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Abstract 33 

Primates worldwide are faced with increasing threats making them more vulnerable to 34 

extinction. Anthropogenic disturbances, such as habitat degradation and fragmentation, are 35 

among the main concerns, and in Madagascar, these issues have become widespread. As this 36 

situation continues to worsen, we sought to understand how fragmentation affects primate 37 

distribution throughout the island. Further, because species may exhibit different sensitivity 38 

to fragmentation, we also aimed to estimate the role of functional traits in mitigating their 39 

response. We collated data from 32 large-bodied lemur species ranges, consisting of species 40 

from the families Lemuridae (5 genera) and Indriidae (2 genera). We fitted Generalized 41 

Linear Models to determine the role of habitat fragmentation characteristics, e.g., forest 42 

cover, patch size, edge density, and landscape configuration, as well as the protected area 43 

network, on the species relative probability of presence. We then assessed how the influence 44 

of functional traits (dietary guild, home range size) mitigate the response of species to these 45 

habitat metrics. Habitat area had a strong positive effect for many species, and there were 46 

significantly negative effects of fragmentation on the distribution of many lemur species. In 47 

addition, there was a positive influence of protected areas on many lemur species’ 48 

distribution. Functional trait classifications showed that lemurs of all dietary guilds are 49 

negatively affected by fragmentation; however, folivore-frugivores show greater 50 

flexibility/variability in terms of habitat area and landscape complexity compared to nearly 51 

exclusive folivores and frugivores. Furthermore, species of all home range sizes showed a 52 

significantly negative response to fragmentation, while habitat area had an increasingly 53 

positive effect as home range increased in size. Overall, the general trends for the majority of 54 

lemur species are dire and point to the need for immediate actions on a multitude of fronts, 55 

most importantly landscape-level reforestation efforts. 56 

 57 
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  61 

Introduction 62 

Tropical forests hold the majority of global biodiversity, yet these habitats are 63 

experiencing dramatic faunal declines due to continued threats from humans, a process now 64 

termed as “defaunation” (Gibson et al., 2013; Dirzo et al., 2014; Galetti et al., 2017). Among 65 

these primary anthropogenic disturbances are habitat degradation and fragmentation, which 66 

can ultimately lead to local and widespread species extinctions via isolating small populations 67 

(Asner, Rudel, Aide, Defries, & Emerson, 2009; Gibson et al., 2011, 2013; Laurance et al., 68 

2011; Dirzo et al., 2014; Tilman et al., 2017). Furthermore, fragments remaining within these 69 

human-modified landscapes are often considered unsuitable habitat for the majority of forest 70 

species (Laurance, Goosem, & Laurance, 2009). In fact, fragmentation results in extended 71 

edge habitats, which compared to normal forest interiors can be considered entirely distinct 72 

ecosystems (Laurance, Delamônica, Laurance, Vasconcelos, & Lovejoy, 2000; Pfeifer et al., 73 

2017). Finally, forest fragmentation increases human accessibility to interior habitat, 74 

therefore increasing the risk of illegal hunting (Benítez-López, Santini, Schipper, Busana, & 75 

Huijbregts, 2019). Taken together, increasingly anthropogenic landscapes have significant 76 

consequences on fauna populations (Dirzo et al., 2014; Ceballos, Ehrlich, & Dirzo, 2017). 77 

Considering all primate species, more than half (approximately 60%) are threatened 78 

with extinction, with roughly 75% of all primate species experiencing declining population 79 

trends likely due to unsustainable human activities (Estrada et al., 2017). Within Madagascar, 80 

which is considered to be a biodiversity hotspot due to its many endemic species listed as 81 

Endangered or Critically Endangered by the IUCN (Myers, Mittermeier, Mittermeier, Da 82 
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Fonseca, & Kent, 2000), ninety-four percent of the 113 currently described lemur species are 83 

threatened with extinction, making them the most threatened vertebrate taxon (Schwitzer et 84 

al. 2013, 2014). The issues surrounding the decline of lemurs are myriad, with the reduction 85 

of lemur species richness primarily due to habitat loss through cultivation and timber 86 

harvesting (Harper, Steininger, Tucker, Juhn, & Hawkins, 2007; Hannah et al., 2008; 87 

Ganzhorn, Lowry, Schatz, & Sommer, 2001; Ganzhorn, Wilmé, & Mercier, 2014; Irwin et 88 

al., 2010; Schwitzer et al., 2014). Specifically, Madagascar’s exponential population growth 89 

(UNFPA, 2017; World Bank, 2018) paired with a majority of the population living in 90 

extreme poverty in rural areas (World Bank, 2018), has increased pressure on the forests via 91 

human encroachment (Estrada et al., 2018).  92 

Data from 2007 indicated that more than 80% of forested area in Madagascar falls 93 

within 1 km of the forest edge (Harper et al., 2007), while data from 2014 showed that the 94 

mean distance to forest edge on the island was approximately 300 meters (Vielledent et al., 95 

2018). This trend will likely worsen as the human population of Madagascar continues to 96 

surge (UNFPA, 2017; World Bank, 2018). Fragmentation not only isolates populations by 97 

impeding animal dispersal and potential rescue effects on declining population and gene 98 

flow, but also worsens a number of additional threats (Fahrig, 2002). For example, increasing 99 

contact zones between anthropogenic and natural habitats contributes to increased zoonotic 100 

pathogen transmissions (Chapman, Gillespie, & Goldberg, 2005; Gortazar et al., 2014) and 101 

bushmeat hunting for subsistence (Razafimanahaka et al., 2012; Golden, Bonds, Brashares, 102 

Rasolofoniaina, & Kremen, 2014). The hunting of lemurs is illegal, but consumption of 103 

bushmeat in Madagascar is widespread, with poor rural households often targeting large 104 

diurnal lemur species (Golden, 2009; Jenkins et al., 2011, Borgerson, McKean, Sutherland, & 105 

