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Abstract 
The application and development of a transient three-dimensional numerical code ITU-WAVE which is 
based on panel method, potential theory and Neumann-Kelvin linearization is presented for the prediction 
of hydrodynamics characteristics of mono-hull and multi-hull floating bodies. The time histories of unsteady 
motions in ambient incident waves are directly presented with regards to impulse response functions (IRFs) 
in time. The first order steady forces of wave-resistance, sinkage force and trim moment are solved as the 
steady state limit of surge radiation IRFs. The numerical prediction of the second order mean force which 
can be computed from quadratic product of first-order quantities is presented using near-field method 
based on the direct pressure integration over floating body in time domain. The hydrodynamic and 
structural parts are fully coupled through modal analysis for the solution of hydroelastic problem in which 
Euler-Bernoulli beam is used for the structural analysis. A stiff structure is then studied assuming that 
contributions of rigid body modes are much bigger than elastic modes. A discrete control of latching is used 
to increase the bandwidth of the efficiency of Wave Energy Converters (WEC). ITU-WAVE numerical results 
for different floating bodies show acceptable agreements compared to analytical, other numerical and 
experimental results. 
 
Keywords: seakeeping, mono- and multi-hull floating bodies, the first and second order steady forces, 
hydroelasticity, wave energy converters, time domain, transient free-surface wave Green function, 
boundary integral equation method 
 
1. Introduction 
 
The prediction of the local and global responses of floating bodies to excitation by waves is the 
fundamental problem involving a three dimensional rigid and elastic mono- and multi-hull structures, either 
moving with forward speed or stationary at the interface of two fluids and introducing interactions 
between the fluid and structures. The flow field around a body and the resulting motion due to incident 
waves requires a three dimensional non-linear analysis for accurate predictions of hydrodynamic 
parameters. The complete solution of this kind of problem may be obtained by solving Navier-Stokes 
equations using computational fluid dynamics methods. Another approach for the non-linear analysis is the 
use of a viscous solution in the near field and an inviscid solution in the far field. However, the required 
computational time to solve these kinds of problems is not suitable for practical purposes. 
 
An alternative approach to a viscous solution is the potential flow formulation to solve the hydrodynamic 
problem. The application of potential flow approximation in two-dimensions was used as a basis to develop 
the strip theory (Korvin-Kroukovsky 1957, Ogilvie et.al. 1969, Salvensen et.al. 1970 and Kim et.al 1980). 
Because of the computational simplicity and the satisfactory approximation of the body motion of 
conventional ships, strip theory is still in use to date. However, for the low frequency, high forward speed 
case and complex body shapes, the prediction of global loads based on strip theory gives inaccurate results. 
 
As the hydrodynamic interactions are inherently three-dimensional, three-dimensional numerical 
approximations need to be used for accurate prediction of the wave loads and motions. As each discretized 
panel would have its influence on all other panels, the hydrodynamic interactions effects are automatically 
taken into account in three-dimensional numerical models. The prediction of three-dimensional effects can 
be obtained using three-dimensional frequency and time domain approaches and two popular approaches 
were used for this purpose. These are Green’s function approximation (Liapis and Beck 1985, Liapis 1986, 
King 1987, Lin and Yue 1990, Kara 2000, Inoue 2008) or Rankine type source distribution (Betram 1990, 
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Nakos et.al. 1990, Kring and Sclavonous 1991, Xiang and Faltinsen 2011, Yuan et.al. 2014). The former 
satisfies the free surface boundary condition and condition at infinity automatically, and only the body 
surface needs to be discretized with panels, while in the latter source and dipole singularities are 
distributed discretizing both the body surface and a portion of the free surface. The main disadvantage of 
Rankine type source distribution is the stability problem for the numerical implementation, since the 
radiation condition or condition at infinity is not satisfied exactly. The requirement of the discretization of 
some portion of the free surface using quadrilateral or triangular elements increases the computational 
time. The time domain and frequency domain results are related by the Fourier transform in the context of 
the linear theory. 
 
The prediction of the unsteady non-linear body motions can be obtained by the use of the semi non-linear 
approaches (Ferrant 1990, Beck et.al. 1991 and Lin et.al. 1990, Danmeier 1999). In the semi non-linear 
approach, the interactions between steady and unsteady problems are coupled. The free surface boundary 
condition is linearized, which results in the use of the transient free surface Green function in the body 
exact method, while the body boundary condition is satisfied on the instantaneous body surface, which 
results in a time varying system. In this case, time and frequency domain solutions are not related by the 
use of Fourier transform. The resultant hydrodynamic forces over the body surface, in the case of the 
Neumann-Kelvin linearization, gives rise to sinusoidal excitation, while the hydrodynamic forces over the 
body surface using the body exact boundary condition are not sinusoidal. The evaluation of the convolution 
integrals, which requires the recalculation of the transient free surface Green function at each time step, 
increases the computational time significantly in the case of constant panel method. 
 
In the context of potential approximation, the fully non-linear body motion of floating bodies can be 
predicted using the mixed Euler-Lagrange method (Longuet-Higgins 1976, Faltinsen 1977, Baker et.al. 1982, 
Vinje et.al. 1981 and Beck 1999) which has two steps: Lagrangean and Eulerian. The fluid velocities used to 
integrate the free surface boundary conditions are obtained in the Eulerian step solving the linear boundary 
value problem. The integration of the non-linear free surface boundary conditions in terms of time are 
evaluated in the Lagrangean step. 
 
The extension of the time domain approach to more general cases, such as non-constant forward speed 
case, large amplitude body motion, water on deck, unsteady manoeuvres of the body surface, non-linear 
cable forces, determine the first order steady forces (e.g. wave making resistance, sinkage force and trim 
moment) as a large-time limit, inclusion of semi-empirical non-linear roll damping, non-linear hydrostatic 
effects, transient behaviour of wave induced hydroelasticity of floating bodies etc., is much easier than the 
frequency domain approach. 
 
In the present paper, the fluid boundaries are described by the use of Boundary Integral Equation Method 
(BIEM) with Neumann-Kelvin linearization. The exact initial boundary value problem is then linearized using 
the free stream as a basis flow and replaced by the boundary integral equation applying Green theorem 
over three-dimensional transient free surface Green function (Kara and Kara et.al. 2000-2017). The 
resultant boundary integral equation is discretized using quadrilateral panels over which the value of the 
potential is assumed to be constant and solved using the trapezoidal rule to integrate the memory part of 
the transient free surface Green function in time. The free surface and body boundary conditions are 
linearized on the discretized collocation points over each quadrilateral element to obtain algebraic 
equation. The accuracy of ITU-WAVE computational numerical results is assessed by comparing with the 
available analytical, other numerical and experimental results. 
 
2. Theory - solution of boundary integral equation 
 
The initial boundary value problem consisting of initial, free surface and body boundary conditions for the 
solution may be represented as an integral equation using a transient free surface Green’s function 
(Wehausen and Laitone 1960). This integral equation is derived by applying Green’s theorem over the 
transient free surface Green function which satisfies the initial boundary value problem without a body 
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(Finkelstein 1957). Integrating Green’s theorem in terms of time from −∞ to +∞ using the properties of 
transient free surface Green’s function and potential theory, the integral equation for the potential 
approximation on the body surface may be written as (Kara 2000). 
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If the fluid velocities are required on the body surface directly, it is more convenient to use source 
formulation as fluid velocities can be obtained directly whilst potential approximation Eq. (1) requires the 
first order spatial derivatives. Using potential theory, the integral equation for the source strength on the 
body surface may be written as 
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where Γ(𝑡𝑡) is the intersection between the body surface and the free surface, G�(P, Q, t, τ) the memory part 
of the transient free surface Green function, P(x(t), y(t), z(t)) the field point, Q(ξ(t), η(t), ς(t)) the source 
point, r the distance between field and source point and represent the Rankine part of source potential, r′ 
the distance between field point and image point over free surface, J0 the Bessel function of zero order. 
The Green function G�(P, Q, t, τ) represents the potential at the field point P(x(t), y(t), z(t)) and time t due 
to an impulsive disturbance at source point Q(ξ(t), η(t), ς(t)) and time τ. 
 
The integral equation for the potential Eq. (1) is solved to get the potential directly. In the case of source 
formulation, the integral equation for the source strength Eq. (2) is first solved, and then this source 
strength is used in the potential formulation Eq. (3) to find potential and fluid velocities (which are gradient 
of Eq.(2)) at any point in the fluid domain. The solution of the integral equations Eq. (1) and Eq. (2) is done 
using time marching scheme. The form of the equation Eq. (1) and Eq. (2) is the same for both the radiation 
and the diffraction potentials so that the same approach may be used for all potentials. Since the transient 
free surface Green function 𝐺𝐺�(𝑃𝑃,𝑄𝑄, 𝑡𝑡, 𝑑𝑑) satisfies free surface boundary condition and condition at infinity 
automatically, in this case only the underwater surface of the body needs to be discretized with panels. The 
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resultant boundary integral equation Eq. (1) and Eq. (2) in the present paper is discretized using 
quadrilateral elements. This discretization reduces the continuous singularity distribution to a finite number 
of unknown potentials or source strengths. The integral equation Eq. (1) and Eq. (2) is then satisfied at 
collocation points located at the null points of each panel. This gives a system of algebraic equations which 
are solved for the unknown potentials or source strengths. At each time step the new value of the 
potentials or source strengths is determined on each quadrilateral panel. 
 
