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PROPHET INEQUALITIES MADE EASY: STOCHASTIC
OPTIMIZATION BY PRICING NONSTOCHASTIC INPUTS*

PAUL DUTTING', MICHAL FELDMAN! THOMAS KESSELHEIMS,
AND BRENDAN LUCIERY

Abstract. We present a general framework for stochastic online maximization problems with
combinatorial feasibility constraints. The framework establishes prophet inequalities by constructing
price-based online approximation algorithms, a natural extension of threshold algorithms for settings
beyond binary selection. Our analysis takes the form of an extension theorem: we derive sufficient
conditions on prices when all weights are known in advance, then prove that the resulting approxima-
tion guarantees extend directly to stochastic settings. Our framework unifies and simplifies much of
the existing literature on prophet inequalities and posted price mechanisms and is used to derive new
and improved results for combinatorial markets (with and without complements), multidimensional
matroids, and sparse packing problems. Finally, we highlight a surprising connection between the
smoothness framework for bounding the price of anarchy of mechanisms and our framework, and
show that many smooth mechanisms can be recast as posted price mechanisms with comparable
performance guarantees.
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1. Introduction. A concert is being held in a local theatre, and potential audi-
ence members begin calling to reserve seats. The organizer doesn’t know individuals’
values for seats in advance but has distributional knowledge about their preferences.
Some need only a single seat, others require a block of seats. Some think seats are
very valuable, others are willing to attend only if tickets are very cheap. Some prefer
front-row seats, some prefer to sit a few rows back, and some prefer the balcony. The
organizer needs to decide which seats, if any, to allocate to each individual as they call.
The goal is to maximize the total value (i.e., social welfare) of the seating arrangement.

Such stochastic online optimization problems have been studied for decades. A
common goal is to attain “prophet inequalities” that compare the performance of an
online algorithm to that of an omniscient offline planner. A classic result is that if the
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goal is to choose exactly one element (i.e., there is only a single seat to allocate), then a
simple threshold strategy—choosing the first value higher than a certain precomputed
threshold—yields at least half of the expected maximum value [34, 35, 44]. This
solution has the appealing property that it corresponds to posting a take-it-or-leave-
it price and allocating to the first interested buyer. A natural question is whether more
complex allocation problems (like the concert example above) can be approximated
by posting prices and allowing buyers to select their preferred outcomes in sequence.

Driven in part by this connection to posted prices, prophet inequalities have seen a
resurgence in theoretical computer science. Recent work has established new prophet
inequalities for a variety of allocation problems, including matroids [13, 33], unit-
demand bidders [13, 3], and combinatorial auctions [25]. In this paper we develop a
framework for proving prophet inequalities and constructing posted-price mechanisms.
Our framework, which is based on insights from economic theory, unifies and simplifies
many existing results and gives rise to new and improved prophet inequalities in a
host of online settings.

1.1. Example: Combinatorial auctions. To introduce our framework we will
consider a toy problem of a combinatorial auction with a cardinality constraint, de-
signed to capture settings such as the concert example above. There is a set M
of m items (seats) for sale and n buyers. Each buyer i has a valuation function
v 2M R>q that assigns nonnegative value to every subset of at most d items, where
d > 1 is a constant. Valuations are nondecreasing and normalized so that v;(&) = 0
but otherwise arbitrary. The goal is to assign items to buyers to maximize total value.
Write v(x) = Y.~ v;(z;) for the total value of allocation x = (z1,...,2,), where
x; € M for all i. There is a simple O(d)-approximate greedy algorithm for this prob-
lem and a lower bound of Q(d/logd) assuming P # NP [46]. Our goal will be to
match this O(d) approximation as a prophet inequality with static and anonymous
posted item prices that can be computed in polynomial time. That is, given distri-
butions over the valuations, compute fixed prices for the items so that, when buyers
arrive in an arbitrary order and each chooses his most-desired bundle from among the
unsold items at those prices, the expected total value is an O(d) approximation to
the expected optimum.

Let’s first consider the simpler full information case where all valuations are known
in advance. Let us also put computational issues aside for the moment and focus on
the existence of appropriate item prices; we will revisit the computational version of
the problem at the end of section 1.2. This problem is still nontrivial, and in fact there
is a lower bound of ©(d) on the approximation of any posted item prices. For example,
suppose there are d items and two agents. The first agent is unit-demand and has value
1 for any single item; this agent will get the first chance to purchase. The second agent
values the set of all d items for value d and has value 0 for any subset. If all items have
price greater than 1, then neither agent will purchase anything. If any item has price
1 or less, then the unit-demand agent (who chooses first) will purchase the cheapest
single item and the other agent will purchase nothing, generating a total value of 1.
The optimal outcome allocates all items to the second agent for a value of d.!

We wish to show that this bound of O(d) can always be obtained using item
prices. Intuitively, what we need for an approximation result are prices that balance
between two forces. They should be small enough that high-valued buyers are willing
to purchase their optimal bundles if available, but also large enough that those items

IThis example is dependent on tie-breaking in case of indifference, but one can avoid such issues
by perturbing the values by an arbitrarily small amount.



542 P. DUTTING, M. FELDMAN, T. KESSELHEIM, AND B. LUCIER

will not first be scooped up by bidders with much lower values. Such “balanced” prices
can be obtained as follows: Given valuation profile v, consider the welfare-maximizing
allocation x* (which we can assume allocates all items). Then for each item j, say,
J € xf, set the price of j to p; = v;(z})/2|z}|. These prices are high enough in the
following sense. For each set of items .S, the sum of the prices of items in S is at least
1/2d of the value of allocations in the optimal allocation x* that intersect S, which
in turn is an upper bound on the total value that could be lost due to misallocating
S. So for any allocation x, the prices that the players have to pay for that allocation
partially offset the value lost due to allocating x. On the other hand, we will think of
prices as low enough if, for any allocation x, the total price of the leftover items can
be upper bounded by a certain fraction of the value of the optimal (re)allocation of
the leftover items (called balanced below) or all items (called weakly balanced below).
The prices defined above satisfy the latter: for any allocation x, the total price of the
leftover items is at most 1/2 - v(x*).

Let’s first see why these prices lead to the desired approximation guarantee in
the example described above. In this example, the welfare-maximizing allocation x*
allocates all items to the second agent, so z7 = @ and x5 = M. Each item j is
therefore assigned a price of p; = va(x3)/2|z3| = d/(2d) = 1/2. Under these prices,
the first agent will purchase a single item, leading to a welfare of 1 which is indeed
an O(d) approximation to the optimal welfare.

To see why these prices yield an O(d) approximation more generally, let x denote
the purchase decisions of the players and let I C N be the set of players ¢ such that
x; intersects with x. The welfare achieved by x is equal to the revenue generated plus
the sum of buyer utilities. The revenue is the sum of prices of the items sold, and since
prices are balanced this is at least (1/2d)->,.; vi(z). Also, each buyer i ¢ I could
have chosen to purchase z} and therefore must get at least as much utility as they
would by purchasing x}, which is v;(z}) minus the price of 2}. Again, since prices are
balanced, this means the sum of buyer utilities is at least »_,o; vi(z]) — 1/2 - v(x¥).
Multiplying this by 1/2d and adding the revenue gives an O(d) approximation.?

The argument above was for the full information case. Perhaps surprisingly, the
existence of sufficiently balanced prices for full information instances also establishes
an O(d)-approximate prophet inequality for the general stochastic problem, where one
has only distributional knowledge about valuations. Our main result is this reduction
from the stochastic setting to the full information setting, which holds for a broad
class of allocation problems.

1.2. A framework for prophet inequalities. Consider a more general com-
binatorial allocation problem, where the cardinality constraint d is replaced with an
arbitrary downward-closed feasibility constraint F and each v; is drawn independently
from an arbitrary distribution D;. While our framework applies for more general out-
come spaces (see sections 2 and 3), combinatorial allocation problems provide a sweet
spot between expressiveness and clarity. Our key definition is the following notion of
balanced prices for full information instances. For each x € F we write OPT (v | x) for
the optimal residual allocation: the allocation that maximizes ), v;(x]) over X’ € F
with x,x’ disjoint and x Ux’ € F. Given a fixed valuation profile v, a pricing rule
defines a price pY (x;) for every bundle that we can assign to buyer i. For example, the
item prices described in section 1.1 define a pricing rule pY (z;) = Zje“ p;. Below

2For simplicity we assumed here that >igrvi(®y) —1/2 - v(x*) > 0. More generally, since
utilities are nonnegative, the sum of buyer utilities is at least max{}_,,; vi(z}) — 1/2 - v(x*), 0}.
If the maximum is attained at 0, then >, ;vi(z}) > 1/2-v(x*) and the revenue alone exceeds
(1/4d) - v(x*), as desired.
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we also extend the definition to dynamic prices, i.e., prices that depend on which
allocations have already been made.

KEY DEFINITION (SPECIAL CASE) [(«, 3)-BALANCED PRICES|. Let o, > 0. A
pricing rule p¥ = (pY,...,py) defined by functions pY : 2M — Rsq is (a, B)-balanced
with respect to valuation profile v if for all x € F and all X' € F with x,x" disjoint
and xUx' € F,

(a) > pY(2i) = S (V(OPT(v)) — v(OPT(v | x))),

(b) 22 pY (z7) < Bv(OPT(v | x)).

The first condition formalizes what it means that prices are “high enough”: the
sum of prices for x should partially cover the welfare lost due to allocating x. The
second condition formalizes “low enough”: the sum of prices for any x’ that is still
feasible “after” allocating x should not be much higher than the optimal residual
welfare.

Our main result is that the existence of balanced prices for full information
instances directly implies a price-based prophet inequality for the stochastic setting.
The idea to choose balanced prices is a natural one and has appeared in the prophet
inequality literature before, most explicitly in the notion of balanced thresholds of
Kleinberg and Weinberg [33]. Previous definitions, however, applied to the stochastic
setting directly, which made the construction and analysis of balanced thresholds in-
herently probabilistic. A main advantage of our framework is that it suffices to reason
about the simpler full information setting.

MAIN THEOREM (INFORMAL). Consider the setting where agent valuations are
drawn from a known distribution D, which is independent across agents. Suppose that
the pricing rule p¥ is (a, 8)-balanced with respect to valuation profile v. Then posting

prices
«a

1+ap
achieves welfare at least ﬁE[v (OPT(v))].

pi(zi) = Ev~p [P} (zi)]

In other words, to construct appropriate prices for a stochastic problem instance,
it suffices to construct balanced prices for the full information instances in its support
and then post the expected values of those prices, scaled by an appropriate factor.
The proof of our main theorem is similar in spirit to proofs in the price of anarchy
literature [41, 45] or for establishing algorithmic stability [30]; in that it uses “ghost
samples.” It is, however, considerably more involved because of the sequential, online
aspect of our problem.

Remark 1.1 (weakly balanced prices). We also define a notion of weakly balanced
prices, in which it suffices to upper-bound the prices by Sv(OPT(v)). In this case, we
can show that posting an appropriately scaled version of the expected prices yields
a 1/4aB-approximate prophet inequality. (We actually give a more refined notion,
where the prices are upper bounded by 81v(OPT(v | x)) + 82v(OPT(v)), and the
approximation guarantee is some function of «, 81, and B3.) See section 3.2.

Remark 1.2 (computation). It is sometimes easier to compute prices that are
balanced with respect to an approximation algorithm ALG rather than OPT. Our
result still applies in this case, with OPT replaced by ALG in the welfare guarantee.
We also note that if the price rule p in the main theorem is perturbed to some p with
[lp — Plloo < €, then the welfare guarantee degrades by at most an additive O(ne)
term. This robustness is desirable in itself and also implies that appropriate prices
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can be computed for bounded values with POLY(n,m,1/¢) samples using standard
concentration bounds, as has been observed for various posted price settings [12, 25].

Remark 1.3 (static versus dynamic, anonymous versus discriminatory, bundle
versus item pricing). We have described our framework for static, discriminatory,
bundle prices. In general, our construction has the property that if the full informa-
tion balanced prices p¥ are dynamic, are anonymous, and/or take the form of item
prices, then the derived prices for the stochastic setting will have these properties as
well. For example, our result holds also for dynamic prices, replacing p;(z;) and p;(x})
with p;(2; | x[i—1)) and p; (] | X;;_1]) where the conditioning on x;_;) indicates that
the price to player ¢ may depend on the purchase decisions of players that precede
him. See sections 2 and 3 for details.

Remark 1.4 (arrival order). Balancedness can depend on player arrival order. In
the applications we consider, our results hold even if the arrival order is chosen by
an adaptive adversary that observes previous realized values and purchase decisions
before selecting the next player to arrive.

Let’s return to our example from section 1.1. We established the existence of
weakly (d, 1)-balanced prices (simply undo the scaling by 1/2), so our main result
implies a O(d)-approximate prophet inequality. What about computation? We
can compute prices in polynomial time by basing them on the O(d)-approximate
greedy algorithm (rather than the optimal allocation), but then we only get a O(d?)-
approximate solution. It turns out that we can further improve this to O(d) in polyno-
mial time, as we hoped for in section 1.1, by applying our main theorem to a fractional
relaxation of the auction problem. See section 4 for more details.

Remark 1.5 (composition). We also show that balanced prices “compose,” as was
shown for mechanism smoothness in [45]. This means that to derive a prophet in-
equality for a complex setting it often suffices to show balancedness for a simpler
problem. See section 5.

1.3. Unification of existing prophet inequality proofs. Our framework
unifies and simplifies many of the existing prophet inequality proofs. We list some
representative examples below. We discuss the first example in more detail in sec-
tion 3.1. The other two examples are covered in Appendices C and E.

Ezample 1 (classic prophet inequality [34, 35]). The goal is to pick the single
highest value element v;. The pricing rule p¥ defined by pY(z;) = max; v; for all 7 is
(1,1)-balanced.

Ezample 2 (matroids [33]). The goal is to pick a maximum weight independent
set in a matroid. Encode sets S by n-dimensional vectors x over {0,1} such that
x; = 1if ¢ € S. Then one can define a dynamic pricing rule p¥ by p;(z; | y) =
v(OPT(v | y)) — v(OPT(v | yUx;)) for all 4, where y is the set of previously selected
elements. This pricing rule is (1, 1)-balanced.

