subject to sequential challenge with new variants of 

influenza virus and therefore mounts an immune response to limit infection. 

Haemagglutinin specific antibodies neutralise virus infectivity and as a 

consequence, provide selective pressure for the HA molecule to mutate (Wiley 

and Skehel, 1987).Thus the efficacy of an influenza virus vaccine is short 

lived.

Antigenic drift is a dynamic process and represents recurrent interplay 

of the human B cell repertoire and its diverse MHC genes, Ig genes and TcR 

genes with the newly emergent epidemic strain of influenza virus. Although a 

structural analysis of laboratory variants, selected with murine mAbs has 

provided considerable insight on the molecular basis for antigenic change, there 

is a major caveat in extrapolating these findings to the human repertoire. In the 

murine model, a virgin B cell is recruited into memory by a single challenge 

(and boost) with a reference laboratory isolate, whereas the human immune 

system is subject to recurrent infection and antigenic challenge.

Following infection with influenza virus, and subsequent re-infection 

with a variant strain, the individual is likely to mount both a secondary (cross

reactive) antibody response and a primary response to altered antigenic sites. 

The immunodominance that is evident following primary infection of inbred 

mice, may (or may not )  have a profound influence on the neutralising antibody 

repertoire to a variant virus challenge.

To this end, I have attempted to establish a model system to investigate 

the neutralising antibody repertoire of CBA/ Ca mice to a recurrent infection
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with an influenza variant virus - a system that might be homologous to the 

human situation.

First, CBA/Ca donors were infected with X31 virus and after 

hemispknectomy, the neutralising antibody repertoire was analysed by 

production of mAbs fi-om the first half spleen. The same donors were then 

reinfected with a laboratory variant, with amino acid substitutions in regions 

that were known to be recognition sites for neutralising antibody and / or class 

n  restricted T cells, and a second batch of neutralising mAbs established from 

the other half spleen. This approach allowed me to study the neutralising 

antibody repertoire to a variant virus in the face of concomitant immunity.
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5.2. Results

5.2.1. Generation of HA specific B-cell hybridomas from CBA/ Ca mice 

after infection with X31 virus.

A brief summary of the procedures employed in the present 

investigation is as follows:

Mice were infected with X31 and, following recovery, half spleens 

were surgically removed to generate HA-specific B-cell hybridomas. The same 

mice were rechallenged with a variant virus A43 (Daniels et al., 1987) 

containing amino acid substitutions in regions recognised by both antibodies 

(HAl 158, 145 ), and T cells (del HAl 224-230) from CBA/ Ca mice. The 

remaining half spleens were used to generate a second batch of B cell 

hybridomas. The strategy is shown in fig 13.

A total of twenty neutralising mAbs (SGA series) from four individual 

donors were generated from the first half spleen. A majority of the mAbs were 

generated from donor 4 ( 8/20) and donor 3 (7/20)  ̂As expected of a THl type 

response to virus infection, the predominant Ig isotype among these mAbs was 

IgG2a (14/ 20) , or IgA (3/20) as shown in the table 10.

5.2.2. Selection and sequence analysis of X31 variant viruses.

Four variants viruses were characterised and are referred to as the 

SCAM-3 series. As shown in the table 11 , two of four mutants, (m3-H7 and 

m3-G5) had the same amino acid substitution at position HAl 158 G->E 

which was previously shown to be an immunodominant site. m3-D5.1 had an 

amino acid substitution at position HAl 218 G->E, and m3-Gl 1 had a change 

at position HAl 188 N—>D.
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Fig 13: Protocol employed in hemisplenectomy.

(Mice were infected with X31 and half spleens were surgically removed to 

generate mAbs. Following re-infection with A43 (145,158, del 224-230), a 

second batch of mAbs were generated).
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Table 10: Isotype of CBA/Ca specific mAbs fî om four individual

donors in the secondary response to X31.
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Table 11; Recognition specificities of mAbs fi-om first half spleen as 

deduced by sequencing of the HA gene of X31 laboratory variants 

(SCAM).
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5.2.3. mAb reactivity for variant viruses by haemagglutination inhibition 

assay.

One of the main reasons for choosing the A43 variant for further 

infection was that it contained the HAl 158 change, and a deletion of HAl 

224-230 which is one of the predominant T-cell recognition sites for CBA/ Ca 

mice.

Table 12 indicates that a majority of mAbs (12/19) failed to recognise 

A43 virus (HAl 145 S->I, 158 G-^E and del 224-230). 8/19 mAbs did not 

recognise HAl 158 G->E and 4/17 failed to recognise A91 virus. Thus A43 

seemed to be a good candidate for re-infection.

5.2.4. Generation of B cell hybridomas after further infection with A43 

virus.

Mice that had undergone hemisplenectomy were re-infected with A43 

virus. Fusions were performed three days after the boost. Tissue culture 

supernatants of hybridomas were tested by HI assay and ELISA against both 

X31 and A43. The majority of the wells contained antibody activity in ELISA 

but were HI negative. Two wells showed low but significant activity in HI 

(with both X31 and A43) and were successfully cloned and expanded as 

ascities and named SCB-3 G1 and SCB-3 G8. Despite the low HI activity of 

hybridoma supernatant, respectable HI titres were observed for mAb 

containing ascitic fluid (table 13), but with preferential reactivity for the wild 

type, X31 virus.

mAbs were also tested by HI assay against variant viruses. Both mAbs 

recognised A91 (del HAl 224 - 230) and HAl 158 G->E equally well (either 

culture supernatant or ascitic fluid).
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Table 12; Haemagglutination inhibition assay (HI) with mAbs 

generated after X31 infection.

Variant A43; HAl 158 G -^E , HAl 145 S->I,

del HAl 224-230.

Variant A91; del HAl 224 - 230.



uiAbs HAl A43 A91 X31

158

1-D9 + . + +

1-ClO + +

3-D5 + +

3-F9 + + + +

3-F ll _ +/- +

3-H7 _ + +

3-G3 _ +

3-G ll + + + +

3-G5 . + + +

4-G ll + + +

4-G5 + + +

4-H2 + + + +

4-BlO + + + +

4-D9 ND +

4-Hl _ ND +

5-G8 _ + +

5-F4 - + +



120

Table 13: HI titres of mAbs SCB-3G8 and SCB-3G1 from ascites
fluid.

HI titre expressed as the reciprocal of the dilutions required to

inhibit agglutination of turkey erythrocytes by 100%.
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5.2.5. Selection and sequence analysis of variants of A43 with mAbs from 

the second half spleen.

(a). Variant selection with mAh SCB-3 Gl.

mAb B-3 Gl was used to select a variant of A43 and sequence analysis 

of its HA gene showed amino acid substitutions at two more residues: HAl 

145 I-»S, 189 Q->K (Table 14). As already mentioned, A43 differs from X31 

at HAl 145 S ^ I  and the selection with mAh B-3G1 had resulted in a 

reversion to wild type at this position.

(b). Variant selection with mAh SCB-3 G8.

mAb SCB-3 G8 selected an À43 variant with two further amino acid 

substitutions, HAl 196 V->A 145 I->8 (table 14). Interestingly, both mAbs 

from the second half spleen selected variant viruses that had reverted to wild 

type at HAl 145.

5.2.6. Selection and sequence analysis of X31 variants with mAbs from 

second half spleen.

(a) Variant selection with mAh SCB-3 Gl.

mAb B-3 G l, generated after further infeaion with A43, still 

recognised X31 in HI tests and it was of interest to obtain a definitive 

assignment of recognition specificity. Variants of X31 were selected, and their 

genes sequenced. Table 15 shows that variant m3-Gl.l has amino acid
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substitutions at three different positions, HAl 193 S->N, 198 A->E, 226 

L->R.

