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Abstract: This paper investigates the influence of international oil prices on China’s 

stock market returns across twenty-nine different industries. It attempts to account for any 

structural breaks and nonlinearity in this relationship. The results find that the effect of 

changes in the international price of oil on stock returns differs substantially across 

industries. The stock returns of the coal, chemicals, mining and oil industries are found 

to be positively affected by crude oil price movements. Conversely, electronics, food 

manufacturing, general equipment, pharmaceuticals, retail, rubber and vehicle industries 

are found to be negatively affected by movements in the price of crude oil. The results of 

the estimations also suggest that the majority of Chinese industries have been 

significantly affected by oil prices since 2004. The influence of international oil prices on 

Chinese stocks was also found to have a stronger effect in the presence of high volatility, 

but the effect varies across industries.  
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I． Introduction 

 

Oil is an important commodity and an essential component of a modern industrial 

economy. This is particularly true for China, the largest developing country in the world. 

According to China’s General Administration of Customs (GAC), the crude oil 

dependency ratio stood at 65.9% in 2016. In the first half of 2017, China imported an 

average of 8.55 million barrels per day, replacing the US as the worlds largest oil 

importing nation.  Energy analysts predict that this trend will continue as China’s new 

urban construction and the Belt and Road Initiatives advance under a new strategy of 

economic stimulus planned by policymakers. Reforms in China’s oil refining industry, 

which began in the second half of 1998, have strengthened the link between domestic and 

international oil prices. Therefore, it could be argued that the relationship between 

international crude oil prices, the Chinese economy and China’s financial markets is as 

strong and as important as ever. With this in mind, studying and understanding the impact 

of changes in international oil prices on China’s economy is of the utmost importance, 

not only for policy makers in China, but also for prospective investors globally.  

Stock prices are influenced by changes in the price of oil through the change in the 

operating cost of companies and wealth transfer effects (Gogineni, 2010). In addition, the 

contagion between the oil and stock market occurs due to the financial characteristics of 

both oil and stock prices. Given these arguments it is clear that, theoretically speaking, 

changes in the price of international crude oil could bring about significant changes to 



Chinese stock returns. The mechanism that oil price shocks impose on listed companies 

is not uniform across all industries however. For example, higher oil prices can affect one 

industry negatively but another positively. Therefore, the impact on stock returns might 

vary in direction and degree from industry to industry. A key consideration is whether or 

not crude oil is an essential input for the industry.  

We therefore investigates the oil price-stock market relationship in China from 2002-

2015 from the perspective of different stock industries. This paper has a number of novel 

features. First of all, the impact of oil price changes on industry stock returns is tested for 

uniformity across industries through a seemingly unrelated regression (SUR) model. 

Secondly, any nonlinear relationship between the variation in oil prices and China’s stock 

returns is accounted for. The sample period is characterized by a number of important 

events in the Chinese A-share market such as the split share structure reform in 2005, the 

2008 Global Financial Crisis and the recent boom and crash of stock prices in China. 

These events, along with others, may have caused the relationship between the crude oil 

market and the Chinese stock market to change over time. By accounting for these 

changes, it can be determined if the effect of oil price variations on industry returns has 

switched in any significant way, based for example, on the degree volatility.  

 

 

 

 



II. The Effect of Oil Prices on Stock Markets 

 

The channel by which oil price changes affect the stock market is complex and differs 

depending on firm performance and the strength of the macroeconomy. There seems to 

be a consensus that positive shocks to oil prices have negatively depressed 

macroeconomic activities (Katircioglu et al., 2015), but the effect varies across economies 

and sectors. Generally speaking, the negative relationship between stock market returns 

and oil price shocks for oil importing economies has been accepted as a stylized fact 

(Sadorsky, 1999; Park and Ratti, 2008). Filis et al. (2011) indicate that the relationship 

between oil prices and stock markets is strongly negative in periods of non-economic 

crisis, while positive during periods of economic crises or booms. Precautionary demand 

shocks result in a negative correlation, whereas aggregate demand-side shocks lead to a 

positive correlation.  

The situation may be very different for oil-exporting nations however. Hammoudeh 

and Choi (2006) display that the oil prices and the S&P 500 index have no effect on Gulf 

Cooperation Council (GCC) stock returns. Arouri and Rault (2012) show the existence of 

a strong and positive long-run relationships between oil prices and stock markets in GCC 

countries, with the exception of Saudi Arabia. Akoum et al. (2012) on the other hand 

suggests that oil returns and other stock market returns in the GCC are not strongly 

correlated in the short term (fluctuations at frequencies between two weeks and six 

months) but correlated in the long term (fluctuations at frequencies over six months). This 



conclusion is confirmed by Sukcharoen et al. (2014) who suggest a weak and symmetric 

dependence for the majority of developed and developing nations, with the exception of 

the US and Canada1.  

Recent literature has examined the relationship between oil prices and oil-related 

industries or sectors. For example, both Boyer and Filion (2007) and El-Sharif et al. (2005) 

investigate the relationship between oil prices and stock returns from oil companies in the 

Canada and the UK with both finding a positive relationship between the variables. 

Nandha and Brooks (2009) examine the response of the transportation sector to changes 

in oil prices in thirty-eight countries and find conflicting results across countries – the 

authors find that oil prices have a negative influence on transportation sector stock returns 

in developed countries, but no evidence of a significant role is found in Asia or Latin 

America. Nandha and Faff (2008) examine the extent of oil price shocks on 35 Datastream 

global industrial indices for the period April 1983 to September 2005. Their findings 

suggest that increases in oil prices have an adverse impact on stock returns for all sectors 

with the exception of mining, oil and gas industries. Meanwhile, their results display a 

symmetric response of stock market returns to oil prices. This is contrary to the findings 

of Arouri (2011) who extends the methodology of Nandha and Faff (2008) and finds 

asymmetry in the relationship between changes in oil prices and industries such as health 

care, basic materials, personal and household goods & utilities.  

