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This paper extends the singular Fourier–Padé (SFP) method proposed by Chan (2018) for pricing/hedg-
ing early-exercise options–Bermudan, American and discrete-monitored barrier options–under a Lévy
process. The current SFP method is incorporated with the Filon–Clenshaw–Curtis (FCC) rules invented
by Domı́nguez et al. (2011), and we call the new method SFP–FCC. The main purpose of using the
SFP–FCC method is to require a small number of terms to yield fast error convergence and to formulate
option pricing and option Greek curves rather than individual prices/Greek values. We also numeri-
cally show that the SFP–FCC method can retain a global spectral convergence rate in option pricing and
hedging when the risk-free probability density function is piecewise smooth. Moreover, the computational
complexity of the method is O((L − 1)(N + 1)(Ñ log Ñ)) with N , a (small) number of complex Fourier
series terms, Ñ , a number of Chebyshev series terms and L, the number of early-exercise/monitoring
dates. Finally, we compare the accuracy and computational time of our method with those of existing
techniques in numerical experiments.
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1. Introduction

In computational finance, various efficient methods for pricing and hedging early-exercise options
under Lévy processes have been developed in financial markets. One of the most prominent ap-
proaches is to solve an option pricing formula–a partial integro-differential equation (PIDE)–by
applying the finite different (FD) method (e.g. Hirsa and Madan 2004, Almendral and Oosterlee
2007, Almendral 2005, Hirsa 2012, Wang et al. 2007), the finite element (FE) method (e.g. Matache
et al. 2005, Rambeerich et al. 2009), and the radial basis (RB) method (e.g. Chan and Hubbert
2014, Brummelhuis and Chan 2014, Chan 2016). In addition to PDIE-based approaches, a Fourier-
transformation-based method is widely introduced, the most prominent examples of which can be
found in Lord et al. (2008), Feng and Linetsky (2008), Fang and Oosterlee (2009b), Chan (2019).
Simulation-based approaches also play a pivotal part in pricing early-exercise options. The least-
squares Monte-Carlo (LSM) approach of Longstaff and Schwartz (2001) is the most popular method
among other simulation-based ones, and Glasserman (2003) provides a comprehensive overview of
different Monte-Carlo methods in option pricing and risk management. Finally, an analytical ap-
proximation approach (e.g. Guo and Li 2016) and a deep/machine-learning approach (e.g. Fu and
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Hirsa 2019, Hirsa et al. 2019) have recently drawn a substantial amount of researchers’ attention
due to their rapid computational speed and higher accuracy. In this paper, we focus mainly on
improving a Fourier-transformation-based method and propose the singular Fourier-Padé (SFP)
method (cf. Driscoll and Fornberg 2001, 2011), which has been previously introduced as a method
to price and hedge European options by Chan (2018), to price Bermudan, American and discrete-
monitored barrier options.

A Bermudan option can be exercised on predetermined dates before maturity. The option holder
receives the exercise payoff when he/she exercises the option on specific dates at the option’s
maturity. Between two consecutive exercise dates, the valuation process can be regarded as similar
to a European option, which can be priced and hedged using the risk-neutral valuation formula
(cf. Chan 2018, Chan and Hale 2019).

If we consider log St := xt driven by a Lévy process and a Bermudan option with strike K and
maturity T that can be exercised only on a given number of exercise dates t = t0 < t1 ≤ t2 ≤
. . . tl ≤ tl+1 ≤ . . . ≤ tL = T., then we can write the risk-neutral Bermudan pricing formula for such
an option as

V (xtl ,K, tl) =


U(extl ,K, tl) l = L, tL = T

max (C(xtl ,K, tl), U(extl ,K, tl)) l = 1, 2, 3, . . . , L− 1

C(xtl ,K, tl) l = 0

, (1)

where U(extl ,K, tl) is the payoff function at tl., i.e., if the payoff function is a call, then U(extl ,K, tl)
is transformed into max (extl −K, 0) . In (1), C(xtl ,K, tl) at each tj can be described as a risk-
neutral valuation formula:

C(xtj ,K, tj) = e−r(tj+1−tj)E
(
V (xtj+1

,K, tj+1)|xtj
)

= e−r(tj+1−tj)
∫ +∞

−∞
V (ex+χ−logK , tj+1)f(χ)dχ, χ ∈ Xtj+1

−Xtj . (2)

Here, Xtj+1
−Xtj is the Lévy process, r is the risk-neutral interest rate, and f(χ) is the risk-neutral

probability density function (PDF). As (2) is an expectation and integral, a sustainable number
of numerical methods are developed for its calculation. Popular methods include, for example, the
FFT–QUAD method, a combination of the Fast Fourier Transform (FFT) method and numerical
quadrature, suggested by O’Sullivan (2005); the CONV method, an FFT method proposed by Lord
et al. (2008); a mixture of the FFT method and Gauss transform (e.g. Broadie and Yamamoto
2003) or Hilbert transform (e.g. Feng and Linetsky 2008, Zeng and Kwok 2014); the COS method, a
Fourier-cosine series approach suggested by Fang and Oosterlee (2009b); and the SWIFT method,
a wavelet series approach (Maree 2015, Maree et al. 2017). The advantage of using the FFTs, COS
and SWIFT methods for option pricing is that they can achieve a global spectral (exponential)
convergence rate and require fewer summation terms as long as the governing PDF is sufficiently
smooth. However, when the difference ∆t between tj and tj+1 approaches zero in (2), f(χ) tends to
become highly peaked and piecewise continuous (non-smooth)1 in any Lévy process. Accordingly,
f(χ) contains a highly peaked point–a jump (a singularity) where the first derivative of f(χ) is
discontinuous. Using any type of Fourier series to represent a piecewise continuous function, e.g., a
piecewise continuous PDF, with a jump is notoriously fraught and causes the Gibbs phenomenon
(cf. Driscoll and Fornberg 2001, 2011). As a result, the Fourier representation of a piecewise con-
tinuous function has a pointwise convergence elsewhere at the rate O(N−1) because of a jump
acting as a pole2 in a complex plane. The impact of the Gibbs phenomenon is therefore detrimen-

1A function is called piecewise continuous on an interval if the function is made up of a finite number of ν times with
differentiable continuous pieces.
2A pole occurs where the function f is not well-defined or tends to infinity in a complex plane.
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tal because it can lead to inaccurate pricing and hedging and a lack of spectral convergence when
the approximate option prices are generated via FFT or Fourier series methods at or around the
jumps.

Accordingly, we propose the singular Fourier-Padé (SFP) method (Chan 2018) to circumvent the
mentioned problem to allow fewer summation terms and maintain spectral convergence when f(χ) is
piecewise continuous. Why do we choose the SFP method? We exhibit the following characteristics
when we use the method to price and hedge European-type options:

(i) a global spectral convergence rate for piecewise continuous PDFs;
(ii) fast error convergence with fewer partial summation terms required;

(iii) accurate pricing of any European-type option with features of deep in/out of the money
and very long/short maturities;

(iv) consistent accuracy for approximating large or small option prices throughout.

To obtain the same advantages of using the SFP method, we extend the current method with
the help of the Filon–Clenshaw–Curtis (FCC) rules, invented by Domı́nguez et al. (2011), to price
Bermuda options and American and discrete-monitored barrier options. We call the new method
SFP–FCC. The main advantage of the SFP–FCC method compared with the SFP method alone
is that it not only requires fewer summation terms to yield spectral convergence with a (piece-
wise) continuous PDF but also provides option pricing and an optional Greek formula rather than
individual prices/Greek values.

The remainder of this paper is structured as follows. Section 1 provides an introduction. Section 2
describes the SFP method. Section 3 introduces the financial stochastic models that we examine
in this paper. Section 4 revises and improves the formulation of the SFP option pricing formulae
for the European options proposed in Chan (2018). In Section 5, we propose the SFP–FCC al-
gorithms/formulae to price Bermudan, American (cf. Section 5.1) and discrete-monitored barrier
options (cf. Section 5.3) and to find an early-exercise point by using root-finding techniques (cf.
Section 5.2). Section 6 describes the derivation of the option Greek formulae and the choice of
truncated integration intervals. Section 7 discusses, analyses and compares the numerical results
of the SFP–FCC method with the results of other numerical methods. We conclude and discuss
possible future developments in Section 8. Finally, the Appendix A shows the algorithm used for
computation of the SFP coefficients, and Appendix B discusses the method of locating jumps in
PDFs. Appendix C describes the FCC rules, and Appendix D shows the table of cumulants.

2. Singular Fourier–Padé interpretation and correction of the Gibbs phenomenon

If we consider a function f with a formal power series representation
∑∞

k=0 bkx
k, and a rational

function defined by RN,M = PN/QM , where PN and QM are the polynomials of

PN (x) =
N∑
n=0

pnx
n and QM (x) =

M∑
m=0

qmx
m, (3)

respectively, then we say that RN,M = PN/QM is the (linear) Padé approximant of order (N, M)
of the formal series that satisfies the condition(

N∑
n=0

pnx
n

)
−

(
M∑
m=0

qmx
m

)(
M+N∑
k=0

bkx
k

)
= O(xN+M+1). (4)
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Here, f is approximated by
∑M+N

k=0 bkx
k,. To obtain the approximant R(N,M), we simply calculate

the coefficients of polynomials PN and QM by solving the following system of linear equations:

M∑
j=0

bN−j+kqk = 0, k = 1, . . . ,M. (5)

k∑
j=0

bk−jqj = pk, k = 1, . . . , N. (6)

For this system to be well determined, we usually employ a normalisation by setting, for example,
q0 = 1.

