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Abstract

A study was made o f  the field o f  flat panel displays, and their potential application in an automotive 

environment. Using contemporary display technology, semiconductors and software, a model was 

developed to fit an existing automotive instrumentation application. The resulting model was critically 

assessed in respect to the demands o f such an application in respect to existing instrumentation 

methods. The viability and suitability o f implementing such a design are discussed as well as its 

ability to be intrinsically portable and adaptable.
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Glossary of Terms

ACTFEL - AC Thin Film  EL
AMLCD - Active M atrix LCD
CCFL - Cold Cathode Fluorescent Lamp
CRT - Cathode Ray Tube
DCEL - DC Electroluminescent
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DS - Dynamic Scattering
DSTN - Double Layer STN
EL - Electroluminescent
EMC - Electromagnetic Compatibility
EPOS - Electronic Point O f Sale
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FED - Field Em ission Display
FLCD - Ferroelectric LCD
FPD - Flat Panel Display
FPED - Flat Panel Electronic Display
FSTN - Film  Com pensated STN
GPS - Global Positioning Satellite
HCFL - Hot Cathode Fluorescent Lamp
HDTV - High Definition TV
HEX - Abbreviation o f Hexadecimal
HTN - Hyper TN
HUD - Head Up Display
IC - Integrated Circuit
ISO - International Standards Organisation
ITO - Indium Tin Oxide
LC - Liquid Crystal
LCD - Liquid Crystal Display
LED - Light Emitting Diode
MTN - M odulated TN
PC - Personal Computer
PCB - Printed Circuit Board
PDP - Plasma Discharge Panel
PMLCD - Passive M atrix LCD
RAM - Random Access Memory
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SMT - Surface M ount Technology
STN - Super Twisted Nematic
TFT - Thin Film  Transistor
TN - Twisted Nematic
UV - Ultraviolet
VCR - Video Cassette Recorder
VDU - Visual Display Unit
VFD - Vacuum Fluorescent Display
VGA - Video Graphics Adapter
Vied - LCD drive voltage



Contents

Page

Abstract

Acknowledgement 

Glossary of terms 

Contents

1.0 Introduction 1

2.0 Flat Panel Electronic Displays, An Overview 4

2 .1 Liquid Crystal Displays (LCD) 4

2.1.1 Guest-Host Displays 5

2.1.2 Twisted Nematic Displays 6

2.1.3 Super Twisted Nematic Displays 7

2.1.4 F erro-Electric Displays 8

2.1.5 Refinem ent o f  TN and STN Displays 9

2.1.6 Colour LCD 12

2.1.6.1 Controlled Bi-Reffingent Colour LCD 12

2.1.6.2 Active M atrix Colour LCD 13

2.1.6.3 Passive M atrix Colour LCD 15

2.1.6.4 Polym er D ispersed LCD 15

2.1.6.5 Backlights for LCD 16

2.2 Light Em itting Diodes (LED) 17

2.3 Vacuum Fluorescent Displays (VFD) 19

2.4 Plasm a Discharge Panel (PDP) 22

2.5 Electrolum inescent Displays (EL) 24

2.6 Other Interesting Technologies 27

2.6.1 Beam M atrix Displays 27

2.6.2 Field Em ission Displays 28



3.0 Application in an Automotive Environment 30

3.1 M odel Specification 31

3.1.1 Display Format 32

3.1.2 Technology Options 33

3.1.3 Display Illumination 35

3.1.4 ISO Symbol Illumination 35

3.1.5 Information Configuration 36

4.0 Design Solution 38

4.1 Instrum entation Layout 38

4.2 Firm ware 39

4.3 Inform ation Format 40

4.4 ISO Symbol Implementation 41

4.5 Fabrication 42

5.0 Analysis, Discussion of System and Conclusions 44

References 49

Appendix



1.0 Introduction

Information technology is at the forefront in the revolution o f  modem society, with 

overwhelm ing volumes and variety o f information circulating on vast global networks o f 

communication. Electronic displays are the most effective means o f interfacing with this medium. 

Consider, for example, a com puter terminal, where information is required in an immediately clear, 

concise and ordered fashion, at relatively close proxim ity, and easily updated upon request. W hilst 

outwardly sim ilar to, say, a television monitor, intrinsically differing demands on resolution, 

brightness and aspect ratio exist. This is due to the differences in typical viewing conditions and in the 

nature o f  information presented, though both still usually operate within a restricted and well defined 

range o f  environmental conditions.

Perhaps a more perplexing example to consider would be the cockpit o f an aircraft where such 

a comfortable environmental operating range may not be so easily defined. Here a wide variety o f 

inform ation m ust be available to the pilot w ithout dem anding prolonged interrogation. In this type o f  

application, where differing functional demands are required o f individual instruments, the operating 

criteria can be found to be less well defined. Extreme environmental conditions, such as harsh incident 

light, wide variance in operating temperature and vibration exist, together with statutory safety 

requirements regarding, for example, colour co-ordination. It is easy to imagine how confusing such an 

arrangement could become without careful planning by the instrumentation engineer and the strict 

specification o f each component. It is only too apparent what consequences arise from any 

misinterpretation o f  information. In addition, there are further considerations such as mechanical bulk 

and weight to be reconciled. Historically all such information would have been provided by mechanical 

and electro-mechanical means, often referred to as analogue, such as we are still accustomed to seeing in 

contemporary automotive dashboards. Though they are relatively cheap, reliable and robust they have 

the disadvantage o f  only being able each to perform a single function. The consequence is a confusing 

plethora o f dials and gauges.

W hilst perhaps an extreme example, the aviation application illustrates many o f the problems 

endem ic to instrumentation engineering. A more pertinent example may indeed be a m odem  

automobile. Here, although the breadth o f information dem anded may be less critical, and the 

environmental aspects less rigorous than the previous example, matters are further compromised by the 

demands o f  the stylist, the marketer, economics and the m ost divergent o f  all, the consumer. The 

human ha lf o f such a “man/machine interface” is rarely more than a semi-skilled operative.



Once again many o f the functions present have been, and in the vast majority o f  cases still are, 

perform ed by traditional mechanical and electro-mechanical devices. Indeed, in many cases such devices 

have been found to be less demanding on the operator than electro-optical arrangements, though 

undoubtedly familiarity plays a significant part. However, the burgeoning number o f ancillary 

instruments is becom ing confusing and increasingly difficult to package, requiring increasingly 

com plex assemblies. This also affects both the reliability and cost effectiveness o f the finished product. 

A n ideal solution w ould be to remove all ancillary and non-essential information, integrating each 

function into a single instrument that could be quickly reconfigured to present specific information 

upon request.

It is difficult to see how a device o f  this nature could be achieved within the limitations o f 

traditional mechanical, and electro-mechanical instruments. W hilst the task would be made easier if  

electronic display components were incorporated, what is required is a device whose format can be 

rapidly reconfigured. An electro-optical device represents the most effective solution. By far the most 

com m on form o f  device which fulfils these demands is the ubiquitous cathode ray tube (CRT). Used in 

anything from com puter terminals and TV sets, to aircraft instruments, the CRT, is the m ost mature o f 

all available technologies and is still seen as the benchm ark by which all others are compared. “Flat 

panel displays are on everyone’s mind, but CRTs are on everyone’s desk”, was the de facto address o f 

keynote speakers in the early 1990’s. A CRT is relatively inexpensive, robust and has excellent 

operating characteristics. Unfortunately, there are several drawbacks to using this technology in an 

autom otive environment. Power consumption, weight, mechanical bulk and the high levels o f harmfiil 

radiation emitted are the major drawbacks. In the past the CRT had been the only practical alternative 

to the mechanical, and electro-mechanical devices previously mentioned for instrumentation. However, 

the relatively recent advent o f  portable computers, TVs and other battery operated equipment has 

resulted in the rapid development o f a wide range o f  cheaper flat panel displays with excellent 

performance characteristics.

The purpose o f  this course o f research was to investigate thoroughly the area o f  electronic flat 

panel displays, and research their application into solving contemporary instrumentation problems, 

choosing a single particular subject on which to develop a body o f  original research. The aim o f this 

research is the design, development and manufacture o f an alternative automotive instrumentation unit 

em ploying flat panel display technology and solid state light sources. In order to establish the validity 

o f  the developm ent work it has been necessary to become fully conversant with both the operating 

principles and properties o f the various available technologies, and the operating conditions demanded



in an autom otive environment. This knowledge has been essential in predicting which direction current 

and future development lay. Early work in support o f  the general topic therefore concentrated heavily on 

a literature research o f flat panel display technology. This is described in detail in the following 

chapter. The next chapter describes the general problems specific to information display within the 

autom otive domain.

Adopting a top down approach a general specification was formulated for the unit. The various 

technologies described in the second chapter are then examined to assess the suitability o f  each, before 

justifying the selection o f a particular technique on which to base the development o f the final product. 

All aspects o f  the design, development and implementation o f  the solution are discussed in chapter 4. 

Chapter 5 presents a discussion o f the findings accumulated as a result o f  testing and subsequent referral 

to an established automotive manufacturer. The thesis concludes by highlighting areas o f  future 

developm ent, possible future techniques, and developments which would be required in order to solve 

the rem aining problems.



2.0 Flat Panel Electronic Displays, an Overview

A n explanation o f the rationale behind a thorough research o f  the field o f  Flat Panel Electronic 

Displays (FPED) has been suggested in chapter 1. It has been a fundamental pre-requisite o f the design 

study that a broad understanding o f the subject was gained in order for the final study to be relevant and 

v a lid '. However, the subsequent design study should be recognised as having developed the overall 

knowledge and expertise in the broader field o f displays, as opposed to the reverse. This chapter details 

basic display technology.

2.1 Liquid Crystal Displays (LCDs)

O f any o f  the technologies covered here the LCD is the m ost diverse, both in terms o f 

application and basis o f operation. In order to appreciate this diversity it is appropriate to have an 

understanding o f  exactly what constitutes a liquid crystal, and the many varied forms which it can take. 

A lthough it was not the purpose o f this study to discuss the detailed science o f  liquid crystals a broad 

explanation o f their nature is given here. For a thorough understanding o f this field reference should be 

made to some o f  the standards works covering liquid crystal m aterials and their application in the field 

o f  electronic displays"

A  liquid crystal is a material which exhibits both the fluidity associated w ith a liquid and the 

ordered crystallinity associated with a solid. This state only persists w ithin a lim ited temperature 

range. As the temperature o f the material tends toward the upper limit, so the properties tend 

increasingly toward that o f  a true liquid, to the point where the material undergoes a phase change and 

becom es truly liquid. This limit is called the ‘clearing po in t’ o f  a liquid crystal. Sim ilarly, as the 

tem perature tends toward the lower limit the properties tend toward those o f a true solid. These 

materials are known as mesogens, and such a phase state in a material is known as a ‘m esophase’. Fig. 

( I ) shows the m olecular diagram for such a material with an illustration o f  its simplified phase 

diagram. This phase is formed when a molecule is created having rod-like characteristics with a length- 

width ratio in excess o f 3:1, containing polar groups which provide the intermolecular forces required 

to orient them. It is another peculiar feature that m ost such molecules used in electronic displays 

exhibit som e degree o f flexibility at the ends.

There are, generally speaking, three classes o f liquid crystal material. These are nematic, 

cholesteric (chiral nematic) and sm ectic"'. O f these nematic materials presently form the basis for the 

m ajority o f  display applications using liquid crystals. These m aterials are usually accompanied by 

lesser levels o f chiral nematic materials. Such a relationship will be given greater detail in the
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following pages. ‘N em atic’ is derived from the Greek word meaning “thread like”, a reference to the 

molecular characteristics o f such materials. The field o f  liquid crystal research is closely associated with 

the developm ent o f  polymers.

The m olecules in a nematic material are ordered into homogeneous layers in one dimension 

only, being random ly ordered in the other two dimensions. These homogeneous layers form parallel to 

the long axis o f  the molecules. This order is, however, relative. It can be shown that the num ber o f 

m olecules exactly aligned along a common axis within a liquid crystal is small. The relevant order is 

realised i f  one takes an average o f  the sum o f the director, n (see Fig. 2) for each molecule. For an 

isotropic liquid no specific average alignment can be found. Anisotropy is found in liquid crystals 

because a bulk average alignment is present.

Cholesteric, or chiral nematic liquid crystals exhibit a sim ilar degree o f order to nematic 

m aterials. In this case though each homogenous layer is found to lie at some angle, in the same plane, 

to the adjacent layers, forming a helical structure. The term  cholesteric is associated with the early 

work carried on liquid crystals derived from cholesterol. Chiral means twisted. This will be seen to be 

a key characteristic in the development o f LCDs.

Smectic comes from the Greek word meaning “soap-like” . Indeed the residue found around a 

bar o f wet soap is a form o f smectic liquid crystal. It is formed as a consequence o f the hydrophobic 

nature o f  part o f  the molecule, and the hydrophilic nature o f other parts o f the same molecule. These 

m aterials exhibit orientational order similar to that o f  the nematics, but also have similar amounts o f 

positional order. Some materials have both nematic and smectic phases over narrow temperature bands. 

Fig. (2) shows the relationship o f  the three basic classes.

2.1.1 Guest-Host Displays

The basis o f using liquid crystal m aterials in display applications relies on the fact that the 

structure o f  the mesophase can be altered by the application o f  an electric field. In general small 

amounts o f  chiral nematic compounds are used for introducing helical twist to twisted-nematic, or 

super tw isted-nem atic LCDs (see later), as opposed to being used intrinsically for LCDs themselves. In 

the past they had been used extensively for ‘G uest-H ost’ technologies, such as the Heilmeyer, and 

W hite-Taylor cell designs. In these cases the LC is used purely as the machine to control the 

orientation o f dichroic molecules, typically. Such designs offer a wide range o f different cell colour, 

though this is non-selective. However, their perform ance is lim ited due to poor response speed and 

contrast, although they do exhibit superior performance over wide viewing angles compared to 

traditional TN displays. A nother drawback being the lifetime deficiency o f the dye molecules, which
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are susceptible to UV radiation. They are subject to greater levels o f  attention at the moment as the 

level o f  research into polymer liquid crystals is increasing, especially in combination with active 

m atrix addressing, o f  which more will be said later, which has enabled progress to be made in the area 

o f  response speeds.

2.1.2 Twisted-Nematic Displays

The greatest number o f LCDs employ a technique known as twisted nematic (TN), or a 

generic developm ent known as super twisted nematic (STN). The TN technique sandwiches the liquid 

crystal material between glass plates which have transparent electrodes, usually o f indium tin oxide 

(ITO), formed across the inner surfaces. Additionally, each inner surface is coated with a polyimide 

material which is rubbed, or brushed in a particular direction. This induces the liquid crystal molecules 

to align them selves to the direction in which the polyimide has been rubbed. The directions o f  this 

rubbing on each plate are then arranged at some nominal angle relative to each other, typically 90°.

The intrinsic nematic LC is doped by a small amount o f chiral-nematic LC. This has the effect o f 

inducing a natural twist in the molecular structure o f the material and avoids problems o f the nematic 

m olecules tw isting in different directions over the area o f  the display. This would cause the display to 

exhibit different levels o f contrast between the differing areas o f twist. The technique depends on the 

viewing angle relative to the normal axis o f the molecules. This sandwich is placed between crossed 

polarisers, see Fig. (3). This has the effect o f  modulating the plane o f polarisation o f the light, 

effectively twisting the plane o f  polarisation by the induced angle o f  twist present in the LC. 

Traditionally that is 90°. M any commercial products use only 50° o f  twist. If  an electric field is then 

applied perpendicular to the cell the molecules align parallel to the electric field. Reference should be 

m ade to the distribution o f  charge along the molecules and dielectric permittivity o f the LC material to 

fully appreciate this phenomenon. Polarised light entering through the first polariser is, therefore, no 

longer modulated in such a manner as to allow it to pass through the second polariser, or analyser. The 

cell thus appears dark. The region over which this occurs is dictated by the areas over which the two 

sets o f transparent electrodes overlap. So it may be seen that by careful arrangement o f these electrodes 

the com plex patterns we are familiar with are possible. Because o f  the nature o f this mechanism LCDs 

are view ing angle dependent. As already stated the angle at which the display exhibits the maximum 

contrast is directly related to the angle o f view relative to the average position o f the nematic 

molecules. For this reason LCDs are typically classed by their optimum angle o f view. That is 6:00 

o ’clock, 12:00 o ’clock, etc., where 6:00 o ’clock LCDs are optimised for viewing at an angle below  the 

normal, for example.
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This arrangement works well enough whilst considering static, or low level multiplex, 

addressing schemes. If, however, the level o f multiplexing is increased, so that the period during which 

the display elements are addressed is reduced, then the liquid crystal cells have less tim e to complete 

the full range o f movement. This leads to a noticeable loss o f contrast. To some degree this effect can 

be countered by reducing the rotational viscosity o f  the fluid. However, this in turn leads to a loss o f 

contrast because the molecules o f the liquid crystal relax to their natural order much more quickly.

This inhibition is compounded by other factors. The threshold o f  liquid crystal m aterials, or the value 

o f  the corresponding electric field required to overcome the polar orientation o f the LC molecules, does 

not exhibit a sharp transition. This transition is both time and voltage dependent. Fig. (4). Secondly, 

in order to avoid problems o f chemical degradation o f the liquid crystal materials due to electrolysis, 

LCDs m ust be driven by a symmetrical AC waveform. This can lead to noticeable ‘crosstalk’, where 

adjacent elements are affected by the addressing potential o f neighbouring elements, leading to a loss o f 

contrast. For these reasons simple TN displays are limited in the level o f  useful resolution that can be 

achieved.

2.1.3 Super Twisted-Nematic Displays

In the mid I980 ’s a technique was developed which resolved m any o f  these problems. This 

becam e known as super twisted nematic (STN)’' . Commonly the m olecules w ithin a STN LCD are 

tw isted through a much greater angle than those o f  TN displays, typically 180° to 270° (though 240° 

is typical o f  today’s technology). This method differs fundamentally from that o f  TN, relying on the 

mechanism of birefringence o f the molecules rather than the modulation o f  the plane o f  polarisation o f 

the light. Birefringence refers to the properties o f the LC molecule which makes them  exhibit differing 

indices o f  refraction in the X and Y planes. The greater range o f movement required o f  the molecules 

within an active element increases the level o f  contrast. This rise in contrast gives rise to the useful 

levels o f  resolution possible through increased levels o f  multiplexing. To disorientate the increased 

level o f  molecular movement over much shorter addressing periods requires increased levels o f voltage 

to address each element. It should be noted that traditionally this increase in the com plexity o f the cell 

has m eant that STN has been stable over a much more restrictive temperature range. This has been 

largely redressed by improvements in the LC materials recently, and more often than not it is now the 

reliability o f the materials used in the construction o f  the cells, such as the epoxies, that limit the use 

o f  either STN, or TN over extended temperature ranges.
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2.1.4 Ferro-Electric Displays

Until relatively recently smectic liquid crystal m aterials had not been used for display 

purposes, the high viscosity o f the material in the sm ectic phase being difficult to control. Serious 

research is now being carried out into their use though precisely because o f the singular effect o f this 

viscosity: bistability. W hen the molecular orientation in a smectic material is altered the viscosity o f 

the material ensures that this change o f orientation is retained indefinitely. The polar forces amongst the 

m olecules in this phase are insufficient to overcome the frictional forces binding the molecules in place. 