Other studies in the area have begun to focus on the relationship between oil and 

                                                        
1 The authors exclude oil and gas stock companies from the aggregate market indices. 



alternative energy industries. Henriques and Sadorsky (2008) and Kumar et al. (2012), 

employing a VAR model, conclude that there is a positive relationship between oil prices 

and alternative energy returns. Managi and Okimoto (2013) add the Markov-switching 

framework to a recursive structural VAR model in order to account for possible structural 

breaks in the relationship between oil prices and clean energy stock returns. They find a 

positive relationship after 2007, before which the positive relationship is not statistically 

significant.  

Despite China’s prominence in the global economy and its ever increasing demand 

for oil, research on the relationship between oil prices and China’s stock market is still 

relatively scarce. Considering cross-sectional dependence, heterogeneity, and multiple 

breaks, Li et al. (2012) use panel cointegration to examine the long term relationship 

between oil prices and the stock indices of 13 different industry sectors in China. Counter-

intuitively, their findings show that real oil prices have had a positive impact on sectorial 

stocks in the long run and there is no short-run Granger causality between them. The 

results also suggest that energy-related stocks are more sensitive to oil price volatility in 

China’s stock market. These arguments are supported by Cong et al. (2008) and 

Broadstock et al. (2012).  

While the literature has dealt with, albeit scarcely, the effect of oil prices on China’s 

stock returns across different sectors, few studies of the structural break in the relationship 

between oil and Chinese stock markets since the onset of domestic refined oil price reform 

can be found. There is a distinct lack of research emphasizing the nonlinear relationship 



between oil price and Chinese stock returns across industries. This paper will attempt to 

examine this relationship by estimating both a breakpoint model and Markov switching 

(MS) model in the examination of the relationship between oil prices and the Chinese 

stock market.  

 

III. Model and Data Description 

 

1. Model Specification and Variables 

According to stock evaluation theory, stock prices are closely associated with dividends, 

cash flows, net profits of firms, as well as the discount rate. Any factors that affect these 

variables will lead to changes in the stock price. Oil is an indispensable raw material for 

the production process of firms. Therefore, the change in oil prices will influence 

dividends, cash flows and net profit of the firm which will inevitably effect stock prices. 

Fama and French (1993) identify the common risk factors related to firm size and book-

market in the returns on stocks. Therefore, these two variables have been considered as 

the control variables in investigating the relationship between oil and stock markets (see 

for example Broadstock et al., 2012). Finally, the discount rate is highly correlated with 

interest rates and macro-economic performance. In this paper, we do not introduce this 

variable directly. Instead, we introduce a market index return. The impact of macro-

economic variables on stock prices will therefore be reflected through this stock market 

index. Based on this analysis, we use the conventional asset pricing model to investigate 



the effect of international oil price changes on industry stock returns.  
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Where N  is the number of industries; T  is the observation for each industry; tiR ,  is 

the daily return for given industry i ; toR ,  is the international oil price change; tmR ,  

is the stock market return, the average return across companies traded on the Shanghai 

and Shenzhen stock exchanges2; tSMB  (Small Minus Big effect) and tHML  (High 

Minus Low effect) are obtained from the RESSET database to capture the firm size effect 

and book to market equity effect respectively; tD , is a dummy variable equal to unity 

during the financial crisis3 and zero otherwise and captures differences in the relationship 

between oil and stock between crisis periods and non-crisis periods (Arouri, 2011).  

In Eq. (1), it is assumed that each error term ie  is unrelated across industries. This 

presents a problem however. Firstly, it is difficult to identify all factors affecting the 

industry return in the asset pricing model, which will ultimately lead to the correlation of 

error terms across industries in Eq. (1). Secondly, industry stock prices tend to co-move 

together due to contagion among industries. Therefore, the disturbances are likely to be 

highly correlated across industries. In this situation, a single equation regression for each 

industry could bias the regression results. Therefore, the seemingly unrelated regressions 

                                                        
2 This excludes returns of companies within the industry i  itself, in order to avoid spurious 
correlation 
3During the sample periods, two financial crises occurred: 2008 Global Financial Crisis (GFC) (April 
2, 2007-June 1, 2009) and European Sovereign Debt Crisis (ESDC) (April 23, 2010-December 15, 
2013).  



(SUR) is used to alleviate this problem. In this case, the SUR regression pools 29 

equations together and estimates the equations simultaneously.  

While there is no standard test for the specification against an alternative hypothesis 

of uncorrelated disturbances for the general SUR model without an assumption of 

normality, the Lagrange multiplier (LM) test based on the correlation matrix does have 

some intuitive appeal. The LM statistic is  
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if the null 

hypothesis of diagonality is correct.  

The SUR model assumes that the parameters do not vary over time. Despite this 

assumption, structural breaks, which can be described as the variation of parameters at 

dates in the sample period, can play a major role in applied time series analysis. This is 

particular true of China given that it has experienced many domestic oil price reforms, 

especially over the estimation period in question. Furthermore, international oil prices 

themselves are notoriously volatile. The estimation period also includes the Global 

Financial Crisis and European debit crisis, both of which may have led to significant 

breaks in the time series. With this in mind, a linear regression model that is subject to 

structural breaks is estimated.  