The evaluation of the Rankine source type terms (e.g. 1/r, 1/𝑟𝑟′) in Eq. (1) and Eq. (2) is analytically 
integrated over quadrilateral panels using the method and formulas of Hess and Smith (1964). For small 
values of r the integrals are done exactly whilst for intermediate values of r a multi-pole expansion is used. 
For large values of r a simple monopole expansion is used. The surface and line integrals over each 
quadrilateral element involving the wave term of the transient free surface Green function 𝐺𝐺�(𝑃𝑃,𝑄𝑄, 𝑡𝑡, 𝑑𝑑) are 
solved analytically (Liapis 1986, King 1987, Kara 2000) and then integrated numerically using a coordinate 
mapping onto a standard region and Gaussian quadrature. For surface elements the arbitrary quadrilateral 
element is first mapped into a unit square. A two-dimensional 2x2 Gaussian quadrature formula is then 
used to numerically evaluate the surface integrals and 16 points Gaussian quadrature for line integrals. The 
line integral is evaluated by subdividing Γ(𝑡𝑡) into a series of straight line segments. The source strength 
𝜎𝜎(𝑡𝑡) or potential on a line segment is assumed equal to the source strength or potential of the panel 
underneath it.  
 
The memory part of the Green function is given as 𝐺𝐺�(𝑃𝑃,𝑄𝑄, 𝑡𝑡 − 𝑑𝑑) = �𝜋𝜋 𝑟𝑟′3⁄ 𝐺𝐺�(𝜇𝜇,𝛽𝛽) where 𝐺𝐺�(𝜇𝜇,𝛽𝛽) =
2∫ 𝑑𝑑𝑑𝑑√𝑑𝑑∞

0 sin�𝛽𝛽√𝑑𝑑� 𝑒𝑒−𝜆𝜆𝜆𝜆𝐽𝐽0(𝑑𝑑�1 − 𝜇𝜇2) where 𝑑𝑑 = 𝑑𝑑𝑟𝑟′, 𝜇𝜇 = −(𝑧𝑧 + 𝜍𝜍) 𝑟𝑟′⁄ , 𝑎𝑎𝑛𝑛𝑑𝑑 𝛽𝛽 = �𝜋𝜋 𝑟𝑟′⁄ (𝑡𝑡 − 𝑑𝑑). 𝑑𝑑 is the relative 
position coordinate between field and source points. The non-dimensional parameter 𝜇𝜇 is the relative non-
dimensional vertical coordinates and varies from zero to one. The non-dimensional parameter 𝛽𝛽 depends 
on time and represents the phase of the generated waves. The evaluation of the memory part of the 
transient free surface Green function and its derivatives with an efficient and accurate method is one of the 
most important elements of the present study. Depending on the values of (𝜇𝜇,𝛽𝛽), and t, the following five 
different methods are used to evaluate memory part 𝐺𝐺�(𝜇𝜇,𝛽𝛽); power series expansion, asymptotic 
expansion, Filon integration quadrature, Bessel function, and asymptotic expansion of complex error 
function. 
 
3. ITU-WAVE transient wave-structure interaction numerical code  
 
The hydrodynamics functions and parameters in the present paper are predicted with in-house ITU-WAVE 
transient three-dimensional direct time domain computational code. ITU-WAVE transient wave-structure 
interaction numerical code which is coded using C++ was validated against experimental, analytical, and 
other published numerical results (Kara and Kara et.al. 2000 -2017) and used to predict the seakeeping 
characteristics of mono- and multi-hull floating bodies (e.g. radiation and diffraction), motions, resistance, 
added-resistance, hydroelasticity of the floating bodies, wave power absorption from ocean waves with 
latching control, wave energy converter arrays.  
 
4. Comparison of potential (direct) and source (indirect) approaches 
 
The hydrodynamic problem can be solved either potential (direct) or source (indirect) approximation (Kara 
2000). If the fluid velocities are required, it is better to use source formulation as this approach gives the 
fluid velocities directly on the body surface whilst potential formulation requires gradient of potential 
which is not easy to obtain directly. As the present numerical code ITU-WAVE has the capability to use both 
potential and source formulations, the comparison between these approaches will be presented to find out 
the convergence rate of these two approaches against analytical result of hemisphere heave Impulse 
Response Function (IRF). The analytical heave IRF is obtained by inverse Fourier transform of damping 
coefficients of Hulme (1982). 
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Fig. 1(left) shows convergence of heave IRF for hemisphere at Fn = 0.0 with potential formulation. As can 
be observed from Fig. 1(left) the oscillations at larger times are almost completely eliminated with 
increasing panel numbers at non-dimensional time step size t*sqrt(g/R) of 0.05. This was the expected 
result as discussed by many authors (Adachi and Ohmatsu 1979, Newman 1985, Beck and Liapis 1987) 
when the potential formulation is used for the prediction of IRFs.   
 

 
Fig. 1: Convergence of potential formulation heave IRF at a range of panel numbers, Fn = 0.0 and non-dimensional time step size 
0.05 for hemisphere 
 
Fig. 1(right) compares present potential formulation results with analytical results of Hulme (1982). It can 
be seen from Fig. 1(right) the present results with panel number pn = 400 and non-dimensional time step 
size of 0.05 are almost identical with analytical results of Hulme (1982) and oscillations at larger times are 
almost eliminated at this panel number. 

 
Fig. 2(left) shows convergence of heave IRF for hemisphere at Fn = 0.0 with source formulation. As can be 
observed from Fig. 2(left) the oscillations at larger times are not eliminated significantly with increasing 
panel numbers at non-dimensional time step of 0.05 compared to potential formulation Fig. 1(left) when 
the same panel numbers are used as in potential approximation. 
 

  
Fig. 2: Convergence of source formulation heave IRF at a range of panel numbers, Fn = 0.0 and non-dimensional time step size of 
0.05 for hemisphere 

 
If the panel numbers are significantly increased as seen in Fig. 2(right), the oscillations at larger times are 
considerably reduced if it is not completely eliminated in source formulation. Fig. 2(right) shows that 
significant number of panel numbers is required in the case of source formulation compared to potential 
approximation if one wants to have the same accuracy for both approximations. 
 
Fig. 3(left) shows comparison of potential and source formulations against analytical result of Hulme 
(1982). Panel number pn = 400 is used for potential formulation whilst it is pn = 1444 for source 
formulation. It can be seen in Fig. 3(left) the results are almost identical even in larger times although the 
number of panels for discretization is significantly larger for source formulation compared to potential 
approximation in order to get the same level of accuracy against analytical result. 
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Fig. 3: Comparison of potential and source formulations heave IRFs at Fn = 0.0 and non-dimensional time step size of 0.05 for 
hemisphere 

 
Fig. 3(right) compare source and potential formulation against analytical results of Hulme (1982) with panel 
number pn = 36 and non-dimensional time step size of 0.05. As can be seen from Fig. 3(right) even with 
very small panel number potential formulation result is comparable to analytical result while source 
formulation result shows large difference at both lower and larger times. This result shows that potential 
formulation approximates the analytical result much better if small panel numbers are used. 
 
5. Equation of motion 
 
A right-handed coordinate system is used to define the fluid action and a Cartesian coordinate system 
�⃗�𝑥 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is fixed to the body which is used for the solution of the linearized problem in time domain Fig. 
4. Positive x-direction is towards the forward, positive z-direction points upwards, and the z=0 plane (or xy-
plane) is coincident with calm water. The bodies undergo oscillatory motion about their mean positions due 
to incident wave field. The origin of the body-fixed coordinate system �⃗�𝑥 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is located at the centre 
of the xy plane. The solution domain consists of the fluid bounded by the free surface 𝑑𝑑𝑓𝑓(𝑡𝑡), the body 
surface 𝑑𝑑𝑏𝑏(𝑡𝑡), and the boundary surface at infinity 𝑑𝑑∞  Fig. 4 (Kara 2000). 

 
 

Fig. 4: Coordinate system and surface of the wave energy converters 
 
The following assumptions are taken into account in order to solve the physical problem. If the fluid is 
unbounded (except for the submerged portion of the body on the free surface), ideal (inviscid and 
incompressible), and its flow is irrotational (no fluid separation and lifting effect), the principle of mass 
conservation dictates the total disturbance velocity potential Φ(�⃗�𝑥, 𝑡𝑡). This velocity potential is harmonic in 
the fluid domain and is governed by Laplace equation everywhere in the fluid domain as ∇2Φ(�⃗�𝑥, 𝑡𝑡) = 0 and 
the disturbance flow velocity field 𝑉𝑉�⃗ (�⃗�𝑥, 𝑡𝑡) may then be described as the gradient of the potential Φ(�⃗�𝑥, 𝑡𝑡) 
(e.g. 𝑉𝑉�⃗ (�⃗�𝑥, 𝑡𝑡) = ∇Φ(�⃗�𝑥, 𝑡𝑡)). 
 