Constant addressing schemes are no longer required to refresh the state o f each active element. 

Relaxation o f  the molecules into some pre-active state does not lead to a loss o f  contrast, though, o f 

course, each picture element now needs to be addressed to achieve both ‘on ’ and ‘o f f  states.

There are several classes o f smectic materials. These are classed as ‘A ’, ‘B ’ and ‘C ’, etc., 

referring to the various states o f positional order which m ay be found in such materials. O f these only 

classes ‘A ’ and ‘C ’ have been used to implement a display. It has been m entioned earlier that such 

m aterials exhibit orientational order, similar to nematic and chiral nematic materials, and that they also 

exhibit high levels o f positional order. In the case o f sm ectic ‘A ’ compounds the alignm ent is relative 

to the length o f  the molecule. Molecules o f  smectic ‘C ’ compounds are aligned with an additional 

angle o f  tilt to the two planes o f  order.

Initial efforts to capitalise on the bistability o f  these compounds concentrated on class ‘A ’ 

m aterials, relying on their ability to retain their orientation, rather than exploiting any o f  the properties 

relating to the order o f the molecules, as was the case w ith nematic techniques. These techniques used 

a “dynam ic scattering” o f the molecules to block the passage o f light through the cells, a technique that 

was used in the earliest LCDs. This method aligns the m olecules by the application o f  an electric field 

to cause the ‘light state’. The application o f  a reversed polarity electric field for a carefully determined 

period leads to the random re-alignment o f  the m olecules in the reversed direction. The removal o f the 

reverse potential whilst the molecules are in random disarray means that the passage o f  light through 

the cell is blocked owing to the random scattering from its intended path. An advantage o f  this 

technique, above that o f the material’s bistability, is the lack o f dependency on inefficient polarisers. 

These displays therefore offered relatively high levels o f  light transmission. Disadvantages included the 

need for high potentials to address each element and the slow response o f the molecules (typically 

50ms).

Class ‘C ’ materials have been the focus o f the greatest levels o f investment into displays 

based on this group o f materials. Here the order o f the m olecules is put to effective use. Class ‘C ’



materials exhibit a degree o f tilt in the positional order o f  the molecules. Each molecule is permanently 

polarised. Naturally these molecules can be made to rotate along a conical path, but by reducing the 

cell gap o f  the panel this movement can be restricted to a single plane o f  movement. The long response 

times associated with smectic materials are overcome by uniformly twisting the molecules about their 

axis, as opposed to re-orienting them in a random manner. Fig. (5) shows the basis o f operation o f 

such a cell. Because the molecules retain a permanent polarised state in the absence o f an electric field 

they are known as Ferroelectric. By reducing the thickness o f the cell sufficiently it is possible to 

restrict the movement o f  the molecule within a single plane governed by the glass plates. Such 

molecules possess a moment o f polarisation perpendicular to the director. Therefore, the orientation can 

be changed by the application o f electric fields o f  alternate polarity. By the use o f crossed optical 

polarisers (see 2.1.2) and the optimisation o f the biréfringent characteristics o f the cell to produce a 

phase shift o f  180° both Tight’ and ‘dark’ states can be achieved. Because the orientation o f  the 

m olecules is uniformly operated, and the range o f  movement strictly limited, the response o f  these cells 

is quicker (typically 50ps) than that o f  other methods. However, there remains a great difficulty in 

controlling such narrow cell gaps (typically 2pm ), and maintaining the surface stability  under 

m echanical duress". Also, the true bistable nature o f the cell means that traditional methods o f 

producing grey scale, by controlling the level o f  driving voltage, becom e impractical. One major area o f 

research is into novel methods o f creating grey scale using fi-ame rate control and sub-pixelation''" . A 

major factor, however, in the further development o f  ferroelectric LCDs (FLCDs) is the relatively high 

cost, and scarcity o f  materials to use in production. FLCDs are not currently mass manufactured, so 

materials are only produced on a relatively small scale, with the associated problems o f  small batch 

consistency. Substrate materials are difficult to procure owing to the extremely tight tolerances required 

to meet the demands o f  such fine cell gaps. The long term  developm ent problems associated with this 

technology have led to m any suppliers discontinuing suitable materials, and subsequently all further 

developm ent o f them.

2.1.5 Refinement of TN and STN Displays

It has been said that the majority o f  applications use TN type displays, where high levels o f 

inform ation content do not demand high levels o f  multiplex, leading to compromise on contrast and 

effective viewing cone. The simplicity o f the materials, construction and wider operating temperature 

range are o f  higher priority. The study o f the electro-optical performance o f such materials renders the 

characteristics shown in Fig. (6), known as the Gooch & Tarry curve. This clearly shows that there are 

two distinct optimal arrangements for the TN cell. The two dominant variables are the cell thickness
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and the biréfringent index o f the LC material. These two optima are referred to as the 1 st and 2nd 

m inim a respectively. Generally ‘ 1st m inim a’ cells exhibit a greater effective viewing cone than ‘2nd 

m in im a’ cells. The latter usually exhibit greater levels o f contrast. As a result in the past 1st minima 

cells have been the accepted nom i for automotive applications, where the displays are required to be 

satisfactorily viewed from anywhere within the cabin. Though there are LC materials optimised for use 

in one or the other mode the dominant concern for the m anufacturer remains the cell thickness. 1st 

m inim a cells typically require a narrower cell gap than 2nd minima cells. 1st minima cells are therefore 

m ore critically affected by non-uniformity in overall cell gap. This makes their application more 

difficult for ‘negative m ode’ displays, where the active pixels appear light upon a dark background, and 

a backlight is used to highlight active areas. This is achieved by un-crossing the polarisers. N on

uniform ity in cell thickness is more apparent in these types o f  displays where it is made apparent by 

the bleed through o f light from the rear o f the display. A proprietary enhancement o f standard TN 

technology, first developed by VDO Instruments specifically for the automoti\ e market, is MTN 

(M odulated TN) technology. Here the alignment layer o f the display cell is given a non-uniform, 

textured, finish. This means that the relative position o f  the LC m olecules across the surfaces o f the cell 

is non-uniform . Although in the optimum viewing direction this reduces the contrast it does have the 

effect o f  enhancing the acceptable contrast over a much greater viewing angle. This idea is being further 

developed at the moment with the use o f  m ulti-domain alignment treatments. Here the alignm ent layer 

is described not by rubbing in a particular direction, with a particular degree o f work, but by the use o f 

photosensitive polymers, which allow multiple domains to be described using photolithographic 

m ethods.

Above these relatively low levels o f multiplex (16:1, or 32:1 in extreme cases) the 

perform ance o f TN cells becomes unacceptable, though it is difficult to exactly quantify such a 

subjective measurement. Traditionally this has meant a switch to STN technology, though there has 

been a m ove recently to develop ‘enhanced’ or ‘hyper’ twisted nematic (ETN or HTN). In such cases 

the degree o f  tw ist introduced to the LC within the cell is increased to around 110° or 120°. This has 

the effect o f  improving the contrast, slightly, but more significantly the effective viewing angle. In fact 

the cell is a compromise between the mechanism employed by TN displays and that employed by 

STN, the issue being to minimise the biréfringent effects so as to eliminate the requirement for optical 

com pensation.

In the case o f STN displays the birefringence o f  the liquid crystal molecules is the dominant 

optical param eter. Light incident upon the liquid crystal molecules is refracted along the two optical
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axes. Because the length o f the liquid crystal molecule along each axis is so disproportionate the levels 

o f  refraction differ accordingly. Hence the light reaching the far side o f  the cell has become elliptically 

polarised. Despite being the basis o f operation this is a major drawback o f STN technology, restricting 

the efficiency with which light o f various wavelengths exits the cell. Hence the traditional yellow or 

blue appearance o f  standard STN cells (although other colours are achievable through adjustment o f the 

polariser axes, these two modes offer the greatest contrast). Until relatively recently this has been an 

unresolved phenomenon and meant that a true black and white image had been impossible to produce. 

The effects o f this colour distortion can be reduced by using a deep purple polariser as the analyser. The 

dark elements then appear deep purple whilst the other areas appear neutral. These displays are known 

as ‘silver m ode’, based on the silver rear polariser that is normally used to reflect ambient light, and 

offer an appearance similar to the simple TN cells, though with a much improved optical performance. 

For exam ple, a TN display operated at 100:1 levels o f multiplex, and viewed normal to the display 

w ould exhibit a contrast ratio in the region o f 5:1, whereas a sim ilar STN display would typically 

achieve greater than 20:1.

In order to produce a true black and white image, and, therefore, to be able to transform this 

into one w ith real colour, it is necessary to use one o f two techniques recently developed to compensate 

for biréfringent distortion. These are film compensated STN (FSTN) or double layer STN (DSTN).

DSTN represents, perhaps, the most logical step. A secondary STN cell is arranged behind 

the prim ary display cell, but with reversed optical properties. Any distortion o f light brought about as 

a result o f  passing through the primary cell is compensated for when passing through the secondary 

cell. This second cell is called the ‘compensator’, and effectively reverses the biréfringent consequence 

o f  the prim ary cell. Adding this secondary cell has its obvious drawbacks. It doubles both the effective 

cell weight and cost, effectively halving production capacity o f laminate alone. It also introduces a 

further critical step to the manufacturing process, as the alignment between the two cells is critical if the 

com pensation is to be effective. There is some small saving in only having to use the one set o f 

polarisers.

In reaction to these drawbacks FSTN was developed. Instead o f the secondary cell a sheet o f 

polyester, o r polycarbonate film is stuck to the rear o f  the prim ary cell. This film has optical 

characteristics similar to the secondary cell. This film is called a compensation, or retardation film. It 

is difficult to get a film that satisfactorily compensates the birefringence o f every type o f  STN cell, as 

the num ber o f variables such as LC, cell gap, polyimide, etc. is large. So there is generally a 

com prom ise in quality to be made when choosing this technique over DSTN. But the cost and weight



savings suit it to m any applications, especially w ithin portable equipment. The main advantage that 

DSTN has over FSTN is its performance over an extended temperature range. Because the secondary 

cell is effectively identical to the primary cell, but reversed, its properties over a range o f  temperature 

mirror those o f the primary cell. The retardation film  used in FSTN has distinctly different thermal 

characteristics from those o f the STN cell, especially at elevated temperatures, where the display can 

begin to show unsatisfactory changes o f colour. Its range is therefore lim ited at best to around -20°C to 

+70°C. DSTN may be designed to perform well up to the limits o f  the polariser material, say -35°C to 

+85°C.

2.1.6 Colour LCD

These two monochrome techniques, FSTN and DSTN, form the basis o f full colour displays. 

In order to achieve a full colour display, image pixels are arranged into groups o f three and colour filters 

placed over each in a typical Red, Green, Blue (RGB) format. These ‘sub-pixels’ provide the necessary 

prim ary coordinates for displaying full colour images. The range o f  colours which can then be 

displayed depends on the number o f grey scales which can be provided by the drive system. STN 

displays achieve grey scale in two ways. The most com m only used m ethod by far is the analogue 

address. The level o f  grey scale is controlled by the level o f  voltage applied across the cell during a 

given tim e period. A more recent development is a digital addressing scheme. Here the time for which 

the addressing pulse is applied across the cell is controlled. This requires m ore complex drivers, but 

offers the potential for a more stable and predictable driving scheme, as it is less sensitive to thermal 

variation, or variation in power supply.

2 .1 .6 .1 Controlled Biréfringent Colour LCDs

A third m ethod has been discussed, and produced for lim ited applications. This is known as 

‘tuned birefringence’. This technique employs up to three separate cells w ith specific biréfringent 

properties, using colour selective polarisers, to achieve the three subtractive prim ary colours (Cyan, 

Yellow and M agenta) laminated together. These ‘stacked’ displays offer extremely good colour 

saturation, but the obvious cost, and weight penalties are prohibitive in m ost applications. In addition, 

there is a compromise in efficiency owing to the numerous polarisers, and a problem o f parallax which 

makes them  unsuitable for direct view applications. They have found a niche in projection type 

displays where powerful arc lamps can be used to provide adequate back lighting, and parallax is not 

apparent.

A further recent development has been electrically controlled bi-reffingent colour LCDs. In this 

case the parameters o f the LCD are carefully controlled, and the bi-refringent characteristics exaggerated.
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A typical STN cell has a bi-refringent characteristic, And (An = biréfringent constant o f any given LC; 

d =  gap between cell substrates; c f  Fig. 6), o f  between 0.6-0.9, and can be made to exhibit gray scale 

by controlling the drive voltage, or the frame frequency o f  associated pixels. By creating a cell with a 

large And value (typically 1.4-1.6) it is possible to obtain different colours, as opposed to gray scale 

over a narrow operating voltage range. A great benefit o f not needing colour filters is that there is no 

need for a backlight under good ambient lighting. This has created a whole new application area for 

extrem e low power applications, such as handheld GPS with cartographic reproduction. The 

advantages for automotive applications, where high levels o f ambient lighting may be present, are 

extrem ely attractive. Also, the additional cost o f  the LCD is almost negligible, and additional film 

com pensation is not required, though it does help improve the possible extent o f saturation o f  primary 

colour. W ithout film compensation the colours are vivid, but tend more towards a secondary colour 

hue. A further current limitation is in viewing angle; because the colour is dependent on molecular 

orientation the colour may change significantly with viewing angle. Optically compensated versions 

perform  better in this respect.

2.1.6.2 A ctive M atrix Colour LCDs

Conventional LCDs such as those o f  TN and STN so far described have many drawbacks.

The greatest o f these is the need constantly to address each ‘active’ pixel, in much the same way as 

w ith dynam ic RAM. Because o f  this, the viscosity o f the LC fluid needs to be kept at a certain level to 

ensure that the pixel has not turned off com pletely before the next addressing pulse comes along. Also, 

there is the problem o f  ‘crosstalk’ that has already been mentioned. These factors combine to 

com prom ise the clarity o f  the image. If the rotational viscosity o f the fluid is too low then the contrast 

is affected. I f  it is too high then there is ‘ghosting’ whenever the image is updated or moved. This 

latter fact is particularly restrictive when considering video images, or the use o f a mouse cursor. Each 

o f these factors could be minimised if the pixel state could be made non-volatile throughout a frame 

period. A solution to these problems has been the development o f ‘active m atrix’ LCDs (AMLCDs).

Active matrix LCDs have a thin film  transistor (TFT) or diode situated at each pixel. Each 

semiconducting element is fabricated by deposition o f  silicon (usually) upon the surface o f the glass 

using methods developed from the semiconductor industry. Generally this silicon is o f  an amorphous 

nature, though it is also possible to deposit polycrystalline silicon. Polycrystalline semiconducting 

m aterial can also be formed by annealing the deposited amorphous silicon. Fig. (7) illustrates the 

circuit diagram  model o f  such an arrangement using TFTs, and Fig. (8) shows the cell structure. These 

active elements effectively isolate each pixel from the rest o f the array. Hence ‘crosstalk’ is eliminated.
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Fig. (7) Architecture of conventional TFT LCD
This represents a  very simplified equivalent circuit for a  conventional TFT Active 
Matrix LCD. It d o es not show any detail of the various associated  parasitic 
capacitan ces,
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■  Pixel Electrode ■  Ref. Conductor □  Colour Filter

Fig. (8) TFT LCD Structure
Cross-section showing the typical structure of a  TFT Active Matrix LCD. The specific 
construction of the thin film fabrication has b een  omitted for simplicity.



and because the charge across the cell at each pixel can be isolated the display has inherent memory. So 

the molecules o f each pixel do not readily relax back to their natural state. This allows the use o f LC 

fluids w ith a m uch lower rotational viscosity, and, therefore, enables high switching speeds capable o f  

recreating video images. Because the contrast levels o f such displays are orders o f magnitude better than 

traditional ‘passive m atrix’ LCDs (PMLCDs) there is no longer the need to use STN type cells. This 

means simple TN cells can be used without the need to compensate for the severe biréfringent effects o f 

ST N .

W hilst the improvement in performance exhibited by these displays over traditional PM LCDs 

can be significant so is the additional cost. Apart from the huge increase in fabrication overhead, there 

is a sim ilar burden imposed by the poor manufacturing yields currently being achieved. Until relatively 

recently such displays have only been tmly econom ically viable for small size displays such as those 

found in camera viewfinders and portable TV sets. However, manufacturers now have commercially 

available displays o f 10.5" diagonal, and above. M any such products can be found in high specification 

portable computers. The phenomenal levels o f investment that have been made into this technology are 

now starting to show signs o f maturity. Few manufacturers o f Notebook computers now have offerings 

w hich do not feature the option o f an AMLCD. This rapid development has spawned different branches 

o f  display technology in its own right. There are, as mentioned, displays that use TFT or diode 

addressing. There are also displays that use TFTs that are fabricated from epitaxially grown poly

silicon (p-Si), as opposed to the usual amorphous-silicon (a-Si), or even cadmium selenide (CdSe). 

Both p-Si, and CdSe demonstrate increased carrier mobility over a-Si and are capable o f  m uch higher 

relative switching speeds. Consequently they can be fabricated in a smaller feature size than a-Si 

devices yet achieve a similar performance. The drawback is the higher temperatures required to form p- 

Si, though laser annealing is having a significant impact here. CdSe remains relatively unproved in 

manufacturing, and has the stigma o f being highly toxic. Use is lim ited at present to sm aller I"  - 2" 

diagonal screen sizes for p-Si, and the laboratory for CdSe.

Production yields are still the overpowering burden o f the AM LCD manufacturer. Each step 

up in screen size requires an order o f magnitude improvement in manufacturing processing. Sharp, who 

are the un-disputed leaders in this field, recently announced a prototype 28" diagonal a-Si AM LCD 

m ade o f two individual cells, and Samsung a single cell 22" diagonal version.

Other techniques have not been slow to develop and snatch niches in this burgeoning market. 

Kopin, a small ‘start-up’ company from the USA, recently introduced AMLCDs based on single

crystal silicon. Here the ‘active-matrix’ is formed using wafers o f  silicon identical to those used for the
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fabrication o f semiconductor ICs. The passive substrate material is then removed, and the now 

transparent active matrix is transferred to the glass substrate o f the display. O f course these can only be 

fabricated in very small screen sizes, but their target market is viewfinders and projection systems.