If we now consider any piecewise analytic real function f in a finite interval [a, b] with a set of
jump {ζs}Ss=1 ∈ [a, b], singularities that cause poles in a complex plane after the first derivative of
f being discontinuous, the complex Fourier series (CFS) representation of the function is defined
as

f(x) = Re

[ ∞∑
k=−∞

bke
i 2π

b−akx

]
, with bk =

1

b− a

∫ b

a
f(x)e−i

2π

b−akxdx. (7)

Here, Re represents the real part of the function. As we focus on approximating a real function,
we can further obtain

f(x) = Re

[
2

∞∑
k=1

bke
i 2π

b−akx + b0

]
. (8)

Based on this representation, we denote z as exp
(
i 2π
b−ax

)
, and then, we approximate f with a

truncated power series of f1 such that

f(x) ≈ f1(z) = Re

[
2
N+M∑
k=1

bkz
k + b0

]
. (9)

The transformation z = exp
(
i 2π
b−ax

)
also suggests that the jumps in f translate into

ε1, . . . , εs, . . . εS = exp
(
i 2π
b−aζS

)
. Based on (4), the Fourier-Padé approximation of f1 comprises

the polynomials

PN (z) = QM (z)f1(z) +O(zN+M+1), z → 0. (10)

However, Driscoll and Fornberg (2001, 2011) note that this approximant (10) does not reproduce
very well at/around the jump of the function, which makes the approximation inaccurate. There-
fore, they suggest that every jump εs can be attributed to a logarithm of the form

log

(
1− z

εs

)
(11)

This logarithmic jump (logarithmic pole) in f1, which is difficult for the Padé approximant to
simulate, can be exploited to enhance the approximation process. This is the rationale behind
the SFP method introduced in Driscoll and Fornberg (2001, 2011). We modify the Fourier-Padé
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approximant (10) to obtain the following condition:

PN (z) +
S∑
s=1

LNs(z) log (1− z/εs) = f1(z)QM (z) +O(zU+1), (12)

where

PN (z) =
∑N

n=0 pnz
n, QM (z) =

∑M
m=0 qmz

m 6= 0,

LNs(z) =
∑Ns

ns=0 lnsz
ns , s = 1, . . . ,S,

U = N +M + S +
∑S

s=1Ns, εs = exp
(
i 2π
b−aζs

)
,

ζs is a jump at s.

(13)

3. Financial modelling with Lévy processes

We briefly review option pricing theory in Lévy models partly to establish notations. Standard
references for this material are Applebaum (2004), Cont and Tankov (2004), and Sato (1999).
Throughout this section, we consider that markets are frictionless and have no arbitrage, and we
assume that an equivalent martingale measure (EMM) Q is chosen by the market. Moreover, there
is a complete filtered probability space (Ω,F , {F}t≥0,Q) on which all processes are assumed to
live.

We first introduce a stock price process S = (St)t≤0 and assume that it follows an exponential
Lévy process:

St = S0e
Lt , t ≥ 0, (14)

where S0 ∈ R+ = (0,∞) is the initial stock price taken as a random variable (rv) independent of
(Lt)t≤0. We limit ourselves to derivatives written on a single risky asset with a log return assumed
to be modelled by a one-dimensional Lévy process. As usual, we also assume the existence of a
risk-free bond earning interest at a constant rate of r and a continuous compounding stock dividend
q for all maturities T > 0. For a general Lévy process, the market that consists of the risky asset
plus the risk-free bond will be an incomplete market1.

The Lévy-process (Lt)t≥0 is fully determined by its characteristic function that, according to the
Lévy–Khinchine theorem, is of the form ϕ(u) := E(eiuLt) = etφ(u), with the characteristic exponent
φ(z) given by

φ(u) = iγu− 1

2
σ2u2 +

∫
R

(
eixu − 1− iχu1{|χ|≤1}

)
ν(dχ). (15)

Here, γ and σ are real constants with σ ≥ 0, and ν is a positive measure of R, which is called
the Lévy measure that satisfies the Lévy-condition

∫
R min(χ2, 1) ν(dχ) < ∞. The probabilistic

interpretation of ν is that ν(dχ) gives the expected number of jumps with a size between χ and
χ+dχ, which the process makes between time 0 and 1. The triplet (γ, σ, ν) is called the characteristic
triplet or the Lévy-Khintchine triplet of (Lt)t≥0.

We also assume that E[S0] ≤ 0 and a recall of (14). Then, we can write

E[St] = E[S0]E[eLt ] = E[S0]etφ(1), (16)

1Markets are complete when the Lévy process is a Brownian motion - the classical Black and Scholes model - or if it is a

Poisson process
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where φ(1) is assumed to be finite. For any EMM, Q is a risk-neutral (no-arbitrage) pricing, and
the discounted stock price process, (e−(r−q)tSt)t≥0, in an equilibrium, with either a complete or
an incomplete market, must constitute a martingale. In addition, under the EMM Q measure, the
growth rate φ(1) of the stock price equals the risk-free rate r > 0 and q > 0.

4. Pricing formulae for European type options

In this section, we derive an SFP European option pricing formula. The technique demonstrated is
slightly different from the approach in Chan (2018), as we provide an option pricing curve rather
than an individual value.

A European option can be exercised at maturity T of the option. By providing the current log
price x := logS, the strike price of K and the probability density function (PDF) f of a stochastic
process, we can express the option price V (x,K, t) starting at time t with its contingent claim that
pays out U(ST ) is as follows:

V (x,K, t) = e−r(T−t)E(U(ST ,K, T )|St = ex)

= e−r(T−t)E(U(Ste
XT−Xt ,K, T )))

= e−r(T−t)
∫ +∞

−∞
G(ex+χ−logK)f(χ)dχ, χ ∈ XT −Xt, (17)

where U(Ste
XT−Xt ,K, T ) = G(ex+χ−logK). By replacing x+ χ− logK with y, we have

V (x,K, t) = e−r(T−t)
∫ +∞

−∞
G(ey)f (y − x+ logK) dy (18)

= e−r(T−t)
∫ +∞

−∞
G(ey)fR (x̃− y) dy, (19)

where x̃ = x − logK, G(ey) is the pay-off in the log-price coordinates and fR(x̃) := f(−x̃) is
the reflected function. The expression of (18) is indeed a cross-correlation integral; however, since
we introduce the idea of the reflected function fR(x̃) := f(−x̃), we can instead turn (18) into a
convolution integral (19).

If we consider approximating V (x,K, t) in a finite interval [c, d] rather than in [−∞,∞], such
that the choice of [c, d] satisfies the condition∫ d

c
f(χ)eiuχdχ ≈

∫ +∞

−∞
f(χ)eiuχdχ = E[eiu(XT−Xt)] := ϕ(u), (20)

where ϕ(u) is a characteristic function of XT −Xt., then (19) becomes

V (x,K, t) ≈ e−r(T−t)
∫ d

c
G(ey)fR(x̃− y)dy. (21)

By using the Fourier transform shift theorem and the CFS expansion shown in (8), we express
fR (x̃− y) as

Re

[
+∞∑

k=−∞
bke
−i 2π

b−aky

]
, (22)
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where

bk =
1

d− c

∫ d

c
f(y)e−i

2π

d−ckydy
(
ei

2π

d−ckx̃
)

and b0 =
1

d− c

∫ d

c
f(y)dy. (23)

Through substitution, we obtain

V (x,K, t) = e−r(T−t)Re

[
+∞∑

k=−∞
bkgke

i 2π

d−ckx̃

]
, (24)

where,

bk =
1

d− c

∫ d

c
fR(y)e−i

2π

d−ckydy and b0 =
1

d− c

∫ d

c
fR(y)dy. (25)

gk =

∫ d

c
G(ey)e−i

2π

d−ckydy and g0 =

∫ d

c
G(ey)dy. (26)

Because of condition (20), we can approximate bk and b0 as

B̂k :=
1

d− c
ϕ

(
2π

d− c
k

)
and

1

d− c
B̂0 := ϕ(0) = 1, (27)

respectively. Furthermore, since we only consider a vanilla call/put in this paper, their payoffs are
formulated as

U(St,K, T ) =

{
max (ex+χ −K, 0) = K max

(
ex+χ−logK − 1, 0

)
: (call)

max (K − ex+χ, 0) = K max
(
1− ex+χ−logK , 0

)
: (put)

. (28)

By considering y := x+ χ− logK and applying basis calculus, we obtain

Ĝk =

∫ d

c
max (ey − 1, 0) e−i

2π

d−ckydy

=

(
d− c

d− c− i2πk

(
e(1−i 2π

d−ck)d − 1
)

+
d− c
i2πk

(
e−i

2π

d−ckd − 1
))

(29)

for a call, and similarly, we obtain

Ĝk =

∫ d

c
max (1− ey, 0) e−i

2π

d−ckydy

=

(
d− c

d− c− i2πk

(
e(1−i 2π

d−ck)c − 1
)

+
d− c
i2πk

(
e−i

2π

d−ckc − 1
))

(30)

for a put. Accordingly, we replace bk with KGk, and the new CFS representation of (24) becomes

V (x,K, t) := e−r(T−t)KRe

[
+∞∑

k=−∞
B̂kĜke

i 2π

d−ckx̃

]
. (31)

To express our final pricing formula with the SFP representation, as we know the pricing formula
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is a real function, we can transform (31) into

V (x,K, t) := e−r(T−t)KRe

[
2
∞∑
k=1

B̂kĜke
i 2π

d−ckx̃ + B̂0Ĝ0

]
. (32)

We set exp
(
i 2π
d−c x̃

)
equal to z. The transformation z = exp

(
i 2π
d−c x̃

)
maps the interval [c, d] onto

the unit circle in z. This change also transforms the jumps ζ along f into z with the form of

ε = exp
(
i 2π
d−cζ

)
. Finally, by expressing (32) with a new variable of z, we have

2

∞∑
k=1

B̂kĜkz
k + B̂0Ĝ0. (33)

By substituting the equation above with f1(z) in (12), we obtain the approximant given by

PN (z) +

S∑
s=1

LNs(z) log (1− z/εs) =

(
2

U∑
k=1

B̂kĜkz
k + B̂0Ĝ0

)
QM (z) +O(zU+1) (34)

PN (z) =
∑N

n=0 pnz
n, QM (z) =

∑M
m=0 qmz

m 6= 0,

LNs(z) =
∑Ns

ns=0 lnsz
ns , s = 1, . . . ,S,

εs = ei
2π

d−c ζs , U = N +M +
∑S

s=1Ns.