In this paper, we adopt Bai and Perron (2003) (hereafter BP) model to identify 

multiple structural changes at unknown break dates by globally minimizing the sum of 



squared residuals. It has been well documented that the relationship between international 

oil prices and Chinese stocks is unstable (for example Li et al., 2012). The BP procedure 

is useful if this is the case as it allows us to find the optimal number of breaks implied by 

the data and then estimate the parameters of the processes between breaks.  

The BP model assumes that there exists a maximum of m  breaks in the T   

observations. The partial structural change model is,  

tjttt uzxy ++= δβ ''   jj TTt ...,,11 += −                                 （3）          

Where 1,...,1 += mj , y  is the independent variable. )1( ×pxt  and )1( ×qzt  are the 

vectors of covariates. The coefficients of the former are not subjected to change and 

estimated using the entire sample, and those of the latter are allowed to shift across 

segments. Under the condition of p=0, Eq. (3) is transformed into a pure structural change 

model. The breakpoints )...,,( 1 mTT  together with the coefficients are to be estimated 

simultaneously by a minimum global sum of squared residuals.  

BP (2003) outlines the principle for selecting the optimal number of breakpoints. 

First, we should examine the UDmax statistics for the presence of at least one break. If 

the presence of at least one break is identified, then the number of breaks can be decided 

based on the condition that the tests )|1( ll +SupF  are insignificant. Therefore, l  can 

be defined as the optimal number of breaks.  

The breaks in the time series associated with these events may make linear models 

inappropriate for investigating the relationship between oil prices and stock markets over 

time. To fully capture the nonlinearity, the relationship between oil price changes and 



Chinese stock industry returns is examined using a Markov switching (MS) model. This 

technique has been used to examine the relationship between oil prices and stock markets 

in advanced economies (Reboredo, 2010; Managi and Okimoto, 2013; Balcilar et al., 

2015), but it has seldom been applied to China’s stock prices. The MS model is that in 

Eq. (1), ),0(~
tSt Ne Ω , where tS  is the unobserved state variable, following a first-

order Markov chain with transition probability ijp . It is assumed that two regimes are 

sufficient to describe the dynamic interactions between oil and stock markets. The 

transition matrix can be written as; 
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The transition probability ijp  gives the probability that state i  will be followed by 

state j . While often assumed to be invariant, in this paper the transition probability is 

allowed to vary with changes in the price of oil. This allows examination of the influence 

of the events in the international oil price market on the transition probability. The 

parameterization of the time-varying transition probability is; 
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Based on Hamilton (1989), The MS model is estimated using maximum likelihood 

method. The likelihood ratio (LR) test is used to decide which model should be chosen: 

a standard linear model, a standard MS model, or a time-varying MS model. 

 



2. Summary Statistics 

This study forms the industry index by categorizing the company on the basis of the 

relationship between oil and the characteristics of the main operating revenue of a listed 

company, with reference to the criteria described by the CSRC (2012). In other words, 

listed companies that have similar characteristics and other links with the oil industry are 

merged into one industry. Additionally, a new industry is formulated, “New Energy 

industry” which does not exist in the classification of CSRC (2012). The listed companies 

in this “new energy industry” include wind, solar, nuclear, geothermal energy and 

environmental protection companies which are otherwise scattered throughout different 

industries of CSRC (2012). In the sample, “ST” shares or “*ST” shares are excluded 

because these stocks have a daily price up/down limit of 5% as opposed to 10% limit for 

ordinary shares. In addition, these shares often fluctuate more than their counterparts. 

Based on the classification criteria specified above, 29 industries are constructed4. 

The sample covers 2570 listed companies during the sample period, accounting for 94 

percent of total listed companies in China. To capture the effect of international oil prices 

on stock industries since the launch of oil price reform in China, the daily closing price 

series for listed companies from January 1st 2002 to April 30th 2015 are collected. 

Industry return is the average return of listed companies in a particular industry 

                                                        
4They are Agriculture, Chemicals, Coal, Computer, Construction, Culture, Electricity, Electronics, 
Finance, Food Manufacturing (Food), General Equipment (G. Equipment), Mining, Metal Product, 
Instrument and Meter (I. M.), New Energy, Nonmetal, Oil, Others, Paper, Pharmaceuticals, Real Estate, 
Retail, Rubber, Software, Special Equipment (S. Equipment), Textile, Transportation, Utilities, 
Vehicles.  



classification. The returns are calculated by differencing the natural logarithms of prices 

and multiplying by 100. During the sample period, there are at least 7 listed companies 

per industry in the sample. This ensures that any high volatility in stock prices caused by 

idiosyncratic information of a listed company will not dominate any dramatic change in 

the return for a given industry. Brent daily spot prices are used as a representative of 

international crude oil prices. Stock closing prices come from Wind Information Co. Ltd. 

The Brent Crude Oil series, denominated in dollars per barrel, was sourced from the 

Energy Information Administration (EIA). 

Table 1 reports the descriptive statistics for daily stock returns across industries and 

the Brent Crude Oil series. There are 6 industries displaying negative daily returns across 

29 industries, namely, Computer, Electronics, Instrument and Meter, Paper, Software, 

Textile. The Instrument and Meter industry has the lowest return but the highest standard 

deviation across all industries, while the Special Equipment industry has the highest 

returns with a relatively low standard deviation compared to other industries. Although 

the average of oil price changes is slightly greater than that of Chinese stock returns, oil 

prices have a higher standard deviation than most industry stocks during the sample 

period. This indicates a greater level of volatility in the international oil market. All the 

industry returns, except the New Energy industry, are negative skewed, indicating that the 

bulk of the returns are found to the right of the mean returns. The ADF test statistics 

strongly reject the null hypothesis that returns have a unit root indicating that returns are 



stationary for all industries and the Brent Crude Oil series5. Surprisingly, the correlations 

between each industry (excluding new energy industry) and Brent Crude Oil are found to 

be positive.  However, the correlation is small and never exceeds 0.1. 