2.1.6.3 Passive M atrix Colour LCDs

Efforts have been continuing to improve the performance o f PM LCD, especially with the 

production o f ‘split screen’ or ‘dual scan’ displays, where the vertical electrodes are split horizontally 

across the screen, and the two halves addressed separately, effectively halving the multiplex ratio.

Using the same techniques o f colour filtering and gray scale control as AM LCD, full colour displays 

can be produced very successfully, and without the need for the highly complex manufacturing plant 

required to fabricate AMLCD. The attendant yields o f  this much more conventional plant, and less 

complex technology, are significantly better than those achieved in the manufacture o f  AMLCD. 

H owever, they do require some form of birefringence compensation in order to get good primary colour 

saturation. A lack o f  ‘m em ory’ in the cell also leads to a poorer contrast and ghosting in moving 

images. A recent development in addressing techniques has revitalised the developm ent o f PM LCDs, 

however. This is “Active Addressing”, or “M ulti-Line Addressing” . Instead o f  only addressing each 

pixel with a single pulse during each frame period (Alt/Pleshko technique), a complicated algorithm 

(W alsh functions) is used to calculate an addressing scheme which provides a series o f  smaller pulses 

throughout each frame period""' . Fig (9) illustrates this drive technique. It obviously improves 

contrast, but because the size o f  the addressing pulse is now greatly reduced crosstalk is minimised 

also. An added benefit is that cheaper driver ICs can be fabricated due to the lower drive voltages 

required.

2 .1.6.4 Polym er Dispersed LCDs

A  further LCD technique which has received significant development in recent times uses LC 

fluids sealed in a polym er resin. The LC is held in tiny droplets within the viscous polym er material.

It allows the active cell medium to be sandwiched between flexible plastic substrates w ithout the need 

for rigid spacers to hold the cell gap uniformly. It operates on the principle o f  'Dynamic Scattering' 

(DS) previously described. Consequently it relinquishes the reliance on polarisers and, therefore, does 

not require the substrate to be prepared to align the LC molecules. This means that such cells possess 

good transmission characteristics, and excellent viewing angle performance. The relatively poor 

contrast, though, makes them unsuitable for applications requiring backlighting. The inefficient 

m echanism  of polym er resin encapsulation means a high percentage o f incident light manages to 

traverse the cell without passing through the LC droplets. It is showing enormous potential for outdoor
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applications, such as road signs because o f its good performance in reflective mode, and because o f its 

freedom  from UV sensitive polarisers, and also in membrane keypads because o f the added ruggedness 

lent by the polymer resin. These cells are usually considerably thicker, by 10s o f microns, than 

standard TN, or STN, cells, and the materials required are generally m ore viscous, therefore, they 

require higher voltages to operate them satisfactorily, typically in the range 70V-80V. They illustrate 

well the manner in which the various techniques using liquid crystal materials have evolved to meet 

the specific demands.

2.1.6.5 Backlights For LCDs

Although LCDs require very little power in themselves, relatively speaking, being non- 

em issive they require some form o f additional illumination for the visible image to be satisfactory. For 

applications such as wrist watches and calculators a reflective display can make the most o f  ambient 

lighting. The ability to modulate ambient light is a great advantage in applications such as parking 

m eters and petrol pumps, where high levels o f am bient light would ‘washout’ most emissive images.

In order to reproduce full colour, or even true black and white, images it is necessary to 

provide some sort o f supplementary light source. Techniques for illuminating an LCD are as numerous 

as those o f  the LCD itself. Possibly the least expensive, in terms o f component cost, and m ost easily 

integrated source is the ubiquitous tungsten filam ent lamp, but these are notoriously inefficient, 

unreliable and hot. In addition they have very poor lifetim e and colour characteristics. High intensity 

halogen variants are used extensively for projection LCDs, as are various types o f metal halide 

discharge lamps. This is usually limited to applications where there is a premium on total available 

light, and heat and power consumption are less critical, such as head-up displays (HUD) and projection 

TV  sets. A large amount o f the research into projection type displays is going into the production o f 

large form at HDTV sets.

Light emitting diodes (LEDs) (see section 2.2) have replaced filament lamps in a vast 

m ajority o f  applications, owing to their remarkable lifetim e (250,000 hours and more), relatively high 

efficiency and low operating voltage and power dissipation. They are limited in their range o f colour 

and the maxim um  amount o f radiant light they can produce, nevertheless the great m ajority o f 

instrum entation applications use them as either prim ary or secondary light sources.

Electroluminescent (EL) lamps (see section 2.5) represent perhaps the ideal form o f 

backlighting for LCDs, but they too suffer from poor lifetime and radiance characteristics. Typically 

they are only rated for 7000 hours. In addition they require circuitry capable o f generating the necessary 

high voltage, high frequency drive format - see section 2.5. Future developments in EL phosphor
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efficiency and complex polymers still have the potential to make the most o f the extreme thinness, even 

light distribution and ruggedness o f this technology.

In the majority o f  applications there are miniature, cold cathode, variants o f household 

fluorescent lamps. Typical diameters range between 10mm and 2mm. As with household lamps they 

are capable o f providing relatively high levels o f  radiance across a broad, white, spectmm. Tubes 

developed specifically for full colour applications have specially selected blends o f phosphors which 

emit light predominantly at three different wavelengths matched to the optimum efficiencies o f the 

colour filters incorporated into the LCD. They have good lifetime characteristics (20,000 hours) and 

produce very little heat. W hen used in association with an acrylic light guide they also offer a very 

slim, and lightweight backlighting solution. They also require additional circuitry to generate the 

higher voltage and high frequency drive potential, to achieve the breakdown voltage which leads to the 

discharge between the electrodes whilst reducing flicker and improving phosphor efficiency.

A variation currently used for full colour, high inform ation content displays is the hot cathode 

fluorescent lamp (HCFL). Here the cathodes are heated to give a higher electron output and better 

brightness control. There is a penalty in terms power consum ption and lifetime, for this marked 

im provem ent in light output. The net effect o f  this additional demand is to bring the power 

consum ption o f  a typical LCD more in line w ith that o f  the various emissive display techniques, 

increasing the weight and size, as well as the cost o f  the finished product.

2.2 Light Emitting Diodes (LEDs)

In terms o f  reliability and efficiency no display element comes close to matching the LED. 

Lifetimes are in the region o f 250,000 hours and efficiencies approach 20% for some products. Few, if  

any can match its switching speed.

Early pocket calculators and digital watches used LEDs, and for some years the LED has been 

used to replace incandescent lamps as indicators. Alm ost all watches and calculators these days o f 

course use simple LCDs for greater power saving. Some applications have seen LEDs replacing 

incandescent lamps as warning lamps for autom otive stop lights. Fig. (10).

Only recently though has the LED begun to find application in integrated display systems as 

the active element. These applications them selves are still lim ited by the lack o f  a bright, blue LED 

able to m atch the performance o f devices which em it light in the red through to green parts o f the 

spectrum. The enormous increase in the efficiency o f  these devices has led to their increasing use in 

large area displays for public information, up to several metres in diagonal. Each pixel consists o f  a
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discrete LED lamp, or die. LEDs o f different wavelength have been combined to form multicolour 

displays capable o f  reproducing video images.

LEDs are now available which operate at wavelengths o f 555nm, pure green, to devices that 

operate in the infra-red region at around 1350nm. The maximum brightness from these devices varies 

depending on wavelength. Originally red LEDs were the brightest visible devices, with some capable 

o f  10 candela (cd). Recent improvements in materials, and the introduction o f quaternary materials, 

have led to the introduction o f amber LEDs capable o f  15cd. Green LEDs are still limited to around 

led. M any manufacturers have introduced blue LEDs recently fabricated from silicon carbide (SiC), as 

opposed to the normally gallium (Ga) based products, but these devices still rarely achieve a brightness 

greater than 15mcd-20mcd. Nichia Chemicals o f Japan recently announced a blue LED device fabricated 

from InGaN (indium gallium nitride)”' with an emitted wavelength o f 450nm. The documented lifetime 

o f  this device was only 3,000 hours, though service life easily exceeding 10,000 hours has been 

achieved in the laboratory. The main demand for these devices is in the area o f full colour, large area 

displays. In the event o f a diode laser being developed on this basis there is a significant demand for 

reading optical storage disks, where the shorter wavelength allows the capacity o f  readable data to be 

increased substantially.

One o f  the original developments which was responsible for improving the efficiency o f LEDs 

was the fabrication o f 'double-hetero junction ’ diode structures". Subsequent improvements have been 

the use o f im proved epitaxial crystal growth techniques, the removal o f  the light absorbing substrate 

m aterial through etching and the introduction o f more complex compounds like InGaAlP (indium 

gallium  alum inium  phosphide).

It can be expected that the recent improvements in materials will result in a rapid increase in 

the use o f LEDs for large area public information displays. Once manufacturing yields and lifetime for 

these new materials have been improved there will be a significant demand for their use in personal 

entertainm ent displays.

A ctive matrix LCDs have shown that it is possible to create semiconducting devices over 

large areas suitable for use in smaller display applications. W hat if  this technology were developed to 

fabricate large areas o f LED matrix instead o f thin film transistors or diodes? O f course the methods 

currently used for such matrices only make possible the fabrication o f  semiconducting materials o f an 

am orphous or polycrystalline nature, which would be unsuitable for LEDs of adequate efficiency to 

overcom e internal absorption. But improvements in preparation o f  such materials, such as laser 

annealing o f  amorphous compounds suggests there is considerable long term potential. Light emitting
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diodes formed from organic materials based on silicon nitride"' on glass substrates and the developm ent 

o f  light emitting polymers offer new options which are being actively pursued.

A drawback o f present LED displays is the problem o f power distribution to the active 

elements. Because LEDs operate at relatively low voltage they require much higher levels o f  current to 

be supplied across the large expanses o f screen to achieve satisfactory brightness. LEDs operate most 

effectively at around 20mA, though this is very much dependent on die area. To provide current for, 

say, a VGA compatible resolution (640x480), would require over lOA for each colour. Based on the 

standard 5mm LED lamp pitch this would render a screen size o f  approxim ately 10m x 7.5m. These 

devices tend to be quite bulky, requiring substantial, high current capacity power supplies. It also 

means that it is difficult to achieve anything but low levels o f integration for the associated drivers. For 

exam ple, it is quite possible to integrate an LCD driver with 200 outputs. It would be very difficult to 

achieve a level o f integration o f more than 12-16 outputs for an equivalent LED driver, owing to the 

output stages need to sink, or source this relatively large current. Even today’s LCD driver ICs, which 

are required to drive currents o f the magnitude o f 1 O'* o f that required by LEDs, are pin limited, with 

the vast majority o f the useful IC area being taken up by the output stages. This severely limits the 

capacity o f  the IC to dissipate the associated heat, which means more substantial packaging is required, 

and adds considerable mechanical bulk and cost to the arrangement. Also, because o f  the high current 

required, these drivers need to be situated local to the LED they are operating, to avoid significant 

voltage drop along the conductors affecting the grey scale o f the image.

Such drive schemes are, nevertheless, relatively simple. LEDs have far superior performance in 

terms o f  switching and grey scale, and in all cases, except currently that o f  the blue LED, a far superior 

lifetime.

In the past LEDs have lost market share in certain niche areas to VFDs (see section 2.3). 

Improvements in the performance and price o f LEDs, however, are now seeing them win back ground 

from VFDs in automotive applications for simple digital meters such as odometers and clocks.

2,3 Vacuum Fluorescent Displays (VFDs)

Since their introduction in the 1960s, VFDs have been used in applications where a higher 

degree o f  image quality was required. They were originally developed to replace LED displays in 

clocks and calculators, being more versatile and less expensive to manufacture, owing to the use o f  

mature screen printing techniques for the application o f the phosphor materials which are responsible for 

the fluorescence. This became increasingly acute as the levels o f  information required increased.
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Because the phosphor used as the light emitting medium is a broad band emitter these displays can be 

filtered to  produce a broader colour range than that o f  LED. Certainly this was an asset when VFDs 

were first introduced, when only red LEDs had previously offered sufficient brightness.

The operating mechanism o f the VFD is essentially that o f the thermionic valve, or triode, see 

Fig. (11). A filament wire acts as the cathode producing electrons and a grid electrode accelerates, or 

retards, the electrons as they move towards the phosphor coated anodes. All o f this is contained in an 

evacuated glass package, or tube, sealed with ‘frit g lass’" . Light em ission is a result o f  the 

recom bination o f  electrons liberated by external bombardment with the ionised atoms within the 

phosphors. In most displays o f this type the phosphor used emits light across a broad band o f  the 

spectrum , resulting in a blue-green appearance. This has the advantage o f  allowing filters to be used to 

give a specific desired colour, even white, though in order to optim ise the light output it is usually 

filtered to blue or green. Most colour phosphors have been developed for CRT applications from 

sulphides (ZnMgF^iMn, ZnCdSiCu, for example). These compounds give o ff emissions which are 

poisonous to the electron source. This effect is m ore significant in VFD applications than CRT owing 

to the closer proximity o f the electron source.

The ‘rare earth’ materials used in phosphor compounds produce light with this blue/green 

em ission. To achieve spectral emission o f a different wavelength from such materials it is necessary to 

introduce chemical dopants. This reduces both the efficiency o f the phosphor and its lifetime. Therefore 

in the past it has not been possible to produce a display capable o f creating a full colour image.

Unlike the CRT, which uses beam potentials in the region o f  25kV to 35kV to accelerate the 

electrons from the ‘gun’, the VFD operates with potentials between 12V to 150V. W ork is, therefore, 

going on to improve the efficiency o f these ‘low voltage’ phosphors, and develop phosphor materials 

with physically sm aller molecules, so as to maxim ise the number o f  emissive recombinations within a 

given surface area"" .

Because o f electro-mechanical constraints, VFDs larger than 6" diagonal capable o f high 

inform ation content are uncommon at present. This stems from the thermal distortion and destruction 

o f  key com ponents, such as the filaments and grids. The reasons for this are the increased current 

densities required to produce the greater number o f  electrons from filaments which need to be fine 

enough to  avoid visual detection. Also the increased voltage required across the grids to maintain 

brightness at higher levels o f multiplex across larger screen areas causes the grid structures to heat up.

Frit g lass is a ceramic paste which fo rm s a so lid  hermetic seal when f ir e d  in an oven a t between
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and consequently distort. In order to minimise the mechanical bulk o f the display tolerances are kept 

extrem ely tight, and hence any amount o f  physical distortion can cause internal shorting, with 

catastrophic results. An additional overhead to pay for increased display area is the proportional 

increase in glass thickness required to keep the mechanical integrity o f the evacuated glass tube. Yet 

another disadvantage is the need to continuously power the cathode filament, leading to a poor power 

efficiency.

These constraints, coupled to the bulk o f  the low integrated, high voltage drivers have been a 

m ajor drawback. The m ajority o f electronic components have been subject to substantial improvements 

in recent years, and VFDs are no exception. Improvements in the assembly and structure o f  these 

devices are showing signs o f increasing potential (see FED later). The Electronics Industry Association 

o f  Japan (EIAJ) predicts that the introduction o f new electron sources will lead to the introduction o f  a 

17" high information content VFD with a cell thickness o f  around 2mm by the year 2000"'" . Sim ilar 

improvements have been made in the integration o f  the drive electronics. It is now possible to source 

ultra thin surface-mount (SMT) packages which integrate up to 100 outputs in a single package.

Traditionally VFDs are viewed from above the cathode filaments, with the phosphors printed 

onto metallic conductors at the rear o f the chamber. The conductors help to reflect the light generated. 

Obvious problems with this arrangement are the visibility o f both the cathode filaments and the grids. 

Another problem  with this mode o f view is the parallax caused by the glass surface. By making the 

anode electrodes transparent, utilising ITO, as used in LCDs, it is possible to minimise the effects o f 

parallax, and remove the filaments and grids from sight, by then viewing the image through the rear 

glass substrate.

Parallax due to the rear substrate is minimal, and the viewing angle o f such displays is 

consequently comparable to that o f  CRTs. Their ability to produce a high contrast image over wide 

viewing angles has led to VFDs being used extensively for consumer applications, where, for example, 

they are used alm ost exclusively in VCRs.

A further development that has recently reached the market place is that o f ‘Rib Grid’""' 

architecture. Here the grid structure is supported from the rear substrate by a rigid platform, similar to 

the way that the individual cells are created for PDFs (see section 2.4). The potential offered by such an 

arrangem ent is to enable the viewing area o f  such displays to be increased substantially and to enable 

the cross-sectional area o f  a VFD to be reduced.

One further area o f VFD application is in the area o f large area full colour displays, such as 

those that provide video images to large outdoor venues. These images are made up from individual
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picture tubes similar to the thermionic triodes inside traditional TV sets. The ends o f  these tubes are 

coated w ith phosphor and the drive voltage is in the range o f 1 OkV. They are in effect a cross between 

what we understand to be a VFD and a CRT. Sony in particular market this technology under the 

nam e Jumbotron™, and they are now becom ing commonplace in many major sporting arenas.

In their currently accepted guise VFDs will be unlikely to progress beyond the traditional 

niche markets in consumer electronics, automotive instrumentation and electronic point o f  sale 

(EPOS). It is interesting to note that although 100% o f all display components used by Ford M otor 

Com pany in Europe are LCDs, 95% o f all used in the US are VFDs. M ore significantly the 

developments associated with this display technology, and vacuum microelectronics generally, have 

huge potential. This will be discussed at greater length in later sections.

2.4 Plasma Discharge Panels (PDPs)

Sim ilar in principle to the fluorescent gas discharge tubes used in domestic lighting and the 

cold cathode fluorescent lamps described on p. 17, PDPs have been under development as display 

elements for longer than any o f  the other flat panel electronic display (FPED) technologies. Though 

sharing the same mechanism for producing light there are in fact two techniques employed in producing 

a PDP. The difference is in how the discharge is achieved, either by an AC, or DC driving method.

The basic principle is to seal a noble gas between two electrodes (anode and cathode). A high voltage 

d ischarge between the electrodes causes light to be emitted by the gas which is excited and ionised by 

electron impact. The gas used in most cases is neon (Ne), which produces a reddish/orange light, with 

small amounts o f  argon (Ar) or xenon (Xe) which help to lower the voltage necessary to maintain the 

discharge. In the case o f  the DC method the emission o f light continues for as long as the high voltage 

discharge is maintained. This can be for a period beyond that o f  the application o f a trigger pulse, 

depending on the discharge characteristics o f  the cell. The problem with this scheme is the non- 

linearity o f  light emission. That is, once the cell threshold has been reached discharge occurs and light 

is emitted. It is ftmdamentally a difficult mechanism to control to the point where satisfactory grey 

scale is achieved.