Godfrey, 2016). Additionally, the illegal pet trade has also been suggested to play a 106 

significant role in the reduction of wild populations (Reuter, Gilles, Wills, & Sewall, 2016), 107 
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especially for some species, e.g., Lemur catta (Gould & Sauther, 2016; LaFleur, Clarke, 108 

Reuter, & Schaefer, 2019).  109 

Previous studies predicted that a majority of lemur species will experience massive 110 

range shifts, contracting the amount of habitat available to them (Brown and Yoder, 2015). 111 

Given that nearly all primate populations are declining due to anthropogenic disturbances 112 

(Estrada et al., 2017; Galán-Acedo, Arroyo-Rodríguez, Cudney-Valenzuela, & Fahrig, 113 

2019a), it is imperative to understand specifically how lemurs are currently responding to 114 

habitat degradation, fragmentation and forest loss. Patch-level approaches have been 115 

commonly applied to understand primate species’ responses to habitat loss and fragmentation 116 

(Ganzhorn & Eisenbeiß, 2001; Bodin & Norberg, 2007; Boyle & Smith, 2010; da Silva, 117 

Ribeiro, Hasui, da Costa, da Cunha, 2015; Schüßler, Radespiel, Ratsimbazafy, & Mantilla-118 

Contreras, 2018; Steffens & Lehman, 2018), however, anthropogenic effects often occur at a 119 

landscape-level (Arroyo-Rodríguez et al., 2013; Arroyo-Rodríguez & Fahrig, 2014; Galán-120 

Acedo et al., 2019a; Galán-Acedo, Arroyo-Rodríguez, Estrada, & Ramos-Fernández, 2019b). 121 

Due to the need for a landscape-level approach, we sought to determine how a number of 122 

habitat metrics influence the presence of all large-bodied diurnal/cathemeral primate species 123 

throughout Madagascar. We did not include nocturnal lemurs because (1) the taxonomy and 124 

distribution of nocturnal lemur species is poorly understood, with many species only known 125 

from a single location (e.g., see Hotaling et al., 2016; Lei et al., 2016), and (2), it has been 126 

shown that relatively smaller-bodied lemurs exhibit a greater tolerance to habitat 127 

fragmentation and disturbance compared to the larger-bodied diurnal/cathemeral species 128 

(Godfrey & Irwin, 2007). In fact, it has been shown that mammals of larger body mass are 129 

more sensitive to fragmentation and edge effects (Pfeifer et al., 2017). For these reasons, we 130 

modelled the role of various habitat characteristics on large-bodied diurnal/cathemeral 131 

species presence to understand how certain populations may be able to persist in the current 132 
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landscape, including forest fragments, edges and complex matrices. Given the critical state of 133 

human pressure on the remaining natural habitats of Madagascar, we predicted that all the 134 

lemurs considered will be negatively affected by anthropogenic disturbance. 135 

It has been shown that species’ responses to gradual and stochastic changes to 136 

environments may be mitigated by the species’ functional traits (e.g., activity pattern, body 137 

size, dietary guild, home range size), and such an ability to expand niche breadth is vital to 138 

withstanding anthropogenic risks (Lee, 2003; Wieczkowski, 2003; Isaac & Cowlishaw, 2004; 139 

Boyle & Smith, 2010; Nowak & Lee, 2013; Donati et al., 2016; Eppley et al., 2017). Unlike 140 

previous lemur-fragmentation studies that have only focused on site-specific or regional 141 

scales (e.g., Irwin et al., 2010; Kamilar & Tecot, 2016; Steffens & Lehman, 2018), we 142 

modelled the role of several species functional traits (i.e., dietary guild, home range size) in 143 

determining sensitivity to fragmentation throughout Madagascar for all 32 large-bodied 144 

diurnal/cathemeral lemur species. As habitats disappear, it has been postulated that dietary / 145 

habitat specialists will be affected more than dietary / habitat generalists, as high dietary 146 

diversity may buffer against extinction (Nowak & Lee, 2013). Frugivores are faced with a 147 

scattered spatial and temporal resource distribution, typically requiring extensive home 148 

ranges, potentially limiting their ability to cope within altered landscapes (Estrada & Coates-149 

Estrada, 1996; Rode, Chapman, McDowell, & Stickler, 2006; Boyle & Smith, 2010; Donati 150 

et al., 2011; Campera et al., 2014). By comparison, folivores may be less affected by habitat 151 

degradation as leaves in secondary growth are often of higher dietary quality compared to 152 

those leaves available in mature forests (Plumptre & Reynolds 1994; Ganzhorn 1995; 153 

Chapman, Chapman, Bjorndal, & Onderdonk, 2002; Eppley, Donati, & Ganzhorn, 2016), 154 

though folivorous primates can be highly selective and potentially require equally large home 155 

ranges (Snaith & Chapman, 2005). Considering the large-bodied lemurs, we expect genera 156 

such as Varecia and most Eulemur to be severely affected by habitat availability and 157 
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fragmentation due to their high reliance on fruit resources and need for larger home ranges. 158 

By comparison, generalist folivores, e.g., Hapalemur, Prolemur, Indri and some Propithecus, 159 

especially those with smaller home ranges, are expected to be the least affected. We expect 160 

that lemurs with folivore-frugivore diets (e.g., Lemur catta, some Eulemur and some 161 

Propithecus) will display intermediate effects due to fragmentation.  162 

 163 

Methods 164 

 165 

Data collection 166 

 167 

We obtained occurrence points for all diurnal and cathemeral lemur species, totaling 168 

32 taxa, from the dataset collated by Tinsman (2019). These include the genera Eulemur (12 169 

species), Lemur catta, Hapalemur (4 species), Prolemur simus, and Varecia (2 species / 3 170 

subspecies) from the family Lemuridae, and Propithecus (9 species) and Indri indri from the 171 

family Indriidae. We considered the three Varecia variegata subspecies as separate taxa 172 

within our analyses as they are geographically isolated from one another and inhabit regions 173 

with differing degrees of pressure on the remaining forest habitat. The only species from 174 

these genera to be excluded was Hapalemur alaotrensis as it is only known from the area 175 

immediate area surrounding Lac Alaotra (Rendigs et al., 2015), thus we did not have enough 176 

distribution points to allow for comprehensive modelling. Three types of sources were 177 

utilized: 1) points collected in the field by co-authors, 2) online databases including the 178 