 
Table 1. Descriptive Statistics for Oil and Stock markets 

Industry Mean(%) Std.dev Skew. ADF Corr. 
Agriculture 0.0173 2.1118 -0.5253 -30.72*** 0.0407 
Chemicals 0.0019 2.0835 -0.6450 -30.56*** 0.0430 

Coal 0.0366 2.3253 -0.1544 -31.44*** 0.0904 
Computer -0.0108 2.1609 -0.5895 -30.92*** 0.0338 

Construction 0.0459 2.0639 -0.5096 -30.35*** 0.0335 
Culture 0.0436 2.0865 -0.5425 -29.73*** 0.0300 

Electricity 0.0421 1.9600 -0.6336 -30.63*** 0.0355 
Electronics -0.0079 2.0437 -0.5990 -30.68*** 0.0264 

Finance 0.0553 2.0156 -0.3986 -30.31*** 0.0445 
Food  0.0211 1.9166 -0.4388 -30.89*** 0.0124 

G. Equipment 0.0491 2.1281 -0.6532 -31.01*** 0.0263 
Mining 0.0161 2.1264 -0.4449 -30.64*** 0.0767 

Metal Product 0.0321 2.0811 -0.7207 -31.95*** 0.0296 
I. M.  -0.0300 2.6085 -1.0491 -30.60*** 0.0034 

New Energy 0.0479 0.8839 4.0949 -6.70*** -0.0207 
Nonmetal 0.0301 2.0915 -0.5734 -30.54*** 0.0421 

Oil 0.0432 1.9940 -0.4267 -30.81*** 0.0731 
Others 0.0110 2.1908 -0.5368 -31.22*** 0.0403 
Paper -0.0072 2.0386 -0.6686 -31.26*** 0.0285 

Pharmaceuticals 0.0062 1.9523 -0.5459 -30.75*** 0.0192 
Real Estate 0.0302 2.1109 -0.5565 -30.29*** 0.0388 

Retail 0.0136 1.9665 -0.6901 -30.44*** 0.0274 
Rubber 0.0514 2.0260 -0.6020 -30.65*** 0.0198 

Software -0.0028 2.1963 -0.4612 -30.52*** 0.0299 
S. Equipment 0.0584 2.0443 -0.5510 -30.72*** 0.0344 

Textile -0.0031 2.0163 -0.7358 -30.34*** 0.0317 
Transportation 0.0293 1.8908 -0.6212 -30.72*** 0.0354 

Utilities 0.0560 2.0562 -0.6202 -30.66*** 0.0328 
Vehicle 0.0553 2.0453 -0.5952 -31.05*** 0.0185 
Brent 0.0319 2.1157 -0.0657 -31.25*** 1.0000 

Notes: ‘ARD’ model (autoregressive model with drift variant) with 2 lagged difference is chosen for 

                                                        
5 Phillips–Perron (PP) test and Kwiatkowski et al. (KPSS) tests also show this result and are 
available upon request. 



the ADF test. Corr. is the correlation of industry returns with Brent oil returns. *** represents 
significance at 1% level. 

 

IV.  Empirical Results 

 

1. The SUR Model 

From the OLS regression of the 29 industries, the correlation matrix of residuals for Eq. 

(1) can be obtained. The LM statistic is 13202 and the critical value from the chi-squared 

table is 454. With the null hypothesis rejected, it is concluded that the disturbances of the 

industry model are not unrelated. Therefore, we can conclude that it is appropriate to use 

SUR to estimate Eq. (1) for the 29 industries. 

Table 2 reports the results of the SUR model. Not surprisingly, the coefficients 

relating industry return to Brent Crude prices vary from one industry to another with 

coefficients range from -2.34 (Instrument and Meter industry) to 5.04 (Coal industry)6. 

There are 11 industries with returns that are positively influenced by international oil price 

changes. These are the Agriculture, Chemicals, Coal, Computer, Culture, Finance, 

Mining, Nonmetal, Oil, Others and Software industries. The remaining 18 industries on 

the other hand have a negative relationship with changes in oil prices. Of the 29 

coefficients, only 11 are significant at the 5% level. Among the significant coefficients, 

there are 7 industries with a negative relationship (Electronics, Food Manufacturing, 

General Equipment, Pharmaceuticals, Retail, Rubber and Vehicle) and 4 with a positive 

                                                        
6For the sake of ease notation, in this paper the coefficients on oil price changes have been scaled up 
100 times.   



relationship (Chemicals, Coal, Mining and Oil). The Food Manufacturing industry is most 

negatively affected by international oil price fluctuations among the 7 industries, with a 

coefficient of -2.26. This is not particularly surprising as oil is one of the most important 

inputs for any manufacturing industry including food. It is logical therefore that an 

increase in oil prices raises costs for Food Manufacturing companies and hence lowers 

the stock returns of the Food Manufacturing industry. The same analysis holds true for 

other industries whose returns are significantly negatively affected by changes in the oil 

price changes.  