The amino acid substitution at HAl 226 was of some interest, in view 

of OUT earher findings with human transgenic p  chain mAbs, and the role of this 

residue in receptor binding specificity. Thus, to confirm recognition specificity, 

mAb 3-Gl was used to select further laboratory variants of X31. Further 

selection produced a variant (m3-Gl-C) with amino acid substitutions at HAl 

198 A->E, 223 V->I. Again, the precise specificity of this mAh could not be 

deduced since the variant had two amino acid substitutions, with HAl 198 

A—>E being common change to both mutants. Therefore, the mAh was used 

for a third selection and sequence analysis of the HA gene showed a single 

amino acid substitution at position HAl 198 A->E.

Thus, following selection with mAh B-3 Gl, two of three variants had 

more than one amino acid substitution in HAl.

(b) Variant selection with mAb SCB-3 G8.

The variant virus selected with mAh SCB-3 G8, had a single amino 

acid substitution at position HAl 198 A—>E. Thus, mAbs generated after 

sequential infection with A43 seemed to be specific for HAl 198, but what is 

the possible significance (if any) of concomitant changes at HAl 193 and 226, 

or 223? I will later speculate that there are distinct similarities to the 

recognition specificties shown by low affinity mAbs fi"om human transgenic 

mice.
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Table 14 : Recognition specificities of mAbs generated from the

second half of the spleen deduced by sequencing of the HA gene of A43 

variants.

Variant A43: HAl 158, 145, del 224-230
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Table 15; Recognition specificities of mAbs generated ft̂ om the second 

half of the spleen, deduced by sequencing of the HA gene of X31 laboratory

variants.

♦mAb SCB-3 Gl was used three times for the separate selection of escape 

mutants.
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5.2.7. Summary.

In this section, a comparison was made of the neutralising antibody 

repertoire of individual CBA/Ca mice to natural infection with X31 (by 

hemisplenectomy and hybridoma production) followed by re-challenge with a 

variant virus, A43 that differed form wUd type at HAl 145, 158, del 224-230), 

and further hybridoma isolation. The recognition specificities of neutralising 

mAbs, obtained fi-om the first and second hybridoma fusion were determined 

by selection of variants for both X31 and A43. A majority of mAbs, isolated 

following X31 infection, failed to recognise variants HAl 158 or A43, and 

selected X31 variants with single residue changes at either HAl 158 or HAl 

218.

In contrast, mAbs obtained after re-challenge with A43 still recognised 

wild type and selected X31 variants with residue changes at HAl 193 S->N, 

198 A->E, 226 L ^ R  or HAl 198 A->E, 223 V-^I or HAl 198 A->E. 

Interestingly, the same mAbs selected A43 variants with changes at HAl 145 

I->S, 189 Q->K or HAl 145 I->̂ S, 196 V->A. There are two significant 

points to note fi-om these findings. First, the prevalent selection of variant 

viruses with multiple substitutions using mAbs established from the second half 

spleen after re-infection with A43. Secondly, the residue changes identified in 

X31 variants, selected by the “second-set” mAbs, have never been reported (in 

this laboratory) for mAbs established from CBA/Ca mice following primary 

infection with X31.

I conclude that a different neutralising Ab repertoire may be recruited 

following recurrent infection with influenza variant viruses, and thus may be of 

some relevance to the human situation, in which there is selective pressure for 

antigenic variation from herd immunity, and multiple exposure to infectious 

virus.
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CHAPTER-6

Novel specificity of a neutralising mAb front a BALB/c 
donor, elicited by natural infection
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6.1. Introduction

Neutralising mAbs of the IgG subtype, are of moderate afiOnity and do 

not usually select for mutations within the conserved residues of the HAl 

subunit. The X31 variants selected for by mAbs from Hulg p chain transgenic 

mice are an obvious exception and may be a consequence of low affinity IgM 

responses. Moreover, a mAb of the IgG2b subtype established from a BALB/c 

donor following X31 infection had selected a variant virus HAl 226 L->Q, 

135 G->V (Dr. Claire Smith, unpublished finding). The selecting antibody 

failed to recognise its variant in both HI and ELISA qualifying it as an 

antigenic variant. HAl 226 L->Q has featured recently in H3 isolates (e.g. A/ 

BEDING/ 93), but there has been no evidence to indicate antibody recognition 

of conserved residues within the receptor-binding pocket.

The purpose of this study was to investigate the recognition specificity 

by further selection and sequencing of variant viruses produced by this 

particular antibody and to investigate if there was any affect on receptor- 

binding specificity.
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6.2. Results

6.2.1. Haemagglutination-Inhibition ( HI) assay.

mAb B 1-9.1 (Dr. C A Smith; unpublished results) was tested by HI 

assay agmnst a panel of laboratory variant viruses with known single or double 

amino acid substitutions within the HAl subunit (table 16 ). The results show 

that mAb B 1-9.1 did not recognise its selected mutant HAl 226 L-^Q, 135 

G->V, or HAl 135 G-^R, 158 G-»E. The same mAb, however, recognised 

HAl 135 G->R, that was included in the assay (due to the unavailability of 

HAl 135 G->I). The remainder of the laboratory variants were recognised as 

well as X31.

6.2.2. mAb reactivity for laboratory variant viruses in ELISA.

Since mAb B 1-9.1 had selected a variant virus with an amino acid 

substitution in a conserved residue of the receptor-binding pocket (HAl 226 

L->Q), it was important to determine whether it recognised its selected variant 

in ELISA (Fig 14). The mAb tailed to bind to the variant, thereby qualifying it 

as an antigenic mutant. HAl 135 G->R, 158 G-^E was also not recognised, 

however, the mAb bound well to HAl 226 L - ^ ,  HAl 135 G-^R, and HAl 

158 G->E (somewhat reduced titre for 158 G->E).

6.2.3. Further selection of X31 variant with mAh Bl-9.1.

To obtain a definitive assignment of recognition specificity, Bl-9.1 was 

used to select further X31 variants. Six mutants were characterised and named 

CCMl series (table 17). All six variant viruses had the same two changes, 

HAl 135 G-^R, 158 G-^E The amino acid change at HAl 135, however, 

differed fi’om that obtained following the initial selection (HAl 135 G->V).
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Table 16: Haem^glutination inhibition assay (HI) with mAb Bl-9.1

and laboratory variant viruses.

HI titre expressed as the reciprocal o f the dilutions required to

inhibit agglutination of turkey erythrocytes by 100%.

< less than 100.
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Fig 14: mAb Bl-9.1 recognition specificity for variant viruses by
ELISA

Reactivity with X31 (□); or 158 ( • ) ;  or 226, 135 (V); or 226 (O); or 135 

(A).

The ELISA procedures are described in Methods section 2.7.
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Table 17: Recognition specificity of mAb Bl-9.1.

All variant viruses were selected at different times and are therefore not 

sibling isolates.



BB

ÎÎI»

B

•io VO
VO

VO
00

VO VO
ON

VO
VI

3
MD

3

VI w 
0 0  V I

0  o
1  i

V I
00

w
V I

i t
V I w  
0 0  V I

n
V I
00

w
V I

V I w  
0 0  V I

o  o4- itn ?5

V I w  
0 0 .  V I

0  o
1  i

K ) Sw to >
V I ON

O y &
90

< p S
99fB

V I
V I 0 0o  o  

>  >

V I
V I o oo  o  

>  >

V I ^  
V I 0 0o  o  

> >

V I
V I 0 0

?

V I ^  
V I 0 0o  o

Î  Î  > >

V I 4 k  
V I ooo  o

Î
s  — ^
O H
4 i

z

IMeS'
§
s*
5



132

6.2.4. Selection and sequence analysis of further variants of either HAl 

135 G->R or HAl 158 G ->£.

The HI and ELISA results had shown that Bl-9.1 recognised both 

HAl 135 G-^R and HAl 158 G->E variants suggesting that amino acid 

substitutions at both 135 G—>R and 158 G->E were necessary to abrogate 

antibody recognition.

Thus, mAb Bl-9.1 was used to select variants of HAl 135 G->R 

Three mutants were sequenced and named the PIB series. All three variant 

viruses had substitutions at three residues, HAl 135 G->R, 158 G->E and 251 

L-^I (table 18).

A further variant of HAl 158 G->E was also selected and sequenced 

and had changes at HAl 158 G->E, 146 G->D (table 19).