(35)

Once we can determine the unknown coefficients of {pn}Nn=0, {qm}Mm=0 and {lns}Nsns=0 in (34) via
the algorithm shown in Appendix A and replace

2

∞∑
k=1

B̂kĜke
i 2π

d−ckx̃ + B̂0Ĝ0

with

PN (z) +
∑S

s=1 LNs(z) log (1− z/εs)
QM (z)

, z = exp

(
i

2π

d− c
x̃

)
, x̃ = x− logK

in (24), we reach our first SFP representation of a European vanilla option such that

V (x,K, t) := e−r(T−t)KRe

(
PN (z) +

∑S
s=1 LNs(z) log (1− z/εs)

QM (z)

)
. (36)

The above pricing formula can only be applied to compute the option prices with a value of K and
a range of St. However, in the financial markets, option price quotes always appear with a value of
St and a range of K. To fit in this financial phenomenon, we modify (36) by using K = Se−x̃ = ex−x̃

so that we obtain the new pricing formula of

V (x,K, t) := e−r(T−t)+x−x̃Re

(
PN (z) +

∑S
s=1 LNs(z) log (1− z/εs)

QM (z)

)
. (37)
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5. Pricing early-exercise options with the SFP–FCC method

In this section, we derive option pricing/hedging formulas for early-exercise options by using the
SFP–FCC method. We formulate a Bermudan option pricing curve as the first illustration. Then, in
the same fashion, we derive the SFP–FCC pricing formulas for the American and discrete-monitored
barrier options and their hedging formulas.

The general idea of the SFP–FCC method is first to discretise the lifespan of the options in
an equal time step. Then, starting backwards from maturity to the initial time of the option, we
present the option pricing/hedging curve that applies the CFS method at each time step. The
accuracy of the CFS method can only be guaranteed by implementing the FCC rules. Finally,
once we reach the initial time of the option, the pricing/hedging formula of the option can be
constructed by applying the SFP method.

5.1. Pricing formulae for Bermudan and American options

We consider log St := xt driven by a Lévy process and a Bermudan option with strike K and
maturity T that can be exercised only on a given number of exercise dates t = t0 < t1 ≤ t2 ≤
. . . tl ≤ tl+1 ≤ . . . ≤ tL = T. By assuming that the difference between tl and its successive tl+1 are
the same, we can write the Bermudan pricing formula for such an option as

V (xtl ,K, tl) =


U(extl ,K, tl) l = L, tL = T

max (C(xtl ,K, tl), U(extl ,K, tl)) l = 1, 2, 3, . . . , L− 1

C(xtl ,K, tl) l = 0

, (38)

where U(extl ,K, tl) is the payoff function at tl. For example, if the payoff function is a call, then
U(extl ,K, tl) is transformed into max (extl −K, 0) . In (38), C(xtl ,K, tl) at each tl can be defined
as

C(xtl ,K, tl) = e−r(tl+1−tl)E
(
V (xtl+1

,K, tl+1)|xtl
)
. (39)

= e−r(tl+1−tl)
∫ +∞

−∞
V (xtl + χ− logK, tl+1)f(χ)dχ, χ ∈ Xtl+1

−Xtl . (40)

Following the algorithm of pricing European options in Section 4, we set x̃tl = xtl − logK, replace
x̃tl+χ with ytl and choose [c, d] to satisfy (20). We can transform the equation above as a convolution
integral, i.e.,

C(xtl ,K, tl) = e−r(tl+1−tl)
∫ d

c
V (ytl , tl+1)fR(x̃tl − ytl)dytl . (41)

Due to the early-exercise feature of the option, V (ytl , tl+1) is equal to
max (C(ytl , tl+1), U(eytl , tl+1)) . Then, the integral of C(xtl ,K, tl) in (41) can be split into
two parts when we know the early-exercise point, x∗tl at tl. By supposing that we know x∗tl
(we discuss the techniques of finding x∗tl in Section 5.2), we can split the integral that defines
C(xtl ,K, tl), into two parts: one on the interval [c, x∗tl ], and the second on [x∗tl , d], i.e.,

C(xtl ,K, tl) =


∫

x∗tl

c
C(ytl , tl+1)fR(x̃tl − ytl)dytl +

∫
d

x∗tl
U(ytl , tl+1)fR(x̃tl − ytl)dytl : (call)∫

x∗tl

c
U(ytl , tl+1)fR(x̃tl − ytl)dytl +

∫
d

x∗tl
C(ytl , tl+1)fR(x̃tl − ytl)dytl : (put)

. (42)

9
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In (42), the integral of ∫
U(ytl , tl+1)fR(x̃tl − ytl) dytl

is clearly the CFS presentation of a European vanilla call or put on [x∗tl , d] or [c, x∗tl ], respectively,

because U(ytl , tl+1) is a payoff, and the CFS representation of fR(x̃tl − ytl), which is equivalent to
(22), is defined as

fR(x̃tl − ytl) = Re

[
+∞∑

k=−∞
B̂ke

i 2π

d−ck(−ytl+x̃tl )
]
, (43)

where B̂k is the same as (27). Accordingly, by using the idea of deriving the CFS European option
pricing formula in Section 4 and the result of (29) and (30), we can show that

∫ d

x∗tl

U(ytl , tl+1)Re

[
+∞∑

k=−∞
B̂ke

i 2π

d−ck(−ytl+x̃tl )
]

dytl = KRe

[
+∞∑

k=−∞
B̂kĜk[x

∗
tl , d]ei

2π

d−ckx̃tl

]
: (call), (44)

∫ x∗tl

c
U(ytl , tl+1)Re

[
+∞∑

k=−∞
B̂ke

i 2π

d−ck(−ytl+x̃tl )
]

dytl = KRe

[
+∞∑

k=−∞
B̂kĜk[c, x

∗
tl ]e

i 2π

d−ckx̃tl

]
: (put), (45)

where, Ĝk[x
∗
tl , d] and Ĝk[c, x

∗
tl ] are the closed-form Fourier integrals on [x∗tl , d] and [c, x∗tl ], respec-

tively.
When we compute ∫

C(ytl , tl+1)fR(x̃tl − ytl)dytl , (46)

it is not a straightforward case, as C(ytl , tl+1) does not have a closed-form expression at tl+1. To
solve the integral and also yield a higher accuracy of the SFP-FCC method, we first approximate
C(ytl , tl+1) with a Chebyshev series since it has a CFS representation in the previous time step.
Therefore,

C(ytl , tl+1) = Ccheb(ytl , tl+1) :=


K
∞∑
n=1

αnTn ◦ ψ[c,x∗tl ]
(ytl) : (call)

K
∞∑
n=1

αnTn ◦ ψ[x∗tl ,d](ytl) : (put)
. (47)

Here, αn is the nth coefficient, and we also define the composition of Tk ◦ ψ[yk,yk+1], where
ψ[yk,yk+1](ytl) = (2ytl − (yk+1 + yk))/(yk+1− yk) is the linear mapping from [yk, yk+1] to [−1, 1]. By

10
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substituting (47) into (46) and expanding the integral (46), we have∫ x∗tl

c
Ccheb(ytl , tl+1)fR(x̃tl − ytl)dytl

= K
+∞∑

k=−∞

∞∑
n=1

B̂kαn

(∫ x∗tl

c
Tn ◦ ψ[c,x∗tl ]

(ytl)e
−i 2π

d−ckytldytl

)
ei

2π

d−ckx̃tl : (call), (48)

∫ d

x∗tl

Ccheb(ytl , tl+1)fR(x̃tl − ytl)dytl

= K

+∞∑
k=−∞

∞∑
n=1

B̂kαn

(∫ d

x∗tl

Tn ◦ ψ[x∗tl ,d](ytl)e
−i 2π

d−ckytldytl

)
ei

2π

d−ckx̃tl : (put). (49)

In the equations above, both integrals of∫ x∗tl

c
Tn ◦ ψ[c,x∗tl ]

(ytl)e
−i 2π

d−ckytldytl , and

∫ d

x∗tl

Tn ◦ ψ[x∗tl ,d](ytl)e
−i 2π

d−ckytldytl (50)

can be simplified to

T̂n,k[c, x
∗
tl ] :=

x∗tl − c
2

e
−i d−c

x∗tl
−ckπ

∫ +1

−1
Tn(s) exp

(
i

(
−
k(x∗tl − c)π
d− c

)
s

)
ds : (call) (51)

and

T̂n,k[x
∗
tl , d] :=

d− x∗tl
2

e
−i d−c

d−x∗tl
kπ
∫ +1

−1
Tn(s) exp

(
i

(
−
k(d− x∗tl)π

d− c

)
s

)
ds : (put), (52)

respectively. We denote k̃ to be equal to either −k(x∗tl−c)π
d−c or−k(d−x∗tl )π

d−c to simplify the mathematical
notation in the equations above. Therefore, we have∫ +1