Ezample 3 (XOS combinatorial auctions [25]). The goal is to assign m goods to
n buyers with XOS valuations.® Let x* = OPT(v) and for every agent i = 1,...,n,
let a; be the additive supporting function of z} (see footnote 3). Set item prices
pj = a;(j) for j € xf. This pricing rule is (1, 1)-balanced.

3A valuation v is XOS if there is a collection of additive functions ai(-),...,ax(+), such that for
every set S, v(S) = maxj;<p<y ag(S). The additive supporting function of a set S is ap such that
v(S) = ag(S). XOS is a generalization of submodular valuations [37].
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Example 3 also illustrates the power of our composition results (see Appendix B):
the existence of (1,1)-balanced prices for XOS combinatorial auctions, and hence a 2-
approximate prophet inequality, follows directly from the existence of (1,1)-balanced
prices for a single item, despite being significantly more complex. It also yields an
O(log m)-approximate prophet inequality for subadditive valuations by approximating
subadditive valuations with XOS valuations [18, 9].

1.4. New and improved prophet inequalities. We also establish several
new prophet inequalities using our framework; see Table 1. Our first result is a
polytime (4k — 2)-approximate prophet inequality for combinatorial auctions with
maximum over positive hypergraphs-k (MPH-k) valuations. The MPH-k hierarchy
of valuations [22] is an inclusive hierarchy that captures limited complementarities,
where k measures the degree of complementarity. For more details about MPH-k
valuations, see Appendix C.

THEOREM 1.6 (combinatorial auctions with MPH-k valuations). For combina-
torial auctions with MPH-k valuations, a (4k —2+€)-approzimate posted-price mecha-
nism, with static item prices, can be computed in POLY (n, m, 1/¢) demand and MPH-k
queries.

Theorem 1.6 improves the polytime result of [25] from O(k?) to O(k). We note
two interesting special cases. First, combinatorial auctions with bundle size d (from
section 1.1) belong to MPH-d, so Theorem 1.6 captures the polytime O(d) approxi-
mation discussed above. Second, XOS valuations coincide with MPH-1, so Theorem
1.6 improves the previously best-known polytime result of [25] from 2e/(e — 1) to 2,
matching the existential lower bound. See section 4 and Appendix C.

The second set of new results includes knapsack feasibility constraints and d-
sparse packing integer programs (PIPs), for which we obtain a constant- and an O(d)-
approximation, respectively. These settings are presented in section 4 and Appendix
D, respectively.

TABLE 1
Overview of applications. Results are computational unless otherwise stated. The query model
refers to the valuation access needed for the computational upper bounds, where “explicit” indicates
that valuations can be described explicitly. All results are order-oblivious (see section 2).

Feasibility Valuation Pricing Upper bound Query

constraint class model model

Combinatorial XOS Static, 62_61 [25] XOS,

auction anonymous 2 (this work) demand
item prices

Combinatorial MPH-k Static, O(k?) [25] MPH,

auction anonymous 4k — 2 (this work) demand
item prices

Matroid Submodular Dynamic 2 (existential) Value
prices 4 (computational)

Knapsack Additive Static, 3 Explicit
anonymous
prices

d-sparse PIPs Additive Static, 8d Explicit
anonymous

prices
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THEOREM 1.7 (knapsack). For knapsack constraints, a factor (5 + €)-approxi-
mate posted-price mechanism, with static prices, can be computed in POLY(n,1/¢).
This improves to a (3 + €) approximation if no individual demands more than half of
the total capacity.

THEOREM 1.8 (sparse PIPs). For d-sparse PIPs with constraint matriz A €
]Rgoxn where aj; < 1/2 for all i,j and unit capacities, a factor (8d + €)-approzimate
posted-price mechanism, with static prices, can be computed in time POLY(n,m,1/€).

To the best of our knowledge, Theorems 1.7 and 1.8 are the first prophet inequali-
ties for these settings. We note that [27] derived a prophet inequality for closely related
fractional knapsack constraints, with approximation factor ~ 11.657. We obtain an
improved prophet inequality for this fractional setting: a corollary of Theorem 1.6
(with & = 1) is that one can obtain a 2-approximation for a fractional knapsack con-
straint. Moreover, our prophet inequality is achieved using a static per-unit price and
holds even when knapsack weights are private and arbitrarily correlated with buyer
values. See section 4 for more details.

Finally, in Appendix E we generalize the matroid prophet inequalities of Kleinberg
and Weinberg [33] to settings where players make choices regarding multiple elements
of a matroid and have submodular preferences over subsets of elements.

THEOREM 1.9 (multidimensional matroids). For matroid feasibility constraints
and submodular valuations, there is a (4 + €)-approzimate posted-price mechanism,
with dynamic prices, that can be computed in POLY(n, 1/€) value queries.

1.5. From price of anarchy to prophet inequalities. The price of anarchy
of a class of games is the worst ratio, over all games in the class, of the optimal
performance in any outcome and the performance in the worst Nash equilibrium (or
another equilibrium concept). A standard technique for obtaining price of anarchy
bounds is via the smoothness framework [41, 45]. A key step in a smoothness proof
is to find an appropriate deviation for each player, such that the utility achieved by
the deviation has an appropriate lower bound.

Similar to this approach, in the proof sketch in section 1.1, we derived a lower
bound on buyer utility by considering a deviation to a certain purchasing decision.
There is a subtle but important difference, however, between our deviation and
deviations considered as part of the smoothness framework. In smoothness proofs
one considers deviations against a fixed strategy profile, while the prophet inequality
problem is inherently temporal and agents deviate at different points in time. None-
theless, we are able to prove fairly general reductions, whereby the existence of a
smooth mechanism of a certain form implies a prophet inequality. We provide such
reductions for binary, single parameter settings and for more general settings. Our
results for these more general settings go through a natural strengthening of smooth-
ness, which we call outcome smoothness. For more details on the connection between
price of anarchy and prophet inequality, see section 6.

Using these results we can, for example, rederive the classic prophet inequality
[34, 35] from the smoothness of the first-price single-item auction [45] and the matroid
prophet inequality [33] from the smoothness of the pay-your-bid, declared welfare
maximizing mechanism for selecting a maximum-weight basis [39]. Our results also
allow us to rederive the prophet inequality for XOS combinatorial auctions [25] from
smoothness, either via our composition results from the smoothness of the first-price
single-item auction [45] or directly from the outcome smoothness of simultaneous
first-price auctions [14].
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1.6. Further related work. Prophet inequalities and their applicability as
posted-price mechanisms were (re-)discovered in theoretical computer science by [29].
Subsequently, threshold-based prophet inequalities and posted-price mechanisms were
developed for matroids and matroid intersection [13, 33, 7], polymatroids [21], unit-
demand bidders [13, 3], and combinatorial auctions [3, 25].

Not all prophet inequalities in the literature are based on explicit thresholds.
Examples include prophet inequalities for the generalized assignment problem [4, 5],
for matroids and matroid intersection [28], and for general binary feasibility con-
straints [42]. On the other hand, many posted-price mechanisms from the literature
are constructed either without explicit reference to prophet inequalities or via differ-
ent techniques. Chawla, Hartline, and Kleinberg [12] developed approximately op-
timal (revenuewise) posted-price mechanisms for unit-demand buyers. Posted-price
mechanisms have subsequently been developed for a variety of other auction set-
tings [19, 8, 11, 6]. Dynamic posted prices that give optimal welfare for unit-demand
buyers were established in [16]. Recently, dynamic posted prices for various online
settings have been considered, including k-server on the line and metrical task systems
[15] and makespan minimization for scheduling problems [23].

Most recently, and in parallel to this work, combinatorial prophet inequalities were
developed in [43] and [10]. The former, among others, proves prophet inequalities for
subadditive combinatorial auctions but considers a different allocation model and is
therefore imcomparable. The latter, in turn, focuses on revenue and not welfare as we
do here. Finally, [1] reconsiders the classic prophet inequality setting, but in a large
market setting and assuming random or best order.

The notion of smooth games was introduced by Roughgarden [41] as a tool for
bounding the price of anarchy, which measures the inefficiency that can be incurred in
equilibrium. This notion has been extended to mechanisms by Syrgkanis and Tardos
[45]. Notions of outcome smoothness were considered in [17, 40].

2. General model and notation.

Problem formulation. There is a set N of n agents. For each agent i € N there
is an outcome space X; containing a null outcome @. We write X = X7 x --- x X,
for the joint outcome space. Given outcome profile x € X and a subset of agents
S C N, we will write xg for the outcome in which each i € S receives x; and each
i ¢ S receives @. Specifically, we will write x|;_j for allocation x with the outcomes
of agents 7,...,n set to @. There is a subset F C X of feasible outcomes. We will
assume that F is downward-closed, so that if x € F, then also xg € F for all S C N.

A wvaluation function for agent 7 is a function v;: X; = R>¢. We will assume
values are bounded and without loss of generality scaled to lie in [0,1]. Each agent
i’s valuation v; is drawn independently from a publicly known distribution D;. We
write D = Dq X - -+ x D, for the product distribution over the set V=V, x --- x V,,
of valuation profiles. We often suppress dependence on D from our notation when
clear from context. Agent utilities are quasilinear: if agent i receives outcome z; and
makes a payment 7;, his utility is u; = v;(x;) — 7.

The welfare of outcome x is v(x) = >, vi(x;). An outcome rule ALG maps each
valuation profile to a feasible outcome. ALG;(v) denotes the outcome of agent i on
input v. We will write OPT(v, F) = argmax, z{v(x)} for the welfare-maximizing
outcome rule for F, omitting the dependence on F when it is clear from context.

Pricing rules and mechanisms. A pricing rule is a profile of functions p =
(p1,-..,pn) that assign prices to outcomes. We write p;(z; | y) for the (nonnega-
tive) price assigned to outcome z; € X;, offered to agent i, given partial allocation
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y € F. Define p;(x;) = p;(x; | @) for convenience. We require that p;(z; | y) = oo for
any x; such that (x;,y_;) € F. A pricing rule is said to be monotone nondecreasing
it pi(a; | y) > pi(zi | ys) forall i, z; € X, y € X, (z4,y—:) € F,and S C N. In
general, we allow prices to be dynamic and discriminatory. We refer to prices that
do not depend on the partial allocation (apart from feasibility) as static and to prices
that do not depend on the identity of the agent as anonymous.

A posted-price mechanism is defined by a pricing rule p and an ordering over the
agents. This pricing rule can, in general, depend on the distributions D. The agents
are approached sequentially. Each agent i is presented the menu of prices determined
by p;, given all previous allocations, and selects a utility-maximizing outcome. A
posted-price mechanism is order-oblivious if it does not require the agents to be pro-
cessed in a specific order. In all of the applications we consider, the mechanisms we
construct are order-oblivious. It is well known that every posted-price mechanism is
truthful [13].

Online allocations and prophet inequalities. We consider stochastic allocation al-
gorithms that can depend on the value distributions D. That is, an allocation algo-
rithm A maps a value profile and distribution to a feasible outcome. We say A is an
online allocation algorithm if A;(v, D) does not depend on the entries of v that occur
after ¢ in some ordering over the indices. Extending the notion of competitive ratio
from the worst-case analysis of online algorithms, we’ll say the (stochastic) competitive
ratio of online allocation algorithm A is

ax EVND[V(OPT(V))].

D Eyup[v(A(v,D))]

We sometimes refer to a competitive ratio using its inverse, when convenient. A
prophet inequality for constraint F is an upper bound on the stochastic competitive
ratio of an online allocation algorithm for 7. We note that a posted-price mechanism
describes a particular form of an online allocation algorithm.

3. A framework for prophet inequalities. In this section we state and prove
our main result, which reduces prophet inequalities to finding balanced prices for
the simpler full information setting. It will be useful to define a general notion of
feasibility given a partial allocation. We say that a set of outcome profiles H C X is
exchange compatible with x € F if for ally € H and all i € N, (y;,x_;) € F. We
call a family of sets (Fx)xex exchange compatible if Fy is exchange compatible with
x for all x € X. For example, one might choose Fx to be a singleton set containing
a particular allocation of residual goods not allocated by x, and in many of our
applications we will do just that. But some of our applications require the additional
flexibility afforded by this more general definition of exchange compatibility, such as
our improved analysis of the knapsack allocation problem in Theorem 4.2.

DEFINITION 3.1. Let a > 0, 8 > 0. Given a set of feasible outcomes F and a
valuation profile v, a pricing rule p¥ is (o, B)-balanced with respect to an allocation
rule ALG, an exchange-compatible family of sets (Fx)xex, and an indexing of the
players i =1,...,n if for all x € F

(a) ZieN Y (z; | x[i_l]) > é - (v(ALG(v)) — v(OPT(v, Fx)), and

(b) for all x' € Fx: ZieNp;’(x; | x(i—1)) < B-Vv(OPT(v, Fx))-

The definition provides flexibility in the precise choice of Fx. As the set Fx

becomes larger (more permissive), both inequalities become easier to satisfy since
v(OPT(v, Fx)) increases. On the other hand, a larger set Fx means that the second
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condition must be satisfied for more outcomes x’ € Fy. We say that a collection of
pricing rules (p¥)vev is (o, 8)-balanced if there exists a choice of (Fx)xex such that,
for each v, the pricing rule pV is balanced with respect to (Fx)xex-

The definition of («, 8)-balancedness captures sufficient conditions for a posted-
price mechanism to guarantee high welfare when agents have a known valuation profile
v. Our interest in («, 8)-balanced pricing rules comes from the fact that this result
extends to Bayesian settings.

THEOREM 3.2. Suppose that the collection of pricing rules (p¥)vev for feasible
outcomes F and valuation profiles v € V is («, 8)-balanced with respect to allocation

rule ALG and indexing of the playersi=1,...,n. Then for § = ﬁ the posted-price

mechanism with pricing rule §p, where p;(z; | y) = Eg[pY (z; | y)], generates welfare

at least ﬁ -Ey[V(ALG(V))] when approaching players in the order they are indexed.

Proof. We denote the exchange-compatible family of sets with respect to which
the collection of pricing rules (p¥)yvey is balanced by (Fx)xex. We will first use
property (b) to show a lower bound on the utilities of the players, and property (a)
to show a lower bound on the revenue of the posted-price mechanism. We will then
add these together to obtain a bound on the social welfare.