Global Biodiversity Information Facility (GBIF), Mammal Networked Information System 179 

(MaNIS), VertNet, Madagascar Lemurs Portal, and Reseau de la Biodiversité de Madagascar 180 

(ReBioMa), and 3) peer-reviewed published sources. For this last source, we searched all 181 

articles published in Lemur News, Madagascar Conservation and Development, and Primate 182 
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Conservation for GPS coordinates, in addition to several Google Scholar searches using a 183 

combination of various key terms. This yielded a total of 6,503 occurrence points across all 184 

forest types of various degrees of fragmentation in both protected and unprotected sites. 185 

Occurrence points were then vetted in which localities >50 km outside the species’ IUCN 186 

occurrence area, as well as undated localities for species that have since been taxonomically 187 

split, were considered suspect and thus removed from the dataset. Further, we only retained 1 188 

occurrence point per 1-km cell. We were left with a remainder of 3,006 reliable and unique 189 

occurrence points (Figure S1). 190 

We obtained a 30-m resolution forest density map for 2010 from Vielledent et al. 191 

(2018) and binarized it at 75% of canopy coverage (≥75% = 1; <75% = 0) consistently with 192 

what done in  Vielledent et al., 2018. Most of our occurrence data come from protected areas 193 

which are expected to be, on average, less fragmented and degraded; therefore in order to 194 

avoid potential biases due to more frequent sampling in protected areas, we also downloaded 195 

a spatial layer of the Madagascar Protected Area Network, hereafter referred to as Protected 196 

Areas (PA), from the online database Reseau de la Biodiversité de Madagascar (ReBioMa) 197 

(Fig. S2). Nearly all forests in Madagascar exhibit some relative degree of fragmentation 198 

(Vielledent et al., 2018), thus PAs include both fragmented and less fragmented forests.  199 

 200 

Data preparation and fragmentation analysis 201 

 202 

We used the binary forest maps (0 = non-forest; 1 = forest) to estimate the level of 203 

forest fragmentation at 1-km resolution. Many fragmentation metrics exist, partly because 204 

they measure different components of fragmentation, and partly because they measure these 205 

components using different approximations. Here we considered 11 different metrics (Table 206 

S1) and then used a principal component analysis (hereafter PCA) to reduce the factors 207 



9 
 

considered within our model analysis. We used varimax rotation to improve interpretation of 208 

the PCA axes, and extracted the first 3 axes covering 95% of the total variance (Table S2). 209 

The first axis mostly accounted for the available habitat area (e.g. Mean patch area, Total 210 

core area, Mean patch core area and Proportion of canopy cover); the second axis mostly 211 

accounted for the actual fragmentation of the habitat (e.g., Edge density, Patch density, and 212 

Perimeter area fractal dimension); and the third axis mostly accounted for landscape 213 

complexity (e.g., Mean shape index, Landscape shape index), i.e., measuring the physical 214 

shape of the habitat (Table 1; Table S1). The first two axes, ‘habitat area’ and 215 

‘fragmentation’, can be interpreted as the amount of habitat area per cell and the density of 216 

patches/edges per unit area, respectively. ‘Landscape complexity’ can be interpreted as a 217 

measure of the overall geometric complexity of the landscape or of a focal class, in our case, 218 

forest. These indices are based on the ratio between perimeter and area, and measure if patch 219 

shape tends to be simple and compact, or irregular and convoluted. It can also be interpreted 220 

as a measure of landscape disaggregation, where higher values indicate more dispersed 221 

patches in the landscape (McGarigal & Marks, 1995).  222 

To test the influence of functional traits on species distribution, we assigned species 223 

according to their dietary guild. Previous authors have defined frugivore as an animal whose 224 

diet is composed of ≥ 50% fruits (Fleming, Breitwisch, & Whitesides, 1987; Donati et al., 225 

2017), and while this approach offers an easy solution, it overlooks the flexibility of some 226 

species that greatly shift their diet seasonally. Thus, we identified folivore-frugivores as 227 

species consuming between ≥ 35% to ≤ 65% fruit in their diet, with frugivores defined as > 228 

65% fruit and folivores as  < 35% fruit. This classification, though also crude, allows us to 229 

make meaningful comparisons between the three dietary guilds (Kappeler & Heymann, 230 

1996). The diets of all lemur species were determined from a comprehensive literature survey 231 

using the All The World’s Primates’ (ATWP) database (Rowe & Myers, 2017). In the case of 232 
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multiple behavioral and feeding ecology studies on a species, we calculated the mean percent 233 

of fruit consumed so as to have a single value. Of the lemurs included in the analyses, 11 234 

species are considered folivores (Hapalemur spp. / Prolemur simus, some Propithecus spp., 235 

and Indri indri), seven species are folivore-frugivores (some Eulemur spp., some Propithecus 236 

spp., and Lemur catta), while Varecia ssp. (four taxa) and most Eulemur spp. (nine taxa) 237 

maintain a frugivorous diet (Table S3). Additionally, we determined mean home range size 238 

(ha), hereafter referred to as ‘home range size’, for each species following the same 239 

comprehensive literature survey via ATWP (Table S3; Rowe & Myers, 2017). 240 

 241 

Modelling 242 

 243 

We tested for the effect of fragmentation on the species probability of presence using 244 

a species distribution modelling approach. For each species, we sampled a number of 245 

background (i.e., pseudo-absence) data points equal to 10 times the number of presences 246 

(Barbet-Massin, Jiguet, Albert, & Thuiller, 2012). Background points are used to contrast the 247 

available habitat with the habitat where the species have been observed. When background 248 

points are used instead of real absences (i.e. presence-only models), the model estimates a 249 

relative probability of presence (Guillera-Arroita et al., 2015). Background points are 250 

commonly sampled randomly in areas potentially accessible to the species, often based on 251 

estimates of dispersal distance from occurrence points (e.g. Thuiller, Lafourcade, Engler, & 252 