6.2.5. Horse Serum inhibition assay.

Horse serum inhibition assays were performed with Bl-9.1 selected 

variants to determine their receptor-binding specificity. As indicated in table 

20, X31 and HAl 135 (used as controls), were sensitive to inhibition by horse 

serum. In contrast, HAl 135, 158, HAl 146, 158, and HAl 135, 226, all 

behaved as the receptor-binding variant (HAl 226) and showed resistance to 

inhibition, thus, indicating altered receptor-binding phenotype.
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Table 18. Selection and sequencing of variants of HAl 135 (G->R)

using mAb Bl-9.1. The further residue changes (HAl 158, 251) are 

indicated.
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Table 19: Amino acid residue change following mAb-9.1 selection of

X31 variant (HAl 158).
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Table 20: Horse serum inhibition assay with Bl-9.1 selected variants

of X31 or HAl 135 (G—>R), or X31-HS (226 L—>Q). Values represent 

the reciprocal of horse serum dilution required to inhibit haemagglutination 

(Materials section 2.15).

< less than 20.



Virus Horse Serum

\X31 1280

226 <

135,158 80

146, 158 <

135 1280

226, 145 <

135, 225 160

135 1280

145 20

226, 135 <
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6.2.6. Summary

A neutralising mAb of the IgG2b isotype (Bl-9.1) isolated and 

characterised by other members of this laboratory had selected an X31 variant 

HAl 135 G-^V, 226 L->Q. In view of my findings for mAbs fi-om Hulg 

transgenic mice, which had selected variant viruses with similar residue 

changes within the receptor binding pocket, I wished to determine whether this 

was a consistent phenotype for variants selected with this mAh.

A further series of six variant virus selections was made with mAb Bl- 

9.1. All variant viruses contained the same residue changes HAl 135 G->R, 

158 G->E. However, the selecting mAh Bl-9.1 still recognised X31 variants 

containing single residue changes at HAl 135 or 158, indicating a requirement 

for mutations at two distinct sites to abrogate mAb neutralisation. Advantage 

was taken of this finding to select further variants of HAl 135 G->R or HAl 

158 G->E:

mAh Bl-9.1 selected three further variants of HAl 135 G—>R which 

were cloned and their HA genes sequenced. Each variant virus contained the 

same substitutions at HAl 135 G—>R, 158 G->E, 251 L—>1.

mAb Bl-9.1 selected a further variant of HAl 158 G-^E which had an 

additional residue change at HAl 146 G->D.

Resistance to horse serum inhibition in HI assays confirmed that variant 

viruses HAl 135, 226 or HAl 135, 158 or HAl 146, 158, which had been 

selected for by mAb B l-9.1, had altered receptor-binding specificity.
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7. Discussion

The initial aim of the thesis was to investigate the influence of afiinity 

on the recognition specificity of the neutralising antibody repertoire for 

influenza virus HA using a novel murine transgenic model in which IgM to IgG 

class switching and concomitant somatic hypermutation/ affinity maturation 

were absent. Use was made of transgenic mice containing a human Ig H 

minigene, and disrupted murine Cp to generate neutralising IgM mAbs which 

were used to select laboratory variants of X31. Sequencing of the HA genes of 

variant viruses indicated that several amino acid substitutions were within 

conserved residues that constitute part of the receptor binding pocket and 

which affected receptor binding specificity. With hindsight, the initial proposal 

by Fazekas de St Groth, in the 1970’s, that low affinity Abs preferentially 

select adsorptive (i.e. receptor binding) mutants is now seen to be remarkably 

prophetic, and based on work with polyclonal Abs, in the absence of structural 

information on the HA molecule. Given the most recent and extensive 

structural information available for influenza virus HA, obtained from 

crystallographic studies, and the sequence analysis of the HA genes of the 

variant viruses, it is now possible to correlate changes in receptor binding 

specificity with 3-D structure.

The conclusion that I wish to propose in this thesis, is that Abs of low 

affinity may preferentially select for receptor binding variants; and a similar 

situation may pertain for in vitro situations in which laboratory variants are 

selected using sub-neutralising levels of antibody. Such bias in variant 

selection, in the absence of an optimal level of high affinity Abs may be of 

some relevance to herd immunity and immune evasion by influenza viruses.

Our understanding of influenza virus HA antigenicity has been 

significantly advanced on two fi-onts by (a) crystallographic studies on the 

structure of B-HA and (b) the use of murine mAbs to select, in vitro, antigenic
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variants. From the immunologist’s standpoint, however there are two 

important caveats.
First, mAbs are usually established following virus (or viral protein) 

immunisation of a naive donor (not previously exposed to multiple infections 

with influenza virus - as is the case in humans). Secondly, the majority of mAbs 

are of the IgG class, of moderate affinity, and produced several weeks or 

months after primary immunisation - thereby ensuring extensive B-memory cell 

development.

The human Ig H transgenic mouse provides a novel model system to 

investigate the influence of antibody affinity on recognition specificity, in the 

absence of class switching fi'om IgM to IgG. In a wild type mouse, 

immunisation or infection with influenza virus results in class switching by day 

6; and there is no experimental procedure to regulate (or restrict) affinity 

maturation.

The second part of the thesis was concerned with the influence of 

concomitant immunity on the neutralising antibody response to a variant virus, 

in an attempt to address the question of multiple exposure to infectious virus, 

as is the case in the human situation. In both model systems (transgenic and 

hemisplenectomy) I have found that mAbs preferentially select for variant 

viruses containing multiple residue changes, including substitutions within 

conserved residues of the receptor binding pocket.

The advent of mAb technology, for the selection and subsequent 

sequencing of laboratory variant viruses allowed a definitive assignment of 

neutralising antibody recognition sites to the 3D structure of Bromelain 

cleaved HA, as deduced fi-om crystallographic studies. In most instances, 

laboratory variants had been selected for by mAbs of the IgG class (and of 

moderate to high affinity due to maturation of B cell memory in the interval 

following immunisation, and subsequent boosting). Such laboratory variants, in 

most instances differ fi'om wild type by a single amino acid substitution in one 

of the five major antigenic regions known to change in natural H3 isolates.
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The model system that I have investigated differs from such an 

approach in one important respect- affinity maturation may have been 

compromised. As a result a series of novel laboratory variants have been 

characterised that differ from wild type virus by two or more amino acid 

substitutions in the HAl subunit, including residue changes in conserved 

positions corresponding to the receptor-binding pocket.

It is generally considered that conservation of residues within the 

receptor binding site are a consequence of function: structural alterations 

within the receptor binding site affect specificity and therefore abrogate virus 

infectivity. Moreover, it has been argued e.g. for the rhinovirus receptor site, 

that the physical dimensions of the pocket (or canyon) might prevent 

accessibility to neutralising antibody- the so called “canyon 

hypothesis”(Rossmann, et al., 1985)

However, recent crystallographic information for both influenza B-HA 

complexed to Fab fragments of a neutralising mAb (specific for HAl 157) 

(Bizebard et al, 1995) and human rhinovirus HR-14 capsid Fab complexes 

(Smith et al, 1996) indicate that there can be a close contact between the CDR- 

3 loop of the Fab chain and the conserved residues of the pocket. Indeed, in B- 

HA complexed to Fab, the CD3 loop resembles a finger projecting directly into 

the pocket and contacting many of the conserved residues. One may conclude 

that conservation of binding specificity and function, rather than accessibility to 

antibody is the primary determinant ensuring that these critical residues are not 

subject to immune selection.

Although this thesis was initiated from an immunological perspective 

(of the laboratory), and I do not consider myself sufficiently knowledgeable to 

offer a critical appraisal of the structural implications of document findings, 

due consideration will be given to the molecular structure of HA as it relates to 

receptor structure and function, and the residue changes reported for variant 

viruses in this thesis.



140

To reiterate, the hallmark of the immune response is its specificity. The 

germline encodes a large but selected repertoire of antibody binding sites which 

is constantly displayed in a population of B lymphocytes with a rapid turnover. 