The dynamics of a floating body’s unsteady oscillations are governed by a balance between the inertia of 
the floating body and the external forces acting upon it. This balance is complicated by the existence of 
radiated waves which results from due to the oscillations of the bodies and the scattering of the incident 
waves. This means that waves generated by the floating bodies at any given time will persist indefinitely 
and the waves of all frequencies will be generated on the free surface. These generated waves, in principle, 
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affect the fluid pressure field and hence the body force of the floating bodies at all subsequent times. This 
situation introduces memory effects and is described mathematically by a convolution integral. Having 
assumed that the system is linear, the equation of motion of any floating bodies may be written in a form 
(Cummins 1962) 
 

��𝑀𝑀𝑗𝑗𝑘𝑘 + 𝑎𝑎𝑗𝑗𝑘𝑘��̈�𝑥𝑘𝑘(𝑡𝑡) + 𝑏𝑏𝑗𝑗𝑘𝑘�̇�𝑥𝑘𝑘(𝑡𝑡) + �𝐶𝐶𝑗𝑗𝑘𝑘 + 𝑐𝑐𝑗𝑗𝑘𝑘�𝑥𝑥𝑘𝑘(𝑡𝑡) + � 𝑑𝑑𝑑𝑑 𝐾𝐾𝑗𝑗𝑘𝑘(𝑡𝑡 − 𝑑𝑑)�̇�𝑥𝑘𝑘(𝑡𝑡) = � 𝑑𝑑𝑑𝑑 𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡 − 𝑑𝑑)𝜁𝜁(𝑑𝑑)
∞

−∞

𝑡𝑡

0

6

𝑘𝑘=1

  ;  𝑗𝑗 = 1,2, … ,6 

(4) 
 

The displacement of the floating bodies from its mean position in each of its rigid-body modes is given 
𝑥𝑥𝑘𝑘(𝑡𝑡) in Eq. (4) and the overdots indicate differentiation with respect to time. The time dependent 
radiation force Eq. (4) is composed of the time independent hydrodynamic coefficients and time dependent 
impulse response functions. The hydrodynamic coefficients in Eq. (4) 𝑎𝑎𝑗𝑗𝑘𝑘, 𝑏𝑏𝑗𝑗𝑘𝑘, and 𝑐𝑐𝑗𝑗𝑘𝑘  account for the 
instantaneous forces proportional to the acceleration, velocity, and displacement, respectively. The 
coefficient 𝑎𝑎𝑗𝑗𝑘𝑘 is the time and frequency independent constant and depends on the body geometry and is 
related to added mass. The coefficients 𝑏𝑏𝑗𝑗𝑘𝑘 and 𝑐𝑐𝑗𝑗𝑘𝑘, which depend on the body geometry and forward 
speed, are the time and frequency independent constants and are related to damping and hydrostatic 
restoring coefficient, respectively. 

𝑎𝑎𝑗𝑗𝑘𝑘(𝑃𝑃) = 𝜌𝜌�𝑑𝑑𝑑𝑑𝑄𝑄𝜓𝜓1𝑘𝑘(𝑄𝑄)𝑛𝑛𝑗𝑗
𝑆𝑆0

                                           (5) 

𝑏𝑏𝑗𝑗𝑘𝑘(𝑃𝑃) = 𝜌𝜌�𝑑𝑑𝑑𝑑𝑄𝑄�𝜓𝜓1𝑘𝑘(𝑄𝑄)𝑚𝑚𝑗𝑗 − 𝜓𝜓2𝑘𝑘(𝑄𝑄)𝑛𝑛𝑗𝑗�
𝑆𝑆0

              (6) 

𝑐𝑐𝑗𝑗𝑘𝑘(𝑃𝑃) = −𝜌𝜌�𝑑𝑑𝑑𝑑𝑄𝑄𝜓𝜓2𝑘𝑘(𝑄𝑄)𝑚𝑚𝑗𝑗

𝑆𝑆0

                                         (7) 

The instantaneous potential 𝜓𝜓1𝑘𝑘(𝑃𝑃) represents the instantaneous fluid response to the motion of the 
body. If the body moves and suddenly stops, the entire fluid motion associated with the 𝜓𝜓1𝑘𝑘(𝑃𝑃) potential 
stops. The time independent impulsive potential 𝜓𝜓2𝑘𝑘(𝑃𝑃) represents the potential due to the steady 
displacements. In other words, if the body is given a unit impulsive velocity in k-th mode, the floating body 
will have a unit displacement in that mode (Ogilvie 1964). 
 
5.1. Radiation Impulse Response Functions (IRFs) 
 
The radiation impulse response (or memory) function 𝐾𝐾𝑗𝑗𝑘𝑘(𝑡𝑡) is the force on the body in j-th direction due 
to an impulsive velocity in k-th direction. The memory function 𝐾𝐾𝑗𝑗𝑘𝑘(𝑡𝑡) accounts for the free surface effects 
which persist after the motion occurs and 𝐾𝐾𝑗𝑗𝑘𝑘(𝑡𝑡) is the time dependent part and depends on body 
geometry, forward speed, and time. It contains the memory effect of the fluid response. The convolution 
integral in Eq. (4), whose kernel is a product of the radiation impulse response function 𝐾𝐾𝑗𝑗𝑘𝑘(𝑡𝑡) and velocity 
of the floating body �̇�𝑥𝑘𝑘(𝑡𝑡), is a consequence of the radiated wave of the floating body. When this wave is 
generated, it affects the floating body at each successive time step (Ogilvie 1964). 

𝐾𝐾𝑗𝑗𝑘𝑘(𝑃𝑃, 𝑡𝑡) = 𝜌𝜌�𝑑𝑑𝑑𝑑𝑄𝑄 �
𝜕𝜕
𝜕𝜕𝑡𝑡𝜒𝜒𝑑𝑑(𝑄𝑄, 𝑡𝑡)𝑛𝑛𝑗𝑗 − 𝜒𝜒𝑑𝑑(𝑄𝑄, 𝑡𝑡)𝑚𝑚𝑗𝑗�

𝑆𝑆0

     (8) 

 
The time dependent memory potential 𝜒𝜒𝑘𝑘(𝑡𝑡) represents the transient potential, which results from the 
effect of the free surface. In the case of the transient problem, all motions die out after a reasonable time 
and all displacements approach zero asymptotically. In other words, the transient potential 𝜒𝜒𝑘𝑘(𝑡𝑡) is the 
velocity potential of the motion which results from the impulse of the floating body velocity at time 𝑡𝑡 = 0. 
The time independent impulsive potentials 𝜓𝜓1𝑘𝑘(𝑃𝑃) and 𝜓𝜓2𝑘𝑘(𝑃𝑃) provide initial conditions on the potentials 
which describe the transient motion 𝜒𝜒𝑘𝑘(𝑡𝑡) (Ogilvie 1964). 
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A modified Wigley I hull form with forward speed which has parabolic sections is used for numerical 
analysis. This Wigley I hull form has the length to beam ratio 𝐿𝐿 𝐵𝐵 = 10⁄ , length to draft ratio 𝐿𝐿 𝑇𝑇 = 16⁄ . 
Wigley I hull form (which has 3.0m length and is used in the experimental study of Journee (1992)) is used 
for the validation of ITU-WAVE numerical results. It is assumed Wigley I hull form, which is free for heave 
and pitch modes and fixed for other modes, is studied to predict motions at Fn = 0.30 and head seas 𝛽𝛽 =
1800. The underwater part of Wigley I hull form is defined analytically and is given by the equation. 
 

𝑑𝑑 = (1 − 𝜍𝜍2)(1 − 𝜕𝜕2)(1 + 0.2𝜕𝜕2) + 𝜍𝜍2(1− 𝜍𝜍8)(1 − 𝜕𝜕2)4     (9) 
 

where 𝑑𝑑 = 2𝑦𝑦/𝐵𝐵, 𝜕𝜕 = 2𝑥𝑥/𝐿𝐿, and 𝜍𝜍 = 𝑧𝑧/𝑇𝑇 and L, B, T are length, beam, and draft of the floating body, 
respectively. The last term in the equation Eq. (9) is the modification compared to the original Wigley I hull 
form.  
 

  
Fig. 5: Wigley I hull form with L/B=10 and L/T=16, non-dimensional radiation heave, heave-pitch / pitch heave cross-coupling and 
pitch IRFs at Fn = 0.3 – potential approach 
 
Fig. 5 shows the convergence test of radiation IRFs for heave and pitch modes. As Wigley I hull form is 
symmetric in terms of xz-coordinate plane of the reference coordinate system, only half of hull form is 
discretized for numerical analysis. Numerical experience showed that numerical results are not very 
sensitive in terms of non-dimensional time step size 𝑡𝑡 ∗ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝜋𝜋/𝐿𝐿) of 0.01, 0.03, and 0.05 over the range of 
panel numbers of 128, 288, 512 whilst the numerical results are sensitive in terms of panel numbers as can 
be seen in Fig. 5. The results at panel number 288 is converged and used for the present ITU-WAVE 
numerical calculations with the non-dimensional time step size of 0.05. Potential approach is used for 
better prediction as only potential and its time derivatives are required for IRFs predictions. 
 
5.2. Diffraction Impulse Response Functions (IRFs) 
 
The transient generalized exciting force including Froude-Krylov and diffraction forces in the presence of an 
incident wave field acting on the body surface in the j-th direction may be written in a form which is 
essentially proposed by King (1987). 
 