 

Table 2. The Effect of Oil Price Changes on Stock Returns across Industries 
(1)  (2) 

Industry Brent  Industry Brent 
Agriculture 0.8942  Nonmetal 0.6212 
Chemicals 0.7448**  Oil 3.0512*** 

Coal 5.0424***  Others 0.7760 
Computer 0.1624  Paper -0.7392 

Construction -0.3905  Pharmaceuticals -1.2144** 
Culture 0.1102  Real Estate -0.0381 

Electricity -0.5224  Retail -0.8509*** 
Electronics -0.7841**  Rubber -1.2951*** 

Finance 0.1186  Software 0.0450 
Food  -2.2600***  Special Equipment -0.2262 

General Equipment -1.1269***  Textile -0.2051 
Mining 3.3498***  Transportation -0.5561 

Metal Product -0.6811  Utilities -0.2255 
Instrument and Meter -2.3386*  Vehicle -1.9343*** 

New Energy -1.1458    
Notes: ***, **, *represents significance at the 1%, 5% and 10% levels, respectively. 

 

The coal industry has the highest positive response to changes in international oil 

prices, with a coefficient of 5.04. This result is also not a surprise given that coal is the 



traditional substitute for oil. Coal accounts for the majority (over 60%) of China’s total 

energy consumption issued by the National Energy Commission (NEC). An increase in 

the demand for coal will obviously increase the stock price of the oil industry. The 

domestic oil industry also has a relatively high response to changes in the international 

price of oil, with a coefficient of 3.05. This finding is again reasonable, in line with 

previous literature (El-Sharif et al., 2005; Boyer and Filion, 2007; Nandha and Faff, 2008; 

Broadstock et al., 2012). The results of the estimations also indicate a positive relationship 

between oil prices and mining industry stock returns. This is consistent with the finding 

of other studies such as Cong et al. (2008) and Zhang and Cong (2013). A 1% increase in 

oil prices will lead to a 0.03% increase in mining industry stock returns. Again, this is not 

a surprising result. The operation of the mining industry is closely related to both the oil 

and coal industry with the mining industry providing fundamental preparation in the 

refining process.  

The estimate of 0.74 for the chemicals industry, albeit small, may at first seem quite 

surprising. Oil and its by-products are one of the main resources for the chemical 

manufacturing industry. Therefore, a negative response to international oil price changes 

would be expected from the chemicals industry. There are a number of possible reasons 

for the counterintuitive result. Robust economic growth in China in recent years will 

undoubtedly increase the demand for chemicals. This growth also coincided with a period 

of volatility in the price of oil. Compared to the increased demand for chemicals, the 

increase in cost relating to higher oil prices is negligible. Rapid technological advances 



in the manufacturing of chemicals which has alleviated the pressure of price increases on 

raw materials, the availability of substitutes that reduces dependency on oil and its by-

products, and economies of scale in the chemicals industry may also be offered as possible 

explanations as to why the stock returns of the chemicals industry move positively with 

that of changes in the price of crude oil.  

Perhaps the most interesting result is that of the electricity industry. As electricity is 

a substitute for oil, in theory, an increase in oil prices should benefit providers of 

electricity. Empirically no evidence is found of such an effect. A possible explanation for 

this may be advanced. In May 2005, The National Development and Reform Commission 

(NDRC) proposed a coal-electricity price “co-movement” mechanism which would raise 

electricity tariffs if coal prices rose by 5 percent or more. Fearing inflationary pressure 

however, policy makers have continued to control energy tariffs in recent years and the 

co-movement policy has never been implemented effectively. Many electricity generators 

are therefore unable to absorb the ensuing increases in fuel costs, resulting in huge losses. 

It is possible that oil price increases have not improved the expected profit of electricity 

generators but instead may have actually increased their losses. Other possible 

explanations for this result include technological progress, the prevailing application of 

new energy and the government’s policy of weeding out what is known as “high three 

companies” (that is companies with high pollution, high energy consumption and high 

emission), all of which have reduced the demand for electricity.  

 



2. Structural Breaks in the Oil Price-Stock Market Nexus  

Next we turn to the Bai and Perron (2003).  In the BP model, serial correlation is 

allowed for in the errors and different variances of the residuals across segments7. It is 

assumed that Brent Crude oil prices, SMB and HML are tz , and other variables are tx

8 . Following the BP procedure, the rationale for deciding the optimal number of 

breakpoints and corresponding break dates are shown in Table 3. This indicates that there 

exists at least one break for all industries. The majority of industries, 12 in total, have 

two breaks, 8 have a single break and the remaining 9 have three. The first break date 

occurs during the 2004 to 2006 period for 24 of the 29 industries which coincides with 

the launch of the share split structure reform in China. The second break date occurs 

between 2007 and 2009 for 12 of 21 industries, which coincides with the Global 

Financial Crisis. Finally, the third break date is between 2010 and 2012 for 8 of the 9 

industries. This coincides with the European debt crisis debt crisis. Based on these 

findings, it could be argued that these three events have affected the relationship between 

oil price changes and Chinese industry returns. 

 

 

 

 
 
 

                                                        
7 The minimum ratio of each segment size to total observations to be 0.2. 
8If a rolling regression of Eq. (1) based on the rolling window 0.2*T is estimated, the coefficients on 
the constant, oil price, SMB and HML fluctuate remarkably for the 29 industries, and the coefficients 
on other variables are stable. 