We will write x(v) for the allocation returned by the posted-price mechanism on
input valuation profile v and x'(v,v’) = OPT(v’, Fx(v)) for the welfare-maximizing
allocation with respect to valuation profile v/ under feasibility constraint Fi(y).

Utility bound. We obtain a lower bound on the expected utility of a player as
follows. We first obtain an independent sample valuation profile v/ ~ D. Player ¢ now
considers buying OPT;((vi, v_;), Fx(v/v_,)) at price 6-p;(OPT;((vi, v.;), Fx(wtv_)) |
X[;—1](v)). Taking expectations and exploiting that x;_;(v) does not depend on v;
we obtain

Efus(v)] > E, [v; (OPTu((vi, v ), Fropw-))

v i

= 6 pi(OPTi((v3, VL), P ) | X6 (v))]
= VIE‘,/ [vé (:v;(v,v’)) —0-p;i (xg(v,v') X[i—1] (v))} :

Summing the previous inequality over all agents we get

I\[‘; Z Ui(V)] > VH%/ Z ’Ug (x;(v, V/)) — VH%’ lz 0 - Di <1‘;(V7 V/) X[i—1] (V))]
iEN » Lien © Lien
(3.1) - E, [vf (OPT(v/7fx(v)))} - E > 6p (;g;(v, V') | i (v)ﬂ .
© Lien

We can upper bound the last term in the previous inequality by using property (b).
This gives

S0 pi(a v V) | -0 (v) < 65-E [¥ (OPT(F, Fwy))]

i€EN

pointwise for any v and v’ and therefore also

(3.2) E

> 6 pi(av.v) ] x[i_l](v))] <68+ E [¥ (OPT(¥, Fuw)))] -
ieEN ’
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Replacing v/ with ¥ in inequality (3.1) and combining it with inequality (3.2) we
obtain

(3.3) E

v

30| 1 89) B, 5 OPTG. 7).

i€EN

Revenue bound. The second step is a lower bound on the revenue achieved by
the posted-price mechanism. Applying property (a) we obtain

>0 pi(ai(v) | x-y(v) =0 Y JE[p] (@:(v) | x-y(v))]
iEN iEN

> g ‘E [G(ALG(G)) — ¥ (OPT(¥, Fxv))) }

<t

Taking expectation over v this shows

(34) E Za-mm(v)|X[i-u<v>>]>Z-@MALGWD]
iEN

_g . E [F(OPT (¥, Fuw))] -

v, v
Combination. It remains to show how the two bounds can be combined so
that they imply the approximation guarantee. By quasi-linearity we can rewrite the
expected social welfare that is achieved by the posted-price mechanism as the sum of
the expected utilities plus the expected revenue. Using § = a/(1+af3) and inequalities
(3.3) and (3.4), this gives

E lz vi(ai(v))| 2 E lz wi(v)| +E > 5 pi (m(v) [ x—ny(v))
1EN 1EN i€EN
> (1-4p) vﬂj:‘? [G(OPT(Oa‘FX(V)))}
+EFALG)] - = B [V(OPT(, )]
1 - -~
=TT ad E [V(ALG(¥)]. o

3.1. Classic prophet inequality via our framework. We next show how to
rederive the classic prophet inequality via our framework. Specifically, we show the
existence of a (1, 1)-balanced pricing rule, which implies the factor 2 approximation
by Theorem 3.2.

In the classic setting we have X; = {0,1} for all i and F = {x |}, z; <1}. We
set p;(1 | x) = max, ve if x does not allocate the item, co otherwise; p;(0 | x) = 0 for
all x. This corresponds to a fixed posted price of max, vy on the item.

CramM 3.3. These prices are (1,1)-balanced with respect to OPT and Fx defined
by Fx = F if x does not allocate the item and Fx = & otherwise.

Proof. Let x be an arbitrary allocation profile. If x allocates the item, then
Fx = & and thus condition (b) is trivially fulfilled. For condition (a), we observe
that v(OPT (v, Fx)) = 0 and that v(OPT(v)) = max, vy = ), pi(w; | X[;_1]), because
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exactly one buyer pays max, vy. If x does not allocate the item, then v(OPT(v, Fyx)) =
v(OPT(v)), making condition (a) trivial. For condition (b), we use that in x’ at
most one buyer is allocated the item. Therefore, D, pi(z] | x;—1]) < maxgv, =
v(OPT(v)) = v(OPT(v, Fx)). 0

3.2. Weak balancedness. In what follows, we provide an alternative definition
of balancedness, in which property (b) is refined. This definition will be useful for
some applications, as exemplified in section 4.

DEFINITION 3.4. Let a > 0,081,082 > 0. Given a set of feasible outcomes F and
a valuation profile v, a pricing rule pV is weakly («, 1, f2)-balanced with respect to
allocation rule ALG, an exchange-compatible family of sets (Fx)xex, and an indexing
of the playersi=1,...,n if, for allx € F,

(@) D ien V(i | X)) > é . (V(ALG(V)) — V(OPT(VJ-'X)), and

(b) forallx' € Fy: Y ey pY (75 | Xji—1)) < B1- v(OPT(v, Fx)) + B2 - v(ALG(V)).

The following theorem specifies the refined bound on the welfare that is obtained
by weakly (a, 81, 82)-balanced pricing rules. Its proof appears in Appendix A.

THEOREM 3.5. Suppose that the collection of pricing rules (p¥)vey for feasible
outcomes F and valuation profiles v € V is weakly (a, 81, f2)-balanced with respect to
allocation ALG and indexing of the playersi =1, ..., n with B1+F2 > é Then for § =
Wm the posted-price mechanism with pricing rule 0p, where p;(z; | y) =
Es[pf (z; | y)], generates welfare at least m ‘Ey[v(ALG(V))] when approaching
players in the order they are indexed.

4. New and improved prophet inequalities. We have already argued that
our framework unifies and simplifies many of the existing prophet inequality proofs.
In this section we show how it can be used to derive new and improved bounds on
the approximation ratio that can be obtained via price-based prophet inequalities.
We highlight two results: the new polytime O(d)-approximation for combinatorial
auctions with bundle size at most d, and the new polytime constant-approximation
for knapsack problems. Additional results include combinatorial auctions with MPH-k
valuations (see Appendix C), d-sparse PIPs (see Appendix D), and multidimensional
matroids (where the result follows from the Rota exchange theorem [36, Lemma 2.7
and our composition results; see Appendix E).

Combinatorial auctions with bounded bundle size. An existential O(d)-approxi-
mate price-based prophet inequality is presented in section 1.1. Combined with
the O(d)-approximation greedy algorithm for this setting, it gives a polytime O(d?)-
approximate price-based prophet inequality (as shown in [25]). In what follows we use
the flexibility of our framework to work directly with a relaxation of the allocation
problem, thereby improving the approximation of the prophet inequality from O(d?)
to O(d). This is a special case of Theorem 1.6, which is proved in Appendix C.

THEOREM 4.1. For combinatorial auctions where every agent can get at most d
items, there exist weakly (1,1,d — 1)-balanced item prices that are static, anonymous,
and order oblivious. Moreover, a (4d — 2 — €)-approxzimate posted-price mechanism
can be computed in POLY(n,m,1/€) demand queries, where € is an additive error due
to sampling.

Proof. Consider the canonical fractional relaxation of the combinatorial auction
problem: a feasible allocation is described by values z; ¢ € [0,1] for all i € N and
S C M such that ) ¢ x; 5 <1 for all i and ZLSS]’ zis < 1forall j € M. Take F to
be all such fractional allocations. We will define Fx to be the exchange-compatible
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set consisting of all fractional allocations y such that ZL Saj(ﬂci,s +yi.5) <1 for all
Jj€M,and ) gy; s <1 forall i. We think of Fx as the set of allocations that remain
feasible given a partial allocation x.

Consider the following pricing rule for fractional allocations. Given valuation
profile v, let x* be the welfare-maximizing fractional allocation. Then for each item
Jysetpj=>, ZSaj z} gvi(S). We claim that these prices are (1,1,d — 1)-balanced
with respect to the optimal allocation rule.

For property (a), fix some x € F. Write 27 = >, 55 Ti,s- Consider the following

allocation y € Fy: for each S, choose js € argmax;cg{a’}. Set y; 5 = (1—a79) 27 g

T,

We think of y as the optimal allocation x* adjusted downward to lie in Fx. We then

have that
v(x) = v(y)=Y_) a7 - al g vi(S)
i S
= ij Z i 5 - vi(S)
J 1,5 j=js

< ij "Dy = Zpi(l‘i)-

Property (a) follows since v(y) < v(OPT(v, Fx)). For property (b), fix x € F and
x' € Fx. Then

Zpl ,Zl—fﬂj)pj
—Zl—x] Z%S v;(S)

4,537
= in«,s - 0;(S) Z(l )
,S jeS

Z(|S|_1) F i )+Z$f,3'vi(5)~ 1_ij

,S ,S jeSs

The first expression on the right-hand side is at most (d —1)v(OPT(v)), since |S| < d
whenever z7 ¢ > 0. For the second expression, note that it is at most the welfare of
the allocation y defined by yi,s = 27 - (1 =3¢ 27)T. Moreover, this allocation y
is in Fx. So the second expression is at most v(OPT(v, Fy)), giving property (b).
Theorem 3.5 therefore yields prices that guarantee a (4d—2) approximation for the
fractional allocation problem and an e-approximation to those prices can be computed
via sampling. To complete the proof, note that for every agent i, if all previous agents
have selected integral outcomes, then agent ¢ also has a utility-maximizing outcome
that is integral. This is because any fractional allocation can be interpreted as a
convex combination of integral allocations. These same prices therefore guarantee a
(4d — 2 — €) approximation even if the mechanism prohibits nonintegral allocations
from being purchased. ]

The more general Theorem 1.6 also improves the best-known polytime prophet
inequality for XOS valuations from 2e/(e—1) to 2 (which is tight [25]) and for MPH-%
valuations it improves the best-known polytime bounds from O(k?) to O(k).

Knapsack. In the knapsack allocation problem, there is a single divisible unit
of resource and each agent has a private value v; > 0 for receiving at least s; > 0
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units. Assume for now that s; < 1/2 for all i. We allow both v; and s; to be
private information, drawn from a joint distribution. In our notation, X; = [0, %],
F={x|>,z <1}, and v;i(z;) = v; if z; > s; and v;(z;) = 0 otherwise. Based on
an arbitrary allocation algorithm ALG, we design anonymous, static prices by setting
pi(z; | y) = z;-v(ALG(V)) if a; can feasibly be added and co otherwise. The following

restates the second half of Theorem 1.7.

THEOREM 4.2. For the knapsack allocation problem in which no single agent can
request more than half of the total capacity, the prices above are (1,2)-balanced with
respect to ALG. This implies a (3 4 €)-approzimate polytime posted-price mechanism
with a single static anonymous per-unit price.

Proof. The polytime claim follows from Theorem 3.2 with ALG set to the classic
FPTAS for knapsack [32], so it suffices to prove balancedness. For any x € F, let
Fx = Fif ZZ x; < % and Fy = @ otherwise. Note that Fx is exchange compatible
with x since, for any x’ € Fx and any agent k, =) + > ,z; < 1. To establish
balancedness with respect to (Fx)x, we consider two cases based on the value of

> @i

Case 1. Y, x; <
v(OPT (v, Fx)) < v(OPT
any x' € Fyx, we have

Property (a) is trivially fulfilled because v(ALG(v)) —
v)) — v(OPT (v, Fx)) = 0. For property (b), note that for

N[

A~

Zpi(f% | X[i—1]) = Z$§ -v(ALG(v))
v(ALG(v))
v(OPT(v))
v(OPT (v, Fx)).

IN A

Case 2. Y, x; >
have

%. Property (b) is vacuous since Fix = &. For property (a), we

Zpi(xi | X[ifl]) = sz - V(ALG(v))

> Lv(ALG(v)

= L (V(ALG(v)) ~ v(OPT(v, 7). 0

We can remove the restriction that s; < 1/2 as follows, completing the proof of
Theorem 1.7. Consider the contribution to the expected optimal welfare separated
into welfare from agents with s; < 1/2 and agents with s; > 1/2. The posted-price
mechanism described above obtains a 3-approximation to the former. For the latter,
a mechanism that treats the unit of resource as indivisible, and posts the best take-
it-or-leave-it price for the entire unit, is a 2-approximation. This is because at most
one agent with s; > 1/2 can win in any realization. Thus, for any distribution profile,
one of these two mechanisms must be a 5-approximation to the unrestricted knap-
sack problem.* One can therefore obtain a (5 + €)-approximate price-based prophet

4The worst case is when both mechanisms achieve the same expected welfare, which occurs if

3/5 of the expected welfare is due to agents with s; < 1/2. The expected welfare of each mechanism
is then % . % = % of the optimum.
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inequality by estimating the expected welfare of each pricing scheme (via sampling)
and selecting the better of the two. In Appendix D we show how to generalize the
result for the knapsack problem to d-sparse PIPs.

Finally, consider the fractional version of the knapsack problem, where agents
obtain partial value for receiving a portion of their desired allocation: v;(z;) = v; -
min{z;/s;,1}. If we restrict allocations x; to be multiples of some § > 0, this is a
special case of a submodular combinatorial auction with [1/4] identical items. Since
Theorem 1.6 implies that a fixed per-item price yields a 2-approximation for any §, we
can infer by taking the limit as 6 — 0 that for any e > 0 there is a (2+ €)-approximate
polytime posted-price mechanism for the fractional knapsack problem, with a single
static anonymous per-unit price, even if each agent’s size s; is private and arbitrarily
correlated with their value. As mentioned in section 1.4, this improves the previously
best-known prophet inequality of ~ 11.657 due to [27].

5. Composition results. In this section we show that balanced prices are com-
posable, in the sense that balanced prices for separate markets remain balanced when
the markets are combined. We consider two forms of composition. The first is a
composition of preferences: it shows how to extend from a class of valuations V to
any maximum over valuations from V. The second shows how to compose allocations
across different markets, where agents have additive preferences across markets. To-
gether these two composition results capture XOS composition, in the sense of [45].
Our theorems apply to balancedness with respect to OPT, and they extend to general
approximation algorithms ALG under mild conditions. Missing proofs for this section
appear in Appendix B.