𝐹𝐹𝑗𝑗𝑗𝑗(𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡 − 𝑑𝑑)
∞

−∞
𝜁𝜁(𝑑𝑑) = � 𝑑𝑑𝑑𝑑�𝐾𝐾𝑗𝑗𝑑𝑑(𝑡𝑡 − 𝑑𝑑) +𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡 − 𝑑𝑑)�

∞

−∞
𝜁𝜁(𝑑𝑑)               (10) 

𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡) = �𝑑𝑑𝑑𝑑𝑄𝑄�̂�𝑝(𝑡𝑡)𝑛𝑛𝑗𝑗
𝑆𝑆0

                        (11) 

𝐾𝐾𝑗𝑗𝑆𝑆(𝑡𝑡) = 𝜌𝜌�𝑑𝑑𝑑𝑑𝑄𝑄 �−
𝜕𝜕
𝜕𝜕𝑡𝑡𝜙𝜙

�
𝑑𝑑(𝑡𝑡)𝑛𝑛𝑗𝑗 +𝜙𝜙�𝑑𝑑(𝑡𝑡)𝑚𝑚𝑗𝑗�

𝑆𝑆0

                  (12) 

 
The term 𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡) in Eq. (10) has two components representing the exciting forces and moments due to the 
diffraction and Froude-Krylov forces, respectively. The forces are due to the incident wave elevation 𝜁𝜁(𝑡𝑡) 
and the kernel 𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡) is the diffraction IRFs which are the forces on the body in the j-th direction due to a 
uni-directional impulsive wave elevation with a heading angle 𝛽𝛽 (Fig. 4). The kernels 𝐾𝐾𝑗𝑗𝑆𝑆(𝑡𝑡) and 𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡) are 
the IRFs for diffraction (scattering) and Froude-Krylov forces, respectively and are of the form which 
corresponds to a time-invariant linear system since the reference point of the waves is fixed with respect to 
the moving floating body. �̂�𝑝(𝑡𝑡) is the IRF for the pressure calculation and 𝐾𝐾𝑗𝑗𝑗𝑗(𝑡𝑡) is found by direct 
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integration of the �̂�𝑝(𝑡𝑡) over the floating body surface. The scattering (diffraction) perturbation potential 
𝜙𝜙�𝑆𝑆(𝑡𝑡), which is obtained by the solution of Eq. (1) or Eq. (2), represents the diffracted wave potential due 
to an impulsive incident wave (King 1987). Fig. 6 shows the convergence test of the exciting IRFs for heave 
and pitch modes. As in radiation problem, IRFs in Fig. 6 are converged at panel number pn = 288 and non-
dimensional time step size of 0.05. 
 

  
Fig. 6: Wigley I hull form with L/B=10, L/T=16, non-dimensional exciting heave and pitch IRFs at Fn = 0.30 and 𝛽𝛽 = 1800 – potential 
approach 
 
The excitation of the floating body is provided by the incident wave 𝜁𝜁(𝑡𝑡), which is the arbitrary wave 
elevation at the body-fixed coordinate system and measured at the origin of the coordinate system Fig. 4. 
The incident wave potential which is known and given as (King 1987) 
 

𝜑𝜑𝑗𝑗(�⃗�𝑥, 𝑡𝑡) =
𝑖𝑖𝜋𝜋
𝜔𝜔
𝑒𝑒𝑘𝑘(𝑧𝑧−𝑖𝑖𝑖𝑖)𝑒𝑒𝑖𝑖𝜔𝜔𝑒𝑒𝑡𝑡       (13) 

 
where the encounter frequency is given as 𝜔𝜔𝑒𝑒 = 𝜔𝜔 − 𝑈𝑈0𝑑𝑑 cos(𝛽𝛽), 𝜔𝜔  the absolute frequency of the linear 
system, 𝛽𝛽 the angle of the wave propagation direction with the positive 𝑥𝑥 −direction, 𝑑𝑑 the wave number 
and is related to the absolute frequency 𝜔𝜔 (in the case of infinite depth) by 𝑑𝑑 = 𝜔𝜔2 𝜋𝜋⁄ , and 𝜛𝜛 =
𝑥𝑥 cos(𝛽𝛽) + 𝑦𝑦 sin(𝛽𝛽) which is the total distance in the wave direction. It is assumed that the incident wave 
potential Eq. (13) is a uni-directional wave system which contains all frequencies, and it describes a wave 
elevation which is Dirac delta function 𝛿𝛿(𝑡𝑡) in time when it is viewed from the origin of the body-fixed 
coordinate system Fig. 4.  
 
5.3. Response Amplitude Operators (RAOs) 
 
Once the inertia matrix, restoring matrix and fluid forces e.g. radiation and diffraction forces are known, 
the equation of motion of floating body Eq. (4) may be solved using the fourth order Runge-Kutta method. 
The experimental results of Journee (1992) for heave and pitch RAOs at Fn = 0.30 and 𝛽𝛽 = 1800 are 
compared with ITU-WAVE numerical results in Fig.7. 
 

 
Fig. 7: Wigley I hull form with L/B=10, L/T=16, non-dimensional heave and pitch RAOs at Fn = 0.30 and 𝛽𝛽 = 1800 – potential 
approach 
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Two different approaches are used in order to get ITU-WAVE numerical results. Firstly RAOs are obtained 
by the time marching of the Eq. (4) for each encounter frequency and these results are represented as ITU-
WAVE 2 in Fig.7. Secondly, the frequency domain version of equation of motion is used for which the 
frequency dependent added mass, damping coefficients and exciting forces are obtained by the use of 
Fourier transform of radiation IRFs Fig. (5) and exciting IRFs Fig. (6), respectively. ITU-WAVE heave and pitch 
RAOs results from the solution of frequency domain equation of motion are presented as ITU-WAVE 1. As 
can be seen from Fig. 7, the numerical results from time domain and frequency domain solutions of ITU-
WAVE have perfect match as expected.        
  
5.4. Asymptotic Continuation 
 
The decay of the forward speed IRFs in time is different from that of zero speed IRFs due to the resonance 
at the critical reduced frequency 𝑑𝑑 = 𝜔𝜔𝑐𝑐𝑈𝑈 𝜋𝜋⁄ = 1/4. The impulse acting on the floating body generates 
energy due to the presence of the wave system. This energy at the group velocity of wave components 
propagates away from the floating body at zero-forward speed whilst in the case of forward speed, this 
energy remains in the vicinity of the floating body since the group velocity of the wave component is 
approximately equal to the speed of the floating body. For the long simulation of the floating bodies, it is 
very important to avoid the computation of transient free-surface wave Green function, which is 
computationally expensive and results in the prediction of IRFs for each mode and at each time step. In ITU-
WAVE numerical code, the computation of forward speed IRFs are truncated at the non-dimensional time 
step of 15�𝜋𝜋 𝐿𝐿⁄  and the asymptotic values of each IRFs are approximated (Bingham et.al. 1994) as 𝑡𝑡 → ∞ 
 

𝐾𝐾𝑗𝑗𝑘𝑘(𝑡𝑡) ≈ 𝑎𝑎0 + 1
𝑡𝑡

[𝑎𝑎1 cos(𝜔𝜔𝑐𝑐𝑡𝑡) + 𝑎𝑎2 sin(𝜔𝜔𝑐𝑐𝑡𝑡)]      (14) 
 

The constants in Eq. (14) can be determined by a Least Squares fit. Fig. (8) shows comparison between a 
very long calculation of the heave IRFs and asymptotic continuation results.  
 

 
Fig. 8: Comparison (left) and expanded view (right) of heave IRF of Wigley I hull form at Fn=0.30 between the solution of integral equation Eq. (1) 
and asymptotic continuation – potential formulation 
 
The solution of the time domain discretized integral equations demonstrates an oscillation over longer time 
as shown in expanded view of the heave IRF in Fig. (8). The oscillatory error at large time is apparently the 
result of the integral equation Eq. (1) method of solution and not numerical inaccuracies. The oscillatory 
error in the time domain discretized integral equations is the equivalence of the irregular frequencies in the 
frequency domain. The oscillation amplitude decreases when forward speed increases. The oscillation 
amplitude at both zero and forward speed cases can be reduced by increasing panel numbers and by 
decreasing the time step size (Fig. (1) and Fig. (2)).  
 
6. The First Order Steady Forces 
 
The steady perturbation potential 𝜑𝜑(𝑃𝑃, 𝑡𝑡) may be solved as the steady state limit of the transient radiation 
problem. In the case of the steady state limit, time 𝑡𝑡 goes to infinity 𝑡𝑡 → ∞. The steady state wave forces 
on the body surface due to its steady translation may be written as 
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𝐹𝐹𝑆𝑆𝑗𝑗(𝑡𝑡) = 𝜌𝜌𝑈𝑈∬ 𝑑𝑑𝑑𝑑𝑄𝑄

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜑𝜑1(𝑄𝑄, 𝑡𝑡)𝑛𝑛𝑗𝑗�̅�𝑆𝑏𝑏

    (15) 
 
where 𝜑𝜑1(𝑃𝑃, 𝑡𝑡) is the surge radiation perturbation potential at x-direction, 𝑈𝑈 forward speed of floating 
body. ITU-WAVE numerical results are presented for the analytically defined Wigley R hull form with length 
to beam ratio 𝐿𝐿 𝐵𝐵 = 10⁄  and length to draft ratio 𝐿𝐿 𝑇𝑇 = 16⁄ . The half beam of the Wigley R hull form is 
given as 

𝑑𝑑 = (1 − 𝜍𝜍2)(1− 𝜕𝜕2)  (16) 
 
where 𝑑𝑑 = 2𝑦𝑦/𝐵𝐵, 𝜕𝜕 = 2𝑥𝑥/𝐿𝐿, and 𝜍𝜍 = 𝑧𝑧/𝑇𝑇 and L, B, T are length, beam, and draft of the floating body, 
respectively. As mentioned before the steady perturbation potential can be considered steady state limit of 
transient impulsive velocity of surge radiation problem with forward speed. As the quantity of the steady 
problem (e.g. steady wave resistance, sinkage force and trim moment) are an order of magnitude smaller 
than the transient response, convergence test of the steady problem are presented in Fig. (9). As the 
prediction of the first order steady forces Eq. (15) requires the fluid velocity in x-direction, the source 
formulation Eq. (3), which gives fluid velocities directly, is used to obtain the steady forces. 
 