−1
Tn(s) exp(ik̃s)ds, n ≥ 0. (53)

This integral is not easy to solve numerically because it is highly oscillatory (e.g., Domı́nguez et al.
2011). To yield higher accuracy, we apply the FCC rules stated in Appendix C to compute the
integral. By using the final numerical result of (53), we can further transform (48) and (49) as

∫ x∗tl

c
Ccheb(ytl , tl+1)fR(x̃tl − ytl)dytl = K

+∞∑
k=−∞

∞∑
n=1

B̂kαnT̂n,k[c, x
∗
tl ]e

i 2π

d−ckx̃tl : (call) (54)

∫ d

x∗tl

Ccheb(ytl , tl+1)fR(x̃tl − ytl)dytl = K

+∞∑
k=−∞

∞∑
n=1

B̂kαnT̂n,k[x
∗
tl , d]ei

2π

d−ckx̃tl : (put), (55)

respectively. By substituting (44), (45), (54), and (55) back into (42), we can obtain a CFS repre-
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sentation of C(xtl ,K, tl) such that

C(xtl ,K, tl) = e−r(tl+1−tl)K


+∞∑

k=−∞
B̂k

(
Ĝk(x

∗
tl , d) +

∞∑
n=1

αnT̂n,k[c, x
∗
tl ]

)
ei

2π

d−ckx̃tl : (call)

+∞∑
k=−∞

B̂k

(
Ĝk(c, x

∗
tl) +

∞∑
n=1

αnT̂n,k[x
∗
tl , d]

)
ei

2π

d−ckx̃tl : (put)
.

(56)

We should note that the CFS representation above is working at each time step from t and tL−2.
However, at tL−1, since tL = T and V (yT , T ) = U(yT , T ), is a payoff function in (41), we simply
have a CFS European pricing formula on [c, d], i.e.,

C(xtL−1
,K, tL−1) = e−r(T−tL−1)K


+∞∑

k=−∞
B̂kĜk[0, d] ei

2π

d−ckx̃tL−1 : (call)

+∞∑
k=−∞

B̂kĜk[c, 0] ei
2π

d−ckx̃tL−1 : (put)
. (57)

Finally, to seek an SFP representation of C(xt,K, t) at time t, we first denote

Ĝk =


Ĝk(x

∗
tl , d) +

∞∑
n=1

αnT̂n,k[c, x
∗
tl ] : (call)

Ĝk(c, x
∗
tl) +

∞∑
n=1

αnT̂n,k[x
∗
tl , d] : (put)

. (58)

By starting from T using (57) and then working backwards and recursively using (56) until t, we
can reach

V (xt,K, t) = C(xt,K, t) = e−r(t1−t)K

(
2

+∞∑
k=−∞

B̂kĜkei
2π

d−ckx̃t

)
. (59)

Then, by following the step proposed in (32), we can further infer that

V (xt,K, t) = e−r(t1−t)K

(
2
∞∑
k=1

B̂kĜkei
2π

d−ckx̃t + B̂0Ĝ0

)
. (60)

Based on the equation above, we apply all the steps from (33) to (36); then, we can reach

V (xt,K, t) = e−r(t1−t)KRe

(
PN (z) +

∑S
s=1 LNs(z) log (1− z/εs)

QM (z)

)
, (61)

where z = exp
(
i 2π
d−c x̃t

)
and x̃t = xt − logK.

To evaluate American options, one simple approach is to approximate an American option by a
Bermudan option with many exercise opportunities L that go to infinity (cf. Fang and Oosterlee
2009b). An alternative approach is to use a Richardson extrapolation on a series of Bermudan
options with an increasing number of exercise opportunities. This method is first introduced in
Geske and Johnson (1984) and then described in detail in Chang et al. (2007). The CONV (Lord
et al. 2008), COS (Fang and Oosterlee 2009b) and QUAD (Andricopoulos et al. 2003) methods all
apply the same technique to price American options. In this paper, we adapt these two approaches
to demonstrate the efficiency of our method. When we use the Richardson extrapolation, we im-
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plement the 4-point Richardson extrapolation scheme proposed by Fang and Oosterlee (2009b).
Accordingly, we have the American option price given by

VAmer(L) =
1

21

(
64V (2L+3)− 56V (2L+2) + 14V (2L+1)− V (2L)

)
, (62)

where VAmer(L) denotes the approximated value of the American option.

Remark 1 We approximate C(yt, tl+1) with a Chebyshev series in (47) due to the achievement
of a lower computational cost. According to Mason and Handscomb (2002), the complexity of
calculating coefficient αn of a Chebyshev series is O(Ñ log Ñ), where Ñ is the total number of
Chebyshev terms. Moreover, as we also apply the FFC rules in (54) and (55), the complexity of
the rules is also O(Ñ log Ñ) for each complex Fourier term k up to N (cf. Domı́nguez et al. 2011).

5.2. Early-exercise point using root-finding techniques and a computational
algorithm for the Bermudan option

In this short section, we combine the SFP–FCC method with root-finding techniques, mainly
Newton’s method, to find early-exercise points. Newton’s method is first proposed in Fang and
Oosterlee (2009b) to find an early-exercise point. This technique can be used when one solves the
following equality:

C(ytl , tl+1) = U(ytl , tl+1), (63)

which appears in (42). Therefore, to find x∗tl , we can implement different root-finding techniques,
such as the secant method. In this paper, as suggested in Fang and Oosterlee (2009b), we instead
implement Newton’s method (also known as the Newton-Raphson method). The process of this
method is repeated as

xj+1 = xj −
U(ytl , tl+1)− C(ytl , tl+1)

∂
∂ytl

U(ytl , tl+1)− ∂
∂ytl

C(ytl , tl+1)
(64)

over xj for j = 1, 2, . . . until a sufficiently accurate value is reached. As we only determine whether
x∗tl lies on [c, d], if not, we set x∗tl to be equal to the nearest boundary point. In the equation, we
start with x0 equal to x∗tl+1

, the exercise point in the exercise date at tl+1, and we also know that
at maturity, T, x∗T is equal to 0. In (64),

C(ytl , tl+1) = e−r(tl+2−tl+1)K

(
Re

[
2
∞∑
k=1

B̂kĜkei
2π

d−ckytl

])
, (65)

∂C(ytl , tl+1)

∂ytl
= e−r(tl+2−tl+1)K

(
Re

[
2
∞∑
k=1

(
i

2π

d− c
k

)
B̂kĜkei

2π

d−ckytl

])
. (66)

Since C(ytl , tl+1) may suffer from the Gibbs phenomenon due to a piecewise continuous PDF, to
avoid the phenomenon and achieve a higher accuracy of finding x∗tl , we apply the SFP method to

(65) and (66). To obtain our SFP representation, we first let z = exp
(
i 2π
d−cytl

)
and then transform

all the jumps ζ into ε = exp
(
i 2π
d−cζ

)
in (65) and (66). Accordingly, this process transforms the
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CFS representation into the form

f1(z) =

{
2
∑U

k=1 B̂kĜkzk + B̂0Ĝ0,

2
∑U

k=1

(
i 2π
d−ck

)
B̂kĜkzk.

(67)

based on the equation above, by using (12), we can eventually obtain the SFP approximant given
by

PN (z)
S∑
s=1

LNs(z) log (1− z/εs) = f1(z)QM (z) +O(zU+1). (68)

By applying the approximation algorithm in Appendix A to determine the coefficients of PN , QM ,
and LNs , we can obtain the SPF formula for C(ytl , tl+1) and ∂

∂ytl
C(ytl , tl+1) with the form

e−r(t1−t)−xtKRe

(
PN (z) +

∑S
s=1 LNs(z) log (1− z/εs)

QM (z)

)
. (69)

By combining the root-finding techniques above and summarising Section 5.1, we present the
pseudo-code of our algorithm that computes Bermudan option prices in Algorithm 1.

Finally, we draw our attention to the performance or complexity of the algorithm, O, of the SFP–
FCC method. At each time step tl, since we adopt Chebfun (Trefethen et al. 2014) to calculate αn
without applying an adaptive process in (47), the complexity is O(Ñ log Ñ), where Ñ is the total
number of Chebyshev terms because Chebfun employs the fast Fourier transfer (FFT) technique,
which originated in Mason and Handscomb (2002), to calculate αn. Furthermore, we apply the FFC
rules in (54) and (55), so according to Domı́nguez et al. (2011), the complexity of the rules is also
O(Ñ log Ñ) for each complex Fourier term k up to N. Combining the computational complexities
above and considering L exercising dates, the total complexity of the SFP–FCC method is O((L−
1)(N + 1)(Ñ log Ñ)).

Remark 2 In (46), we can directly integrate both C and fR together because they both have

a CFS representation with a complex Fourier basis function e−i
2π

d−ckytl ; however, unfortunately, if
we integrate them, our numerical results suggest that less accuracy can be obtained in the SFP
framework.

5.3. Pricing formulae for discretely monitored Barrier options

A barrier option is an early-exercise option with payoff that depends on the stock price crossing
a pre-set barrier level during the option’s lifetime. We call the option an up-and-out, knock-out,
or down-and-out option when the option’s existence fades out after crossing the barrier level. Like
European vanilla options, these options can all be written as either put or call contracts that have
a pre-determined strike price on an expiration date. In this paper, we only investigate two basic
types of barrier options: down-and-out barrier (DO) options and up-and-out barrier (UO) options
for illustrations of our method.