Closure under maximum. Given an arbitrary valuation space V; for player i, we
consider its extension V;™®*, which contains all functions v;"**: X; — R for which
there is a finite set {v},...,v"} € V; such that v*®(z;) = max, v{(z;) for all z; € X.
We say that a valuation profile v € V is a supporting valuation profile for allocation
x and valuation profile v € V™ if ¢; < v; and 9;(x;) = v;(x;) for all i.

DEFINITION 5.1. Allocation rule ALG is consistent if for every v € V™ and
corresponding supporting valuation profile v € V' for ALG(v), we have V(ALG(¥)) >
V(ALG(v)).

LEMMA 5.2. The optimal allocation rule OPT is consistent.

Proof. Since OPT(v) is a feasible outcome under ¥, it holds that v(OPT(¥v)) >
V(OPT(v)) by optimality. d

THEOREM 5.3 (closure under maximum). Suppose that for each v € V there
exists a pricing rule p¥ that is (o, B8)-balanced with respect to v, consistent allocation
rule ALG, and the exchange-compatible family of sets (Fx)xex. For each v € V™max
let v € V be a supporting valuation profile for ALG(v). Then the pricing rule p¥ is
(a, B)-balanced with respect to v, ALG, and (Fx)xex-

Closure under addition. Suppose there are m separate allocation problems, each
with feasibility constraint F* over allocation space X! = X{ x --- x X’. The joint
problem is then defined over the product allocation space X = X! x --- x X™, with
feasibility constraint F = F! x --- x F™. We say that a valuation v;: X — R is
additive if it is defined by a (not necessarily additive) valuation function v¢ for each
outcome :z:f € Xf, and for an outcome z; = (z},...,2™) € X, the value of x; is given
by vi(x:) = 32)%, vf ().

THEOREM 5.4 (closure under addition). Suppose that v is additive over a set
of allocation problems F',...,F™, and for each individual allocation problem there
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erists a pricing rule p"e that is (v, 3)-balanced with respect to v*, allocation rule ALG
on F¢, and the exchange-compatible family of sets (]:ﬁ[)xzexe. Then the pricing rule

P=>,, p"e is (o, B)-balanced with respect to v and ALG on F, where ALG(v) =
(ALG'(v'),...,ALG™(v™)).

Note that XOS valuations are constructed via maximum and addition compo-
sitions. Therefore, using these two composition results, the existence of a factor 2
approximation for combinatorial auctions with XOS valuations via posted prices fol-
lows directly from the existence of balanced prices for the classic (single-item) prophet
inequality setting discussed in section 3. These composition results are also used to
establish prophet inequalities for multidimensional matroid settings, as discussed in
section 1 and in Appendix E.

We also note that both Theorem 5.3 and Theorem 5.4 can be generalized so that
they apply to weakly balanced pricing rules, under a slightly more stringent notion of
consistency. See Appendix B for further details.

6. From price of anarchy to prophet inequalities. In this section we
explore the connection between balanced prices and mechanism smoothness. In gen-
eral, smoothness does not suffice to conclude the existence of a posted-price mecha-
nism with comparable welfare guarantee (see Appendix F). However, we will argue
that “typical” smoothness proofs do have implications for prophet inequalities and
present reductions from the problem of proving prophet inequalities to mechanism
smoothness.

We first recall the definition of a smooth mechanism. A (possibly indirect) mech-
anism M, for an allocation problem 7 is defined by a bid space B = By X - -+ X B,
an allocation rule f : B — F, and a payment rule P : B — RZ%,. We focus on
first-price mechanisms, where P;(b) = b;(f(b)). Typically, mechanisms are defined
for a collection of problems II, in which case we will simply refer to the mechanism

as M.

DEFINITION 6.1 (Syrgkanis and Tardos [45]). Mechanism M is (A, p)-smooth
for A\, p > 0 if for any valuation profile v € V and any bid profile b € B there exists
a bid bi(v,b;) € B; for each player i € N such that

> ui(b],bi) = A v(OPT(v)) — p- > Pi(b).
iEN ieN

A mechanism M that is (A, u)-smooth has a price of anarchy (with respect to
correlated and Bayes—Nash equilibria) of at most max{u,1}/A [45].

The following formal notion of a residual market will be useful for our further
analysis. For any x € F we define the contraction of F by x, F/x, as follows. Let
N*t(x) ={i € N |z; # @}. Then F/x = {z = (2j)jem\n+x) | (Z,Xn+(x) € F}.
That is, F/x contains allocations to players who were allocated nothing in x, that
remain feasible when combined with the allocations in x. We think of the contraction
by x as a subinstance on players N \ Nt (x) with feasibility constraint F/x and refer
to it as the subinstance induced by x. We say that a collection of problems II is
subinstance closed if for every m € II with feasible allocations F and every x € F
the subinstance induced by x is contained in II. The contraction by x also naturally
leads to an exchange feasible set Fx by padding the allocations z € F/x with null
outcomes. We refer to this Fyx as the canonical exchange-feasible set. For example, if
our setting is a combinatorial auction and x is some allocation of items to buyers, then
the canonical exchange-feasible set Fy is itself a combinatorial auction, containing the
items that are unallocated in x and the buyers who receive no items in x.
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6.1. Warm-up: Binary, single-parameter problems with monotone
prices. We begin with a simple result that serves to illustrate the connection be-
tween balancedness and smoothness. We will consider a binary, single-parameter
setting. That is, players can either “win” or “lose” and have a value v; € R>q for
winning. Feasible solutions x € F C {0,1}"™ are subsets of players that can win
simultaneously. For ease of notation we identify each vector x € F with the subset
of players ¢ € N for which x; = 1. This lets us write i € x if z; = 1 and i ¢ x
otherwise. For a player ¢ € N, valuations v_; for the other players, and an allocation
y, we define the critical price 7;(v_; | y) := inf{v} | ¢ € OPT(v},v.;) | y)} as the
infimum of values v; such that the mechanism allocates z; = 1 to agent ¢ on input
(vi, v_;), in the problem subinstance induced by y.

We will show that if the welfare-maximizing mechanism is (\, pt)-smooth and its
critical prices 7;(- | y) are nondecreasing in y, then there exists a pricing rule that
is (a, B)-balanced, where a8 = O(max{u,1}/X). In particular, this implies that the
welfare guarantee of the prophet inequality that uses these balanced prices as implied
by Theorem 3.2 is within a constant factor of the price of anarchy of the mechanism
implied by smoothness.

THEOREM 6.2. Consider a subinstance-closed collection of binary, single-param-
eter problems such that the first-price mechanism based on the welfare mazimizing
allocation rule OPT is (A, pw)-smooth. If the critical prices 7;(- | y) are nondecreasing
in'y, then setting p;(1 | y) = max{v;,7(v; | y)} and p;(0 | y) = 0 is (1,%“)—
balanced with respect to OPT and the canonical exchange-feasible sets (Fx)xex -

Proof. Fix any y and x € Fy. Observe that by definition of the prices, it holds
that

(6.1) pi(zi |y) > v (OPT (v, Fzy_ ) =V (OPT (v, Flary_ 1)) -

To see this, first note that both sides of the inequality are equal to 0 if z; = 0. Ifz; =1
and v; > 7;(v,; | y), then both sides of the inequality are equal to v;. To see that
this is the case for the right-hand side notice that i is allocated in OPT(v, Fgzy_,))
because of the condition on the critical threshold, but then the remaining outcomes
are the same as if we contracted on (x;,y_;), since an optimal allocation is also
optimal on any contraction. If z; = 1 and v; < 7;(v.; | y), then agent ¢ is not
allocated in OPT(V“.F(g’y_i)), and hence the right-hand side of the inequality is at
most the externality imposed by forcing an allocation to agent i, which is at most
Ti(vi |y) = pi(zi | y).

We are now ready to prove balancedness. To verify condition (a), choose x € F
and note that

n n

Zpi(ﬂfi | X[ifl]) 2 Z (V (OPT (V7‘Fx[i71])) -V (OPT (V’]:x[z‘])))

i=1 i=1

=v(OPT(v)) — v(OPT(v, Fx))
as required, where the inequality follows from (6.1), and the equality follows by a
telescoping sum. For condition (b), we get
1

(6.2) S nva xp) € Y mlva | %) < ”j V(OPT(v, Fx)),

iex’ iex’

where the first inequality follows by the monotonicity of critical prices, and the second
inequality follows by a known implication of smoothness [20] (see Appendix G.1).
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Therefore, for any x’ € Fy,

sz(xi | Xji—1)) < Z v; + Z 7i (Vai | X(i—1))

iex’ iex’
<v(x) + P (0PT(v, )
< wV(OPT(V,fx)),

where the first inequality follows by replacing the maximum in the definition of the
prices by a sum, the second inequality follows by (6.2), and the last inequality follows
by v(x’) < v(OPT(v, Fx)), since x' € Fx. O

6.2. General reductions for binary, single-parameter settings. More gen-
erally, we can show the following two reductions from smoothness to prophet inequal-
ities for binary, single parameter problems. The first is for mechanisms that use
a greedy allocation rule, and the second is for mechanisms that maximize declared
welfare. The key to both these results, which we prove in Appendix G, is a novel,
purely combinatorial implication of smoothness for the greedy allocation rule proved
in Lemma G.6.

THEOREM 6.3. Consider a subinstance-closed collection of binary, single-param-
eter problems. Suppose that the first-price mechanism based on the greedy allocation
rule GRD has a price of anarchy of O(vy) provable via smoothness. Then there exists
a O(y?)-approzimate price-based prophet inequality.

THEOREM 6.4. Consider a subinstance-closed collection of binary, single-param-
eter problems. Suppose that the first-price mechanism based on the declared welfare
mazimizing allocation rule OPT has a price of anarchy of O(vy) provable via smooth-
ness. Then there exists a O(y?)-approzimate price-based prophet inequality.

We note that Theorem 6.2 applied to matroids (using known smoothness re-
sults for pay-your-bid greedy mechanisms over matroids [39]) implies the existence of
(1, 3)-balanced prices and hence a 4-approximate prophet inequality. A strengthening
of Theorem 6.4 for monotonically increasing critical prices (discussed in Remark G.13)
leads to an improved factor of 2, matching the prophet inequality for matroids shown
in Kleinberg and Weinberg [33]. This also captures the classic single-item prophet in-
equality, as a special case, and the prophet inequality for XOS combinatorial auctions
via our composition results.

6.3. Beyond binary, single-parameter settings. We conclude with an im-
plication from smoothness to prices that applies in more general settings. It is based
on the observation that many smoothness proofs have a built-in charging scheme,
where each agent considers a bid b, aimed at getting some target outcome x;, which
is attainable as long as its critical price is not too high. We capture proofs that pro-
ceed in this manner through the following notion of outcome smoothness. Similar but
different notions were considered in [17, 40].

To state the definition we need the following notion of critical prices: Consider
a mechanism M = (f, P). For player i € N and allocation z € F, the critical
price 7;(z;,b_;) for bundle z; given bids b_; of the other players is 7;(z;,b,;) =
infy. 1,0, i) mar Pi(by o).

DEFINITION 6.5. A mechanism is (A, p)-outcome smooth for X\, u > 0 if for all
valuation profiles v € V there exists an outcome ALG(v) € F such that for all bid
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profiles b € B,

> (0i(ALG;(v)) = 7i(ALG;(v), b)) = A+ v(OPT(v)) — - > Pi(b).

iEN i€EN

So, outcome smoothness requires there to be an outcome that could be targeted
by a bidder. In the notion of smoothness defined in Definition 6.1, in contrast, there
has to be a deviation bid. Many smoothness proofs in the sense of Definition 6.1
actually establish the stronger notion of outcome smoothness.

The intuitive connection between outcome smoothness and pricing is that, for an
appropriate choice of bids, one can use the critical prices with respect to these bids
as posted item prices and use outcome smoothness to establish that these prices are
balanced.

We illustrate this connection by considering any mechanism M = (f,p) for XOS
combinatorial auctions with item bidding whose allocation rule f maximizes declared
welfare and whose payment rule P satisfies p;(f;(b;,b_;)) < b;(fi(bs, b_;)) for all i and
b = (b;,b.;). We show that if M is (A, u)-outcome smooth with respect to some
allocation rule ALG, then (i) ALG is a A-approximation to OPT and (ii) there exist
balanced prices that are (1, x)-balanced with respect to ALG.

Our construction (in Appendix H) requires that the mechanism M remains (\, p)-
outcome smooth for any number of bidders n and any number of items m, and that
ALG satisfies some mild technical conditions, which are satisfied when ALG = OPT.
The first condition is that ALG is scale invariant, i.e., for all v € V and every € > 0,
ALG(v) = ALG(e - v). The second is that ALG is onto, i.e., for every x € F there is a
v € V such that ALG(v) = z.

THEOREM 6.6. Suppose M = (f, P) is a mechanism for XOS combinatorial auc-
tions with item bidding that mazimizes declared welfare. Suppose that M is (A, u)-
outcome smooth with respect to ALG for every number of bidders n and every number
of items m, where ALG is scale invariant and onto. Then (i) ALG is a A-approximation

to OPT and (ii) there exists static item prices that are (1, u)-balanced with respect to
ALG.

We note that simultaneous first-price auctions for XOS valuations are (1,1)-
outcome smooth with respect to OPT. Thus, Theorem 6.6 provides an alternative
way of proving the existence of a 2-approximate prophet inequality for XOS combi-
natorial auctions.

7. Conclusions and open problems. We introduce a general framework for
establishing prophet inequalities and posted price mechanisms for multidimensional
settings. This work leaves many questions open.

A general class of questions is to determine the best approximation guarantee
that a prophet inequality can achieve for a particular setting. For example, even for
the intersection of two matroids there is a gap between the trivial lower bound of 2
and the upper bound of 4k — 2 = 6. Similarly, in subadditive combinatorial auctions,
the best-known upper bound is logarithmic in the number of items m [25], but again
the best-known lower bound is 2, inherited from the case of a single item. Notably,
the price of anarchy for simultaneous single-item auctions is known to be constant
for subadditive valuations [24], but the proof does not use the smoothness framework
and hence our results relating posted prices to smooth mechanisms do not directly
apply.

A related question is whether there exist prophet inequalities that cannot be
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implemented using posted prices. Interestingly, we are not aware of any separation
between the two so far.

One could ask about the power of anonymous versus personalized prices, item
versus bundle prices, static versus dynamic prices, and so on. For example, to what
extent can static prices approximate the welfare under a matroid constraint, an in-
tersection of matroids, or an arbitrary downward-closed feasibility constraint?