AC driven PDPs have between the electrodes and the noble gas, layers o f dielectric which are 

applied to protect the electrodes from damage due to ion bombardment. The surfaces o f the dielectric 

accum ulate negative charge from energetic, mobile electrons. Ions arrive more slowly. Potentials 

therefore build up to slow the arrival o f further electrons until a state o f equilibrium occurs when 

electron and ion flow is equal. At low frequencies the discharge can fail between cycles. Therefore,
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higher frequency drive characteristics lead to improved performance. Also the human eye integrates the 

am ount o f  visible light it receives over a period o f around 25ms, typically, and so smoothes out any 

change in light emission over the shorter cycle time. With the change in polarity the discharge is 

reversed. A symmetrical drive scheme improves the performance and lifetime o f these displays as there 

is less degradation due to the erosion o f the electrodes by high energy ions.

Once discharge has been achieved with the use o f a triggering pulse the cell continues to 

conduct through the AC cycle. The capacitive characteristics o f the cell lead to a build up o f  charge 

across the electrodes which leads to the eventual extinction o f the discharge when the stored charge 

reduces the discharge potential below that required. The emission o f light is restored by this stored 

charge once the AC waveform reverses polarity during the second half cycle when it automatically 

triggers the discharge once more. This is referred to as the ‘memory function’ o f the display. 

Im provem ents in the switching speed o f the cell, and hence the stability o f  the display, can be made by 

‘prim ing’ each cell to a level just below the discharge potential threshold on the cycle prior to its 

address. This effectively prepares the cell reducing the delay before a discharge potential level occurs 

across the cell. Fig (12) illustrates the construction o f typical AC and DC PDPs.

Historically PDPs have been used predominantly in instrumentation and EPOS applications 

because o f  their bright appearance under artificial lighting conditions and their legibility over a wide 

viewing angle. Because o f  their limited colour range, need for high drive voltages and poor contrast 

m uch o f  these applications have been taken over by the use o f  VFDs. This has not led to PDPs 

becom ing obsolete. PDPs employ relatively mature manufacturing processes in their assembly, and 

because the cell substrates are held at a uniform cell spacing by the cell partition and rely on high 

voltage driving, as opposed to high current, they are suitable for large area, high resolution 

applications, similar to those o f CRTs. Additionally, the absence o f  delicate grid and filament 

structures, or polarisers means the robustness o f their construction is not compromised. These 

characteristics alone had, until the recent introduction o f  AM LCDs, seen their preferred use in portable 

computers. M any such products manufactured for military applications still use PDPs for these reasons. 

However, the amount o f light produced by such displays is a function o f the volume o f gas present. 

This results in the active cell being significantly 3 dimensional in nature, which leads to an isotropic 

distribution o f light, and hence a loss o f contrast. It also defines the minimum cell size capable o f 

producing satisfactory light emission.

Full colour PDPs produce light in a manner different from the monochrome equivalent. To 

obtain colour the transparent anode is coated with a phosphor. The noble gas mixture within the cell is
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changed so that the discharge causes light to be emitted predom inantly in the ultra-violet spectrum. 

U ltra-violet light excites the phosphor causing it to emit light o f  the appropriate wavelengths to 

achieve the necessary RGB format o f full colour displays. This m echanism is also more efficient for 

monochrom e displays if  green emitting phosphor is used, this is due to the eye’s greater photopic 

sensitivity to green light than red, or blue, and the greater efficiency o f  this type o f  mechanism to 

produce light in the ultra-violet range o f the spectrum  rather than the visible ‘neon red’. I f  it is 

assum ed that the same quantum efficiency is achieved for each red, green, or blue pixel, the 

introduction o f green to one-third o f the screen area improves the efficiency significantly over the 

traditional red display. It has also proved to be m ore appealing visually, and facilitated their use as 

direct replacements for similar monochrome CRT displays.

The ability o f the PDP to perform with a higher luminous efficacy for multi-colour 

applications relative to the basic monochrome device is unique am ongst the various display 

technologies, and has led to an increase in developm ent o f PDP for full colour displays w ith large 

viewing areas. Lifetimes for such devices are currently quoted in the region o f 10,000 hours, coupled to 

a low cost potential" (relative to TFT) for large areas displays. M uch developm ent is now being 

carried out into their use for large area, wide screen TV monitors for direct view "' . In fact 

com m ercial HDTV sets employing PDP will becom e commercially available, at least w ithin the 

Japanese market, by the fourth quarter ‘96, w ith products from Fujitsu, NEC, M itsubishi and 

Oki/NHK.

2.5 Electroluminescent Displays (EL)

Besides LEDs, electroluminescent displays are the only other truly solid state display 

technique, with no need for liquids, gas discharges or evacuated chambers. The m echanism by which 

EL displays produce light is very similar to that o f  the LED.

As with the PDP there are both AC and DC derivatives o f  EL displays, as well as thick film 

and thin film techniques for preparing the lum inescent solid. The AC thin-film  EL (ACTFEL™ )""' 

displays make up the overwhelming majority o f  devices being marketed.

In a similar manner to AC PDPs, ACTFEL displays sandwich the active display medium, 

essentially a phosphor, between dielectric layers and the electrodes. Fig. (13) illustrates the 

construction o f a typical EL display cell. A peak AC potential, exceeding a certain threshold level, 

accelerates free electrons to several electron volts. W hen an electron with a very high kinetic energy 

collides with an activator atom the latter may receive, and store, the energy in a process called collision
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excitation. The activator, after a certain period o f  time, relaxes to its former stable state, with the 

liberated energy being given up in the form o f  a photon o f light. Upon the removal o f the peak AC 

voltage such collision excitation ceases. To avoid the electrical/chemical degradation o f the phosphor 

this is repeated w ith a peak AC voltage o f  reversed polarity. Again, as with PDPs the mechanism for 

producing light em ission through excitation is difficult to control sufficiently to allow satisfactory grey 

scale control.

In order to gain a sufficient kinetic energy o f an accelerated electron relatively high potentials 

o f the order o f 70V - 80V are required. Until recently very few EL driver ICs o f any significant 

integration had been available, so PDP drivers using around 160V had been used. To achieve a 

visually stable display AC frequencies o f the order o f 500Hz are required.

A variety o f  colours is available, including white, yellow, blue, etc. However, only yellow is 

available in the form  o f a reconfigurable display. This employs zinc sulphide (ZnS) as the phosphor 

base, w hich has considerable lifetime and luminous output advantages over the other colours.

A problem  which may be experienced with AC driven EL displays, and not DCEL, is 

catastrophic breakdown, due to the failure o f  the dielectric layer within the cell, which results in the 

perm anent loss o f picture elements.

ACTFEL operates on the basis o f the cell as an imperfect capacitor, whereas DCEL treats the 

phosphor layer between the electrodes purely as a resistive component, although there is o f course some 

capacitance associated w ith the cell in this case also. There is no dielectric layer, and the structure is 

som ewhat sim pler"'". In addition the production process for DCEL requires that the phosphor only be 

screen printed on to the substrate (thick film application), which is considerably less expensive than the 

thin film m ethod required by ACTFEL. ACTFEL displays, however, exhibit superior contrast due to 

the very thin nature o f the phosphor used.

H istorically DCEL has been impractical owing to the poor operating lifetime o f suitable EL 

phosphors. Im provem ents in several areas have led to renewed interest in this method, however. Both 

the phosphor m aterials and drive techniques have been improved significantly. But the most important 

developm ent has been in the preparation o f the phosphor layer. By applying a large DC potential across 

the cell a ‘hardened’ barrier layer o f phosphor is created. This hardening o f the phosphor layer to a 

specific depth is referred to as ‘forming’, and improves the operating lifetime o f the phosphor. Present 

drive techniques detect cell brightness on power up and adjust the level o f  drive voltage to compensate 

for any degradation in luminosity. This again prolongs the useful lifetime o f the display, but cannot 

compensate for the effects o f etching across commonly used areas o f the display, which has the effect of
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showing a retained image. These improvements coupled to the simplified production process have 

brought EL display prices more in line with those o f  monochrome DSTN LCDs. It should be 

m entioned that such problems as repetitive pattern etching are greatly reduced by using ACTFEL, 

which uses symmetrical switching waveforms that do not cause the same levels o f phosphor 

degradation. This problem  alone has meant that little market penetration has been made by DCEL up 

to the present moment.

N o information is currently available to suggest that full, or multi-colour DCEL, is practical, 

though in principle there is no reason why such devices should not be possible. ACTFEL devices have 

been dem onstrated that achieve colour in a variety o f  ways. By using organic filters in association with 

a yellow ZnS EL display multi-colour displays have been demonstrated showing yellow, green and 

red, as a result o f  the relatively broad spectrum emitted by such phosphor materials. Also, white EL 

phosphors have been used in conjunction with filters to achieve a fiill colour display. Finally true full 

colour displays have been achieved using RGB EL phosphors, though both operating lifetime and 

brightness are currently unacceptably poor.

The problem  o f  poor luminous intensity from such displays is compounded under conditions 

o f  high ambient lighting. The use o f reflective electrode materials is a major contribution to loss o f  

contrast and clarity under these conditions. Traditionally these have been o f aluminium, and act as a 

m irror to incident ambient light as well as emitted light. This problem  has been tackled in a num ber o f 

manners. Using ‘neutral density’ filters (typically 50%) placed in front o f  the display, and applying a 

black layer between the phosphor and the electrode are two of the more effective methods. The use o f 

neutral density filters has been shown to improve contrast ratios to the order o f 40:1. The use o f  a black 

mask betw een the phosphor and electrode has been shown to improve this figure up to 150:1. In each 

case an increase in luminous intensity o f around 2x is required to compensate for the reduction in 

transmission/emission. A marked decrease in operating lifetime would result if this compensation were 

to be achieved through the increase in driving voltage. So such improvements must be made by 

increased performance from the phosphor materials. Such rigorous demands on phosphor efficiency 

could be offset if  there were some means o f prolonging the emission o f light from any address element 

beyond that period for which the addressing voltage is applied, as is the case with TFT LCDs. 

Unfortunately, the only method for achieving this memory fiinction with EL displays causes difficulties 

for grey scale control, which is a prerequisite o f full VGA. Efforts are being made to overcome this 

lim itation and include the integration o f TFTs, or other active elements, and the use o f frame rate 

control. TFT requirements for EL displays are not so restrictive as for TFT LCDs because there is no
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need to make the TFT transparent, or to restrict the feature size, and thus the performance, so as not to 

interfere with light transmission. This is because the TFT, or similar device, can be formed on the rear 

substrate, behind the light emitting layer, in a position where it does not interfere optically w ith the 

image. An EL display element is also some 30% faster than even the latest low viscosity LCD  cells, 

so the tolerances o f any such ‘Active M atrix’ are inherently less critical for this application. In turn this 

should mean superior production yields.

Power consumption is presently another aspect o f EL displays which needs to be im proved in 

order to match that o f similar LCDs. Currently figures for EL displays are in the region o f 2x to 3x that 

o f a comparable LCDs.

Other than improving the performance o f phosphor materials one other area in which the potential for 

significant power savings exists is in the efficiency o f the display drive schemes and driver IC. This 

accounts for almost 50% o f the power consumption in a typical free format EL display. Drive schemes 

recently demonstrated, which employ energy recovery circuitry, have shown that the potential to reduce 

the power consumption to the level o f comparable LCDs are achievable. Such developments, coupled 

to improvements in phosphor efficiency should realise a display that can match, or better, any 

comparable LCD in the near future.

It is apparent that significant development is required before EL can be considered as a 

practical alternative to other display technologies, except for certain niche markets. Annual increases in 

both sales and performance have reached the 40% mark. I f  this trend continues, EL technology could 

develop into the leading display technology, with superior performance in response speed, size and 

viewing characteristics over similar LCD products. This would appear to be a technology waiting for a 

breakthrough. If  that breakthrough were to be forthcom ing it would almost certainly result in a new 

revolution within the display industry.

2.6 Other Interesting Technologies

Amongst the variety o f  other technologies available, or already on the market, there are 

perhaps two which are worthy o f address. Both are closely related to CRT technology.

2.6.1 Beam Matrix Displays

The first o f  these, beam m atrix" , is a particularly recent development. The principle o f 

operation is similar to that o f the CRT and VFD, but it does away with the bulky electron gun and 

deflection system used by CRTs. Instead horizontal beam filaments produce the electrons w hose path 

is then controlled by vertical beam electrodes on to a typical, but flat, CRT type screen. The electrode

27



arrangement treats each pixel as an independent display segment, as is the case with other flat panel 

electronic display technologies, allowing a greater degree o f integration and compatibility. There is 

also no longer any need for the shadow mask required by CRTs. M atsushita have pioneered the 

developm ent o f this technology and produced a commercially available 21" diagonal screen device that 

is only 4" in depth. Still, it is only ever likely to appear as a stop-gap solution to the packaging 

problem s caused by large CRT displays. It still represents a fairly bulky package, and the requirement 

for an evacuated cham ber will require considerable thickness o f  glass materials, and more intricate 

electrode arrangement to accommodate large screen dimensions. Because this is such a new technology, 

developed by a single manufacturer, there is little evidence to support the notion that such a technique 

could be used to produce the size o f display required by HDTV applications.

2.6.2 Field Emission Displays

Field emission displays (FED s)"' " "  have been under investigation for some years. Indeed the 

theories behind Field emission arrays were first developed in the ‘5 0 ’s as the solution to integrated 

electronics. This role was finally filled by solid-state electronics. Lifetime and brightness have both 

been insurmountable problems, however. Like a CRT and VFD they rely on the mechanism o f 

focusing electrons on to a phosphor, being made up from a cathode, control grid and phosphor coated 

anode. In fact they are essentially “micro-machined” VFDs. Fig. (14) illustrates the various techniques 

under developm ent in this area. The electron source in this case is formed from an array o f micron

sized, cold cathodes just behind the phosphor pixels. Unlike both the CRT and VFD, the electron 

source requires no pre-heating before becoming an effective electron source - it is the high electric field 

around the extremity o f the cathodes which draws o ff electrons. Several cathodes per pixel are possible 

allowing a large, but inexpensive, degree o f  redundancy. Excitation o f  the phosphor is possible with 

voltages in the region o f 200V -lkV ""', as opposed to the lO’s o f  kV required by CRTs, owing to the 

m uch closer proximity o f cathode to phosphor, demanding less energy to achieve sufficient current 

density to produce similar levels o f light emission. Because the electrons are accelerated through the 

aperture in the addressing electrode there are no electrons absorbed as they are accelerated towards the 

phosphor. Additionally, because the structure o f  an FED is micro-machined from solid laminates it is 

possible in principle to manufacture mgged, durable displays w ith screen dimensions up to Im  x Im 

diagonally, and beyond, with a thickness o f  only 2mm-3mm.

Problems with operational lifetime o f  phosphors, and more critically the cathode materials 

still persist, although significant developments have been made in both areas recently. Molybdenum, 

silicon and industrial diamond materials have each been developed as possible electron sources to the
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verge o f  commercial practicability. Should these problems be overcome there is considerable potential 

for surpassing the low power characteristics that currently only full colour LCD can achieve.
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3.0 Application in an Automotive Environment

The practical research element o f this study is in the field o f  automotive instrumentation. The 

author was involved with this subject area at the time o f  embarkation on the course. The application o f 

instrum entation technology into an automotive environment is demanding, and, in the case o f  FPD, 

principally unresolved and undeveloped. The commercial aspects for integrating flat panel technology 

into such a product it was judged would be especially challenging. Another aspect that was judged to 

make this subject o f particular interest was the body o f documentation associated with earlier attempts, 

and current research into FPD application in this area.

A significant amount o f the work carried out in developing so called ‘body electronics’ for 

autom obiles goes into the “man / machine interface” . W ith the exception o f small amounts o f 

peripheral information, such as clocks, most vehicles today retain the traditional and familiar 

m echanical & electro-mechanical analogue meters. Fig.(15). The prolonged use o f such traditional 

instrum entation comes despite a number o f attempts over the past two decades, by various 

manufacturers, especially Japanese, to make greater use o f  contemporary electronic display technology.

Those attempts which have been made to replace traditional analogue m etering in automotive 

dashboard clusters with digital, solid-state appliances have proven to be less than popular. Especially 

w ithin Europe and the USA, with the result that analogue metering still persists. VFDs have been used 

extensively, in particular in Japan"" , and a num ber o f  novel approaches using hybrid arrangements 

have been developed"""" .

W ith the rising levels o f high technology going into vehicles, and increased attention towards 

safety levels, come the need for increased levels o f  information. With this comes the need to present 

this inform ation concisely and with the minimum distraction. In order to do this the information must 

be prioritised and presented accordingly. An example o f  how flat panel devices can successfully be 

integrated into such an application is the Fiat Tipo in some o f  the models, Fig.(16). Here, the 

designers paid attention to the limitations o f flat panel technology and were wise enough not to try to 

mimic either the traditional style o f meter, or the traditional style o f dashboard layout. In fact they have 

designed a scheme somewhat different from any o f  the other previous attempts.

M ore advanced methods for achieving more effective and easily interrogated include the use o f 

‘head-up displays’ (HUD), which project the information onto an area o f the windscreen, but require 

the use o f com plex optics to obtain a distant focal point. Also, growing demand for navigation

Grouping referring to all electronic components outside the engine compartment.
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information requires the use o f a more complex display medium. For example, the reproduction o f 

cartographic detail requires a re-configurable, multi-colour, high resolution display, Fig.(17). The 

integration o f rear view video, or visibility enhancement features such as collision avoidance radar and 

night vision have a similar requirement.

Such applications are beyond the scope o f this dissertation. Here a more specific, rationalised 

and practical investigation has been undertaken. This concerns the information currently provided by 

quality saloon cars, and ways in which this can best be presented in the form o f  a ‘Driver Information 

and W arning U nit’.

This work is supported by documentation suggesting possible improvements offered by 

custom isation and the likelihood o f improvements through future developments. Regular reference will 

be m ade to existing attempts, and at least a paper work review o f  the viability o f  future developments 

in the area o f HUD and GPS.” Fig.(I8) illustrates one m anufacturer’s vision o f the future for automotive 

instrumentation.

3.1 Model Specification

Ergonomic and aesthetic necessities were used to define technological requirements, 

identifying a set o f  objectives and essential characteristics to form the basis o f a product specification. 

This specification is used as the substance o f the design study discussed in this thesis. It is prudent to 

note that the criteria on which the specification has been based are those which have been found 

em pirically, within the automotive industry, to be to be acceptable, as opposed to some scientifically 

derived optimum. For example: there is no legislated figure for the m inim um  luminosity o f  a 

dashboard instalm ent, the typical requirement is that it be clearly legible under a 1 kW sunflood 

halogen lamp.

Initial study o f the trends associated with automotive instrumentation revealed distinct 

problem s with consumer acceptance o f purely digital or analogue mimics o f existing instrumentation. 