(i) Down-and-out barrier (DO) option: A down-and-out barrier option is an option that can
be exercised at a pre-set strike price on an expiration date as long as the stock price that
drives the option does not go below a pre-set barrier level during the option’s lifetime. As
an illustration, if the stock price falls below the barrier, the option is “knocked-out” and
immediately carries no value.

14



February 24, 2020 SFP˙FFC˙V4

Result: Bermudan option price V (xt,K, t) at time t
initialisation;
discretise [t, T ] into timesteps t = t0, t1, . . . , tl, . . . , tL = T ;
tl = tL−1;

compute C(xtL−1
,K, tL−1) = e−r(T−tL−1)KRe

[
+∞∑

k=−∞
B̂kĜke

i 2π

d−ckx̃tL−1

]
stated in (57);

while tl 6= t do
express C(xtl ,K, tl) in the form of (42);
find x̃∗tl by using the root-finding technique in Section 5.2;

compute
∫
U(ytl , tl+1)fR(x̃tl − ytl) dytl by using the steps from (42) to (45);

compute
∫
C(ytl , tl+1)fR(x̃tl − ytl) dytl by using the steps from (46) to (55);

express C(xtl ,K, tl) = e−r(tl+1−tl)KRe

[
+∞∑

k=−∞
B̂kĜkei

2π

d−ckx̃tl

]
stated in (56);

next tl;

end

express C(xt,K, t) = V (xt,K, t) = e−r(t1−t)KRe
(
PN (z)+

∑S
s=1 LNs (z) log(1−z/εs)

QM (z)

)
, where

z = exp
(
i 2π
d−c x̃t

)
and x̃t = xt − logK, by using the steps from (60) to (61);

Algorithm 1: Algorithm for computing Bermudan option price V (xt,K, t) at t by using the
SFP-FCC method.

(ii) Up-and-out barrier (UO) option: Similar to a down-and-out barrier option, an up-and-
out barrier option will be knocked out when the stock price rises above the barrier level
during the option’s lifetime. Once it is knocked out, the option cannot be exercised at a
predetermined strike price on an expiration date.

The structure of discretely monitored barrier options is the same as the structure of Bermudan
options. Instead of having a pre-set exercise date and an early-exercise point like Bermudan options,
barrier options have a pre-set monitored date and a barrier level. In the case of Bermudan options,
when the stock price goes across the early-exercise point, a payoff occurs, and the option expires
immediately. In the same manner, a barrier option is immediately knocked out when the barrier
level is crossed. The barrier level acts exactly the same as the exercise point in Bermudan options.
However, in the case of a barrier option without a rebate, no payoff occurs when the barrier level
is reached; otherwise, a rebate occurs when a barrier option is knocked out.

In this paper, we only focus on a barrier option without a rebate and use a DO option to illustrate
the SFP–FCC method to approximate discretely monitored barrier option prices. Suppose that we
have a DO option driven by St with a barrier B, a strike K and a series of monitoring dates L:
t = t0 < . . . < tl < . . . < tL = T ; the option formulae can be described as

V (xtl ,K, tl) =


U(extl ,K, tl)1xtl>logB l = L, tL = T

C(xtl ,K, tl)1xtl>logB l = 1, . . . , L− 1

C(xtl ,K, tl) l = 0

, (70)

where, 1 is an indicator function, U(extl ,K, tl) is again either a call or put payoff and

C(xtl ,K, tl) = e−r(tl+1−tl)
∫ d

c
V (ytl , tl+1)fR(x̃tl − ytl)dytl . (71)

We follow the steps from (41) and (42) in Section 5.1 and replace the exercise point x̃∗tl with a
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scaled log barrier, B̃ = logB − logK. Accordingly, we can expand the equation into

C(xtl ,K, tl) = e−r(tl+1−tl)
(∫ d

B̃
C(ytl , tl+1)fR(x̃tl − ytl)dytl

)
. (72)

To compute
∫
C(ytl , tl+1)fR(x̃tl − ytl)dytl , we follow the steps from (46) to (55) in Section 5.1.

Therefore, we first approximate C(ytl , tl+1) with a Chebyshev series Ccheb(ytl , tl+1), such that

∫ d

B̃
C(ytl , tl+1)fR(x̃tl − ytl)dytl = K

+∞∑
k=−∞

∞∑
n=1

B̂kαnT̂n,k[B̃, d]ei
2π

d−ckx̃tl . (73)

By substituting (73) into (72), the CFS representation of C(xtl ,K, tl) can be formulated as

C(xtl ,K, tl) = e−r(tl+1−tl)K
+∞∑

k=−∞
B̂kĜk ei

2π

d−ckx̃tl , (74)

where Ĝk =
∞∑
n=1

αnT̂n,k[B̃, d]. We have a different expression of Ĝk in C(xtL−1
,K, tL−1) at tL−1 as

we do not apply the FCC rules to approximate a payoff function U(extL ,K, tL); therefore, we have

C(xtL−1
,K, tL−1) = e−r(tl+1−tl)K

+∞∑
k=−∞

B̂kĜk ei
2π

d−ckx̃tl , (75)

where Ĝk = Ĝk and Ĝk is either the Fourier transform of a call payoff on [B̃, d] (cf. [29]) or a
put payoff on [B̃, 0] (cf. [30]). Finally, to obtain the SFP–FCC pricing formula of the DO barrier
option, we work backwards and recursively from T to t by using (74) and (75) and then approximate
C(xt,K, t) with the SFP approximant at t by applying the steps of (60) and (61) in Section 5.1.
We present the pseudo-code of our algorithm computing DO option prices in Algorithm 2.

Result: discretely monitored barrier option price V (xt,K, t) at time t
initialisation;
discretise [t, T ] into timesteps t = t0, t1, . . . , tl, . . . , tL = T ;

compute C(xtL−1
,K, tL−1) = e−r(T−tL−1)KRe

[
+∞∑

k=−∞
B̂kĜkei

2π

d−ckx̃tL−1

]
stated in (75);

while tl 6= t do
express C(xtl ,K, tl) in the form of (74);

compute
∫
C(ytl , tl+1)fR(x̃tl − ytl) dytl as stated in (72);

express C(xtl ,K, tl) = e−r(tl+1−tl)KRe

[
+∞∑

k=−∞
B̂kĜkei

2π

d−ckx̃tl

]
as stated in (74);

next tl;

end

express C(xt,K, t) = V (xt,K, t) = e−r(t1−t)KRe
(
PN (z)+

∑S
s=1 LNs (z) log(1−z/εs)

QM (z)

)
, where

z = exp
(
i 2π
d−c x̃t

)
and x̃t = xt − logK, using the steps from (60) to (61);

Algorithm 2: Algorithm for computing discretely monitored DO barrier option price V (xt,K, t)
at time t by using the SFP–FCC method.

For the UO barrier options, we can modify Algorithm 2 to compute their prices, but we consider
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the condition of the option knocked out when the stock price rises above B, i.e.,

V (xtl ,K, tl) =


U(extl ,K, tl)1xtl<logB l = L, tL = T

C(xtl ,K, tl)1xtl<logB l = 1, . . . , L− 1

C(xtl ,K, tl) l = 0

. (76)

6. Option Greek hedging and choice of truncated intervals

This section is divided into two parts: calculating the option Greeks and choosing truncated inter-
vals. As we have previously mentioned in Chan (2018), we repeat the derivation of only two option
Greeks—Delta and Gamma. Other Greeks, such as Theta, can be derived in a similar fashion; how-
ever, depending on the characteristic function, the derivation expression might be rather lengthy.
We omit them here, as many terms are repeated. We use the Bermudan option defined in (60) as
an illustration to derive the Greeks since the derivation for other option Greeks is equivalent.

Delta is the first derivative of the value of V of the option with respect to the underlying
instrument price S. Therefore, differentiating the CFS expansion of V (60) with respect to S, we
have

∆t =
∂V (xt,K, t)

∂S
=
∂V (xt,K, t)

∂x

∂x

∂S

= e−r(t1−t)−xtK

(
Re

[
2

∞∑
k=1

(
i

2π

d− c
k

)
B̂kĜkei

2π

d−ckx̃t

])
. (77)

where x̃t = xt − logK. Similarly, we can obtain Γt by differentiating ∆t with respect to S such
that

Γt =
∂2V (xt,K, t)

∂S2
=
∂∆t

∂S
=
∂∆t

∂xt

∂xt
∂S

, (78)

and eventually,

Γt = e−r(t1−t)−2xtKRe

[
2
∞∑
k=1

(
i

2π

d− c
k

)(
i

2π

d− c
k − 1

)
B̂kĜkei

2π

d−ckx̃t

]
.