Regarding the pricing framework itself, it would be interesting to extend the
notion of («, 8)-balancedness to allow randomization in a dynamic pricing rule and to
understand the additional power of randomization. One could also generalize beyond
feasibility constraints to more general seller-side costs for allocations. Finally, recent
work has shown that smoothness guarantees often improve as markets grow large [26];
is there a corresponding result for balancedness?

Appendix A. Proof of Theorem 3.5. Our proof will follow the same steps
as the one for Theorem 3.2. As in that proof, denote the exchange-compatible family
of sets with respect to which the collection of pricing rules (pY¥)yey is balanced by
(Fx)xex, and let x(v) be the allocation returned by the posted-price mechanism
on input valuation profile v. Let x'(v,v’) = OPT(v', Fx(v)) be the allocation that
maximizes welfare with respect to valuation profile v/ over feasibility constraint Fi(v).

Utility bound. Again sample valuations v/ ~ D. By the same reasoning as in
the proof of Theorem 3.2, we obtain

(A1) E

> ui<v>] - E V&V~ E,

ieEN

Z 5 *Di (zg(va V/)
1EN

We upper-bound the last term in the previous inequality by using property (b). This
gives pointwise for any v and v’

S pi (el

i€EN

X[i—1] (V)>

X[j—1] (v)> <1 E [V (OPT (¥, Fx(v)))] + 0532 ~I‘E}[\7(ALG(\7))] :
and therefore also

S 6 mi(allvv)

(A.2) E
YV lien

X{i1] (v))] <0p1- E [V(OPT (¥, Fv))]

v,V

+342 - E [V(ALG(¥)].

Replacing v/ with ¥ in inequality (A.1) and combining it with Inequality (A.2) we
obtain

v
i€EN

(A3) E lz ui(v)] > (1-681) - E [F(OPT(%, Fu))] — 62+ E [F(ALG(¥)].
Revenue bound. Again, applying property (a) we obtain

(A.4) E

S0 i) | X <v>>] > 2 BR(ALG))

v
i€EN

7% . E [F(OPT(¥, Fw))] -

v, v
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Combination. To combine our bounds, we distinguish whether £ > i
Case 1. Py > i We use that pointwise for every i € N we have wu;(v) > 0.
Therefore, u;(v) > pu;(v) for all 0 < p < 1. Using § = and

inequalities (A.3) and (A.4), we get

1 _ 1
B1+2p62° p = 2327

E [Z w(w(v»] >p-E [Z w(v) [ +E |38 pi (w:(v) | x-1)(v))
iEN 1EN 1EN
p(1=3p1) - E [V(OPT(V, Fuv))] = p0Bz - E [F(ALG(V))
+ g E[F(ALG(¥))] - g E [V(OPT(¥, Fxv))]
! E [V(ALG(¥)].

T (2B +4B) ¥

Case 2. B3 < 5. Now, we use § = m Inequalities (A.3) and (A.4) yield
E Zvi(xi(v))] z@lz B0 (2i(v) | Xy (v))
iEN iEN iEN

> (1-881)- E [F(OPT(#. Fw))] — 662 - E [F(ALG(¥)]

v

+ S EFALGE)] - 2+ B [#(OPT(E, Fyw)]
1—(162 - ~
O B R(ALGE)

o ERALGE),

2 -
(281 +4B2) v

where the last step uses that 8; + By > 1 = and B2 < %
Appendix B. Missing proofs and extensions from section 5. In this app-

endix we provide proofs for Theorems 5.3 and 5.4, which we have omitted from sec-
tion 5, and we show how to extend these results to weakly balanced pricing rules.

Proof of Theorem 5.3. We first establish property (a). To this end, we first use
property (a) of the original pricing rules, then the consistency of ALG, and finally the
definition of a supporting valuation profile to conclude that

S P (i | xeo) > - (FALG(¥)) — F(OPT(¥, )
i€EN
> é  (F(ALG(v)) — v(OPT(¥, F))
> é - (V(ALG(v)) — v(OPT(v, Fx)).

Next we establish property (b). By property (b) of the original pricing rule and
the definition of a supporting valuation profile,
ST pY (@] | xmn) < 8- F(OPT(¥, Fx))
ienN < B-v(OPT(¥,Fx))
< B-v(OPT (v, Fx))- ]
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Proof of Theorem 5.4. Set Fx = ([[/~, Ft)xex. We first verify condition (a).
We use the definition of the joint pricing rule and condition (a) of the component
pricing rules together with additivity across subproblems to conclude that

sz‘(afi | X[i1)) = Z ZPE’Z (l‘f | Xfi—u)

ieN iEN £=1
> g; . (ve (/—\LGE (ve)) _— (OPT(VE,J—"XZ))

- (v(ALG(v)) = v(OPT(v, Fx))) .

Q| =

—~

Next we verify condition (b). We use the definition of the joint pricing rule and
condition (b) of the component pricing rules together with additivity across subprob-
lems to conclude that

m

S pill o) = 30 S0 pY (@)Y xhy)

1EN {=1ieEN

< Zﬂ : VZ(OPT(Véafxe))
=1

= -v(OPT(v, Fx)). |

We next show how to extend these results so they apply to weakly balanced pricing
rules. Recall that for Theorem 5.3, we imposed a requirement that the allocation rule
ALG be consistent. For our extension to weakly balanced pricing rules, we will require
a stronger notion of consistency.

DEerINITION B.1. Allocation rule ALG is strongly consistent if for every v €
Vmax and corresponding supporting valuation profile v.€ V' for ALG(v), we have
V(ALG(V)) > V(ALG(v)) and v(ALG(v)) > v(ALG(V)).

We note that Lemma 5.2 from section 5 directly extends to show that the optimal
allocation rule OPT is strongly consistent.

We are now ready to state and prove our composition results for weakly balanced
pricing rules. All expressions in the theorem statements are as in Theorems 5.3
and 5.4.

THEOREM B.2 (closure under maximum). Suppose that for each v € V there
exists a pricing rule p¥ that is weakly (o, B1, B2)-balanced with respect to v, a strongly
consistent allocation rule ALG, and the exchange-compatible family of sets (Fx)xex-
For each v € V™ [et ¥ € V be a supporting valuation profile for ALG(v). Then the
pricing rule p¥ is weakly (v, B1, B2)-balanced with respect to v, ALG, and (Fx)xex -

Proof. Property (a) of weak («, 81, B2)-balancedness is identical to that of («, 3)-
balancedness and follows precisely as in Theorem 5.3. To establish property (b) of
weak (a, 81, B2)-balancedness, we apply property (b) to the original pricing rule, then
use the definition of a supporting valuation profile followed by the strong consistency
of both ALG and OPT to conclude that

> oY (@] | xi—y) < Bi - F(OPT(¥, ) + B2 - ¥(ALG(¥))
iEN < By -v(OPT(¥, Fx)) + B2 - v(ALG(¥))
< Bi - v(OPT(v, Fx)) + B2 - V(ALG(v)). U
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THEOREM B.3 (closure under addition). Suppose that v is additive over a set
of allocation problems F',...,F™, and for each individual allocation problem there
exists a pricing rule pYv v that s weakly (v, By, B2)-balanced with respect to v, an

allocation rule ALGY on Ft, and the exchange-compatible family of sets (.Fxg)xeexz

Then the pricing rule p = >, p¥ is weakly (a, B1, B2)-balanced with respect to v
and ALG on F, where ALG(v) = (ALG*(v1),...,ALG™(v™)).

Proof. Property (a) of weak (a,f1,2)-balancedness follows precisely as in
Theorem 5.4. To establish property (b) of weak («, 31, f2)-balancedness, we apply
property (b) to the original pricing rule, then use additivity across the subproblems
to conclude that

> il [ xq-) ZZ ( e 11)

i€EN eEN

3

(51 £ (OPT (v', Fir)) + B2 - v* (ALG(vY)))

IA
S TMS ]

-v(OPT(v, Fx)) + B2 - v(ALG(V)). O

Appendix C. Proof of Theorem 1.6. In this appendix we establish our new
prophet inequality results for combinatorial auctions with MPH-k valuations. In
particular, we establish the existence of (1, 1)-balanced prices for XOS combinatorial
auctions.

Combinatorial auctions with MPH-k valuations. The MPH hierarchy of valua-
tions [22] is an inclusive hierarchy (i.e., it is expressive enough to include all valua-
tions), which subsumes many interesting classes of valuations as special cases.

To formalize this valuation class, we first need a few preliminaries. A hypergraph
representation w of valuation function v: 2™ — Rsq is a set function that satisfies
v(S) = > pcgw(T). Any valuation function v admits a unique hypergraph represen-
tation and vice versa. A set S such that w(S) # 0 is said to be a hyperedge of w.
Pictorially, the hypergraph representation can be thought as a weighted hypergraph,
where every vertex is associated with an item in M, and the weight of each hyperedge
e C M is w(e). Then the value of the function for any set S C M is the total value
of all hyperedges that are contained in S. The rank of a hypergraph representation
w is the cardinality k of the largest hyperedge. The rank of v is the rank of its cor-
responding w and we refer to a valuation function v with rank k as a hypergraph-k
valuation. If the hypergraph representation of v is nonnegative, i.e., for any S C M,
w(S) > 0, then we refer to function v as a positive hypergraph-k function (PH-k) [2].

DEFINITION C.1 (maximum over positive hypergraph-k class [22]). A monotone
valuation function v : 2M — R>g is MPH-k if it can be expressed as a mazimum over
a set of PH-k functions. That is, there exist PH-k functions {v¢}ece such that for
every set S C M,

(C.1) v(S) = maxe, ve(S),

where L is an arbitrary index set.

An important special case of MPH-k is XOS valuations, which are defined as the
maximum over additive functions and which therefore coincide with MPH-1.
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Ezistential O(k) result. Given an arbitrary allocation algorithm ALG and val-
uation profile v, write v for the supporting hypergraph-k valuations for allocation
ALG(v). Write w; for the hypergraph representation of @;, so that 0;,(ALG(v)) =

ZTQALGi(v) w;(T).
Then, for each item j, we define

(C.2) p'({i}) = Z wi(T).
TQIZLBGJL-(V)

That is, item prices are determined by adding up the weights of each supporting
hyperedge an item is contained in. These prices then extend linearly: for each set of
goods z, set p¥(z) = >, p¥({s}). Finally, for each agent i and allocation z;, we will
have pY (z; | z) = p¥(z;) whenever x; is disjoint from the sets in z and co otherwise.

THEOREM C.2. The pricing rule defined in (C.2), extended linearly to sets of
items, is weakly (1,1, k — 1)-balanced with respect to an arbitrary allocation rule ALG
and MPH-k valuation profile v.

Proof. We will show balancedness with respect to Fx = {y € F: (U,v:) N
(U;xi) = @}. Observe that we can lower-bound the value of OPT (v, Fx) by re-
moving all items that are allocated by x from the allocation ALG(v). This gives
us

(C3)  Vv(OPT(v,Fy) > Y (ALGg )\ (Ux)) > Z S w(T).

leN i TCALG,(v)
Vi: TNx; =2

Furthermore, note first that p¥ is a fixed pricing scheme, meaning that the price
of an outcome does not change unless it becomes infeasible. Therefore, for every
allocation y € Fx, we have

Zpi(yi | X[i—1)) = Zpi(yi | x) = Z va({j})

EISHE

=> > > Wi

A £ JEALGy(V)Ny;

(C4) VDS DR

i JEALG,(V)Ny;  T3j
TCALG,(v)

For condition (a), by (C.

4),
sz lex[z 1] ZZ Z wy(T')
14

TCALG,(v)
Ji: TNx; #J

(2 wm- ¥ wm)
£ TCALGy(v) £ TCALGy(v)

Vi: TNx; =2

> (V(ALG(v)) = v(OPT(v, Fy))),

where the first inequality follows by changing the order of summation over j and T,
and the second inequality is given in (C.3).
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For condition (b), note that for all x and all x" € F, by (C.4), after splitting the
sum depending on whether the respective set T intersects with any of the bundles in

X or not
Zpi(x; | X[i-1]) ZZ > > w(T)

i jEALGy(v)Nz) T3j
TCALG,(v)
Tﬂ(Ui/ T, )=

+ZZ > ST w(D).

i JEALGy(v)Nz) T3j
TCALG(v)
10U, 20) 72
Observe that in the first sum for a fixed set T, the term w,(T) occurs at most |T|
times. In the second sum, it can even occur only |T'| — 1 times because the intersection
of x and x’ is empty but x intersects with 7. By applying that |T'| < k whenever
we(T) > 0, this gives us

szw\le <Z Yo |Thw(T +Z > (T =Dwe(T)

TCALGy(v) £ TCALGy(v)
T™N(U; 2 )=92 T™N(U;r x4 )#D
< kz > wl(T)+ (k1) Z > w(T)
TCALG,(v) TCALG,(v)
Tﬂ(U/I/) %] Tﬂ(U/I/)#@
= Z S wM+k-1)> > w(T)
TCALGy(v) £ TCALGe(v)
Tﬂ(Ul/ T )=
> v(OPT(v, Fx)) + (k — 1)v(ALG(v)). |

Note that Theorem C.2 when specialized to XOS valuations shows the existence
of weakly (1,1,0)-balanced prices or, equivalently, (1, 1)-balanced prices.

Computational O(k) result. We now show how to obtain a polytime (4k — 2)-
approximate price-based prophet inequality for MPH-k valuations. For this result we
will assume access to the following kind of MPH-k oracle. Suppose that valuation
function v is MPH-k, with supporting PH-k functions {vg}secr. The query for v takes
as input a set of items S and returns a value oracle to access the PH-k function v, for
which v(S) = vp(S). That is, for every T C M, we can query the value of v,(T) in a
second step.