Table 3. Break Dates for 29 Industries 
Industry Break  1 Break 2 Break 3 

Agriculture 2004/09/01*** 2007/06/18*** 2010/07/29** 
Chemicals 2007/06/18***   

Coal 2005/12/27*** 2008/07/21*** 2011/11/10** 
Computer 2006/06/02*** 2009/01/22*** 2012/03/21** 

Construction  2006/12/11*** 2012/03/23***  
Culture 2004/08/04*** 2007/03/12*** 2012/03/12** 

Electricity 2004/12/07*** 2012/03/13***  
Electronics 2007/03/26***   

Finance 2004/08/25*** 2007/04/26*** 2009/11/11 
Food  2007/01/25*** 2010/12/31***  

G. Equipment 2004/08/04*** 2008/03/24***  
Mining 2006/11/01*** 2010/10/18**  

Metal Product 2005/08/09*** 2009/04/28***  
I. M. 2004/12/03***   

New Energy 2005/03/15*** 2007/09/26*** 2012/03/26*** 
Nonmetal 2006/06/05*** 2012/03/23***  

Oil 2005/02/24***   
Others 2007/05/08*** 2010/03/23***  
Paper 2006/12/14***   

Pharmaceuticals 2005/08/11*** 2008/04/14*** 2010/11/17*** 
Real Estate 2006/06/01*** 2009/02/17*** 2011/10/18*** 

Retail 2004/08/26*** 2011/03/24***  
Rubber 2006/07/14***   

Software 2006/12/01*** 2009/06/19*** 2012/03/26** 
S. Equipment 2006/01/11*** 2011/12/16***  

Textile 2006/10/27***   
Transportation 2005/08/15*** 2009/07/06***  

Utilities 2010/06/01***   
Vehicle 2004/08/18*** 2012/02/27***  

Notes: ***, **represents significance at the 1% and 5% levels. 
 

Next, differences are tested for across time periods by applying the BP procedure to 

Eq. (1). The results are presented in Table 4 and indicate that there are significant 

differences in the oil price coefficients across industries and across time periods. There 

are 15 industries whose returns are not significantly affected by oil price changes in any 

time period at the 5% level: Agriculture, Computer, Construction, Culture, Electricity, 



Metal Product, Instrument and Meter, Metal Product, New Energy, Paper, Real Estate, 

Special Equipment, Textile, Transportation and Utilities industries. All industries whose 

returns are significantly influenced by oil price variations in the SUR model are still found 

to be significantly affected in at least one period of the BP model. The Pharmaceuticals 

industry is the only industry return to experience a shift in sign of the coefficient from the 

positive in Period 1 (1.73) to the negative in Period 2 (-3.03). The coefficients on all other 

industries, while different in magnitude, have a consistent sign across time periods. 

 

Table 4. The Estimation of the BP Model across Periods for 29 Industries 
Industry Period 1 Period 2 Period 3 Period 4 

Agriculture 0.5558 1.3912 2.0618 -1.3666 
Chemicals -0.0594 1.3872***   

Coal -1.7527*  9.9768***  7.5002***  3.4337 
Computer 0.7344 -0.1666 -1.4495 2.1925 

Construction  -0.5281 -0.6613 1.9718  
Culture 0.3995 -1.7435 0.1874 1.7781 

Electricity 0.332 -0.8135 -0.5448  
Electronics 0.2863 -1.4453***    

Finance 1.2320**  0.1058 0.9023 -2.6971*  
Food  -1.4343*  -2.4088**  -3.5585**   

G. Equipment 0.1555 -1.3782 -1.1730**   
Mining 1.5002**  5.1072***  3.2938**   

Metal Product -0.6106 -0.5461 -1.2260*   
I. M. -1.5375 -2.5292   

New Energy -0.2057 -4.2275 -1.14 -1.1696 
Nonmetal -0.386 1.6718**  -0.9146  

Oil -0.8362 4.5477***    
Others 0.8523 -0.7949 4.5845***   
Paper -0.6993 -0.7478   

Pharmaceuticals 1.7338***  -3.0275**  -1.721 -2.4539*  
Real Estate 0.0862 -0.7394 -0.9585 2.5443 

Retail -0.5656 -0.8316**  -1.2654  
Rubber -2.0099***  -0.8058   

Software 0.8682 -1.3413 -1.5089 5.5526** 
S. Equipment 0.9190*  -0.9456*  0.7226  



Textile -0.4988 -0.0347   
Transportation -0.3916 -1.0055*  -0.1996  

Utilities -0.1241 -0.4737   
Vehicle -0.523 -2.7645***  0.7285  

Note: ***, **, *represents significance at the 1%, 5% and 10% levels.   

 

There are some interesting findings that merit comment. The results suggest that the 

effect of oil price changes has had a particularly strong effect on Coal industry returns in 

Period 2 and Period 3 (during the end of 2005 and the end of 2011), with an estimate of 

9.98 and 7.50, respectively. The relationship between oil prices and the Finance industry, 

while significant prior to 2005, has become insignificant over the last ten years. This 

includes the period during the financial crisis. Similarly, the Rubber industry is 

significantly affected by oil prices before July 2006, after which the relationship does not 

hold. Other industries such as the Software industry and others industry have only become 

significantly influenced by international oil prices recently, in Period’s 4 and 3 

respectively. Of all 29 industries, Mining is the only industry whose returns are 

significantly affected by oil price changes across three time periods. Interestingly, the 

effect of oil price changes on Mining industry returns reaches a peak during the Global 

Financial Crisis. This may be due to the stimulus package implemented by the Chinese 

central government ($586 billion) during Global Financial Crisis which would 

undoubtedly have increased the demand for crude oil and increased demand in the Mining 

industry.  

 

 



3. Markov Regime Switching Model 

Next, we adopt the Markov switching model. In our estimations, the intercept and oil 

price changes are allowed to be regime-dependent while market returns, SMB and HML 

are constant under all states of economy. This condition is imposed as the latter three 

factors are domestic factors which it is assumed would influence industry returns in more 

of a consistent manner across the sample period. The variance matrix is allowed to depend 

on the latent regime as stock market volatility will vary significantly across regimes. The 

results of the LR tests can be found in Table 5. A time varying MS model was found 

suitable for five industries; Agriculture, General Equipment, Metal Product, Paper and 

Special Equipment. For the remaining 24 industries, a standard MS model is chosen. The 

values for sigma 1 and sigma 2, the variances of regime 1 and regime 2, are all statistically 

significant. This suggests that a two-regime MS model is sufficient to describe the 

dynamic relationship between international oil price changes and Chinese stock returns 

across the 29 industries. The results clearly indicate that regime 1 corresponds to the low 

volatility state and regime 2 to the high volatility state. The difference in volatility differs 

remarkably across industries with the ratio of high volatility to low volatility varying from 

2.73 (Special Equipment industry) to 30.19 (New Energy industry). 