Araújo, 2009; Brown & Yoder, 2015). Therefore, we limited the sampling of the randomly 253 

distributed background points within a buffer whose radius corresponded to the estimated 254 

dispersal distance of each species. Dispersal distance was estimated from home range areas 255 

using the allometric relationships in Santini et al. (2013). This ensured that we sampled 256 

background points only in areas potentially accessible to the species (Araújo et al., 2019). 257 
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Background points falling in non-forested areas within the buffer were assigned the highest 258 

fragmentation values in the landscape. To control for the spatial bias and pseudo-replication 259 

of presence points, we only retained one presence point per 1-km, which exceeds the radius 260 

of home range area of all species in our sample (range = 0.06 - 0.65 km). To compare the 261 

strength of the relationship of different predictors, we standardized all predictor variables to a 262 

mean of 0 and a standard deviation of 1. Then, for each species we fitted a generalized linear 263 

model (GLM) with a binomial family, using the presences (1s) and background points (0s) as 264 

response variables, and the three fragmentation and the protected area variables as predictors 265 

(Table 1). Including protected areas separately from the fragmentation axes allowed us to 266 

estimate the relative contribution of fragmentation to the relative probability of presence of 267 

species while controlling for the confounding effect of protected areas. We ran a model 268 

selection for each of the models using AICc (Akaike Information Criterion corrected for 269 

small samples) and retained models with the lowest AICc value. Here we present both the full 270 

models and the selected models. 271 

To test the effect of species traits on species sensitivity to fragmentation, we ran a 272 

generalized linear mixed effect model (GLMM) including all species. We used the same 273 

predictors used in the single species GLM (F1, F2, F3, and protected areas) and the 274 

interaction between the three habitat metrics and the log10-transformed values of species 275 

average home range size and species dietary guild. We treated species as a random effect. We 276 

checked whether there was phylogenetic autocorrelation in the residuals and determined it 277 

was not necessary to control for phylogeny (Pagel Lambda = 0.300, P = 0.103). We present 278 

both the full models and the selected models, and in the latter case we opted for selecting the 279 

best fit model with the lowest number of parameters (Arnold et al., 2010). 280 

All analyses were computed using R statistical software (R Core Team, 2017). We 281 

used the R package “psych” (Revelle, 2018) for the principal component analysis. We used 282 
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the package “raster” (Hijman & van Etten, 2014) for all raster operations and the package 283 

“sf”(Pebesma, 2018) for vector operations. We used “SDMTools” package (VanDerWal, 284 

Falconi, Januchowski, Shoo, & Storlie, 2014) to compute the fragmentation metrics, and 285 

“GIStools” (Brundson & Chen, 2014) to estimate the density kernel. 286 

 287 

Results 288 

 289 

In general, all habitat variables tested were important for most of the species (Figure 290 

1; Table S4), though five species, i.e., E. mongoz, E. macaco, P. deckenii, P. coronatus, and 291 

P. perrieri, were not included in the selected models. The first habitat component (F1) 292 

accounting for habitat availability and mean patch area was significant in explaining the 293 

distribution of 10 taxa (31.3% of lemurs modelled). This F1 component had a positive effect 294 

on the distribution of these ten species, mostly Eulemur and Propithecus. The second 295 

component (F2) accounting for habitat fragmentation was significant in 14 taxa (43.8% of 296 

lemurs modelled), always showing a negative effect, therefore indicating that for most 297 

species the probability of presence is lower when the habitat is fragmented. These results 298 

equally affected at least some species of all genera, though I. indri was not included in this 299 

selected model. The third component (F3) accounting for landscape complexity was 300 

significant in 2 taxa (6.3% of lemurs modelled), negatively affecting the distribution of H. 301 

occidentalis and V. v. subcincta (Figure 1; Table S4). Protected areas showed a positive effect 302 

in 37.5% of taxa modelled (Figure 1; Table S4). Among species for which variables were not 303 

retained during model selection (i.e., the only-intercept model was the best model), there is 304 

also a pattern of consistent negative effect of fragmentation (see Figure S3; Table S5 for full 305 

model results). 306 
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Using the data from the selected models, the effect of traits on the fragmentation 307 

metrics was limited. Habitat area (F1) had a positive effect on lemur species and a positive 308 

interaction with home range area, suggesting that habitat area is especially important for 309 

species with large home ranges (Figure 2; Tables S5, S6). For fragmentation (F2), there was 310 

negative effect for all species, regardless of home range size (Figure 3; Tables S5, S6).  311 

Considering the full model for the trait-specific analysis, the effect of dietary guild on 312 

F1, all species regardless of diets were more likely to be present in areas with greater habitat 313 

availability and mean patch area (Figure 4a; Table S7). Regarding F2, all dietary guilds, i.e., 314 

folivores, frugivores, and folivore-frugivores, were negatively affected by patch and edge 315 

density (Figure 4b; Table S7). The negative effect of F2 became more strongly negative with 316 

increased home ranges of lemur species (Figure 5b; Table S7). Landscape complexity (F3) 317 

negatively affected both folivores and frugivores, while having a strongly positive affect on 318 

folivore-frugivores (Figure 4c; Table S7). Finally, landscape complexity negatively affected 319 

species of both small and medium home range sizes, though positively affected species with 320 

large home range sizes (Figure 5c; Table S7). 321 

 322 

Discussion 323 

 324 

 Among the three habitat variables considered (F1, F2, and F3), the one accounting for 325 

habitat fragmentation (F2; highly correlated with habitat patch and edge density) had the 326 

strongest overall negative effect on species distribution, while both F1 (habitat area) and PAs 327 

had strong positive effects on many species (Figure 1). Lastly, landscape complexity does not 328 

appear to play a large role effecting species distribution. Furthermore, as expected, species 329 

with larger home range areas were more negatively affected by habitat availability, but did 330 

not exhibit a higher sensitivity to fragmentation than species with small home range areas. 331 
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Considering general trends, all dietary guilds were positively affected by F1 (habitat area) 332 

and negatively affected by F2 (fragmentation).  333 

 334 

True lemurs: Eulemur spp. 335 

 336 

Our analyses seem to mirror previously reported effects on the diverse Eulemur clade 337 