The large number of possible V-D-J segment combinations and the junctional 

imprecision of the rearrangement process give an individual mouse the ability 

to create fi'om 10* to lO" different antibody structures (Gearhart and 

Bogenhagen, 1983; Tonegawa, 1983). Because each B cell uses its unique Ig 

structure as its surface receptor for antigen, and because uptake of antigen by 

B cells is an initial step in T cell-dependent B cell responses, immunisation with 

an antigen results in selective stimulation of only a small fi-action of B cells 

fi’om a large pool of available specificities.

Specificity, however, is directly correlated with the affinity of the 

antigen-antibody interaction. In a normal individual, the initial antibody 

response is primarily of the IgM class which is rapid and tails off quickly. IgM 

antibodies generally express germ-line determined variable regions that have 

not yet been modified by somatic mutation and so they tend to bind antigen 

with low affinity. The low frequency of substitutions in IgM antibodies 

suggests that the mutational mechanisms do not occur in pre-B cells during the 

joining of V, D and I gene segments. By day 4-6, the frequency of antigen 

specific B cells increases about 1000-fold and they undergo class-switching 

from IgM to IgG and IgA. The antibodies produced at this stage react more 

efficiently, forming stable complexes with the antigen.

A structural basis for these changes emerged from studies using 

hapten-protein conjugates as a model system. Haptens such as 2,4- 

dinitrophenyl (DNP), 2-phenyl oxazolone (phOx), or phosphorylcholine elicit a 

hapten specific immune response when conjugated to a large carrier molecule. 

For example, DNP conjugated to bovine serum albumin (BSÂ) or ovalbumin 

enables the immune system to elicit a hapten specific secondary response on 

subsequent challenge with the hapten, on an unrelated earner, It was noticed 

that antibodies isolated from serum 1-2 weeks after immunisation, bound e-
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DNP-lysine with low intrinsic affinities (10^-10* M**) and antibodies isolated 

after a few months bound this ligand with affinities around 10 -̂10* M** (Eisen 

and Siskind, 1964). After many months, when serum antibodies had fallen to 

near background levels, another exposure to the antigen (booster 

immunisation) resulted in prompt appearance of the antibodies with high 

affinity (Siskind and Benaceraff, 1969).

With the advent of mAh hybridoma technology, Milstein, Rajewsky and 

colleagues were able to establish the molecular basis for affinity maturation and 

directed their studies towards the more homogenous responses against 

haptens. Extensive sequence analysis of the heavy and light-chain mRNA of 

hybridomas immunised with a specific hapten has helped us to understand the 

interplay between genetic and selective events during the onset and maturation 

of the immune response.

Kaartinen et al., 1983, determined the sequence of both heavy and light 

chains of 15 mAbs obtained 7 days after immunisation, against the hapten 

phOx, coupled to chicken serum albumin (ph-CSA). The response was 

particularly restricted to IgGl class with an affinity of 10'̂  Mol'\ Most of the 

anti-oxazolone antibodies had the same Vh and Vt combination encoded by a 

pair of germline genes, Vy-Oxl and Vk-Oxl respectively: 11 out of 15 

hybridomas (73%) expressed V h -0 x 1  and Vk-Oxl. Minor differences in the 

sequences were concentrated in the D region and at the D-Jh and Vk-Jk joining 

boundaries (Kaartinen, et al., 1983). One week later (14 days after the primary 

injection) most antibodies still expressed. similar, but no longer identical 

sequences: 6 out of 11 (54%) expressed that combination, suggesting a high 

degree of somatic mutation. After secondary immunisation, only 4 out of 23 

lines were related to the V h -0 x 1  with Vk-Oxl combination, indicating a shift 

to a new germline H-L chain combination and a Vh subgroup emerged which 

had not been detected at earlier stages of response (Berek, et al., 1985). Thus, 

although somatic mutation is a major factor in maturation of the immune 

response to phOx, the shift towards alternative germline gene expression is
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equally important in further improvements in antibody affinity at later stages of 

the response.
The observations made on the maturation of the immune response to 

phOx are generally consistent with those made in other hapten systems. Thus, 

primary antibodies to nitrophenylacetate have \  chains and are largely 

unmutated, whereas hyperimmune antibodies have k chains and are somatically 

mutated, and display increased affinity for the hapten (Bothwell, et a i, 1981).

A detail analysis of genes and proteins that participate in the murine 

immune response to phosphorylcholine was also documented by Malipiero et 

al., 1987. 37 out of 38 antibodies were encoded by 1 Vh gene of the SI07 

subfrmily, and 3 Vk genes,VkT15 of the Vk22 subfamily, VkM3 from the Vk8 

subfamily, and Vk 167 from the Vk 24 subfamily (Malipiero, et a i, 1987). No 

mutations were detected in those genes until the second week after 

immunisation. Sequence analysis of anti-PC antibodies showed a striking 

correlation between the presence of mutation and antibodies that had 

undergone class switching. No mutation was found in 18 heavy and light chains 

from IgM antibodies, whereas mutation was evident in 7 out of 13 chains in 

IgG3, 13 out of 24 chains from IgGl, and 8 out of 18 chains from IgA 

antibodies. M ost o f the mutated antibodies had higher affinity fo r antigen than 

their gerrriline counterparts, which suggests that the major role o f somatic 

mutation is to increase affinity rather thati to create new specificities.

Antibody responses to proteins, and viruses, however, are different 

from anti-hapten responses, probably because of the antigenic complexity of 

proteins. Thus, in contrast to the progressive changes seen with the anti-hapten 

antibodies, a relatively rapid increase in the average antibody affinity was 

observed against hen egg lysozyme (HEL) (Newman, et a l, 1992). A majority 

of the antibody response was either IgGl or IgG2a while IgM antibodies were 

rare even in the primary response. The overall affinity did not increase further 

during the course of the response which suggested that those mAbs 

represented a population of Ag-selected antibodies that had already undergone
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somatic mutation during initial antigenic stimulation. Does this mechanism also 

apply in virus infection where high affinity neutralising antibodies are essential 

for protection?

Recent studies by Zinkemagel and colleagues, using vesicular stomatitis 

virus (VSV) in a murine model system reported rapid onset of high affinity 

serum IgG responses and “on rate” kinetics coincident with viral clearance 

(Roost, et a i, 1995). IgG antibodies were evident 6 days after the infection 

and the values did not increase in response to repeated booster injections 

spread over 150 days. Memory levels of neutralising anti-VSV IgG titres 

(between 1:80,000-1:320,000), remained stable within the range of 2-4 for >6 

months, and did not increase by more than a factor of 4-8 after booster 

injections compared with the response after a single infection. Thus, the quality 

of the response did not improve further with time, or re-exposure. The direct 

implication is that binding a target antigen rapidly may be as important as the 

thermodynamic stability o f the resulting antibody-antigen complexes in 

limiting pathogen growth.

It can be speculated that since VSV is a replicating virus with repetitive 

copies of its antigenic glycoprotein, it accelerates the tempo of affinity 

maturation, generating high affinity B cells by day 6. However, high affinity 

antibodies were also obtained by day 7 after immunisation with lysozyme 

which is a non-replicating protein antigen (Newman, et a l, 1992). Thus, there 

must be some other reasons for such a response. It could be the type of virus 

that has caused infection or more importantly, the route of infection. We do 

know fi'om previous studies that infection with live virus elicits a memory 

repertoire different to the response following immunisation or vaccination with 

attenuated or dead virus (both with respect to longevity and specificity).