The first thing to note is that industries whose stock returns are significantly affected 

by oil price changes in the SUR model are also significantly affected in one or both 

regimes of the MS model. This is with the exception of Chemicals and Pharmaceuticals 

industries. There are differences in the results between the SUR and the MS model 



however. For example, Metal Product, Paper and Special Equipment industries are found 

to be significantly affected by changes in the price of oil in the MS model, either in regime 

1 or regime 2. These three industries are not significantly affected by the same variable 

in the SUR model however. Of the industries that are significantly affected by changes in 

oil prices, four of these (Electronic, Metal Product, Paper and Rubber) are significant in 

regime 1. The remaining eight industries (Coal, Food Manufacturing, General Equipment, 

Mining, Oil, Retail, Special Equipment and Vehicle) are significant in regime 2. 

 

Table 5. Markov Switching Model Results 
Industry Regime 1 Regime 2 Sigma1 Sigma 2 LR 

Agriculture -0.3744 2.9772 0.1982*** 1.8182*** 7.99** 
Chemicals 0.6197* 1.0435 0.0740*** 0.3519*** 494.76*** 

Coal -0.282 10.0752*** 0.3268*** 2.2657*** 793.99*** 
Computer -0.4764 1.7812 0.1418*** 0.7350*** 519.05*** 

Construction -0.1815 -0.7768 0.1572*** 0.6412*** 337.4*** 
Culture -0.1706 0.2776 0.1934*** 0.8304*** 437.82*** 

Electricity -0.0034 -1.1535 0.1281*** 0.9505*** 806.05*** 
Electronics -1.0394*** -0.5107 0.0904*** 0.4088*** 490.93*** 

Finance -0.029 0.4497 0.1586*** 1.0605*** 750.26*** 
Food -0.8783* -3.8431*** 0.1465*** 1.0122*** 743*** 

G. Equipment -0.3196 -1.5350** 0.1146*** 0.4068*** 15.29*** 
Mining -0.0233 5.3827*** 0.1146*** 0.7865*** 675.82*** 

Metal Product -1.3765** 0.119 0.1779*** 0.5553*** 5.01* 
I. M. -1.0511 -5.2836 0.6877*** 7.0050*** 1200.57*** 

New Energy -0.1342 -2.2643 0.0578*** 1.7441*** 3750.27*** 
Nonmetal 0.4594 0.8118 0.1080*** 0.5749*** 563.14*** 

Oil 0.6357 8.4453*** 0.2471*** 0.9775*** 455.34*** 
Others -0.1961 1.9481 0.2729*** 1.2898*** 448.29*** 
Paper -1.0785** 2.4996 0.2168*** 1.5840*** 85.12*** 

Pharmaceuticals -0.3341 -3.2901* 0.1513*** 1.1088*** 844.05*** 
Real Estate -0.3084 0.7221 0.1432*** 1.1968*** 1029.84*** 

Retail -0.2615 -0.9946*** 0.0502*** 0.1869*** 374.81*** 
Rubber -1.5641*** -0.5036 0.1767*** 0.7353*** 541.15*** 

Software -0.5007 1.1648 0.3137*** 1.7069*** 552.77*** 
S. Equipment 0.3268 -2.8925*** 0.1285*** 0.3505*** 41.94*** 



Textile -0.3312 0.1507 0.1251*** 0.8301*** 623.97*** 
Transportation -0.4223 -0.5512 0.0766*** 0.3925*** 611.74*** 

Utilities -0.4042 0.2003 0.1498*** 0.4956*** 373.38*** 
Vehicle 0.314 -6.6167*** 0.1518*** 0.7081*** 501.97*** 

Notes: The LR statistic tests the null hypothesis of the time-varying MS model against the ordinary 
MS model (in bold) or the null hypothesis of the standard MS model against an ordinary linear model. 
***, **, *represents significance at the 1%, 5% and 10% levels, respectively. 

 

Intuitively, one would expect for the high volatility state (regime 2) to be closely 

associated with both financial crises and bear markets. This argument can be tested by 

examining the smoothed probabilities estimated by the MS model. A very simple rule is 

applied when relating the smoothed probabilities to a given regime. If the probability of 

being in one state or regime is greater than 0.5, then that regime is present. Table 6 also 

presents statistics relating to the occurrence of regime 2 based on the probabilities for 

these 12 industries significantly affected by oil price changes in MS model. Column 1 

reports that the ratio, the number of occurrences of regime 2 over the entire sample 

divided by sample size for the given industry, varies significantly across the 12 industries, 

from 3.72% (Paper industry) to 64.85% (Mining industry), with the average of 37.9%. 

This means that regime 1 (low volatility) dominates regime 2 (high volatility) in terms of 

frequency across the full sample. Table 6 indicates that regime 2 most frequently occurs 

in during 2007, 2008, 2009 for the 12 industries. This coincides with the Global Financial 

Crisis.  

 

 

 



Table 6. Statistics for Regime 2 of MS Model 
Industry Ratio (%) Periods (year) Diff. 