Various manufacturers, having produced such products in the past, found the consum ers’ perception o f 

their product to be poor aesthetically and confusing. Such was the case when British Leyland 

introduced a fully electronic instrumentation pack in its Maestro model. Other examples include Jaguar 

(XJ40) and GM (M kll Astra GTE), each o f which returned to a m ore traditional style o f 

instrumentation after the first revision. In the case o f the M aestro this happened a little earlier than 

w ould norm ally have been the case. In M arch 1993 Jamie Bodley-Scott, o f  Lucas BSE, stated that

G PS - Global Positioning Satellite; a term commonly used when referring to navigation technology.
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solid-state electronic meters “have not found their niche'""""'. W ith this in mind it was decided to 

develop a product model which would concentrate the plethora o f  ancillary instrumentation into a 

single m odule, which could at the same time be used to provide supplem entary and support 

information and offer scope for future developments such as satellite navigation. Furthermore, it was 

decided that it should remain sympathetic to the existing style. In addition an investigation was to be 

made o f  the use o f  solid-state light sources to illuminate both the retained analogue metering and 

w arning symbols, in an attempt to improve the m odule’s reliability and extend its serviceability. So 

as to confine the development to some realistic platform the model was engineered around the skeleton 

o f  a contem porary Jaguar instrument pack. M ore ironically, it was based around the instrumentation 

cluster which had replaced the original electronic instrumentation o f  the early models. After making a 

review o f  the proposed information content, the mechanical arrangement and available technology, a 

suitable unit was identified.

It must be emphasised that the intention was neither to develop an electronic interface to the 

autom obile operating system, nor to engage on a radical styling exercise, but to test the feasibility o f 

both the concept and the display components.

3.1.1

• D isplay F o rm at. Optimisation o f product performance and versatility requires a single “free- 

form at” or “ reconfigurable” display, as opposed to a custom ised design using a specific icon 

arrangement. The latter, it m ust be noted, would have been far beyond the resources o f  the research. It 

would also have been physically impractical to integrate. The prim ary reason for this was the quantity 

and variety o f  information it was intended to represent under the constraints o f optimising the 

compactness and effectiveness o f  the design. For example, only a relatively small area o f  the total 

display w indow may be dedicated to any one individual icon, in the case o f a customised 

configuration. Whereas, in the case o f a ffee-format display the whole display area may, if  necessary, be 

used to represent any single item, or group o f  items, and the form at used to display such information in 

the optim um  arrangement, rather than distributed across the viewing area. As a result the information 

can be classified by its original position in the design not necessarily it’s priority in the message. 

Adopting a free format also supported the ideal o f developing a non-application specific display 

subsystem. With today’s trend towards producing “world m arques”, that is globally marketed 

products'"""'', this gives it the required intrinsic portability. It also supports the facility to update, or 

re-model, without re-developing any hardware""'". W hilst the optim um  arrangement o f  information 

displayed on a ffee-format display may be compromised if  more than one group / message is
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demanding attention at any one time, it does allow those demands to be prioritised. Lower priority 

demands can be represented in small scale within a specific area o f the display until higher priority 

demands have been dealt with. Any such information classified as a warning would be displayed 

supplem entary to a regulatory ISO symbol warning system.

3.1.2

• Technology O ptions. The format o f  the model having been established, a 320x240 STN LCD, 

with cold-cathode fluorescent lamp (CCFL) backlight was chosen as the reconfigurable element (see 

appendix and table 2).

Consideration was made as to what future features it would be necessary to integrate in order 

to keep the unit up to date. This meant that full-colour, high resolution would be required if present 

themes for navigation systems were to be implemented. VFDs are not suitable, as they have neither the 

ability to offer high density full-colour, or high information content over any reasonable viewing area. 

M echanically PDFs become bulky for small screen diagonals, as well as not being sufficiently well 

developed for ftill-colour performance. EL displays cannot offer full-colour at this time. Which leaves 

LCD as the only contender amongst the flat panel choices. However, a rigid set o f operating criteria had 

to be faced in terms o f contrast ratio , operating temperature and luminance""", w ithout consideration 

for which technology was being implemented. Table (1) provides a summary o f the comparisons 

between the various technologies. A more thorough guide is contained in the appendix"""'

Problem ACPDP DC PDP Beam
Matrix

ACTFEL DCPEL PMLCD AMLCD

Luminous
Efficiency

✓ ✓

Matrix
Addressing

/

Uniformity ✓ y
Viewability
(Indoor)

✓ '

Viewability
(Outdoor)

X X ✓ ✓ X

Grey Scale / ✓
Multi-Colour / / /
Large Area ✓ / X
Driying Cost X X / X X
Panel Cost
/  =Current Cone

/
:m  X =

✓
=Probable Lc

X
ng Term Co

/  1
ncem / ' =  U: iless Backlit

/

T ab le  (1) - S u m m ary  o f C om parisons Between Technologies
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Electrical Characteristics:
Driving Voltage -20V
Operating Current 480pA
Overall Display Dimensions 108 (H )x  131 (W ) X 5.5 (D)
Actiye Display Area 76.77 (H )x  102.37 (W)
Pixel Pitch 0.32
Pixel Size 0.29 (H) X 0.29 (W)
Resolution 320 (W) X 240 (H)
M ultiplex Ratio 1:120"
A verage Response (a), 25 °C 195mS
C ontrast Ratio 37:1
Viewing Angle +25° / -25° horizontal 

+20° / -30° vertical
’ - Split Screen Addressing''

T ab le  (2) - D STN  LC D  Specifications

Typical figures for LCDs were available from industry sources and the specifications for such 

an LCD are listed in table (2). These criteria, as well as econom ic aspects, could be satisfied by using a 

m onochrom e super-twisted nematic liquid crystal display (STN LCD) o f 320 x 240 pixel resolution. 

This ruled out potential problems of repetitive pattern etching associated with emissive technologies, 

where analogue reproduction can lead to certain active areas being addressed more often than others 

leading to uneven ageing. It also showed a distinct advantage in terms o f cost and availability. There 

rem ained a concern as to the ability of standard STN technology to perform satisfactorily over the 

extrem e environm ental range, whilst continuing to exhibit adequate contrast, viewing cone, luminance 

and speed, as the criteria laid down in the specification represented the absolute limits o f  this 

technology at the time. It may indeed be suggested that those figures themselves were a compromise in 

order to facilitate the use o f LCD technology in the first place, as they are, as stated, very much those 

characteristics found to be acceptable, rather than ideal. The use o f DSTN would have improved the 

appearance as well as the performance, enhancing both viewing angle and contrast ratio, in addition to 

perm itting true black and white reproduction. But this technology is not readily available as an ‘o ff the 

s h e lf  item, as is the case with current AMLCD technology, which would have been the preferred 

option. The use o f  standard product did enable the investigation o f the concept, and relevant 

inform ation on both DSTN and AMLCD was available for correlation. In the event, the 320 x 240 

form at chosen offered a relatively high resolution o f  graphics within the 4" to 5" available from the 

Jaguar pack. An added advantage is that it represents 1/4 VGA standard. This means a potential

Split Screen Addressing requires the screen be addressed as two separate halves. This is not ideal 
as the fr in g e  fie ld  effects between the two halves o f  the display cause the boundary between them to be 
m ade visible by a loss o f  contrast. It also makes additional demands on the alignment tolerances 
w ithin the manufacturing stages.
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advantage when compiling the software with which the information intended for display was to be 

configured. It had been hoped to complete the investigation by integrating a similar form at AC-EL 

display for purposes o f  comparison, but the lack o f commercial support on this occasion prevented this.

3.1.3

•  D isplay Illum ination . A cold cathode fluorescent lamp (CCFL) backlight was used to backlight 

the STN LCD because o f  its very slim, compact profile, bright white, even distribution o f  light and 

cool operating temperature. In addition CCFL offers considerable improvements over incandescent 

lamps in terms o f  2 to 3 times the lifetime, and colour balance. One drawback is its need for additional 

DC/AC voltage conversion circuitry to generate the required discharge voltage - a not insignificant 

addition relative to product reliability. Also, in order to maximise the efficiency o f these lamps such 

“ inverters” operate at frequencies in the range 30kHz to 85kHz typically, and hence can be a source o f 

troublesom e amounts o f  electrical, and audible noise. The European Directive on EMC 

(electromagnetic compliance) legislates strict control over the levels o f electromagnetic emission and 

SLisceptability o f  all products. Often in cases where the levels o f  luminance need to be optim ised hot 

cathode fluorescent lamps (HCFL) are used. Generally this is true in the case o f full colour STN 

displays, where the efficiency o f the colour filters is a further limiting factor. However, in such an 

environm ent as the automobile instrumentation pack, where high levels o f  incident light may be 

present, the use o f  HCFL may again prove advantageous. Disadvantages are a loss in active lifetime, 

significantly higher current consumption and a slightly higher operating temperature. Table (3) 

illustrates typical operating characteristics for CCFL and HCFL. HCFL also shows an advantage in 

terms o f  low temperature starting. CCFL would be hard pushed to start at temperatures below -20°C.

Param eter C CFL H C F L
Lamp Operating Voltage 460V 120 V
Lam p Operating Current 6mA 140mA
Lam p Starting Voltage lOOOV 600V
Filam ent Voltage N/A 4.2V
Filam ent Current N/A 320mA
Luminance 12000cd/m2 25000d/m2
Lifetime 20000hrs lOOOOhrs
T ab le  (3) - C om parison  Between Cold and  H ot C athode  L am ps

3.1.4

•  ISO Sym bol Illum ination . In the past ISO symbols had almost exclusively been passive icon 

designs backlit by incandescent lamps, though one or two notable attempts had been made to integrate
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such information into a single multi-purpose display. Jaguar had, for example, in the early XJ40 series, 

used a low resolution, monochrome, free-format VFD matrix, with an LED illuminated warning ring 

around the periphery to indicate severity. This proved to be an effective method o f warning 

communication, but fell foul o f legislators on two counts. Firstly the ISO symbols themselves were 

not represented by the appropriate colour, and secondly there was a concern that a single catastrophic 

fault w ith the main display would knock out the entire warning system. Another similar example was 

the use o f bi-colour LED devices to backlight an LCD ffee-format matrix in Rolls-Royces Silver Spur 

trip computers. W hilst in this case the ISO symbols are represented by the appropriate colour, it still 

suffered from the same catastrophic failure scenario as the Jaguar design. In practice it also suffered from 

appalling legibility owing to the highly sensitive nature o f the negative image o f LCDs, in particular to 

light wavelength. By developing an ISO warning system along conventional lines these limitations are 

eliminated. In which case only two practical options existed for backlighting both analogue metering 

and warning annunciators, traditional incandescent lamps, or light emitting diodes (LEDs). The 

intention was to improve on what was already commercially available, in terms o f reliability, 

serviceability and manufacture. The LEDs option was the only route that suggested any potential for 

achieving a radical improvement in overall performance. LEDs exhibit superior performance to 

incandescents in several areas"""" . The most prodigious benefit is the huge dividend in terms o f 

lifetime and reliability. They have the potential to outlast incandescents by an order o f  100 - 250 

times, and tend to fail gradually over a prolonged period as opposed to catastrophically. In addition 

they have a capacity to withstand repetitive switching in excess o f  incandescents, by a similar order o f 

magnitude. In terms o f response speed and operating temperature LEDs also possess a significant 

advantage over this competition. This is o f  m ajor concern when considering the demands on 

manufacturers to optimise compartment space and improve the weight efficiency o f  their vehicles. LEDs 

are more mechanically robust than almost any other technology. They can be easily integrated into the 

instrumentation system at a board level, improving the testability, and hence the reliability o f the 

overall product. The Achilles’ heel o f LEDs is their relatively lim ited range o f  available colours, 

lim ited spectral output and higher relative cost.

3.1.5

•  In fo rm ation  C onfiguration . W ith the hardware specification fixed it was necessary to create an 

effective format for the screen information that would demonstrate the positive potential o f  the model. 

The purpose o f this work was not to evolve some new style, or fashion. The pertinent information had 

to be consolidated into associate groups, the graphics kept simple, clear and concise, making use.
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where appropriate, o f  regulatory ISO symbology and existing conventions w ith respect to 

m anufacturers’ layouts, representing all the various fields o f information in a way that would explore 

the core needs o f  any information system, but also access a generically portable product. This approach 

was explicitly intended to demonstrate the versatility o f the developed model, and prove the concept, 

w hilst by default raising issues pertinent to further development.
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4.0 Design Solution

Having formulated specifications for a design the next step was to optimise their 

implementation. This required the development o f  a physical layout that optimised the effectiveness o f 

the components and which also satisfied the objectives on which the study was founded: integration o f 

a concept into a practical environment, and its objective analysis were the goals"""'".

4.1 Instrumentation Layout

To a large extent many o f the formulations were qualified by the requisite limitations o f  the 

Jaguar pack. For instance, the dimensions o f the 320 x 240 pixel display closely replicated those o f  the 

principal analogue metering it was intended to replace. Fig.(19). A free-format facilitates the 

reproduction o f  all the required information in some form or other. Nevertheless, this would not have 

optim ised the effectiveness o f the overall unit. It was necessary to retain the primary information on a 

perm anent basis needing no selection, whilst also retaining the original character o f the instrumentation 

by adopting a conventional layout, incorporating the original principal analogue meter, namely the 

speedometer. In a typical instrument pack format, incorporating speedometer and tachometer (or clock), 

the main m etering is situated centrally to the additional metering situated around the periphery, as with 

the unit fitted to the model released under the Daim ler marque and illustrated in Fig. (20). The original 

instrum ent pack used within the Jaguar arrayed the status indicators in several indistinct clusters, also 

around the periphery. A key objective o f the design solution was to create a format that could be read 

w ith a m inim um  o f interrogation. So whilst a symmetrical layout for the principal metering was 

retained, the ISO warning annunciators were centrally grouped by function. Those o f the highest 

priority (Red) were contained within a single matrix, along with those used to indicate the most 

com m only encountered attributes, head / tail lamp and direction indicator status, in distinct groups 

between the principal instruments. Those indicators assigned to information o f an intermediate priority 

(Amber) were arranged as a single line either side o f  the central cluster, and below the principal 

instruments. This configuration effectively separated and underwrote the combination o f  analogue 

speedom eter and LCD. Fig.(21). In addition to being a more effective combination this was a far 

sim pler arrangem ent to engineer than the original design. The close grouping o f the warning 

annunciators would not have been possible if  incandescent lamps had been used in preference to LED 

ow ing to the potential for excessive heat generation by the hot filaments o f incandescent lamps. This is 

a problem  that compromises many current designs. Because the risk o f  several indicators being active
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Fig. (19) Free Format Display vs Analogue Meter
One of the 320x240 resolution free format displays alongside the conventional 
analogue meter showing the size compatibility. Also shown is the notebook PC 
running the application software developed to run the final design.
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sim ultaneously for sufficient time to cause a problem  is low, this problem is usually disregarded, or the 

indicators are more widely spread than they need otherwise be.

4.2 Firmware

Having established the configuration o f the instrumentation a suitable means o f  operating the 

LCD was required. There are numerous devices on the market designed to provide an interface to 

displays o f  320 x 240 pixel format. However, all are com m only only available in Surface M ount 

Technology (SMT) packaging, which means that bread boarding was impractical unless expensive 

leaded IC carriers were used. The aspect o f  component packaging was an overriding concern throughout 

the design stage. As the necessary facilities were available, a single-sided PCB was manufactured which 

could accommodate all the necessary hardware for communicating to the free-format display.

The choice o f display controller was an arbitrary one, each m anufacturer’s devices being 

sim ilar in configuration and protocol. Two devices were initially considered, the OKI M SM 6255 and 

the Seiko Epson SED1330. The former device has a relatively sim ple operating protocol, but could 

offer only a graphic interface. The SED1330 on the other hand offered the ability to address the display 

in both graphic and character mode. It was also available in a range o f  products which included DC/DC 

converters' for generating the LCD driving voltage, and display RAM. An early attem pt was made to 

use the OKI M SM 6255 on the custom designed, single-sided PCB with a micro-controller interface in 

the form o f  an Intel 8749, and a 512K EPROM to store the screen information; see Fig.(22). Though 

successftil in a stand alone format it was difficult to devise an adequate interface to a PC using this 

micro-controller because o f hardware restrictions, and the etching o f a PCB with the necessary pad pitch 

to m ount the SM T packages proved to be particularly troublesome. This limited the degree o f 

interaction with the design, and meant that the prototype was extrem ely fragile. By using a 

com bination o f standard products to overcome these limitations, and customised product where 

necessary, the problems o f  wasted time spent resurrecting un-reliable material was avoided. A parallel 

port buffer assembly was used to allow the PC to interface directly to an SED1330 and the ISO symbol 

interface. The LCD controller was part o f another sub-assem bly which had a DC/DC converter built in 

capable o f  providing the 24V LCD drive voltage, along with the necessary display RAM. A further 

sub-assem bly was manufactured using single sided PCB again on which to mount the LED array, and 

associated driver IC for ISO symbol illumination. This was fabricated by a professional PCB 

manufacturer.

D C /D C  converter is a circuit/device which converts a D C  voltage to some other D C  voltage level.
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Each of the display controller’s specifications are both lengthy and detailed, so reference must 

be made to the manufacturer’s data. A b rief outline for each o f  the devices used is contained in the 

appendix, and a block diagram o f each device is given in Fig.(23). In each case a display controller 

needs to be initialised, to operate in the desired format. Each device is programmable so as to permit 

control o f  a range o f  display formats (640x200 - OKI M SM6255, 512x128 SED1330, and any sub

group thereof). A PC based software routine was written using ‘C ’ language for controlling both the 

LCD and ISO symbol illuminators with a simple VDU graphic interface. This also meant that all the 

screen information could be stored, and accessed, via the com puter’s hard disk. The facility to do this 

was particularly useflil as the screen information and layout was constructed using a software product 

developed specifically for demonstrating the operation o f free-format displays, up to VGA format, from a 

PC. This graphic interface allowed the user visually to construct the desired layout before converting it 

into an Intel HEX format which could be accessed from files used for the screen memory. Unfortunately, 

it did not have the facility to provide any form o f animation, as would have been desired to mimic the 

operation o f say the tachometer. An attem pt to overcome this m inor drawback was made within the 

control routine by writing several different sets o f screen information in sequence to mimic the rise and 

fall o f the tachometer. This worked well, though in a practical application it would be achieved by 

updating only the specific area o f  system RAM  in real time.

As with any device o f  this com plexity the setting up, or initialisation, o f the graphic display 

controller was critical. Every aspect o f  the device’s features had to be reviewed in order to achieve an 

error free message on the display. The routine by which the controller was initialised is contained at 

the beginning o f  the ‘C ’ routine developed to control the unit. A copy o f  this routine can be found in 

the appendix.