(Bayart & Simmen, 2005; Schwitzer, Randriatahina, Kaumanns, Hoffmeister, & Schwitzer, 338 

2007; Donati et al., 2011; Brenneman et al., 2012; Tecot, 2013; Balestri et al., 2014; Campera 339 

et al., 2014), with the distribution of many brown lemur species trending or significantly 340 

influenced by ‘habitat area’ (F1) and ‘fragmentation’ (F2). Habitat area positively affected 341 

the distribution of four, mostly rainforest inhabitant  Eulemur spp., including E. albifrons, E. 342 

fulvus, and E. rubriventer. All three have large species ranges, though E. sanfordi has a 343 

significantly smaller species range with less habitat available to it. Concerning F2, habitat 344 

fragmentation negatively or strongly negatively affected the distribution of five, dry forest 345 

species, while landscape complexity (F3) provided no effects on Eulemur spp. distribution. In 346 

general terms, it appears that Eulemur species inhabiting larger, continuous humid forest tend 347 

to be more vulnerable to variations in canopy cover while species coping with more 348 

discontinuous and open dry forest habitat respond more to strict fragmentation and edge 349 

density. PAs showed a positive effect on the distribution of seven Eulemur spp., yet neither 350 

black lemurs (E. macaco) nor mongoose lemurs (E. mongoz) showed any effects to protected 351 

areas or the fragmentation metrics.  352 

Overall, Eulemur taxa occur across all habitat types in Madagascar (Mittermeier et al., 353 

2010). This genus consists of both frugivores and folivore-frugivores, and in addition to a 354 

relatively large dietary flexibility (but see Sato et al., 2016), they exhibit a wide variation in 355 

activity patterns (i.e., cathemerality), ranging pattern, and social organization (e.g., pair-living 356 
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and multi-male multi-female social groups), and as such, many species within are considered 357 

ecologically flexible primates (Overdorff, 1993a, 1993b; Donati, Bollen, Borgognini-Tarli, & 358 

Ganzhorn, 2007; Donati et al., 2011, 2016; Ossi & Kamilar 2006; Kappeler & Fichtel, 2016; 359 

Sato et al., 2016). Western species that occur within the seasonal, deciduous forest seem to be 360 

more vulnerable to fragmentation and edge area (Kamilar & Tecot, 2016; Sato et al., 2016). 361 

Smaller home-range requirements in western species compared to eastern species (Overdorff, 362 

1993a; Curtis & Zaramody, 1998; Donati, Lunardini, & Kappeler, 1999; Schwitzer et al., 363 

2007; Donati et al., 2011; Sato et al., 2016) and perhaps better abilities to cross the matrix 364 

between the forest fragments (Steffens & Lehman, 2018) may allow them to persist despite 365 

the smaller available habitat and the reduced canopy cover. However, highly fragmented 366 

areas with significant edge effects still cause a negative response on the probability of 367 

occurrence of dry forest Eulemur suggesting a theshold of habitat pulverization beyond which 368 

these flexible species disappear. In support of these negative effects of fragmentation,  some 369 

Eulemur species living in relatively degraded habitats show clear signs of increased levels of 370 

stress (Tecot, 2013; Balestri et al., 2014).  371 

 372 

Ring-tailed lemurs: Lemur catta 373 

 374 

Similar to some of the dry forest brown lemurs, our analysis revealed that ring-tailed 375 

lemurs (L. catta) was significantly affected by fragmentation and protected areas. 376 

Considering the behavioral ecology of L. catta, it is not altogether surprising that the habitat 377 

and landscape complexity variables were not significant predictors. This geographically 378 

widespread species maintains a frugivorous-folivorous diet and is considered the most 379 

ecologically flexible lemur (Sauther, Sussman, & Gould, 1999; Goodman, Rakotoarisoa, & 380 

Wilmé, 2006; Gould, 2006; Jolly, Koyama, & Rasamimanana, 2006; LaFleur & Gould, 2009; 381 
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Axel & Maurer, 2011; Kelley, 2011; Cameron & Gould, 2013; Donati et al., 2013; Gabriel, 382 

2013). They are also semiterrestrial and known to exploit anthropogenic landscapes (Sauther 383 

et al., 2006; LaFleur & Gould, 2009; Gabriel 2013), yet it is suggested that this species is 384 

sensitive to moderate habitat disturbance as populations occurring in poor quality habitats 385 

have lower densities (Sussman, Green, Porton, Andrianasolondraibe, & Ratsirarson, 2003; 386 

Kelley, 2011; Gabriel, 2013). Thus, their flexibility in being able to exploit areas outside of 387 

strict forest habitat at least may allow this species to sustain populations within fragmented 388 

landscapes (Anderson, Rowcliffe, & Cowlishaw, 2007; Gabriel, 2013). Contrary to many 389 

recent publications (Sussman et al., 2003; Axel & Maurer, 2011; Cameron & Gould, 2013), 390 

however, our findings show that similar to most lemur species, PAs represent a widespread 391 

positive effect on the distribution of L. catta. Either way, it is difficult to be optimistic about 392 

lemur persistence in increasingly fragmented and further isolated landscapes, which may lead 393 

to future genetic health bottlenecks (Parga, Sauther, Cuozzo, Jacky, & Lawler, 2012). 394 

 395 

Bamboo lemurs: Hapalemur spp. and Prolemur simus 396 

 397 

Fragmentation (F2) was more important than habitat availability (F1) and landscape 398 

complexity (F3) in determining the probability of presence of Hapalemur species / Prolemur 399 

simus. Bamboo lemurs are folivorous, and their ecological flexibility may allow bamboo 400 

lemurs to persist in heavily altered environments, allowing them utilize edge habitat (Grassi, 401 