Thus, previous studies in this laboratory have shown, that the immune 

response to influenza HA following natural infection elicits an extremely 

narrow window of specificity, and immunodominance is observed in different 

strains of mice (Patera, et a l, 1995; Smith, et a l, 1991). Immunodominance
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could not be attributed to Vh or Vl gene usage since the individual’s response 

to a single antigenic site was derived from a minimum of 3-6 progenitor cells 

(Patera, e ta l ,  1995).
These studies contrast with several other reports where a highly diverse 

response against HA has been documented (Caton, et al., 1986; Clarke, et al., 

1985; McKean, é ta l ,  1984; Staudt and Gerhard, 1983). It is important to note 

that such diversity was achieved following immunisation with the virus. For 

example, analysis of secondary haemagglutinin site (HA-Sb) specific mAbs 

isolated from mice on day 24 were highly diverse in contrast to primary 

antibodies that were structurally and functionally similar. This increased 

diversity in the secondary response was caused by the use of a larger repertoire 

of Vh and Vk genes and to somatic mutation. The effect of somatic mutation 

on specificity was such that even though secondary responses were oligoclonal, 

virtually every antibody had a unique antigen binding site and fine specificity 

(Clarke, era/., 1985).

Balkovic et al., 1987 found that immunisation with inactivated 

influenza virus or viral protein elicited an IgG response with a subclass 

distribution similar to that of anti-protein antibodies, that is, predominantly yl. 

Infection of CBA/Ca or C3H/HeN mice with virulent or non-virulent influenza 

virus elicited high y2a, low yl/y2b and very low y3 serum antibody levels 

typical of antiviral responses. Surprisingly, immunisation with inactivated virus 

also gave high y2a, moderate y2b and very low yl/y3 profiles, whereas 

immunisation with HA/NA protein gave a typical protein isotype profile of 

high yl, low y2a and very low y2b/y3 serum antibody (Balkovic, et a l, 1987).

Hocart et al., 1989, found the antibody responses to H3 subtype virus 

to be predominantly of the y2a subclass irrespective of the route of inoculation, 

but the magnitude of response varied with the route and schedule of 

inoculation and dose (Hocart, et a l, 1989). The response to intranasally 

administered HA is much h i^er than i.p., suggesting the i n. route can give 

better protection from influenza virus than the i.p. route due to the
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amplification of antigen during virus growth or induction of secretory IgA 

(Coutelier, et a l, 1987). Inraperitoneal and i.v. immunisation elicited 

predominantly y2a antibodies. No y3 antibodies were detected in the primary 

response to i.v. virus. The primary response to i.p. HA on day 3 consisted of 

y2a and y2b antibodies only. By day 7, yZa, y2b, yl and y3 were all equally 

represented and by day 14, following a secondary boost, yl antibodies 

exceeded y2a, and y2b and y3 were absent from serum antibody. y3 was also 

absent fî om the early primary response to i.v. HA, all isotypes were detectable 

by day 7 but y2a predominated, and by day 14, in the secondary response, the 

order of antibody titre was y2a > yl> y2b> y3.

The y2a antibodies predominate regardless of route of inoculation of 

influenza virus (i n. verses i.m.) in serum and lungs of CBA/Ca mice. However, 

the response to inactivated virus consists of all four y isotypes. BALB/c have 

higher titres of yl/y2a than C57BL/6 which has the highest titres of y2b. 

Neutralisation activity of the différent isotypes also varies with strain. For 

example, yl is twice as effective as y2a, which is twice as effective as y2b in 

BALB/c, but in C57BL/6, y2a and y2b are more effective than yl and y3, and 

in CBA/Ca mice, y2a has twice the neutralising activity of y2b.

The present investigation, and previous studies in this laboratory have 

shown that secondary antibody responses in CBA/Ca, BALB/c or BALB/k 

mice to be predominantly of the y2a, subclass (Smith, et a l, 1991),which is a 

characteristic trait of most viral infections in the mouse (Coutelier, et a l, 1988; 

Coutelier, et a l, 1987) and may illustrate the influence of antigen-specific CD4 

T cells: Thl cells secrete y-IFN, which enhances y2a, synthesis in vitro 

(Snapper, et a l, 1988), and has been shown to preferentially induce y2a 

production (Mosmann and Coffinan, 1989).

For neutralising antibodies to VSV or rabies virus, high affinity 

antibodies are essential at an early stage of infection since slow affinity 

maturation may allow chronic or severe systemic infection and prolonged
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transmission of the virus. In contrast, influenza virus does not establish 

systemic infection, and is restricted to the respiratory tract due to a 

requirement for apical budding from epithelial cells into the bronchial lumen 

(Roth, 1983). Consequently, host IgM antibody responses may not be a 

significant determinant of immune protection and /or antigenic variation. Thus, 

protection from live virus challenge is associated with rapid clearance by both 

secretory IgA and serum IgG (by transudation) so that by day 6 post infection 

there is no significant lung titre for virus. This is also associated with rapid 

class-switching.

The most detail studies to determine the dynamics of class specific 

antibody responses to HA in serum and nasal secretions have been reported by 

Murphy and his colleagues, who used live attenuated vaccines. Serum antibody 

responses typical of primary viral infections were detected in naive children 

using the ELISA technique (Murphy, et a l, 1982). IgM, IgA and IgG 

antibodies appeared in the serum within two weeks after inoculation of virus. 

The maximum serum IgG response was detected at approximately six weeks, 

while IgM and IgA antibody levels declined after two weeks. In nasal 

secretion, IgA was the predominant antibody and was present in the majority 

of individuals within two weeks of inoculation. IgG and IgM responses 

occurred less frequently and with low titres.

Changes in receptor binding site structure and function:

The selection of influenza virus variants with altered receptor binding 

properties has been reported previously by several groups. For the most part, 

such variants had either been selected for on the basis of their resistance to 

glycoprotein inhibitors of viral infectivity (Rogers, et a l, 1983b), or because of 

their ability to grow in various host cells (Burnett and Bull, 1943; Cohen and 

Biddle, 1960; Crecelius, et a l, 1984; Schild, et al., 1983). However receptor 

binding or adsorptive mutants have also been reported following selection with 

sub-neutralising levels of monoclonal antibodies (Daniels, et a l, 1987; 

Temoltzin-Palacios and Thomas, 1994; Yewdell, et a i, 1986).
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Yewdell et al, (1986) reported the selection of mutants by sub- 

neutralising levels of a mixture of monoclonal anti-HA antibodies. The 

antibody mixture contained at least two antibodies specific for each of the four 

PR8 HA antigenic sites. Although, the mutants did not differ from wild type 

antigenically, variation was observed in the ability of individual antibodies to 

inhibit mutant and wild type viruses firom agglutinating chicken erythrocytes. In 

contrast, very small differences were observed when human erythrocytes were 

used. That difference was probably due to the altered interaction of the virus 

with the cellular receptors and not due to the differences in antigenicity; Two 

of the residues (HAl 185 and 231) in the variants were found to be located 

near the receptor-binding site and could directly alter binding. The third residue 

(HAl 244) was located at the trimer interfhce. The variants were also able to 

agglutinate erythrocytes which were treated with twice the amount of 

neuraminidase needed to prevent agglutination by the wild type virus. Thus, it 

seemed that the antibody selected variants had higher affinity for cellular 

receptors.

Daniels et al, 1987, reported an IgGl mAh (HC63) that was broadly 

cross-reactive for a majority of natural H3N2 isolates. A number of variants of 

X31 and o f a receptor-binding mutant o f X31 (X31-HS. HAl 226 L—>Q) were 

selected by that antibody in eggs and in MDCK cells. Those variants principally 

involved substitutions in positions HAl 218 G->R, HAl 193 S->N, 226 L—>P, 

or deletion of HAl 224-230 (RGLSSRI). In most instances, the variant was 

recognised by the selecting antibody in ELISA although there was resistance 

to Ab neutralisation, or haemagglutination inhibition. The variants also showed 

altered receptor binding properties compared to X31: they either agglutinated 

erythrocytes containing the SA a  2,3 Gal linkage (HAl 218 G—>E), or showed 

resistance to inhibition by a 2-macroglobulin (del HAl 224-230; HAl 193 

S->N, 226 L->P) or exhibited transient haemgglutination of all derivatised 

cells.