4.3 Information Format

In general the information designed into each o f the screen layouts was a replica o f or 

additional to that in the existing Jaguar instrumentation pack. A study o f  current modes and 

contem porary consumer research was m ade in order to support the selection o f this information, and to 

ratify the order o f priority attached to it.

W hen constructing the layout o f each o f the screens, attempts were made to replicate, where 

appropriate, the configuration o f existing instrumentation. W here this was either not possible, or 

inappropriate, as in the case o f the gauge representation, the layout was kept as simple and clear as 

possible. This philosophy was adopted when deciding the content o f  each screen. In hindsight it would
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perhaps have been desirable to have supplemented each graphical image with numeric information. 

W hilst it would have been possible to dedicate the whole o f  one screen to a particular subject at a time, 

for say the reproduction o f tachometer information, it was felt that approach was not representative o f 

the goal o f the investigation. A more flexible and well developed software product would enable the bit 

generation o f  individual information into a single screen format when desired. This would also then 

allow the additional numeric information to be present. But that sort o f development will be discussed 

as part o f  the review o f  further development potential in a later chapter. Either o f these ‘distractions’ 

would anyway have radically extended the time allocated to this particular section o f  the study. In any 

case each screen contained information which it was felt related to each other. Fig.(24) shows the three 

screen formats which were developed. It should be realised that in spite o f the software tools available it 

took m any hours o f  work to construct each screen format. These software tools were basic graphic-to- 

Intel HEX translation programs and had none o f the advanced layout tools o f  advanced drawing 

packages. Equally it must be understood that the scope for information display using such an 

arrangem ent is largely software related. The ethos behind the concept was to illustrate its inherent 

flexibility and versatility. By using a m odicum o f imagination it should be easy to realise the potential 

for displaying diagnostics, navigation aids or even personal communication facilities, a ‘super pager’, 

for example, with the capacity for electronic mail.

4.4 ISO Symbol Implementation

Fig.(25) illustrates how well warning information can be represented using the free-format 

screen. Because o f  the various international, and national, regulatory restrictions it was necessary to 

implement the ISO warning system as an array o f dedicated indicators, represented by accepted icon 

descriptions and colour. A single sided PCB was designed using FastCAD and fabricated by M hotrak 

Ltd. This perm itted the mounting o f the whole backlighting array, along with driver electronics and 

current lim iting resistors, into a single unit. Usually each o f the LED groups would have been 

protected by an in-line signal diode to prevent against reverse voltage. These were not required for 

prototyping.

Each icon was back-lit by a pair o f  LED devices. In all but two cases the packages used were 

miniature SM T devices. In the other two cases 3mm diameter radial, through hole mounted devices 

were used. In one case this was to back-light a red warning icon using a new high brightness, wide 

angle package to see if  there was any reasonable benefit over the SM T devices. The second application 

for the 3m m  radial type was to back light the blue ‘main beam ’ icon. Blue LEDs are still relatively
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scarce in the market and no suitable SMT device could be found. The use o f  the word ‘suitable’ is 

relative as blue LEDs offer only a very poor performance in any case. The miniature nature o f the SMT 

packages had the advantage o f allowing a very compact light chamber to be constructed. From 

experience, and the study of other commercial designs a chamber depth o f 8 - 10 mm was thought to be 

ideal. In the case o f radial type LED packages a cham ber depth o f 20 mm would be typical.

Unlike incandescent lamps, LEDs are not available in a range o f power ratings which define 

their brightness. So to prove the feasibility o f  using LED it was necessary to optimise the level o f  light 

projected towards the icon window. The PCB surface around the LED was coated white. Other 

precautions taken to make the most o f the available light were to use a plastic material with a high 

coefficient o f reflectivity (Bayer 10244, 99.98%) with a bevelled aperture, and an LED type with a light 

projecting lens, Fig.(26b). The tooling used when producing the reflector component limited the 

fashion o f  the cham ber to an 8° bevel. An elliptically optimised profile would have been an advantage, 

though the degree o f  benefit would have been limited, and it was not considered that the lack o f  such a 

facility w ould m ean the difference between proving or disproving the design’s viability.

Existing films were used to represent the necessary icons purely as a matter o f  convenience. 

These had the disadvantage o f already having filters o f  a particular colour co-ordination for their original 

design. This affected the final performance o f the annunciators. However, they also featured the 

necessary diffusion characteristics to give a good balance o f  light across the symbol, correct levels o f 

neutral density* and o f course representative icon designs that would permit a degree o f  correlation 

betw een existing products. The results indeed speak for themselves. In addition a single LED 5mm 

lam p was fitted to the aperture o f the Analogue meter pointer to determine the effectiveness o f  using 

LEDs to backlight whole areas and individual elements o f  the conventional instrumentation. Fig (27).

4.5 Fabrication

Finally, it should be explained that the LCD module used was prim arily designed to be 

operated w ith its associated backlight, being optimised in the transmissive mode. It, therefore, 

perform ed better in lower ambient light levels. By definition it therefore performed relatively poorly in 

conditions o f  high ambient light, not being optimised for operation in a reflective mode. All displays 

o f  a non-reflective nature perform less satisfactorily under such conditions - exhibiting “washout”*. In 

an attem pt to com bat the effects o f strong incident light which could be expected in such an

N eutra l D ensity refers to the ability to minimise am bient reflection without inhibiting transmission. 
"W ashou t” is the term which refers to the loss o f  legibility due to excessive incident light.
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These ISO warning indicators used commercial graphics from a variety of 
vehicles, including the original Jaguar design. The performance was in some 
cases inhibited by the colour filter used on these graphics, but the final indicator 
arrangem ent is well illustrated here.
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environment a “Light Control Film’”  ̂ filter was fitted across the display aperture. Full details o f  this 

product are contained within the appendix. It has the effect o f  absorbing light o f one polarisation 

incident along a particular axis which is determined by its orientation. As the majority o f  applications 

would be within a cabin which had a permanent roof it was determined to tiy to inhibit the effects o f 

strong incident light from either side. This meant orienting the filter with its laminations running 

perpendicular to normal. This actually had the effect o f reducing washout and improving contrast, 

especially in the area o f ISO warning symbols, where the nature o f  the surface diffusion films lead to a 

slight loss o f contrast. Unfortunately, there was insufficient material to fit to the whole unit so in the 

model only the LCD aperture was covered.

A great improvement in the instrument’s resistance to w ashout from strong ambient light in 

the horizontal plane was noticed, but with two major drawbacks. First, visibility is inherently lim ited 

from either side o f  the display, as the light emerging from the display is also absorbed along the 

horizontal plane. This means that it is not easily legible from the passenger seat, an important feature 

when using the filter material in such applications as remote teller machines, but a problem when 

incorporating entertainment features such as radio tuning, etc., into the automobile instm m entation 

pack. It is also undesirable when setting cabin conditions or enquiring about trip information.

Secondly, the filter also has a retarding effect on the performance o f the LCD backlight.

The instrumentation arrangement was assembled onto a 5mm sheet o f transparent perspex to 

allow easy inspection. By using suitable mounting pillars it was possible to arrange each individual 

component at the correct height to appear flush with the facia panel. The facia panel itself was machined 

from 3mm perspex with the same footprint as that o f the original unit. The correct instrument apertures 

were routed out professionally, and the surface finished with a non-reflective black automotive 

specification paint. One aspect it was not possible to replicate was the mock veneer finish o f the 

original unit.

“Light Control Film  is a product o f  3M.
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5.0 Analysis, Discussion of System and Conclusions

Previous chapters have described the specification and development o f an automotive 

instrument pack along basically conventional lines, using facts and figures gathered from industry 

sources. The extent to which the solution succeeded in achieving set goals, and the extent to which the 

solution succeeded in enhancing automotive instrumentation must be analysed in order to determine 

the validity o f the work.

To a large degree the success o f  the design is subjective. It can only be said to be successful if  

people like to use it and feel comfortable with it. The components used in automotive environments 

are rarely standard, or available ‘o ff the s h e lf . As in this case. It was necessary to rely on materials that 

were readily available to prove the conceptual validity o f  the developed model. Consequently, it w ould 

have been irrelevant to approach the analysis o f  the finished model by attempting to evaluate the 

performance in relation to a contemporary automotive environmental specification. Nor could it have 

been claimed that the model had been constructed using certified manufacturing processes. So the 

underlying reliability o f the finished item could in no way be guaranteed, or realistically quantified. On 

the other hand, all this did not prevent relevant third parties, involved in automotive instrumentation 

development, from  being invited to review the m odeling principles. To what degree did industry 

experts agree with the relevance o f  the modeling concept?

W hen conducting this survey the model was only demonstrated, and no attempt was m ade to 

lead reviewers to analyse the model from any particular standpoint. Overall the response was extremely 

positive. Adopting an inherently portable concept was seen to be a key issue facing the instmmentation 

industry. The use o f  ffee-format displays, specifically LCDs, was seen as offering the greatest immediate 

potential for realising inherent portability, whilst also enabling the integration o f higher levels o f 

information content. Doubts were raised over the commercial feasibility o f being able to use such a 

high resolution display form at at the time. But it m ust also be realised that, since these opinions were 

first sought, the average cost o f standard 1/4 VGA m onochrom e LCDs has more than halved. It was 

also suggested that much o f  the information being reproduced would also have to be clearly visible 

from elsewhere in the cabin. Information such as climate status and controls, and entertainment features. 

So possibly making use o f two lower resolution displays (240x160 or 160x128 perhaps), with one 

mounted more centrally, would prove an effective adaptation. Certainly it was reported that the 

supplem entary warning diagnosis was a significant advance, and that the model made contributions to 

evolution away from purely conventional instm m entation. The use o f  LEDs to backlight the ISO

44



indicators was strongly endorsed. As was the move away from more traditional packaging formats for 

their integration. Indeed it was felt that with a relatively little improvement in the commercial 

availability o f LEDs for automotive applications, that they would begin a widespread move to adopt 

them universally for this use. Finally, there remained a level o f scepticism regarding the suitability, 

over the short term, o f  CCFL backlighting for automotive instrumentation. Currently there are doubts 

as to w hether CCFL can operate reliably over extended temperature ranges. HCFL was accepted as a 

possible alternative, but with reservation regarding proven lifetime.

This at least is a summary o f the feedback received from demonstrating the model. With this 

inform ation in mind an objective defence o f  the finished product is given here. Fig. (24) shows the 

various screen formats designed into the model, and indicates the versatility o f the design. Whether, or 

not, any individual is happy with the screen format is irrelevant as not everyone likes to drive the same 

car. The model shows what can be achieved. Because the model had been designed with an open 

form at the same operating system and firmware can be used for a whole range o f applications by 

adapting only small amounts o f the software content. The hardware package may have to be redesigned 

in each case, but the architecture is common, as are the majority o f  the component parts. So in terms o f  

achieving a design that is genetically adaptive the study was successful. It may be that the negative 

blue STN LCD is better replaced by a black and white DSTN. This would be less obtrusive, and 

perform better over the desired temperature range.

As previously suggested, a format other than full 1/4 VGA m ay be preferred, but there remain 

significant advantages to adopting a common architecture and open format instmmentation that have 

been realised by this model.

Regardless o f  the situation o f the free format display the benefits o f a common operating 

system , w ith common com ponents have been proven. It may be that a fully traditional instmment 

arrangem ent is preferred, with the free format display mounted more centrally within the overall facia. 

This w ould perm it access to all the information from other situations than the driver’s seat. This is 

particularly important because o f the entertainment facilities integrated into the scheme. This would 

avoid m any o f  the problems associated with electronic instmments o f  the past.

M inimising the likelihood o f confusion must be a prim ary concern. People don’t always drive 

the same car. They often change the marque and model they drive every one, or two years. Familiarity 

w ith instrumentation is an important aspect o f  safety. The switch to more friendly, effective 

instrum entation must be a gradual one, which takes account o f the changing demands placed on them. 

As this report was being completed BMW  announced a similar scheme as an option in its top o f the
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range ‘7 series’, Fig. (28), offering a small, 1/4 VGA, full colour TFT LCD display, capable o f 

providing TV, as an option mounted centrally within the cockpit facia. Being an option, and using 

TFT LCD, it has not been conceived with the same objectives o f  achieving a common system as has 

been used here. It does highlight the common approach being sought by manufacturers within the 

automotive field.

In some respects the LCD module used satisfied the specifications listed in Table (1). It was 

legible under m ost circumstances, though the contrast ratio ( listed by the manufacturer as between 3:1 

and 4:1) was well below that specified. It must be noted that the specification was based upon a screen 

that used ‘split screen’ addressing, which effectively halves the multiplex ratio. Even w ith such a 

schem e it is difficult to see how a contrast ratio o f  more than 20:1 could be achieved. However, at the 

tim e o f  writing this chapter market figures from Japan and Korea suggest that the list price o f TFT 

LCDs has fallen significantly. The coming introduction o f next generation TFT production facilities 

will certainly see the further reduction in price o f  such devices, as yields are significantly improved, and 

traditional markets in portable computing becom e saturated.

Fig (25) illustrates the effectiveness o f  using the free format display to supplem ent the 

traditional ISO warning indicators. An ISO warning indicator may inform the occupants o f the vehicle 

that a seat belt is not fastened, or a door is not closed properly, but it does not dem onstrate the 

inform ation with the same accuracy possible here. The ISO symbols themselves are shown in Fig 

(26a). The red LED worked superbly, as did the amber. The blue LED is inadequate to perform the job  

usefully, though, i f  the price became more acceptable, only a little improvement w ould be required to 

rectify the deficiency. After all, the blue device is only used for highlighting the full beam indicator, 

and full-beam  is unlikely to be required in high ambient lighting conditions. Those indicators 

employing green LED exhibited marginal performance. M uch o f what was lacking in the performance 

could probably have been redressed by using more suitable filtering techniques and optim ising the 

design o f  the light box. Again, it is purely subjective, but with a minimum o f engineering effort the 

LED has been proved to be a credible alternative to incandescent lamps. Fig. (27) illustrates how the 

speedom eter needle has been illuminated by a 5mm LED lamp. It also illustrates what improvement 

could be achieved by using a more efficient light guide.

The addition o f light control film im proved both the contrast, and legibility under extreme 

am bient lighting conditions, but it severely limited the viewing angle o f  the free form at display to an 

unacceptable level in terms o f viewing from any position other than that o f  the driver’s seat. It would 

be m ore appropriate to use a combination o f anti-reflection coatings, which are now commonly
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available on the market, especially in the case o f the free format display. The LED indicators would 

certainly benefit from the addition of the light control film as it is o f little consequence, generally, if 

these are not visible from the other areas of the cabin, particularly as the free format display would be 

offering supplementary diagnostics that were. Fig. (29) shows the completed model, and highlights the 

very compact nature of the arrangement.

Undoubtedly, the level o f information that it will be necessary to produce in future 

automobiles will require a radical development o f instrumentation. The model developed in the course 

o f  this study illustrates how these demands can be satisfied, without departing radically from traditional 

styles. It also proves the advantage o f integrating a common system into die body electronics. Recent 

developments have indicated that advanced full-colour AMLCDs are becoming more accessible in 

terms o f  price, and general availability. This should mean that a great deal more o f the desired 

characteristics are available at a price that makes integration o f such displays practical beyond the 

luxury marques. Certainly, the facility for reproducing cartographic detail would be possible, as would 

the ability to issue warning diagnostics in the appropriate colour. It would also mean that the 

entertainment facilities could be considerably extended. The move by BMW, whilst predominantly of 

novelty value at present, proves the natural progression towards such schemes. They solve many o f the 

needs at hand without challenging tradition to an unacceptable level. The longer term future for 

automotive instrumentation is less clear. Fig. (18) has illustrated one manufacturer's vision of the 

future. The integration of equipment that improves visibility, replaces mirrors, and provides proximity 

information has already been prototyped by many manufacturers. Honda indeed has provided proximity 

sensing as standard in its ‘Odyssey’ recreation vehicle. The cost o f all this technology will fell. It will 

become increasingly practical to implement such services in a wider range of vehicles. Producing such 

vehicles at a lower cost will require the implementation o f  common components and systems. Safety - 

will be targeted by reducing the level of user interaction. Head-up displays (HUD) will become 

increasingly prevalent. HUD systems provide the user with information that is instantly recognisable, . 

without the need to divert attention from the forward direction. It uses such techniq[ues as Snellen 

figures to project an image that appears to be in focus some way ahead of the vehicle” ”'', dispensing 

with the need to re-focus the eyesight to read an instrument that has been placed close at hand. The - 

further developrfient o f the optics required by such schemes, and the standardisation o f accurate ways of 

implementation will result in their introduction in the very near future. However, because the majority 

o f the demands on the driver o f a vehicle are based on what is perceived visibly there will be a general 

trend towards supplementing information audibly, as opposed to visually.
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Fig. (29) Final Assembly
F r o n t  a n d  r e a r  v i e w  o f  t h e  c o m p l e t e d  a s s e m b l y .  S i m p l i f i e d  l a y o u t  o f  
f i n a l  a s s e m b l y  c o n t r a s t s  s t a r k l y  w i t h  t h e  m o r e  c l u t t e r e d  a r r a n g e m e n t  
o f  t h e  o r i g i n a l  m o d e l  ( c f  F ig .  2 0 ) .  T h e  r e a r  v i e w  i s  o b s c u r e d  b y  t h e  
p a r a l l e l  p o r t  c a b l e  a n d  p o w e r  s u p p l y  c o n n e c t i o n s .  A  c o n v e n t i o n a l  
w i r i n g  l o o m ,  o r  d a t a  b u s  w o u l d  s i m p l i f y  t h i s  a r r a n g e m e n t .
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This study has clearly defined the direction in which automotive instrumentation has to 

move. It is clear that instrumentation needs to adapt along two lines. First o f all primary information 

has to be provided in a manner which is imrnediately comprehended by the driver, without 

compromising their ability to safely operate the vehicle. Secondly, the instrumentation must meet the 

demands for more diagnostics, news and entertainment. All o f  this must be done whilst adhering to the 

wishes o f the stylist. This document has studied, in depth, the way future display technology may 

progress, and how it may be integrated into the automobile. The greatest challenge is to catalyse this 

movement in a way that is acceptable to today’s world-wide driving population. An effective first step 

has been offered by the work described here. '
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Parameter Direct-view FPD Projection FPD

S lu 3" - 10" J " - 4 .0 "

Rcsolûtion 80 Color Dots per Inch Minimum 
320 X 240 - 640 X 480

120 C olor Dois per Inch Minimum 
60 C olor Dois per Degree Desired

. Color 3  Bits, 512 Colors
4 Bits, 4096 Colors Same

P o m r 5 -  to W atts 
(Not P rim ary Consideration) 30 W atts  Maximum

rémp«r%ure -40 to  +85 Degrees Centigrade 
(-40 to +105 Some Applications)

Same

r«m p  cyc le
-40 to  +85 Degrees Centigrade 

500 Cycles Same

Perform ance
Pem peralure

-20 to  +70 Degrees C entigrade 
(B roader for Some Applications)

Same

Humidity
+65 Degrees C entigrade 

95% Relative H um , 168 H rs Same

Vibration 3 J g
Random /M ultlaxis

Same

Viewing
Angle

60 Deg Vert, 100 Deg H or 
(B roader for Some Applications)

40 Degrees Vertical 
120 Degrees H orizontal

C ontrast
R atio

50:1 M inim um , D ark  Background 
10:1 M m  at 3000 fc S u rf  Ilium

100:1 Min, D ark  Background

Tim e
Vitleo 50 ms at 25 Deg Cent 

. G raphic  100 ms a t  25 Deg Cent
Same

O perating
Voltage

8.0 -1 8 .0  VDC Same

Brightness 350 cd/sq m 
100:1 Dimming Ratio  Minimum

40,000 cd/sq m 
100:1 D imming Ratio Minimum

Defective
Pixels

1 p e r  Display Failed Bright 
1 p e r  Square  Inch Failed D ark

Same

EMC M inimum 
(Per CM  9100P)

Same

W eight Laptop PC  Stanrlard (Not an Issue)

types of displays. The technique plots a spider chart, 
which is an eight-axis graph representing eight of the 
most important parameters or attributes with respect to 
automotive applications. The axes of the spider charts 
have been set up so that ideal or nearly ideal values are 
found at the outer extremes of the axes. The nearly 
ideal display technology would plot an octagon, or web. 
if you will, of maximum diagonal length.