To obtain our first SFP representation of ∆, we first let z = exp
(
i 2π
d−c x̃t

)
and then trans-

form every jump ζs in ∆t into εs = exp
(
i 2π
d−cζs

)
in (77). Accordingly, this transforms the CFS

representation in (77) into the form

f1(z) = 2
U∑
k=1

(
i

2π

d− c
k

)
B̂kĜkzk. (79)

and based on the equation above, by using (12), we can eventually obtain the SFP approximant
given by

PN (z)
S∑
s=1

LNs(z) log (1− z/εs) = f1(z)QM (z) +O(zU+1). (80)
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By applying the approximation algorithm in Appendix A to determine the coefficients of PN , QM ,
and LNs , we can obtain the SPF formula for ∆t with the form

e−r(t1−t)−xtKRe

(
PN (z) +

∑S
s=1 LNs(z) log (1− z/εs)

QM (z)

)
. (81)

To determine the SFP approximant of Γt, we follow the same idea of approximating ∆t but replace
f1(z) with

2
U∑
k=1

(
i

2π

d− c
k

)(
i

2π

d− c
k − 1

)
B̂kĜkzk. (82)

We now draw our attention to wisely choosing a good truncated interval. The choice of the interval
[c, d] plays a crucial role in the accuracy of the SFP–FCC method. A minimum and substantial
interval [c, d] can capture most of the mass of a PDF such that our algorithm can, in turn, produce
a sensible global spectral convergence rate. We adopt the ideas of Fang and Oosterlee (2009a)
and Chan (2018) to choose the interval [c, d]. In this short section, we show how to construct an
interval related to the closed-form formulas of stochastic process cumulants. The idea of using the
cumulants was first proposed by Fang and Oosterlee (2009a) to construct the definite interval [c, d]
in (20). Based on their ideas, we have the following expression for [c, d]:

d =

∣∣∣∣c1 + L̃
√
c2 +

√
c4

∣∣∣∣
c = −d, (83)

where c1, c2, and c4 are the first, second and fourth cumulants, respectively, of the stochastic
process and L̃ ∈ [8, 12]. For simple and less-complicated financial models, we also obtain closed-
form formulas for c1, c2, and c4, which are shown in Table D1 of Appendix D.

7. Numerical results

The main purpose of this section is to test the accuracy and efficiency of the SFP–FCC method
through various numerical tests. This process involves evaluating the ability of the method to price
any early-exercise options and to exhibit good accuracy even when the PDF is smooth/non-smooth.
A number of popular numerical methods are implemented to compare the algorithm in terms of
the error convergence and computational time. These methods include the COS method (a Fourier
COS series method, Fang and Oosterlee 2009a), the filter-COS method (a COS method with an
exponential filter to resolve the Gibbs phenomenon; see Ruijter et al. 2015), the CONV method
(an FFT method, Lord et al. 2008), the FFT–QUAD (a combination of the quadrature and CONV
methods; see O’Sullivan 2005), and the SWIFT methods (wavelet-based methods; see Ortiz-Gracia
and Oosterlee 2013, Maree 2015, Ortiz-Gracia and Oosterlee 2016, Maree et al. 2017). When we
implement CONV, we use Simpson’s rule for the Fourier integrals to achieve fourth-order accuracy.
In the filter-COS method, we use an exponential filter and set the accuracy parameter to 10, as
Ruijter et al. (2015) report that this filter provides better algebraic convergence than other options.
We also set the damping factors of the CONV to 0 for pricing European options.

As the SFP method requests approximating jumps in logarithmic series, we only consider and
apply the endpoints c and d as our two known jumps for all non-smooth/smooth PDFs. In all
numerical experiments, we use parameter U to denote the number of terms of the SFP–FCC
method, Ñ to denote the number terms of the Chebyshev polynomials and N to denote the number
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of terms/grid points of the other variables. When we measure the approximation errors of the
numerical methods, we use absolute errors, the infinity norm errors R∞ and the L2 norm errors R2

as the measurement units. A MacBook Pro with a 2.8 GHz Intel Core i7 CPU and two 8 GB DDR
SDRAM (cache memory) is used for all experiments. Finally, the code is written in MATLAB, and
the codes to implement the COS method and the FFT method, such as the CONV method and the
like, are retrieved from von Sydow et al. (2015). In terms of computing the Chebyshev polynomials,
we use Chebfun (Trefethen et al. 2014) to generate non-adaptive Chebyshev polynomials.

We consider four different test cases based on the following PDFs and other parameters:

VG1 : S = 80− 120,K = 90, σ = 0.12, θ = −0.14, ν = 0.2,

T = 0.1, r = 0.1, q = 0. (84)

CGMY1 : S = 0.5− 1.5, K = 1, C = 1, G = 5, M = 5, Y = 0.5,

T = 1, r = 0.1, q = 0.0. (85)

CGMY2 : S = 80− 120, K = 100, C = 4, G = 50, M = 60, Y = 0.7,

T = 1, r = 0.05, q = 0.02. (86)

NIG1 : S = 100, K = 80− 120, α = 15, β = −5, δ = 0.5, T = 1,

r = 0.05, q = 0.02. (87)

In each set of parameters, VG denotes the variance gamma model (e.g. Madan et al. 1998, Madan
and Milne 1991), CGMY stands for the Carr-German-Madan-Yor model (Carr et al. 2002), and
NIG is short for the normal inverse Gaussian process (Barndorff-Nielsen 1991).

Throughout all the numerical tests in this paper, we set L̃ = 8 in (83) to obtain an accurate
truncated interval for the (filter-)COS, SFP–FCC and SWIFT methods. In the first test, we discuss
the behaviour of the error and the stability of the SFP–FCC method if M , the number of early-
exercise dates, goes to infinity. We also check how the Bermudan option prices converge to their
American option counterparts. When M approaches infinity, this leads to ∆t going to zero and to
the eventual formation of a highly peaked PDF. The VG1 is chosen for the test because relatively
slow convergence was reported for the CONV method for very short maturities in Lord et al.
(2008). In the test, the Bermudan call options without paying dividends have the same values as
their European counterparts, and the European call reference prices are generated by using the
SFP method (Chan 2018). In Fig. 1, the left-hand side of the graph shows highly peaked PDFs with
∆t = 0.1 and ∆t = 1e−05, and the right-hand side of the graph demonstrates the logarithm absolute
error of the SFP–FCC method. As we gradually increase M from 100 to 10000 (equivalent to a
decrease in ∆t from 0.001 to 1−05) and keep both U = 32 and Ñ = 128 fixed, the logarithm absolute
error remains almost equivalent throughout on the right-hand side of the graph. This phenomenon
indicates that the SFP–FCC method works stably to steadily converge Bermudan option prices to
their American option counterparts and yields a spectral convergence rate apart from the jump
(the highly peaked point). In the next test shown in Fig. 2, we compare the filter–COS, CONV,
and FFT–QUAD methods with the SFP–FCC method for pricing a Bermudan call option with the
same input parameters,VG1. In the SFP–FCC method, we set L to 1000 (equivalent to ∆t = 1−04)
and gradually increase U in a sequence of 8 (blue), 16 (red) and 32 (yellow), and Ñ is set to 128
for the SFP–FCC method. For the remaining three methods, N is ascended in a sequence of 128
(blue), 256 (red) and 512 (yellow). We compute 401 Bermudan call option prices in the range of
S from 80 to 120 and K = 90. Compared with the other methods, we observe that the SFP–FCC
method can retain spectral convergence apart from the jump, the highly peaked point, and yield a
higher accuracy than the other methods with fewer summation terms required.

In Table 1, we compare the accuracy of the SFP–FCC method with the COS method in pricing
an American put option under the CGMY model after applying the Richardson extrapolation
technique (62) to them. We use CGMY1 retrieved from Fang and Oosterlee (2009b) for the
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Figure 1. Density functions (left) of the VG model and the logarithm absolute errors (right) of the SFP–FCC method
with parameters taken from VG1. L is gradually increased in a sequence of 100 (∆t = 1−03), 500 (∆t = 2−04), 1000
(∆t = 1−04) and 10000 (∆t = 1−05), and both U and Ñ are equal to 32 and 128, respectively. L̃ = 8. Four
hundreds-one Bermudan call option prices are computed in the range of S from 80 to 120, and K is equal to 90.
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Figure 2. Comparison of the filter–COS, CONV, FFT–QUAD and SFP–FCC methods for pricing a Bermudan call
option under the VG model with parameters taken from VG1. L is set to 1000 (equivalent to ∆t = 1−04). U is
gradually increased in a sequence of 8 (blue), 16 (red) and 32 (yellow), and Ñ is set to 128 for the SFP–FCC method.
N is ascended in a sequence of 128 (blue), 256 (red) and 512 (yellow) for the other three methods. 401 Bermudan
call option prices are computed in the range of S from 80 to 120, and K is equal to 90. Apart from the jump, a
singularity causing a pole in a complex plane, spectral convergence is observed in the SFP–FCC method.

test. The test itself is a replicate of the same test in Fang and Oosterlee (2009b, Table 3). 14
reference values are computed by using the CONV method with N = 4096 and applying the same
extrapolation technique to a range of S from 0.5 to 1.5, and K equals 1. In Table 1, we increase L
from 0 to 3, and we can infer that the SFP–FCC method can achieve relatively better accuracy than
the COS method with a reduced total number of U = 256 and Ñ = 128 than N = 512 required. By
using the same input parameters of CGMY1, we examine the stability of the SFP–FCC method
when Ñ increases in Table 2. We increase Ñ twice from 64 to 512 and keep U = 256 and L = 2
the same, and both R∞ and R2 errors first decrease and then level off.
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Table 1. Comparison of the COS and SFP–FCC methods for pricing an American put option under the CGMY
model with parameters taken from CGMY1; Fourteen option prices are computed for both methods in a range of

S from 0.5 to 1.5, and K is equal to 1.

L in Eq. (62)
COS SFP–FCC

N R∞ R2 Time (sec.) U Ñ R∞ R2 Time (sec.)
0 512 4.182e-02 2.717e-01 0.896 256 128 3.180e-02 1.797e-01 0.731
1 512 1.123e-03 9.034e-03 1.528 256 128 1.580e-03 9.614e-03 1.430
2 512 2.629e-04 2.011e-03 3.066 256 128 1.659e-05 1.011e-04 3.021
3 512 2.667e-05 2.021e-04 6.164 256 128 1.670e-05 1.021e-04 6.182

Table 2. Comparison of the R∞ and R2 errors of the SFP–FCC method for pricing an American put option under
the CGMY model with parameters taken from CGMY1 when Ñ increases and L and U are kept the same.