148

Temoltzin-Palacios and Thomas (1994) employed a somewhat different 

approach to select receptor-binding variant viruses: certain HAl antigenic 

residues (63, 144, 158, 193) were found to be immunodominant in the 

neutralising Ab response of CBA/Ca mice to X31 infection. Following 

sequential mAb selection, in ovo a variant of X31 was obtained (IMUT-4) with 

substitutions at each of these positions, and was used to infect naive CBA/Ca 

recipients, and to obtain neutralising mAbs. Each of the mAbs failed to select 

antigenic variants of IMUT-4 but, following treatment with sub-neutralising 

levels of mAh, a receptor-binding mutant was obtained with two further 

changes (HAl 190 E->D, 226 L->Q). The variant was resistant to horse serum 

inhibition and was still recognised by the selecting mAb in ELISA It is of some 

interest that these same two residue changes (HAl 190, 226) have been 

reported in recent H3 isolates (e.g. BEIGING/92 - World Influenza Centre; 

NIMR).

The selecting mAb used in this study still recognised X31, and was 

used to select an X31 variant virus. This differed from wild type by a single 

residue change, HAl 155 Thr->De, which also conferred altered receptor- 

binding specificity (for N-glycolylsialic acid of horse RBC).

The structure of the receptor binding pocket was discussed in the 

introductory section (1.8.7 and fig 5) and I have indicated, in a space filling 

model (Fig 15), the topographic relationship of residue changes in the 

laboratory variants m 7.1 (HAl 145, 226) or m-21.2 (HAl 135, 225) or m-1.1 

(HAl 135, 158) or m-4.1 (HAl 135) (fig 15). Residues 134 -138 form the 

right side of the site and residues 224-228 form the left side and the bottom of 

the binding site is formed by Tyr 98 and Trp 153. The residues Glu 190, Leu 

194 project down f r o m  a short a-helix which, together with His 183 and Thr 

155 define the rear of the depression. What residue changes therefore, within 

this region of the molecule, affect receptor specificity?

It should be emphasised that, despite a consistent finding that antigenic 

residue changes are located proximal to the binding pocket, some antigenic
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Fig 15; Space filling model indicating molecular location of the

amino acid substitutions in the laboratory variants mentioned in this thesis.
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residue changes do affect receptor-binding specificity. For instance, the drift 

substitution HAl 155 Thr->Tyr in natural isolates confers increased affinity for 

N-glycolyl sialic acid residues, present on horse RBC. Furthermore, Temoltzin- 

Palacios and Thomas (1994) have reported a laboratory variant of X31, HAl 

155 Thr->Ile that is able to agglutinate horse RBC; and the same residue 

change has occurred in natural H3 isolates (CAEN/83 or SOF/84; data from 

the World Influenza centre, NIMR). Similarly, HAl 158 G->E is a defined 

antigenic site for both laboratory variants and natural isolates (e.g. TEX/77) 

and thus residue change differentially affects susceptibility (in agglutination 

assays) to periodate treatment of RBC.

Exposure to mild periodate treatment (in the absence of light) 

selectively cleaves cis-hydroxyl groups, present in the N-glycan side chain; and 

attacks terminal sialic acid residues, at the C7-C8 cishydroxyl tail, thereby 

effectively reducing the quantity of available sialic acid residues that can 

participate in agglutination reactions. (An alternative procedure would have 

been mild NANAse treatment of RBC).

Rather than antibody selection, inhibition by equine armacroglpbulin 

was used to select for a receptor-binding variant and which was found to differ 

from wild type virus by a single residue change HAl 226 L->Q (large non

polar to large polar residue). Changes in receptor-binding specificity were 

confirmed by altered specificity for a , 2-3 and 0,2-6 sialyl derivatised RBC in 

agglutination assays. The crystal structures of both wild type and variant HAs 

complexed to sialyllactose have been deduced by Weis et al (1988) and the 

authors conclude that minimal changes have occurred in the receptor pocket so 

as to accommodate the introduction of a large polar residue and further 

potential for establishing hydrogen-bonded contacts. I am not qualified to 

express an opinion on these findings but can only assume that there is no
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“straightforward” structural relationship between HAl 226 L-^Q change and 

specificity for the a , 2-3 and 0,2-6 linkage.

Various assays for differentiating variant viruses on the basis of their 

receptor binding characteristics involve either chemical or enzymatic 

modification of the receptors on erythrocytes (RBC). Daniels et al, 1987 

performed such haemagglutination tests by adsorbing viruses to derivatised (a 

2,3 or a  2,6) erythrocytes that contained amounts of sialic acid optimal for 

detecting differences in receptor binding properties. X31 was shown to be 

specific for the SA a-2,6 Gal linkage and bound weakly to SA a-2,3- 

derivatised cells even at the highest level of incorporation examined. In 

contrast, X31/HS (226 L->Q) bound to both SA a-2,6 and SA a-2,3 

derivatised erythrocytes (Daniels, et aL, 1987).

In the present investigation, receptor binding specificity was analysed 

by ELISA using either a-2,6 or a-2,3 N-acetyl-lactosaminyl-BSA (SLB) as 

substrates. AU variants exhibited reduced binding for a-2,6 SLB, particularly 

m-7.1 (145, 226), and this was consistent with a critical role for HAl 226 in 

receptor specificity. Interestingly, m-21.2 (135, 225) showed an intermediate 

binding for both a-2,6 and a-2,3 SLB. Another notable finding was that X31- 

HS failed to bind a-2,6 SLB in contrast to X31. This may be because of the 

different assay system used by myself and Daniels et al (RBC agglutination). 

Variant m-1.1 (135, 158) and m -l.lN  (145, 158) also exhibited altered 

receptor binding characteristics. HAl 158 is present on the opposite side of the 

receptor binding pocket and has been implicated in receptor binding specificity.

Thus, Hu transgenic IgM antibodies would appear to preferentiaUy 

select variant viruses with changes in conserved residues of the receptor 

binding pocket. How do I account for such preferential selection?

A likely mechanism may relate to the fact that most IgM antibodies are 

of low affinity, in contrast to neutralising IgG mAbs that have been used to 

characterise HA antigenicaUy. However, to establish that antibody affinity is
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indeed the determinant for selection of such variants, the next step should be 

measurement of antibody affinity and /or on-rate kinetics. Antibody affinity is 

defined as the strength of interactions between an antigenic determinant and 

the homologous antibody combining site and represents the summation of 

attractive and repulsive forces involved in interaction. Antibody avidity, on the 

other hand, depends in part on affinity but also involves other factors such as 

antibody valency. This means that a higher affinity antibody would bind larger 

amounts of antigen in a shorter period of time (faster on-rates) compared to a 

lower affinity antibody.

Affinity can be measured directly by ELISA, and on-rate kinetics can be 

determined by measuring the velocity of virus neutralisation. A range of 

measured values of affinity constants for the antibody binding site is enormous 

fi*om below 10̂  to above 10*̂  . The measurement requires

determination of free and antibody-bound antigen at equilibrium. Previously, 

sera containing a heterogeneous population of antibodies of various classes and 

of different affinities, were used and therefore interpretation of results were 

based on an overall affinity estimation which were less accurate. Subsequently 

monoclonal antibodies provided the opportunity to study individual 

homogenous antibodies of known affinity, class and concentration.

Because of the simplicity of the ELISA technique it has been used to 

estimate equilibrium constants directly fi-om solid phase binding of antibody 

(Beatty, et a l, 1987; Li, 1985). These measurements estimate a ‘functional 

affinity’ (Li, 1985)or avidity, the magnitude of which is directly dependent 

upon surface effects. The lack of surface diffusion of antigen and slow 

diffusion rate of ‘bulky antibody molecules’ slows down the association rate of 

antibody and antigen (Beatty, et a l, 1987; Li, 1985). For IgG antibody, 

multivalent binding has been shown to produce a 1000-fold increase in avidity, 

while for IgM the enhancement factor was 10® (Homick and Karush, 1972). 

Thus, if both the reactants, antigen and antibody are multivalent, accuracy will 

not be achieved. This necessitates the preparation of Fab fragments of
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antibody. However, this is where it is problematic to measure “on-rate” 

kinetics for IgM antibodies. IgMs are decavalent and it is difficult to prepare 

Fab fragments of such antibodies. My intention was to compare affinities of 

IgM mAbs that I had generated (and selected double mutants) with IgM mAbs 

from CBA/Ca or BALB/c donors (that had selected X31 variants with single 

changes in known antigenic sites) to see if there was any difference in the “on- 

rate” kinetics. However, very preliminary attempts to employ a plasmon 

resonance technique (BIACOR) have been unsuccessful, due to non-specific 

high backgrounds.