2006; Eppley et al., 2015, 2016, 2017). Not all bamboo lemurs, however, are able to cope 402 

with habitat fragmentation. The greater bamboo lemur (P. simus) used to be one of the most 403 

widespread lemur species (Godfrey, Jungers, Simons, Chatrath, & Rakotosamimanana, 404 

1999), but is now restricted to a handful of sites within the eastern humid forests (Wright et 405 

al., 2008; Ravaloharimanitra et al., 2011). A recent study showed that its dwindling range 406 
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was essentially the result of climate change altering botanical diversity within dry deciduous 407 

habitats, and causing the lemur’s main food resource (giant bamboos) to go extinct locally 408 

(Eronen et al., 2017). Contrary to other genera, PAs were not an important predictor of 409 

Hapalemur spp. presence. Furthermore, PAs did not show a positive effect on the distribution 410 

of the greater bamboo lemur (P. simus), and this may be due to it only being known from a 411 

small number of recently discovered sites (Wright et al., 2008; Ravaloharimanitra et al., 412 

2011). For the most part, these areas are not yet formally protected by the government, but 413 

are being actively protected by both conservation research NGOs and local communities as 414 

they present an economic benefit to the surrounding area. In addition to these formally 415 

unprotected sites, the species is known to occur in Ranomafana NP, while feeding remains 416 

have been observed in both Zahamena NP to the north, and Midongy du Sud NP in the south 417 

(Rakotonirina et al., 2011). 418 

 419 

Ruffed lemurs: Varecia rubra and Varecia variegata ssp. 420 

  421 

The various habitat metrics provided similar results across ruffed lemur taxa. Habitat 422 

area (F1) had a positive effect on Varecia rubra presence which inhabits the largest 423 

continuous humid forest remaining in Madagascar (Masoala-Makira) whereas fragmentation 424 

(F2) had a strongly negative effect on both V. variegata editorum and V. v. variegata. Taking 425 

into account the uneven distribution of this genus throughout its range, these findings are 426 

expected. Members of this genus are characterized by utilizing the largest relative food trees 427 

and maintaining large home ranges (Rigamonti, 1993; Vasey, 2000; Ratsimbazafy, 2006), to 428 

a degree that species densities are significantly lower and/or absent in anthropogenically 429 

impacted habitats leading to the perception that they are sensitive to habitat disturbance 430 

(White, Overdorff, Balko, & Wright, 1995; Balko & Underwood, 2005; Herrera, Wright, 431 
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Lauterbur, Ratavonjanahary, & Taylor, 2011). Though generally true, V. v. editorum is 432 

known to inhabit less than ideal habitat, e.g., shifting cultivation and secondary forest 433 

(Hekkala, Rakotondratsima, & Vasey, 2007), forest restoration zones (Martinez & 434 

Razafindratsima, 2014; de Winter et al., 2018), and even in degraded fragments intermixed 435 

with coffee plantations (Holmes et al., 2013), thus providing an explanation as to why this 436 

taxon differs from the other ruffed lemurs. To build on this, however, it has been shown that 437 

patch size may influence how fast genetic diversity is lost after patch isolation (Holmes et al., 438 

2013), with signs of genetic bottleneck occurring in degraded habitats (Razakamaharavo, 439 

McGuire, Vasey, Louis, & Brenneman, 2010). With the current distribution occurring at low 440 

densities across fragmented populations (Vasey, 2004; Louis et al., 2005; Holmes et al., 441 

2013; Baden et al., 2014), this threat may become even more dire following severe 442 

environmental disturbances, whether natural or anthropogenic. In fact, over a 10-year period 443 

(1991 – 2001), V. variegata editorum within the small fragmented PA of Manombo Special 444 

Reserve failed to successfully reproduce (Ratsimbazafy, 2002), yet populations occurring at 445 

other sites were successful, thus the geographic coastal locale led to speculation that 446 

stochastic weather events resulted in low dietary quality foods (Louis et al., 2005; Dunham, 447 

Erhart, & Wright, 2010).  448 

 449 

Sifaka and indri: Propithecus spp. / Indri indri 450 

 451 

Similar to bamboo lemurs, both habitat availability (F1) and fragmentation (F2) were 452 

important in determining the probability of presence of Propithecus spp. and Indri indri. 453 

Sifaka (Propithecus spp.) are relatively widespread throughout most Madagascar habitats, 454 

i.e., eastern humid, dry/humid deciduous, and spiny desert (Mittermeier et al., 2010). For 455 

example, fragmentation had a strongly negative effect on the distribution of golden-crowned 456 
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sifaka (P. tattersalli), a species endemic to the Daraina region of northern Madagascar. 457 

According to Quéméré, Amelot, Pierson, Crouau-Roy, & Chikhi (2012), however, the small 458 

remaining population of golden-crowned sifaka had contracted prior to human arrival. 459 

Interestingly, the distribution of Perrier’s sifaka (P. perrieri) a little further north showed no 460 

effects from any of the fragmentation metrics despite its current species range being quite 461 

fragmented. It is noted, however, that this species was able to disperse over large distances of 462 

open habitat within the recent past (Salmona et al., 2015). Habitat area (F1) positively 463 

affected both P. coquereli and P. candidus. The main difference is that the former inhabits an 464 

extremely fragmented western deciduous forest, while the latter is found in a few large, 465 

humid eastern forest blocks (Pichon et al., 2010; Salmona et al., 2014). Despite these habitat 466 

differences, all Propithecus spp. are threatened by habitat loss from charcoal production and 467 

shifting cultivation (Schwitzer et al. 2013; Kun-Rodrigues et al., 2014).  468 

Considering all nine sifaka species, both  P. diadema and P. verreauxi inhabit the 469 

largest geographic areas, the central-northeastern humid forest and the dry deciduous / spiny 470 

desert of the southwest, respectively (Mittermeier et al., 2010). Despite their widespread 471 

distribution, fragmentation (F2) negatively affected P. diadema, while habitat area (F1) 472 

positively affected P. verreauxi. These results are similar to other congeners which inhabit 473 

distinctly different biomes, and is likely due to P. verreauxi inhabiting more seasonal and 474 

heavily fragmented forests in western and southwestern Madagascar (Axel & Maurer, 2011). 475 