Fourteen option prices are computed in a range of S from 0.5 to 1.5, and K is equal to 1.

L in Eq. (62)
SFP–FCC

U Ñ R∞ R2 Time (sec.)
2 256 64 3.180e-03 1.114e-02 1.530
2 256 128 1.659e-05 1.011e-04 3.021
2 256 256 1.670e-05 1.021e-04 5.282
2 256 512 1.670e-05 1.021e-04 10.082

In the final two tests, we focus on the comparison of the SFP–FCC method with the SWIFT and
COS methods in pricing the UO and DO barrier options, respectively. We set L equal to 12, and
both CGMY2 and NIG1 are taken from Fang and Oosterlee (2009b). All the reference values
are generated by using the CONLeg method–the Convolution of Legendre Series (Chan and Hale
2019). In Tables 3 and 4, the difference in computational time across methods is not large. In
Table 3, we first compare the accuracy of the SFP–FCC method with the SWIFT method under
the CGMY model. In the table, we can see that both methods can reach spectral convergence and
are comparable to each other when we compare 41 UO option prices in the range of S from 80 to
120, K equal to 100, and setting the barrier level B to 120. Finally, when pricing the DO barrier
options shown in Table 4 under the NIG model, both methods–COS and SFP–FFC–can obtain
spectral convergence when we compare 80 option prices in the range of K from 80 to 120, S = 100
and B = 80. However, the SFP–FCC method can obtain much lower R∞ and R2 errors than the
COS method when both N and U are doubled. This result indicates that the SFP–FCC method
is superior to the COS method.

Table 3. Comparison of the SWIFT and SFP–FCC methods for pricing daily-monitored (L = 12) UO call and UO
put under the CGMY model with parameters taken from CGMY2. Forty-one option prices are computed for both

methods in the range of S from 80 to 120, and K is equal to 100. The barrier level B is equal to 120. Spectral
convergence is observed in both methods.

SWIFT SFP–FCC

scale R∞ R2 Time (sec.) U Ñ R∞ R2 Time (sec.)

UO Call

2 6.419e-01 2.522 0.208 8 128 3.439e-01 8.022e-01 0.512
3 3.344e-02 1.391e-01 0.256 16 128 6.114e-02 2.398e-01 0.856
4 6.710e-04 3.231e-03 0.324 32 128 1.220e-04 4.568e-04 0.882
5 1.287e-07 4.560e-06 0.451 64 128 3.187e-09 1.260e-08 0.911
6 1.561e-12 4.850e-12 0.761 128 128 1.769e-12 5.050e-12 1.071

UO Put

2 1.313 7.307 0.206 8 128 3.353e-01 9.707e-01 0.123
3 2.115e-02 5.742e-02 0.264 16 128 1.185e-02 4.842e-02 0.251
4 5.613e-03 2.964e-02 0.336 32 128 4.663e-05 1.964e-04 0.321
5 7.178e-07 3.721e-06 0.472 64 128 6.078e-11 2.724e-10 0.425
6 2.021e-12 8.234e-12 0.761 128 128 1.825e-13 7.825e-13 0.543
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Table 4. Comparison of the COS and SFP–FCC methods for pricing daily-monitored (L = 12) DO call and DO
put under the NIG model with parameters taken from NIG1. Eighty option prices are computed for both methods
in the range of K from 80 to 120, and S is equal to 100. The barrier level B is equal to 80. Spectral convergence is

observed in both methods.
COS SFP–FCC

N R∞ R2 Time (sec.) U Ñ R∞ R2 Time (sec.)

DO Call

64 1.965e-02 5.741e-02 0.691 64 256 2.837e-03 1.382e-02 0.551
128 1.571e-03 4.244e-03 0.876 128 256 2.905e-05 1.364e-04 0.651
256 1.532e-05 4.138e-05 1.181 256 256 6.871e-08 1.418e-07 0.761
512 3.29e-09 7.867e-09 1.591 512 256 5.351e-10 3.285e-09 1.282

DO Put

64 4.212e-02 1.246e-01 0.681 64 256 3.104e-04 1.179e-03 0.701
128 2.632e-03 7.166e-03 0.712 128 256 1.479e-05 8.387e-05 0.822
256 2.811e-05 7.358e-05 1.060 256 256 2.566e-09 1.469e-08 0.981
512 5.705e-09 1.326e-08 1.460 512 256 6.377e-13 9.154e-13 1.350

8. Conclusions

We have generalised the SFP option pricing method, based on a singular Fourier–Padé series to price
and hedge early-exercise options–Bermudan, American and discretely-monitored barrier options.
We call the new method SFP–FCC, as we incorporate the SFP method with the Filon–Clenshaw–
Curtis (FCC) rules. The main advantages of the SFP–FCC method are its ability to return the
price and Greeks as a function defined on a prescribed interval rather than just point values and
its ability to retain spectral convergence under any process with a (piecewise) continuous PDF.
The complexity of the new method is O((L− 1)(N + 1)(Ñ log Ñ)), and the method itself is shown
to be either comparable or favourable to existing popular techniques in all numerical experiments.

Future research on the method will aim to theoretically validate the spectral convergence for
early-exercise options and extend the method to price options with path-dependant features un-
der the (time-changed) Lévy process. Research in this direction is already underway and will be
presented in a forthcoming manuscript.

Appendix A: Computation of the singular Fourier-Padé coefficients

The approach to computing the polynomial coefficients needed in the SFP method is fairly straight-
forward. To demonstrate the algorithm, we focus on a simple case where the option pricing and
Greek formulae are infinitely smooth apart from the jumps located at the endpoints c and d. As we

consider z = exp
(
i 2π
d−c x̃

)
in either the option pricing formula or the Greek formula, the jump of c

and d in the z-plane is −1. For the sake of simplicity, we denote f1(z) as the CFS representation of
any European-style pricing formula or its option Greek formula. With some superscripts dropped
for clarity and knowing that s = 1, in (12), we have

PN (z) + LN1
(z) log

(
1− z

ε1

)
= f1(z)QM (z) +O(zU+1), (A1)
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where N +M +N1 = U. Both LN1
and f1(z) have Taylor series and CFS expansions, respectively,

to determine U; therefore, their expansions are

log

(
1− z

εs

)
=

U∑
k=1

−z
k

εk1
+ 0 (A2)

f1(z) = 2
U∑
k=1

B̂kĜkz
k + B̂0Ĝ0. (A3)

Our goal is to derive a linear system for the unknown polynomial coefficients. Note that QM (z)
and LN1

(z) are determined only by terms of an order greater than N . Accordingly, we seek a linear
solution to

[
B̂Ĝ −L

] [q
l

]
= 0. (A4)

Here, B̂Ĝ is the (M +N1 + 1)× (M + 1) Toeplitz matrix
B̂U

2
+1ĜU

2
+1 B̂U

2
ĜU

2
· · · B̂1Ĝ1

B̂U

2
+2ĜU

2
+2 B̂U

2
+1ĜU

2
+1

. . . B̂2Ĝ2

...
...

. . .
...

B̂U ĜU B̂U−1ĜU−1 · · · B̂U

2
ĜU

2
,

 (A5)

and L is the (M + N1 + 1) × (N1 + 1) matrix defined similarly by using the Taylor coefficients of
log(1+z). The vectors q = {qm}Mm=0 and l = {ln1

}N1

n1=0 hold the unknown polynomial coefficients
in order of increasing degree. As the column dimension of the matrix in (A4) is one greater than
its row dimension, we can conclude that there is one nonzero solution to (A4). In many cases,
this can be made into a square system by choosing, for example, q0 = 1. However, if one does not
want to assume that any particular coefficient is nonzero, one can solve (A4) by a singular value
decomposition. Finally, the unknown coefficients of p = {pn}Nn=1 can be obtained by multiplication
through the following matrix system:

p =


B̂0Ĝ0

B̂1Ĝ1 B̂0Ĝ0
...

. . .
. . .

B̂U

2
ĜU

2
· · · · · · B̂0Ĝ0

q−


l0
l1 l0
...

. . .
. . .

lU
2
· · · · · · l0

 l. (A6)

If there is more than one jump in the option pricing/Greek curve (A1), this suggests the following
modification of the equation:

PN (z) + LN1
(z) log

(
1− z

ε1

)
+ . . .+ LNs(z) log

(
1− z

εS

)
= f1(z)QM (z) +O(zU+1). (A7)

Accordingly, we must modify (A4) to produce a new L matrix and a vector of coefficients for
each location to reflect the changes. According to Driscoll and Fornberg (2001, 2011), there is no
rigorous optimal formula for choosing the degrees M, N, and N1,. . . ,Ns. Because the denominator
polynomial QM is shared, we allow M to be the largest, with the others being equal as much as
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possible. For the case of just one jump, taking N at roughly 40% of the total available degrees
of freedom seems to work well. Experiments suggest that these choices can affect the observed
accuracy, occasionally by as much as an order of magnitude, but on average, there is little variation
within a broad range of choices.

Appendix B: Locating jumps in probability density functions

Many PDFs (cf. Fig. B1) of interest are not smooth but piecewise smooth. If the locations of all
jumps are not known in advance in the PDFs, we can also use Fourier-Padé ideas (cf. Driscoll
and Fornberg 2011, Chan 2018) to estimate the locations of jumps sufficiently well to allow good
reconstruction nearly everywhere in the interval [c, d].

Here, g is approximated by
∑M+N

k=0 bkx
k,. To obtain the approximant R(N,M), we simply cal-

culate the coefficients of polynomials PN and QM by solving a system of linear equations. To
obtain {qm}Mm=0, we first normalise q0 = 1 to ensure that the system is well determined and has a
unique solution in (4). Then, we consider the coefficients for xN+1, . . . , xM+N , and we can yield a
Toeplitz*1 linear system: 

bN+1 bN bN−1 · · · bN+1−M

bN+2 bN+1 bN
. . . bN+2−M

...
. . .