Coal 49.05 2008, 2007, 2009, 2013, 2014, 2010 0.1191** 

Electronics 39.90 2009, 2007, 2010, 2008, 2005, 2006 -0.0818 

Food  48.85 2013, 2007, 2008, 2012, 2009, 2010 -0.0385 

G. Equipment 42.97 2007, 2008, 2009, 2005, 2006, 2010 0.0746 

Mining 64.85 2009, 2008, 2007, 2010, 2013, 2012 -0.1011 

Metal Product 47.37 2008, 2007, 2009, 2005, 2006, 2003 0.0979* 

Oil 24.33 2007, 2008, 2009, 2012, 2006,2013 0.0454 

Paper 3.72 2009, 2007, 2008, 2005, 2012, 2006 0.1121** 

Retail 56.83 2008, 2007, 2009, 2010, 2013, 2006 0.0703 

Rubber 27.40 2008, 2007, 2009, 2010, 2006, 2005 0.0066 

S. Equipment 25.20 2009, 2008, 2007, 2006 -0.4920*** 

Vehicle 24.36 2009, 2007, 2003, 2008, 2006, 2004 0.1221** 

Notes: Periods is the years when the six largest occurrences of regime 2 take place. ***, **, * 
represents significance at the 1%, 5% and 10% levels, respectively. 

 

A bear market is characterized not only by high volatility, but also by low returns. 

The possibility that regime 2 of the MS model is associated with a bear market is 

examined. This can be done by calculating the difference between the mean of industry 

returns in regime 2 and the mean of industry returns in regime 1. The results of this can 

be found in the right hand column of Table 6. The difference and significance vary across 

industries. For the majority of the twelve industries, the mean of returns in regime 2 is 

not statistically different from that in regime 1. For Coal, Paper and Vehicle industries, 

we find evidence that the mean of returns in regime 2 is higher than the one in regime 1, 

while the reverse holds for Special Equipment industry. Therefore, the argument that high 

volatility is associated with a bear market in the Chinese stock market only holds for 3 of 

our industries.  

 



V. Robustness test 

 

Two robustness tests are carried out to add reliability and credence to the findings of both 

the BP model and the MS model. Firstly, the robustness of the BP results is examined, by 

allowing the coefficient on all variables to vary across time periods. The results are 

slightly different from those in Section IV. For example, the optimal number of 

breakpoints in the robustness test for 10 industries (Chemicals, Construction, Electricity, 

Electronics, General Equipment, Others, Paper, Rubber, Vehicle and Oil) is one greater, 

and two in the case of Oil, than that in Section IV. Also, the coefficient on oil prices in 

this additional period is smaller than that in the preceding period, with the exception of 

the Chemical industry. This suggests that the relationship between oil prices and these 

industries stock returns reached a peak during the financial crisis but has since declined. 

This offers valuable implication for policy makers and investors. The actual break dates 

in the robustness test roughly coincides with those in the main body. Overall, it can be 

said that the findings of the robustness test are fairly consistent with that of BP model in 

Section IV.   

The second robustness test relates to the Markov switching model. Unlike the model 

in the main body, the coefficients on all variables are allowed to vary with regimes. The 

results for all industries are in accordance with those in Section IV. This is with the 

exception of the Special Equipment industry which is found to be highly significant in 

the second regime in Section IV but is insignificant in the second regime of the robustness 



test. The coefficient relating the Special Equipment industry to oil price changes in the 

robustness test is consistent with that of both the SUR model and BP model however. 

Overall, it would appear that the results are rather robust, lending support to the findings 

in Section IV of the paper.  

 

 

VI. Conclusions 

 

It is well documented that the relationship between oil prices and stock markets 

differs across industries. This paper investigates the effect of oil price changes on Chinese 

stock market returns across 29 industries first using a SUR model. The results show that 

four industry returns (Coal, Chemicals, Mining and Oil) are positively affected by oil 

price changes while seven industry returns (Electronics, Food Manufacturing, General 

Equipment, Pharmaceuticals, Retail, Rubber and Vehicle) are found to be negatively 

influenced by oil price changes. The effect of oil price changes on industry returns using 

a breakpoints model is also estimated. The results confirm that the effect varies over time 

and that the breakpoints differs across 29 industries. While it is extremely difficult to 

derive a uniform pattern across 29 industries from these estimations, the results show that 

the effect of oil price changes on industry returns has intensified since 2004 for most 

industries. Finally, a Markov switching model is applied to investigate the relationship 

between oil prices and stock market returns under different regimes. This nonlinear 



technique allows us to examine asymmetry in the relationship between oil prices and 

Chinese stock returns across industries. The results suggest that one of these regimes 

(Regime 2) is associated with high volatility and that stock returns are more responsive 

to changes in oil prices in this regime. Regime 2 most frequently occurs during financial 

crisis, but is not associated with a Chinese bear market for most industries.  

The empirical findings of this paper have important implications for investors and 

policymakers alike.  For investors, the results provide an understanding of the 

relationship between Chinese stocks and international oil price changes, particularly with 

regard to variations across industries and time periods, as well as with regard to the 

increase or decrease of international oil prices.  Firstly, for the purposes of 

diversification, investors should choose to hold stocks whose returns have no significant 

relationship with oil prices. Secondly, our results suggest that when the price of 

international oil increases, investors should hold industry stocks whose returns are 

positively correlated with changes in oil price and short industry stocks with returns that 

are negatively correlated with changes in oil price.  Conversely, the reverse of this 

strategy should be adopted in the presence of decreases in the international price of oil. 

The results also provide useful recommendations for policymakers. The Chinese 

government should take effective measures to fight the negative effects of international 

oil price shocks on domestic stock markets as the relationship between oil and stock 

markets strengthens, particularly during periods of financial turbulence. 
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