 
Fig. 9: Convergence of the steady wave resistance, sinkage force and trim moment of Wigley R hull form at a range of different 
panel numbers at Fn=0.313 and time step size 0.05 – source formulation 
 
As in convergence of the first order wave forces in section 5 (e.g. radiation and diffraction IRFs), ITU-WAVE 
numerical results are not very sensitive in terms of non-dimensional time step size 𝑡𝑡 ∗ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝜋𝜋/𝐿𝐿) of 0.01, 
0.03, and 0.05 over the range of panel numbers of 128, 288, 512 whilst the numerical results are sensitive 
in terms of panel numbers as can be seen in Fig. 9 and the results at panel number 288 is converged and 
used for the present ITU-WAVE numerical calculations with the non-dimensional time step size of 0.05.  
 
The floating body starts its motion at rest and reaches a constant speed 𝑈𝑈 with direction of the speed 
parallel to the free surface in the first order steady force calculation. After some oscillation the force takes 
a constant value, which is the resistance of the body, but it is computationally expensive to reach the 
steady state limit value of the transient impulsive velocity potential. After obtaining the regular oscillation, 
the remaining portion of the calculation may be fitted using asymptotic continuation Eq. (14) in order to 
avoid computationally expensive transient free-surface Green function calculation. It is assumed that the 
first order steady force values are decaying with 1/t in time in Eq. (14). This approximation agrees with 
Wehausen (1964) who investigated the effects of the initial transients on the wave resistance of a thin ship 
starting abruptly from rest. 
 

 
Fig. 10: Variation of wave resistance, sinkage force and trim moment of Wigley R form at a range of different Froude number – 
source approach 
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Fig. 10 shows the steady wave resistance, sinkage force and trim moment of Wigley R hull form over a 
range of Froude numbers. ITU-WAVE numerical results are calculated for the fixed model condition whilst 
the experimental envolope results are given for free trim and sinkage condition as well as free sinkage and 
fixed trim moment. The wave resistance experimental envelope results are obtained from McCarthy (1979) 
whilst the experimental envelope for sinkage force and trim moment is from Noblesse (1983). ITU-WAVE 
numerical calculations were undertaken up to non-dimensional time step of 15�𝜋𝜋 𝐿𝐿⁄  and then asymptotic 
continuation Eq. (14) was used to obtain the asymptotic value of steady wave resistance, sinkage force and 
trim moment. 
 
7. Multi-body Interactions 
 
Two truncated vertical cylinder is used for numerical analysis as a first test case for multi-body interactions. 
It is assumed two cylinders have the same draft and radius R although present method can be applied for 
different draft and radius. The truncated cylinders have the radius of R, draft of 2R and hull separation to 
diameter ratio of d/D=1.3. It is assumed that two truncated cylinders are free for sway mode and fixed for 
other modes. These two truncated cylinders are studied to predict sway radiation and diffraction IRFs in 
time and added-mass, damping coefficients, and exciting force in frequency domain. ITU-WAVE numerical 
results for sway added-mass, damping coefficients and exciting force (which are the sum of the diffraction 
and Froude-Krylov forces) with Fn = 0.0 and heading angle 𝛽𝛽 = 900 are compared with the analytical 
results (Kagemoto and Yue 1986). 
 
Fig. 11 shows the convergence test of radiation and diffraction IRFs for sway mode. As two truncated 
vertical cylinders are symmetric in terms of xz-coordinate plane of the reference coordinate system, only 
single hull form is discretized for numerical analysis. Numerical experience showed that numerical results 
are not very sensitive in terms of non-dimensional time step size 𝑡𝑡 ∗ 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝜋𝜋/𝐿𝐿) of 0.01, 0.03, and 0.05 over 
the range of panel numbers of 128, 200, 288 on single body of two truncated vertical cylinder whilst the 
numerical results are quite sensitive in terms of panel numbers as can be seen in Fig. 11 and the results at 
panel number 200 on single hull form is converged and used for the present ITU-WAVE numerical 
calculations for both two and single truncated vertical cylinder with the non-dimensional time step size of 
0.05. 
 

 
Fig. 11: Two truncated vertical cylinder - non-dimensional radiation K22(t) and diffraction sway K2D(t) IRFs at Fn = 0.0, d/D = 1.3 and 
beam seas 𝛽𝛽 = 900 – Potential approach 
 
It may be noticed that the magnitude of radiation IRFs of two cylinder in sway mode Fig. 11 is quite big 
compared to single cylinder. The other distinctive difference of IRF of single and two cylinders in Fig. 11 is 
the behaviour of radiation IRFs function in longer times in sway mode. IRF of two cylinders have oscillations 
over longer times with decreasing amplitude while single cylinder IRF decays to zero just after first 
oscillation. This behaviour of IRF implicitly means that the energy between two cylinders is trapped in the 
gap and only a minor part of the energy is radiated outwards each time when the wave is reflected off the 
hull while all energy is dissipated in the case of single cylinder. It is expected that geometry of two bodies 
would significantly affects the radiated, diffracted, and trapped waves which result from due to standing 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40K2
2/

(R
O

*g
*R

*R
)

t*sqrt(g/r)

pn=128

pn=200

pn=288

single body

-1

-0.5

0

0.5

1

1.5

-40 -20 0 20 40

K
2

D
/(

R
O

*p
o

w
(L

,3
)*

p
o

w
((

g/
L)

,3
/2

))

t*sqrt(g/r)

pn=128

pn=200

pn=288

single body



13 
 

waves in the gap. In the case of diffraction IRF in Fig. 11, there are no significant differences in sway mode 
between single and two cylinders’ IRFs except slight shift. 
 
As mentioned previously the time domain radiation force coefficients are related to the frequency domain 
force coefficients through Fourier transform when the motion is considered as a time harmonic motion. 
The Fourier transform of radiation and exciting IRFs in time domain gives the frequency dependent added 
mass and damping coefficients as well as exciting force in frequency domain, respectively and may be 
written as 

𝐴𝐴𝑗𝑗𝑘𝑘(𝜔𝜔) = 𝑎𝑎𝑗𝑗𝑘𝑘 −
1
𝜔𝜔
� 𝑑𝑑𝑑𝑑𝐾𝐾𝑗𝑗𝑘𝑘(𝑑𝑑) sin(𝜔𝜔𝑑𝑑)
𝑡𝑡

0
−
𝑐𝑐𝑗𝑗𝑘𝑘
𝜔𝜔2            (17) 

𝐵𝐵𝑗𝑗𝑘𝑘(𝜔𝜔) = 𝑏𝑏𝑗𝑗𝑘𝑘 + � 𝑑𝑑𝑑𝑑𝐾𝐾𝑗𝑗𝑘𝑘(𝑑𝑑) cos(𝜔𝜔𝑑𝑑)
𝑡𝑡

0
                            

 𝐹𝐹𝑗𝑗(𝜔𝜔) = ∫ 𝑑𝑑𝑑𝑑+∞
−∞ �𝐾𝐾𝑗𝑗𝑗𝑗(𝑑𝑑) + 𝐾𝐾𝑗𝑗𝑆𝑆(𝑑𝑑)�𝑒𝑒−𝑖𝑖𝜔𝜔`𝜏𝜏`            (18)       

 
where the coefficients 𝐴𝐴𝑗𝑗𝑘𝑘(𝜔𝜔) and 𝐵𝐵𝑗𝑗𝑘𝑘(𝜔𝜔) are the frequency dependent added mass and damping 
coefficients, respectively whilst 𝐹𝐹𝑗𝑗(𝜔𝜔) is the complex exciting force. Added-mass 𝐴𝐴22(𝜔𝜔), damping 
coefficients 𝐵𝐵22(𝜔𝜔) and exciting force amplitude 𝐹𝐹2(𝜔𝜔) in Fig. 12 is obtained by Fourier transform of 
radiation sway IRF K22(t) and diffraction sway IRF K2D(t) of Fig. 11, respectively.  
 

  
Fig. 12: Two truncated vertical cylinders - non-dimensional sway added-mass, damping coefficients and exciting force amplitude 
(beam seas 𝛽𝛽 = 900) at Fn = 0.0 and d/D = 1.30 – potential approach 
 
ITU-WAVE numerical results of added-mass and damping coefficients in sway mode of two cylinders are 
satisfactory agreement with the analytical prediction (Kagemoto and Yue 1986) as can be seen in Fig. 12. In 
addition to two cylinders added-mas and damping coefficients in Fig. 12, the single cylinder results are 
presented as the comparison with two cylinders results. It can be seen in Fig. 12 the behaviours of two 
cylinders results are significantly different from those of single cylinder due to trapped waves and 
hydrodynamic interactions in the gap of two cylinders.  
 