It should be noted that while P. diadema inhabit some fragmented forests, the long-term 476 

viability of these populations is unknown as previous research has suggested that smaller 477 

habitats can lead to morphometric signals of population decline (Irwin et al., 2019). 478 

Habitat area (F1) had a significant effect on the largest extant lemur, indri 479 

(Mittermeier et al., 2010; Junge, Barrett, & Yoder, 2011). This species is restricted to the 480 

central-eastern humid forests (Mittermeier et al., 2010), yet despite their overall population 481 
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sizes being reduced by habitat degradation, they display an ecological plasticity allowing 482 

them to live in various sized forest fragments (Glessner & Britt, 2005; Nunziata et al., 2016). 483 

However, this may be partially due to the significantly positive affect of PA on indri 484 

presence. 485 

 486 

Trait-specific sensitivity to fragmentation 487 

 488 

Overall, lemurs’ functional traits appear to be affected by habitat availability, 489 

fragmentation and configuration as expected. Our results showed that species with larger 490 

home range were more positively affected by habitat availability (Figure 2), indicating that 491 

species with small home range areas are more tolerant to habitat loss than species with large 492 

home range areas. We also detected a negative effect of fragmentation across species, but no 493 

interaction with home range size (Figure 3). These results are mirrored our full model trait-494 

specific models (Figure 5). 495 

Our full models showed that greater habitat availability had a similar positive effect 496 

on both folivores and frugivores, thus species with these more specialized dietary preferences 497 

were more often distributed within larger habitat areas. While it is suggested that frugivores 498 

often have larger home ranges in order to cope with the scattered spatial and temporal 499 

distribution of fruiting resources (Estrada & Coates-Estrada, 1996), folivores can be similarly 500 

highly selective of the leaves they consume and thus require larger habitat area (Snaith & 501 

Chapman, 2005). Considering folivore-frugivores, habitat area (F1) also had a positive effect 502 

though there appeared to be increased variability. It is possible that their flexible diet allows 503 

these species, e.g., E. rufus, L. catta, and P. tattersalli among others, to disproportionately 504 

inhabit smaller habitat patches and/or more open forests. It is important to note that the diet 505 

of Propithecus is diverse and species are classified as either folivores or folivore-frugivores 506 



21 
 

(Hemingway, 1998; Powzyk & Mowry, 2003; Norscia, Carrai, & Borgognini-Tarli, 2006; 507 

Irwin, 2008; Sato et al. 2016; Koch, Ganzhorn, Rothman, Chapman, & Fichtel, 2017), thus 508 

the folivore models may be more strongly influenced by other ecologically-specialized 509 

lemurs, e.g., bamboo lemurs and indri. Considering the mean sizes of home ranges, the effect 510 

of habitat area transitioned from negative to strongly positive as lemur home ranges 511 

increased, indicating that lemurs with small home ranges may prefer smaller habitat patches 512 

whereas species with large home range prefer large intact habitat areas.  513 

The fragmentation metric (F2) had negative affect on species of all dietary guilds. 514 

This result was expected for frugivores which require larger habitat areas to meet their dietary 515 

demands, but it was unexpected for both folivore-frugivores and folivores which typically 516 

display a level of ecological flexibility allowing them to cope well within fragmented areas. 517 

In general, previous site-specific research has shown folivores to be less vulnerable to habitat 518 

disturbance and edge effects (Ganzhorn, 1995; Lehman, Rajaonson, & Day, 2006; Eppley et 519 

al., 2015, 2017), while frugivorous lemurs have been shown to be adversely affected by 520 

anthropogenic, degraded habitat (White et al., 1995; Balko & Underwood, 2005; Herrera et 521 

al., 2011). As frugivorous lemurs are important seed dispersers, they are essential for the 522 

maintenance of forest diversity and play a fundamental role in habitat regeneration 523 

(Ganzhorn, Fietz, Rakotovao, Schwab, & Zinner, 1999; Wright et al., 2011; Razafindratsima 524 

& Dunham, 2014; Federman et al., 2016). Folivore-frugivores, on the other hand, have 525 

previously showed mixed responses to edge habitats, possibly due to their wide dietary 526 

breadth across seasons, allowing some species to persist in degraded and fragmented 527 

landscapes (Lehman et al., 2006; Sato et al., 2016; de Winter et al., 2018). Yet, our overall 528 

results, however, show that each of these dietary guilds are near equally affected by 529 

fragmentation (F2). When considering lemur home range size, the effect of fragmentation 530 

became more strongly negative as home range size increased, as would be expected. Thus, 531 
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species with smaller home ranges (e.g., E. sanfordi, H. occidentalis) are able to better cope 532 

with fragmentation compared to lemurs requiring large home ranges (e.g., Varecia spp.). 533 

For the third habitat metric, landscape complexity (F3) showed a similar somewhat 534 

neutral effect on both folivores and frugivores. This is an unexpected result for lemurs with a 535 

folivorous diet, which often cope well within more fragmented habitat matrices (Boyle & 536 

Smith, 2010; Eppley et al., 2015). It should be noted that as exceptions, H. occidentalis (a 537 

folivore) and V. v. subcincta (a frugivore) showed significantly negative effects of landscape 538 

complexity. On the other hand, F3 displayed a strongly positive effect on folivore-frugivores 539 

meaning that their presence increased with landscape complexity. Similar to previous 540 

explanations for lemur folivore-frugivores, their flexible dietary ability potentially allows for 541 

them to locate resources in these habitats. Regardless of dietary guild, this habitat metric had 542 

a negative effect on lemurs across small and medium home range sizes, though a slightly 543 

positive effect on lemurs with large home ranges 544 

 545 

Potential caveats 546 

 547 

In this study we made a number of assumptions in order to estimate the effect of 548 

habitat availability, fragmentation and complexity on the probability of species’ presence. 549 