VFD Performance (Direct View)

Fig. 1. Automotive FPD Specification Requirements

harsh with respect to temperature extremes, humidity, 
and ultraviolet exposure. As demonstrated by the 
specifications for storage temperature, powered tem
perature cycling, performance temperature, humidity, 
and UV exposure, the automotive environment defi
nitely challenges electronic components in general and 
flat-panel displays in particular.

Potential Solutions

The most likely flat-panel display candidate tech
nologies can be stated simply. Today VFD and 
TNLCD are the display technologies of choice. In the 
midterm, AMLCD’s will find utility in automotive re- 
configurable displays, and in the long term it is not 
clear whether the AMLCD or the FED will dominate 
high-content automotive usage. In considering the 
candidate technologies for flat-panel displays in cars, 
we divide the world into two halves, which represent 
the two major types of display applications. First of all, 
there are direct-view flat panels in the range of 3” to 
10” on the diagonal, and then there are projection im
age sources for head-up displays on the order of 1/2” to 
4” on the diagonal.

We have developed an analysis tool which allows 
us to summarize very quickly the strengths and weak
nesses of candidate technologies relative to these two

Fig. 2. Direct-view Dot-matrix VFD Performance

Consideration of vacuum-fluorescent display per
formance shows very quickly why VFD finds its 
strength in the automotive arena. It is strong with re
spect to cost, contrast ratio, response time, viewing 
cone, operating temperature range, and maximum 
brightness. VFD exhibits weaknesses only in that it is 
limited to low- and medium-information-content reso
lutions, and it has limited capabilities for color.

a-Si TFTLCD Performance (Direct View)

Fig. 3. Direct-view AMLCD Performance

On the other hand, amorphous silicon AMLCD 
technology provides answers for the weaknesses of 
VFD with respect to color and resolution, but AMLCD 
technology is severely lacking with, respect to cost, and
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il leaves some to be desired with respect lo viewing 
cone, operating temperature range, and maximum 
brightness.

FED Perform ance (Direct View)

Poly Si AMLCD Performance (Projection)

Fig. 4. Anticipated Direct-view FED Performance

In the long term, FED may answer the weaknesses 
left by AMLCD, but it should be remembered that, at 
this point, FED receives the benefit of the doubt with 
respect to performance, because very little direct expe
rience is available, and the FED is early in its develop
ment cycle.

VFD is a strong contender in HUD products for the 
very, same reasons that it works well in direct-view 
types of displays. Its only limitations exist with respect 
to resolution and color production.

VFD Performance (Projection)

Fig. 5. Projection (HUD) Dot-matrix VFD 
Performance

Fig. 6. Projection (HUD) AMLCD Performance

Similar to amorphous silicon AMLCD’s in direct- 
view applications, polysilicon AMLCD’s answer the 
issues left by VFD with respect to color and resolution 
in HUD products, but they carry with them problems 
with respect to cost, operating temperature range, and 
maximum brightness for HUD applications.

Again, in the long term, field emission displays 
potentially could answer most or all of the needs of 
automotive head-up display applications.

FED Performance (Projection)

Fig. 7. Anticipated Projection (HUD) FED 
Performance

Anticipated Future Direction

The exact dimensions and specifications for flat- 
panel displays will vary by specific application, and 
many of these applications are yet to be fully defined.

12 » SID 96  DIGEST



This is as much as to say that the exact size and shape 
of displays required for automotive applications is a 
matter of conjecture at this point. However, we see the 
need for a color reconfigurable image source in the 
range of 1” to 1-1/2” for general-purpose head-up dis
plays. This HUD need will be augmented potentially

Basic Automotive FPD Needs

Disnlav Tvoe Diagonal Asbect Ratio Color RGB CroHPS

Generic HUD 1' -1.5” 2:1-3:1 Color 77K

Night Vision 
HUD 3” -4 ” 2.5:1 Mono 77K

Secondary 
Direct View S” - 6" 4:3 Color 77K

Generic Instru
ment Cluster 6" -12” 2.5:1-4:1 Color 77K-307K

Fig. 8. Types of Automotive FPD Needs

by a 3” to 4” diagonal monochrome display for Night 
Vision applications. Secondary direct-view displays, as 
might be used for entertainnient or navigation, will be 
on the order of 5” to 6” on the diagonal and will be 
color. A general-purpose instrument cluster potentially 
could be provided by a 6” to 12” color display. The 
resolution of these displays would be in the range of 1/4 
VGA to VGA. Also, it should be noted that typically 
the most desirable aspect ratio for automotive displays 
is not 4:3, but somewhere around 2:1 or 3:1.

Automotive FPD Needs Forecast

I  3S00 
£  3000 
S  2500

1096 1996 2001 2002 2003

Fig. 9. Automotive OEM FPD Unit Volume Forecast

As we forecast the automotive OEM need 
(aftermarket not included) for flat panels worldwide 
based on our own experience, we see the serious portion 
of the volume ramp beginning approximately calendar 
year 2(XX). The growth in units could be fairly dra
matic for the first three to five years to approximately 5 
million units a year. At the same time, the average cost

3 .2 /  Schumacher
of the displays being used will necessarily be decreas
ing in order to realize the increased volume. The de
crease in unit cost superimposed on the volume ramp in 
units could give a total value of the automotive display 
market on the order of $500 million by the year 2003.

Automotive FPD Needs Forecaal

600

soo
400

300

200

1909 2000 2001 2002

Fig. 10. Automotive OEM FPD Dollar Volume 
Forecast

Summarv

Automotive applications for flat-panel displays are 
quite exciting. Performance requirements for these 
applications are quite stringent. Additionally, automo
tive applications are extremely cost sensitive. These 
facts lead to the conclusion that, while flat panels easily 
can be predicted to be a pervasive feature in future 
automobiles, work remains to effectively apply them. 
The future automotive market for FPD’s will easily 
warrant addressing these remaining issues in order to 
develop the market. The future of flat panels in auto
mobiles appears to be assured .and promising.

Acknowledgments

The author would like to thank Dave Beyerlein, 
Tim Kennedy, and Karl Stone for contributions pro
vided for this paper.

SID 96 DIGEST* 13



LCD Controller Specifications



O K I Semiconductor
MSM6255
DOT MATRIX LCD CONTROLLER

GENERAL D ESCR IPTIO N

The MSM 6255CS is a CM O S si gale  LSI designed  to d isp lay  cha racte rs  and graphics on a D OT 
MATRIX LCD panels in cha rac te rs  an d  g raph ics.

FEATURES

• D isp lay  control capacity
-  G raph ic  m o d e : 512,000 d o ts  (2 '6

bytes)
M em ory  ad d re ss  
M A q ~ M A i 5

-  C haracter m ode: 65,536 characte rs  (2 '6
bytes)
D isp lay  ad d ress  
MAq -  MAis

• D irect interface w ith  8085 o r Z80 CPU
• D uty: 1 /2  to 1 /2 5 6  selectab le
• A ttribu tes

-  Screen clear
-  C u rso r O N /O F F /b lin k

• Scrolling and  paging
• D isp lay  system : AC inversion at each 

fram e
• D ata o u tp u t (u p p e r  and low er d isp lay  

ou tp u ts)
4-bit parallel ou tp u t, 2-bit parallel 
o u tp u t, 1-bit serial ou tpu t

• C rysta l oscillation
• Low  C M OS Silicon gate process
• Single +5V po w er supp ly
.  80 pin p lastic  Q FP (QFP80-P-1420-K)
• 80 p in -V I p lastic  Q FP (QFP80-P-1420- 

V IK )

PIN CONFIGURATION

(Top view ) 80 pin p lastic  Q FP

g g



General Description

The SED1330 is a graphics and character display controller for use with medium scale 
dot matrix LCDs. This CMOS LSI device generates all the signals required by the display 
memory and LCD drivers, and incorporates a character generator ROM, so that flexible, 
low power, display system s can be designed with a minimum number of external com 
ponents.

The SED1330's high speed MPU interface can be configured for both 6800 family 
and 8080  family processors, and the rich conimand set allows the user to create a lay
ered display o f characters and graphics, scroll the display, and assign display attributes 
to selected areas o f the screen, with a minimum of MPU intervention. The controller 
also functions as a pipeline buffer between the MPU and display memory so that low  
cost, medium speed SRAM can be used. .

The device's character generator system  supports user-deflned characters, which  
can be used alone, or in conjunction with the on board character set.

R ecom m ended LCD drivers 
.  X: SED1180F, SED1600F 
.  Y:SED1190F,SED1610F,SED1630F

R elated devices 
.  EC-240IS-AR LCD panel 
i  EG-2801S-AR LCD panel
• EG-4401S-AR LCD panel 
.  EG-4801S-AR LCD panel

Features
• 6800  and 8080  family compatibility, 2 pin programmable
• Programmable cursor m ovement

• Flexible scrolling .
— Scrolling in both horizontal and vertical directions
— Scrolling o f selected areas o f the display

•  Multimode display

SED1330



U p  to  2 la y e r s  o f  m ix e d  c h a r a c t e r  a n d  g r a p h ic s

— Up to 3 layers of graphics

•  Selectable display synthesis

— Display Attributes (Reverse Video, Flashing, ect) for selected areas of the display
— Simple animation

• Supports 64Kbytes o f memory

• 160JIS 5x7 pixel characters internal

•  S u p p o r t s  e x t e r n a l  c h a r a c te r  ROM  a n d  RAM

— Up to. 256 characters
— 8x8 or 8x16 pixel characters

' —  A llo w s  m ix in g  o f  ROM a n d  RAM  c h a r a c t e r  s e t s  '

■ • Variable LCD duty cycle, from Y  to

• Low power CM05 fabrication
— 5mA (typical)

— 0 .05M  (typical), standby
• Single 5V supply
• Choice o f packages

— SED1330FBA(60pinFP-5)
— SED1330FBB (60 pin FP6)

SE01330
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3M Light Control Film Specification



Industrial Optics 
Light Control Film

Product Description
3M Light Controi Film (LCF) is a thin plastic film 
containing closely spaced black microlouvers. The 
film simulates a tiny Venetian blind to shield out 
unwanted ambient light and direct display light of 
electronic instrumentation. LCF, with variable louver 
orientation, enhances contrast of eiectronic displays 
or blocks nighttime windshield reflections from 
instrumentation.
Three product variables—viewing angle, louver angle 
and louver type—determine the optical performance 
that can be attained with LCF. Figs. 1a, b f  Light 
Control Film)

.030 in

LOUVER SPACING .005 In or .010 in 

LOUVER THICKNESS = .0005"

Fig. l a

Light Control Film 
Transm ission C haracteristics

75*» Transmission

— 35*6 Transmission

180
Viewing

0.030 in.
0 .7 6  mm)

/ s
/ \

J / \ |
“ 30 -2 0  “ 10 0  10 20 30

Viewing Angle -  Degrees

Product Applications
Light Controi Film can be used with a variety of 
electro-optical displays such as light emitting diodes 
(LED), vacuum fluorescent displays (VFD), electro
luminescent panels (EL), liquid crystal displays 
(LCD), incandescent lights and cathode ray tubes 
(CRT).
— Privacy Viewing - Light Control Film allows for 
controlled viewing, so that unauthorized observers 
will have their line of sight blocked. It is ideal for 
confidential viewing on CRT’s, Automatic Teiier 
Machines (ATM) and anywhere privacy viewing may 
be desired. Fig. 2
— Sunlight Readabiiity - Light Control Film 
micro-louvers help block out annoying off-axis light 
while maximizing the transmission from the display to 
the viewer. The result is improved display: contrast 
with little loss of brightness. Fig. 3
— Light Directing - Light Control Film dinicts light to 
where it is needed or away from where it Is not. It 
eliminates nighttime window reflections in automotive 
and aeronautical applications. It can also be used to 
hide the light source in incandescent lighting 
applications. Fig. 4
— Contrast Enhancement - Light Control Film 
improves contrast and reduces glare on electronic 
displays by blocking out annoying off-axis light, 
making the display more comfortable to read. The 
micro-louvers maximize the transmission from the 
display to improve the image with little loss of 
brightness.

Fig. 2 Privacy Viewing

Fig. l b

Control

Observer ig Observer

Fig. 2



UgM Control Film lb Provont 
WIndthlold Ronoetlon*

LCF lo Provont Sunllglit Dogrodatlon 
of Eloctronie Inotrumontatlon

D isplay

in s tru m e n t I

S tee rin g  Column^

Fig. 4Fig. 3

Light C ontrol Film -  Louver O rientation  

Louver Angle

Light Control Film Options 
Light Control Film is available with a number of 
options to match display readability or lighting 
requirements. The options are as follows:
— Louver Angle
— Viewing Angle
— Louver Type
— Color
— Abrasion/Solvent Resistance
— Surface Finish 
—Thickness
Each of these options is explained in more detail with 
option codes in the next sections.

Louver Angle
The louver angle is the angle at which the maximum 
amount of light is transmitted through the Light 
Control Film. Jhis angle corresponds to the peak 
value of the response curve (see Fig. 5). The louver 
angle most corhmonly used is 0“, but in those 
applications where the display light is to be diverted 
away frorn a normal to the film surface, LCF is 
available with three different louver orientations (see 
Fig. 6). Typical maximum transmission value is 75%; 
actual transmission values vary with louver type and 
surface finish.

PEAK TRANSM ISSION (75 V. NOMINAL)

lOUVERANO .

Fig. 6
Option Code:
LCF 0“ — Maximum transmission is normal to the 

film surface.
LCF 18“ — Maximum transmission is 189 from 

normal to the film surface.
LCF 30“ — Maximum transmission is 30“ from 

normal to the film surface.

Viewing Angie
The viewing angle is the area allowing light to pass 
between the louvers. Fig. 7. The shape of the 
response curve is defined by a bell shaped curve 
which is symmetrical about the louver angle or 
location of the maximum transmission value. Light 
transmission decreases symmetically about the 
louver angle until cut off is reached. Cut off is 
defined as the angle which is 5% of maximum 
transmission.

Light C ontrol Film -  Louver O rientation

Option Code:

Fig. 5

48“ — total included viewing angle is 48“ about the 
louver angle

60“ — total included viewing angle is 60“ about the 
louver angle

90“ — total included viewing angle is 90“ about the 
louver angle



Louver Type
Three types of louvers are available with Light 
Control Film; the standard type being opaque biack.
Option Code:
OB—Opaque Biack. These iouvers have total cut off 
and are best used for the attenuation of incident 
ambient iight (sun light) and directional control of 
bright artificial light sources. Nominai maximum 
transmission is 75%.

PEAK TRANSM ISSI0N(75%  NOMINAL)

Note -  Maximum transmission values presented In these graphs represent typical values tor 
LCF. They are intended a s  a  guide for the designer, not a s specilicalion values. Users

Fig. 8
TB—Transparent Biack. These iouvers have about 
10% transmission at cut off and are generaily 
preferred where sudden totai cut off is not wanted, it 
is also recommended for displays which reiy on 
ambient iight for daytime viewing but require 
incandescent, auxiiiary iiiumination for nighttime 
viewing. The transparent biack louvers allow some 
off-axis light to pass through to the display, and 
depending on the iight source intensity, are sufficient 
for preventing or minimizing nighttime windshieid 
refiections. Nominai maximum transmission is 78%.

PEAK TRANSMISSION (78%  NOMINAL)

VIEWING ANGLE IN DEGREES

Fig. 9

type louvers. They are ■generally preferred; for use 
with high intensity eiectro-optical displays to reduce 
the effects of multiple imaging (ghosting). Nominal 
maximum transmission is 70%.

Color
Light Control Film is availabie either ciear or in 
coiors. 3M custom matches its coior filters to the 
spectral emission characteristics of eiectronic. 
displays—Vacuum fluorescent, light emitting diodes, 
cathode ray tubes and electroluminescent panels— 
for example.
The color data and spectrophotometric transmission 
curves describe some of the characteristics and 
recommended applications. The coior data shown is 
for the coior component of LCF only, surface finish 
and louver construction will decrease the 
transmittance values.
Option Code:
ND0205 — Neutral Density 70% photopic 

transmittance 
ND0210 — Neutral Density 50% photopic 

transmittance 
ND0215 — Neutral Density 38% photopic 

transmittance 
ND0220 — Neutral Density 27% photopic 

transmittance 
B0706 — Biue-green 33% photopic transmittance 
B0712 — Biue-green 12% photopic transmittance 
G5210 — Green 23% photopic transmittance 
R6310 — Red 10% photopic transmittance
Photopic Transmittance is the integrated visible 
transmittance of the coior filter, corrected for the 
human visual response.
Applications
Neutral Density
ND0205 — Ail CRT phosphors
ND0210 and any mutli-color display '
ND0215
ND0220

AG—Antighosting opaque biack. These opaque 
biack louvers have similar cut off properties as OB

NEUTRAL DEN SITYW 80

N 0 0 2 0 5  (70% )

c = z
N 0 0 2 1 0  (50% );

p . . r r r i  ND 0215 (3 8 % )_

N 0 0 2 2 0 (2 7 % )

400 500 600
WAVELENGTH IN NANOMETERS



Blue-green
80706 — Vacuum fluorescent displays 
80712

B 0 7 0 6  BLU E GRAY

rrH

B 0712  B L U E  GRAY
t t i - i

400 500 600
WAVELENGTH IN NANOMETERS

700

Green
G5210 — PI, P31, P39, P42 CRT phosphors and 

vacuum fluorescent displays
100

g  80

I
P  60

G 5 2 1 0  G R EEN

400 500 600. 700
WAVELENGTH IN NANOMETERS

Red
R6310 — PI 2, P25, P27, P33 CRT phosphors and 

red LED displays 625 to 655 nanometers
100

8 0 -  -
R 6 3 1 0 R E D

2 0 -

400 500 600
WAVELENGTH IN NANOMETERS

700

Abrasion/Solvent Resistance 
The Abrasion/Solvent Resistant option imparts both 
abrasion and solvent resistance to the treated 
surface of the Light Control Film. This option is 
permanently adhered to the film and will not chip.

peel, or flake from the substrate. It is clear and 
transparent, adding less than 0.5% haze to the base 
material. This option Is not available with slanted 
LCF (0“ louver angle only).
-T Taber Abrasion Test: Nominal 15% haze increase 

above the substrate value per ASTM D1044-73.
— Falling Sand Test: Nominal 20% haze increase 

above the substrate value per ASTM 0968-51.
Solvent Resistance: No detectable change in 
abrasion and solvent resistance of Light Control Film 
after 24 hour continuous exposure of:
Methanol* Lipstick
Ethanol* Coca Cola
Acetone* Coffee
Chloroform* Liquid Soap
5% Acetic Acid Rubber Cement
Toluene* MEK*
Gasoline Windex
Oil Isopropyl Alcohol*
Light Control Film without the Abrasion and Solvent 
Resistant surface will be affected by the above 
materials.*
Option Code:
A8R0 — Neither surface of the film is 

abrasion/solvent resistant 
A8R2 — Both surfaces are abrasion/solvent 

resistant.