The effects of diffraction hydrodynamic interactions in sway mode (at which interactions are effective in 
the whole frequency range) are stronger in Fig. 12. These interaction effects in sway mode are even 
stronger in a limited frequency range which is of interest for the motions of the bodies in array systems and 
is around kR =0.5 and kR = 2.0 of non-dimensional frequency in radiation and diffraction sway mode in Fig. 
12, respectively. 
 
7.1. Four truncated vertical cylinder arrays 
 
Four truncated vertical cylinder is used for numerical analysis as the second test case for multi-body 
interactions. As in two cylinders, it is assumed four cylinders have the same draft and radius. Four 
truncated cylinders have the radius of R and draft of 2R and hull separation to diameter ratio d/D=2.0. It is 
assumed that four truncated cylinders are free for sway mode and fixed for other modes and are studied to 
predict sway added-mass, damping coefficients and exciting force amplitude in frequency domain. ITU-
WAVE numerical results for sway added-mass 𝐴𝐴22(𝜔𝜔), damping coefficients 𝐵𝐵22(𝜔𝜔) and exciting force 
amplitude 𝐹𝐹2(𝜔𝜔) with heading angle 𝛽𝛽 = 900 are compared with the analytical results (Kagemoto and Yue 
1986) in Fig. 13. 
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Fig. 13: Four truncated vertical cylinders - non-dimensional sway added-mass, damping, and exciting force amplitude at Fn = 0.0, 
d/D = 2.0 and beam seas 𝛽𝛽 = 900 – potential approach 

 
There would not be energy transfer or radiated waves from floating body to sea when the damping 
coefficients are zero as can be observed in Fig. 13. It may be noticed there are three resonances behaviours 
in damping coefficients in sway mode which implies that high standing waves occur between the maximum 
and minimum damping coefficients (Ohkusu 1969, van Oortmerssen 1979). It may be noticed the peaks are 
finite at non-dimensional resonance frequencies as some of the wave energy dissipate under the floating 
body and radiates to the far field. 
 
8. The second order steady forces 
 
For the prediction of the mean second order forces, the pressure integration method with the Neumann-
Kelvin linearization is used in ITU-WAVE numerical code. It is not necessary to solve the second-order 
boundary value problem even though the forces are second-order quantities in order to calculate the mean 
second order forces on a floating body in waves. The solution of the second order problem results in mean 
forces, and forces oscillating with difference frequency and sum frequencies in addition to the linear 
solution. The fluid pressure is integrated over the hull to obtain the global hydrodynamic forces at each 
time step. These wave loads will determine the subsequent motion of the body with Eq. (19). Therefore, an 
accurate and complete description of the pressure is essential in order to properly simulate the response of 
a body. The second-order force in time domain neglecting the second-order hydrostatic force (since its 
contribution to mean second order force (or added resistance) prediction is zero) can be written as (Kara 
2011) 
 

𝐹𝐹𝑖𝑖
(2)(𝑡𝑡) =

𝜌𝜌𝜋𝜋
2
� 𝑑𝑑𝑑𝑑
𝜏𝜏

[𝜁𝜁 − (𝜕𝜕3 + 𝑦𝑦𝛼𝛼1 − 𝑥𝑥𝛼𝛼2)]2
𝑛𝑛𝑖𝑖

�1 − 𝑛𝑛32
 

                −
𝜌𝜌
2
� 𝑑𝑑𝑑𝑑𝑄𝑄
�̅�𝑆𝑏𝑏

∇𝜑𝜑(1) ∙ ∇𝜑𝜑(1)𝑛𝑛𝑖𝑖 

               −𝜌𝜌� 𝑑𝑑𝑑𝑑𝑄𝑄
�̅�𝑆𝑏𝑏

�𝜕𝜕 + �⃗�𝛼 × �⃗�𝑥� ∙ ∇ �𝜑𝜑𝑡𝑡
(1) − 𝑈𝑈𝜑𝜑𝜕𝜕

(1)�𝑛𝑛𝑖𝑖 

                �⃗�𝛼 × �−𝜌𝜌∬ 𝑑𝑑𝑑𝑑𝑄𝑄�̅�𝑆𝑏𝑏
�𝜑𝜑𝑡𝑡

(1) − 𝑈𝑈𝜑𝜑𝜕𝜕
(1)�𝑛𝑛𝑖𝑖�                           ;    𝑖𝑖 = 1,2,3                   (19) 

 
where 𝜕𝜕 = (𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3) = (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3), �⃗�𝛼 = (𝛼𝛼1,𝛼𝛼2,𝛼𝛼3) = (𝑥𝑥4,𝑥𝑥5, 𝑥𝑥6), upper-scripts 𝜑𝜑(1) in potential and 
fluid velocities ∇𝜑𝜑(1) represent the first order quantities whilst 𝐹𝐹𝑖𝑖

(2)(𝑡𝑡) is for second order quantity. In Eq. 
(19), the first line is the contribution from the vertical wave elevation and vertical motion of the floating 
body that change the wetted surface in the water line region. The second line comes from the quadratic 
term due to fluid velocities. The third line is the correction from the instantaneous pressure to mean 
position. The fourth line comes from the correction to body-fixed normal vector 𝑛𝑛�⃗ .  
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Fig 14:  achieving steady-state  of the added resistance components at the resonance frequency for a Wigley I hull form at Fn =0.3 and β = 180 
degrees (a) relative wave elevation along the waterline – the first line of Eq. (19) (b) pressure due to the quadratic first order velocity – the second 
line of Eq. (19) (c) pressure due to the product of gradient of first order pressure and first order motion – the third line of Eq. (19) (d) pressure due 
to the product of first order pressure and first order rotational motion – the fourth line of Eq. (19) (e) the total added resistance that are the sum of 
(a), (b), (c), and (d) – source formulation 
 
Fig. 14 shows the achieving steady-state of each components of the added resistance which is given in Eq. 
(19) at the resonance frequency and sum of these components for Wigley I hull form at Fn =0.3 and β = 180 
degrees. Wigley I hull form in the present mean second-order calculation is free to heave and pitch motions 

and restrained for the other modes. The mean second order forces 𝐹𝐹𝚤𝚤
(2)�����  over a time range 𝑇𝑇 is given as 

𝐹𝐹𝚤𝚤
(2)����� = 1

𝑇𝑇 ∫ 𝑑𝑑𝑡𝑡𝑇𝑇
0 𝐹𝐹𝑖𝑖

(2)(𝑡𝑡)    (20) 
 

The averaging time 𝑇𝑇 must be much larger than the characteristics period of the incident wave. Fig.  15 
shows the mean added resistance of Wigley I hull form at Fn =0.3 and β = 180 degrees for a range of 
frequencies. As the second order force prediction Eq. (19) requires the fluid velocities calculations, the 
source formulation is used with panel number pn=288 and non-dimensional time step of 0.05 as the 
numerical results are converged at this panel number and time step. 
 

 
Fig. 15: Non-dimensional mean added resistance (left) and mean added resistance components (right) for a range of non-dimensional frequencies 
for Wigley I hull form at Fn =0.3 and β = 180ͦ , (a) relative wave elevation along the waterline – the first line of Eq. (19) (b) pressure due to the 
quadratic first order velocity – the second line of Eq. (19) (c) pressure due to the product of gradient of first order pressure and first order motion – 
the third line of Eq. (19) (d) pressure due to the product of first order pressure and first order rotational motion – the fourth line of Eq. (19) (e) the 
total added resistance that are the sum of (a), (b), (c), and (d) – source formulation 
 
The experimental results, which are compared with ITU-WAVE numerical results, are taken from Journee 
(1992). In order to avoid the transient effects, only the last half of the time domain results Fig. 14 are taken 
into account for the prediction of the mean added resistance using Eq. (20).  
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9. Hydroelasticity of floating bodies 
 
For hydroelastic analysis, It is assumed that the mass per unit length and structural stiffness EI are uniform 
along the length and the non-dimensional stiffness parameter is defined as 𝑑𝑑 = 𝐸𝐸𝑗𝑗/𝜌𝜌𝜋𝜋𝐿𝐿5  (Newman 2005, 
Lee and Newman 2000). The link between elastic and stiff structure can be determined using this stiffness 
parameter 𝑑𝑑. The stiffness parameter 𝑑𝑑 represents the ratio between structural stiffness and hydrostatic 
restoring force, where 𝑑𝑑 = ∞ corresponds to completely rigid structure whilst 𝑑𝑑 = 0 corresponds to 
completely flexible structure.  
 
9.1. Elastic structures 
 
The flexible barge Fig. 4 has length to beam ratio 𝐿𝐿 𝐵𝐵⁄ = 4.075, length to draft ratio 𝐿𝐿 𝑇𝑇⁄ = 20.375,  and 
actual length of the barge is 2.445𝑚𝑚. This flexible barge is studied to predict vertical deflection (RAOs) for 
the validation of ITU-WAVE numerical results against experimental results (Malenica et.al. 2003) at Fn=0.0 
and head seas 𝛽𝛽 = 1800. The vertical bending stiffness EI is given as 175 𝑁𝑁𝑚𝑚2 in the experimental study 
which results in non-dimensional stiffness parameter = 𝐸𝐸𝑗𝑗 𝜌𝜌𝜋𝜋𝐿𝐿5⁄ = 1.99 × 10−4 . The barge in Fig. 4 is 
discretized with 1080 panels with 49 panels in longitudinal direction, 10 panels in transverse direction, and 
5 panels in vertical direction as the numerical results are converged at this panel numbers and non-
dimensional time step size of 0.05.  
 