I now wish to consider the findings in the second part of my thesis 

which may be of some relevance to the phenomenon of Original antigenic sin 

- a skewed response during secondary infection such that the antibody 

specificity is directed primarily towards the antigen encountered in the original 

infection (Francis, et al., 1953). Epidemiological studies in humans have shown 

that infection by one subtype confers little or no protective immunity to other 

subtypes, and sera from humans or experimentally infected animals do not 

cross-react with viruses of different subtypes (Knight and Kosel, 1973). After 

infection, individual sera contain antibodies to determinants on the HA of the 

infecting strain that are strain specific as well as cross-reactive antibodies to 

determinants shared by variants of that subtype. In human immune sera that 

have been virus absorbed the proportions of strain-specific and cross-reactive 

antibodies depend on the individual’s previous experience of influenza virus 

infection. In sera from unprimed and naturally infected children, the 

predominant antibodies were strain-specific with only a small amount of cross

reactive antibody present (Oxford, et a l, 1979a).

In adults who have previously been exposed to an earlier variant, the 

predominant antibodies after infection are cross-reactive but strain-specific 

(Oxford, et a l, 1979b). These studies suggest that antibodies induced by 

recurrent infection with influenza virus were primarily directed toward those 

determinants.
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This brings me to the second part of my thesis where I have tried to 

“mimic” the human situation in mice: individual donors were infected with X31 

and, following hemisplenectomy the recognition specificity for X31 HA was 

examined by the production of mAbs, and the selection and sequencing of their 

corresponding variant viruses. Thereafter mice were re-challenged with an X31 

variant virus (HAl 145 S->I, 158 G->E, del 224-230). My initial aim was to 

see whether the immunodominance observed after initial X31 infection had any 

influence on the repertoire to subsequent challenge with a variant virus.

The potential antibody repertoire of an individual, i.e. the total number 

of possible V-domains that can be generated fi'om the germline is dynamic, and 

of the order of 10̂  différent V-domains (Berek, et a l, 1985; Tonegawa, 1983). 

The emergent repertoire produced daily in the bone m a r r o w  is approximately 

3-5x10^ dififerent clones (Opstelten ^and Osmond, 1983). The available 

repertoire, i.e. the number of domains currently expressed, is limited to a 

maximum of 10* specificities, and the actual repertoire which is the V-domains 

used by the effector Ig-secreting cells are about 10® cells (Benner, et a l, 1982). 

However, the normal immune system is dynamic, with high rates of cell 

production and high turnover rates allowing rapid substitution of the major 

part of the immunocompetent cell pool. The size of d if ife re n t antibody 

repertoires, and the dynamic properties of lymphocytes suggest that the 

immune system only uses a minor fi'action of its potential diversity. Repertoires 

can undergo continuous qualitative changes throughout life, and such changes 

can occur at many stages of development. The response to antigenic challenge 

depends on the expressed repertoire, and is therefore of some interest to 

establish whether these are dictated by stochastic events, or germ-line bias, or 

post “antigenic experience”.

Thus, in a sequential infection there might be two possible scenarios: 

(a) either T-memory cells, with a broader specificity than the B-cells, are 

triggered by the cross-reactive antigen and are able to help B-virgin 

lymphocytes to secrete antibodies, or (b) B-memory cells with specificity for
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the first antigen are directly triggered by the cross reactive antigen. In the 

present study, donors were able to generate a neutralising antibody response to 

the variant virus that was also cross-reactive for the wild type virus. In earlier 

studies of original antigenic sin, after a sequential infection with two different 

but antigenically related strains of influenza virus, the antibody stimulated by 

the second infection reacted more strongly with the primary virus than with the 

one actually eliciting the response (Fazekas, and Webster, 1966 a; Fazekas, and 

Webster, 1966 b) - which is what I find!

In the present study, I have examined directly the recognition 

specificity of “recall” mAbs for X31 and its variant virus, by the selection of 

further laboratory variants, X31 variants selected with such antibodies 

(particularly mAb B-3G1), had multiple amino acid substitutions (HAl 193 

S->N, 198 A->E, 226 L->R) or (HAl 198 A->E, 223 V->I). A43 variants 

had a further two substitutions (HAl 145 I—>S, 189 Q—>K), or (145 I->S, 196 

V->A). How can I explain the finding that X31 variants had multiple changes 

both in conserved residues and in antigenic regions? I would speculate again 

that Ab affinity may have played some role in the selection process, as also 

seen in the earlier findings with Hulg mAbs.

The relationships between the amino acid sequences of 

immunoglobulins and the structures of their antigen-binding sites are important 

for understanding the molecular mechanisms for the generation and maturation 

of the immune response. The specificity and affinity of the binding sites are 

governed by the structures of six hypervariable regions (Wu and Kabat, 1970). 

Because hypervariable regions have different sequences in different antibodies, 

each region adopts a different conformation in different antibodies. The 

conformations are determined by the interactions of a few residues at specific 

sites in the hypervariable regions (Chothia, et a l, 1989).

Thus, affinity of an antibody for its antigen influences its biological 

activity. High affinity antibody forms more stable association with antigen than 

lower affinity antibody. Not only do antibodies fi’om different subclasses differ
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in their affinities, but affinity differences are found within a given subclass 

(Sarvas, et al., 1983). Thus, it is possible that the IgG antibodies generated 

after challenge with the variant virus had lower affinity compared to the ones 

generated earlier. This is speculation on my part and requires further 

investigation and data m e a s u r e m e n t s  of affinity for Fab fragments.

To summarise, I have shown that (probably) low affinity antibodies 

against X31 may preferentially select for substitutions within or proximal to the 

receptor binding pocket. In contrast, moderate to high affinity antibodies for 

the most part select for a single amino acid change within antigenic regions of 

the HA molecule.

Finally, I investigated the recognition specificity of a mAh B 1-9.1 that 

was generated in a BALB/c donor following natural infection. This mAb 

selected a variant with changes at HAl 135 G->V, 226 L—>Q, and fitiled to 

recognise its mutant by ELISA thereby qualifying it as an antigenic variant. In 

previous chapters, I have outlined the importance of residue 226 and how it 

affects receptor binding specificity of the virus. I therefore did further selection 

of X31 variants with mAb Bl-9.1 at different times, and with varying mAb 

concentrations. I found that 6 out of 6 variants had the same amino acid 

changes, HAl 135 G ^R , 158 G->E. Interestingly, the selecting mAb could 

still recognise the laboratory variants HAl 135 G—>R or HAl 158 G—>E in HI 

assays which suggested that the variant had to have both changes in order to 

abrogate recognition by that particular antibody.

I therefore decided to use mAb Bl-9.1 to select a variant of HAl 135 

G->R, and found that the further substitution was indeed HAl 158 G->E. 

However, in addition to HAl 135, 158, the variant also had an amino acid 

substitution at HAl 251. Change at HAl 158 is known to alter receptor 

binding specificity of the virus.

In summary I have found both IgM (from transgenic donors) and IgG 

mAbs (following recurrent infection) preferentially select laboratory variants 

with multiple substitutions in the HAl subunit and altered receptor-binding



157

specificity. Affinity measurements of these antibodies might help to establish 

whether low affinity antibodies do indeed select variants with changes in the 

conserved residues that constitute part of the receptor-binding pocket ( fig 5: 

structure of receptor binding pocket).
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Rogers, G.N., Paulson, J.C , Danielŝ  AS., Skdid, J.J., Wilson, LA and Wiley, 

D C. (1983a) Sin^e amino add substitutions in influenza haemagghitinin change 

receptor biiKlmg!9)edficity..Yaftrre 304:76-78.