. . .
. . .

...
bN+M · · · bN+2 bN+1 bN



q0

q1
...
qM

 = 0. (B1)

Once {qm}Mm=0 is known, {pn}Nn=0 is found through the terms of order N and less in (4). This
yields p = Bq, where bij = bi−j . For example, if N = M, one obtains

p0

p1
...
pN

 =


b0
b1 b0
...

. . .
. . .

bN · · · b1 b0



q0

q1
...
qM

 . (B2)

Now, assuming g is a PDF, to find the jumps in g and to express g in a Fourier-Padé series, we
first express g with the CFS representation:

Re

[
2
∞∑
k=1

ϕ

(
2π

d− c
k

)
e−i

2π

d−ckx + ϕ (0)

]
. (B3)

Then, we can differentiate (B3) with respect to x to obtain

Re

[
2

∞∑
k=1

−
(
i

2π

d− c
k

)
ϕ

(
2π

d− c
k

)
e−i

2π

d−ckx

]
. (B4)

Finally, we let z = exp
(
i 2π
d−cx

)
in the two equations above, and they are ready for the Fourier-Padé

approximation. In general, when the PDF has a jump, the sharp-peaked jump point will have an

1A Toeplitz matrix or diagonal-constant matrix is an invertible matrix in which each descending diagonal from left to right is

constant.
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enormously large value after differentiation. In other words, Fig. B1 is a graphical illustration of the
outlooks of the PDF (left) and the first derivative (right) of the VG model after the Fourier-Padé
approximation. In the figure, we can see that the non-smooth PDF with a jump can produce a
value of 10× 1011 at the jump point after the first derivative.

Appendix C: Accurate computation of the weights

We adopt Domı́nguez et al. (2011)s’ algorithm to compute

wn(k̃) :=

∫ +1

−1
Tn(s) exp(ik̃s)ds, n ≥ 0. (C1)

For the sake of clear mathematical notations, we finally assume the total number of a Chebyshev
series as described in (C1), which is N in this section.

C.1. Algorithm: for n ≤ N ≤ k̃ (first phase)

First, based on the idea of Un = 1/(n + 1)T ′n+1 (cf. Abramowitz and Stegun 1965, Eq. (22.5.8)),
where Un is the nth Chebyshev polynomial of the second kind, we can see that

ρn(k̃) :=

∫ +1

−1
Un−1(s) exp(ik̃s)ds =

1

n

∫ +1

−1
T ′n(s) exp(ik̃s)ds. (C2)

Then, according to Domı́nguez et al. (2011, Section 4), their computation algorithm leads to

wn(k̃) := γn(k̃)− n

ik
ρn(k̃), n ≥ 1, w0(k̃) := γ0(k̃). (C3)

Here,

γn(k̃) =

{
2 sin k̃
k̃

for even n
2 cos k̃
k̃

for odd n
, γ0(k̃) =

1

ik̃

(
exp(ik̃)− exp(−ik̃)

)
, (C4)

and ρn(k̃) can be determined based on the recurrence relationship,

2γn(k̃)− 2n

ik
ρn(k̃) = ρn+1(k̃)− ρn−1(k̃), n ≥ 2, (C5)

with

ρ0(k̃) := γ0(k̃) and ρ2(k̃) := 2γ1(k̃)− 2

ik
γ0(k̃), (C6)

If n ≤ N ≤ k̃, by using (C4) for computing γn(k̃) and (C5) and (C6) as a forward recurrence for
ρn(k̃), we can stably obtain a vector of {wn(k̃)}Nn=0. We summarise the computation in Algorithm 3.

According to Domı́nguez et al. (2011, Theorem 5.1 and Corollary 5.2), the stability for n ≤ N ≤ k̃
is proved. However, the algorithm becomes unstable when n ≥ k̃ and n ≤ k̃ ≤ N.
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1: Compute

ρ1(k̃) := γ0(k̃), (C7)

ρ2(k̃) := 2γ1(k̃)− 2

ik̃
γ0(k̃), (C8)

ρn+1(k̃) := 2γn(k̃)− 2

ik̃
γn(k̃) + ρn−1(k̃), n = 2, . . . , N − 1, N ≤ k̃. (C9)

2: Set

wn(k̃) := γn(k̃)− n

ik
ρn(k̃), w0(k̃) := γ0(k̃), n = 1, 2, . . . , N, N ≤ k̃ (C10)

Algorithm 3: Algorithm: for n ≤ N ≤ k̃ (first phase)

C.2. Algorithm: for n ≤ k̃ < N (second phase)

According to Domı́nguez et al. (2011)s’ algorithm, if n ≤ k̃ < N, we must modify Algorithm 3. In
this case, we introduce the integers n0 =

⌈
k̃
⌉
, the ceiling function mapping k̃ to the least integer

greater than or equal to k̃, and M ≥ n0, the tridiagonal matrix and the right-hand side vector

AM (k̃)ρM (k̃) = bM (k̃), (C11)

where

AM (k̃) =



2n0

ik̃
1

−1 2(n0+1)

ik̃
1

−1 2(n0+2)

ik̃
1

. . .
. . .

. . .

−1 2(2M−1)

ik̃


, bM (k̃) :=


2γn0

(k̃) + ρn0−1(k̃)

2γn0+1(k̃)

2γn0+2(k̃)
...

2γ2M−1(k̃) + ρ2M (k̃)

 (C12)

ρM (k̃) :=
[
ρn0

(k̃) ρn0+1(k̃) ρn0+2(k̃) · · · ρ2M−1(k̃)
]T
. (C13)

Since AM (k̃) is a tridiagonal matrix, we can use Oliver’s algorithm (Oliver 1967), proposed by
Domı́nguez et al. (2011), to solve (C11) to obtain ρM (k̃). The coefficients γn(k̃) and ρn0−1(k̃)
can be obtained by Algorithm 3. The value of ρ2M (k̃) is a priori unknown, but if we take 2M as
sufficiently large, we can approximate it accurately by using an asymptotic expansion as shown in
the next algorithm.

C.3. Algorithm: for k̃ < n < N (thrid phase)

According to Domı́nguez et al. (2011, Theorem 3.1), if M is sufficiently large, then we can compute
the asymptotic expansion of ρ2M (k̃) with the formula

2i

(
J∑
r=0

(−1)rp2r(0) sin k̃ +
J∑
r=0

(−1)rp2r+1(0) cos k̃

)
+RJ(M,k), (C14)
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where the coefficients are defined as

p0(θ) :=
1

(2M − k̃ sin θ)
, pr(θ) := p0(θ)

d

dθ
pr−1(θ), r = 1, 2, . . . , (C15)

and |RJ(M,K)| ≤ CJ k̃M
−2J−4, and CJ is independent of M and k̃. If θ = 0, the first four

coefficients can be formulated as follows:

p0(0) :=
1

2M
, p1(0) :=

k̃

(2M)3
, p2(0) :=

3k̃2

(2M)5
, p2(0) :=

(15k̃2 − 4M2)k̃

(2M)7
. (C16)

We summarise the ideas above in Algorithm 4.

1: Set n0 = dk̃e;
2: Take M ≥ max(n0/2, N/2) as sufficiently large and compute ρ2M (k̃) using (C14);

3: Construct AM (k̃), bM (k̃) as in and solve a linear system of equations:

AM (k̃)ρM (k̃) = bM (k̃)

to obtain a vector of ρM (k̃);

4: Set wn(k̃) := γn(k̃)− n
ikρn(k̃), n = n0, . . . , N.

Algorithm 4: Algorithm: for k̃ < n < N (second phase)

Remark 3 Based on all the algorithms proposed by Domı́nguez et al. (2011), the FCC rule applied
to solve (C1) only requires O(N logN) operations.

Appendix D: Table of cumulants

In Table D1, we show the first c1, second c2, and fourth c4 cumulants of the GB model, NIG
model, VG model and CGMY model. In the CGMY model, we only present the cumulants when
Y ∈ (0, 2)/{1} because when Y = 1, it becomes the VG model. Given the characteristic functions,
the cumulants can be generally computed by using

ck =
1

ik
∂k logϕ(z)

∂zn

∣∣∣∣
z=0

.
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Figure B1. Density functions (left) of the VG model and its first derivative (right). The parameters are taken from
VG1.

Table D1. The first c1, second c2, and fourth c4 cumulants of various models.
Lévy models
BS c1 = (r − q + ω)t c2 = σ2t, c4 = 0, ω = −0.5σ2

NIG c1 = (r − q + ω)t+ δtβ/
√
α2 − β2

c2 = δtα2(α2 − β2)−3/2

c4 = δtα2(α2 + 4β2)−3/2(α2 − β2)−7/2

ω = −0.5σ2 − δ(
√
α2 − β2 −

√
α2 − (β + 1)2)

VG c1 = (r − q + θ + ω)t
c2 = (σ2 + υθ2)t
c4 = 3(σ4υ + 2θ4υ3 + 4σ2θ2υ2)t
ω = 1/υ log(1− θυ − σ2υ/2)

CGMY c1 = (r − q + ω)t
c2 = (CΓ(2− Y )(MY−2 +GY−2)t
c4 = (CΓ(4− Y )(MY−4 +GY−4)t

ω =
(
CΓ(−Y )GY

((
1 + 1

G

)Y − 1− Y
G

)
+ CΓ(−Y )MY

((
1− 1

M

)Y − 1 + Y
M

))
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