 
Fig. 16: Barge vertical deflection (RAOs) at mid-ship and bow with stiffness factor = 𝐸𝐸𝑗𝑗 𝜌𝜌𝜋𝜋𝐿𝐿5⁄ = 1.99 × 10−4 , Fn = 0.0 and head 
seas 𝛽𝛽 = 1800 – potential approach 
 
Fig. 16 shows the vertical deflection with stiffness factors 𝑑𝑑 = 𝐸𝐸𝑗𝑗 𝜌𝜌𝜋𝜋𝐿𝐿5⁄ = 1.99 × 10−4 at mid-ship and 
bow. As expected, motion approaches to the unity at low frequencies whilst motion approaches to zero in 
the case of high frequencies. It can be seen from Fig. 16 the comparisons between present direct time 
domain ITU-WAVE numerical results and experimental results (Malenica et.al. 2003) are quite satisfactory. 
 
9.2. Stiff structures 
 
Wigley I hull form has length to beam ratio 𝐿𝐿 𝐵𝐵⁄ = 7, length to draft ratio 𝐿𝐿 𝑇𝑇⁄ = 18, and actual length 
2.5𝑚𝑚. Wigley I hull form (which is free for heave and pitch modes and fixed for other modes) is studied to 
predict bending moment and shear force experimentally (Adegeest 1994). ITU-WAVE numerical results of 
shear force and bending moment at Fn=0.2 and head seas 𝛽𝛽 = 1800 are compared with experimental 
results (Adegeest 1994) as Wigley I hull form is considered as a stiff structure. If the contribution of rigid 
body motion to the pressure field is much higher than elastic modes, the floating body can be considered as 
stiff which means the floating body does not deform very much compared to the rigid body motions. In 
other words, in the case of stiff structure it is expected that the amplitude of deformable modes are not 
significant and the radiation due to these deformable modes can be neglected. The load distribution, which 
is the derivative of the shear force 𝑉𝑉, can be written as (Kara 2015)  
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𝐿𝐿(𝑠𝑠) =
𝑑𝑑𝑉𝑉
𝑑𝑑𝑠𝑠

= �𝐹𝐹𝑗𝑗 ∙ 𝑢𝑢𝑗𝑗′′′′(𝑠𝑠)
𝐾𝐾

𝑗𝑗=1

             (21) 

 
where 𝐹𝐹𝑗𝑗 Eq. (22) is the unknown force coefficients, 𝐾𝐾 total degree of freedom of elastic structure which 
include 6 rigid degree-of-freedom, 𝑢𝑢𝑗𝑗(𝑠𝑠) total displacements of the elastic structure. The shear force and 
bending moment may be found as the first and the second integrations of Eq. (21), respectively. 

𝐹𝐹𝑗𝑗(𝜔𝜔) = 𝑑𝑑𝑗𝑗𝑘𝑘𝜕𝜕𝑘𝑘(𝜔𝜔) = 𝑋𝑋𝑗𝑗(𝜔𝜔) −��−𝜔𝜔2 �𝑀𝑀𝑗𝑗𝑘𝑘 + 𝐴𝐴𝑗𝑗𝑘𝑘(𝜔𝜔)� + 𝑖𝑖𝜔𝜔𝐵𝐵𝑗𝑗𝑘𝑘(𝜔𝜔) + 𝐶𝐶𝑗𝑗𝑘𝑘� 𝜕𝜕𝑘𝑘(𝜔𝜔)
2

𝑘𝑘=1

        (22) 

 
where 𝑋𝑋𝑗𝑗(𝜔𝜔) is frequency dependent exciting force amplitudes, 𝑑𝑑𝑗𝑗𝑘𝑘 structural stiffness. In the case of stiff 
structure, only rigid body effect is taken into account as 𝜕𝜕𝑘𝑘 (which is motion amplitudes in frequency 
domain) for 𝑑𝑑 > 6 is assumed to be small when they are compared to rigid body motion. The summation in 
Eq. (22) implies that rigid body motion parameters and their coupling with elastic modes for added-mass, 
damping, and restoring coefficients are required for the prediction. Heave and pitch rigid-body modes are 
represented as 1 and 2, respectively in Eq. (22) as other rigid body modes are restrained. This means that 
information related to added-mass, damping, and restoring terms in elastic modes due to rigid body 
motions only (which are coupled with elastic modes) needs to be known for the numerical calculation. The 
bending moments and shear forces can be predicted by the use of this approach in which the floating body 
is considered as a long, slender, and stiff beam.   
 
The prediction of global loads including bending moment and shear force requires the mass distribution of 
floating body. It is assumed that mass is distributed as the local beam as 𝑀𝑀𝑗𝑗𝑘𝑘 = 𝑀𝑀

4
𝛿𝛿𝑗𝑗𝑘𝑘 (where M is the total 

mass of the beam and 𝛿𝛿𝑗𝑗𝑘𝑘  is the Kroenecker delta function) and scaled in a way that the weight of the total 
mass equals the mass of the displaced fluid in ITU-WAVE numerical code. ITU-WAVE numerical results due 
to this approach for shear force and bending moment at Fn=0.2 and 𝛽𝛽 = 1800  are shown in Fig. 17 together 
with experimental results (Adegeest 1994).  
    

  
Fig. 17: Wigley I hull shear force and bending moment at Fn = 0.2 and 𝛽𝛽 = 1800 – potential approach 
 
It can be seen from Fig. 17 that ITU-WAVE numerical results has satisfactory agreement with experiment 
results (Adegeest 1994). Shear force and bending moment using 8 free-free beam modes are obtained by 
the first and second integration of Eq. (21), respectively after the force coefficients 𝐹𝐹𝑗𝑗(𝜔𝜔) are determined 
by the use of Eq. (22). 
 
10. Wave energy converters (WEC) with latching control 
 
Latching control, which is a discrete real time control, is used in the present paper. Rather than adapting 
WEC parameters to the excitation force in order to optimize the linear body response, the latching control 
adapts the body response to WEC and to the excitation in a nonlinear fashion. It is a kind of parametric 
resonance adaptation process as can be found in nonlinear oscillatory theory, this kind of behaviour can be 
predicted only using time domain simulations. Latching control can magnify the amplitude of the motion 

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15

Sh
ea

r F
or

ce

w (r/s)

Exp - Adegeest (1993)

ITU-WAVE

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15

Be
nd

in
g 

M
om

en
t

w (r/s)

Exp - Adegeest (1993)
ITU-WAVE



18 
 

whatever the frequency of the excitation force, and can improve the efficiency of WEC in terms of 
absorbed energy for excitation frequencies apart from the natural frequency.  
 
When latching control is applied, an additional force must be introduced in the dynamic of WEC to cancel 
the acceleration of the controlled motion in order to lock the system temporarily. The latching control of 
WEC consists of locking the oscillating body in position at the instant when velocity vanishes, and releasing 
it after a certain delay to be determined. This latching delay has to be applied in order to maximise the 
response amplitude of the body. The instant of latching is imposed by the dynamics of the body itself (i.e. 
vanishing velocity); thus the control variable is simply the duration of the latching phase, or equivalently 
the instant of release (Greenhow et.al. 1997, Eidsmoen 1998, Babarit et.al. 2004, Kara 2010). One of the 
advantages of latching control is that it is passive, which means that it does not need to deliver energy to 
WEC while it is engaged, since the forces do no work as long as the velocity vanishes. 
 
10.1. Instantaneous and mean absorbed power 
 
The instantaneous power 𝑃𝑃𝑖𝑖𝜕𝜕𝑖𝑖𝑘𝑘(𝑡𝑡) absorbed by Power-Take-Off (PTO) system for each mode is directly 
proportional to exciting force (which is the sum of diffraction and Froude-Krylov forces) and radiation 
forces on floating bodies and is defined as (Kara 2016) 
 

𝑃𝑃𝑖𝑖𝜕𝜕𝑖𝑖𝑘𝑘(𝑡𝑡) = [𝐹𝐹𝑒𝑒𝜕𝜕𝑐𝑐𝑘𝑘(𝑡𝑡) + 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘(𝑡𝑡)]�̇�𝑥𝑘𝑘(𝑡𝑡)                 (23) 
 
Where 𝑑𝑑 represents each mode of motion (e.g. heave),  𝐹𝐹𝑒𝑒𝜕𝜕𝑐𝑐𝑘𝑘(𝑡𝑡) exciting forces which are due to incident 
and diffracted waves, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘(𝑡𝑡) radiation forces which are due to the oscillation of bodies.  
 