Roges^ G.N., Pritchett, T.J., Lane, J.L. and Paulson, J.C. (1983b) Differential 

sensitivity of human, avian, and equine influenza A viruses to a glycoprotein 

inhibkor of infection Sdection of receptor specific variants. Virology 131:394-408.

Roizman, B. and Sears, A.E. (1987) An inquiry into the mechanisms of herpes 

smplex virus lateicy. Annual Review of Microbiology 41:543-577.



174

Roost, H. P., Bachmami, M.F., Haag, A , KaUnke, U., Ptidca, V., Hengaitner, H  

and Zinkernagd, AM. (1995) Eady high affinity neutralising anti-viral IgG 

responses without further overall inq)rovements of affinity. Proceedings o f the 

National Academy o f Sciences (USA) 92:1257-1261.

Roth, MG., Conrans, AW , Giusti, L., Davis, A  A , Nayak, D f., Gething, M-J., 

and Sambrook, J. (1983) Influenza virus haemagghitinin e?q)ression is polarised in 

cdls infected with recombinant SV40 viruses carrying cloned haemagghitinin 

DNA Ce//33:435-443.

Rossmann, MG , Arnold, E., Erickson, J.W., Frankenberger. E A , Griffith, JA, 

Hecht, H-J., Johnson, J.E., Kamer, G., Luo, M , Mosser, AG., Rueckert, R A , 

Sherry, B , and Vriend, G. (1985) Structure of a human common cold virus and 

functional relationship to other picomaviruses. Nature 317:145-153.

Salk, JE. (1944) A simplified procedure for titrating haemagghitinating capacity of 

mfluenza virus and the corresponding antibody. Journal of Immunology •■9%.

Sanger, F., Nidden, S. and Coulson, A A  (1977) DNA sequendng with chain 

terminating inhibitors. Proceedings o f National Academy o f Sciences (USA). 74 

(12):5463-5467.

Sarvas, H.O., Seppala, LIT., Tahtinen, T., Peterfy, F. and Makela, O (1983) 

Mouse IgG antibodies have subclass assodated affinity differences. Molecular 
Immunology 29:239.

Schild, G.C. (1972) Evidence for a new type-specific structural antigen of the 

influenza virus partide. Journal of General Virology 15:99-103.

Sdrild, G.C., Oxfind, J.S., DeJong, J.C. and Webster, AG. (1983) Evidence for 

host-cdl sdection ofiiifluenza virus antigenic variants, 303:706-709.

Schumacher, T.N., Kantesaria, D.V., Heemds, MT., Ashton-Rickardt, AG, 

Shephssdy J.C , Fruh, A , Yang, Y., Paterson, P.A., Ton^awa, S. and Pleogh, 

HL. (1994) Peptide length and sequence spedfldty of mouse TAPI / TAP2 

translocator. Journal c f Experimental Medicine 179:533.



175

Schwartz, AH. (1990) A cdl modd for T lymphocytes donal anergy. Science 

248:1349-1356.

Shearer, G.M., Bernstein, D.C., Tung, KS.K, Via, C.S., Redfidd, A , Salahuddin, 

S.Z. and Gallo, AC. (1986) A modd for the sdective loss of major 

histocompatibility complex self-restricted T cdl immune responses during the 

devdopmeint of acquired immune defidency syndrome (AIDS). Journal of 
Immunology 137:2514-2521.

Shimizu, A. and Horyo, T. (1984) Immunoglobulin class switching. Cell 36:801- 

803.

Siskind, GD. and Benaceraf  ̂B. (1969) Cdl sdection by antigen in the immune 

re^ m e. Advances in Immunology 10:1-50.

Skdid, J.J. and Schild, G.C. (1971) The polypeptide composition of influenza A 

viruses. Virology

Skdbd, J.J., Stevens, D.J., Damds, AS., Doutas, A , Knossow, M., Wilson, LA. 

and l^ ey , D C. (1984) A carbohydrate side chain on haemagghitimns of Hong 

Kong influenza viruses inhibits rec%nition by a monodonal antibody. Proceedings 
of the National Academy of Sciences (USA) %\:\T19A1%3.

Slack, J.H (1985) Genetic control of immunoglobulin isotype restriction. Current 
Topics in Microbiology and Immunology 122:205-209.

Smith, C A , Bamett, B.C., Thomas» DB. and Temohzin-Palados, F. (1991) 

Structural assignment of novd and immunodominant antigenic sites in the 

neutralising antflxxfy reqwnse of CBA Ca mice to influenza haemag^utinia 

Journal cfEaqtermmttal Medicine. 173:953-959.

Smith, T.J., Chase, E.S., Schmidt, T.J„ Olson, N.H, Baker, T.S. (1996) 

Neutralising antibody to human rhinovirus 14 penetrates the receptor-binding 

canyoa Nature. 383:350-354.



176

Snapper, C M , Peschel, C and Paul, WE. (1988) IFN- stimulates IgG2a secretion 

by murine B-ceOs stimulated with bacterial lipopolysaccharide. Journal of 
Immunology 140:2121-2127.

Staudt, L M  and Gerhard, W. (1983) Generation of antibody diversity in the 

immune response of BALB/c mice to influenza virus haemagghitinin. Journal cf 
E3q>erimentalMe(Mcine 157:687-704.

Su, B., Jadnto, E , HGbi, M , Kalhmki, T., Karin, M and Bra-Neriah, Y. (1994) 

JNK is involved in rignal integration during costimulation of T lymphocytes. Cell 
77:727.

SuDivan, JE., Bany, D.W., Albrecht, P., and Lucas, S.J. (1975) Inhibition of 

lymphocyte sdmulatian by maisles virus. Journal cflnanunology 114:1458-1461.

TacdoH, GE., Gottlid), TM , Bhmt, T., Priestley, A , Demengeot, J., Mizuta, A , 

Lehmann, A A , Ak, F W , Jackson, S.P. and J ^ o , P.A (1994) Ku80: Product of 

the XRCC5 gene and its role in DNA rqiair and V(D)J recombination. Science 
256:1442-1445.

Tainer, J.A, Getzo% E D , Paterson, Y , Olson, AJ. and Lamer, AA. (1985) The 

atomic mobility component of protein anrigemdty. Annual Review of Immunology 
3:501-535.

Tanokan-Palacois, F. and Thomas, D.B. (1994) Modulation of Immunodominant 

skes in infl»gn?« haemagghitinin con^nomise antigenic variation and sdect 

recqitOT-binding variant viruses. Journal cf Experimented Medicine 179:1719- 

1724.

Thomas, D E  , Skehd, J.J., Mills, KH.G. and Graham, CM  (1987) A single 

amino add substitution in mflumza haemagĝ utinin abrogates recognition by 
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APPENDIX I

(Buffers)

Boraie Buffered Saline (BBS), pH 8.6

H 3B O 3

N % B 407

NaCl

Boric add lOQmM

Sodium tetraborate 40mM

Sodium chloride 70mM

Diethartokmune buffer 

(H0CHzCHz.)2NH 

6H2O

NaNa

Diethasolamme 9.7% v/v 

Magnesium chloride

hexalydrate 

Sodium azide

0.49mM 

0.02% w/v

Phosphate buffered saline (PBS)

NazHPOi Di-sodium hydrogen pho^hate lOOmM

K H 2P O 4  Potassium di-hydrpgen phoq)hate 1.8mM

NaCl Sodium chloride 171mM

Kd Potassium chloride 3.4mM

Tris/Borate buffer (TBE)

Tris-base 89mM

Boric add 89mM
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EDTA 2mM

Tris/Gfycine buffer 8.3)

Tris-HQ 25mM

Glycine 3S4mM

SDS 0.1%

Tris/saline buffer

Tris-HCl

EDTA

SDS

lOmM

ImM

l%w/v

LoatUrg buffer (TKjn-re(kumtg)

Urea 8.3M

SDS 0.6% w/v

Cootnasse bhie 0.01% w/v

Loadmg buffer (reducing)

Urea 8.3 M

SDS 0.6% w/v

Coomassie bhie 0.01% w/v

2-Me 0.46M

(An chemicals fiom BDH laboratory supplies)