First, in order to apply fragmentation metrics, we had to binarize forest coverage, and used a 550 

threshold of 75% of canopy cover. While this seemed to be a reasonable threshold for most 551 

species (Vielledent et al., 2018), it may be too high for species selecting more open forest 552 

habitats such as ring-tailed lemurs. Second, we assumed species’ presence to be an indication 553 

of habitat quality (intended as amount of habitat and its level of fragmentation), however this 554 

is a simplification as species may persist for a certain amount of time in a fragmented habitat 555 

(Chapman, Lawes, Naughton-Treves, & Gillespie, 2003; Araújo & Guisan, 2006). Therefore 556 
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it is possible that the effects that we detected are diluted and thus, under-estimated. Third, we 557 

contrasted species’ occurrence points with background points drawn randomly from the 558 

surrounding -potentially accessible- areas. If occurrence points were preferentially collected 559 

in more accessible areas (less dense and more fragmented forests) compared to more intact 560 

forest areas, our models may have estimated an inverse effect, as indicated with several 561 

Eulemur and Hapalemur species within the full model (Table S5, Figure S3). Fourth, it is 562 

possible that the positive effect of PAs is a genuine effect suggesting that species in have a 563 

higher probability of occurrence in PAs than in surrounding areas, however, this may simply 564 

reflect the fact that most presence points are collected in protected areas. Finally, it is 565 

important to remember that while these models provide us with an interpretation for the 566 

current distribution of large-bodied lemurs throughout Madagascar, these data do not take 567 

into account exogenous factors (e.g., additional anthropogenic pressures, climate, etc.) that 568 

may be further impacting certain species and habitats. All in all, our results meet most of the 569 

expectations and show a consistent negative effect of fragmentation on species presence that 570 

is unlikely to arise from any of the above assumptions. 571 

 572 

Implications for Conservation 573 

 574 

The general trends for the majority of lemur species are dire and point to the need for 575 

immediate actions on a multitude of fronts. These would require widespread implementation 576 

throughout Madagascar by actors at all levels if we hope to curtail the impending extinction 577 

of many lemur species. Among these actions are increasing landscape-level reforestation 578 

efforts. Implementing efforts to reduce deforestation rates while increasing reforestation 579 

efforts would help to prevent impending extinctions (Wearn, Reuman, & Ewers, 2012). 580 

Intrinsically, it is imperative to understand the responses of flora and fauna to natural and 581 
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anthropogenic disturbance if we are to create effective restoration programs that increase 582 

forest buffer zones and corridors (Hannah et al., 2008; Kremen et al. 2008; Irwin et al. 2010; 583 

Campera et al. 2014; Eppley et al. 2015, 2017), and so more ground-level lemur population 584 

research is needed. Effectively, increasing fragment size may improve corridor connectivity 585 

potential within landscapes, and ultimately assist in species dispersal from source populations 586 

(Steffens & Lehman, 2018), thus increasing genetic diversity.  587 

Also, maintaining permanent presence at field sites may reduce local anthropogenic 588 

pressures (e.g., hunting, timber harvesting) on species’ populations as a consequence of 589 

providing consistent employment / direct benefits to local communities (Wrangham & Ross, 590 

2008; Wright et al., 2012; Campera et al., 2017). As PAs were shown to be the best predictor 591 

of species occurrence, a greater effort is needed to maintain park boundaries. Unfortunately, 592 

many park borders are being pushed farther back due to human encroachment from illegal 593 

timber harvesting and shifting cultivation practices (Barrett, Brown, Morikawa, Labat, Yoder, 594 

2010; Allnutt, Asner, Golden, & Powell, 2013). Even just considering Madagascar forests in 595 

general, the mean distance to edge has been estimated at 300m, a number that is continuing to 596 

exponentially decrease (Vielledent et al., 2018).  597 

 While our results did show diverse responses by these lemur species to various habitat 598 

fragmentation metrics, this variance was likely dependent on species-specific ecological 599 

traits. Overall, our results support the critical need for further studies on dietary and habitat 600 

preferences, as well as life histories to further our understanding of how lemur species may 601 

respond to climatic and anthropogenic effects, especially forest loss and fragmentation. 602 
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Table 1275 

 1276 

Table 1. Predictor variables included in the analyses. 1277 

   Interpretation Description 
Habitat metrics     
 F1 Habitat area Amount of habitat area per 

cell. 
Positively related with the 
Proportion of Forest, patch 
Aggregation and mean Patch 
Area 

 F2 Fragmentation Density of patches or edges 
per unit area.  

Positively related to Patch 
density and Edge density 

 F3 Landscape complexity Overall geometric 
complexity of the 
landscape. It measures if 
the shapes of patches tend 
to be simple and compact, 
or irregular and convoluted.  

Positively related to Landscape 
shape index and Mean shape 
index 

Protected Areas     
 PA  Used to control for the 

unbalanced sample of 
occurrence points inside 
and outside protected areas 
which may bias the 
estimated effect of 
fragmentation (generally 
higher outside protected 
areas)  

Protected Area network (1 = 
inside protected area; 0 = 
outside protected area) 
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Figure legends 1289 

 1290 

Figure 1. Heatmap showing the directional influence of various habitat metrics (F1: habitat area; F2: 1291 

fragmentation; F3: landscape complexity) and protected area (PA) metrics on the occurrence of 1292 

diurnal and cathemeral lemur species belonging to the families Lemuridae and Indriidae. Empty boxes 1293 

indicate variables that have been excluded after model selection. Species with no box are species for 1294 

which the only-intercept model scored best. 1295 

 1296 

Figure 2. Partial responses by dietary guild of the three habitat variables on the probability of 1297 

lemur species occurrence. a) F1: habitat area; b) F2: fragmentation; c) F3: landscape 1298 

complexity). 1299 

 1300 

Figure 3. Partial response of the three habitat variables on the probability of lemur species 1301 

occurrence and their interaction with species average home range size. a) F1: habitat area; b) 1302 

F2: fragmentation; c) F3: landscape complexity. 1303 