𝐹𝐹𝑒𝑒𝜕𝜕𝑐𝑐𝑘𝑘(𝑡𝑡) = 𝐹𝐹𝑘𝑘(𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝐾𝐾𝑘𝑘𝑗𝑗(𝑡𝑡 − 𝑑𝑑)𝜁𝜁(𝑑𝑑)
∞

−∞
  (24) 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘(𝑡𝑡) = 𝐹𝐹𝑘𝑘𝑘𝑘(𝑡𝑡) = −𝑎𝑎𝑘𝑘𝑘𝑘�̈�𝑥𝑘𝑘(𝑡𝑡) − 𝑏𝑏𝑘𝑘𝑘𝑘�̇�𝑥𝑘𝑘(𝑡𝑡) − 𝑐𝑐𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘(𝑡𝑡) −� 𝑑𝑑𝑑𝑑𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡 − 𝑑𝑑)�̇�𝑥𝑘𝑘(𝑑𝑑)
𝑡𝑡

0
     (25) 

 
The power due to exciting forces 𝑃𝑃𝑒𝑒𝜕𝜕𝑐𝑐𝑘𝑘(𝑡𝑡) = 𝐹𝐹𝑒𝑒𝜕𝜕𝑐𝑐𝑘𝑘(𝑡𝑡)�̇�𝑥𝑘𝑘(𝑡𝑡) is the total absorbed power from the incident 
and diffracted waves, whilst the power due to radiation forces 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘(𝑡𝑡) = 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘(𝑡𝑡)�̇�𝑥𝑘𝑘(𝑡𝑡) is the power 
radiated back to sea due to the oscillation of floating body. The mean (average) power 𝑃𝑃𝚤𝚤𝜕𝜕𝑖𝑖𝑘𝑘(𝑡𝑡)���������� absorbed by 
the PTO system over a time range 𝑇𝑇 is given as 
 

𝑃𝑃𝚤𝚤𝜕𝜕𝑖𝑖𝑘𝑘(𝑡𝑡)���������� =
1
𝑇𝑇
�𝑑𝑑𝑡𝑡�𝐹𝐹𝑒𝑒𝜕𝜕𝑐𝑐𝑘𝑘(𝑡𝑡) + 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘(𝑡𝑡)��̇�𝑥𝑘𝑘(𝑡𝑡)
𝑇𝑇

0

   (26) 

 
The averaging time 𝑇𝑇 must be much larger than the characteristics period of the incident wave which is 
approximately from 5s to 15s. In order to avoid the transient effects, only the last half of the time domain 
results are taken into account for the prediction of the mean absorbed power using Eq. (26) and other time 
dependent parameters in ITU-WAVE numerical code.  
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Fig. 18: Instantaneous power (left) absorbed by a vertical-cylinder with sphere bottom at each period with and without latching 
control at resonance period at 10s and incident wave period at 15s with 1m wave amplitude, absorbed mean power (right) with 
and without latching control in the range of frequencies – potential approach 
 
Fig. 18 shows the instantaneous power (left) absorbed for incident wave period of 15s from ocean waves 
using a vertical-cylinder with sphere bottom (which has 8m radius and 13m draft and free to heave mode 
and fixed for other modes) as a wave energy converter with and without latching control. In the case of 
latching control the absorbed instantaneous power is increased significantly. It may be noticed that the 
unlatching results are very small in terms of controlled latching results. Fig. 18 shows also the absorbed 
mean power (right) for the range of incident wave frequencies. In the case of latching control the absorbed 
mean power is again increased significantly. The theoretical maximum power 𝑃𝑃 = 𝜌𝜌𝜋𝜋3𝜁𝜁𝑟𝑟 (4𝜔𝜔3)⁄  in regular 
seas (Budal and Falnes 1976) is compared with ITU-WAVE numerical results. As can be seen from Fig. 18 
(left) the absorbed mean power at low frequencies which has more power compared to high frequencies 
are increased significantly with latching control. 
 
10.2. Efficiency 
 
The efficiency 𝑑𝑑 of WECs is defined as 𝑑𝑑 = 𝑑𝑑 𝑑𝑑𝑚𝑚𝑟𝑟𝜕𝜕⁄  which has a maximum of 1.0 for any wavelength. The 
capture width 𝑑𝑑 and maximum capture width 𝑑𝑑𝑚𝑚𝑟𝑟𝜕𝜕 is defined as (Budal and Falnes 1976) 𝑑𝑑 = 𝑃𝑃�𝑖𝑖𝜕𝜕𝑖𝑖𝑘𝑘 𝑃𝑃𝑤𝑤⁄  and  
𝑑𝑑𝑚𝑚𝑟𝑟𝜕𝜕 = 𝑑𝑑 (2𝜋𝜋)⁄  where 𝑃𝑃�𝑖𝑖𝜕𝜕𝑖𝑖𝑘𝑘(𝑡𝑡) is the mean power and given by Eq. (26), 𝑃𝑃𝑤𝑤 = 𝜌𝜌𝜋𝜋2𝜁𝜁𝑟𝑟2 (4𝜔𝜔)⁄  is the wave 
power in the incident wave train per unit crest length, 𝜁𝜁𝑟𝑟 being the incident wave amplitude. A good wave 
absorber is a body which has the ability when making waves, to concentrate the wave energy along a 
narrow sector rather than distribute the energy evenly over all angles. The maximum capture width equals 
to 𝑑𝑑𝑚𝑚𝑟𝑟𝜕𝜕 = 𝑑𝑑 (2𝜋𝜋)⁄  for an axisymmetric system in symmetric mode of motion e.g. heave. This implies that 
the floating body absorbs all the power in an incident wave equal to that passing a crest length of 𝑑𝑑 (2𝜋𝜋)⁄ . 
 

  
Fig. 19: Convergence of efficiency for resonance and off-resonance period without latching control for a vertical-cylinder with 
sphere bottom (left) and efficiency with and without latching control at a range of frequencies (right) – potential approach 

 
Fig. 19 (left) shows the efficiencies for vertical-cylinder with sphere bottom in the case of in resonance and 
off-resonance periods. The efficiency converges to 1.0 (100% efficient) at resonance period 𝑇𝑇𝜕𝜕 = 10𝑠𝑠 
whereas off-resonance case 𝑇𝑇 = 11𝑠𝑠 shows a very low efficiency (5%). Figure 19 (right) shows the 
efficiency plotted at a range of frequencies. If the natural period of vertical-cylinder equals the period of 
incident waves in the case of without latching control, the device is perfectly tuned and we expect optimal 
efficiency. As the difference between natural period of device and incident wave period increases, the 
efficiency of the system decreases. As can be seen in Figure 19(right) latching control increases the 
bandwidth of the wave energy converter for lower frequency ranges. If off-resonance period is 11s (0.571 
rad/s), the efficiency is approximately 5% without latching control. However, if 1𝑠𝑠 latching is applied, it is 
possible to achieve an efficiency of approximately 100%. 
 
11. Conclusions  
 
The application of a three-dimensional transient wave-body interaction computer numerical code ITU-
WAVE with Boundary-Integral Equation Method (BIEM) and Neumann-Kelvin linearization was presented 
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for the time domain prediction of different hydrodynamic parameters including the first order motions and 
the first-order unsteady hydrodynamic forces e.g. the radiation, exciting forces of the mono-hull and multi-
hull floating bodies, the first and second order steady forces, multi-body interactions, hydroelastic analysis, 
power absorptions from ocean waves, wave energy converter arrays. 
 
As the equation of motion requires long time simulation in order to achieve steady state condition and the 
first order steady problem is solved as the steady state limit of the radiation problem, this implies that the 
transient free-surface Green function must be evaluated a large number of times to reach steady state 
limits. This numerical process is too expensive for practical purposes. To avoid expensive transient free-
surface Green function calculations, the asymptotic continuation of the impulse response function of the 
first order unsteady problem and the wave-resistance, sinkage force, and trim moment of the first order 
steady problem is studied using the Least Square fitting to reduce the computational time. 
 
It was shown that the behaviour of both two and four truncated vertical cylinder arrays results is 
significantly different from those of mono-hull due to trapped waves in the gap of arrays. It was also shown 
numerically the hydrodynamics interactions are effective in the whole frequency range and are even 
stronger in a limited frequency range which is of interest for floating body motions in waves.  
 
The prediction of the added-resistance of the floating bodies (which is the longitudinal component of the 
mean second order wave forces in the case of non-zero forward speed and can be computed from 
quadratic product of the first-order quantities) is presented using the near-field method based on the direct 
pressure integration over floating body in time domain. The numerical experience shows that the biggest 
contribution due to radiation problem to the added resistance will be in the region of the resonance 
frequency of heave and pitch motions. The diffraction induced added resistance will be dominated by high 
incident wave frequencies where the floating body motions are small. 
 
A non-dimensional structural stiffness parameter 𝑑𝑑 = 𝐸𝐸𝑗𝑗/𝜌𝜌𝜋𝜋𝐿𝐿5 is used and depending on this stiffness 
parameter the hydroelatic effects of floating slender barge are studied for RAOs. A Wigley I hull form is 
then studied as a stiff structure in order to determine the effects of elastic modes due to rigid body modes 
only which are coupled with elastic modes. The effects of the different incident wave lengths and geometry 
of floating bodies are taken into account for the prediction of bending moment and shear force. 
 
The numerical results show that the efficiency of WEC is considerably improved by the latching control 
which enlarges the bandwidth of WEC in the low frequencies, if the exciting force is predicted in the close 
future of the unlatching time and that body is hold in position during the latching time. The numerical 
experience also showed that the decision to release or not WEC at a current time depends on the future of 
the system beyond the current time. The better this quantity can be predicted, the closer the converted 
power may approach the theoretical maximum. 
 
The numerical results were also presented to demonstrate the convergence of the developed computer 
code ITU-WAVE for the IRFs, added-mass and damping coefficients, exciting forces, RAOs, the first-order 
steady forces (e.g. wave resistance, sinkage force, and trim moment), the second-order mean drift forces 
(e.g. added resistance), shear force, bending moment, and efficiency of wave energy converters. ITU-WAVE 
computational numerical results are shown to be in satisfactory agreement with analytical, other numerical 
and experimental results. 
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