The following linear problem, known as the configuration LP for combinatorial
auctions, computes a fractional allocation that maximizes the social welfare among
all fractional allocations:

maxz vi(S) -, g
4,8
s.t.z z, o <1 foreveryi € N,

Z r, s <1 for every j € M,
i,S:j€S
€ [0,1] for every i € N, S C M

We extend the definition of F to include all fractional allocations that fulfill the
above LP; Fy is extended to all fractional allocations that use at most a fractional
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equivalent of 1 — 37, 5. gz, o of every item j € M. Our first observation will be
that Theorem C.2 holds even for the fractional version of the MPH-k combinatorial
auction problem. That is, if the set of feasible outcomes is extended to include all
fractional allocations, then an appropriate extension of the prices described above
remain weakly (1,1, %k — 1)-balanced. In particular, given a fixed valuation profile v,
we define prices based on the optimal LP solution x*. For every agent 7 and every
bundle S, let w; g be the PH-£ representation in the support that maximizes agent
i’s valuation of S, which is v;(S) = > ;cgwi,s(T). Then, price item j as follows:
p({7}) = 22 250 s Xorjerres Wis(T) = 32 2 s %) s(wis(S) — wis(S\ {j}))-
This sum can be computed in polynomial time given oracle access as described above
because z} ¢ # 0 only for polynomially many S. Then, extend this pricing linearly
to prices over sets of items and to prices over fractional allocations by simple scaling,
Le., for every x € F and x’ € Fi, we let p(z; | x) = > 57} gD ;c5P({j})-

It is well known that an optimal fractional solution to the configuration LP can be
computed in polynomial time given access to demand queries (using demand queries
to implement a separation oracle, as is standard). Therefore, for the space of fractional
allocations, prices that are weakly (1,1, %k — 1)-balanced with respect to the optimal
fractional solution can be computed in polynomial time, given access to demand and
MPH-k oracles.

We can therefore compute prices that give a (4k — 2)-approximation to the op-
timal fractional allocation, in a posted price mechanism, where agents are free to
purchase any fractional allocation at the posted prices. This, however, seems unsatis-
factory. After all, we do not wish to allow agents to purchase infeasible sets, and the
analysis applies only if every agent can purchase a set in her demand correspondence.
The following observation comes to our aid: for every agent 4, if all previous agents
have selected integral outcomes from the posted price mechanism, then agent i has a
utility-maximizing outcome in their demand correspondence that is integral. This is
because any fractional allocation can be interpreted as a convex combination of inte-
gral allocations. Since our approximation guarantee holds regardless of the demanded
set chosen by each agent, it will hold even if we restrict agents to only select integral
outcomes in the posted price mechanism. This means that we only need to price inte-
gral allocations and the analysis follows. We conclude that the prices computed using
the configuration LP, as described above, actually generate a (4k — 2) approximation
for the (nonfractional) MPH-k combinatorial auction problem.

Appendix D. Proof of Theorem 1.8. In this appendix we prove our polytime
price-based prophet inequalities for sparse linear packing programs. We consider
programs with and without integrality constraints. That is, the possible outcomes
for agent ¢ are either [0,1] (fractional solutions) or {0,1} (integral solutions). We
assume that valuations are linear, i.e., v;(z;) = v; - ;. In both cases, the feasibility
constraints F are given by a constraint matrix A € RZ;" such that x € F if and
only if A -x < c. Without loss of generality, let ¢; = 1 for all j € [m].

We assume that a;; < 3 for all i, j and that the column sparsity is bounded by
d, meaning that for each i there are at most d choices of j such that a;; > 0.

THEOREM D.1. For d-sparse linear packing programs with constraint matriz A €
RZ;™ such that aj; < % for alli,j and unit capacities, there exist weakly (1,0, d)- and
(2,0,d)-balanced prices, for fractional and integral solutions, respectively, with respect
to arbitrary allocation algorithms ALG. The prices can be computed by running ALG
once.

We will define static prices p;(z; | y) as follows. Let x* = ALG(v). For each

constraint j, we define a per-unit price p; by setting p; = > z;. Now, we

i€N:a ;>0 Vi
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define p;(x; |y) = > ; aj.ixip; for every quantity x; that can feasibly be added to y.
The claim will now follow by the two lemmas below.

LEMMA D.2. For F being all fractional solutions, the devised pricing scheme is
weakly (1,0, d)-balanced with respect to ALG.

Proof. Let Fx = {z | A(x+z) < 1}. To verify condition (a), we derive a
lower bound on v(OPT(v, Fyx)) as follows. Given x, let z be defined by setting z; =
o} (1 — maxj.q, ;>0 Y, aj#xi). We have z € Fy because for every constraint j we
have

E aj,iT; + E ajiz; < E Gj,iT; + E aj,ix;‘ <1— E aj’i/xi/> <1
i % i % i’

Note that furthermore, by this definition, =, (3", a;jx;) > x} — 2z for all ¢/ and all j.
Now, it follows that

Zpi(l”i | x[i—l]) = Z Zaj,il'ipj = Z Zam% Z VT
i ig i g

i/:aj’i/>0
= E E vy Tl (E aj, m) > E g Xl — zir)
7 i a1 >0 J ajl/>0

> Zv xl — zy) > v(ALG(v)) — v(OPT (v, Fy)).

For condition (b), we simply observe that

sz 7,|xz 1) Zzajlxzpj ijzajlx
S

j i€N:a; ;>0

_Z Z vt <dszx =d-v(ALG(V)). U

i j:a;,i>0

LeEmMMA D.3. For F being all integral solutions, the devised pricing scheme is
weakly (2,0, d)-balanced with respect to ALG.

Proof. To define F, let ¢ be the vector such that ¢; = 1if ) . a;;x; < % and
cJ = 0 otherwise. That is, ¢; = 1 if and only if constraint j still has capacity at least
5 L after adding x. Let Fy be the set of integral solutlons y that fulfill Ay < c.

Let z be defined such that z; =z} if 3, a2y < for all j with a;; > 0 and
let z; = 0 otherwise. By this deﬁnition, we have z; > z} (1 —2maXj.q, ;>0 Yy Aj,i' Tir )-
For this reason, z} (3", a;x;) > 3(z} — z;) for all ¢/ and all J

From here on, we can follow the exact same calculations as above. For condi-
tion (a), we have

*
§ pz T | Tlj— 1] § § A5 iTifj = § § aj,ixi § Vit Ty
i j

;7 >0

‘Z Z W%(Zawz>>2 Z xp — z)
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For condition (b), we observe that again
Zpi(ﬂ’?; | zpio1)) = Zzaj,ifl?;pj Zp] Zaﬂ @l < Zp]
i i j
- Z Z v Z Z vix

Jj i€N:a; ;>0 i jiaj,i>0

<dsz =d-v(ALG(V)). u|

Pricing integral problems based on fractional solutions. The way we described
the pricing schemes above was to use an offline allocation algorithm ALG for the
respective problem. This algorithm has to solve an NP-hard problem and as we
show any approximation guarantee is preserved in the process. However, it is also
possible to use the respective optimal fractional solution instead of ALG. The pricing
schemes defined this way then achieve the described approximation guarantees with
respect to the fractional optimum. To show this result, we have to slightly extend
our framework and allow Fyx to contain distributions over outcome profiles that are
exchange compatible.

Specifically, for the integral part of Theorem D.1 we would define Fx as the set
of distributions such that the expected consumption in the jth constraint is at most
1if Zl ajir; < % and 0 otherwise. Note that this extends the definition of Fx in the
proof of Lemma D.3 to distributions. Following the steps above, z is now randomized
based on the optimal fractional solution x*. We let z; = 1 with probability = if
Zy aj iy < % for all j with a;; > 0 and let z; = 0 otherwise. In the remainder, z;
is replaced by its expectation.

Appendix E. Proof of Theorem 1.9. We consider a matroid feasibility con-
straint M = (E,Z), where E is a ground set of elements and Z C 2 is a family of
feasible subsets. Set E is partitioned into subsets E1, ..., E,, corresponding to agents,
and for each i, the outcome space X; contains all subsets of F;. One can think of E;
as the set of elements from which agent i can choose. An allocation x is feasible if
and only if |J; z; € Z, that is, if the chosen elements form an independent set.® Given
a valuation profile v, let OPT(v) € Z denote a social welfare maximizing allocation.
Furthermore, given S € Z, let OPT(v | S) denote the set T € Z maximizing v(T)
such that SNT = @ and SUT € Z. Theorem E.1 asserts the existence of balanced
prices for matroid settings with additive, submodular, and XOS valuations.

THEOREM E.1. There exist prices for multidimensional matroid settings in which
agents have additive, submodular, or XOS wvaluations that are (1,1)-balanced with
respect to OPT.

As a special case, we obtain (1, 1)-balanced prices for the single-dimensional ma-
troid setting of [33], where each agent controls exactly one element of the ground
set.

We prove the theorem for additive valuations. That is, there are nonnegative
numbers v; ; such that v;(z;) = Zjéxi v; ;. The proof for submodular and XOS
valuations then follows directly from Theorem 5.3 (composition theorem: closure
under maximum).

5Kleinberg and Weinberg [33] also provide bounds for a multidimensional matroid setting. Their
result, which has implications for revenue and welfare, applies when buyers have unit-demand pref-
erences with independent values across elements. Our approach is different and provides a welfare
bound for a broader class of valuations.
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Additive valuations. Given S € Z, i € N, and a valuation profile v, define

(E.1)

P (@ | y) = {Z(EOPT(V U u3)) = vOPT(v [ (U;y; Uwi))  if (U; 9 Umi) €,

otherwise.

The following lemma shows that the prices in (E.1) are monotonically increasing.
We then prove in Theorem E.3 that these prices are (1, 1)-balanced.

LemMA E.2. Consider the pricing rule p¥. For an arbitrary profile v, feasible
outcome profiles y,y' € F such that y; C y3 for all j, agent v, and allocation x;,

Py (zi |y) <py(zi | y').

Proof. Let S = U;y;, T'= U;y;. I SUx ¢ I, then TUz; ¢ 7, and so
pY(zi | y) = p}(zi | y') = oo. Otherwise,

pi(zi |y) = v(OPT(v [ 5)) = v(OPT(v [ (SUz;)))
<v(OPT(v|T)) —v(OPT(v | (TUz;)))
S PZ(% | y/)a

where the equation follows by the definition of pY(x; | y), and the inequality follows
from the submodularity of the function f(U)=v(OPT(v | U)) (cf. [33, Lemma 3]). O

THEOREM E.3. The pricing rule defined in (E.1) is (1, 1)-balanced with respect to
the optimal allocation rule OPT.

Proof. We define F as the set of all outcome profiles y € Fy x --- x E, such
that (U, v:) N (U; i) = @ and (J; vi) U (U, i) € Z. In other words, we consider the
matroid contracted by the set | J; z;.

We first show that condition (a) holds with e« = 1. For every agent i« € N and
every x € F by a telescoping-sum argument,

i-1 i
ZP;’(%|X[1—1]):Z v | OPT V\Uacj —v | OPT V\ij

i j=1 j=1

=v(OPT(v)) —v | OPT | v | U:Ej

v(OPT(v)) — v(OPT (v, Fx)).

We next show that condition (b) holds with 8 = 1. Consider some arbitrary
x € F,x' € Fx. Let S =, z;. Note that OPT(v | S) is precisely a maximum-weight
basis of the matroid contracted with S. By the generalized Rota exchange theorem [36,
Lemma 2.7], for each ¢ there exists some set R; C OPT(v | S) (which may not be
contained in F;) such that each element of OPT(v | S) appears in exactly one R;,
and (OPT(v | S)\ R;) U« is an independent set in the matroid after contracting S.
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We therefore have

;Vpiv(ﬂf’i\x[i 1 ZNP 7 | x)
: _%V (OPT(v | S)) — v(OPT(v | SU )]
< i:v (OPT(v | S8)) — v(OPT(v | 8)\ Ry)]
-3y
ieN

=v(OPT(v | x)),

where the first inequality follows from the monotonicity of the prices (Lemma E.2),
and the second inequality follows by observing that (OPT(v)\ R;)Ux} is feasible in the
contracted matroid (see the Rota exchange argument above), and thus v(OPT(v) \
R;) < v(OPT(v | SUxi)). The final equality follows by additivity. We conclude that
the suggested prices are (1, 1)-balanced. d

Computational aspects. Theorem E.1 establishes the existence of a price-based
2-approximate prophet inequality for additive, submodular, and XOS preferences.
For additive valuations the construction is polytime, as the greedy algorithm is op-
timal. For submodular and XOS valuations computing the optimal allocation is
NP-hard.

We claim that the result for submodular valuations can turn into a computational
one, by basing the prices on an approximately optimal allocation. Namely, let GRD
be the algorithm that allocates items greedily by value, always choosing the item that
locally increases v(x) the most subject to the matroid constraint. We show that GRD
is consistent (see Definition 5.1) in this setting.

LEMMA E.4. The greedy algorithm GRD is consistent for XOS wvaluations over
matroid feasibility constraints.

Proof. Fix an XOS valuation profile v, and let v be a supporting valuation profile
for the allocation GRD(v). Note that as the supporting valuation profile is additive,
GRD returns the optimal solution. As GRD(v) is another feasible solution, we have
V(GRD(v)) = v(GRD(v)). 0

Theorem 5.3 (closure under maximum) now implies that the prices given in (E.1)
for an additive valuation supporting GRD(v) are (1,1)-balanced with respect to the
greedy allocation. We can compute these prices in polynomial time by simulating
GRD and then determining the supporting additive valuation. Since GRD is a 2-
approximation to OPT for submodular valuations, Theorem 3.2 then implies that we
can compute prices that yield a 4-approximation to the optimal expected welfare, less
an additive sampling error.

Appendix F. A smooth mechanism without good posted prices. In this
appendix we show that there are allocation problems that admit constant-factor
smooth mechanisms, but for which no posted-price mechanism can guarantee more
than a linear fraction of the optimal social welfare.

ProproSITION F.1. There exists a downward-closed welfare mazximization problem
that admits a (1,0)-smooth mechanism, but for which any posted price mechanism has
approximation factor Q(n).
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Proof. Let k be a positive integer to be fixed later. In the allocation problem we
consider, X; = [k]"U{@} for each i € [n]. That is, each agent is allocated either & or
a sequence of n integers between 1 and k. For z; € X;\{@}, write x; = (241, ..., Tin),
where each x;; € [k]. The set of feasible allocations is F = {x: (z; # z;) = ((z; =
@)V (z; = @))}. That is, all agents who receive a nonempty allocation must receive
the same allocation.

Agents have the following valuations. Each agent ¢ has some desired value z; € [k].
The value of an allocation is v;(x;) = 1 if ¢;; = z; and v;(z;) = 0 otherwise. Let D;
be the distribution over such valuations in which z; is chosen uniformly from [].