Surface Finish
The surfaces of Light Control Film are available as 
glossy (both sides) or with various degrees of matte 
(one surface matte, one surface glossy). The choice 
between these surface finishes is often very ' 
subjective, being a compromise between specular 
and diffuse reflectance, and display character 
resolution. Matte finishes can reduce but not 
eliminate first surface glare (specular reflections).
Option Code:
G LOS — Glossy both surfaces 
VLM — Very Light Matte (not available with A8R2) 

Gardner Glossmeter readings typically:
90 units @85=

125 units @ 60“
A8M6 — Abrasion Resistant Matte (available only 

with A8R2) Gardner Glossmeter readings 
typically:
85 units @ 85“
60 units @ 60“

LM — Light Matte (not available with A8R2) 
Gardner Glossmeter readings typcially:
55 units @ 85“
27 units @ 60“

Material Thickness
Light Control Film is available in thicknesses from 
.030" to .050" :
Option Code:
.030" ± .005 
.050" ± .005



Physical Properties
Substrate: Cellulose Acetate Butyrate (CAB)
— Refractive Index: 1.48 ± .01
— Abbe Number: 82 + 2
— Specific Gravity: 1.20
— Rockwell Hardness: 99 R Scale
— Coefficient of Thermal Expansion: 14 x 10'® 

in/in/C»
— Use Temperature Range: Maximum use 

temperature is dependent upon the application, 
part size and stress. CAB does not degrade when 
exposed to temperatures above 100“C (212“F), 
but does become progressively softer. Specific 
ASTM and material supplier data:
— Deflection Temperature (ASTM D648-72) 264 

psi fiber stress at 67»C (152“F) 66 psi fiber 
stress at 80“C (176“F)

Small or supported filters may withstand sporatic 
exposure to higher temperatures. Maximum 
continuous operating temperature which should 
not result in material degradation is 71 ®C (160“F). 
CAB retains excellent physical properties at 
temperatures below -40“C (-40“F).

— Flammability (LCF): 3M Light Control Film is a 
recognized plastic component meeting 
ULflammability classification 94 MB with or without

3M Abrasion/Solvent Resistant surfaces at .047" 
(1.19mm) minimum thickness.
3M Light Control Film meets burn rate Vehicle 
Safety Standard No. 302 requirements with and 
without Abrasion/Solvent Resistance surfaces 
when flame propagation is perpendicular to the 
louver direction and at a mjnimum of .030" overall 
thickness.

Converted Parts
LCF can be screen printed with a variety of ink 
screening configurations and color matching, if 
required. The parts may be die cut to meet specific 
applications. Adhesive application is also available. 
3M welcomes requests for specialty converted LCF 
p arts .

Mounting Procedures
LCF can be mechanically mounted with a frame or 
bezel, or supported by a cover sheet. Die cut parts 
can be converted with holes for heat staking..
Many 3M rnounting adhesives are available on 
finished parts, whether selective or complete 
adhesive coverage is required. These adhesives 
mount filters directly to the display. Transfer tapes 
(strips) or double coated tapes (gaskets) adhere the 
film only to the display edges.
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Annex n  N ota , (d)
S in œ  th e  t e x t  su g g es ts  t h a t  one s y n to l  may a i f f i o e  foor a  
B U lti- fu n c tic n  c o n tro l  i t  would be  a c c e p ta b le  f o r  a  h ead lanp  d ip  
sw itch  t o  c a r r y  o n ly  f ig u re  2 o r  f ig u r e  3 , b i t  i f  th e  same a l s o  
o p e ra te s  th e  s id e  l i g h t s  i t  would be  n ec essa ry  t o  have a t  l e a s t  
one o f  th e  h e a d l i ^ t  symbols and th e  s id e  l i g h t  symbol. However, 
i f  th e  sw itch  c o n t r o ls  a l l  th e  l i g h t s  d e f in e d  i n  parag rap h  2 .1 0  i t  
i s  o n ly  nec essa ry  t o  u se  th e  sy rh o l in  f ig u re  1.

Annex I I  F ig u re s  12, 13 and 14  .
S ince  th e  t i t l e s  o f  f ig u re s  1 2  a n d  13 do n o t c o n ta in  th e  w ards " i f  
s e p a ra te "  i t  i s  a c c q jta b le  t o  u se  symbols 12 and 13 on a  com bined 
w ash/w ipe o o n tz u l.

Annex I I  F ig u re  19
S ince  th e r e  i s  r o  d e f in i t i o n  in  th e  D ire c t iv e  o f  ! 'co ld  s t a r t i n g  
dev ice"  i t  m ust be assumed th a t  t h i s  symbol i s  a p p lic a b le  t o  a l l  

• ty p e s  in c lu d in g  "glow  p lu g s " .

F I G .  J V S ;  1 0 1 E E :0 1 ;0 1

JC 24MM MF20
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#include 
#include 
#include 
#include 
#include 
#include

<stdio.h>
<conio.h>
<stdlib.h>
<string.h>
<dos.h>
<allbc.h>

FILE *fp;.
unsigned char far *f=(unsigned char far * )0xb8000000;.
int dir,allon=0,mode=0,scrbox=0,lampbox=0,x ,y ,z ,lampstate[30];char ch;
unsigned char screens[4][9600],huge *ptr;
char filenames[4][13]={"CAR.IMG","AIR.IMG","TRIP.IMG","RPM IMG"}• long ptrptr,i; 
unsigned int port ;
mainCint argc,char *argv[])

if (argvCl]C0]=='2') 
port=0x278;else
port=0x378; 

ptr=farmalloc(120000) ; if (ptr==NULL) 
exit(O); 

fp=fopen( "RPM.IMG", "rb"); 
for(x=0;x<9600;x++) {*(ptr+ptrptr): 
fp=fopen("RPMl.IMG","rb"); 
for(x=0;x<9600;x++) {*(ptr+ptrptr): 
fp=fopen("RPM2.IMG","rb"); 
for(x=0;x<9600;x++) {*(ptr+ptrptr): 
fp=fopen("RPM3.IMG", "rb"]; 
for(x=0;x<9600;x+ + ) {*(ptr+ptrptr): 
fp=fopen( "RPM4.IMG ", " rb ") ; 
for(x=0;x<9600;x++) {*(ptr+ptrptr)= 
fp=fopen("RPM5.IMG","rb"); 
for(x=0;x<9600;x++) {*(ptr+ptrptr)= fp=fopen( "'RPM6. IMG ", "rb " ) ; 
for(x=0;x<9600;x++) {*(ptr+ptrptr): 
fp=f open( " RPM7. IMG'", " rb " ) ; 
for(x=0;x<9600;x++) {*(ptr+ptrptr)= 
fp=fopen( "RPM8. IMG"", "rb " ) ; . 
for(x=0;x<9600;x++) {*(ptr+ptrptr)= 
fp=fopen( ""RPM9.IMG ", " rb"' ) ; 
for(x=0;x<9600;x++) {*(ptr+ptrptr)- 
fp=fopen("RPMIO.IMG","rb"); 
for(x=0;x<9600;x++) {*(ptr+ptrptr)=

.. fr>=fn-Den r  " R P M l  1 T M rs "  s.K" \  .

:fgetc(fp);ptrptr++ 
:fgetc(fp);ptrptr++ 
:fgetc(fp);ptrptr++ 
:fgetc(fp);ptrptr++ 
:fgetc(fp);ptrptr++ 
:fgetc(fp);ptrptr++ 
fgetc(fp);ptrptr++ 
fgetc( fp) ;ptrptr++ 
fgetc(fp);ptrptr++ 
fgetc(fp);ptrptr++ 
fgetc(fp);ptrptr++

} fclose(fp) 
} fclose(fp) 
} fclose(fp)
} fclose(fp)
} fclose(fp)
} fclose(fp)
} fclose(fp)
} fclcse(fp)
} fclose(fp)
} fclose(fp)
} fclose(fp);



3)

for(x=0;x<4;x++) ' " . "  ......
{ _ 

fp=fopen(filenamesLx],"rb");
for(y=0;y<9600;y++r "acreensCx]Cy]=fgetc(fp); fclose(fp);

}
initialise_screen(); 
lcd_setup(); 
load_leds(); 
while(l)
{

if (mode==0)
■ Impcur(lampbox,1); 

else
scrcur(scrbox,1); 

ch=toupper(getch()); 
if ((ch=='F')&&(mode==0))
{

lampstate[lampbox]=2; if (lampbox<18)
printo(lampbox*4+4+l,22,'0',15+128);else
printc(((lampbox-18)%2)*4+36+1,20-(((lampbox-18)/2)*2),'0',15+.

}if (ch==27) 
break;

if ((ch==13)&&(mode==0))
{

if (lampstate[lampbox]==2) 
lampstate[lampbox]=0; 

else if (lampstate[lampbox]==0) 
lampstate[lampbox]=1;

. else lampstate[lampbox]=0 ; 
if (Iampbox<18)

printo(l^pbox*4+4+l,22,'O',lampstate[lampbox]*15);else
printc(((lampbox-18)%2)*4+36+l,20-(((lampbox-18)/2 )*2),'0 ',lamp:ate[lampbox]*15);

load_leds();
if ((ch==13)&&(mode==l))

if (scrbox==4)
{

ptrptr=0; dir-l; 
while(l)

. {
wr it_comm(0x46);writ_data(0x00);writ_data(OxOO) ; writ_comm(0x42); 
for(i=0;i<2400;i++)

.writ_data(*(ptr+ptrptr+i)); fo r(i=0;i <50000 ;i++); 
ptrptr+=9600*dir; 
if (ptrptr==115200)
C

dir=-l; 
ptrptr=96000;

}
if (ptrptr==-9600)
.{ dir=l;

^̂ 4- 0̂  4- —— n  Q » '



Cx]*15)

if (kbhit()!=0)
• { if (getch()==27) _

break;
\

}
else

download(scrbox);
if ((ch==32)&&(mode==0))

• if (allon==0)
. { allon=l;

for(x=0;x<30;x++)
{

lampstate[x]=l; 
if (x<18)

printc(x*4+4+l,22,'0',lampstate[x]*15);else
printo(((x-18)%2)*4+36+1,20-(((x-18)/2)*2),'0',lampstc

, ' ■  ̂else . :
{ allon=0;

for(x=0;x<30;x++)
lampstateCx]=0; if (x<18)

printc(x*4+4+l,22,'O',lampstate[x]*15);else
1^2*15)■ printcC((x-18)%2)*4+36+l,20-(((x-18)/2)*2),'O',lampsta

load_leds();
}
if (ch==9)
{

if (mode==0)
Impcur(lampbox,0); ̂ mode=l;

else
{

scrcur(scrbox,0); mode=0; .
}

}
if (ch==0)

ch=getch(); 
if (mode-=0)
{

if ((ch==75)&&(lampboxi=0))
{

if ((lampbox<18)! !((lampbox%2)==l))
Impcur(lampbox,0); lampbox—  ;



}if ((ch==77)&&(lampbox!=17))
{ _  'if ((lampbox<17)I|((lampbox%2)==0))

{
Impcur(lampbox,0);
lampbox++;
continue;

} ’if ((ch==80)&&(lampbox>17))
{ . Impcur(lampbox,0); 

if (lampbox>19) . 
lampbox-=2;

else
lampbox-=10;

}
if ((ch==72)&&(lampbox<28))
{ if ((lampbox<8)! 1((lampbox>9)&&(lampbox<18))) 

continue ;
Impcur(lampbox,0); 
if (lampbox<10) 

lampbox+=10;
else

lampbox+=2;
}else
{

if ((ch==75)&&(scrbox!=0))
{

scrcur(scrbox,0); 
scrbox—  ; 
continue;

}
if ((ch==77)&&(scrbox!=4))
{ scrcur(scrbox,0);

scrbox++;
continue;

} .

. ■ ‘
clear_screen();

}

Lmpcur(int box_no,int state)
int color;

if (state==0) 
color=0;

else
color=15; 

if (box_no<18) .
{

printc(box_no*4+4,22,'[',color); 
printc(box_no*4+6,22,,color);

else
{

pr into(((box_no-18)%2)*4+36,20-(((box^no-18)/2)*2),'C',color);



scrcur(int box_nOjint state}
{ ■

int color;
. if (state==0) 

color=0;
.else ■

côlor=15; 
box_draw(4+15*box_no,3,10,3,color);

}

initialise_acreen()
{ clear_scréen(); 

for(x=0;x<30;X++) 
lampstate[x]=0 ; 

box_draw (0,0,78,24,15) ; 
print(2,0," Title ",15); 
gotoxy(2,2);printed, 1,0 ,0) ; 
for(x=7;x<=71;x+=4)
{

printc(X ,23,193,15); 
printc(x,22,179,15);

 ̂ printc(x,21,194,15);
for(x=4;x<=72;x+=4)

printc(x,2Î,196,15); 
printc(X ,23,196,15); 
printc(x+l,21,196,15); 
printc(x+1,23,196,15); 
printc(x+2,21,196,15); ̂ printc(x+2,23,196,15);

printc(3,21,218,15);printc(3,23,192,15);printc(3,22,179,15);
printc(75,21,191,15);printc(75,23,217,15);printc(75,22,179,15);for(x=19;x>=ll;x-=2)

printc(39,X ,197,15); 
printc(43,X ,180 ; 15); 
pr intc(35,X,195,15);
printc(36,X ,196,15);printc(37,x ,196,15);printc(38,x,196,15); 

 ̂ printc(40,X ,196,15);printc(41,x,196,15);printc(42,x,196,15);
for(x=20;x>=10;x-=2)
{

printc(35,x,179,15);printc(39,x,179,15); ̂ printc(43,x,179,15);
printc(35,21,197.15);printc(39,21,197,15); printc(43,21,197,15); 
printc(35,9,218,15);printc(36,9,196,15); 
printc(37,9,196,15);printc(38,9,196,15);printc(39,9,194,15);printc(40,9,196,15); 
printc(41,9,196,15);printc(42,9,196,15) ; printc(43,9,191,15); for(x=0;x<5;x++)

box_draw(3+x*15,2,12,5,15); 
print(68,4,"PERF",15); print(67,5,"ACTIVE",15); 
print(53,4,"PERF",15); : 
print(52,5,"STATIC",15); 
print(38,4,"TRIP",15);.....,.,çæin±.(.38...5.."COMP''. 15 ̂ t



print(23,4, AIK ,xo;; print(23,5,"C0N'\15); 
print(8,4,"CAR",15);
print(8,5,"MAP",15); .

Dox_draw(int x,int y.,int xx,int yy.int cj

printo(x,y,218,c);printc(x+xx,y,191,c);
pr intc(X ,y+yy,192,c );printc(x+xx,y+yy,217,c ), 
for (w=0';w<xx-l ;w++)

■ { printc(x+w+l,y,196,c); 
printc(x+w+1,y+yy,196,c );

}for(w=0;w<yy-1;W++)
{ printo(x,y+w+l,179,c); 

printc Cx+xx,y+w+1,179,c );
}

> .

clear_screen()
{ - printf("%c[2J",27);.
}

barb(int x,int y,int len,int col)
{int q;for(q=0;q<len;q++)*(f+l+((x+q)*2)+(y*160))=col;
}

print(int x,int y ,char text[],int attr)
{int e;for(e=0;e<strlen(text);e++)

printc(x+e,y,text[e],attr);
}

printc(int x,int y,unsigned char cha.int attr)
{ *(f+(x*2)+(160*y))=cha; .

*(f+(x*2)+(160*y)+l)=attr;
>

attr(int x,int y)
{ return(*(f+(y*160)+l+(x*2)));
)
lcd_setup()
{ writ_comm(0x40);wr it_data(0x34);wr it_data(0x07);wr it_data(0x07); 

writ_data(0x27);wr it_data(Ox2b);writ_data(Oxef);wr it_data(0x28); 
writ_data(0x00); 
writ_comm(0x4c);wrlt_comm(0x59) ;writ_dat.a(0x04) ; 
writ_comm(0x5b);writ_data(0x04); 
writ_comm(0x5a) ;writ.^data(OxOO) ;
writ_comm(0x44l;writ_data(0x00);writ_data(0x00); 
writ_conm(0x46);writ_data(OxOO);writ_data(OxOO); 
writ_comm(0x42);



download (int x)* 
int u;

for(u=0;u<9600;u++) .
 ̂ writ__data(8oreens[x] [u] ) ;

writ_data(unsigned char b)
outportb(port,b ); 
outportb(port+2 ,3); 
outportb(port+2,2);

^ outportb(port+2,3);

writ_comm(unsigned char b)
outportb(port,b ); 
outportb(port+2 ,1) ; 
outportb(port+2,0); 
outportb(port+2,1);

i

load_leda()

25?26l27T28%}!'^''^'^'^'^'°''^'^'^'^^'^^'^^'^3,12,ll,10,9,8,18,19,20,21,22,23,24int ledno;
outportb ( port+2 ,3 ; 
for(ledno=0;ledno<30;ledno++)

if (lampstate[order[ledno]]==1) outportb(port,1);else
outportb(port,0); 

outportb(port+2,3); 
outportb(port+2 ,7) ; 
outportb(port+2,3); .

}.
outportb(port+2,1);
outportb(port+2 ,3) ;