For this feasibility constraint and space of valuations, consider the mechanism that
returns the welfare-optimal allocation and charges payments of 0. This mechanism
simultaneously satisfies all desires by allocating (z1,...,2,) to every agent, where
z; is the desired value reported by agent i. This mechanism is (1,0)-smooth, with
truth-telling being the required deviation.

On the other hand, consider any posted-price mechanism. Whichever is the first
agent to obtain a non-@ outcome, say, agent ¢ purchasing allocation z;, each subse-
quent agent j can obtain positive value only if z; = x;;, which occurs with probability
1/k. We therefore have that the expected welfare of any posted price mechanism is
at most 1+ "gl. Taking k = n and noting that the optimal welfare is n, we conclude
that no posted price mechanism can obtain more than an (n) approximation to the
optimal welfare. ]

Appendix G. Proofs of Theorems 6.3 and 6.4. In this appendix we describe
how to obtain balanced prices from smooth mechanisms in binary, single-parameter
settings.

G.1. Permeable allocation rules. We begin by defining the permeability of
an allocation rule f and by showing that (), x1)-smoothness implies a bound on per-
meability.

An algorithm f for a binary, single-parameter problem is monotone if for every
player i € N, any two bids b, > b;, and any bid vector b_;,

filbiby) =1 = fi(b,b;) =1
For monotone allocation rules the critical value for player i is the smallest bid that
ensures that player ¢ wins against bids b_;. That is, Tif (b_;) = inf{b; | fi(bs, b)) = 1}.

DEFINITION G.1 (Diitting and Kesselheim [20]; see also [38, 45, 31]). A monotone
allocation algorithm f for a binary, single-parameter problem F is v-permeable if v >
1 is the smallest multiplier such that for all bid vectors b and all feasible allocations
x € F it holds that

(G.1) > by <v-b(f(b)).
1EN: z;=1

THEOREM G.2 (Diitting and Kesselheim [20]). Suppose that the first-price mech-

anism M based on allocation f is (X, u)-smooth; then f is ~-permeable with v <
(1 +1)/A

Proof. Given a bid vector b, we have to show that > . _; (b)) < et
b(f(b)). To this end, consider fixed x € F and b. Let ¢ > 0 and let v be defined by
v; = max{b;, Tlf(bl)} By smoothness of M, there are b} such that

> (b, bi) > A-v(OPT(v)) — - Y Pi(b).

iEN iEN



PROPHET INEQUALITIES MADE EASY 571

Observe that if i & f(b), then u;(b], b_;) < 0 because 7/ (b_;) > b; and this means
that ¢ ¢ f(b,b.;) unless b, > v;. None of these choices results in positive utility.
Furthermore, for i € f(b), we have u;(b}, b.;) < v; = b;. Therefore } .\ u;(b], b_;) <
b(f(b)).

Next, we can lower-bound v(OPT(v)) by the value of the feasible solution x, which
gives us V(OPT(v)) > S, v > 5, (7 (ba) —€) > 30, 7 (by) — me.

Finally, as M is first-price, we also have ) .\ P;(b) = b(f(b)).

In combination this yields

b(f(b)) = A- ( Y rl(ba) —n€> — i b(f(b)),

2 ;=1

which implies

1 x;=1
As this holds for all € > 0, this shows the claim. 0

Applying Theorem G.2 to each problem in a collection of problems I, we see that
if a mechanism M is (A, p)-smooth for II, then it is (x + 1)/A-permeable for II.

Remark G.3. While the definition of permeability requires v to be the smallest
multiplier for which inequality (G.1) is satisfied, all our results can be derived from
any upper bound on this multiplier at the cost of slightly worse guarantees.

G.2. Proof of Theorem 6.3. In this subsection we prove Theorem 6.3, which
shows that (A, pu)-smoothness of the greedy allocation rule for a subinstance-closed
collection of binary, single-parameter problems II implies the existence of a weakly
((u+1)/X,0, (r+1)/A)-balanced pricing rule. By Theorem G.2, in order to show this
result, it suffices to show the following theorem.

THEOREM G.4. Let ALG be any allocation rule. Suppose that the greedy allocation
rule GRD is «v-permeable for a subinstance-closed collection of binary, single-parameter
feasibility problems II. Then for every v € V there exists a pricing rule that is
weakly (7,0, 7)-balanced with respect to ALG and the canonical exchange-feasible sets
(]:x)xeX .

We first describe the pricing rule that achieves this result. Afterward, we show
that this pricing rule has the desirable properties.

G.2.1. Construction of the prices. We set the price p;(z; | x) for player
i € N and outcome z; € {0,1} for arbitrary but fixed valuations v and allocation
x € F through Algorithm G.1. For this let GRD(v | x) € Fx denote the allocation
that results if we go through the players in order of nonincreasing value but only add
a player if he is not in x and feasible together with x and the previously accepted
players.

We generally set p;(0 | x) = 0. That is, the price for losing is always zero. To
determine the price p;(1 | x) for winning we first compute a sequence of reference
allocations r(®) > ... > r(® and a sequence of reference valuations v(©) > ... > v(n),
We then set p;(1 | x) = v; if i € r(™), i.e., the price of player 7 is that player’s valuation
if he is part of the final reference allocation. Otherwise, we set p;(1 | x) = inf{v} :
i€ GRD(’U;,V(:? | x)}, i.e., we set the price to the player’s critical value against the
players in the final reference allocation.
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Algorithm G.1. Pricing rule derived from GRD (parametrized by ALG).
Input: z; € {0,1}, v, x € F
Output: p;(z | x)
if z; = 0 then
// In this case the price is simply zero
pi(z | %) = 0
else
// First determine reference allocation and valuations
r® « ALG(v)
v,(co) — v if ker® and v,(go) + 0 otherwise
for j + 1ton do
rt) « GRD(vU=Y | x;)
’u,i]) — v,(fj_l) =, if k e r¥ and v,(cj) < 0 else
end for
// Now determine the price
if i € r(™) then
// If player i is part of the reference allocation he pays his valuation
pZ(Zl | X) <— V;
else
// Otherwise he pays the critical value against the players in the
// reference allocation
pi(zi | x) < inf{v] : i € GRD(v],v\") | x)}
end if
end if
return p;(z; | x)

While we need to define prices p;(z; | x) for any possible allocation x € F, the
prices that player ¢ will actually see are the ones where x is set to the purchase decisions
of the players j = 1,...,i — 1 that precede player i in the ordering. Note that in this
case T; = Tjy1 = &, = 0 and therefore r(®) = ... = r(=D and v(») = ... = y(-1),
We use the shorthand TZ-GRD(v(f;l) | Xji—17) := inf{v; : i € GRD(vg,v(f;l) | X[i—17)}

G.2.2. Proof of Theorem G.4. We prove the theorem in two steps. We first
use permeability of the greedy allocation rule to establish condition (a) (in Lemma
G.5). We then show condition (b). For this we first prove a novel combinatorial im-
plication of permeability of the greedy allocation rule (in Lemma G.6) by considering
valuations that are either zero or one. We then use this property in a careful layering
argument to establish condition (b) (in Lemma G.7).

LEMMA G.5. Let ALG be any allocation rule. Suppose that the greedy allocation
rule GRD is v-permeable for a subinstance-closed collection of binary, single-parameter
problems II. Then the pricing rule described in Algorithm G.1 fulfills condition (a)
of Definition 3.4 with o = ~y with respect to allocation rule ALG and the canonical
exchange-feasible sets (Fx)xex -

Proof. Let x € F. We will show that p;(z; | x;—17) >
a telescoping-sum argument, this then implies

L (v(r0) —v(x)). By
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Zpi (zi | xp—1)) = Z % . (v (r(i—l)) —v (r(i)))

i€EN i€EN

>~ (V(ALG(v)) = v (OPT(v, Fx))),

2= 2

where the last step follows from the fact that r(®) = ALG(v) and r(™) € F,.
1

So, it only remains to show p;(z; | x[—1]) = 3 - (v(r(t=1D) — v(r()). Observe
that if z; = 0, we have r*~Y = r() and this claim follows trivially. So, consider
an arbitrary player i for which z; = 1. If i € v~ then r~D \ r®) = {5}. So
pi(1] xi—1)) = v, while v(r(=Y) — v(r() = v; and the claim is true.

Otherwise, i ¢ r~1, and we will first use smoothness with respect to subin-
stances to bound the size of the set r~1 \ r(?), For a fixed € > 0, define v/ by setting
vl = TZ-GRD(V(j;l) | X(i—1]) + € vf = v; for j € r7Y\ £ and v} = 0 for all other j.

Now player i € GRD(v' | x};_q) Ur(®) by definition of v/ and v} in particular, while
for each player j € r*=V\ r(® we have j ¢ GRD(v" | X[j—1] Ur®) because it cannot be
added to xj;_1; U r@D Ui} = X[ U r® by definition of r*). Hence, the greedy critical
values of each player j € r~1 \ r() must be at least 7CRP(v/ | x_q Ur()) > o]

Since both player i and the set of players r(*=1 \ r(!) are feasible extensions to
x[i—1 U r(?) we can use v-permeability of the greedy allocation rule in the subinstance

in which we hold x;_;; U r fixed to obtain
D\ p |0l < Z 7GRD (v/ | xp5_ U I.(i))
jer(ifl)\r(i)
<v-v (GRD (v’ | X[i—1] U r(i)>>
=0l

Cancelling v} shows that [r0=1\ r()] < .

To show the claim it now suffices to observe that the greedy critical value of player
i in the subinstance where we hold x[;_;) fixed under the original valuations is the
highest value of a player j € r(i=1) \r(i). Namely,

1 4 4
pi(l|xp_1) = max v;>—- v =V (r“‘”) -V (r(z)> ,
gert=Me® 7 jEr(izl:)\r(i)
which concludes the proof. O

LEMMA G.6. Suppose that the greedy allocation rule GRD is ~vy-permeable for a
subinstance-closed collection of problems of binary, single-parameter problems II.
Consider any problem w € 11 with feasibility structure F. Furthermore, let By 2
By D---DB, and Ag C Ay C--- C A, with BiUA; € F for allt. Consider a set
C' that fulfills C U A,, € F and for every i € C there is at € {0,1,...,n} with i € By
or {i}UB;UA; & F. Then we have |C| < -|Bp|.

Proof. Set B,,+1 = @ and define C,,+1 = C. Furthermore, define Cy for 0 <t <n
recursively as a maximal subset of the players in Cy41 \ B such that CtUA,UB, € F.
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We will show that for all ¢t € {0,1,...,n},
|Cey1 \ Ct| <7+ [Bi \ Byl

Consider some fixed t and define D := B, N Cyy1.
Now a crucial observation is that the set Cipy; \ (C: U D) is feasible holding
E:=B;11 UA; UCyUD fixed. This is because

(Ct+1\(CtUD))UBtJrlUAtUCtUD = Bt+1UAtUCt+1 - Bt+1UAt+1UCt+1 e F.

Further note that by the way we have chosen C; we know that B; \ (By+1 U D) is
another feasible extension to E because

(B:\ (Be+1UD))UBi 1 UA,UCUD = B,UA,UC; € F.

To apply ~-permeability in the subinstance where we hold F fixed, define a val-
uation profile v by setting v; = 1 for i« € B; \ (By1 U D) and 0 otherwise. Now, for
every i € Ciyq \ (Cr U D), we have

OV | E) =1

This is due to the maximality of Cy: if for some i € C;y \ (Cy U D) this value is 0,
then also {Z} U (Bt \ (Bt+1 @] D)) @] Bt+1 U At U Ct uUbD e F.
So by permeability,

|Cir1 \ (CrUD)| = > 7RO (V | E)
i€Cy41\(C2UD)
<7-V(GRD(v | E))
=7+ B\ (Bir1 U D)),
and therefore
|Ci1\ Ci| = [D| + [Craa \ (Ct UD)|[ < D]+ - [Bi \ (Bi41 UD)| < v+ [By \ Byl

We now obtain the desired bound on the size of the set C' by summing the previous
inequality over all ¢ and using that it becomes a telescoping sum

|Cl+1Co| = [Cusa| +1Co =D |Ces1 \ Cil

t=0

S’Y'Z|Bt\Bt+1|
0

t
=7+ (1Bol = [Bn+1]) =7 |Bol-

It remains to show that all players in C' will be covered (i.e., that Cy = &). This
follows from the fact that for each player i € C by the definition of C' there exists a ¢
such that ¢ € B; or ¢ does not fit into By U A; and, thus, in either case i & C}. 0

LEMMA G.7. Let ALG be any allocation rule. Suppose that the greedy allocation
rule GRD is v-permeable for a subinstance-closed collection of binary, single-parameter
problems II. Then the pricing rule described in Algorithm G.1 fulfills condition (b)
of Definition 3.4 with $1 = 0 and Py = v with respect to allocation rule ALG and the
canonical exchange-feasible sets (Fx)xex -
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F1a. 1. Our proof that the pricing rule derived from the greedy allocation rule satisfies condition
(b) relies on the fact that we can chop the valuation and price space into discrete layers, which
reduces the problem to 0/1-valuations.

Proof. Consider an arbitrary feasible x € F and an arbitrary feasible extension
x' € Fx. We want to show that

Zpi(fg | X[i—1)) <7 Vv(ALG(V)).
iEN

We will prove this claim through a layering argument, as depicted in Figure 1.
To this end, let v(j bg the jth highest value of vy,...,vy,; furthermore v(, 1) = 0.
For each j € [n], let S’ denote the set of players with value at least v(;) and let 77
denote the set of players with z = 1 that see a price p;(1 | x[;_1)) of at least vy;).

We now apply Lemma G.6 for each j € [n] by setting A; = xp, By = rd N s,
C =T’. Note that C U A,, € F and for every i € C there is a ¢t € {0,1,...,n} such
that i € By or {i} UB;UA; ¢ F. We obtain |T7| < - [r(9D N .57,

We conclude that

Do I xpe) =Y D> Liers - (vg) = vgan) = Y _IT]- (vg) = vi4)
j=1

ieN iEN j=1

<D 7 OS] (v —va) =7 V(ALG(v)),
=1

where the first equality holds by definition of the sets 77, the second equality is
basic calculus, the inequality follows from Lemma G.6 as argued above, and the final
equality holds by definition of r(®) = ALG(v) and the sets S7. d

G.3. Proof of Theorem 6.4. In this subsection we prove Theorem 6.4, which
claims that (A, p)-smoothness of the pay-your-bid mechanism based on the welfare-
maximizing allocation rule for subinstance-closed collection of binary, single-parame-
ter problems II implies the existence of a weakly (1, (11 + 1)/A)-balanced pricing rule.
By Theorem G.2 it suffices to show the following theorem.

THEOREM G.8. Let ALG be any allocation rule. Suppose that the welfare-mazi-
mizing allocation rule OPT is ~y-permeable for a subinstance-closed collection of bi-
nary, single-parameter feasibility problems I1. Then there exists a pricing rule that is
weakly (1,0,~?%)-balanced with respect to ALG and the canonical exchange-feasible sets
(-Fx)xeX .

As in the case of greedy we first describe the construction of the prices, and then
we show that these prices are balanced.
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Algorithm G.2. Pricing rule derived from OPT (parametrized by ALG).
Input: z; € {0,1}, v, x € F Output: p;(z; | x)
if z; = 0 then
// In this case the price is simply zero
piz | %) =0
else
// First determine reference allocation and valuations
r® < ALG(v)
v,(co) — vy if k er® and v,io) < 0 otherwise
for j + 1 ton do
r() « OPT(vU~=1) | X(j])
v,(cj) — v,(gj_l) = vy, if k € r¥) and v,(j) + 0 else
end for
// Now determine the price
if i € r(™ then
// If player i is part of the reference allocation he pays his valuation
pi(zi | X) < v;
else
// Otherwise he pays the critical value against the players in the
// reference allocation
pi(zi | x) < inf{v] : i € OPT(v], v\ | x)}
end if
end if
return p;(z; | x)

G.3.1. Construction of the prices. We define the price p;(z; | x) for playeri €
N and outcome z; € {0,1} and arbitrary but fixed valuation profile v and allocation
x € F through Algorithm G.2. For this section, define OPT(v | x) as the allocation
that results by padding the welfare-maximizing allocation for valuation profile v over
F/x with empty allocations.

As in the case of the greedy allocation rule, we again set p;(0 | x) = 0 and we
compute p;(1 | x) via reference allocations and reference valuations. We again define

the initial reference allocation as r(®) = ALG(v) and the initial reference valuations
(0)
J

allocations and valuations are defined recursively as () = OPT(v(~1) | x[;)) and

by setting v, = v; for j € r©® and v§0) = 0 otherwise. The subsequent reference

v;i) = v§i_1) = v; for j € r(® and v;i) = 0 otherwise. We then set p;(1 | x) = v;
if i € v and p;(1 | x) = inf{v} | i € OPT(U;,V_(ZL) | x)} otherwise. Note that this
definition immediately implies that p;(x; | x;;—1]) = v(rt=D) — v(r®).

By substituting all occurrences of n with ¢ — 1 we obtain the formula for the
price p;(1 | x;_q). We use the shorthand TOPT(V_(;_l) | x(—1)) = inf{v] | i €
OPT (v, v ™) | xqioq)}-

G.3.2. Proof of Theorem G.8. We again proceed in two steps. We first show
condition (a) (in Lemma G.9 below). Afterward we show that the permeability of
OPT provides an upper bound on the permeability of GRD and that the critical prices
with respect to OPT are not much higher than those with respect to GRD (in Lemmas
G.10 and G.11). This allows us to bound condition (b) using the same machinery that
we used in the previous section (in Lemma G.12).



PROPHET INEQUALITIES MADE EASY 577

LEMMA G.9. Let ALG be any allocation rule. Suppose that the welfare-maximizing
allocation rule OPT is y-permeable for a subinstance-closed collection of problems of
binary, single-parameter problems II. Then the pricing rule described in Algorithm
G.2 fulfills condition (a) of Definition 3.4 with o = 1 with respect to allocation rule
ALG and the canonical exchange-feasible sets (Fx)xex -

Proof. Consider x € F. We defined prices exactly so that p;(z; | x 1)) =
v(r(=1) — v(r®). Therefore, using a telescoping-sum argument, we get

Zpi(xi | X[i—1]) = v(r(o)) — v(r(")).

iEN

The claim now follows from the fact that r(®) = ALG(v) and r(®) € F,. d

LEMMA G.10. If the greedy allocation rule GRD is v®RP-permeable and the wel-
fare-mazimizing allocation rule OPT is vOPT _permeable for a subinstance-closed col-
lection of of binary, single-parameter problems II, then yOPT > A©RD.

Proof. We only have to show that for all x € F, x’ € Fx and all v, we have

> rERP(v.; | x) < 4°FT - v(GRD(v | x)).

1ex’/

Let y = x' N GRD(v | x). Observe that because y € GRD(v | x), we have
GRD(v | x Uy) = GRD(v | x). Define a valuation profile v/ by setting v, = v; for all
i € x'\ @ and v, = 0 otherwise. By loser independence of greedy, GRD(v | xUy) =
GRD(v' | x Uy). Furthermore, OPT(v' | x Uy) = GRD(v' | xUy).

We claim that for ¢ € x" \ y we have

TR (vii | x) < 7RO (VL | xuy) < 7PPT(VL [ xUy)

For the first inequality we use that 7°RP(v_; | x) is the value v; of some j that has
to be outbid by player i. By fixing another set y, this value can only go up because
the options are limited further. Also, when fixing x Uy, replacing the valuations by
v’ has no influence because the set of players that are selected remains unchanged.

The second inequality holds because under v’ player 4 in order to win when we
hold x Uy fixed has to force some subset z C GRD(v/, | xUy) = OPT(v/, | xUYy)
out of the solution. Under OPT his payment is the sum of the respective players’
valuations; under GRD it is just the highest valuation of any such player.

On the other hand, for players i € y, because y C GRD(v | x), the greedy critical
value 78RP(v_; | x) is at most v;.

i
Using these two bounds on 7°RP(v_; | x) we obtain

S P x) <Y vt > 7P (vl | x)

iex’ i€y i€x’\y
< Zvi + Z TP (v [xUy)
i€y i€x’\y
< Zvi +~%PT .V (OPT(v' | xUYy))
1€y

= v +7°°T-v/(GRD(v' | xUy))

1€y
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<A%PT) "0 +9°°T - V/(GRD(V' | x U y))
i€y

= 7OPT V(OPT(v| %) .

where the third inequality uses 7°PT-permeability of the welfare-maximizing alloca-
tion rule OPT in the subinstance in which we hold xUy fixed, the subsequent equality
holds by the definition of v/, the fourth inequality uses that y°PT > 1, and the final
equality holds by the definition of y and v’. O

LEMMA G.11. If the greedy allocation rule GRD is v°RP-permeable for a subin-
stance-closed collection of of binary, single-parameter problems I1, then

T;)PT (V(i—l) | X[FH) < ,YGRD _TZGRD (V(i—1) | X[ifl]) _

Proof. Note that for valuations v(*=1) both GRD and OPT over F/x return the
same set of players. The same is true if we drop any player j from v(=1)_ Dropping
player i we can define y = GRD(v_(f_l) | X[i—1]) = OPT(V_(;_I) | X[i—1])-

Suppose player ¢ bids b} = TiGRD(v_(Z*l) | X[i—1)) + € Then i € GRD(b’i,v_(ffl) |

X[;—1]). The addition of player i causes the removal of a (possibly empty) subset of

players z C y. That is, GRD(b;,vff’l) | xp1)) = (y \ 2) U{i}.

Define valuations v’ by setting v; = b}, v} = U;i_l) for j € z, and v} = 0 for every
other player j. Consider the subinstance in which we hold y \ z fixed. Since both
player i and the set of players z are feasible extensions we can apply 7y*RP-permeability

of the greedy allocation rule to obtain

2] - b =Y 7PV |y \2) <RV (GRD(V | y \ 2)) = 4P - b,

jEz

and therefore |z| < y¢RD.

The final step is now to observe that the critical value 72PT(v(=1 | x;_y)) of
player ¢ under the welfare-maximizing allocation rule is at most |T'| times the critical
value pSRP (v(i=1) | X[;—1)) of player 7 under the greedy allocation rule. To see this let

z' Cy be the set with the smallest value such that (y \ z') U {i} € F. Then,

s (V(H) | X[i—u) =D v <) v < [T| - maxv; = |a| - 720 (V(H) | X[i—l]) :

jez' Jj€z

where we used that z is some subset of y such that (y \ z) U {i} € F and so its
combined value can only be larger than that of z’. ]

LeEMMA G.12. Let ALG be any allocation rule. Suppose that the welfare-mazi-
mizing allocation rule OPT is vy-permeable for a subinstance-closed collection of binary,
single-parameter problems I1. Then the pricing rule described in Algorithm G.2 fulfills
condition (b) of Definition 3.4 with 31 = 0 and Bz = v* with respect to allocation rule
ALG and the canonical exchange-feasible sets (Fx)xex -

Proof. Consider an arbitrary allocation x € F and feasible extension x’ € Fy.
We want to show that

3 pilal | xi-1) < (1°°T)7 - v(ALG(v)).

iEN
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We will again show this claim through layering. This time, however, we need the
layering to be arbitrarily fine-grained. We will specify the granularity by € > 0. For
each j € N, let S/ denote the set of players with value at least j - €. Let 77 denote
the set of players with @} = 1 that see a price pPFT(z] | x;_1]) of at least v°RP . j - e.

For any fixed j € N we now bound |T7| using Lemma G.6. We set A; = Ty,
B, =r®YNSi, C =T7. Note that CUA,, € F. We claim that for every i € C' we have
1€ Byor {i}UBUA; & F for t =i —1. To see this, consider the two options for how
pOPT(x) | x;;—1]) can be set. If i € =Y, then pPPT (2} | x;;_1]) = v;. As by definition
pPPT (2] | xj—17) = ORP-j-€ > j-¢, this implies v; > j-candsoi € B;_y = r-Hng7,
Otherwise, if i ¢ (=1, then pPFT (2} | X[i—1]) = TiOPT(V_(;_l) | X[i—17). In this case,
we can apply Lemma G.11 to get

PP (2 | xp_q)) = 07T (V_(ffl) | X[H]) < ORD . 7 GRD (V.(ffl) | X[ifu) .

So, we know that TiGRD(v_(:*l) | x(;—1]) > j-€ and therefore {i}Ux;_1jU(r~DNY7) &
F.

So, by Lemma G.6, we get |T7| < v°RP . [¢(O) N Y|,

We conclude that

oo
ZP?PT@; | x[j—1)) < me+ Z Z Liers - 7R €

iex! iex’ j=1

— n6+'yGRD Z|T]| .€
j=1
o0
< ne_i_,yGRD.Z,YGRD r© Y| e
j=1
< (7°RP)2. v(ALG(V)) + 2ne.
As this argument holds for any € > 0, we also have ) ., pOPT (! | X[i-1]) < (v
v(ALG(v)). By Lemma G.10, v°RP < 7OPT and the claim follows. |

Remark G.13. When the prices defined by Algorithm G.2 are nondecreasing then

GRD)Q.

~-permeability of OPT immediately implies that TZ»GRD(V(_ii_l) | x(—1)) < 7ORP (V(_Zi_l) |
x) < v-v(OPT(v, Fx)) implying that the pricing rule is («, 8)-balanced with 8 = v. In
this case Theorem G.8 can be strengthened to show the existence of a (1,+)-balanced
pricing rule.

Appendix H. Proof of Theorem 6.6. We prove this theorem constructively.
The high-level idea behind our construction is to use additive supporting valuations
for ALG to define static item prices (generalizing the approach in [25]) and let these
prices play the role of the bids in Definition 6.5.

To construct a pricing rule for a setting with n players and m items and known
valuations v we proceed as follows. Let a denote the additive supporting valuation
for ALG(v). To define pY (z; | y) consider a (n+ 1)-first bidder bidding against a. We
set

Tnit(x;,a) for x; C [m ,
(H.1) py<xi|y>{ +1(702) - ml\y
%) otherwise

We begin by showing that ALG is a A-approximation to OPT. We use that for all
v € V Definition 6.5 with b = 0 € B implies that
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v(ALG(v)) = Z (vi(ALG;(v)) — 7 (ALG;(v), b))
1EN
> A-v(OPT(v)) = - Y Pi(b) = - v(OPT(v)).

i€EN

Next we show that the prices defined in (H.1) are balanced with respect to ALG.
We first show that they satisfy property (a) with o = 1. To this end fix n, m, and
v € V and consider any x € F. Let a € B be the additive supporting valuation for

ALG(v) used in the definition of the prices. For each item j define a; = max;a; ;.
Then,

Zp;’(ﬂﬁz | X[i-1)) = ZTn+1(9€i7a)
iEN i€N
=>4
iEN jEx;
= Z a; — Z a; > v(ALG(v)) — v(OPT(v, F,)),

JEM JEx

where in the last step we used that (ALG(v)\z) € Fx and a(ALG(v)\x) < v(ALG(v)\
x) < v(OPT(v, Fx)).

Next we show that the prices satisfy property (b) with 8 = u. Fix n, m, and
v € V. Consider x € F and x’ € Fx. As before let a € B denote the additive
supporting valuation for ALG(v). To bound the prices we will invoke Definition 6.5
for a different setting with n’ = 2n players and m’ < m items. For the valuations in
this new setting we use that ALG is onto and scale free. Namely, we set the valuations
to v = e-v/ where v’ is such that ALG;(e-v') = 2} fori = 1,...,n and ALG;(e-V') = &
fori=n+1,...,2n. The bid of player of player i = 1,...,n is b; = 0, and the bid
of player i =n+1,...,2n is the additive supporting valuation of bidder n — i in the
original setting, restricted to the items j & x.

By outcome smoothness,

Z (v (ALG;(v")) — 1 (ALG;(v"), b)) > X - v'(OPT (V")) — - Z P;(b).

1EN i€EN

Since this holds for every € > 0 we can use that >,y vi(zj) — 0 as e — 0 and
v’(OPT(v")) = 0 as € — 0 to obtain

> T(ALG(v"),b.) < p- > Pi(b).

1€EN iEN

The left-hand side of this inequality is equal to >, p¥ (2} | x[i—1]). The right-
hand side is at most - v(ALG(v) \ x) < p- v(OPT(v), Fx). The claim follows.
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